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SUMMARY

The generalized Langevin equation (GLE) has been used to describe the dynamics of

particles in a stationary environment. To better understand the dynamics of polymerization,

the GLE has been generalized to the irreversible generalized Langevin equation (iGLE) so

as to incorporate the non-stationary response of the solvent. This non-stationary response

is manifested in the friction kernel and the behavior of the projected (stochastic) force.

A particular polymerizing system, such as living polymerization, is specified both through

the parameters of the friction kernel and the potential of mean force (PMF). Equilibrium

properties such as extent of polymerization have been obtained and are consistent with

Flory-Huggin’s theory. In addition, time-dependent non-equilibrium observables such as

polymer length, the polymer length distribution, and polydispersity index (PDI) of living

polymerization have been obtained. These have been compared to several experiments so

as to validate the models, and to provide additional insight into the thermodynamic and

kinetic properties of these systems.

In addition to the iGLE, a stochastic model has been used to study the effect of non-

equilibrium reactivity on living polymerization. This model can be used to determine

whether the reaction is controlled by kinetics or diffusion. A combination of the iGLE and

stochastic models may help us obtain more information about living polymerization.

viii



CHAPTER I

INTRODUCTION

The term “living polymers” was first suggested by M. Szwarc in 1956 in the anionic poly-

merization of styrene with an alkali metal/naphthalene system in tetrohydrofuran [5, 6].

He found that viscosity increases as the reaction proceeds, reaching a maximal value for

a fixed amount of monomers. The addition of monomers will continue the reaction and

the viscosity will increase again. After his remarkable discovery, a lot of techniques such

as cationic polymerization, free radical polymerization and ring-opening polymerization [7]

have been developed in the last fifty years to study this “livingness” —a special feature of

living polymers [8, 9].

Living polymerization [10, 11] is a powerful technique for synthesizing homopolymers and

copolymers/block polymers. Block copolymers have found great applications in drug deliv-

ery, photonics and fuel cells. One example is polystyrene-b-poly(methyl methacrylate)(PS-

b-PMMA), which can be made by first polymerizing styrene, and then subsequently poly-

merizing MMA from the reactive end of the polystyrene chains. The active sites on the

living polymers allow the propagation and depropagation steps to occur simultaneously

and ideally there are no termination/transfer reactions happening. If the rate of chain initi-

ation is much faster than the rate of chain propagation, the polymer chains grow at a more

constant rate and the chain length be kept at a constant length, that is, they have a very

low polydispersity index (PDI). The PDI indicates the distribution of the individual molec-

ular weight in a batch of polymers and has a value always greater than 1. As the polymer

chain length approaches a uniform chain length, the PDI approaches 1. By terminating the

reaction before depolymerization becomes important, one can obtain polymers with nar-

row molecular weight distributions. The physical properties of equilibrium polymerization

strongly depend on the molecular weight and molecular weight distribution.

The factors that affect polymerization include the initiator concentration, monomer
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concentration and temperature. Polymerization proceeds only if the standard Gibbs energy

(∆G = ∆H − T∆S) is zero or negative. For polymerization with positive enthalpy and

entropy, the polymerization will begin when the temperature of the system increases above

a critical “floor temperature.” For polymerization with negative enthalpy and entropy, the

polymerization will begin when the temperature of the system is below a critical “ceiling

temperature.” The latter case has been observed most often. One example is polymer-

ization of α-methylstyrene. As the temperature increases, the entropy term becomes more

positive, and free energy will increase and become less negative. This results in an increase

in the number of monomers in solution and the monomers are in a dynamic equilibrium

with the polymers. Most models of polymerization systems have focused on equilibrium

polymerization and don’t have sufficient detail. The goal of this work is to develop mod-

els to investigate the time-dependent molecular structure and the macroscopic structure.

The molecular structure includes the average polymer length and its distribution. The

macroscopic structure includes the viscosity.

1.1 Living Polymerization and Experimental Systems

1.1.1 Mechanism and Molecular Weight Distribution

Living polymerization is a special case of chain polymerization where it occurs in three

stages. In the initiation step an activated species, such as a free radical from an initiator,

attacks and opens the double bond of a monomer molecule, producing a new activated

species. In the propagating step, this activated species adds a monomer unit and in do-

ing so activates the newly added monomer. The growth usually happens in seconds to

microseconds. Although in theory this process may continue forever, it always terminates

due to a variety of specific chain-terminating reactions. To prevent chain termination, free

radical polymerization such as atom transfer radical polymerization (ATRP) and reversible

addition-fragmentation chain transfer (RAFT) polymerization have been developed in the

twentieth century. Various reagents, solvents and conditions have been used to keep the

activated end “alive”. In this work, however, we will focus on the conventional anionic

polymerization.
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For polymerization processes, the degree of polymerization (DP) is an important theo-

retical quantity. Although the polymer length is important to know, it is not as important

as the polymer length distribution or molecular weight distribution. If one could count the

number of “ mers” on each molecule and the number of this length of molecule occurs in the

sample, then one could draw a histogram to describe the distribution of polymers. Besides

this number distribution, another useful distribution is the molecular weight distribution

including the number-average molecular weight distribution (Mn) and the weight-average

weight distribution (Mw). These distributions help to characterize the size of the polymer

and to understand the properties of the polymer such as the viscosity. The number-average

weight is the mass of a given quantity of material divided by the number of chains found

in the sample:

Mn =

∑∞
i=1 NiMi
∑∞

i=1 Ni
, (1)

The weight-average MW can be described as:

Mw =

∑∞
i=1 NiM

2
i

∑∞
i=1 NiMi

, (2)

where Ni is the number of polymers with the molecular weight of Mi. The ratio of the

weight-average and number-average molecular weights can be used to describe the polydis-

persity of the polymers (PDI).

In 1958, Brown and Szwarc [12] derived the equilibrium molecular weight distribution

of living polymers and the rate of change of the distribution when the initial distribution

is not the equilibrium distribution. They assumed that the rate constants are independent

of chain length. Based on their results, in 1965, Miyake and Stockmayer [13] obtained a

complete analytic solution for a living polymer system without transfer and termination

reactions provided the monomer concentration was constant. In 1997, Milchev studied

the molecular weight distribution MWD using Monte Carlo methods on a two-dimensional

lattice and confirmed the cross over from Schulz-Zimm to exponential distributions as the

system moved from the dilute to semi-dilute case [14].

For reversible, equilibrium polymerization, there are three stages for which the MWD

has been predicted by theory and experiment [12, 15]. In the initial stage, the initial MWD
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is a Poisson distribution since the polymerization is much faster than the depolymerization.

In the intermediate stage, Mn will remain constant, but Mw will continue to increase until

equilibrium. In this stage, equilibrium between monomer and polymer is established, and

finally reaches Flory-Schulz distribution after a long time. The Flory-Schulz distribution

becomes the exponential distribution predicted by the Flory-Huggins lattice model [16] and

kinetic study [17] when the number average degree of polymerization is large. The ideal,

living, irreversible polymerization usually gives a narrow, sharp Poisson distribution. This

is shown in appendix A. The non-uniformity with respect to degree of polymerization (PDI)

can be estimated by 1 + 1/n, where n is the polymer length; Although the experimental

values are usually higher. Different techniques have been developed to get more accurate

results. The most popular experimental techniques to determine the molecular weight

distribution for living polymerization include gel permeation chromatography (GPC)/size

exclusion chromatography (SEC), gas chromatography (GC) and the photocopy method.

The SEC is a special kind of liquid chromatography that separates molecules according to

size instead of according to affinities toward the porous substrate.

The polymerization rate constants are average constants that average all of the propa-

gating species such as ion pairs, free ions etc. Ion pairs have much lower propagation rate

than free ions and the contribution of ion pairs to the rate constant is larger than free ions.

A plot of Kp = f(T ) does not follow an Arrhenius-type relationship since dissociation of ion

pairs are strongly temperature dependent and overall propagation constants are averages

over the contribution of different proportions of ion pairs at different temperatures. But

in most cases, since usually only one ion structure dominates in the polymerization pro-

cess, use of an Arrhenius-type relationship to determine the activation energy is still widely

accepted.

1.1.2 Some Interesting Systems

Living polymers are easily terminated by exposure to air and water. This makes it difficult

to perform living polymerization process in the lab. Some experimental systems studied in

the lab with the operating conditions and results are shown below. A few of them will be
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used to validate our model.

1.1.2.1 α-methylstyrene

Living polymerization of α-methylstyrene in the solvent tetrahydrofuran initiated by sodium

naphthalide or cesium naphthalide has been studied by Greer and coworkers [1, 15]. The

ceiling temperature of this system in solvent is 250−320K . This reaction is very convenient

to operate in the lab. In this experiment, to initiate the polymerization reaction, one mixes

the reaction mixture above the polymerization temperature, and then quenches to a lower

temperature to make sure the initiation process has finished before the propagation begins.

The repeat unit of α-methylstyrene is shown in Figure 1. This experimental data has been

widely used by recent theorists for comparison.

Figure 1: Repeat unit of α-methylstyrene

1.1.2.2 4-cyano-α-methylstyrene

The living anionic polymerization of 4-cyano-α-methylstyrene was carried out in tetrohy-

drofuran at -78 degrees Celsius with various initiators [18] and shows similar behavior to

the reversible polymerization of α-methylstyrene. The heat of polymerization is −7.64±0.5

kcal/mol and the corresponding entropy is −25.5 ± 1 kcal/molK . The ceiling temperature

for a 1M solution is 27± 3 degrees Celsius. The kinetic study shows that the apparent rate

constant is:

log kp = −1.83 ∗ 103/T + 5.741/mols , (3)

and the activation energy is 3.6±0.2 kcal/mol [19] which is a little bit smaller than the acti-

vation of α-methylstyrene because of the electron-withdrawing group. The rate of polymer-

ization is much slower than that of α-methylstyrene due to the use of lithium naphthalenide.

Under the same conditions of polymerization as α-methylstyrene, 4-cyano-α-methylstyrene
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has only 12% conversion at -78 degrees Celsius after 2 hours, and 61% conversion after 48

hours. The SEC result shows that this polymer has a sharp and narrow molecular weight

distribution, indicating that there are no termination reactions happening.

Different initiators would also affect the reaction rate. For 4-cyano-α-methylstyrene,

potassium naphthalenide and cesium initiators accelerate reaction rates much faster than

when lithium naphthalenide is used, which is contrary to α-methylstyrene [18].

Figure 2: Repeat unit of 4-cyano-α-methylstyrene

1.1.2.3 Tetrahydrofuran

Polymerization of tetrahydrofuran using the catalyst p-chlorophenyldiazoinum hexafluoro-

hosphate (p − ClC6H4N2PF6) has proved to be a cationic polymerization without termi-

nation and transfer [20]. Dreyfuss has studied the conversion as a function of time and

temperature. Compared to α-methylstyrene, this polymerization only requires one initiator

molecule to form the propagating species. By using this initiator, it has been found that the

distribution could be broadened from the Poisson distribution to a Flory distribution with

a larger polydispersity. The possible factors that affect the distribution are: equilibrium

effects, chain transfer reactions, slow initiation reactions and ion pair structure [21]. The

activation energy for this reaction is 51kJ/mol .

1.1.2.4 4-vinylbenzocyclobutene

Polymerization of 4-vinylbenzocyclobutene with the initiator sec-butyllithium at room tem-

perature was studied by Mays [3]. A linear first-order semi-logarithmic time-conversion plot

was obtained and indicated that there is no termination reaction. The molecular weight as
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a function of conversion is linear, indicating there is no transfer reaction (the number of the

polymers remains constant all the time). The UV-vis spectrum of the living polymerization

shows two absorbance bands for a long time. This indicates that the concentration of the

propagating species remains constant during polymerization. By plotting Mw/Mn as a

function of conversion, the MWD is narrow. As the polymerization time increased, the

monomer conversion and number-average molecular weight increased. The concentration of

the initiator is 7.7e − 4mol/l and the initial monomer concentration is 0.24mol/l at room

temperature. This reaction is an irreversible polymerization.

Figure 3: Repeat unit of 4-vinylbenzocyclobutene

1.1.2.5 styrene

Polymerization of styrene with initiator sec-butyllithium in cyclohexane in a temperature

range of 10-60 degree Celsius was studied by Schubert [22]. The activation energy for this

reaction is 63KJ/mol . Chang [4] also studied this experimental system using SEC and

temperature gradient interaction chromatography (TGIC) and found the TGIC method is

more accurate. The initiator concentration is 0.00048M and the monomer concentration is

0.29M . This is an anionic polymerization process.

1.2 Stochastic models and reaction dynamics

“An actual polymer molecule is an extremely complex mechanical system with an enormous

number of degrees of freedom. To study the detailed motions of this complicated system

and their relations to the non-equilibrium properties would be prohibitively difficult. As

a result, it has been customary for polymer scientists to resort to mechanical models to

simulate the mechanical behavior of the macromolecules.”
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The above statement made in 1987 by Hassager [23] told us that it is not necessary

to include all degrees of freedom and chemical interactions of a realistic chain to simulate

polymer systems. To make the simulation possible, one has to reduce the complexity and

make the computation time feasible. The reduction of the complexity of the model is

called coarse-graining. The most accurate way to describe the time evolution of a system

of chemically reacting molecules is to do a molecular dynamics (MD)simulation. The level

of detail information obtained from MD is determined by the complexity of the force field.

If there is a large separation of time scales governing the motion of different component of

the system, Brownian dynamics (BD) becomes a very useful method. For a polymer in a

solution, if the detailed motion of solvent molecules is not of interest, the motion of solvent

molecules can be removed from the simulation and their effect can be represented by a

dissipative and random (stochastic) force term. This elimination allows one to investigate

the polymer dynamics on longer time scales, thus Newton’s equations of motion will become

the Langevin equation.

The chemical reaction can be described as an effective particle moving on a potential

characterized by two (or more) adjacent wells separated by a barrier [24, 25, 26, 27, 28, 29].

In Kramer’s model [24], a particle is trapped in a one-dimensional well which is separated

from another well by a barrier height. He assumed that the particle is immersed in a medium

such that the medium exerts a friction force on the particle, but at the same time activates

the particle so that the particle can gain enough energy to escape from the well. Kramer

found the rate of escape of the particle from the well over the barrier. Also, the barrier

crossing dynamics at low and high friction are different. At very low friction, the rate is

limited by the energy diffusion process. The escape rate is increased with friction. On the

contrary, at high friction, the over-damped regime, the rate is limited by the spatial diffusion

process, the escape rate is decreased with the the increase of static friction. Kramer didn’t

obtain a single theory valid for the entire friction regime. This is the Kramer turnover

problem. He did realize that there is a maximal rate for a intermediate friction. Many

attempts have been made to provide a single expression to link these two friction limits

[30, 31]. In 1986, Pollak found that the Kramer’s expression can be derived from transition
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state theory (TST) which leads to the solution of the Kramer’s turnover problem [32, 30, 33].

Transition state theory (TST) uses the flux over population method to derive the rate of

passage over the barrier. TST theory relates the reactant with product through the barrier

height. This works for reactions in the gas phase. For reactions with solvent, it overestimates

the rate of systems at the low-friction regime and high-friction regime because it does not

consider the particle recrossing the barrier. To correctly describe a chemical reaction, one

could use the Fokker-Planck equation. By solving the Fokker-Planck equation one obtains

distribution functions from which any average of macroscopic variables are obtained by

integration. An alternative way is to use the Langevin equation proposed by Kramer in

1940. It can be used to describe the time evolution of the motion of Brownian particles in

a potential. The potential relates the reactant, product and transition state complex.

By using the Langevin equation to describe a chemical reaction such as a polymerization

process, one has to assume the tag molecule is larger than the solvent molecules, so there is

no memory left after the tagged particle and solvent particles collide. If the molecules are

all the same size in the system, then one has to consider the memory effect. The Langevin

equation can be generalized by taking into account this variation by introduction of space-

dependent friction [34, 35, 36, 37]. Besides modifying the friction kernel, another way to

include more complex interactions with the environment is to modify the potential of mean

force (PMF).

