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SUMMARY 

The model equation proposed by Lundgren for turbulent distribution 

functions based on the continuity and the Navier-Stokes equation is solved 

by the discrete ordinate method. The technique has been applied to tur-

bulent channel flow and turbulent boundary-layer flow. The numerical 

results have been found to be in fairly good agreement with available 

experimental data. Of particular significance is the fact that the 

technique yields the turbulent distribution function from which the mean 

velocity, the root mean square velocity fluctuations, the Reynolds stress, 

the turbulent energy flux, and the local integral scale of the turbulence 

can be directly calculated. 
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INTRODUCTION 

Since turbulent flows and their effects are encountered in nearly 

every flight case where fluid motion is involved, it becomes very important 

to know their behavior. Most of the existing methods of calculating tur-

bulent boundary layer have been discussed and reviewed in the AFOSR-1FP-

Stanford Conference l . 

The basic assumption made in most present-day methods of calculating 

the development of turbulent boundary layers is that the shear-stress pro-

files at a given distance from the origin of the boundary layer are uniquely 

related to the mean -flow conditions at that station. The simplest version 

of this assumption is the "mixing length" or "eddy viscosity" assumption 

that the shear stress at a point depends on the mean velocity gradient at 

that point
2
. It was argued by Bradshaw and Ferriss 3  that the shear stress 

T
XY 

- p u'v' is closely related to the turbulent kinetic energy 2gu."2  + 

v'
2 + w'2) and that the latter, being governed by the turbulent energy 

equation, is certainly not determined uniquely by the local mean flow 

conditions (Here u', v', and w' are turbulent fluctuation velocity com-

ponents in x, y, and z directions, respectively). This argument is cer-

tainly not new; one of the first to propose it was Dryden
4

. The poor per-

formance of the above mentioned calculation method in practice lends sup-

port to the view that assumption of a close relation between the shear-

stress profile and the mean velocity profile is not a realistic one for 

boundary layers in arbitrary pressure gradients, because it ignores the 

effect of the past history of the boundary layer, and that it is therefore 
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unsuitable as the basis fo the empirical correlations which must inevit-

ably be used in any method of calculating turbulent flows. 

One method suggested by Bradshaw, Ferriss and Atwell5  is that the 

turbulent energy equation is converted into a differential equation for 

the turbulent shear stress by defining three empirical functions relating 

the turbulent intensity, diffusion and dissipation to the shear stress 

profile. This equation, the mean momentum equation and the mean continuity 

equation form a hyperbolic system which can be solved by the method of 

characteristics with preliminary choices of the three empirical functions. 

This method yields numerical solutions which compare favorably with results 

of conventional calculation methods over a wide range of pressure gradients, 

however this method relies heavily on the information of three empirical 

functions which have to be known a priori. 

In short, most of the existing methods of calculating the develop-

ment of turbulent boundary layers have to rely heavily upon empiricism 

and phenomenological arguments guided by experimental data. Because of 

the empiricism, the generalization of these methods is severely limited. 

A system of equations for turbulent distribution functions was de-

rived by Lindgren from the continuity and the Navier-Stokes equation6 . 

The hierarchy of equations was closed at the one-point level by approxi-

mating the pressure term by a term of the Boltzmann type 7 . The model 

equation which is quite similar to the Boltzmann equation in kinetic 

theory can be solved accurately by the discrete ordinate method 
 

This method has successfully been used by the author and his co-workers 

in solving the Boltzmann type equations for rarefied gasdynamic and non-

equilibrium plasma flow problems. Therefore, it will be proposed to in 

vestigate several nonhomogeneous turbulent flow problems using the model 
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equation as the fundamental governing relation and the discrete ordinate 

method as a tool. In fact, the model equation was solved by Lundgren7 

for a class of homogeneous rectilinear flows and for decay of a periodic 

wake. Good agreement with available experimental data was found 7 . It 

will be seen that the advantages of the proposed technique are: (1) the 

technique yields turbulent distribution functions from which the mean 

velocity, the root mean square velocity fluctuations, the Reynolds stress, 

the turbulent energy flux, and the local integral scale of turbulence can 

.be directly calculated without making any assumption or modeling, (2) the 

accurate solution of the model equation can be obtained using the discrete 

ordinate method, and (3) the degree of roughness of the wall can be sim-

ulated accordingly through the boundary conditions used in the present 

technique. 



