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Coefficients of Fourier series. 

A simplifying substitution in integral 
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E.M.F. 

A constant of small magnitude. 

A function of voltage. 

A phase angle. 

Duty cycle of interrupted wave train, 
ratio of duration of signal to period 
of modulating voltage. 

A ratio of frequencies, K = co /co . 
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A coefficient , a Lagrange mul t ip l ie r . 

Modulation index « Aco/to - co /to . 
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S U M M A R Y 

The phenomenon of synchronisation is well known and is demon­

strated in many familiar devices. Bie mechanism of synchronization of 

vacuum-tube oscillators by c-w signals or by periodically repeated 

pulses has been the subject of numerous papers in the literature and 

several authors have arrived at substantially identical conclusions by 

diverse methods of analysis. Both analytical and graphical solutions 

have been presented and both methods are in general use in present 

studies of nonlinear oscillatory systems. 

A form of synchronizing input which has not been discussed in 

available literature consists of a signal which is modulated in some 

periodic manner so that a voltage of significant amplitude is present 

during a portion of the modulation period. During the remainder of 

the modulation period the amplitude of this signal is assumed to be 

zero. Such a sigial is designated as an interrupted wave train and is 

the subject of the study to which this paper is devoted. 

Experimental tests demonstrate that when an interrupted wave 

train is employed as a synchronizing signal the frequency of the oscil­

lator may be made equal to the frequency of the input signal if the 

latter is restricted to a narrow band centered about the natural fre­

quency of the oscillator. This band corresponds in sense, to the 

"locking band" exhibited in the presence of a c-w signal but has sig­

nificant differences. First, it is narrower than the corresponding 

band of c-w synchronized oscillators, second, it involves the presence 

of phase modulation, and third, it may exist around each frequency in 

the frequency spectrum of the input signal. 
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The mechanism of synchronization has been described analyti­

cally in this paper by employing a simple physical criterion for syn­

chronization which states that, if two signals are to be of equal fre­

quency, the net relative phase deviation must be zero if many cycles 

are considered. The interval of time within which this criterion has 

been applied is the modulation period since both experimental and ana­

lytical data indicate that the criterion of zero net phase deviation 

is satisfied during each modulation period when synchronization per­

sists. If the synchronizing signal has some other frequency appearing 

in the spectrum of the input, this frequency must be f, + nf where 

f, is the frequency of the input, f is the modulating frequency, and 

n is an integer. In this case the criterion of synchronization differs 

in that the net phase deviation must be 2nn, where n is the order of 

the sideband involved. 

The analysis proceeds by utilizing a known nonlinear differen­

tial equation which describe the transient behavior of the oscillator 

during presence of synchronizing signal. By integrating the phase 

variations over a complete modulation cycle there are developed tran­

scendental equations which describe the action of the phase angle dur­

ing the period. By methods of maximization it is possible to determine 

the limits of synchronization both by the fundamental component and by 

sidebands of the interrupted wave train. 

Numerous curves and graphs illustrate the conditions required 

for synchronization and illustrate the frequency spectra appearing in 

the output of the oscillator. The output has been analyzed from a 

standpoint of phase modulation by both analytical and numerical methods 
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of Fourier analysis. Experimental and computed data are presented 

and are shown to be substantially identical. The effect of amplitude 

modulation resulting from the changing input signal has also been 

evaluated. Finally, methods of extending the range of synchroniza­

tion are discussed in conjunction with suggested methods of utilizing 

this form of synchronized oscillator in practical applications. 



CHAPTER I 

INTRODUCTION 

Synchronization of Oscillators 

The phenomenon of synchronization is well known and the effects 

of a synchronizing action are observed in many familiar electrical and 

mechanical systems. Examples are found in pendulums which swing in uni­

son on a common support, in dual aircraft engines which rotate in syn­

chronized precision, and in television receivers which display stabi­

lized video patterns. Each of these actions illustrates a form of syn­

chronization and each points out a known or possible application of the 

phenomenon. 

Vacuum-tube oscillators are probably the most common and numer­

ous of the devices which employ a synchronizing process and oscillators 

thus controlled are utilized in a variety of equipment. The oscillators 

themselves differ widely in form and in type but the synchronizing ac­

tion in each is usually produced by one of two types of applied signals. 

The first of these types appears as a series of equidistant pulses, a 

form of synchronizing signal which has been successfully employed in 

television, radar, and similar devices. The second type appears as a 

sinusoidal voltage which is continuous in time and constant in amplitude. 