1.3 Polymerization Dynamics

1.3.1 Equilibrium Polymerization

Equilibrium polymerization has been used to describe not only linear polymers, but also

nonlinear aggregation such as micelles, networks, and other kinds of clustering processes and

collective assembles. The term “equilibrium polymerization” includes reversible polymer-

ization and processes approaching equilibrium [38]. According to Tobolsky [39], polymer-

ization equilibrium processes can classified as equilibrium polymerization reaction whether

the reaction requires initiators or not. The polymerization of e-caprolactam initiated by

water, amine or organic aids and some cases of cationic and anionic polymerization of vinyl
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monomers are examples of polymerization with initiators. Thermal polymerization of sul-

fur, certain types of equilibrium vinyl polymerization, and the polymerization of rings to

larger rings are examples of reactions that proceed without initiators. To specify equilib-

rium from the experimental view, equilibrium concentrations of monomers, the equilibrium

number average degree of polymerization and the equilibrium concentration of initiator are

the important measurable quantities.

Equilibrium polymerization can be considered to be a phase transition. This was proved

by Oosawa [40, 41, 42], Ivin [43], Semenchenko [44] and Wheeler [45]. Monomers in the

solvent are in one phase, and polymers in equilibrium with monomers in solvent are in

another phase. As the system moves back and forth between these two phases, polymer

length increases or decreases. The thermodynamic properties of amorphous polymer phases

were calculated by Flory [46], Meyer [47], and Huggins [48] using statistical mechanical

methods. These calculations count the number of conformations of each polymer and the

number of configurations of a specified polymer. Flory studied semi-flexible linear chains

whose stiffness arises exclusively from intramolecular nearest neighbors [49, 50] and Gibbs

got a more general formula to describe the properties of polymers which incorporates the

chain stiffness and the variation of volume with temperature [51, 52]. Except these quasi-

lattice models for fixed-length polymers, there are also some approaches to study the growth

of polymers and polymers with variable bond lengths [39]. N→ 0 vector model[45] and

Freed’s lattice model[16] are two popular models to study the properties of equilibrium

polymerization.

1.3.1.1 n→ 0 Vector Model

In the n vector magnet model, n refers to the dimension of the order parameter of the

magnetic phase transition. For a polymer system where n→ 0, the n vector magnet model

can be mapped to a lattice model of equilibrium polymerization. In 1972, de Gennes proved

that the partition function for a very long polymer chain in a good solvent is equivalent

to the partition function for a magnet that has a magnetic moment with 0 dimension [53].

In 1975, des Cloizeaus also showed that the two partition functions are equivalent in an
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external magnetic field when n→ 0 [54]. The relation between the “magnetic” problem and

the polymer problem was also addressed by Sarma [55].

For a system of N vector spins located on the sites of a three-dimensional lattice, the

Hamiltonian is:

H = −J
∑

<i,j>

SiSj − m0H
∑

i

S
(1)
i , (4)

where Si, Sj are the nearest neighbor spins, and S(1) is the component parallel to the field.

S is the classical n-component vector spin with length n1/2.

|S|2 =
n
∑

α=1

(S(α))2 = n . (5)

In the limit of n→ 0, the partition function Z and free energy f of this model can be written

as:

Z = eV f =
∑

Nb,Np

(β)Nb(h2)NΓ(Nb, Np, V ) ,

where V is the volume of total lattice sites, β = J/kT and h = µ0H/kT, T is the temper-

ature of the reference n-vector model, Nb is the total number of bonds on the lattice, Np

is the number of linear polymers with excluded volume, and Γ(Np, Nb, V ) is the number

of ways to place polymers on the lattice sites. It has been proved by Wheeler [45] that

this n→ 0 vector model is the same as the earlier Tobolsky-Eisenberg theory of equilibrium

theory in the mean field limit. The non-mean field theory requires the value of the en-

tropy and enthalpy. The assumptions made in this model are used to explain the behavior

of the different experimental systems described previously. Since pure organic monomer

α-methylstyrene is very viscous, the polymerization process usually reacts in solution. If

there is solvent, the model would become the dilute n→ 0 vector model with an additional

parameter, polymerization temperature (Tp). The dilute n→ 0 model gives a little bit bet-

ter results than the mean field approximation which is evident by comparing the chi-square

values. Wheeler and coworkers have studied the polymerization properties such as the heat

capacity, mass density, extent of polymerization etc.
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1.3.1.2 Freed and Douglas’s Lattice Model

Flory-Huggins theory is a simple theory to calculate the free energy of polymer solutions

which can be described by a lattice model, where each lattice site is occupied by either sol-

vent or monomers. The thermodynamic properties of the polymer system can be calculated

from the free energy. In Freed and Douglas’s lattice model, they include the interaction

between polymer and solvent, the chain stiffness and variable initiator concentration. The

average polymer length L, the fraction of monomers converted to polymers, entropy, specific

heat and chain length distribution are calculated. It turns out the stiffness and equilibrium

constant won’t affect thermodynamic properties. The physical parameters required for this

model are the entropy and enthalpy. The chemical reaction for the polymer system with

monomer M and initiator I is:

2M + 2I → M2I2 (6)

MiI2 + M ⇀↽ Mi+1I2 , (7)

where M2I2 is bi-functional dimer. Conservation of mass requires:

n0
m = nm +

∞
∑

i=2

ini , (8)

where n0
m is the number of the initial monomers, nm is the number of the monomers after

polymerization, and ni is the number of the initiators.

The free energy for this system can be written [16]:

F

NlKBT
= φs ln φs + φm ln φm +

∞
∑

i=2

φs

i + 2
ln φi + φsφmχ + φsχ

∞
∑

i=2

φi +

∞
∑

i=2

φifi , (9)

where the number of lattice sites Nl = ns + n0
m + nI , the mole fraction of monomer φm =

nm/Nl, the mole fraction of the solvent φs = ns/Nl, the mole fraction of the initiator

φi = ni(i + 2)/Nl), χ is the interaction parameter of the monomer and solvent, fi is the

dimensionless free energy of an i-mer, and kB is the Boltzmann constant.

Compared to the n → 0 vector model, this lattice model shows that the relation among

the average chain length L, the extent of polymerization, and initial monomer concentra-

tion is linear for fixed initiator concentration. It also predicts three different polymerization
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lines: the temperature at which the polymer first starts to grow (T x
p ); the true polymer-

ization temperature at which the specific heat has the maximum value and the extent of

polymerization shows an inflection point (Tp); and the equilibrium temperature at which

the polymer length won’t change anymore for fixed initiator concentration.

1.3.2 Non-equilibrium Polymerization

Non-equilibrium polymerization concerns situations where the system under study is not in

thermodynamic equilibrium. There are two possible reasons that the system is in a non-

equilibrium state: (1)The system is in a steady state and there are external forces acting on

the system. (2)The system is in a non-equilibrium state because of the initial conditions.

Under both situations, the systems will approach thermodynamic equilibrium after some

time.

The usual approach to obtain time-dependent information is performing a molecular

dynamics (MD) simulation. Due to the complexity of polymer systems, a stochastic method

has been used to study the properties of the polymerization process.

1.3.2.1 Langevin Equation

The Langevin equation is a stochastic differential equation describing Brownian motion in a

potential. The difference between the Langevin equation and Newton’s equations of motion

is that there are two additional forces as shown in the equation,

v̇ = −γ0v(t) + ξ(t) − F (t) , (10)

where F (t) is the mean force, γ0 is the damping constant or friction coefficient, and ξ(t)

is the random force. In this equation, the dissipative force and the random force have

been added to approximate the effect of neglected degrees of freedom. The friction force is

proportional to the velocity of the particle v(t), and the random force is independent of the

motion of the particles. The friction coefficient is related to the fluctuations of the random

force by the fluctuation-dissipation theorem:

〈ξ(t)ξ(t′)〉 = 2kBTγ0δ(t − t′) . (11)
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Although the Langevin equation is a simple model, it has been used to study polymer

translocation through nanopores[56], dynamics of semi-flexible polymers in a flow field, [57]

etc.

The Langevin equation was generalized by modifying the friction kernel to account for

more complex interactions with the environment. It can be used to model the dynamics

of a reactive coordinate in dissipated bath particles. In the generalized Langevin equation

(GLE), the friction kernel is extended to include non-local memory so as to model delayed

environmental responses to the system. The GLE with position-dependent friction was

developed by Carmeli and Nitzan [35].

v̇ = −
∫ t

dt′γ(t, t′)v(t′) + ξ(t) − F (t) , (12)

where v(t) is the velocity of the effective particle, ξ(t) is the random force, and F (t) is

the external force due to the potential of mean force. The GLE reduces to the Langevin

equation if the friction kernel is a delta function.

The GLE, as written above, can not describe the reaction dynamics of a system in a

non-equilibrium/time dependent environment because γ(t, t′) depends on the time difference

(t − t′) instead of the absolute time. For example, in thermosetting polymerization, the

polymerization process causes a dramatic viscosity change with time. Since this viscosity

change is time-dependent, it is necessary to include absolute time in the friction kernel.

Using a similar construction as that used for the projection of a stationary open Hamiltonian

system onto the GLE, a generalized model called the iGLE was developed to describe non-

stationary process [58]. The details of this model will be introduced in chapter II.

1.3.2.2 Dissipated Particle Dynamics

Dissipated Particle Dynamics (DPD) [59, 60] is a relatively new method initially developed

by Hoogerbrugge and Koelman to simulate the hydrodynamic behavior of colloidal suspen-

sions [61, 62]. The DPD is a coarse-graining procedure that leads to a structure similar to

the LE containing random and dissipative force terms. The difference between DPD and

the LE is that the random force and the dissipation force are treated pairwise in the DPD

method. The most important feature of the DPD forces is that momentum is conserved.
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The conservation of momentum by the DPD model allows for the use of this method to

describe the hydrodynamic behavior of a fluid at large scales. Large scale systems relax

very slowly. They are underdamped for a long time even with a large friction coefficient.

Since the coupling of the system with the bath in Langevin dynamics is much stronger than

in the DPD method, and we are interested in the PMF in the overdamped regime, we will

focus on Langevin dynamics.

1.4 Overview

In chapter II, an irreversible generalized Langevin equation (iGLE) has been introduced to

model living polymerization. In this model, the mechanism of living polymerization was

included and manipulated by the friction term and potential of mean force (PMF). The

friction is a function of the absolute time, and a phenomenological potential of mean force

has been used to describe the interaction between an attaching monomer and its partnering

polymer. An approximate method for the direct analytic calculation of the PMF is included

in Appendix B. A critical assumption involves the treatment of the polymer distribution

as obeying an equilibrium distribution—viz., the Boltzmann distribution,—although the

process is evidently far from equilibrium. Nevertheless, this short time scale adiabatic-like

approximation provides a view of the structure of the PMF. Phenomenological attempts to

characterize this behavior as well as the non-equilibrium effects have been fairly successful as

described in Chapter II. In particular, non-equilibrium properties such as polymer length,

the polymer length distribution, and polydispersity index (PDI) have been captured by

these models.

The thermodynamics and kinetics of the living polymerization system α-methylstyrene

has been extensively studied by Greer and coworkers [63, 2, 1]. They measured phase equilib-

rium, the extent of polymerization, the chemical kinetics and molecular weight distribution.

It is the best example for the study of reversible equilibrium polymerization. Other anionic

living polymerization systems include polymerization of 4-vinylbenzocyclobutene with ini-

tiator sec-butyllithium at room temperature and the polymerization of styrene with the

same initiator in cyclohexane. The common feature for these three systems is that there
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are no transfer and termination reaction under the experimental conditions described. The

latter two systems show simple kinetics. The target questions to be addressed in this work

include: Can the kinetics be predicted using the iGLE? How should the time scale be iden-

tified and used to describe the polymerization process? By predicting the kinetics, can one

gain more understanding about these polymerization process?

In chapter III of this work, we use available experimental data to validate the iGLE

model. The results that we have obtained are consistent with kinetic theory and pro-

vide a easy way to calculate the dynamics under different temperatures with the iden-

tical experimental conditions such as the concentration of monomers and initiators (for

α-methylstyrene).

In chapter IV, a stochastic model will be introduced based on the diffusion rate theory.

This model was used to study the diffusion effect of anionic polymerization. We applied

this model to α-methylstyrene and found that the polymerization is a kinetically controlled

process indicating that diffusion effects play a small role in this polymerization.

In chapter V, we study the effect of friction on equilibrium properties using an analytical

method. We start from the iGLE Hamiltonian, and then obtain Hamilton’s equation of

motion. We use a double well potential as a example and found that the friction stretches

the double well and the minima change under certain conditions.

In the last chapter, the results of this study will be summarized. We studied the proper-

ties of living polymerization in a non-equilibrium environment by using two different models.

Also, we use an analytical method to investigate whether the equilibrium properties were

affected by the friction. We also show how to get an analytical form of the PMF. The future

work includes developing models to describe living polymerization with a high activation

energy, and to develop the irreversible chemical Langevin equation by including memory

effects to describe the diffusion effects of living polymerization.
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CHAPTER II

IGLE AND LIVING POLYMERIZATION

2.1 Introduction

Using Langevin and generalized Langevin equations to describe the stochastic motion along

a projected coordinate assumes that the environment is stationary during the dynamic

process and obeys the fluctuation-dissipation theorem [64, 65, 66, 67, 68, 69]. But in most

cases, the response of the environment is not the same and changes during the reaction. To

include this non-stationary environment response, one can use the irreversible generalized

Langevin equation (iGLE):

v̇ = −
∫ t

dtg(t)g(t′)γ0(t − t′)v(t′) + g(t)ξ0(t) − F (x, t) , (13)

where the first term is the friction force resulting from the memory of the particle’s velocity

at earlier time by the environment, the second term is the random force resulting from

the projection of the fluctuating force due to the bath modes, and the last term is the

uniform force due to the potential of mean force (PMF) that results from the projection of

all the bath particles. The random force ξ(t) is balanced by the friction according to the

fluctuation-dissipation theorem

〈ξ(t)ξ(t′)〉 = kBTg(t)g(t′)γ0(t − t′) . (14)

Since since iGLE has been developed, it has been explored in many ways. It has shown that

the iGLE is the projection of an explicit time-dependent open Hamiltonian system [58], and

numerical simulations of this mechanical system indicate that the time-dependent observed

total energy and the solvent force correlation are equivalent to the projected iGLE [70].

This model has been used to study the dynamics of thermosetting polymerization where

polymerization ends due to the diffusion-limited mechanism [71]. In this model, the nonsta-

tionary environment response was included by a R dependent dissipation term through g(t).

Without an extension of the iGLE, it is impossible to describe living polymerization because
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of the different mechanism. The polymerization will be quenched due to the depletion of the

monomers and the number of polymers are limited by the number of the initiators. Because

of this living polymerization has some unique properties. Although ideally, the growth of

living polymers will stop when there are no monomers in solution, in most cases, the extent

of polymerization is less than 100% due to steric hindrance or chemical equilibrium. This

new mechanism should be included either through the friction kernel, or more accurately,

through g(t), or/and through modifying the potential of mean force.

The Potential of Mean Force (PMF) was first introduced by Kirkwood in 1935 [72]. For

a system with N molecules, the average force acting on a particle j is dependent on the

density and configurations of all the other molecules. The definition of the PMF is:

−∇jw
n(q1, q2 · · · qn) =

∫

exp−βV (−∇jV )dqn+1 · · · dqN
∫

exp−βV dqn+1 · · · dqN
, j = 1, 2, · · · , n (15)

where ∇jw
−n is the average force acting on molecule j, wn is the potential of mean force

(PMF) in a projected subsystem consisting of n molecules, β = q/kBT , kB is Boltzmann’s

constant and T is the absolute temperature.

The PMF can be used to determine how the free energy changes as a function of the

coordinates of the system. The double well potential has been used to describe simple

chemical reactions. The biased potential is one of the simple potentials used in the study

of polymers:

V (R) = −fbR , (16)

where R is the reaction coordinate and fb is a constant external force. Another phenomeno-

logical potential called the polymer growth potential is constructed based on a series of

merged double well potentials with barrier heights and an external force. Suppose the well

frequency is the same as the barrier frequency, then the PMF is written as:

V ′
PMF (R) ≡



































1
2ω2

0(R − nl)2 − fb(n − 1)l

for R < R′
m + 1/2l with n = 1 or R′

m + (n − 1/2)l < R < R′
m + nl;

1
2ω2

0(R − nl − 2R′
m)2 − fb(n − 1)l + E†

+

if R′
m + nl < R < R′

m + (n + 1/2)l

,

18



where R′
m is the relative position of the potential

R′
m =

l

4
− fb

ω2
0

, (17)

and ω0 is the frequency.