THE MODRT, EQUATION  

A system of equations for turbulent distribution functions was 

derived by Lundgren from the continuity and the Navier-Stokes equation6 . 

The hierarchy of equations was closed at the one-point level by approxi-

mating the pressure term by a term of the Boltzmann type 7 . Following 

Lundgren2 , the model equation takes the form 

bf 	 / 	N; 
g + V 	 =11 	. 

r 	
64. 	8V 

= 1 (F - f) 	 • 	- il) f 
u2 pv 

(1) 

where f 	t) ,31:7 is the probability that the velocity of fluid element 

■4 	 ■4 	 -4 	
i at point r and time t is in the range v, v + dv, p is the mean pressure, 

and u is the mean velocity. Here, the pressure term has been approximated 

by a relaxation term (the so-called Bhatnagar-Gross-Krook model in kinetic 

theory8 ) 

	

(F - f) 	 (2) 

where T is a relaxation time and 

it.i402/2u2 
1  

F = (2ru2 ) 3/2 (3) 
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is a Gaussian distribution with a' (r), t) and U 	t) the mean velocity 

and the root mean square velocity fluctuation, respectively. The re-

laxation time is taken to be 

K (e  + 
1 	\ 	2 Dt  
T 	 U2  

(4) 

where 

D b 	b 
Dt = at - u  

br 

where K is a constant that can be adjusted for the model, and e is the 

turbulent dissipation rate. 

Equation (1) is quite similar to the Boltzmann equation in kinetic 

theory. The first and second terms on the left-hand side are the un-

steady term and the convective term, respectively; the third term is 

the acceleration term due to the pressure gradient; the fourth term is 

the acceleration term due to the viscous effect. The first term in the 

right-hand side is the pressure fluctuation term which is mainly respon-

sible for describing the nonequilibrium phenomenon and which has been 

approximated by the BGK model. This is in agreement with the intuitive 

feeling that pressure fluctuations have a randomizing effect. The last 

term will yield the structure of turbulence. 

After Equation (1) is solved for distribution functions f(i., v, t), 

the flow properties can be obtained by taking the moments of distribution 

functions as follows: 



T1(5,t) .SVf 	t) dv 

3u 2 (1.4,t) 	$ 	- T1) 2  f(il,V,t) 6.4  

pressure tensor: 

(v1  . 	u.) (v3  - u ) f(1% 71/1 , t) dv 1 

turbulent energy flux: 

q .a. 	2 = 1 — 
J 
r ev. 	u1) 	_ To2 f(11, 	t) dv 

The quantity - pPij  is the Reynolds stress and pqi  is turbulent energy 

flux. 

To complete the model equation in Equation (1), the relaxation 

time T must be specified. To this end, the well-known Chapman-Enskog 

method9 is applied to Equation (1). This application leads to 

P. = U28ij  - 2vTDij 	 (6) 

where v is the eddy viscosity coefficient which is 

U 
T 	 - u2T  

6 

(5a) 

(5b) 

(5c)  

(5d)  

P. 

/ 	3 DU2  N 
K 	73■ G ) 

(7) 

andDij  is the rate of strain tensor for the mean flow, 



,
bu. 	tiI 

D. 	2--
2 bx 

 + 
15 	, 

J 

The application also leads to 

3 u2  
—T b7T 7 

where kT  is the energy flux coefficient. 