This form of signal has been found adequate in many applications, and 

is illustrated in the synchronized oscillators which serve as amplifiers 

and liraiters in some models of F-M receivers. 
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Both of these types of synchronizing signals and the methods by 

which they perform the synchronizing function have been studied by many 

individuals. Particular attention has been devoted to the second of the 

two types and an extensive literature appears on the subject of synchro­

nization of oscillators by sinusoidal voltages. Several papers which 

are devoted to the analysis of the mechanism of synchronization by con­

tinuous waves are important in the discussion that follows in succeed­

ing chapters and are referred to when appropriate. 

It is repeated, for emphasis, that the usual synchronizing sig­

nal applied to a vacuum-tube oscillator is either In the form of equi­

distant pulses or of continuous sinusoidal voltages. However, although 

these two types do comprise the principal source of synchronizing sig­

nals, there does exist a separate and quite different form of voltage 

which can also satisfactorily perform the function of synchronization. 

This newly designated type may be unique in its application to the pre­

sent studty", since it is neither employed in known equipment nor dis­

cussed in available literature, but it is believed to be of significant 

practical value. This signal is designated as an "interrupted wave 

train" but its exact form is not simply defined. A detailed descrip­

tion of its form and the parameters involved in defining its properties 

belongs properly with a discussion of the action that it performs. The 

next section of this paper defines the problem associated with applica­

tion of the signal to an oscillator and illustrates the form of voltage 

wave involved. 
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The Problem 

The subject of this study was suggested by an earlier investiga­

tion of piezoelectric quartz crystals. In the course of an experiment 

to determine the high-frequency response of such crystals it was observed 

that a shock-excited crystal could produce a short burst of sinusoidal 

voltage of very high frequency. A numerical example best illustrates 

both the experiment and the observed results. 

The experimental procedure involved a "swept-frequency" technique 

of exciting the piezoelectric crystal. In one particular case a crystal 

whose fundamental frequency was 5*000 mc was subjected to a frequency-

modulated voltage whose center frequency was 315 mc. This exciting volt­

age was "swept" at a 60-cycle rate over a narrow (33ii-3l6 mc) band and 

was applied, by one of various techniques, to the crystal. It was then 

observed that when this driving voltage passed through the center frequen­

cy of 315 mc the quartz crystal was excited at the 63rd mechanical over­

tone of its 5.000-mc fundamental frequency. The mechanical oscillations 

of the excited crystal, converted into electrical impulses at the holder 

terminals, produced a short burst of r-f energy whose frequency was that 

of the vibrations in the crystals. The form of output, derived from an 

observed envelope and a measured frequency, is illustrated in Figure 1. 

The crystal was excited twice during each period of the 60-cycle "sweep", 

hence the envelope was repeated each l/l20th of a second. The actual 

width of the envelope was never measured but was, in each case, a small 

fraction of the spacing between envelopes. 

The important aspect of this signal was that the cycles of r-f 

voltage, occurring with a frequency determined by properties of the 
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piezoelectric crystal, might be assumed to have the excellent frequency 

stability usually associated with quartz crystal resonators. However, 

inasmuch as the signal occurred only in the form of a periodically re­

peated damped oscillation, no practical application was immediately evi­

dent. Later, further consideration of the potentialities of stable high-

frequency voltages suggested the possibility that this signal, although 

not continuous in time, might be utilized as a synchronizing agent. If 

these voltages could be applied to a free-running oscillator whose cen­

ter frequency was 315 mc and if synchronization could be effected, then 

direct crystal control of the oscillator would have been achieved. In­

asmuch as most methods of direct crystal control are limited to frequen­

cies much lower than 300 mc the possibility of employing a synchronizing 

process at or above 315 mc was considered worthy of further stu^y. 

If synchronization of an oscillator by the signal shown in Figure 

1 was to be attempted, it was important first to conduct a thorough in­

vestigation of the more fundamental aspects of the method of synchroni­

zation. It was therefore decided to employ a signal of the same general 

form but to work at much lower frequencies and under carefully controlled 

conditions. This plan was implemented by the construction of a low-fre­

quency oscillator as a test vehicle and by the utilization of signal gen­

erators and gating circuits to produce synthetically the synchronizing 

signal. The arrangement shown in Figure 2 was completed. This figure 

shows the basic units employed and the form of signal which was injected, 

as a possible synchronizing agent, into a free-running oscillator. 
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FIGURE 1. VOLTAGE DUE TO SHOCK-EXCITED CRYSTAL AT HIGH-ORDER OVERTONE. 
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FIGURE 2. EQUIPMENT ARRANGEMENT FOR PRELIMINARY TESTS OF SYNCHRONIZATION 
BY INTERRUPTED WAVE TRAINS. 
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The output of the pulse generator shown in Figure 2 was variable 

in frequency and in width of pulse. The output of the signal generator 

was variable in frequency and in amplitude. This combination input sig­

nals to the gating circuit permitted the synthesis of a signal which was 

variable in basic frequency, in modulation (gating) frequency, and in 

duty cycle (ratio of t, to T). Eepresentative numbers employed in the 

basic test were approximately as follows: f = 20,000 cps, f, = 20,200 

cps, f = 700 cps, and duty cycle = l/2. 