ω0 = 2fb(2E
†
+ + fbE

†
+ − 2E†

+

√

1 + fbl)
−1/2 , (18)

where l is the monomer length and E† is the barrier height in the forward reaction. This

PMF is an extension of the double well model of Straub et.al [73]. Also included in the

PMF is the self-similarity of the polymer. Without the barrier height, the polymer PMF

becomes a biased potential.

To connect the iGLE with living polymerization, we have to modify the iGLE, obtain

the properties of living polymerization and compare it to the experiments. To the best of

our knowledge, no one has used the generalized Langevin equation (GLE) or irreversible

generalized Langevin equation (iGLE) to study the dynamics of living polymerization.

2.2 iGLE and Modified Friction Kernel

Living polymers are known to quench when the monomers are used up. If one considers

the self-similarity when monomers add to the activate end of the chain during the polymer-

ization process independent of polymer length, the potential of mean force (PMF) can be

approximated by a series of harmonic oscillators. First, we will consider a modification of

the friction kernel. The difference between the GLE and iGLE is the form of the friction

kernel and random force. The iGLE has the function g(t) included in the friction kernel and

random force. This g(t) characterizes the irreversibility in the non-equilibrium environment.

Before polymerization, g(t) has to be 1 since the system is in equilibrium. At this time, the

GLE is recovered. Once polymerization starts, the chain grows fast at the beginning and

then slows down. Based on these conditions, a new form of g(t) has been constructed:

g(t) = (1 − A

N

∫

dR(R/l)P (R; t))−ζ , (19)

where A is the number of activated monomers, N is the number of total monomers, P (t)

is the normalized probability distribution of polymers of a given R at time t, R/l is the

19



effective number of monomers for a polymer with contour length R, and ζ is a scaling

factor used to characterize the effect of diffusion rate during the polymerization process

and it is a function of temperature. This g(t) specifies the dynamics of the iGLE. Now we

will use the polymer growth PMF shown in Eq.(17) and the above g(t) to do numerical

simulations. The bottom figure in Figure 4 is a plot of g(R) as a function of the average

polymer length R. As polymer grows longer, the friction, vis-a.vis g(t) increases to a

very large value because there are increasingly fewer monomers available in the solution.

The top of Figure 4 shows the polymer length as a function of time with the parameters:

A = 128, N = 102340, ζ = 3.5, γ0 = 0.15, fb = 10, E† = 5kBT (top). The number of

the activated monomers and the total number of monomers are obtained based on the

concentration of the initiators and monomers. Here we choose the mole fraction of monomer

to be 0.14680, the ratio of mole fraction of initiator to the mole fraction of monomer to

be 0.0025, and the concentration of monomer to be 1.7M . These data are from Greer’s

experiment, but assume the initiator only has one active site. It shows the polymers grow

fast at the beginning and then slow down after a longer time. It is hard to tell when the

polymerization process stops, that is, when the friction quenches the solvent response. To

accelerate this process, we decrease the value of ζ. In Figure 5, the bottom figure is a

plot g(t) vs.〈R〉. The top figure shows the polymer length as a function of time with the

parameters: A = 128, N = 102340, fb = 10, E† = 5kBT, ζ = 0.7, γ0 = 10. In this simulation,

it shows that polymerization quenched around 799 with a very high friction. So what we

want to do next is to find out the shape of the potential of mean force in the high friction

limit. From the shape of the PMF, we can estimate when polymerization is quenched.

In the above numerical simulations, the mass of the monomers has been set to unity

and the size of the monomers is taken to be 1 for simplicity. The use of dimensionless units

gives a dimensionless time scale. Using dimensionless units of parameters in the simulation

is a useful way to obtain a general physical understanding of the system behavior, but if one

wants to relate the simulation results with experimental data, the dimension of the units

has to be determined. In the next chapter, we will talk about how to identify the time

scale if we want to use a Langevin type equation with dimensionless units to describe the
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Figure 4: Polymer length as a function of time with A = 128, N = 102340, ζ = 3.5, γ0 =
0.15, E† = 5kBT , all in arbitrary units. In this simulation, the merged harmonic PMF was
used and the shape of g(R(t)) shown in the bottom figure. This g(R(t)) appears in the
friction kernel and random force of the model and specify the dynamics. The inset of the
top figure clearly shows that the polymers continue grow after a long time.
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Figure 5: Polymer length as a function of time with A = 128, N = 102340, ζ = 0.7, γ0 =
10.0, E† = 5kBT , all in arbitrary units. In this simulation, the merged harmonic PMF
was used and the shape of g(t) shown in the bottom figure. This g(R(t)) appears in the
friction kernel and random force of the model and specify the dynamics. The inset of top
figure clearly shows that the polymers stop growing when there is no monomers left in the
solutions.
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polymerization process.

2.3 Potential of Mean Force by Elimination of the Fast Variables

As we mentioned before, the potential of mean force is important to know since it can help

to explain the results and provides a deep understanding from the simulations. Usually

it is very hard to get the exact PMF using an analytical method. The most common

way to do this is to make assumptions to simplify the problem. One way to simplify the

iGLE is to ignore the memory. The other way is to eliminate the irrelevant variables. One

simple elimination procedure consists of setting the time derivative of the fast variables

equal to zero. If the random force is position dependent, then it is necessary to consider

an alternative elimination procedure [74]. The iGLE shown in Eq. 13 is a general form. To

describe polymerization reaction, g(t) has to be a function of the polymer length R and

is written as g(R(t)). The iGLE becomes the irreversible Langevin equation (iLE) if the

memory is ignored. The iLE can be described by the equations of motion for the momentum

p and position q of the Brownian particles:

dq(t)

dt
= p(t) , (20a)

dp(t)

dt
= −λ(q(t))p(t) − φ′(q(t)) + g(q(t))ξ(t) , (20b)

where φ(q(t)) is the potential energy surface of the particle, λ is the friction coefficient,

φ′(q(t)) is the derivative of φ with respect to q and the random force is assumed to be

Gaussian white noise with zero mean and correlation

〈ξ(t)ξ(t′)〉 = 2δ(t − t′) . (21)

The fluctuation dissipation theorem relates g(q) and λ(q) by

g(q)2 = kBTλ(q) . (22)

To eliminate p, one has to integrate Eq 20b:

p(t) = −
∫ t

0
e−

R t
s λ(q(t′))dt′φ(q(s))′ds +

∫ t

0
e−

R t
s λ(q(t′))dt′g(q(s))ξ(s)ds , (23)
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The two terms in the above equation are of order λ−1 and λ−1/2. To simplify the memory

kernel, λ(q(t′))can be expanded as follows:

λ(q(t′)) = λ(q(t)) − dλ(q(t))

dq(t)
(q(t) − q(t′)) + . . . , (24)

where q(t) − q(t′) can be expressed as:

q(t) − q(t′) = −
∫ t

t′
ds′
∫ s′

0
e−

R s′

s
λ(q(t′′))dt′′φ′(q(s))ds

+

∫ t

t′
ds′
∫ s′

0
e−

R s′

s
λ(q(t′′))dt′′g(q(s))ξ(s)ds . (25)

Substituting Eq. 25 into Eq. 24,we obtain

λ(q(t′)) = λ(q(t)) − dλ(q(t))

dq(t)

∫ t

t′
ds′

×
∫ s′

0
e−

R s′

s
λ(q(t′′)dt′′g(q(s))ξ(s)ds + O(λ−1)

= λ(q(t)) + O(λ−1/2) . (26)

With the large friction coefficients λ, the following result is obtained :

e−
R t

s λ(q(t′))dt′ = e−
R t
s λ(q(t))dt′ × e−

R t
s O(λ−1/2)dt′

= e−λ(q(t))(t−s)[1 + O(λ−1/2)] . (27)

Similarly g(q) and φ(q) can be expanded as λ(q):

g(q(s)) = g(q(t)) − dg(q(t))

dq(t)
g(q(t))

∫ t

s
dt′

×
∫ t′

0
e−λ(q(t))(t−t′ )ξ(s′)ds′ + O(λ−3/2) , (28)

φ′(q(s)) = φ′(q(t)) + O(λ−2/3) . (29)

Substituting the above three equations into Eq. 20b, the basic stochastic equation can be

obtained:

q̇(t) = −φ′(q(t))

λ(q(t))
+ g(q(t))

∫ t

0
e−λ(q(t))(t−s)ξ(s)ds

− dg(q(t))

dq(t)
g(q(t))

∫ t

0
e−λ(q(t))(t−t′)ξ(t′)dt′

×
∫ t

t′
ds

∫ s

0
e−λ(q(t))(s−s′)ξ(s′)ds′ + O(λ−3/2) . (30)
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The second term of the above equation can be approximated as:

ξ̄(t) =

∫ t

0
e−λ(q(t))(t−s)ξ(s)ds

≃ ξ(t)

λ(q(t))
+ O(λ−2) . (31)

For particles with density ρ(q, t), the conservation law requires:

∂ρ

∂t
+ q̇

∂ρ

∂q
= 0 . (32)

Substituting Eq. 30 into the above equation,

∂ρ(q, t)

∂t
= −q̇(t)

∂ρ

∂q

=
∂

∂q

φ′(q)

λ(q)
P (q, t) − ∂

∂q

g(q)

λ(q)
ξ(t)ρ(q, t)

+
∂

∂q

∂g(q)

∂q
g(q)

∫ t

0
e−λ(q)(t−t′)dt′

×
∫ t

t′
ds

∫ s

0
e−λ(q)(s−s′)ds′ξ(t′)ξ(s′)ρ(q, t) , (33)

Now taking the average of Eq. 30 over the stochastic force with P (q, t) = 〈ρ(q, t)〉ξ,we

obtain:

∂P (q, t)

∂t
=

∂

∂q

φ′(q)

λ(q)
P (q, t) − ∂

∂q

g(q)

λ(q)
〈ξ(t)ρ(q, t)〉

+
∂

∂q

dg(q)

dq
g(q)

∫ t

0
e−λ(q)(t−t′)dt′

×
∫ t

t′
ds

∫ s

0
e−λ(q)(s−s′)ds′〈ξ(t′)ξ(s′)ρ(q, t)〉 , (34)

where:

〈ξ(t)ρ(q, t)〉 = − ∂

∂q

g(q)

λ(q)
P (q, t) + O(λ−2) , (35)

〈ξ(t′)ξ(s′)ρ(q, t)〉 = 2σ(t′ − s′)P (q, t) + 〈 σ2ρ(q, t)

σξ(s′)σξ(t′)
〉 . (36)

Substituting the above two equations into Eq. 34 will lead to the Fokker-Planck equation:

∂P (q, t)

∂t
=

∂

∂q

φ′(q)

λ(q)
P (q, t) +

∂

∂q

g(q)

λ(q)

∂

∂q

g(q)

λ(q)
P (q, t) (37)

+
∂

∂q

1

λ(q)2
dg(q)

dq
g(q)P (q, t) . (38)
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Since:

g(q)2 = kBTλ(q) , (39)

Then:

∂P (q, t)

∂t
=

∂

∂q

1

λ(q)

[

φ′(q) + kBT
∂

∂q

]

P (q, t) . (40)

This Fokker-Planck equation can be used to obtain the correct Boltzmann distribution and

a stationary distribution under the nonstationary conditions. It can be rewritten in the

following form:

dq

dt
= −φ′(q)

λ(q)
− 1

λ2
g′(q)g(q) +

g(q)

λ(q)
ξ(t) . (41)

The second term shows the effect of multiplicative character of the noise in the elimination

procedure. By using the simple elimination procedure, that is, setting the time derivative

of the fast variables equal to zero, one gets incorrect Boltzmann distributions. Since in the

iGLE equation, the random force is space dependent, we have to use this new elimination

procedure.

Recall the irreversible Langevin equation (iGLE):

d2R

dt2
= −

∫ t

0
dtg̃(R(t))g̃(R(t′))γ̃

dR

dt
+ g̃(R(t))ξ(t) − F (R(t)) . (42)

Since

γ̃(t − t′) = γ̃0e
−(t−t′)

τ , (43)

in the memory-less limit,

γ̃(t − t′) = 2Γδ(t − t′) , (44)

where

Γ =

∫ ∞

0
γ̃0e

(−t/τ)dt = γ̃0τ , (45)

with the fluctuation-dissipation relation:

〈ξ̃(t)ξ̃(t′)〉 = 2kBTΓδ(t − t′) . (46)

The iGLE becomes

dR

dt
=

F

g̃(R)2Γ
− g′(R)g(R)

(g̃(R)Γ)2
+

g(R)

Γg̃(R)2
ξ̃(t) . (47)
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This equation has the similar structure as Eq. 41. Substitute the following relation to

Eq. 47:

g′(R)g(R) = kBTΓg̃′(R)g̃(R) , (48)

we get the new effective potential under the approximations:

Ueff = −
∫ R

0

F (r)dr

g̃(r)2Γ
− kBT

2Γg̃2(R)
. (49)

Now we can plot Ueff as a function of polymer length to get the shape of the PMF and

compare it to the simulation result. Figure 6 shows what the effective potential of mean

force looks like with A = 128, N = 102340, ζ = 3.5, γ0 = 0.15, E† = 5kBT . The barrier

height becomes smaller as the polymers grow longer and eventually it becomes flat. This

is why we observed that the polymers grow for a longer time. The reason that we couldn’t

see the minimum is because the value of g(R(t)) is too large. Here we show a different form

of the PMF after some time scale transformation. recalling:

dR

dt
=

F

g̃(R)2Γ
− g′(R)g(R)

(g̃(R)Γ)2
+

g(R)

Γg̃(R)2
ξ̃(t) . (50)

Multiply both side by g̃(R)2,

g̃(R)2
dR

dt
=

F

Γ
− g′(R)g(R)

Γ2
+

g(R)

Γ
ξ̃(t) , (51)

and set dτ = dt
g̃(R)2

,

dR

dτ
=

F

Γ
− kBT log g′(R)

Γ
+

˜g(R)ξ̃(t)

Γ
. (52)

Now we get the effective potential:

Ueff = Uold + kBT log(g(R)) , (53)

where Uold = −
∫ R
0 F (r)dr and shown in Eq. 2.1. Figure 7 shows the potential of mean

force with ζ = 3.5 and ζ = 200. The reason that the top figure doesn’t have a minimum

is because the second term of Eq. 53 is so small compared to the first term. To make the

second term comparable to the first term, we have to adjust the parameter ζ to a big value.

This will lead to another problem: the initial friction is so large that it will prevent polymer

growth. The above simulation means that the minimum appears when the friction becomes
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Figure 6: The bottom figure shows polymer length as a function of time with A = 128, N =
102340, ζ = 3.5, γ0 = 0.15, E† = 5kBT and the corresponding PMF (Eq. 49) shown in the
bottom figure.
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Figure 7: Potential of mean force ((Eq. 53) with A = 128, N = 102340, γ0 = 0.15, E† =
5kBT , in the top figure, ζ = 3.5 and in the bottom figure ζ = 200.
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very large and polymerization quenches when there is a minimum. This suggests that we

have to modify the PMF in order to simulate the living polymerization process. Possible

answers to this question are explored in the following sections.