Thus, combining Equations (6), (7), and (8) yields 

ba. u2(__1 	) 
bK 	x., 

1 	
b 

j 	 KU 

T 	U28. - P. ij 	ij 

where T is assumed to be proportional to L/U, L is the integral scale of 

the turbulence, and K is a constant which can be adjusted to fit with ex-

perimental data. 

The model equation was solved by Lundgren7 for a class of homo-

geneous rectilinear flaws and for decay of a periodic wake. Good agree-

ment with available experiments was found7 . Further test must be made 

for non-homogeneous turbulent flows in order to prove the applicability 

of the model equation for practical flow problems. 

In the following, the model equation is used to solve the one-

dimensional plane Couette flow and channel flaw, and the two-dimensional 

boundary-layer flow. 

7 

(8) 

(9 ) 

(m ) 
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NONHOMOGENEOUS COUETTE AND CHANNEL FLOW  

A. GOVERNING EQUATION  

Consider the steady turbulent flow between two parallel plates, y = 

- d and y = d. For the Couette flay case the plate y = -d is translating 

in its own plane to the left with a constant speed u w  and the plate y = d 

to the right with the same speed. For the channel flow case both plates 

are stationary. 

For these one-dimensional steady turbulent flows, Equation (1) 

becomes 

	

bf - 	bfb 	bf . 
v 	- K 	+ v 	' — = - 
Y by 	bv

x 	by2 bvx 

U b 
F) 	• (v - u) f 	(11) 

by 

The instantaneous velocity v has components vx y  , v and vz , and solutions 

for the distribution function f(y, ;7) are sought. K = l/p • blVelx, which 

is the pressure gradient in the x-direction. For the channel flow, K 

constant, which is the main driving force of the flow; for the Couette 

flow case, K = 0. 
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B. DISCRETIZATION OF DISTRIBUTION FUNCTIONS  

The distribution function f(y, ;7-) in Equation (11) is one-dimensional 

in physical space but three-dimensional in the instantaneous velocity space. 

In order to reduce the computer storage requirement the following reduced 

distribution functions are defined: 

g(y;v =r221.  f(y;i7) dvxdv Y 	 z 

j(y;vy  ) = Swf vx  f(yvii) dvxdvz  

r2 	‘ h(y;vy 	wr (vx  ) 	 v:) f(y;:v1) dvxdvz  

If Equation (11) is multiplied by unity and integrated over dvxdvz , one 

obtainS 

- 	[( 
. v  kg_ - G) 	(g + y bvy)] (13a) 

If the multiplying factor is, respectively, vx and vx
2 + vz

2 
and the integration 

then performed, the following equations are obtained: 

Al- 	
V
2 

2
u 	KU r,. 

v
Y 	

+ Kg - v 	
g _ -- L kj j) 	(ug vY 	) .1 bY 	 (13b) 

i 
 

	

bh 	 u j v — + 2Kj -2v b2

2 — = 

	

Y bY 	 by - H )  - _ (- h + 2uj + v 1 
3K 	 y by (13c) 
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The local equilibrium reduced distribution functions are 

G - 
(2rU2)1/  r

-exp(-v- /2U) 	 (14a) 

H = 2U2G u2G 	 (14b) 

J = uG 	 (14c) 

The equations are nondimensionalized by the following scheme: 

1. Couette flow: 

A 	 A 	 A 	 A 
= 	 V 

Y  d' = u  ;v= u — ; L=E; g= guw ; 
w 	

. 
w 

P 	u d h 

	

=___; 	= ja• R
e 
	w  

w  uw 	uw 	xY u ' e 	v 

where uw is the flow veloCity at the wall and Re i s Reynolds number. 

2. Channel flow: 

A  _ X., A 	u 	
. 	A 	

. 

	

v 	L 
Y= d' d 

u = - 
u 	v=u   ; L = ci- ; g = guo  ; 
0 	0 

A 	 A 
-10. 	

