
Exploiting Cyberinfrastructure to Solve

Real-Time Integer Programs

Shabbir Ahmed, George L. Nemhauser, Martin W.P. Savelsbergh
H. Milton Stewart Industrial and Systems Engineering

Georgia Institute of Technology
765 Ferst Drive, NW, Atlanta, Georgia 30332-0205, USA,

NSF Grant # DMI 0521953

Final Report

1. Approximating the Stability Region for Binary Mixed-Integer
Programs

The stability region of a solution is the polyhedral set of objective coefficients for which the solution
is optimal. It provides valuable information for sensitivity analysis and re-optimization. An exact
description of it may require an exponential number of inequalities. We develop polyhedral inner
and outer approximations of linear size.

We consider the optimization problem

z∗ = max c∗x + h(y)
s.t. (x, y) ∈ X (P (c∗))

x ∈ {0, 1}n,

where c∗x =
∑

i∈N c∗i xi, N = {1, . . . , n} and h : projy(X) → R. We do not give specific require-
ments on h and X, but we assume that an optimal solution (x∗, y∗) exists and can be computed.
We are interested in the stability of (x∗, y∗) with respect to variations of the cost vector c∗. By
possibly complementing variables, we assume without loss of generality that x∗ = 0, so the optimal
value of P is z∗ = h(y∗).

Definition 1. The stability region of (x∗, y∗) is the region C ⊆ Rn s.t. c ∈ C if and only if (x∗, y∗)
is optimal for P (c). That is, C = {c ∈ Rn : c(x− x∗) ≤ h(y∗)− h(y), ∀ (x, y) ∈ X}.

A familiar example of a stability region comes from linear optimization. In a linear program,
the stability region of a solution is the cone generated by the set of constraints that are binding at
the solution.

Remark 1. Let (x̂, ŷ) be feasible for P, with objective value ẑ = c∗x̂ + h(ŷ) ≤ z∗. Suppose ĉ ∈ Rn

satisfies ĉx̂ > z∗ − ẑ + c∗x̂. Then ĉ 6∈ C.

Remark 2. Let x̂ ∈ {0, 1}n, and define υ(x̂) = max(x̂,y)∈X h(y), with υ(x̂) = −∞ if no y satisfies
(x̂, y) ∈ X. Then C = {c ∈ Rn : cx ≤ h(y∗)− υ(x), ∀ x ∈ {0, 1}n}.

Remark 2 implies that C is a polyhedron possibly defined by an exponential number of inequali-
ties. We choose to approximate C using polyhedra defined by polynomially many inequalities. The
next two definitions further explain this approximation.

1

Definition 2. Let C be the stability region of (x∗, y∗). An outer approximation of C is a region
C+ ⊆ Rn satisfying C+ ⊇ C. An inner approximation of C is a region C− ⊆ Rn satisfying
C− ⊆ C.

Let (x̂, ŷ) be feasible for P. By Remark 1, the set {c ∈ Rn : cx̂ ≤ z∗ − h(ŷ)} is an outer
approximation of C. The set {c ∈ Rn : c ≤ c∗} is a trivial inner approximation of C. The
following are two simple but important consequences of Definition 2 that help us obtain small
outer approximations and large inner approximations.

Proposition 1.

i) If C+
1 , C+

2 are outer approximations, C+
1 ∩ C+

2 is an outer approximation.

ii) If C−
1 , C−

2 are inner approximations, conv(C−
1 ∪ C−

2) is an inner approximation.

Next, we show how to obtain inner and outer approximations of C by solving n problems
{Pj : j ∈ N}, where each Pj is given by

zj = max c∗x + h(y)
s.t. (x, y) ∈ X (Pj)

x ∈ {0, 1}n

xj = 1.

Throughout, we assume without loss of generality that all problems Pj are feasible. If Pj is infeasible
for some j ∈ N , then every feasible solution to P has xj = 0. Thus, cj cannot in any way affect
optimality, and we can ignore it. Accordingly, we assume that we have solved the problems Pj for
every j ∈ N , and determined optimal solutions (xj , yj) with corresponding objective values zj . An
important question is whether solving the problems Pj is necessary to obtain the zj values, or if a
more efficient method exists. This is especially pertinent if P is NP-hard, because each Pj is then
NP-hard as well.

The following observation follows directly from Remark 1 and Proposition 1.

Remark 3. The set C+ =
{
c ∈ Rn : cxj ≤ z∗ − zj + c∗xj , ∀ j ∈ N

}
is an outer approximation of

C.

Let γj = z∗ − zj + c∗j . Observe that the outer approximation C+ of Proposition 3 satisfies

{c ∈ C+ : c ≥ c∗} ⊆ {c ∈ Rn : c∗j ≤ cj ≤ γj , ∀ j ∈ N}.

In other words, in the direction c ≥ c∗, the stability region C of (x∗, y∗) is contained in a box
defined by the values γj .

To determine an inner approximation, we make use of the next result.

Proposition 2. Let c̃j = (c∗1, . . . , c
∗
j−1, γj , c

∗
j+1, . . . , c

∗
n). Then c̃j ∈ C, ∀ j ∈ N .

Theorem 1. Suppose we order the x variables so that z∗ ≥ z1 ≥ z2 ≥ · · · ≥ zn holds. Then

C− =

{
c ≥ c∗ :

j∑

i=1

ci ≤ γj +
j−1∑

i=1

c∗i , ∀ j ∈ N

}

is an inner approximation of C.

2

Algorithm 1 Binary Solution Cover

Require: An optimization problem P with optimal solution (x∗, y∗) satisfying x∗ = 0.

Set (x0, y0) ← (x∗, y∗), z0 ← z∗, I ← N , I∞ ← ∅.
Add cut D ≡ (

∑
i∈I xi ≥ 1) to P.

for k = 1, . . . , n do
Resolve the modified P; get new optimal solution (xk, yk) and objective value c∗xk+h(yk) = zk.
if P is infeasible then

Set I∞ ← I.
Return k and exit.

end if
Set I+

k ← {i ∈ N : xk
i = 1}, I−k ← I ∩ I+

k .
Set I ← I \ I−k ; modify cut D accordingly.

end for

Corollary 1. The set {c + d : c ∈ C−, d ≤ 0} is an inner approximation of C.

These last two results motivate a natural algorithm for determining an inner approximation.
Solve each of the problems Pj in turn, sort them by objective value, and compute the inner ap-
proximation as indicated in Theorem 1.

Algorithm 1 begins with a problem of the form P and an optimal solution (x∗, y∗) with x∗ = 0.
It then adds a cut

∑
i∈N xi ≥ 1, forcing at least one of the x variables to one. After resolving, it

determines which of the x variables switched, removes their coefficients from the cut, and repeats.
The end result is a list of solutions, ordered by objective value, which covers all possible x variables.
(Variables not covered by any solution on the list are those fixed to zero in any feasible solution.)
For future reference, we formally define the relevant information gathered during the execution of
Algorithm 1 as follows. The solution in the k-th iteration is denoted by (xk, yk) and has objective
function value zk. The set I+

k ⊆ N indicates which x-variables have value one in (xk, yk). The set
I−k ⊆ I+

k indicates which of these variables have value one for the first time.
An outer approximation is easily obtained applying Remark 1 to each solution (xk, yk). To

determine an inner approximation, we must first establish a preliminary fact.

Proposition 3. Let i ∈ I−k , for some k. Then (xk, yk) is optimal for Pi.