2.4 iGLE with Modified Friction and Potential

The motivation for suggesting a reformulating of the potential of mean force includes the

following: (1) viscosity increases to a large value as the polymer grows longer.(2) the sum of

the second and third term has to be comparable with the first term in magnitude in order

to get the minimum. (3) the reaction rate slows down and the barrier height increases as

the polymerization process proceeds. (4) the possibility to get the available monomers will

become zero at a later time even though there are free monomers in the solutions. (5) the

longer the polymer, the larger the steric hindrance. It is more difficult for monomers to

access the active site. We propose to use the following phenomenological potential:

Unew = Uold + kBT0AR(t)g(R(t)) − kBT0A

∫ R

0
g(R(t))dR , (54)

where Uold is the merged potential shown in Eq. 2.1, g(R(t)) = (1− A
N

∫

dR(R/l)P (R; t))−ζ ,

and kBT0 is the reference temperature with value 1 for simplicity. The corresponding force

is:

Fnew = Fold − kBT0ARg′(R(t)) , (55)

where g′(R(t)) is:

g′(R(t)) = ζ

(

1 − A

N

∫

dR(R/l)P (R; t)

)−ζ−1 A

N

1

A
. (56)

This suggested form satisfies the five aims listed above. For small polymer lengths, the

PMF is dominated by the first term shown in Eq. 54. Polymerization proceeds fast at

the beginning. As the polymer grows longer, there are few monomers available in solution

and reaction slows down because of the friction. The second term starts to play a role as

polymer length gets larger. The barrier height increases and it becomes very difficult to

have monomers attach to the polymer. Towards the end, the polymerization are quenched

due to the high friction and high barrier height.
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To use this model to simulate living polymerization, we have to specify the following

parameters:

(1) Total number of monomers in the system.

(2) Total number of activated monomers (initiators) in the system.

(3) Solvent friction.

(4) Scaling parameter ζ.

(5) Monomer size l.

(6) The activation energy (barrier height).

(7) fb, which specifies the relative value of forward and backward energy difference.

(8) Temperature(kBT ). Except (3) and (4), all the other values can obtained from

experimental data if it is a well studied system. We will show the procedure of extracting

the necessary parameters from experimental data in the following chapter.

To better understand these parameters, we want to look at the effects of solvent friction

γ0 and scaling parameter ζ on polymerization. Figure 8 shows polymer growth as a function

of time with ζ = 0.9, 1.0, 1.1, A = 128, N = 102340, γ0 = 10, E† = 5kBT . As the value of

ζ increase, the average length of polymers decrease and the remaining monomers in the

solutions increase. The regulation of ζ values changes the shape of the PMF, and the

dynamics of the polymerization are also changed. Figure 9 shows the PMF with ζ =

0.9. The minimum of the PMF is around 600 which corresponds to the black curve in

Figure 8. Thus by looking at the shape of the PMF, one can learn when friction quenches

polymerization.

The solvent friction is an important property. During the polymerization process, the

viscosity of the solution increases. The value of γ0 specifies the friction before polymer-

ization. Figure 10 shows polymer growth as a function of time with γ0 = 1, 10, 100,

A = 128, N = 102340, ζ = 1.1. As γ0 increase, the dynamics of polymerization slowed

down, and it took a longer time to reach equilibrium. Thus, γ0 can be used to regulate the

growth speed of the polymers and it won’t affect the extent of polymerization.
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Figure 8: Time dependent polymer growth with ζ = 0.9, 1.0, 1.1, A = 128, N =
102340, γ0 = 10, E† = 5kBT . The inset shows the fraction of monomer remaining as a
function of time. The simulation uses the newly developed phenomenological PMF shown
in Eq 54.

0 200 400 600 800
<R>

-300

-250

-200

-150

-100

-50

0

U
(R

)

400 600 800
<R>

-265
-260
-255
-250
-245
-240

U
(R

)

Figure 9: PMF with ζ = 0.9, A = 128, N = 102340, γ0 = 10, E† = 5kBT . The PMF
uses the phenomenological form shown in Eq 54. The inset clearly shown that there is a
minimal.
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Figure 10: Time dependent polymer growth with γ0 = 1, 10, 100, A = 128, N =
102340, ζ = 1.1. The inset shows the fraction monomers remaining as a function of time.
The PMF use the phenomenological form shown in Eq 54.

2.5 Discussion and Conclusions

In this chapter, some efforts have been made to describe the living polymerization process.

This includes the development of g(t) and the PMF within the context of the iGLE. Firstly,

we studied the polymerization dynamics with the iGLE by using a modified g(t) and merged

harmonic PMF. By doing so, we assumed the self-similarity of the polymerization. Since

the average force acting on the monomer depends on the other monomers, it is necessary to

relate the number of the polymers (A), the length of the polymers and the free monomers

in the model. It turns out that the friction slows down the reaction, but it doesn’t quench

the polymerization.

Inspired by the PMF in the high friction limit, we constructed a new phenomenological

form of the PMF. This PMF is made a little bit more complicated by including two extra

terms. The extra terms are necessary since the interactions between monomers changes

during polymerization. Most of the parameters can be derived from experimental data. But

there are two extra parameters that need to be specified. One is the solvent friction γ0, the

other is the scaling coefficient ζ. The effects of two parameters γ0 and ζ on polymerization
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have been studied. By modifying the friction kernel and PMF, we get the properties of

living polymerization.

In the following chapter, we will show how to identify parameters based on the experi-

mental data, and how to use this model to study experimental systems.
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CHAPTER III

APPLICATION TO EXPERIMENTAL LIVING POLYMERIZATION

AND THE VALIDATION

In the previous chapter, we have shown that the irreversible generalized Langevin equation

can be used to describe the properties of living polymerization systems. In this chapter,

We applied this model to simulate the dynamics of some experimental systems such as

α-methylstyrene and 4-vinylbenzocyclobutene. This includes identifying the time scales,

determining the parameters directly from experimental data and comparing our simulation

results with the experimental data.

3.1 Experimental System one: α-methylstyrene

The first system we are interested in is the polymerization of α-methylstyrene which has

been experimentally studied by Greer and coworkers [1]. Poly(α-methylstyrene) is a fully

flexible linear polymer chain joined by covalent bonds. The kinetics of polymerization

near the polymerization line of poly(α-methylstyrene) in the solvent tetrahydrofuran was

initiated by sodium naphthalide or cesium naphthalide. In this reaction, an electron is

transfered from sodium naphthalide to the α-methylstyrene to form a radical ion, which

immediately dimerizes to form the propagating species. The initiation reaction is:

2I + 2M

k1

k′

1⇀↽ M2−
2 , (57)

where I,M,M ′
2 are the initiator, monomer and activated dimer concentrations with two

activated sites. The propagation and depropagation reactions are:

M2−
x + M

kp

k′

d⇀↽ M2−
x+1 , (58)

where x is the number of monomers in a polymer. Since this mechanism results in activated

dimers with two active sites, the number of propagating polymers in the system is one half

35



the number of initiators. Table 1 shows the batch samples of living poly(α-methylstyrene)

in tetrahydrofuran. Based on the experimental data, it is possible to determine the values of

the parameters used in the iGLE model. To use the iGLE to describe living polymerization

systems, we have to know the total number of monomers, the total number of initiators,

the monomer size, the barrier height, the temperature, the solvent friction and the scaling

parameter.

Table 1: Batch samples of living poly(α-methylstyrene) in tetrahydrofuran. x0
m is the mole

fraction of initial monomer in solvent. [M0] is the concentration of initial monomer. r is
the ratio of moles initiator to moles initial monomer. Te is the equilibrium temperature for
the polymerization. The data listed in the table is taken from Ref. [1]. The rate constants
are obtained using the simple kinetic model of Ref. [1].

Initiator x0
m [M0](mol/l) r Te(K) kp(L/mols)/kd(s

−1)
Na 0.14680 1.7 0.0025 267 0.20 ± 0.01/

±0.00002 ±0.0001 0.085 ± 0.005
Na 0.145 1.7 0.0024 271 0.18 ± 0.01/

±0.001 ±0.0001 0.12 ± 0.01

The number of monomers and initiators can be determined from the monomer concen-

tration, the mole fraction of initial monomers and the mole ratio of initiators to initial

monomers. The monomer concentration is 1.7M /l which corresponds to 1023400 molecules

in a volume of 109Ȧ3 . If the mole fraction of the initial monomers in solvent is 0.14680 and

the mole ratio of the initiator to the initial monomers is 0.0025, then this corresponds to 2558

initiators. We have 1279 initiators in the system since each activated dimer has two active

sites. The size of α-methylstyrene is about 5Ȧ and the molecular weight is 118.18g/mol . In

the iGLE model, the PMF is expressed by the barrier height which is the ratio of the acti-

vation energy over thermal energy. The activation energy for this polymerization process is

about 20kJ /mol and and the deactivation energy is 29kJ/mol [75]. The ratio of the barrier

height over kBT is about 9 and kBT is in a units of kJ/mol . The reference temperature is

120K (kBT0 = 1). These values will be used in the following simulations.

In order to compare the simulation results with the experimental results, we have to
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identify the time scale. The time scale for the iGLE is the same as the LE since the

function g(t) in the iGLE is dimensionless and it won’t affect the time scale from the LE.

The Langevin equation (LE):

dv

dt
= −dU

dx
− γv + ξ(t) , (59)

To make the velocity dimensionless, the following expression is used:

ṽ = v
τ

l
, (60)

where ṽ is a dimensionless velocity, v is the velocity with units m/s, τ is time and l is the

monomer length.

To make the potential dimensionless, the following expression is used:

Ũ =
U

kBT0
, (61)

where Ũ is dimensionless potential energy, U is the potential energy with units J and kBT0

is the reference barrier height. U is the barrier height in the model and the reference barrier

height kBT0 = 1 for convenience.

Substitute Eq. 60 and Eq. 61 to Eq. 59:

dṽ

dt̃

l

τ2
= −dU

dx
− γv + ζ(t)

⇒ dṽ

dt̃
= −τ2

l

dU

dx
− τ2

l
γv +

τ2

l
ζ(t)

⇒ dṽ

dt̃
= −kBT0τ

2

l2
dŨ

dx̃
− γ̃ṽ + ˜ζ(t) . (62)

Compare Eq. 59 and an analog of Eq. 62 in which all the variables are unitless. The

following relation which is used to describe the polymerization process has to be satisfied:

kBT0τ
2

l2
= 1 (63)

⇒ τ2 =
l2

kBT0

⇒ τ2 =
5Å

2

1kJ/mol

⇒ τ2 =
25 ∗ 10−20m2

1000J/6.02 ∗ 1023molecules

⇒ τ2 = 150s2

⇒ τ ≈ 12s .
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Figure 11: Experimental and theoretical fraction of monomers remaining as a function of
time for poly(α-methylstyrene) in THF initiated by sodium naphthalide. The two sample
batches are described in Table 1. The dots are the experimental data, and the line is
the theoretical model. The simulation parameters for batch sample 1 (Dots) are: N =
51170, A = 128, kBT = 2.22kBT0, E

† = 19.98kBT0, fb = 10, ζ = 0.95, dt = 0.004, γ0 = 8.

This dimensional analysis provides a timescale for the dimensionless iGLE in which one

unit of time corresponds to 12 seconds. With this assignment, numerical simulations of the

iGLE can be compared to the behavior of corresponding physical systems with specified

units. In the following text, we call the first set of data (Te = 267) sample 1, and the

second set of data (Te = 271) sample 2 as shown in Table 1. The fraction of monomer

remaining as a function of time for poly(α-methylstyrene) in THF initiated by sodium

naphthalide is shown in Figure 11. The dots are the experimental data (sample 1) and the

line is the theoretical fit described in the text. The simulation results fit the experimental

data very well with γ0 = 8 and ζ = 0.95. The equilibrium monomer concentration is

reached in a relatively short amount of time and the extent of polymerization is 75%. For

sample 2, first we use the same γ0 value since both of them operate in the same solvent-

tetrahydrofuran. After a temperature quench from above the polymerization temperature

to below the polymerization temperature, the polymerization process was initiated and

the extent of polymerization is 62% at equilibrium at a temperature of 271K . The high
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Figure 12: Experimental and theoretical fraction of monomers remaining as a function
of time for poly(α-methylstyrene) in THF initiated by sodium naphthalide. The squares
are experimental data and the line is our theoretical model. The simulation parameters for
Batch sample 2 (Squares) are: N = 51170, A = 123, kBT = 2.26kBT0, E

† = 19.98kBT0, fb =
10, ζ = 1.52, dt = 0.004, γ0 = 8.

equilibrium temperature makes the free energy higher since entropy and enthalpy are all

negative for this reaction. We adjust the value of ζ to account for the temperature difference.

The result is shown in Figure 12. The temperature change also affects the solvent friction.

If there is no reaction, viscosity decreases as temperature increases. By lowering γ0, a

better fit is achieved. This is shown in Figure 13. The above simulation results suggest

that the parameter ζ should be related to the temperature. Greer has studied the extent

of polymerization as a function of temperature for living poly(α-methylstyrene) in THF

initiated by sodium naphthalide with mole fraction of monomers x0
m = 0.15378, and the

mole ratio of initiators to monomers r = 0.0044. Based on their data, simulations were

completed. The results are shown in Table 2. Thus we obtained the relation between ζ

and temperature as shown in Figure 14. As temperature increases, the value of ζ increases

monotonically and the extent of polymerization increases too. As temperature decreases, the

value of ζ will decrease and approach zero. At this time, the reaction goes to completion.

To satisfy the above condition, the fit should be exponential instead of quadratic. The
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Figure 13: Experimental and theoretical fraction of monomers remaining as a function of
time for poly(α-methylstyrene) in THF initiated by sodium naphthalide. The Squares are
experimental data and the lines are our theoretical model with different γ0 values.
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Figure 14: Extent of polymerization as a function of temperature for living poly(α-
methylstyrene) in THF initiated by sodium naphthalide with x0

m = 0.15378, r = 0.0044.
The solid line is the exponential fit.The corresponding simulation parameters are: A =
204, N = 46288, fb = 10, E† = 22.2kBT0.
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Table 2: Batch samples of living poly(α-methylstyrene) in tetrahydrofuran, the table lists
the data of temperature, barrier height, extent of conversion and the corresponding ζ value.
The first and third columns are taken from Ref. [2].

Temperature(K) BarrierHeight(KBT ) Conversion ζ
284.753 9.41 0.29 ± 0.02 4.8
282.350 9.487 0.41 ± 0.01 3.0
280.264 9.569 0.39 ± 0.01 3.2
278.317 9.623 0.54 ± 0.01 1.9
275.707 9.715 0.55 ± 0.01 1.85
273.095 9.808 0.668 ± 0.006 1.22
267.789 10.00 0.749 ± 0.004 0.92
263.480 10.165 0.800 ± 0.003 0.75
258.792 10.350 0.858 ± 0.003 0.55
254.677 10.520 0.894 ± 0.003 0.45

equation is: ζ = 1.7062e − 9e0.07554T with a correlation coefficient of 0.9794923.

In this section, we applied the iGLE model to the poly(α-methylstyrene) system. By

doing so, we gained a better understanding of the experimental system and the model

itself. In the next section, we want to apply this model to a different system such as the

poly(4-vinylbenzocyclobutene) to test generality.

3.2 Experimental System two: 4-vinylbenzocyclobutene

The polymerization of 4-vinylbenzocyclobutene in benzene using sec-butyllithium as the

initiator at room temperature was studied recently [3]. The number of average molecular

weights at different times has been measured using size exclusion chromatography (SEC).

These results are shown in the Table 3. To calculate the polymer length and polymer length

distribution, we have to obtain the polymer length from experimental data. The various

effective lengths, ii, listed in Table 3 have been inferred from the experimental data using

the following three different procedures:

(1) Suppose the measured average molecular weight at t = 53min is accurate. For

living polymerization, the number average molecular weight, (Mn), is a linear function of

conversion. Column 3 of Table 1 also shows the recalculated/corrected Mn in parentheses.
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Table 3: polymerization of 4-vinylbenzocyclobutene in benzene using sec-butyllithium as
the initiator at room temperature. φ is the extent of polymerization, Mn is the number
average molecular weight, i1, i2 and i3 are the polymer length obtained using different
experimental data. The first three columns are taken from Ref. [3].

T ime(min) φ Mn(corrected) i1 i2 i3
53 10% 4100 31.5 31.2 40.02
90 18% 6200(7380) 56.77 56.16 64.87
182 33% 12100(13530) 104.08 102.96 117.27
470 71% 24300(29100) 223.92 221.52 219.64

The molecular weight of the monomers is 130g/mol , and the polymer length i1 can be

calculated using i1 = Mn/130.

(2) Based on the concentration of initiators and monomers, we can calculate the ratio of

monomers and initiators.([M0]/[I0] = 311.68). For simplicity, I use the integer 312, which

is the polymer length when conversion is 100%. The polymer length i2 can be calculated

using conversion multiplied by maximum length.