A 	
U 	

..P xy . 	ub
d 

j = j; h =—• U = u —; P - 	' R = 	; u ' 	
oo 	

xy 
u2 	e v 0 

A 

= d 
2 dx 
o 

where u0 is the flow velocity at y = 0. 



2. 
k - 

vvr A 	

A 

y 

y A 
by e tpy 

A 

Y 
+ 

^ 

A 
	 A 

(15c) 

G - 	1 
(2rU2 ) 1  

A 

This gives the equations 

11 

- 	ba - G)  - 	(g v,  
a ay 

(15a) 

(15b)  
2. 

. 	n. 	u 	KU 	
A 

	

• vy )4  Kg 	7,7 g = - 	F(3 - J)- — (f.tg + 	g)] 3K 
e by 	L 	 Y xi. 

y  

where 

A 
J = 

11's  = 21.7T2GA  + 

a = sm. 3 cll'y 

n2 iT = [rw  h 	+ 	
A 3 	y 	 Vy  g avy  - u 

A 
P 	r 

	

= - 	- xy J-. 3  y y .1%g y y 

(16a) 

(16b) 

(I6c) 

(17a) 

(17b) 

(17c) 

Equations (15) are nonlinear integro-differential equation to be solved for 

g, 3, and h. The macroscopic flow properties can be calculated through 

Equations (17). It is noted that in Equations (15), K = 0, for the Couette 

flow case. 
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The discrete ordinate method which has been used by the author in 

58 . solving the Boltzmann equation for rarefied gasdynamic problems 	as now 

applied to Equations (15). The continuous dependency of the g, 3, and h 
functions in instantaneous velocity space yis replaced by a point function 

dependency; that is, the function g(9-, iy) which is continuous in velocity 

spaceisreple 	 1 hich are continuous in 

physical space but are point functions in velocity space. Thus, the 

partial differential equations are approximated by systems of N ordinary 

differential equations which are then solved numerically using an iterative 

scheme. The macroscopic flow properties are determined from Equations (17) 

using the same quadrature which is being used in solving Equations (15). 

Thus, one has 

N 

	

a = r- 3 di-  = 	W. 3. 
J-co 	 1 1 

1=1 

N 	N 
3  [ I  w. h.  + 1 il...2g.w. - el 

1 I 	1 I a_ 

	

i=1 	i=1 

	

N 	 N 

P = xy 	1 1 1 
- u 

L  w1 1 1 
1=1 	 i=1 

(18a)  

(18b)  

(18c)  

where thew.1  are the weighting coefficients corresponding to the quadrature 

being used. 
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C. THE BOUNDARY CONDITIONS 

Since it is important to distinguish particles traveling toward a 

plate from those moving away from it within a distance of the order of a 

micro-scale of turbulence from the plate, it is convenient to define the 

half-range distribution function as follows: 

1.+  + 	 (19) 

where 

= 0, for .1)-  < 0 

1*- (Y; iry) = 0, for firy  > 0 

The completely diffuse reflection is assumed here for the particle-surface 

interaction. Thus, the normalized boundary conditions for Equations (15) 

can be written as follows: 

1. Couette flow: 

,s+ 	 1 	
A...2/2(.0)2 

= -1) = lim 	 e 	I  gi „ 
j2Tr (Alf) AU-4 o 

= Ai 	= 1) 
	

(20a) 

= -1) • - AI 	= - 1) 
	

(20b) 

i 	= 1) = 	= 1) 
	

(20c) 

h. (y = -1) =slim 
o 

2, , 
-v. /2kAU)

2  
e 	 ky . 	= 

gi 

=hi (Y = 1) 
	

(god) 



2. Channel flaw: 

	

gi (Y = -1) = lim 	1 	
A 2 ,_ 	2 

/ 2(0) 

pu-, 0 ,Pr (0) 

g; (y- = 1) 

i+  ( 
	

-1) 
	

=1) =0 

A 	
2 	2 

hi 	 . 	" 	/2(AU) 

0.4 

	

= -1) = lun 	AU e 

	

CO 	TT  

= h: (y = 1) (21c) 

Thus, the problem leads to solving the discrete ordinate forms of 

Equations (15) subject to Equations (20) or Equations (21) for the Couette 

flaw or channel flaw, respectively. 