Note that (xk, yk) is not necessarily optimal for Pj , for j ∈ I+
k \I−k . We now combine Proposition

3 with Theorem 1 to construct our inner approximation.

Theorem 2. Suppose Algorithm 1 is run on problem P, terminating after ` ≤ n steps. Let (xk, yk),
zk, I+

k , I−k , ∀k = 1, . . . , ` and I∞ be obtained from the algorithm. Then

C− =





c ≥ c∗ :
∑

i∈I−1 ∪···∪I−k

ci ≤ z∗ − zk +
∑

i∈I−1 ∪···∪I−k

c∗i , ∀ k = 1, . . . , `





is an inner approximation of C.

We can also apply Corollary 1 to get an inner approximation that is not restricted to values
greater than or equal to c∗.

It is important to note that the stability region C depends only on (x∗, y∗) and h(y), and not on
c∗. However, the inner approximation we calculate using Algorithm 1 does depend on c∗, because

3

c∗ appears in the right-hand side of each inequality and also because different starting costs may
determine different solutions in the algorithm when we add the inequality

∑
i∈I xi ≥ 1. So any

c∗ ∈ C can be used in Algorithm 1 to obtain a possibly different inner approximation.
We next address the quality of approximation of the inner and outer regions C−, C+ generated

by Algorithm 1. For any c ∈ C+ \ C−, we are unable to determine the optimality of (x∗, y∗) for
P (c) without re-optimizing. Ideally, we would like to estimate the volume of this uncertainty region
C+ \ C−, and perhaps compare it to the volume of C− and C+. However, even for problems with
modest dimension we cannot efficiently estimate this volume. And although volume computation
and general integration by sophisticated random walk techniques is an active area of research, no
practical volume computation algorithm has yet been developed.

In light of these computational difficulties, we have developed a “shooting” experiment to give
some idea of the relative sizes of C−, C+ and C+ \C−. Starting from the original objective vector
c∗, we generate a random direction d by uniformly sampling each component from [0, 1]. We then
compute the quantities

λ− = max
λ

{
c∗ + λ

d

‖d‖ ∈ C−
}

λ+ = max
λ

{
c∗ + λ

d

‖d‖ ∈ C+

}
,

and use the values to compare the relative sizes of C− and C+ in the direction d.
We performed the shooting experiment on the problem instances contained in MIPLIB 3.0.

For a given instance, we considered as x variables all binary variables that satisfied the following
conditions:

• The variable is not fixed to its optimal value in all feasible solutions. In terms of Algorithm
1, this means the variable does not belong to the set I∞.

• There is no alternate optimal solution with the variable set to its complement. That is, we
have z∗ > zj .

We refer to such binary variables as “active.” If a particular MIPLIB instance did not have any
active binary variables, we discarded it. We also skipped problems with more than 5,000 binary
variables and problems which did not solve to optimality within one hour of CPU time. All
computational experiments were carried out on a system with two 2.4 GHz Xeon processors and
2 GB RAM, and using CPLEX 11.1 (with default settings) as the optimization engine. For each
instance, we generated 100,000 direction vectors d.

Table 1 contains average results for our experiments. For each instance, we report the total
number of decision variables (# vars), the total number of binary variables (# bin), the number
of active binary variables (# active), the Euclidean norm of the cost vector corresponding to the
active variables (‖c∗‖), the average λ− and λ+ values, and their ratio. For example, for problem
lseu, 85 of 89 decision variables are active. In the directions tested, C− occupies 87% of the volume
of C+, but both regions allow only for a relatively small change in c∗, since ‖c∗‖ is significantly
larger than λ− and λ+.

As Table 1 indicates, the estimated volume ratio of C− and C+ varies significantly from one
instance to the next. On one end, Algorithm 1 delivers a fairly tight approximation for problems
dcmulti (92%), enigma (95%), and lseu (87%), to name a few. In fact, Algorithm 1 even delivers
the exact stability region for p0033. On the other, the volume ratio is very small on instances such
as p2756 (7%), vpm1 (3%) and vpm2 (14%). This discrepancy is certainly in part due to differences
in the number of active binary variables (14 in enigma and 2,391 in p2756,) since volume differences
tend to grow as dimension grows. However, part of this discrepancy is also instance dependent, as
some problems with similar numbers of active variables have very different ratios.

4

Overall, the experimental results indicate that the volume of C+ \ C− is significant for some
instances. Therefore, we next address the cause of this discrepancy: Are we under-approximating
C− or over-approximating C+? To answer this question, we performed the following additional
experiment. For each of the first 1000 random directions d that yield λ− < λ+, we construct a new
cost vector

c± = c∗ +
λ− + λ+

2
d

‖d‖ ∈ C+ \ C−,

and re-optimize the problem with this new objective. We then count the number of times the
original optimal solution (x∗, y∗) remains optimal for the new cost vector c±. The next column in
Table 1 (OIO, for “original is optimal”) reports these counts for all instances except p0033, which
did not have any directions along which λ− < λ+. With the exception of dsbmip, rentacar and
rgn, the original solution is optimal most of the time, with most instances recording counts above
800 and many getting 1000. These results indicate that the uncertainty region C+ \ C− is caused
primarily by an excessive under-approximation of C−. They also suggest that (x∗, y∗) is likely to
remain optimal inside C+, even when this fact cannot be guaranteed.

The last experiment also suggests an additional option to explore when (x∗, y∗) is not optimal
for the new objective. Algorithm 1 generates a list of solutions that in some sense “surrounds” the
original. Therefore, if (x∗, y∗) is not optimal for an objective, one of the solutions from the list may
in fact be optimal instead. To test this hypothesis, we designed a final set of experiments. For the
first 1000 random directions d with λ− < λ+, define c± as before and also define

c+ = c∗ +
λ− + 3λ+

2
d

‖d‖ ∈ R
n \ C+.

Note that just as c± is guaranteed to be in C+ \ C−, c+ is guaranteed to be in Rn \ C+, and the
distance along d from c+ to C+ equals the distance from c± to C−. We re-optimize the problem
with both of these new objectives, and count the number of times the best solution from the list
is optimal for each objective. In addition, when none of the solutions is optimal, we calculate the
relative gap between the best solution in the list and the new optimal value. The final four columns
of Table 1 summarize the results, reporting both the number of times the best solution is optimal
(BIO) and the average relative difference in objective values (ROD) for non-optimal cases, defined
as |optimal−best|

|optimal| .
With the exception of bell3a and vpm1, the solution list yields good solutions for the new

objective vectors c± and c+. For c+, even when none of the solutions is optimal, on average the
relative gap is below 2% and significantly below for many instances. Thus, the solutions generated
by Algorithm 1 provide an excellent warm start for re-solves, and they can also be used as high-
quality heuristic solutions when re-optimization is not possible.

The following paper concerning this material has been published in Operations Research Letters.

Fatma Kilinç-Karzan, Alejandro Toriello, Shabbir Ahmed, George Nemhauser, and Martin Savels-
bergh. “Approximating the Stability Region for Binary Mixed-Integer Programs.” Operations
Research Letters 37, 250-254, 2009.

5

c ±
∈

C
+
\C

−
c +
∈
R

n
\C

+

P
ro

b
le

m
#

va
rs

#
b
in

#
a
ct

iv
e

‖c
∗ ‖

λ
−

(a
v
g
.)

λ
+

(a
v
g
.)

λ
−

(a
v
g
.)