The results of the preliminary tests were encouraging. It was 

demonstrated conclusively, by the use of frequency counters, that the 

average frequency of the oscillator became identically equal to that of 

the input frequency f_ if the latter frequency remained near (but not 

necessarily equal to) the free-running frequency f . Therefore it was 

evident that some form of synchronizing action was present, but the mech­

anism by which synchronization was effected was not obvious. Further 

questions as to the nature of the action and the characteristics of the 

synchronized oscillator were raised when further studies revealed the 

presence of phase-modulation in the output signal. 

The necessary scope of the investigation was indicated by the ob­

servations made and the data recorded in these early tests. The problem 

could now be defined with some completeness. It was evident that the 

following items, at least, required analysis: 

(a) a description of the mechanism by which synchronization could 

be effected by an interrupted wave train, 
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(b) derivation of the relationships between the parameters of 

oscillator and synchronizing signal by which to specify the action ex­

pected to result from any given combination of parameters, and 

(c) determination of the expected form of output signal derived 

from the synchronized oscillator. 

These three items have constituted the essential problem which 

the investigation has sought to solve, although other considerations 

have arisen during the course of the study. Included are topics such 

as consideration of the most practical means of producing the desired 

synchronizing signal, determination of effects of amplitude modulation 

in the output signal, and investigation of means of most adequately uti­

lizing the synchronization phenomenon. Each of these latter topics is 

mentioned at appropriate places in the paper, but is given minor empha­

sis. Primary emphasis has been directed toward an adequate discussion 

of the three basic topics. The manner of analysis of these topics is 

summarized in the next section. 

Summary of Succeeding Chapters 

The main body of this paper is preceded by two chapters whose 

purpose is to assemble for convenient reference several known and ac­

cepted principles which can be utilized as tools in the analysis of the 

synchronization phenomenon. Chapter II deals with the synchronization 

of oscillators by continuous waves and also includes a brief summary of, 

or reference to, appropriate papers from the literature. This summary 

is not necessarily for the purpose of providing more tools for solution 

of the present problem. It is included as a means of illustrating the 
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many and diverse methods of analysis of the process of synchronization. 

It also provides a convenient collection of references for the reader 

who is interested in examining the phenomenon more closely. 

Chapter III describes some of the experimental results obtained 

during the course of the investigation and then develops, in brief form, 

several formulas and equations which are used in later chapters. General 

forms of Fourier series and the application of Fourier series to phase 

modulation are included inasmuch as these will be found to be primary 

tools useful in describing the output of the synchronized oscillator. 

The spectrum of a wave train which has been modulated by a rectangular 

pulse is analyzed and the results of the analysis are included. This 

form of spectrum is also found to be significant to the problem. 

Chapters I?, V, and VI deal directly with the specific items of 

the problem and develop equations, curves, and spectra which explain 

the synchronizing action and predict the effect of a given form of in­

put. These curves and diagrams are the primary result of the study and 

form definitive answers to the three specific items listed as primary 

topics. 

Finally, Chapter VII records the experimental equipment used in 

various phases of the investigation and describes those experimental pro­

cedures not previously discussed. The chapter also includes comments 

upon methods of obtaining the desired synchronizing signals and describes 

means of utilizing these signals in practical and useful equipment, 



CHAPTER II 

SYNCHRONIZATION OF OSCILLATORS BY C-W SIGNALS 

Development of Theory for Vacuum-Tube Oscillators 

Important contributions to the nonlinear theory of oscillations 

(1) have been made by van der Pol . He pioneered in analytical studies 

of non-linear oscillatory systems and a nonlinear differential equation, 

now generally referred to as van der Pol's equation, appears in a vari­

ety of forms. It may be written as 

4 - sa - A fc • * - o a) 
dt 

where \i is a generalized variable applicable to the particular charac­

teristic under study. This equation is a fundamental one and describes 

a variety of systems but it is conveniently derived in the analysis of 

vacuum tube oscillators. In electrical systems the symbol u. may be taken 

to represent either voltage or current. 

Numerous methods of solution for this equation have been advanced. 

Van der Pol himself offered two independent solutions. These are often 

referred to as the method of variation of parameters and the method of 

equivalent linearization. Each of these methods will be described in 

brief detail. 