15 

D. NUMERICAL PROCEDURE  

The discrete ordinate forms of Equations (15) are approximated by 

forward differences in the numerical solution and an initial guess is made 
A A 	A 

for the profiles of the macroscopic properties, u, U, and L. This initial 
A 
	

A A 	 A A 

guessisusedtoevaluate ), and J(y) through the channel. 

Equations (15) are solved numerically for values of g i (y), ji (y), and hi (y). 

These are then used to calculate new macroscopic flow properties using 

Equations (18). Unless the initial guess has been extremely clever, the 

new values will differ from the first ones. Thus, hopefully better approxi- 
A 	 A 

mations to Gi , Ji , and H. are now computed and the iterative process is 

repeated. Convergence was assumed to have occured when the differences in 

macroscopic properties at every physical station between successive 

iterations was less than 0.001. 
A 

The selection of the discrete velocities v. at which the distribution 
A 

functions are evaluated must be such that (i) the spacing between the v i 's 

must be close enough to accurately define the highly peaked distribution 

functions at and near the boundaries and (ii) the range of discrete points 

must be sufficient to cover the spread of the distribution functions across 

the channel. It is noted that the normalized distribution functions at the 
A 

boundaries are delta functions (because AU = 0 at the boundaries). 

Numerically, it is difficult to start with the delta functions. Therefore, 
Ig• 

in the calculations two different values were used for AU at the boundaries, 
A 	 A 

i.e., AU = 0.0001 and AU = 0.0001. On several test cases no graphical 

distinction could be observed between results obtained using 0.0001 and 

those obtained using 0.0001. For this reason, the profiles reported here 



16 

are based on this latter figure used for the root mean square fluctuation 

at the boundaries. The constant K in Equations (15) is taken to be 5 in 

the present calculations. 
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E. RESULTS  

Calculations for both the Couette flow and channel flow were per-

formed at the flow conditions for which experimental data were available. 

Figures 1 and 2 present the flow velocity profiles for the Couette flow 

case at three different Reynolds numbers (2900, 18000 and 36000). The 

experimental data of Reichardt 14 are also shown for comparisons. It 

should be mentioned that all the results presented here are those ob-

tained after nine iterations which took about 56 seconds on the UNIVAC 

1108 machine of the Rich's Electronic Computer Center, Georgia Institute 

of Technology. It is seen that the comparison between the calculated 

results and experimental data is quite good. Figure 3 presents the cal-

culated mean square velocity fluctuation and the normalized Reynolds 

stress. Since there is no existing experimental data to be compared, the 

results are compared with the results of Chung's theory15 . 

Figure 4 presents reduced distribution functions of the Couette flow 

at five different locations in the flow field. Since root mean square 

fluctuation velocities correspond to mean widthes of distribution functions, 

it is seen that the rms fluctuation velocity has a maximum at the location 

which is very close to the wall ( 1  74 0.98) and its magnitude decreases when 

the distance from the wall increases. It is also noted that the distribution 

function is not Maxwellian near the wall (see the distribution function at g 

0.98) and becomes more and more Maxwellian when the distance from the wall 

gets further. 

Figure 5 shows a comparison of the calculated mean flow velocity, 

the y-component fluctuation velocity, and the root-mean-square velocity 
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fluctuation for the channel flow with the experimental data of Laufer
l6

. 