(3) According to figure 3 in Ref. [3], the apparent rate constant is 0.00259min−1. Since

ln[M0]/[Mt] = kappt, we can calculate the free monomer concentration [Mt] at different times

(t = 53min , [Mt ] = 0 .21M ; t = 90min , [Mt ] = 0 .19M ; t = 182min , [Mt ] = 0 .15M ; t =

471min , [Mt ] = 0 .07M ). Now we can calculate the conversion which is 1 − [Mt]/[M0]

(12.827%; 20.793%; 37.586%; 70.397%). The polymer length i3 is the product of the max-

imum length and the conversion. This procedure assume the reaction follows first-order

kinetics. The length obtained is larger than that using the other two methods shown in

Table 3.

In the following simulations, we use the concentration of monomers [M ]0 = 0.24M and

initiators [I]0 = 0.00077M to calculate the total number of the monomers and initiators.

The activated monomers A = 139 and the total monomers N = 43344 if the system vol-

ume is 3.0e8Ȧ3 . The time scale for the polymerization of 4-vinylbenzocyclobutene can be

identified if we assumes the size of 4-vinylbenzocyclobutene is 6.5Ȧ. Recalling the equality
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Figure 15: The average polymer length is displayed as a function of time for re-
versible (black) and irreversible (blue) polymerization. The simulation parameters are:
A = 139, N = 43344, ζ = 0.5, γ0 = 180. The blue curve is obtained by turning off the back
reaction.

derived in Eq. 63 based on dimensional analysis:

kBT0τ
2

l2
= 1 (64)

⇒ τ2 =
l2

kBT0
(65)

⇒ τ2 =
6.5Å

2

1kJ/mol
(66)

⇒ τ2 =
42.25 ∗ 10−20m2

1000J/6.02 ∗ 1023molecules
(67)

⇒ τ2 = 254s2 (68)

⇒ τ ≈ 16s . (69)

The fact that this time scale is similar to that found for α-methylstyrene is not surprising

because cyclobutene won’t open the ring during polymerization and the size of the two

monomers are similar. Compared to poly-(α-methylstyrene), this polymerization reaction

is irreversible and there are few monomers left in solution at the end. To test our model,

we use the same parameter values and turn off the back reaction to simulate the irreversible

reaction. As shown in Figure 15, the polymer grows faster for an irreversible reaction which
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Figure 16: Theoretical and experimental polymer length as a function of time for the
irreversible polymerization with different barrier height. The blue line is the simulation
result using A = 139, N = 43344, fB = 30, γ0 = 56, E† = 24.3kBT , ζ = 0.16, the green
line is the simulation result using A = 139, N = 43344, fB = 10, γ0 = 75, E† = 8.0kBT ,
ζ = 0.5. The dots, squares and triangles correspond to the polymer length calculated using
the concentration, Mn and rate constant.

is expected.

In order to completely specify the model (whether it be solved analytically, or sim-

ulated by computation), there is one remaining unknown parameter for this system. In

particular, the activation energy for the anionic polymerization of 4-vinylbenzocyclobutene

is not available. Here, we use two different values for the activation energy (20KJ /mol and

63KJ/mol ) to model the properties of this living polymerization reaction. These are the

activation energy for α-methylstyrene and styrene. The reason we use these two values is

because 4-vinylbenzocyclobutene and α-methylstyrene can be considered as derivatives of

styrene. As before, we calculate the polymer length as a function of time with different

barrier heights, as shown in Figure 16. If we use a low barrier height, a linear first-order

time-conversion kinetics is seen. For barrier heights as high as 24.3KBT , the polymerization

rate is slow at the beginning and then speeds up showing an “S” shape behavior. This can

be seen more clearly in Figure 17.

The SEC results indicate that the number average molecular weight increases with the
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Figure 17: The kinetics of the anionic polymerization of 4-vinylbenzocyclobutene using
s-BuLi as initiator in benzene at 25 degrees. The squares represent the experimental SEC
results, the green line is the simulation result using fB = 30, γ0 = 56, E† = 24.3kBT ,
ζ = 0.16, the red line is the simulation result using fB = 10, γ0 = 75, E† = 8.0kBT ,
ζ = 0.5, and the blue line is first-order kinetics.

polymerization time. The distribution becomes narrower and narrower, which means that

the polymer is approaching a uniform length. Our length distribution (figure 18) indicates

this as well. It is difficult to obtain the same SEC curve because we do not know the

calibration curve of the polystyrene standard under the current experimental conditions. A

good way to link the experimental distribution and theory is to calculate the polydispersity

index (PDI). As shown in Figure 19 and Figure 20, we obtain different PDI values with

different barrier heights. By using a low barrier height, the PDI value is close to 1. This is

consistent with the experimental data.

The above results show that the iGLE can be used to describe irreversible living poly-

merization. If the activation energy is high, it takes particles more time to cross the barriers.

It is possible to get a very narrow distribution if the simulation is long enough and there

is no termination and transfer reactions. This is why during living polymerization exper-

iments, a lot of different reagents and conditions are used to get narrow distributions. In

the following, we will look at a different system: anionic polymerization of styrene using
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Figure 18: Polymer length distribution of poly-(4-vinylbenzocyclobutene) at different time
with A = 139, N = 43344, ζ = 0.5, γ0 = 75, fb = 10, E† = 8kBT .
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Figure 19: Polydispersity index (PDI) of poly-(4-vinylbenzocyclobutene)as a function of
conversion with E† = 8kBT . The PDI value decreases with conversion and is close to 1.

46



0 0.2 0.4 0.6 0.8
Conversion

0

10

20

30

40

50

M
w

/M
n

Figure 20: Polydispersity index (PDI)of poly-(4-vinylbenzocyclobutene) as a function of
conversion with E† = 24.3kBT . The PDI value decrease with conversion and it’s between
10-50.

sec-BuLi as the initiator in cyclohexane.

3.3 Experimental System three: styrene

Polymerization of styrene with initiator sec-butyllithium in cyclohexane was studied by

Schubert using a commercial automated synthesizer[22]. Chang [4] studied the molecu-

lar weight distribution of this experimental system using SEC and temperature gradient

interaction chromatography (TGIC) and found the TGIC method is more accurate. The

polymer lengths LSEC and LTGIC listed in Table 4 have been inferred from experimental

data. The activation energy for this reaction is 63KJ/mol . The total number of initiators

and monomers are 289 and 174580 based on the initiator concentration (0.00048M ) and

monomer concentration (0.29M ). The time scale used in this simulation is the same as α-

methylstyrene since the size of styrene is almost the same as α-methylstyrene. In Figure 21,

the “S” shape dynamics for polystyrene is observed too.
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Figure 21: The polymer length as a function of time for the anionic polymerization of
styrene using s-BuLi as initiator in cyclohexane at 45 degrees The simulation parameters
are: A = 289, N = 174580, E† = 23.77kBT, kBT = 2.65kBT0. The ratio of monomers to
initiators is 604. The blue square is the experimental data, gray line is for fb = 240, γ =
94, ζ = 0.35 and black line is for fb = 240, γ = 98, ζ = 0.23. The inset shows the kinetics
where the circles and squares are experimental data obtained from SEC and temperature
gradient interaction chromatography (TGIC).
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Table 4: The molecular weight and polymer length of polystyrene. The first three columns
data are taken from Ref. [4].

T ime(min) Mn(SEC) Mn(TGIC) LSEC ITGIC

3.97 4300 4000 41.35 38.46
14.8 21300 21000 204.81 201.9
27.1 35000 34400 336.54 330.8
38.27 42900 43400 412.5 417.3
51.63 50400 50200 484.62 482.7
70.33 56000 55200 538.46 530.8
239.1 62000 62000 596.15 596.1

3.4 Discussion and Conclusions

In this chapter, we applied the modified iGLE model to three experimental systems such

as α-methylstyrene, 4-vinylbenzocyclobutene and styrene. The dynamics of the polymer-

ization of these three systems varies because of reagent and operation conditions. Firstly,

we study the temperature effect on the polymerization of α-methylstyrene. By studying

this system, we gain better understanding on the parameter ζ and γ0 of the model. We

obtained the relation between ζ and temperature, and it can be used to obtain the polymer-

ization dynamics under different temperatures easily. To test the generality of this model,

we choose an irreversible polymerization system— 4-vinylbenzocyclobutene. Since there is

no activation energy data available, we use two different activation energy values to model

the properties of the reaction. The polymer length distribution and PDI value have been

obtained. We found that at a low barrier height, first-order kinetics was observed. Further-

more, it was found that the dynamics changes when the particles need to jump to a higher

barrier. To confirm the high barrier dynamics, we apply the model to styrene and observe

the similar “S” behavior dynamics.

It has been shown in this chapter that the iGLE can be used to model the dynamics

of experimental living polymerization system. Using the iGLE to model polymerization

provides a bridge between simple kinetics and full dynamics. It provides us additional

information since structural information has been built in the model. In the next chapter,
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we will use a stochastic model to describe the kinetics based on the diffusion coefficient.

The first experimental system-poly(α-methylstyrene) will be used as an example.
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CHAPTER IV

STOCHASTIC MODEL AND LIVING POLYMERIZATION

Living polymerization is a complex process in which the properties of the solution essentially

change during the reaction, and the polymerization kinetics are strongly influenced by the

characteristics of the medium. In this process the transport of monomers and their access

to the reactive sites are not stationary, thus the diffusion and rate coefficients are no longer

constants and depend on the state of the system. Considering that the polymerization in

general has association-dissociation character, it is reasonable to treat the lengths of the

polymer chains as random variables, which obey a system of coupled stochastic equations.

The steady-state reaction rates for this system are derived using the theory of diffusion

reactions, where integration in the coordinate phase space over the polymer configurations

is performed. The rheological properties of the solution are taken into account through

changing diffusion coefficients.

Diffusion-controlled phenomena such as auto-acceleration and the glass effect in con-

ventional free-radical polymerization have been studied for a long time and proved to be

very important [76, 77]. The effects of diffusion-controlled reactions on atom-transfer rad-

ical polymerization (ATRP) and reversible addition-fragmentation transfer polymerization

(RAFT) demonstrate that diffusion-controlled radical termination and radical addition ac-

celerate the polymerization rate, while diffusion-controlled propagation decreases the liv-

ingness of the polymer [78]. In this chapter, we study the diffusion effects on anionic living

polymerization by including the diffusion coefficients in a stochastic model.

4.1 Chemical Stochastic Equation (CSE)

A stochastic process is the counterpart of a deterministic process. Instead of having only

one possibility, it is possible to have more possibilities depending on how the process evolved

with time. The Langevin equation we introduced before is a stochastic equation describing

Brownian motion in a potential. In this stochastic equation, there is a deterministic term
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and a stochastic term. Instead, the chemical stochastic equation can be used to describe

the random chemical process by the stochastic term.. For the reaction:

A + B
rd⇀↽
ra

C , (70)

The number of molecules C depends on the numbers of molecules A and molecules B. In

a time dt, the possibility of A colliding with B will determine how many C molecules can

be formed. This is a random process and the number of reaction events during time dt

can be described by the stochastic variable ξpois(rdt). It obeys the Poissonian distribution

and is characterized by the average number of reactions radt(rddt), and the ra(,rd) is the

association (dissociation) rate constant. This is a discrete process. The chemical stochastic

equation for this reaction is:

dXA = ξPois(radt) − ξPois(rddt) . (71)

4.2 Chemical Langevin Equation (CLE)

The relationship between stochastic and deterministic models for chemical reactions was

studied by Kurtz [79]. He takes explicitly into account the volume of the reaction system.

Later, Gillespie derived the chemical Langevin equation from the chemical master equation

with two assumptions [80]. The assumption of Gillespie provides a new perspective on the

origin and magnitude of noise in a chemical reaction system. Recently, the chemical langevin

equation has been used for numerical simulations such as the analysis of cellular systems in

biology [81]. Compared to chemical kinetics (deterministic), the chemical Langevin equation

was used to describe the time evolution of a well-stirred chemical reactive system, taking

into account stochasticity.

In the chemical stochastic equation shown in the last section, the possibility that the

Poisson random variable ξpois(rdt) has the integer value n is:

P (n; r, dt) =
e−rdt(rdt)n

n!
. (72)

In the case of a large number of reaction occurrences, rdt ≫ 1, the Poisson random variable

becomes Gaussian by using Stirling’s factorial approximation and the small-x approximation
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for ln(1 + x).

e−rdt(rdt)n

n!
≈ (2πrdt)−1/2e

„

−
(n−rdt)2

2rdt

«

, (73)

where the normal random variable has the same mean and variance rdt as the Poisson

random variable. The normal random variable can be written as the sum of the mean and

the variation. Thus the CSE turns into a CLE [80]:

dXA = radt +
√

radtξ1(t)
√

dt − rddt +
√

rddtξ2(t)
√

dt , (74)

The rate equation is:

dXA

dt
= ra − rd +

√
raξ1(t) +

√
rdξ2(t) , (75)

where ξi(t) and ξi(t
′) are uncorrelated, statistically independent Gaussian noises,

〈ξi(t)ξi(t
′)〉 = δ(t − t′) . (76)

4.3 Polymerization Kinetics and CSE

We apply this approach to simulate the kinetics of polymerization. For the reaction

Pn + M
kd⇀↽
ka

Pn+1 . (77)

where Pn is a polymer with length n and M is a monomer. The rate of the polymerization

is controlled partially by how fast the reactants encounter one another and partially by how

fast they react once they meet. From the theory of diffusion-controlled reactions, the rate

constants are:

ka =
Ka

1 − κag̃(0)
; kd =

Kd

1 − κag̃(0)
, (78)

where κa and κd are the intrinsic association and dissociation rates. The function g̃(s) is

the Laplace transform of the partial probability g(t) of finding two particles in contact at

time t if initially they were in contact.

Given the two propagators for two reactive sites –Green functions Gm(r1, r; t) and

Gp(r1, r; t)–are known, g(t) is expressed as :

g(t) =

∫

Gm(r1, 0; t)Gp(r1, 0; t)dr1 . (79)
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Since g(t ⇀ ∞) = limn→0 sg̃(s),then g̃(0) is defined by the behavior of the probability g(t)

at infinitely large times. The Green function for the monomers is:

Gm(r, 0, t) =
1

4πDt
e−

r2

4Dt . (80)

The Green function for the polymers is:

Gp(r, 0, t) =
1

2πφn(t)
e
− r2

2φn(t) . (81)

At t → ∞, the mean square displacement for the polymer is:

φn(t) = 2Dnt +
4nb2

3π2

∞
∑

p=1

1

p2

= 2Dnt +
4nb2

3π2

1

6
π2

= 2Dnt +
2nb2

9
. (82)

The mean displacement for the monomers is: φm(t) = 2Dmt. Now we integrate:

g(t) = (
3

2π
)3/2[3φm(t) + 3φn(t)]−3/2

= (
3

2π
)3/2[6Dmt + 6Dnt +

2

3
Nb2]−3/2

=

(

3

12π(Dm + Dn)

)(3/2) 1

(1 + a)3/2
, (83)

where a = Nb2

9(Dm+Dn) .

g̃(s)
s≪1≈ 1

[4π(Dm + Dn)](3/2)

2√
a
[1 −

√
πas] , (84)

where Dn = D0/n is the diffusion coefficient of the whole polymer and b is the bond length.

g̃(0) =
1

4π
√

πn
9 (Dm + Dn)b

. (85)

The diffusion coefficient for the monomer Dm is scaled as the polymer is growing:

Dm = D∞ +
D0 − D∞

1 + (n/n0)2
, (86)

where n0 is the length of polymer when entangling begins.
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4.4 Model Validation

To study the diffusion effect, we apply this model to the polymerization of α-methylstyrene.