λ
+

(a
v
g
.)

O
IO

(c
n
t.

)
B

IO
(c

n
t.

)
R

O
D

(a
v
g
.)

B
IO

(c
n
t.

)
R

O
D

(a
v
g
.)

b
e
l
l
3
a

1
3
3

3
9

3
1

1
.5

5
3
E

+
0
5

1
.1

2
9
E

+
0
5

1
.4

3
0
E

+
0
5

0
.7

9
7
2
4

7
2
4

2
.2

4
3
E

-0
2

0
1
1
.7

8
4

b
e
l
l
5

1
0
4

3
0

2
0

1
.6

0
9
E

+
0
5

8
9
4
7

2
5
8
7
5

0
.3

5
1
0
0
0

1
0
0
0

-
6
8
0

7
.1

7
4
E

-0
4

b
l
e
n
d
2

3
5
3

2
3
1

2
1
5

4
5
.9

8
0
.0

8
0
.1

8
0
.4

3
1
0
0
0

1
0
0
0

-
1
0
0
0

-
d
c
m
u
l
t
i

5
4
8

7
5

7
1

4
2
2
0

1
6
.2

7
1
7
.7

5
0
.9

2
9
9
0

9
9
0

8
.0

8
2
E

-0
6

8
6
5

1
.8

6
9
E

-0
5

d
s
b
m
i
p

1
8
8
6

1
6
0

1
4

0
0
.4

8
0
.6

2
0
.7

8
0

1
0
0
0

-
1
0
0
0

-
e
g
o
u
t

1
4
1

5
5

2
8

1
1
5

3
.2

1
7
.7

6
0
.4

1
1
0
0
0

1
0
0
0

-
2
0
5

5
.2

9
6
E

-0
3

e
n
i
g
m
a

1
0
0

1
0
0

1
4

1
0
.3

1
0
.3

2
0
.9

5
1
0
0
0

1
0
0
0

-
1
0
0
0

-
f
i
b
e
r

1
2
9
8

1
2
5
4

1
2
3
9

3
.1

6
7
E

+
0
6

7
6
2

8
0
9

0
.9

4
1
0
0
0

1
0
0
0

-
9
9
0

1
.6

3
1
E

-0
4

f
i
x
n
e
t
6

8
7
8

3
7
8

3
7
8

5
6
0
6

1
.9

8
2
.2

8
0
.8

7
1
0
0
0

1
0
0
0

-
1
0
0
0

-
g
e
n

8
7
0

1
4
4

1
0
0

1
6
7
0

1
7
.5

1
2
4
.4

5
0
.7

2
9
9
0

1
0
0
0

-
8
2
1

2
.5

4
4
E

-0
5

g
e
s
a
2
o

1
2
2
4

3
8
4

3
8
3

7
.6

2
3
E

+
0
6

3
6
3

9
1
6

0
.4

0
1
0
0
0

1
0
0
0

-
1
0
0
0

-
g
e
s
a
2

1
2
2
4

2
4
0

2
4
0

7
.3

0
7
E

+
0
5

1
7
2
0

2
9
8
5

0
.5

8
6
5
6

6
5
6

2
.9

2
0
E

-0
6

6
4

2
.2

4
7
E

-0
5

g
e
s
a
3
o

1
1
5
2

3
3
6

3
3
6

7
.6

1
6
E

+
0
6

1
9
3
4

7
0
3
1
3

0
.0

3
9
9
7

9
9
7

5
.0

0
0
E

-1
0

0
1
.4

5
5
E

-0
3

g
e
s
a
3

1
1
5
2

2
1
6

2
1
6

6
.4

8
7
E

+
0
5

1
.1

0
4
E

+
0
4

2
.4

8
8
E

+
0
5

0
.0

4
1
0
0
0

1
0
0
0

-
0

1
.8

6
2
E

-0
2

g
t
2

1
8
8

2
4

1
2

1
.3

0
2
E

+
0
4

1
1
8
0

4
9
0
6

0
.2

4
1
0
0
0

1
0
0
0

-
1
0
0
0

-
k
h
b
0
5
2
5
0

1
3
5
0

2
4

2
4

1
.2

2
5
E

+
0
7

3
.3

1
7
E

+
0
5

6
.4

8
2
E

+
0
5

0
.5

1
8
9
9

8
9
9

2
.4

4
4
E

-0
4

1
0
6

1
.9

3
1
E

-0
3

l
1
5
2
l
a
v

1
9
8
9

1
9
8
9

1
9
8
8

8
8
0
0

3
.8

4
1
0
.0

4
0
.3

8
1
0
0
0

1
0
0
0

-
3
9

1
.2

1
6
E

-0
4

l
s
e
u

8
9

8
9

8
5

1
9
4
1

4
.5

5
5
.2

2
0
.8

7
1
0
0
0

1
0
0
0

-
9
9
8

2
.6

6
7
E

-0
4

m
a
n
n
a
8
1

3
3
2
1

1
8

1
6

4
0
.2

9
2
.4

4
0
.1

2
1
0
0
0

1
0
0
0

-
2

1
.1

3
9
E

-0
4

m
a
s
7
6

1
5
1

1
5
0

1
5
0

1
.2

0
0
E

-0
4

9
0
.9

1
1
5
9
.6

7
0
.5

7
1
0
0
0

1
0
0
0

-
9
6
1

3
.0

5
5
E

-0
4

m
i
s
c
0
3

1
6
0

1
5
9

1
0
0

0
1
0
1

3
5
4

0
.2

9
1
0
0
0

1
0
0
0

-
4
2
2

1
.6

9
6
E

-0
2

m
i
s
c
0
6

1
8
0
8

1
1
2

1
1
2

0
0
.9

6
1
.4

8
0
.6

5
1
0
0
0

1
0
0
0

-
5
5
2

8
.4

7
4
E

-0
6

m
o
d
0
0
8

3
1
9

3
1
9

3
1
1

1
3
1
6

2
.8

3
7
.5

2
0
.3

8
1
0
0
0

1
0
0
0

-
8
4
1

1
.7

9
9
E

-0
3

m
o
d
0
1
0

2
6
5
5

2
6
5
5

2
4
3
3

9
3
5
0

1
.4

0
4
.2

5
0
.3

3
1
0
0
0

1
0
0
0

-
6
4
5

7
.9

9
6
E

-0
6

m
o
d
0
1
1

1
0
9
5
8

9
6

9
6

1
.4

0
0
E

+
0
7

1
.2

1
1
E

+
0
5

3
.7

3
8
E

+
0
5

0
.3

2
1
0
0
0

1
0
0
0

-
1
2
1

2
.0

3
3
E

-0
3

m
o
d
g
l
o
b

4
2
2

9
8

9
8

1
.2

9
2
E

+
0
5

1
7
5
3

1
2
8
5
2

0
.1

4
1
0
0
0

1
0
0
0

-
9
0

1
.0

7
9
E

-0
4

p
0
0
3
3

3
3

3
3

2
1

9
4
5

3
.6

1
3
.6

1
1
.0

0
-

-
-

-
-

p
0
2
0
1

2
0
1

2
0
1

1
3
1

5
7
1
2

1
8
.0

2
5
4
.1

8
0
.3

3
1
0
0
0

1
0
0
0

-
1
0
0
0

-
p
0
2
8
2

2
8
2

2
8
2

2
8
2

2
.9

7
5
E

+
0
5

8
.9

2
2
0
.1

1
0
.4

4
1
0
0
0

1
0
0
0

-
4
3
5

3
.7

6
7
E

-0
6

p
0
5
4
8

5
4
8

5
4
8

4
8
4

1
.4

2
0
E

+
0
4

5
.3

0
1
5
.2

7
0
.3

5
9
7
8

1
0
0
0

-
1
0
0
0

-
p
2
7
5
6

2
7
5
6

2
7
5
6

2
3
9
1

3
.4

1
7
E

+
0
4

0
.3

5
5
.1

9
0
.0

7
9
0
3

1
0
0
0

-
1
0

1
.2

1
9
E

-0
4

p
k
1

8
6

5
5

5
5

0
0
.3

0
0
.4

3
0
.6

9
1
0
0
0

1
0
0
0

-
1
0
0
0

-
p
p
0
8
a

2
4
0

6
4

6
4

2
4
3
7

1
1
.1

8
1
5
.5

9
0
.7

2
1
0
0
0

1
0
0
0

-
4
8
5

4
.0

7
7
E

-0
4

p
p
0
8
a
C
U
T
S

2
4
0

6
4

6
4

2
4
3
7

1
1
.1

8
1
5
.5

9
0
.7

2
1
0
0
0

1
0
0
0

-
4
8
6

3
.9

6
9
E

-0
4

q
n
e
t
1
o

1
5
4
1

1
2
8
8

1
2
6
0

0
0

8
.0

3
0
.0

0
1
0
0
0

1
0
0
0

-
9
9
6

2
.6

9
7
E

-0
5

q
n
e
t
1

1
5
4
1

1
2
8
8

1
2
6
0

0
7
.7

9
8
.0

3
0
.9

7
1
0
0
0

1
0
0
0

-
9
1
0

2
.7

6
0
E

-0
5

r
e
n
t
a
c
a
r

9
5
5
7

5
5

2
2

0
6
.0

2
0
E

+
0
4

6
.0

9
8
E

+
0
4

0
.9

9
0

1
0
0
0

-
4
3
7

1
.3

1
4
E

-0
4

r
g
n

1
8
0

1
0
0

6
0

0
5
.6

7
7
.9

3
0
.7

1
0

1
0
0
0

-
1
0
0
0

-
s
e
t
1
c
h

7
1
2

2
4
0

2
3
5

1
.0

9
4
E

+
0
4

8
.5

2
1
1
.7

3
0
.7

3
1
0
0
0

1
0
0
0

-
8
5
4

1
.5

0
9
E

-0
5

v
p
m
1

3
7
8

1
6
8

1
1
4

1
0
.6

8
0
.1

1
4
.3

3
0
.0

3
9
6
0

9
6
0

4
.3

3
0
E

-0
3

1
0
.2

3
6

v
p
m
2

3
7
8

1
6
8

1
3
6

1
0
.2

1
0
.0

8
0
.5

6
0
.1

4
8
3
4

1
0
0
0

-
8
3
8

3
.6

2
5
E

-0
3

T
ab

le
1:

Sh
oo

ti
ng

ex
pe

ri
m

en
t

re
su

lt
s

fo
r

M
IP

L
IB

3.
0

in
st

an
ce

s.

6