The comparison is seen to be quite satisfactory. Again, all the calculated 

results presented here are obtained after nine iterations which took about 

58 seconds on the UNIVAC 1108 machine. In these calculations K has been 

taken to be 5. 
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TWO-DIMENSIONAL TURBULENT BOUNDARY-LAYER FLOW 

For steady two-dimensional turbulent flows, Equation (1) may be 

written as 

v 	+v 	lbi5  of 	(u uk - 	+ 
2u  

x 	Y by L -  p 16K birx 	2 
. bx 	b7

2 

1 (F K 8;  31T  b 	54. 	f  • 	 (22) 

where 

.2x 
4Y  _ KU 

P 	L xy 

and the Reynolds stress 

Tom= PP xY 	xY 

The particle velocity v has components vx 
y  , v , and vz , and the flow 

velocity u has components ux , uy  and uz  (uz  = 0 for the two-dimensional 

case considered and uy  is small except for the case of very adverse pressure 

gradient), and tWbx is the pressure gradient in the x-direction. Solutions 

for the distribution function f(x, 	v) are sought. 

The distribution function f(x, y; .-Nr) in Equation (22) is two-

dimensional in physical space but three-dimensional in the particle 

velocity space. In order to reduce the computer storage requirement the 

following reduced distribution functions are defined: 
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g(x, y; ,y) yv ) = S .  f(x, y; --sr) dvz 	 (23a) 

h(x, 	vx, vy) = 	vz2f(x, 	dvz 	 ( 23b) 

Multiplying Equation (22) by 1 and integrating with respect to v z  yields 

2 

+ 	ag 4 [_ b5 bg 	(
2ux b ux• N. 1 

v 1-q- • v — • 
x bK 	y by 	p bx a

x 
 " \ 2 	2 bv ax 	by 	x 

(v - uy ) - 	(g - G) 	-T-T-c  [2g + (vx  ux ,) - 	 y 	bvy  (24-a) 

Multiplying Equation (11) by vz  and integrating with respect to v z  yields 

v 	v  .h 

1 = - — ( h - 

The local equilibrium 

G = 

and 

p 

H ) [ vx  

1 

o
2
uk) j19  (!)2ux  

th (214b) 

(25a) 

(25b) 

x ox 	y by bX bvx  

1 1 

exp 

reduced 

y 

bx2 	by2 	ax 

Oh 	. 

distribution 

"1-  Or 	_y - Ux  ) --z5v7c  

functions are 

2 	 2 
[(v 	- 	

x 	
+ 

( 
	- u ) x 	 y 	y 

H = 112G 

2 It 
—9 

 21.P. 
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After the reduced distribution functions g and h are solved from 

Equations (24) subjected to the appropriate boundary conditions, the 

macroscopic properties can be found by taking the moments of g and h. 

0000 

u (x,y) =SC v gdv dv
y 	 (26a) x  -co—= 

u (x,y) .fr y  v gay x  dy  y 	 (26b) 
-0›-co 

	

co co 	 co co 
3U2(x,y) =ffhdv dy

y  4-yr [(v _ u) 2  4. x  

	

-co-m 	 -co-co 
- u

y
) g dv 

x 
 dy 	(26c) 
y 

P. = - f vv dv dv 	u u ij 

	

	 x y x y -co-co 

1 
= 

r
ao 

qi = 	J vv
2
g dv dv -u If vv_g dv dvy  y x 	x y x 	x y—  x -00- 0, 	 -co-co 

+ 2  11 	x 
v 3g dy dv -u Is v 2

g dv dv 
-co- 	 -co-co y 	y 	 x y co  

00 

 + 	

00 

hd 3 —2 
-frj vy dv - uu 1 / 2 

2 %  
— x y y  7-7u +u) 

-00-co .7 
y-xy 

COCO 	 OD 03 

(26d)  

(26e)  

The accurate numerical solution of Equations (24) has been obtained 

through the discrete ordinate method similar to that outlined in the 

previous section. 

Figure 6 presents the calculated mean velocity profile of Klebanoff's 

boundary layer
17(zero pressure gradient). Klebanoff's experimental data 

 

are also shown for comparisons. It is seen that the comparisons are quite 

satisfactory. 