The experimental data (monomer concentration, mole fraction of monomers, ratio of the

mole initiators to moles of initial monomer) is shown in Table 1. Based on these data,

we determine the parameters. In this model, we assume the polymer grows from one

active end. Figure 22 shows the fraction of monomers remaining as a function of time

for poly(α-methylstyrene) in THF initiated by sodium naphthalide. If we use a relatively

small diffusion coefficient in the simulation, the numerical results deviate significantly from

the experimental data. The model fits the experimental data very well if we use a very

large diffusion coefficient. This indicates that this is a kinetically controlled reaction and

there is little diffusion effect in this system. In this limit, the model is consistent with the

general kinetic model. But it is more general compared to the kinetic model since it includes

the diffusion coefficients in the model. It would be very interesting to explore the region

where the kinetics and diffusion compete with each other. This region is usually called the

glass-transition region.

4.5 Discussion and Conclusions

By using experimental data and the rate constant obtained from the kinetic model, this

model can be used to provide more information on diffusion during polymerization. If

we assume there is diffusion effect in the polymerization process, that is, we can set the

diffusion coefficient to a value that is the same order as the intrinsic rate constant, but

keep the overall reaction rate the same. By doing this, we found that the polymerization

slow down dramatically, although it will reach equilibrium after a long time. But the

dynamics is different compared to the experimental data. If we decrease the diffusion

coefficients, the simulation results will approach the experimental result. This indicates

that the polymerization process is a kinetically controlled process.

The iGLE we introduced in the previous chapters was a bridge between the kinetic

model and molecular dynamics. It is computationally efficient and provides the necessary

information for the polymerization process. Since the structure information has been built in
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Figure 22: Fraction of monomers remaining as a function of time for poly(α-methylstyrene)
in THF initiated by sodium naphthalide. Dots and squares are experimental data and
the lines correspond to the model. The parameter for sample 1 is: nam = 1279, ntm =
1023400, κaa = 333A3s−1, κd = 0.085s−1,D = D∞ = 1.0e8Ȧ2s−1, V = 1.0e9Ȧ3. The pa-
rameter for sample 2 is: nam = 1228, ntm = 1023400, κaa = 300A3s−1, κd = 0.12s−1,D =
D∞ = 1.0e8Ȧ2s−1, V = 1.0e9Ȧ3. where nam is the number of the activated monomer, ntm
is the total number of monomers in the system and V is the system volume.

the model, we can know more about the viscosity and the interaction between the monomers

and polymers by obtaining the dynamics of the polymerization. This information can’t be

obtained from the simple stochastic equation. By including the diffusion coefficients in the

stochastic model, we can obtain the diffusion effect in the process, and this information

can’t obtained through the iGLE. These two methods are complementary and it can help

to better understand polymerization dynamics.
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CHAPTER V

DO THE DYNAMICS CHANGE IF THE FRICTION IS

ASYMMETRIC?

In the previous chapter, the iGLE model has been used to study the dynamics of poly-

merization. It has been found that the friction kernel and PMF play an important role in

obtaining the time-dependent properties. In this chapter, we want to understand the effect

of the friction kernel on equilibrium properties. Specifically, we want to investigate whether

or not the equilibrium position of the double-well particles is affected by the asymmetry in

the nonstationary friction.

In former work [82], it has been shown that the average position of a stochastic particle

in a double well is different for two different environments. If the environment is stationary,

the average position is zero no matter where you put the particles. If the environment

is nonstationary, the average position is shifted to the left well. This has been explained

by the asymmetry in the friction. Recently we found that asymmetry in the equilibrium

value of 〈R〉 decreases (and eventually goes away)as dt is lowered. This is shown in Fig. 23.

Even when equipartition is followed fairly well, a large time step may significantly affect

the results. A time step that works at low friction (low〈R〉) may be too large at higher

friction (large〈R〉). The specified parameters for the iGLE simulations with the function

g(t) = R(t)ζ are: N = 100, γ0 = 8000, ζ = 1. To make this more clear, we try to use an

analytical derivation to prove it.

5.1 iGLE Projection of the Mechanical System

Compared to the GLE , iGLE includes a switching function g(t) to characterize the nonsta-

tionary (irreversible) change in the solvent response. The time-dependent iGLE Hamilto-

nian is [58]:

HiGLE =
1

2
p2

q + {V(q) + δV1(q, t) + δV2[q(·), t]} − g(t)[

n
∑

i=1

cixi]q +

n
∑

i=1

[
1

2
p2

i +
1

2
ω2

i x
2
i ] , (87)
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Figure 23: The average polymer length is displayed as function of time for the double well
potential with time step 0.1125, 0.0025, and 0.005. For simplicity, the parameters are in
dimensionless units. The minima of the double well are set at R = 1 and R = 2, and the
barrier height is 2 at R = 1.5.

where (q, pq) and (xi, pi) are the system coordinates and the ith bath mode, respectively.

The parameter ci is the coupling strength between the system and the ith bath mode with

frequency ωi. Vq is the potential of mean force (PMF),

V tot(q, x; t) = {V(q) + δV1(q, t) + δV2[q(·), t]} − g(t)[

n
∑

i=1

cixi]q +

n
∑

i=1

[
1

2
ω2

i x
2
i ] , (88)

where

δV1(q, t) =
1

2
g(t)2

n
∑

i=1

c2
i

ω2
i

q2 , (89)

δV2[q(·), t] =
1

2

∫ t

0
dt′a(t, t′)[q(t′) − q(t)]2 − 1

2
[

∫ t

0
dt′a(t, t′)q(t′)2] , (90)

where

a(t, t′) = g(t)ġ(t′)γ0(t − t′) . (91)

Hamilton’s equation of motion can be obtained from the above Hamiltonian equation:

q̇ =
∂HiGLE

∂pq
= pq , (92)

ṗq = −∂HiGLE

∂q
= −

∂V(q)

∂q
− ∂(δV1(q, t))

∂q
− ∂δV2[q(·), t]

∂q(t)
+ g(t)[

n
∑

i=1

cixi] . (93)
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q̇i =
∂HiGLE

∂pi
= pi , (94)

ṗi = −∂HiGLE

∂xi
= g(t)ciq − ω2

i x
2
i . (95)

The second-order differential equation can be obtained by combining Eq. 94 and Eq. 95.

We obtain xi(t) after Laplace transform:

xi(t) = (xi(0) −
ci

ω2
i

g(0)q(0)) cos (ωit) +
ẋi(0)

ωi
sin (ωit)

+
ci

ω2
i

g(t)q(t) − ci

ω2
i

∫ t

0
dt′ cos[ωi(t − t′)]

d

dt′
[g(t′)q(t′)] . (96)

We obtain another second-order differential equation by combining Eq. 92 and Eq. 93.

Inserting xi(t) into this equation leads to:

ṗq = ˙̇q = −
∂V(q)

∂q
− g(t)

∫ t

0
dt′[

n
∑

i=1

cos[ωi(t − t′)]]g(t′) ˙q(t′)

+ g(t)[

n
∑

i=1

ci(xi(0) −
ci

ω2
i

g(0)q(0)) cos (ωit) +
ẋi(0)

ωi
sin (ωit)]

− ∂(δV1(q, t))

∂q
+ g(t)2

N
∑

i=1

c2
i

ω2
i

q(t)

− ∂δV2[q(·), t]
∂q(t)

− g(t)

∫ t

0
dt′[cos[ωi(t − t′)]]ġ(t′)q(t′) . (97)

From Eq. 89 and Eq. 90,we obtain:

∂(δV1(q, t))

∂q
= g(t)2

N
∑

i=1

c2
i

ω2
i

q(t) , (98)

∂δV2[q(·), t]
∂q(t)

= −
∫ t

0
dt′a(t, t′)

[

q(t′) + q(t)[
∂q(t′)

∂q(t)
− 1]

]

. (99)

Eq. 99 is complicated and we would like to study it in the following two limits:

• For a strongly correlated case (short time): ∂q(t′)
∂q(t) ≈ 1.

• For a weakly correlated case (long time): a(t, t′) ∝ e
−(t−t′)

τ ≈ 0.

Thus Eq. 99 can be approximated by:

∂δV2[q(·), t]
∂q(t)

≈ −
∫ t

0
dt′a(t, t′)q(t′) . (100)
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Substituting Eq. 98 and Eq. 100 into Eq. 97, we obtain:

v̇ = −
∂V(q)

∂(q)
−
∫ t

0
dt′γ(t, t′)v(t′) + ξ(t) , (101)

where

ξ(t) = g(t)

[

n
∑

i=1

ci(xi(0) −
ci

ω2
i

g(0)q(0)) cos (ωit) +
ẋi(0)

ωi
sin (ωit)

]

, (102)

γ(t, t′) = g(t)

∫ t

0
dt′

[

n
∑

i=1

cos[ωi(t − t′)]

]

g(t′) (103)

= g(t)γ0(t − t′)g(t′) . (104)

It has been proved that the random force ξ(t) satisfies the nonstationary fluctuation-

dissipation relation (FDR), so Eq. 101 is the iGLE.

5.2 iGLE Projection of the Mechanical System for g(t) is Time-dependent

As shown in Eq. 104, the function g(t) appears in the friction kernel of the iGLE. What

we want to know is the effect of the friction kernel on the equilibrium position of particles,

that is, how the position 〈R〉 is affected by g(t). In this section, we will investigate how the

equilibrium position is affected by the friction if g(t) is time-dependent. We will start with

a simple case, and then move to a more complicated case.

5.2.1 Ansatz: δV2[q(·), t] can be ignored.

From Eq. 88, we obtain:

∂V tot(q, x; t)

∂q
=

∂V (q)

∂q
+

∂(δV1(q, t))

∂q
− g(t)[

n
∑

i=1

cixi] . (105)

Suppose the double well has minima at q = 1 and q = q†. At this two points, ∂V (q)
∂q = 0.

Although not obvious, these points are also part of the solution for the full-dimensional

system. We now show this by construction. The minima for the full-dimensional system

must satisfy:

∂V tot(q, x; t)

∂q
= 0 , (106)

∂V tot(q, x; t)

∂xi
= 0 . (107)
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By solving Eq. 106, we obtain:

xi = g(t)
ci

ω2
i

q . (108)

If q = 1, then xi = g(t) ci

ω2
i
;

If q = q†, then

x†
i = g(t)

ci

ω2
i

q† . (109)

Insert the corresponding xi into the following equation,

∂V tot(q, x; t)

∂xi
= ω2

i xi − g(t)ciq . (110)

We find at these two points, Eq. 110 equals zero. That is, these two set of solutions satisfy

Eq. 106 and Eq. 107. The minima don’t change if g(t) is time-dependent and δV2[q(·), t] is

ignored.

5.2.2 Ansatz: δV2[q(·), t] can’t be ignored.

From Eq. 88, we obtain:

∂V tot(q, x; t)

∂q
=

∂V (q)

∂q
+

∂(δV1(q, t))

∂q
+

∂δV2[q(·), t]
∂q(t)

− g(t)[

n
∑

i=1

cixi] . (111)

Suppose the double well has minima at q = 1 and q = q†. An explicit form of the potential

for the double well is:

V (q) = A(q − 1)2(q − q†)2 , (112)

where A is a real number. At these two points, ∂V (q)
∂q = 0. As before, we attempt to find a

solution for the many-dimensional potential assuming that the minima remains at the value

for the one-dimensional potential, namely q = 1 and q = q†.

By setting ∂V tot(q,x;t)
∂q = 0, we obtain

xi = g(t)
ci

ω2
i

q − 1

g(t)

∫ t

0
dt′a(t, t′)q(t′) . (113)

We get two different values for xi after inserting q = 1 and q = q† into above equation. By

inserting the corresponding q and xi value into the following equation,

∂V tot(q, x; t)

∂xi
= ω2

i xi − g(t)ciq , (114)

61



we find ∂V tot(q,x;t)
∂xi

6= 0. Hence the solutions require q 6= 1 and q 6= q†. This suggest that

the minima changed if we consider the term δV2[q(·), t]. Assume one of the minima moved

from q = 1 to q = qm1, and another minima moved from q = q† to q = qm2, then

∂V (q)

∂q
= 2A(q − 1)(q − q†)2 + 2A(q − 1)2(q − q†) . (115)

At q = qm1, xim1 = g(t)Ciqm1

ω2
i

.

Inserting xim1 into Eq. 109, we obtain:

2A(qm1 − 1)(qm1 − q†)2 + 2A(qm1 − 1)2(qm1 − q†) + g(t)2
N
∑

i=1

c2
i

ω2
i

q(t)

−
∫ t

0
dt′a(t, t′)q(t′) − g(t)2

N
∑

i=1

c2
i

ω2
i

q(t) = 0 . (116)

where

5.2.2.1 For ohmic friction: γ0(t − t′) ≈ γ0(0)δ(t − t′).

∫ t

0
dt′a(t, t′)q(t′) = γ0(0)g(t)ġ(t)q(t) , (117)

5.2.2.2 Perturbative treatment of exponential friction. First we consider: γ0(t − t′) ≈
exp (−(t−t′))

τ , then we suppose the friction is ohmic friction.

∫ t

0
dt′a(t, t′)q(t′) = g(t)

∫ t

0
dt′ġ(t′)γ0(t − t′)q(t′)

= g(t)

[
∫ t

0
dt′[

d

dt′
g(t′)]γ0(t − t′)q(t′)

]

= g(t)

[

g(t′)γ0(t − t′)q(t′) |t0 −
∫ t

0
dt′g(t′)

d

dt′
[γ0(t − t′)q(t′)]

]

= g(t) [g(t)γ0(0)q(t) − g(0)γ0(t)q(0)]

− g(t)

[
∫ t

0
dt′g(t′)

[

γ0(t − t′)q̇(t′) +
1

τ
γ0(t − t′)q(t′)

]]

= γ0(0)g(t)2q(t) − g(0)γ0(t)q(0)

− g(t)

∫ t

0
dt′g(t′)γ0(t − t′)[q̇(t′) +

1

τ
q(t′)] . (118)

For t ≫ 0, g(0)γ0(t) ≈ 0. If the friction has no memory, then γ0(t − t′) ≈ γ0(0)δ(t −

t′). Taking the thermodynamic equilibrium velocity 〈
√

v(t)2〉 =
√

KbT , Eq. 118 can be
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simplified to:

∫ t

0
dt′a(t, t′)q(t′) = γ0g(t)2q(t) − g(t)

∫ t

0
dt′g(t′)γ0(0)δ(t − t′)[q̇(t′) − 1

τ
q(t′)] (119)

≈ (1 − 1

τ
)γ0g(t)2q(t) − γ0g(t)2

√

KbT . (120)

Inserting Eq. 120 into Eq. 116, we obtain:

2A(qm1 − 1)(qm1 − q†)2 + 2A(qm1 − 1)2(qm1 − q†)− (1− 1

τ
)γ0g(t)2q(t) + γ0g(t)2

√

KbT = 0 .

(121)

Suppose we use the following form of g(t) [83]:

g2(t) = g2(−∞) +
1

2

[

g2(∞) − g2(−∞)
]

(

1 +
exp( t

τg
) − 1

exp( t
τg

) + 1

)

. (122)

We use the same parameters as in the Ref. [83]: γ0(0) = 1.0, g2(∞) = 10.0, g2(−∞) = 0.0,

KbT = 2.0. If the barrier height is 2 for the double well, then A = 32. The equation can

be simplified:

64(qm1−1)(qm1−2)2+64(qm1−1)2(qm1−2)−
[

(1 − 1

τ
)q −

√
2

]

∗5.0

[

1 +
exp( t

τg
) − 1

exp( t
τg

) + 1

]

= 0 .

(123)

By solving this equation, we obtain the value qm1. Similarly, we get the value of qm2. The

minima changed with time as shown in the following:

If τg = 0.2, τ = 0.5

For t = −1, q1 = 0.9975. q2 = 1.5061 q3 = 1.9964

For t = −0.5, q1 = 0.9738. q2 = 1.5723 q3 = 1.9539

For t goes to ∞ , q1 = 0.796. q2 = 1.85 + 0.447i q3 = 1.85 − 0.447i

It is clear that qm1 6= 1orq†. This means that the minima do change to new positions at

some time, and it also changes the equilibrium position of the double well.