2. Integer Programming based Local Search

The Fixed Charge Network Flow (FCNF) problem is a classic discrete optimization problem in
which a set of commodities has to be routed through a directed network. Each commodity has
an origin, a destination, and a quantity. Each network arc has a capacity. There is a fixed cost
associated with using an arc and a variable cost that depends on the quantity routed along the
arc. The objective is to minimize the total cost. Two versions of the problem are considered:
commodities have to be routed along a single path and commodities can be routed along multiple
paths. Many real-life instances of FCNF (or of instances of models that contain FCNF as a
substructure) are very large - so much so that sometimes even the linear programming relaxation
of the natural arc-based integer programming formulation can be intractable. In such situations,
we can use a path-based integer programming formulation, but that necessitates the use of column
generation techniques. Furthermore, the linear programming relaxation of the arc-formulation and
the path-formulation have the same optimal value which is known to be weak. Hence, it may not
just be difficult to find feasible solutions, it may also be challenging to determine the quality of these
solutions. As a result, even though much research has been devoted to FCNF, exact methods are
only capable of handling small instances, far smaller than many realistic-sized instance. Fortunately,
in today’s dynamic business environment getting high-quality solutions in a short amount of time
is usually more important than getting provably optimal solutions. Hence the focus of our research
is to develop a solution approach that produces provably high-quality solutions quickly.

Our solution approach relies heavily on linear and integer programming to take advantage of
the power of commercially available linear and integer programming solvers. Algorithmically, we
combine mathematical programming techniques with heuristic search techniques. More specifically,
we develop

• a primal local search algorithm using neighborhoods that involve solving carefully chosen
integer programs, and

• a scheme to generate dual bounds that involves strengthening the linear programming relax-
ation via cuts discovered while solving these integer programs.

Our approach tightly integrates the use of the arc-based formulation of FCNF and the path-
based formulation of FCNF. It also incorporates randomization to diversify the search and learning
to intensify the search.

The resulting solution approach is very effective. For instances with 500 nodes, with 2000, 2500
and 3000 arcs, and with 50, 100, 150, and 200 commodities, we compared the quality of the solution
produced by our solution approach with the best solution found by CPLEX after 15 minutes of
computation and after 12 hours of computation. On average, the solution we found in less than 15
minutes is 35% better than CPLEX’ best solution after 15 minutes and 20% better than CPLEX’
best solution after 12 hours. Furthermore, we find a better solution than CPLEX’ best solution
after 15 minutes within 1 minute, and CPLEX’ best solution after 12 hours within 3 minutes. On
these instances the approach produces dual bounds that are 25% stronger than the LP relaxation.
We also compared the quality of the solutions produced by our solution approach with the quality
of the solutions produced by a recent implementation of the tabu search algorithm of Ghamlouch
et al.. For nearly all instances in their test set, our solution is better than the solution of the tabu
search algorithm and this solution is found much faster.

The key characteristics of our solution approach for FCNF, which differentiate it from existing
heuristic approaches, are:

• it uses exact methods to find improving solutions,

7

• it generates both a primal solution and a dual bound at each iteration, and

• it uses both the arc and path formulations of FCNF to guide the search.

The following paper concerning this material has been accepted for publication in INFORMS J. on
Computing.

Mike Hewitt, George L. Nemhauser, and Martin W.P. Savelsbergh. “Combining Exact and Heuris-
tic Approaches for the Capacitated Fixed Charge Network Flow Problem.”

3. Information-Based Branching Schemes for 0-1 Integer Prob-
lems

Branching variable selection can greatly affect the effectiveness and efficiency of a branch-and-bound
algorithm. Traditional approaches to branching variable selection rely on estimating the effect of
the candidate variables on the objective function. We propose an approach which is empowered
by exploiting the information contained in a family of fathomed subproblems, collected beforehand
from an incomplete branch-and-bound tree. In particular, we use this information to define new
branching rules that reduce the risk of incurring inappropriate branchings.