CONCLUDING REMARKS  

A statistical method has been described for the determination of 

nonhomogeneous turbulent flows. The method has been for the first time 

applied to calculate the one-dimensional Couette flow and channel flow 

and the two-dimensional boundary-layer flow. The results as compared 

with available experimental data indicate that the technique is quite 

powerful in view of the fact that the computational time needed for ob-

taining reasonable solutions is quite short. 

It is interesting to note that, in contrast to the conventional 

moment equation approach, the method yields turbulent distribution functions 

from which the mean velocity, the root mean square fluctuation velocity, 

the Reynolds stress, and the turbulent energy flux can be directly cal-

culated without maid  ng any assumption or modeling. 

The most important assumption in the model equation is that pressure 

fluctuations have a randomizing effect, or more specifically that they 

drive the distribution function toward an isotropic Gaussian distribution. 

22 
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APPENDIX 

BOUNDARY CONDITIONS AND NUMERICAL CALCULATIONS  

Boundary conditions are applied for g+  at ir = 0 and for g at y = 2. 

As v = 0 at both the walls, the Maxwellian distribution function g takes 

the form of dirac Delta function. g and g were assumed to be zero at 

A 

y y = 0 and  = 2 , respectively, except at 'I) = O. 

Another set of boundary conditions tried was to assume Maxwellian 

distribution for g at the edge of the laminar sublayer. This avoids the 

difficulty of large gradients at the walls but requires an assumption of 

the values of a and v at these points where the boundary conditions are 

applied. 

Boundary conditions on j
+ 
and h

+ 
(at y = 0 or at the edge of the 

laminar layer near y = 0) and on 3  and h (at Y.  = 2 or at the edge of the 

laminar layer near 9- = 2) were 

 3 = = A 

. 	A 
h = H = 

2  
u + 2U2) G 

a = -1 at 9-  = 0 

a = 4-1 at i/*.  = 2 

Once the system of o.d.e.'s was solved, the distribution functions 

were used to get the following macroscopic moments at all points in the 

physical space 



(7) 	= 7 [1 
1 

-co 

03 
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co 

(1) Density = f g diry  = 1.0 
-co 

CO 

(2) r 	= 0 
Y d 	Y 

1 2 	c° 9  
(3) = 

	

	y2  a cl-;- 
 -m 

(4) or 3 & 
- 

(5) P = 	'sr 3 dv 	shear stress 
xy-co y 	Y. 

co 
1 	 2 	 -2 

(6) u = 	
d r 

h 	r 	- u I 
Y J 

-= 

02 

h + t3  a dir 	- P Turbulent energy 
J. 

y 
 -00 flux in y direction. 

Simpson's rule was used to evaluate the integrals above. 

Out of the seven moments calculated above only xand U2  are utilized 

in the subsequent iterations. il y12  is used to calculate U2 . The rest of 

1  
them are not used directly in the calculations. u 

2 
 , P , 	u and 2  

xy 	x 

are useful results though P
xy 

 and 	are not used in the calculations. 

s a dvy  = 1.0 
-00 

f A 
v g dv = 0 

-co 

These two moments serve as two usefule checks. The first equation above is 

the continuity equation. Both of these equations were satisfied well, and 

-00 
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there was an improvement as more and more iterations were performed. The 

error in the continuity equation was about 0.5% near the wall and much less 

than that away from the wall. The error in the second equation cannot be 

expressed in the percentage basis. This equation verifies that the macro-

scopic velocity in the y-direction is zero. The calculated macroscopic 

velocity in the p-direction, a '  was found to be less than 1% of fluctuation Y 

velocity ,N,u
12 
 in the same direction at all points except for a couple of 

points near the wall. At these points it was about 5% - 10% of the local 

.fluctuation velocity ,N/u 
2 
 1 which itself is very small. 

. 
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