5.3 iGLE Projection of the Mechanical System for g(t) is Space-dependent

In this section, we assume g(t) is space dependent and use the same Hamiltonian shown

in section I. If g(t) is a function of the position ( g(t)=g(q;t)), (that is, friction is space
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dependent), the minima for the full-dimensional system must satisfy:

∂V tot(q, x; t)

∂xi
= ω2

i xi − ciqg(q; t) = 0 , (124)

∂V tot(q, x; t)

∂q
=

∂V (q)

∂q
+

∂(δV1(q, t))

∂q
+

∂δV2[q(·), t]
∂q(t)

−
[

g(q; t) + q
∂g(q; t)

∂q(t)

]

[

n
∑

i=1

cixi

]

= 0 ,

(125)

where

∂(δV1(q, t))

∂q
=

N
∑

i=1

c2
i

ω2
i

[

g(q; t)2q(t) + g(q; t)q(t)2
∂g(q; t)

∂q

]

, (126)

∂δV2[q(·), t]
∂q(t)

=

∫ t

0
dt′γ0(t − t′)

[

−q(t′) + q(t) − q(t)
∂q(t′)

∂q

]

[

g(q; t)ġ(q; t′)
]

+
1

2

∫ t

0
dt′γ0(t − t′)

[

−2q(t′)q(t) + q(t)2
]

[

ġ(q; t′)
∂g(q; t)

∂q
+ g(q; t)

∂g(q; t′)

∂q

]

. (127)

We consider the following cases:

(1)δV2[q(·), t] can be ignored

(2)δV2[q(·), t] can’t be ignored

5.3.1 Ansatz: δV2[q(·), t] can be ignored.

The double well has two minima at q = 1 and q = q†. At these two points, ∂V (q)
∂q = 0. By

setting the following equation equal to zero, ∂V tot(q,x;t)
∂q = 0, we obtain:

xi =
N
∑

i=1

ci

ω2
i

g(q; t)qt . (128)

inserting xi into the following equation,

∂V tot(q, x; t)

∂xi
= ω2

i xi − ciqg(q; t) , (129)

and we find ∂V tot(q,x;t)
∂xi

= 0. So if g(t) is space-dependent and ignoring δV2[q(·), t], the

positions of the minima don’t change.

5.3.2 Ansatz: δV2[q(·), t] can’t be ignored.

If g(q; t) = q(t), then we get the following relations:

g(q; t′) = q(t′) , (130)
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ġ(q; t′) =
∂q(t′)

∂t′
, (131)

ġ(q; t) =
∂q(t)

∂t
, (132)

∂g(q; t)

∂q
= 1 , (133)

∂ġ(q; t′)

∂q
=

∂2q(t′)

∂q∂t′
. (134)

By inserting these relations into Eq. 126 and Eq. 127, we obtain:

∂(δV1(q, t))

∂q
= 2q(t)3

N
∑

i=1

c2
i

ω2
i

, (135)

∂δV2[q(·), t]
∂q(t)

=

∫ t

0
dt′γ0(t − t′)

[

−2q(t′)q(t) +
3

2
q(t)2

]

∂q(t′)

∂t′

+

∫ t

0
dt′γ0(t − t′)

[

−q(t)2 − q(t)2q(t′) +
1

2
q(t)3

]

∂2q(t′)

∂q(t)∂t′
. (136)

Let’s look at Eq. 136,

• For a strongly correlated case ( short time): ∂2q(t′)
∂q(t)∂t′ = 0.

• For a weakly correlated case ( long time): a(t, t′) ∝ e
−(t−t′)

τ ≈ 0.

To get the analytic solution, we have to remove the integral in Eq. 136 by using different

approximations.

5.3.2.1 For ohmic friction

As before, we suppose there is no memory and use the thermodynamic velocity. Eq. 136

can be simplified:

∂δV2[q(·), t]
∂q(t)

= −1

2
γ0(0)q(t)

2v(t) , (137)

and we obtain:

2A(qm−1)(qm− q†)2 +2A(qm−1)2(qm− q†)+2q3
m

N
∑

i=1

c2
i

ω2
i

− 1

2
γ0q(t)

2v(t)−2q3
m

N
∑

i=1

c2
i

ω2
i

= 0 ,

(138)

By setting q† = 2, A = 32, and changing the value of γ0(0), we obtain the following

different solutions:
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For γ0(0) = 0.5, q1 = 1.0057. q2 = 1.4758 q3 = 2.021

For γ0(0) = 1, q1 = 1.0117. q2 = 1.452935 q3 = 2.0409

For γ0(0) = 6, q1 = 1.1360. q2 = 1.20425 q3 = 2.1928

For γ0(0) = 8000, q1 = 0.09 − 0.27i. q2 = 0.09 + 0.27i q3 = 35.57

So if g(t) is space-dependent and δV2[q(·), t] is included in the PMF, the minima move right,

and the maxima move left.

5.3.2.2 perturbative treatment of the exponential friction

Eq. 136 can be simplified:

∂δV2[q(·), t]
∂q(t)

=

∫ t

0
dt′γ0(t − t′)

[

−2q(t′)q(t) +
3

2
q(t)2

]

∂q(t′)

∂t′

= −
∫ t

0
dt′

d

dt′
[γ0(t − t′)]

[

−2q(t′)q(t) +
3

2
q(t)2

]

q(t′)

−
∫ t

0
dt′[γ0(t − t′)]

[

−2q(t)
∂q(t′)

∂t′

]

q(t′)

−γ0(t − t′)

[

−2q(t′)q(t) +
3

2
q(t)2

]

q(t′) |t0

= −
∫ t

0

1

τ
[γ0(t − t′)]

[

−2q(t′)q(t) +
3

2
q(t)2

]

q(t′)

+2

∫ t

0
dt′q(t)q̇(t′)q(t′)γ0(t − t′) − 1

2
γ0(0)q(t)

3 . (139)

(1) Applying the ohmic friction, the above equation can be simplified as the following:

∂δV2[q(·), t]
∂q(t)

= −1

2
(1 − 1

τ
)γ0(0)q(t)

3 − γ0[−2q(t)2v(t)] , (140)

so we obtain:

2A(qm − 1)(qm − q†)2 + 2A(qm − 1)2(qm − q†) + 2q3
m

N
∑

i=1

c2
i

ω2
i

− 1

2
(1 − 1

τ
)γ0q(t)

3 − γ0[−2q(t)2v(t)] − 2q3
m

N
∑

i=1

c2
i

ω2
i

= 0 , (141)

By setting q† = 2, A = 32, τ = 0.714, and changing the value of γ0, we obtain the following

different solutions:
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For γ0 = 1000, q1 = −6.4395. q2 = −0.6864 q3 = 0.2646

For γ0 = 1, q1 = 0.9611. q2 = 1.755 − 0.19i q3 = 1.755 + 0.19i

For γ0 = 0.1, q1 = 0.9953. q2 = 1.523 q3 = 1.979

(2) If we continue the calculation of Eq. 139, we obtain:

∂δV2[q(·), t]
∂q(t)

= −
∫ t

0
dt′

1

τ
[γ0(t − t′)]

[

−2q(t′)q(t) +
3

2
q(t)2

]

q(t′)

+2q(t)[−q̇(t′)γ0(t − t′)q(t′) − 1

τ
γ0(t − t′)q(t′)2 + q(t′)2γ0(t − t′) |t0]

−1

2
γ0(t − t′)q(t)3 . (142)

Now we apply the ohmic friction, and Eq. 139 can be simplified :

∂δV2[q(·), t]
∂q(t)

=
3

2
(1 − 1

τ
)γ0(0)q(t)

3 − 2γ0(0)q(t)
2v(t) , (143)

and we obtain:

2A(qm − 1)(qm − q†)2 + 2A(qm − 1)2(qm − q†) + 2q3
m

N
∑

i=1

c2
i

ω2
i

+
3

2
(1 − 1

τ
)γ0q(t)

3 − 2γ0q(t)
2v(t) − 2q3

m

N
∑

i=1

c2
i

ω2
i

= 0 , (144)

By setting q† = 2, A = 32, τ = 0.714, and changing the value of γ0, we obtain the following

different solutions:

For γ0 = 1000, q1 = −7.45. q2 = 0.125 − 0.31i q3 = 0.125 + 0.31i

For γ0 = 1, q1 = 1.084. q2 = 1.2704 q3 = 2.189

For γ0 = 0.1, q1 = 1.0055. q2 = 1.4769 q3 = 2.024

(3) The second term of Eq. 139 can be simplified:

∫ t

0
dt′q(t)q̇(t′)q(t′)γ0(t − t′)

= q(t)

[

−
∫ t

0

d

dt′
[q(t′)γ0(t − t′)]q(t′) + q(t′)2γ0(t − t′) |t0

]

= q(t)

[

−1

τ

∫ t

0
[q(t′)2γ0(t − t′)]dt′

∫ t

0
γ0(t − t′)q̇(t′)dt′ + q(t)2γ0(0)

]

. (145)
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then we obtain:

∫ t

0
dt′q(t)q̇(t′)q(t′)γ0(t − t′) = −q(t)

2τ

∫ t

0
γ0(t − t′)q(t′)2dt′ +

1

2
q(t)2γ0(0) . (146)

Now applying the ohmic friction:

∂δV2[q(·), t]
∂q(t)

=
1

2
(1 − 1

τ
)γ0(0)q(t)

3 , (147)

we obtain:

2A(qm − 1)(qm − q†)2 + 2A(qm − 1)2(qm − q†) + 2q3
m

N
∑

i=1

c2
i

ω2
i

+
1

2
(1 − 1

τ
)γ0q(t)

3 − 2q3
m

N
∑

i=1

c2
i

ω2
i

= 0 . (148)

By setting q† = 2, A = 32, τ = 0.714, and changing the value of γ0, we obtain the following

different solutions:

For γ0 = 1000, q1 = −9.272. q2 = 0.65 − 0.38i q3 = 0.65 + 0.38i

For γ0 = 1, q1 = 1.003. q2 = 1.4797 q3 = 2.024

For γ0 = 0.1, q1 = 1.0003. q2 = 1.4979 q3 = 2.002

5.4 Discussion and Conclusions

The above analysis shows that the minima changes if g(t) is space dependent and δV2[q(·), t]

is included in the Hamiltonian. Applying the same approximations during different steps

give the different results. The double well starts to stretch and become asymmetric under

different frictions.

If we ignore δV2[q(·), t], the average position of double well particles is zero when g(t) is

time dependent/space dependent. If we include δV2[q(·), t], the average position of double

well particles is not zero, but it is hard to tell the exact position of particles. They may

shift to the left well, or to the right well. And the shape of the double well is modified as

the friction changes. Further analysis/simulations need to be done to better answer this

question.
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CHAPTER VI

CONCLUSION

The reaction dynamics of living polymerization has been studied by two different meth-

ods. The first method is a general study of the dynamics of a living polymer system in a

non-equilibrium environment using the irreversible generalized Langevin equation (iGLE)

to describe the microscopic changes in the polymer length. The nonstationary changes in

the solvent due to the changing composition of the dense and reacting polymers has been

introduced through modifications of the friction and potential of mean force in the iGLE.

The second method focuses, instead, on the distributions of the polymers (and polymer

lengths), and introduces a nonstationary diffusion reaction theory to describe the polymer-

ization process.

6.1 The iGLE

The irreversible generalized Langevin equation can be used to model polymer systems where

the environment is changed over time by the polymerization itself. For thermosetting poly-

merization, the polymerization is quenched by the diffusion-limited mechanism. For living

polymerization systems, the process is more interesting since the active end is “alive” the

entire time if there is no termination. This leads to dynamic chain lengths. As the poly-

mer length becomes longer, the interaction between the reaction coordinate and bath will

increase. This was incorporated into the function g(t) included in the friction kernel, where

g(t) is a function of the average polymer length. The friction slows down the polymerization

process, but will the equilibrium properties change if the friction is asymmetric? We found

that the double well stretches with the friction and the minima of the double well also

changes. However it is hard to say which direction the particles would prefer. Developing a

different algorithm/analytic method may be a solution to better understand this problem.
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The current study focused on the thermodynamics and kinetic properties of living poly-

merization. That is, one has to include the mechanism of living polymerization: the poly-

merization quenching due to the completion of monomers. To this aim, instead of using

a merged harmonic potential, a new potential was proposed to account for the dynamic

change due to the number of the monomers in solution, the chemical equilibrium and steric

effect. Although it is a phenomenological model, it can be used to model the living poly-

merization process and give the correct dynamics. We also spend some effort on getting

the analytical form of potential of mean of force. In this derivation, we use the Boltzmann

distribution and stationary phase approximations. It turns out this analysis doesn’t help

much. The PMF we obtained is similar to the merged harmonic potential because of the

decrease of the monomer concentration. Better approximation need to developed in the

future. This suggest that polymerization is a nonequilibrium process and we must use a

different PMF. This is why we developed and used a phenomenological PMF in the iGLE.

In addition to obtaining the equilibrium properties using this model, time-dependent

properties such as polymer length, polymer length distribution and polydispersity index

have also been obtained. We applied the model to the α-polystyrene system and the results

agree with the experimental results very well. To test the generality of the model, we

chose 4-vinylbenzocyclobutene and styrene. These two systems are irreversible processes

and polystyrene has a very high activation energy. Instead of observing linear kinetics,

we got an “S” shape behavior. The polymerization rate slows down at the beginning and

then increases. At later time, it slows down again because of entanglement. In the 4-

vinylbenzocyclobutene system, the experimental data shows the same trend, but not for

the styrene system. The calculated PDI result with low barrier height is consistent with the

experimental data for 4-vinylbenzocyclobutene system. This model works when the barrier

height is about 10 times the thermal energy. If the barrier height is about 20 times the

thermal energy, there is less of a possibility for the particles to cross the barrier in a short

time. We have to incorporate new mechanisms in the model in the future.
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6.2 The Stochastic Model

The stochastic model was used to study the diffusion effect in living polymerization systems.

We apply this model to the α-methylstyrene system and found that it is a kinetically

controlled process. It would be interesting to find a system in which the kinetics and

diffusion compete in some region.

Suggestions for future work include the incorporation of the polymer relaxation time and

also the development of an irreversible generalization of the chemical Langevin equation so

as to include memory effects. The success of this work will help obtain the time-dependent

rate constant and take into account the environment responses, thus we can better describe

the dynamics of polymerization.

6.3 Connections between Models and Experiments

In the current study, we have compared the results with several experimental systems and

validated the models that have been developed to describe living polymerization processes.

In the iGLE, we use α-methylstyrene as a paradigmatic example and infer the parameter

values from experimental data. We put those values back into our model, adjust other

parameters and obtain the consistency between the simulation results and experimental re-

sults. We gain better understanding of our parameters based on the experimental data. For

example, we get the relation of parameter ζ as a function of temperature as shown in Fig-

ure 14. If an experimentalist wants to know the kinetics of polymerization under different

temperatures, we can simply adjust the value of ζ and run the simulation. They don’t need

to worry about the termination and transfer reactions that may happen during the process.

We can also study the effect of initiator/monomer concentration on polymerization, but

unfortunately, there is not enough experimental data available.

We also use α-methylstyrene as an example so as to study the diffusion effect on poly-

merization. Combining experimental data and simple kinetic results, we obtain diffusion

coefficients and understand how much diffusion affects in a particular polymerization pro-

cess. Usually, we would think that diffusion effects play a big role when the polymers grow

longer, but this is not always true, especially for anionic polymerization processes.
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Our models have successfully described several experimental systems and can be ex-

tended to other living polymerization systems. By introducing a series of electron-withdrawing

groups into the frame work of α-methylstyrene and styrene, the reactivity of these monomers

is changed. Assuming that we have all the necessary data, we can extract the parameter val-

ues from experimental data and obtain the dynamics of these living polymerization systems

by modifying solvent friction γ0 and scaling coefficient ζ. It is also possible to study the tem-

perature effect on anionic polymerization of monomers containing functional groups, such

as 4-vinylbenzocyclobutene, 4-cyano-α-methylstyrene and 4-cyano-styrene. By comparing

all these simulation results, it is possible to help determine the best reaction conditions.