The information-based variable selection methods we propose are quite different from the exist-
ing approaches as they rely on collecting information upfront (as opposed to during B&B) and they
estimate the impact of a candidate branching variable on the fathoming decision of child nodes
(as opposed to the objective function value of the LP relaxation of child nodes). The methods
recognize that the branching decisions made at the top of the B&B tree are the most important
ones and explore two ideas:

i) A restart strategy. To make more informed decisions at the top of the B&B tree, we per-
form an incomplete B&B search and collect information on fathomed nodes and exploit this
information in the actual B&B search.

ii) Fathoming-based branching variable selection. To generate small B&B trees, we choose
branching variables that are likely to lead to fathoming of child nodes.

To strengthen the information obtained from the incomplete B&B search, we develop an integer
program that derives a minimum cardinality clause for each fathomed node. We also provide various
branching alternatives that use this information in the restart framework.

We consider the 0-1 integer program

min
{

cTx + dTy | Ax + By ≥ b, x ∈ {0, 1}n, y ∈ Rk
+

}
(P)

where c ∈ Rn, d ∈ Rk, b ∈ Rm, A ∈ Rm×n and B ∈ Rm×k. Its LP relaxation is obtained by
replacing xi ∈ {0, 1} by 0 ≤ xi ≤ 1 for i = 1, . . . , n.

Recall that in a B&B tree, or for short a tree, a node can be fathomed in three ways: (i)
the node LP-relaxation is infeasible, (ii) the optimal solution to the node LP-relaxation is integer,
and (iii) the optimum value of the node LP-relaxation is no better than the objective value of the
currently best known integer feasible solution. To formalize the notion of fathoming, we use the
following definitions and notation.

8

Definition 3. Let υ∗ be an upper bound on the objective value of the optimum solution to (P). A
partial assignment C = (C0, C1) is called a clause if

{(x, y) ∈ [0, 1]n × Rk
+ : cTx + dTy ≤ υ∗, Ax + By ≥ b, xj = 0 ∀j ∈ C0, xj = 1 ∀j ∈ C1}

is infeasible.

Let N0 denote the root node, Ni denote a node in the tree and Ci = (C0
i , C1

i) be the set of
binary variables fixed at node Ni, where C0

i (C1
i) denotes the indices of binary variables fixed to

0 (1). Without loss of generality, we can assume that C0 = ∅. Therefore for any given fathomed
node Ni in a B&B tree, the corresponding pair of index sets (C0

i , C1
i), gives a clause. Let f l

j denote
fixing the binary variable xj to the value l ∈ {0, 1}, i.e. setting xj = l.

Definition 4. A clause C is called minimal if for all f l
j ∈ C, the partial assignment C \ {f l

j} is
not a clause.

If C is a minimal clause, no node Ni in the tree with Ci ⊂ C can be fathomed by any of the
fathoming rules. Moreover any node Ni with Ci ⊇ C can be fathomed together with the subtree
rooted at Ni. Note that there exists a minimal clause (not necessarily unique) associated with each
fathomed node in any binary B&B tree.

Given a clause C = (C0, C1), the inequality
∑

i∈C0

xi +
∑

i∈C1

(1− xi) ≥ 1 (1)

eliminates all solutions that do not comply with it. Clearly (1) might cut off some feasible solutions.
However, the region cut off by (1) is guaranteed not to contain any feasible solution with an objective
value better than the optimal objective value. Furthermore (1) is a generalized cover inequality
and hence, by obtaining minimal clauses, we actually derive a generalized cover inequality for (P).

Since shorter clauses yield fathoming more quickly, we are particularly interested in finding
a minimal clause of minimum cardinality. It is quite likely that the clauses obtained from an
incomplete tree are not minimal. We therefore strengthen the information on fathomed nodes by
identifying the branching decisions that are essential to the fathoming of the node. We do this by
solving a 0-1 integer program that obtains a minimum cardinality clause from a given basic clause.

Without loss of generality, we assume that the upper and lower bounds of the binary variables
are included in the original formulation as constraints, i.e., Ax + By ≥ b includes 0 ≤ xi ≤ 1 ∀i ∈
{1, . . . , n}. Let υ∗ be an upper bound on the objective value of the optimum solution to (P). We
can fathom any node of the tree which is either infeasible or has an objective value greater than
υ∗. Fathoming based on the integrality of the LP solution is quite infrequent and given υ∗, we can
simply fathom all nodes with objective value greater than or equal to υ∗ by bound, which includes
fathoming of all integer solutions that are no better than the current best bound as well.

Consider a leaf node of the tree that is fathomed by bound and denote the corresponding set
of variable fixings by C = (C0, C1). The LP relaxation of this leaf node is

min cT x + dT y

s.t. Ax + By ≥ b

xi ≥ 1 ∀i ∈ C1

− xi ≥ 0 ∀i ∈ C0

x ∈ Rn
+, y ∈ Rk

+

9

Define the following variables z0
i (z1

i) for i ∈ C0 (i ∈ C1):

z0
i =

{
1, if inequality −xi ≥ 0 is added to the LP relaxation;
0, otherwise,

and

z1
i =

{
1, if inequality xi ≥ 1 is added to the LP relaxation;
0, otherwise.

Using these new variables, the MIQP

min cT x + dT y

s.t. Ax + By ≥ b

z1
i xi ≥ z1

i ∀i ∈ C1

− z0
i xi ≥ 0 ∀i ∈ C0

x ∈ Rn
+, y ∈ Rk

+

z0
i , z1

i ∈ {0, 1}.

is equivalent to the node LP when all of the binaries in it are set to 1.
We want to find a minimum number of bound inequalities such that their inclusion in the

original linear programming relaxation of (P) will still lead to a fathoming, i.e., either the LP
relaxation is infeasible or the objective value exceeds the lower bound value, υ∗. Since the original
root LP relaxation is assumed to be feasible and bounded from below, its dual is also feasible. Thus
we know that in the case of infeasibility of the node LP, the dual of the node LP is unbounded
since when we add new bound inequalities to the primal, we are just adding new columns to the
dual of the node LP. Therefore when a node is fathomed by infeasibility, we will be able to find a
dual solution with an objective value strictly greater than υ∗. So now we consider the dual of the
above formulation by treating the variables z0

i and z1
i as parameters and we obtain

max λT b +
∑

i∈C1

γ1
i z1

i

s.t. λT Ai + γ1
i z1

i ≤ ci ∀i ∈ C1

λT Ai − γ0
i z0

i ≤ ci ∀i ∈ C0

λT Ai ≤ ci ∀i ∈ {1, . . . , n} \ (C0 ∪ C1)

λT Bj ≤ dj ∀j ∈ {1, . . . , k}
λl ≥ 0 ∀l ∈ {1, . . . , m}
γ0

i , γ1
i ≥ 0.

Since we are only interested in the existence of dual solutions with objective value greater than
or equal to υ∗, we can equivalently turn the objective into a constraint. By considering z0

i and
z1
i as binary variables with the condition that at most one of them can be set to 1 for each i

(since C0 ∩ C1 = ∅, we don’t need to include these constraints explicitly), we obtain the following

10

quadratic formulation where we minimize the sum of z0
i and z1

i :

min
∑

i∈C0

z0
i +

∑

i∈C1

z1
i

s.t. λT b +
∑

i∈C1

γ1
i z1

i ≥ υ∗

λT Ai + γ1
i z1

i ≤ ci ∀i ∈ C1

λT Ai − γ0
i z0

i ≤ ci ∀i ∈ C0

λT Ai ≤ ci ∀i ∈ {1, . . . , n} \ (C0 ∪ C1)

λT Bj ≤ dj ∀j ∈ {1, . . . , k}
λl ≥ 0 ∀l ∈ {1, . . . , m}
z0
i , z1

i ∈ {0, 1}, γ0
i , γ1

i ≥ 0.

In order to bound the dual variables γ and λ from above by 1, we introduce another variable
α, we relabel αλ and αγ as λ and γ respectively and to linearize the model, we introduce u0

i and
u1

i for the nonlinear terms γ0
i z0

i and γ1
i z1

i respectively. This yields the formulation:

min
∑

i∈C0

z0
i +

∑

i∈C1

z1
i

s.t. λT b +
∑

i∈C1

u1
i − αυ∗ ≥ 0

λT Ai + u1
i − αci ≤ 0 ∀i ∈ C1

λT Ai − u0
i − αci ≤ 0 ∀i ∈ C0

λT Ai − αci ≤ 0 ∀i ∈ {1, . . . , n} \ (C0 ∪ C1)

λT Bj − αdj ≤ 0 ∀j ∈ {1, . . . , k}
u0

i ≤ γ0
i , u0

i ≤ z0
i , u0

i − γ0
i − z0

i ≥ −1 ∀i ∈ C0

u1
i ≤ γ1

i , u1
i ≤ z1

i , u1
i − γ1

i − z1
i ≥ −1 ∀i ∈ C1

0 ≤ λl ≤ 1 ∀l ∈ {1, . . . , m}
z0
i , z1

i ∈ {0, 1}, 0 ≤ u0
i , u

1
i , γ

0
i , γ1

i ≤ 1
0 < α.

Note that the fixing of the last variable on the path from root node to a leaf node is the main
cause of fathoming done at the leaf node. Hence in any feasible solution to the above formulation,
we will always have the corresponding binary variable (z0

i or z1
i) fixed to 1. In our computations,

we take advantage of this fact by actually fixing the value of zi corresponding to the last branched
variable to 1 and also we replace α > 0 with α ≥ 10−5. In fact, this last linearization step is
equivalent to a big-M formulation where the big-M value can be chosen as 1

α = 105.
Once the clause information is collected, there is still the question of how to use this information

to aid the search in the restart phase. Let C = {C1, ..., CK} be a set of clauses. Consider a node of
the tree Ñ other than the root node, and let C̃0(C̃1) denote the set of binary variables fixed to 0
(1). We say a clause C = (C0, C1) is active at Ñ if C0∩C̃1 = ∅ and C1∩C̃0 = ∅, i.e. if it is possible
to obtain a descendent node (not necessarily a child) from the current node that can be fathomed
by the clause C. Whenever a clause becomes inactive for a particular node, it will remain inactive
for all the descendent nodes of that node. Since some variables are already fixed at Ñ , the active

11

clauses can be updated using this information, i.e., the clause C = (C0 \ C̃0, C1 \ C̃1) indicates the
possible extension of the current node to a child node which can be fathomed by clause C. In the
rest of the text whenever we refer to an active clause at a node, we actually refer to the updated
version of the clause.

Whenever an active clause C has only one variable, i.e., |C| = 1, we can immediately fix the
value of that variable. Suppose C = C0 = {j}, then we can set xj = 1 and create only a single
child node, as the other branch will automatically be fathomed by the clause. We refer to this as
propagation.

Given a node and a set of active clauses at that node, there are several ways to use this
information in determining a branching variable. Let x̃ be the vector of current LP relaxation
values of variables at the node. We first weight each active clause, denoted by ω(Ci), to estimate
its importance in fathoming. We have tested four different alternatives to estimate ω(Ci):

0. ω(Ci) = 1 for all clauses Ci (i.e. all clauses are of equal importance),

1. ω(Ci) = 1
|Ci| where |Ci| is the number of variables included in clause Ci (i.e. short clauses are

preferred),

2. ω(Ci) = 2−|Ci| (i.e. exponentially higher preference given to the shorter clauses).

3. ω(Ci) = 1
max{∑

j∈C0
i

x̃j+
∑

j∈C1
i
(1−x̃j)−1,10−10} where we use the closeness to violation of the

clause inequality (1),

Then using the weights of the clauses, we estimate the effectiveness of fixing the binary variable
xj to 0 (1), denoted by β0

j (β1
j). We have tested two alternatives to estimate the overall effect of

creating a branch with xj = 0 (1):

0. β0
j = max{ω(Ci) : j ∈ C0

i } and β1
j = max{ω(Ci) : j ∈ C1

i }.

1. β0
j =

∑
i:j∈C0

i
ω(Ci) and β1

j =
∑

i:j∈C1
i
ω(Ci),

Let βj denote the overall effect of branching on variable xj . To estimate βj , we combine β0
j and

β1
j using rules that have been derived to combine pseudocosts. We suggest and test the following

alternatives:

0. βj = min{x̃j , 1− x̃j} ∗ (β0
j + β1

j),

1. βj = β0
j + β1

j ,

2. βj = max{β0
j , β1

j }+ 10 ∗min{β0
j , β1

j },

3. βj = max{β0
j , 10−6} ∗max{β1

j , 10−6}.
Note that the first alternative considers the fractionality of the variable, whereas the second one
simply adds the individual effects, the third one is similar to the weights used in strong branching
and the last one is a multiplicative rule.

We denote a specific rule for determining a branching variable as a− b− c where a ∈ {1, 2, 3, 4},
b ∈ {1, 2} and c ∈ {1, 2, 3, 4}.

In Table 2, we report a summary of the computational results for our test set of instances. In
the first part of Table 2, we provide information about the Collection phase, namely the number
of nodes in the incomplete tree and the time (in seconds) required to construct the incomplete

12

tree, and the number of clauses collected and their average size, i.e., the average number of binary
variables involved in the clauses. In the second part, we provide information about the Improve-
ment phase, namely the minimum, the maximum, and the total number of nodes as well as the
corresponding solution times required for solving the minimum clause identification problems, the
number of clauses improved together with the average size of the improved set of clauses. Finally,
we provide information about the Restart phase, namely the node count and solution time statis-
tics for B-Cuts&Prop&Branch and I-Cuts&Prop&Branch, and, for comparison, the node count and
solution time of CPLEX with and without dynamic search enabled, CPLEX-DS and CPLEX-BB,
respectively. In B-Cuts&Prop&Branch we use basic clause information, i.e., information obtained
directly from the incomplete tree, whereas in I-Cuts&Prop&Branch we use improved clauses, i.e.,
information resulting from solving a minimum clause identification problem for each basic clause
obtained from the incomplete tree. In both cases, clause inequalities are added to the cut pool, and
at the nodes, whenever we have clause information on a candidate branching variable, we perform
branching based on the 3-1-1 combination as well as propagation.

When we compare the performance of B-Cuts&Prop&Branch with the performance of CPLEX
B&B , we see that the node counts and solution time improve on average (even when the statistics
are added from the collection phase and restart phase and compared with just the restart phase
of CPLEX B&B or dynamic search.). The node count improvements are substantial for some
instances: for neos-1480121 the node count goes from 879,665 to 579,231, and for neos-1228986
from 65,558 to 38,640. Although the computation times improve too on average, the changes are not
as significant due to the overhead of our branching strategy at each node. Note that this overhead
can be reduced with advanced data structures and the use of internal CPLEX structures. When we
compare the performance of I-Cuts&Prop&Branch with the performance of B-Cuts&Prop&Branch,
we see that for the majority of instances the B&B trees get even smaller, although the arithmetic
mean does not show this, it is clear from the geometric mean. This improved behavior obtained
with improved clause information is much more significant for the instances from the hard set.
Note that although our methods are built on top of CPLEX B&B , the overall performance of our
approach is comparable with CPLEX dynamic search. By simply adding up the overall average
number of nodes from the collection, improvement and restart phases for I-Cuts&Prop&Branch
we obtain 77848.97 whereas average CPLEX B&B node count is 104274.63 and CPLEX DS node
count is 81421.88. The same procedure for overall solution times leads to 1090 seconds for I-
Cuts&Prop&Branch, whereas CPLEX B&B is 1116.15 seconds and CPLEX DS is 1026.66 seconds.
We want to emphasize that the improvements over CPLEX are clearer when we restrict ourselves
to hard instances.