In either cases, experimentalists and theorists need to work together since both com-

plement each other. Experimental data can be used to test the theoretical models, and

theorist can run simulations with different conditions to help understand the properties of

different polymer systems.
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APPENDIX A

POISSON DISTRIBUTION

For the reaction:

M + I → MI , (149a)

Mi+1I + M ⇀↽ Mi+1I , (149b)

where MI is the activated monomer, the rate constant for initiation and propagation is

ki and kp respectively, the concentration of the initiator is [I]0, and the concentration of

monomer at time t is [M ]t. If the initiation rate is much faster than the propagation rate,

then the concentration of the activated monomers is the same as the concentration of the

initiators. Assuming no termination and transfer reactions, then:

−d[M ]t
dt

= kp[M ]t[I]0 . (150)

The solution for the above equation is

[M ]t = [M ]0e
−kp[I]0t . (151)

During the reaction, the dynamic chain length can be defined as: r = [M ]0−[M ]t
I0

. If the

conversion reaches 100%, the chain length reaches the maximum chain length, which is the

ratio of the monomers to initiators.

dr

dt
= − 1

[I]0

d[M ]t
dt

= kp[M ]t . (152)

To get the Poisson distributions, we start with:

−d[MI]

dt
= kp[MI][M ]t = −d[MI]

dr

dr

dt
= −d[MI]

dr
kp[M ]t , (153)

then we can obtain:

−d[MI]

dr
= [MI] . (154)
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The solution for the above equation is:

[MI] = [MI]0e
−r = [I]0e

−r , (155)

The rate equation for [M2I] is:

d[M2I]

dt
= kp[MI][M ]t − kp[M2][M ]t . (156)

After substitution and integration,

[M2I] = r[I]0e
−r . (157)

Using the same procedure, we obtain:

[M3I] =
1

2
r2[I]0e

−r . (158)

So the general formula for n-mers:

[MiI] =
1

(i − 1)!
ri−1[I]0e

−r , (159)

and the mol fraction of the i-mers in the polymer x(i) is:

xi =
1

(i − 1)!
ri−1e−r . (160)

This is exactly the form of Poisson distribution.
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APPENDIX B

POTENTIAL OF MEAN FORCE

B.1 Polymer Model—The Effected Potential for the Nearest-neighbor
Monomers

We consider a coarse-grained bead-spring model for the polymer chain in which the bonded

interaction is described by the harmonic potential,

Vosc(r) =
k

2
(r − r0)

2 . (161)

In addition, we consider a LJ nonbonding potential between the free monomer and the last

bound monomer,

Vlj(r) = 4ε[(
δ

r
)12 − (

δ

r
)6] , (162)

where δ = l0

2
1
6
, ε =

kl20
72 , l0 is bond length. This parameter choice guarantees the same

equilibrium distance between the centers of the monomers and the same oscillation frequency

at the minima for both potentials.

Since each monomer is treated as a hard sphere with a diameter L < l0, a reflecting

wall condition should be added to the potentials. But in the framework of the stiff chain

approximation used here, it doesn’t cause problem because of the strict confinement of

monomers which fluctuate around their equilibrium in very narrow limits. In this case, for

simplicity, we use a harmonic potential instead of the finitely extensible nonlinear elastic

(FENE) potential and they should give the same results.

The association between the polymer system and the iGLE include the construction

of the PMF and modifying friction kernel. Here we are interested in the exact form of

PMF instead of the phenomenological form. We are interested in a partition function for

the following group of n + 2 monomers: the (n + 1) polymers and a free monomer which

is the closest to the last bound monomer. The nearest distributions have been used in

different field of statistical mechanics. In this model, we neglect any interaction between

free monomers and a chain, and amongst free monomers themselves. We also ignore the
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excluded volume effect. The concentration of the free monomers is C(m) = m
V , where m is

the number of the free monomers.

To make the reaction proceed, that is, only the closest free monomer can attach to the

polymer, we need to modify the LJ interaction.

B.1.1 Dense Solution Limit: Uniformly Distributed Monomers

The probability to find the first nearest-neighbor monomer to the polymer between r and

r + dr is denoted by dP (1, r). This probability must be equal to the probability that no

monomers exist interior to r (denoted by dpno(r; ri)) times the probability that a monomer

does exist between r and r + dr (denoted by dpyes(r; r)), where L < ri < r and L is the size

of the monomer [84].

In dense solution, dpyes(r; r) = 4πr2C(m)dr, so dpno(r; ri) = 1 − dpyes(r; r). The

probability to find the first closest particle at r with dr is:

dP (1, r) =

∞
∏

i=1

dpno(r; ri)dpyes(r; r) . (163)

Thus:

ln dP (1, r) = ln[dpno(r; r1)] + ln[dpno(r; r2)] + · · · ln[dpno(r; r∞)] + ln[dpyes(r; r)]

= ln[1 − 4πC(m)r2
1dr] + ln[1 − 4πC(m)r2

2dr] + · · ·

+ ln[1 − 4πC(m)r2
∞dr] + ln[4πC(m)r2dr]

= −4πC(m)r2
1dr − 4πC(m)r2

2dr · · · − 4πC(m)r2
∞dr + ln[4πC(m)r2dr]

= −4πC(m)

∫ r

L
r2dr + ln[4πC(m)r2dr]

= −4π

3
C(m)(r3 − L3) + ln[4πC(m)r2dr] , (164)

and we obtain:

dP (1, r) = e−
4π
3

C(m)(r3−L3)4πC(m)r2dr

= e−
4π
3

C(m)(r3−L3)C(m)dV . (165)

By including the closest particle, the new modified LJ potential for a dense solution becomes:

dV e−βVeff (r,m) = e−βVljdP (1, r) = e−βVlje−
4π
3

C(m)(r3−L3)C(m)dV , (166)
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and this implies:

βVeff (r,m) = βVlj(r) + 4πC(m)

∫ r

L
x2dx − ln C(m) . (167)

B.1.2 Dilute Solution Limit: Boltzmann Distributed Monomers

In dilute solution, dpyes(r; r) = 4πr2C(m)e−βVljdr, and dpno(r; ri) = 1 − dpyes(r; r). The

probability to find the first closest particle at r with dr is:

dP (1, r) =
∞
∏

i=1

dpno(r; ri)dpyes(r; r) . (168)

Thus,

ln dP (1, r) = ln[dpno(r; r1)] + ln[dpno(r; r2)] + · · · ln[dpno(r; r∞)] + ln[dpyes(r; r)]

= ln[1 − 4πC(m)e−βVljr2
1dr] + ln[1 − 4πC(m)e−βVljr2

2dr] + · · ·

+ ln[1 − 4πC(m)e−βVljr2
∞dr] + ln[4πC(m)e−βVlj r2dr]

= −4πC(m)e−βVljr2
1dr − 4πC(m)e−βVlj r2

2dr · · · − 4πC(m)e−βVljr2
∞dr

+ ln[4πC(m)e−βVlj r2dr]

= −4πC(m)

∫ r

L
e−βVljr2dr + ln[4πC(m)e−βVlj r2dr] , (169)

and we obtain:

dP (1, r) = e−4πC(m)
R r
L e

−βVlj r2dr4πC(m)r2e−βVljdr

= e−4πC(m)
R r
L e

−βVlj r2dre−βVljC(m)dV . (170)

By including this nearest distribution,the modified LJ for dilute solution:

βVeff (r,m) = 2βVlj(r) + 4πC(m)

∫ r

L
e−βVlj(x)x2dx − ln C(m) . (171)

B.2 Polymer Model—the Partition Function for n Connected Harmonic
Springs

Suppose ~r1, ~r2 · · · are vectors that point to each monomer from the first monomer. Here

we use the stiff chain approximation.
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For n = 2, Q3 = e−βV3 , where n is the bond number. We calculate the partition function

using actual (true) potentials:

e−βV3 =

∫ ∞

L

~dr1

∫ ∞

L

~dr2e
−

u( ~r1)+u( ~r2− ~r1)
kBT δ(|~r1| + |~r2 − ~r1| − Rc)

=

∫ ∞

L

~dr1e
−

u( ~r1)
kBT

∫ ∞

L

~dre
−

u(~r)
kBT δ[|~r| − (Rc − |~r1|)]

= 4π

∫ ∞

L

~dr1e
−

u( ~r1)+u(Rc− ~r1)
kBT (Rc − r1)

2

= 4π

∫ ∞

L

~dr1(Rc − r1)
2e

− k
2kBT

[(r1−l0)2+(Rc−r1−l0)2]
. (172)

The exponent can now be rearranged by completing the squares and regathering the terms

so that terms not involving the integrating variable, ~r1, can be factored out:

e−βV3 = 4π

∫ ∞

L

~dr1(Rc − r1)
2e

− 2k
2kBT

[(r1−
Rc
2

)2+(l0−
Rc
2

)2] ~dr1

= 4π(Rc −
Rc

2
)2e

− 2k
2kBT

(l0−
Rc
2

)2
∫ ∞

L

~dr1e
− 2k

2kBT
(r1−

Rc
2

)2

= 4π
Rc2

4
e
− 2k

2kBT
(l0−

Rc
2

)2
πRc2

√

πkBT

k

= π2R4
ce

− 2k
2kBT

(l0−
Rc
2

)2
√

πkBT

k

= π2R4
ce

− k
4kBT

(Rc−2l0)2
√

πkBT

k

= (4π)2l40e
− k

4kBT
(Rc−2l0)2

√

πkBT

k
, (173)

For n = 3, Q4 = e−βV4 , where n is bond number, we use an effective potential in the deriva-

tion. This means that we apply the results shown in Eq. 173 to the following calculation
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which simplifies the procedure.

e−βV4 = Υ4

∫ ∞

L

~dr3

∫ ∞

2L

~dRce
− k

4kBT
(Rc−2l0)2

e
− k

2kBT
(r3−l0)2

δ(| ~Rc| + | ~r3| − Rnew)

= Υ4

∫ ∞

−∞

~dRce
− k

4kBT
(Rc−2l0)2

∫ ∞

−∞

~dr34πr2
3e

− k
2kBT

(r3−l0)2δ(r3 − (Rnew − Rc)

= Υ44π

∫ ∞

−∞

~dRc(Rnew − Rc)
2e

− k
4kBT

(Rc−2l0)2
e
− k

2kBT
(Rnew−Rc−l0)2

= Υ44π

∫ ∞

−∞

~dRc(Rnew − Rc)
2e

− 3k
2kBT

[(l0−
Rnew

3
)2+ 1

2
(Rc−

2
3
Rnew)2]

= Υ44πe
− 3k

2kBT
(l0−

Rnew
3

)2
∫ ∞

−∞

~dRc(Rnew − Rc)
2e

− 3k
4kBT

(Rc−
2
3
Rnew)2

= Υ44πe
− 3k

2kBT
(l0−

Rnew
3

)2
(Rnew − 2

3
Rnew)2

√

4πkBT

3k

= Υ44π
2√
3

√

πkBT

k
e
− 3k

2kBT
(l0−

Rnew
3

)2

= (4π)3l60
2√
3

πkBT

k
e
− k

6kBT
(Rnew−3l0)2 , (174)

where some factors have been collected into the single term,

Υ4 ≡ (4π)3l60
2√
3

πkBT

k
. (175)

If we use the true potentials, instead, then we can obtain the same result as in Eq. 174 if

kl20 ≫ kbT .

A similar derivation, now follows for the calculation of the effective potential for n = 4:

e−βV5 = χ4

∫ ∞

L

~dr4

∫ ∞

2L

~dRce
− k

6kBT
(Rc−3l0)2

e
− k

2kBT
(r4−l0)2δ(| ~Rc| + | ~r4| − Rnew)

= χ4

∫ ∞

−∞

~dRce
− k

4kBT
(Rc−3l0)2

∫ ∞

−∞

~dr44πr2
4e

− k
2kBT

(r4−l0)2
δ ((r4 − (Rnew − Rc))

= χ4

∫ ∞

−∞

~dRc(Rnew − Rc)
2e

− k
6kBT

(Rc−3l0)2
e
− k

2kBT
(Rnew−Rc−l0)2

= χ4

∫ ∞

−∞

~dRc(Rnew − Rc)
2e

− 4k
2kBT

[(l0−
Rnew

4
)2+ 1

3
(Rc−

3
4
Rnew)2]

= χ44πe
− 4k

2kBT
(l0−

Rnew
4

)2
∫ ∞

−∞

~dRc(Rnew − Rc)
2e

− 4k
6kBT

(Rc−
3
4
Rnew)2

= χ44πe
− 4k

2kBT
(l0−

Rnew
4

)2
(Rnew − 3

4
Rnew)2

∫ ∞

−∞

~dRce
− 4k

6kBT
(Rc−

3
4
Rnew)2

= χ44πl20e
− k

8kBT
(Rnew−4l0)2

√

6πkBT

4k

= (4π)4l80
√

2(
πkBT

k
)

3
2 e

− k
8kBT

(Rnew−4l0)2
, (176)

79



where some factors have been collected into the single term,

χ4 ≡ (4π)3l60
2√
3

πkBT

k
. (177)

Now we can summarize and get the reversible work for polymer with n bond near Rc = nl0,

assuming a weak dependence on terms that are constant:

Qb
n(Rc) = (4π)n

√

2n−1

n
(
πkBT

k
)

n−1
2 l2n

0 e
− k

2nkBT
(Rc−nl0)2 . (178)

We could get a more general form if we use Rc instead of nl0:

Qb
n(Rc) = (4πR2

c)
n(

2πkBT

k
)

n−1
2

1

n2n+ 1
2

e
− k

2nkBT
(Rc−nl0)2 . (179)

Since a monomer can’t attach to a polymer from any direction, we include this steric effect

by adding Ω
4π , which means the available solid angle to reaction:

Qb
n(Rc) = (4π

Ω

4π
R2

c)
n(

2πkBT

k
)

n−1
2

1

n2n+ 1
2

e
− k

2nkBT
(Rc−nl0)2

. (180)

Also, we need to normalize this function:

Qb
n(Rc) = (ΩR2

c)
n(

2πkBT

k
)

n−1
2

1

n2n+ 1
2

1

V n
e
− k

2nkBT
(Rc−nl0)2 . (181)

B.3 Polymer Model—Monomer Attach to Polymer

If one monomer interact with this polymer, we need to add an effected LJ potential to the

harmonic spring.

Qe
n+1(Rnew)

= (Ω)nR2n
c (

2πkBT

k
)

n−1
2

1

n2n+ 1
2

1

V n+1

∫ ∞

−∞
∫ ∞

L
e
− k

2nkBT
(Rc−nl0)2e−βVeff δ(Rc + r − Rnew)drdRc

= (Ω)nR2n
c (

2πkBT

k
)

n−1
2

1

n2n+ 1
2

1

V n+1

∫ ∞

L

∫ ∞

−∞

e
− k

2nkBT
(Rc−nl0)2δ[Rc − (Rnew − r)]dRc

e−βVeff 4πr2(
Ω

4π
)dr

= (Ω)n+1(
2πkBT

k
)

n−1
2

1

n2n+ 1
2

1

V n+1

∫ ∞

L
(Rnew − r)2nr2e

− k
2nkBT

(Rnew−r−nl0)2−βVeff dr

= A

∫ ∞

L
e−βU(r,Rc)dr , (182)
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where A is the constant and we define:

U(r,Rnew) =
k

2n
(Rnew − r − nl0)

2 + Veff − β−1(ln r2 + ln(Rnew − r)2n) , (183)

and

U ′′(r,Rnew) =
k

n
+ V ′′

eff (r,m) + 2β−1(
1

r2
+

n

(Rnew − r)2
) . (184)

The stationary phase method is an approach for solving integrals analytically by eval-

uating the integrands in regions where they contribute the most. Now we can use the

stationary phase approximation to get the partition function for small and large Rnew.

Qe
n+1(Rnew) = C × e−βU(r1min(Rnew),Rnew)

√

2π

U ′′(r1min(Rnew), Rnew)
, (185)

Qe
n+1(Rnew) = C × e−βU(r2min(Rnew),Rnew)

√

2π

U ′′(r2min(Rnew), Rnew)
. (186)

where C = (Ω)n+1(2πkBT
k )

n−1
2

1

n2n+ 1
2

1
V n+1 , r1min, r2min are the minimum position for the

whole potential.

The overall partition function is the following:

Q(Rnew) =
n
∑

n=2

[Qe
n+1(Rnew) + Qb

n(Rnew)]

= Be−βUPMF (Rnew) . (187)

Using this method, it is possible to find the potential of mean force (PMF).
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