The following paper concerning this material has been submitted for publication in Mathematical
Programming Computation.

Fatma Kilinç-Karzan, George L. Nemhauser, and Martin W.P. Savelsbergh. “Information-Based
Branching Schemes for Binary Linear Mixed Integer Problems.”

13

T
a
b
le

2
:

V
a
lu

e
o
f
th

e
R

es
ta

rt
S
tr

a
te

g
y

w
it

h
F
a
th

o
m

in
g
-b

a
se

d
B

ra
n
ch

in
g

C
o
ll
ec

ti
o
n

p
h
a
se

Im
p
ro

v
em

en
t

p
h
a
se

R
es

ta
rt

p
h
a
se C

u
ts

&
P
ro

p
&

B
ra

n
ch

P
ro

b
le

m
#

si
ze

m
in

m
a
x

to
ta

l
#

(%
)

si
ze

C
P
L
E
X

-B
B

C
P
L
E
X

-D
S

B
I

A
v
e
r
a
g
e
(
A
l
l
)

#
n
o
d
es

7
9
5
.7

5
2
0
0
.0

0
2
3
.0

8
0
.0

0
8
4
.2

7
6
5
3
.6

3
7
0
.5

7
(0

.4
)

1
6
.6

1
1
0
4
2
7
4
.6

3
8
1
4
2
1
.8

8
7
4
4
9
8
.5

5
7
6
3
9
9
.5

9
ti

m
e

8
8
.0

0
0
.6

8
2
.6

2
2
4
9
.3

5
1
1
1
6
.1

5
1
0
2
6
.6

6
8
6
1
.4

1
7
5
2
.6

5
G
e
o
.
M
e
a
n
(
A
l
l
)

#
n
o
d
es

6
9
1
.1

7
2
0
0
.0

0
2
1
.0

7
0
.0

0
1
3
.7

3
5
6
.7

9
2
4
.5

6
(0

.1
)

1
5
.1

4
1
5
7
2
9
.7

4
1
1
2
7
7
.7

4
1
1
6
8
8
.6

1
1
0
0
9
5
.2

3
ti

m
e

4
1
.8

8
0
.4

5
1
.8

6
8
6
.9

0
6
7
7
.3

2
5
2
4
.3

4
4
9
4
.2

2
4
1
7
.2

3

A
v
e
r
a
g
e
(
H
a
r
d
)

#
n
o
d
es

9
4
8
.3

1
2
0
0
.0

0
2
6
.3

3
0
.0

0
1
2
1
.3

8
9
6
2
.1

5
1
0
1
.1

5
(0

.5
)

1
6
.5

8
3
7
6
5
2
7
.0

0
2
8
7
2
8
6
.2

3
2
6
5
6
7
8
.7

7
2
7
5
5
6
9
.9

2
ti

m
e

2
1
.2

8
0
.1

5
1
.3

2
7
3
.6

0
2
1
6
6
.4

9
1
8
5
1
.1

6
1
7
4
1
.0

3
1
5
7
4
.6

8
G
e
o
.
M
e
a
n
(
H
a
r
d
)

#
n
o
d
es

8
6
6
.6

8
2
0
0
.0

0
2
4
.8

0
0
.0

0
3
5
.3

6
1
8
3
.9

5
7
7
.7

2
(0

.4
)

1
5
.3

7
1
8
7
5
9
5
.8

6
1
2
5
2
4
7
.3

8
1
3
9
1
2
4
.4

0
1
1
9
3
7
1
.0

8
ti

m
e

1
2
.7

7
0
.1

2
0
.8

8
2
7
.1

5
1
4
8
6
.4

4
1
0
8
3
.1

6
1
1
8
5
.4

7
9
6
5
.6

1

A
v
e
r
a
g
e
(
M
e
d
i
u
m
)

#
n
o
d
es

7
8
9
.0

4
2
0
0
.0

0
2
2
.5

2
0
.0

0
7
7
.2

6
6
4
8
.2

2
7
3
.8

7
(0

.4
)

1
5
.5

5
1
6
6
8
9
.9

1
1
6
1
0
7
.9

6
1
3
5
4
0
.0

4
1
2
2
1
0
.6

1
ti

m
e

7
1
.2

7
0
.6

2
2
.8

0
2
2
8
.9

1
8
6
6
.0

6
7
7
6
.7

6
6
0
8
.4

9
5
0
0
.5

0
G
e
o
.
M
e
a
n
(
M
e
d
i
u
m
)

#
n
o
d
es

7
1
0
.3

0
2
0
0
.0

0
2
0
.3

1
0
.0

0
1
2
.0

4
5
6
.9

3
2
1
.3

2
(0

.1
)

1
4
.1

3
1
3
5
0
3
.8

5
7
6
8
6
.4

8
9
4
6
5
.2

4
7
5
1
2
.4

1
ti

m
e

4
6
.3

1
0
.4

4
2
.0

6
9
6
.3

7
6
5
4
.7

7
3
8
3
.3

1
4
2
8
.2

9
3
4
2
.2

6

A
v
e
r
a
g
e
(
E
a
s
y
)

#
n
o
d
es

6
7
3
.8

0
2
0
0
.0

0
2
1
.1

2
0
.0

0
6
2
.8

7
3
9
4
.5

3
3
9
.0

0
(0

.2
)

1
8
.2

7
2
6
1
9
.1

3
3
1
5
4
.1

3
2
2
7
8
.7

3
2
2
0
8
.4

0
ti

m
e

1
7
1
.4

9
1
.2

6
3
.4

9
4
3
3
.0

2
5
8
9
.3

2
6
9
5
.2

9
4
8
6
.9

0
4
2
6
.8

6
G
e
o
.
M
e
a
n
(
E
a
s
y
)

#
n
o
d
es

5
4
4
.7

4
2
0
0
.0

0
1
9
.3

4
0
.0

0
7
.1

2
2
0
.0

1
1
0
.8

6
(0

.1
)

1
6
.6

2
2
3
1
8
.5

3
2
5
1
9
.0

8
1
8
8
7
.4

1
1
8
6
6
.2

8
ti

m
e

9
7
.6

4
0
.8

5
2
.7

2
2
0
0
.6

0
3
6
0
.7

5
4
5
1
.8

0
2
8
8
.1

2
2
7
2
.9

3

T
a
b
le

3
:

E
ff
ec

t
o
f
p
ro

v
id

in
g

in
fo

rm
a
ti

o
n

in
d
iff

er
en

t
fo

rm
s:

C
u
ts

,
P

ro
p
a
g
a
ti

o
n
,

B
ra

n
ch

in
g

P
ro

b
le

m
C

P
L
E
X

C
u
ts

P
ro

p
P
ro

p
&

B
ra

n
ch

C
u
ts

&
P
ro

p
C

u
ts

&
P
ro

p
&

B
ra

n
ch

B
&

B
D

S
B

I
B

I
B

I
B

I
B

I

A
v
e
r
a
g
e
(
A
l
l
)

#
n
o
d
es

1
0
4
2
7
4
.6

3
8
1
4
2
1
.8

8
9
8
2
6
7
.5

3
7
8
1
9
0
.5

5
9
9
2
8
6
.0

0
7
1
4
2
4
.2

0
7
8
5
5
4
.3

1
7
6
9
1
5
.4

3
9
6
7
6
6
.1

2
6
9
6
5
7
.1

2
7
4
4
9
8
.5

5
7
6
3
9
9
.5

9
ti

m
e

1
1
1
6
.1

5
1
0
2
6
.6

6
1
0
5
9
.7

8
9
2
6
.2

4
1
1
5
8
.1

0
9
4
9
.6

8
8
7
7
.7

8
7
4
0
.0

6
1
0
5
9
.8

4
9
2
0
.8

8
8
6
1
.4

1
7
5
2
.6

5
G
e
o
.
M
e
a
n
(
A
l
l
)

#
n
o
d
es

1
5
7
2
9
.7

4
1
1
2
7
7
.7

4
1
3
8
2
6
.9

4
1
2
3
5
2
.9

7
1
5
7
7
4
.6

0
1
3
2
4
3
.5

6
1
1
7
8
2
.9

3
1
0
0
5
0
.7

1
1
3
9
7
1
.0

7
1
2
2
7
6
.9

5
1
1
6
8
8
.6

1
1
0
0
9
5
.2

3
ti

m
e

6
7
7
.3

2
5
2
4
.3

4
6
0
7
.7

8
5
5
4
.8

0
6
9
4
.3

5
5
8
8
.9

0
4
8
8
.3

2
4
0
2
.8

3
6
2
6
.6

6
5
6
0
.5

6
4
9
4
.2

2
4
1
7
.2

3

A
v
e
r
a
g
e
(
H
a
r
d
)

#
n
o
d
es

3
7
6
5
2
7
.0

0
2
8
7
2
8
6
.2

3
3
5
6
3
9
2
.7

7
2
7
8
8
6
1
.0

0
3
5
6
4
2
7
.0

0
2
4
9
2
5
5
.8

5
2
8
1
8
7
4
.1

5
2
7
7
0
3
1
.2

3
3
5
0
4
2
9
.3

1
2
4
4
8
9
2
.0

8
2
6
5
6
7
8
.7

7
2
7
5
5
6
9
.9

2
ti

m
e

2
1
6
6
.4

9
1
8
5
1
.1

6
2
2
2
6
.7

6
1
8
4
2
.9

2
2
2
4
1
.3

3
1
7
5
6
.6

1
1
8
3
4
.8

3
1
5
4
8
.4

7
2
1
7
7
.9

5
1
7
2
1
.8

1
1
7
4
1
.0

3
1
5
7
4
.6

8
G
e
o
.
M
e
a
n
(
H
a
r
d
)

#
n
o
d
es

1
8
7
5
9
5
.8

6
1
2
5
2
4
7
.3

8
1
8
8
0
8
2
.8

9
1
5
7
2
7
3
.9

2
1
9
0
0
4
5
.0

0
1
4
0
6
0
0
.5

5
1
4
9
2
3
0
.0

9
1
2
1
2
1
3
.7

5
1
8
0
6
4
6
.8

1
1
3
6
5
6
8
.1

1
1
3
9
1
2
4
.4

0
1
1
9
3
7
1
.0

8
ti

m
e

1
4
8
6
.4

4
1
0
8
3
.1

6
1
5
1
0
.8

7
1
2
9
5
.2

1
1
5
2
3
.3

8
1
1
6
2
.5

9
1
2
2
9
.7

2
9
4
9
.5

9
1
4
9
5
.5

3
1
1
5
3
.5

9
1
1
8
5
.4

7
9
6
5
.6

1

A
v
e
r
a
g
e
(
M
e
d
i
u
m
)

#
n
o
d
es

1
6
6
8
9
.9

1
1
6
1
0
7
.9

6
1
5
0
4
6
.3

9
1
4
3
5
0
.5

2
1
6
5
6
3
.9

1
1
5
8
0
1
.1

7
1
3
4
0
2
.3

9
1
2
5
8
0
.2

6
1
5
0
7
0
.8

7
1
4
6
2
8
.4

8
1
3
5
4
0
.0

4
1
2
2
1
0
.6

1
ti

m
e

8
6
6
.0

6
7
7
6
.7

6
7
6
7
.8

6
6
8
2
.9

1
8
6
9
.5

9
7
5
3
.4

3
5
9
4
.3

7
4
9
8
.7

7
7
9
7
.9

2
7
2
9
.8

3
6
0
8
.4

9
5
0
0
.5

0
G
e
o
.
M
e
a
n
(
M
e
d
i
u
m
)

#
n
o
d
es

1
3
5
0
3
.8

5
7
6
8
6
.4

8
1
1
6
0
2
.4

7
1
0
2
0
2
.5

5
1
3
2
1
2
.0

4
1
1
3
1
1
.4

5
9
1
6
9
.6

7
7
4
6
0
.1

3
1
2
1
4
6
.7

7
1
0
9
8
6
.9

9
9
4
6
5
.2

4
7
5
1
2
.4

1
ti

m
e

6
5
4
.7

7
3
8
3
.3

1
5
7
4
.8

6
5
1
3
.1

3
6
5
1
.1

8
5
6
4
.5

4
4
0
8
.4

3
3
3
2
.1

1
6
2
0
.8

7
5
6
0
.2

9
4
2
8
.2

9
3
4
2
.2

6

A
v
e
r
a
g
e
(
E
a
s
y
)

#
n
o
d
es

2
6
1
9
.1

3
3
1
5
4
.1

3
2
1
6
4
.7

3
2
1
6
4
.2

0
3
2
7
1
.0

0
2
5
9
2
.0

7
2
2
4
3
.4

0
2
1
2
9
.0

0
2
1
9
0
.7

3
2
1
6
4
.0

7
2
2
7
8
.7

3
2
2
0
8
.4

0
ti

m
e

5
8
9
.3

2
6
9
5
.2

9
4
9
5
.9

9
5
0
4
.9

1
6
6
1
.6

9
5
5
1
.2

5
4
8
2
.9

2
4
0
9
.4

3
4
9
2
.4

3
5
1
9
.6

8
4
8
6
.9

0
4
2
6
.8

6
G
e
o
.
M
e
a
n
(
E
a
s
y
)

#
n
o
d
es

2
3
1
8
.5

3
2
5
1
9
.0

8
1
8
8
3
.0

9
1
8
2
5
.5

0
2
3
9
3
.8

1
2
1
7
6
.1

2
1
9
1
6
.3

1
1
8
3
3
.7

1
1
8
8
2
.9

5
1
8
0
3
.3

2
1
8
8
7
.4

1
1
8
6
6
.2

8
ti

m
e

3
6
0
.7

5
4
5
1
.8

0
3
0
0
.3

8
2
9
9
.6

7
3
8
7
.5

4
3
4
8
.2

9
2
8
8
.1

5
2
5
7
.3

4
2
9
8
.8

2
2
9
9
.8

9
2
8
8
.1

2
2
7
2
.9

3

14