The method of variation of parameters involves the separation of 

the second-order differential equation into two distinct first-order 
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differential equations, one which determines the amplitude and the other 

the frequency of oscillation. The analysis is begun by assuming that 

the voltage across the tuned circuit of an oscillator of the type shown 

in Figure 3, or of an oscillator of similar type, may be described as 

v • A(t) cos 03 t (2) 

where A(t) represents an amplitude that varies slowly with time. The 

assumption that the time variation of the amplitude is small will be 

valid if the middle term of equation (1) is itself small and the equa­

tion is thereby constrained to be nearly linear. A restriction which 

insures near linearity of the differential equation is important in the 

analysis for it limits the study to systems which produce harmonic oscil­

lations. The required restriction is, evidently 

£ « /, o) 

The analysis continues by differentiation of equation (2) and sub­

stitution of the first and second derivatives of the variable into equa­

tion (1). Details of the individual steps thenceforth, which are quite 

lengthy, appear in van der Pol's original paper and are summarized by 

(2) 
Eds on . The solution involves an assumption that the anode current of 

the vacuum tube may be approximately expressed in a cubic relationship 

to the voltage. This relationship is expressed in the equation 

i = F(v) = - av + bv-3. (U) 

In this case the approximate solution of equation (l) may be expressed 

in terms of the coefficients a and b and in terms of the resistance 
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shunted across the tuned circuit* The expression for the final peak am­

plitude of voltage across the circuit is given as 

v = fen; (5) 

and the final angular frequency of oscillation is given, to a first ap­

proximation, as 

"o - /¥• w 

These are the solutions obtained by the method of variation of 

parameters. The method of equivalent linearization leads to identical 

solutions. The basic method in the idea concerns the substitution, 

under certain prescribed conditions, of a linear resistance for a non­

linear resistance. Many oscillators may be considered as circuits con­

taining at least one negative resistance. From this point of view Fig­

ure 3 may be replaced by the circuit of Figure U. In the latter figure 

the negative resistance characteristics of the oscillator are contained 

with the element R . 
n 

The current which flows in the nonlinear resistance is subjected 

to a sinusoidal voltage and may be resolved into a fundamental component 

and its harmonics. The fundamental component of current is in phase 

with the voltage and has a magnitude which depends upon the voltage. In 

terms of the fundamental frequency, the nonlinear resistance may be re­

placed by a linear resistance if the magnitude is properly chosen. 
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FIGURE 3. DIAGRAM OF A FEEDBACK OSCILLATOR. 
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FIGURE 4, NEGATIVE RESISTANCE OSCILLATOR. 
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The method if illustrated by assuming that the final voltage 

across the tuned circuit is given by 

v = V sin ait. (7) 

If the quantity V sin cot is substituted in each term on the right side 

of equation (U) and if the fundamental terms only are retained, the cur­

rent is given as 

i - aV + 3/UbV3 = V(-a + 3/itbV2). (8) 

Evidently the current is equivalent to that which would exist if the 

voltage V were applied to an equivalent resistance R whose magnitude is 

expressed in the equation 

-|— - -a + 3AbV2. (9) 
n 

The conditions for steady state oscillations in the circuit of 

Figure h require that the total susceptance between the terminals of the 

network shall be zero and that the circuit shall be lossless. These re­

quirements are satisified if 

TT- + I = °' and jSE + JtoC " °- (10) 

When these equations are solved for the frequency and amplitude of free 

oscillations, with the aid of equation (9), there results 

»-&r (ii) 
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and 

v - Jwi ' (12) 

solutions which are identical to those obtained by the method of varia­

tion of parameters. 

The two methods described provide solutions which are only approx­

imate since certain simplifying solutions were required in order to re­

duce the original differential equation to a form permitting direct solu­

tion. It is possible to more closely approximate an exact solution by 

graphical means if the exact form of the voltage-current characteristics 

of the vacuum tube are known. In recent years considerable attention has 

been devoted to several methods of graphical solution of various nonlinear 

differential equations. These graphical methods have the merit of pre­

senting a pictorial representation of the solution to the equation under 

study but are often tedious and exacting if accurate detail is desired. 

A graphical method of solution of van der Pol's equation was originated 

by Lie'nard . His method is described in lucid form by le Corbeiller . 

The basic method is briefly outlined here. 

A second-order differential equation may be converted into a first-

order equation by a change of variable. For example, consider Figure U« 

Equations describing the currents and voltages in the circuit may be 

written as 

i + I + C iS + F(V) = 0, (13) 
R dt 

and 

V = L - § (1U) 
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where F(V) represents the current through the equivalent resistance R . 
n 

If the substitution 

f(v) = | * F(v) (15) 

is made and the time variable is eliminated by the relationship 

$L - d7 di m V dV 
dt "* di * dt L # di (16) 

one may write 

i + f(V) + £ v , ||- 0, (17) 

whence 

di C _V_ 
dV '* " L * i + f(V7 (18) 

In equation (18) the slope of the curve relating i and V is stated 

in terms of those same variables. By calculating the slope at succeeding 

points it is possible to sketch the solution curve with considerable accu­

racy. This process is often called the method of isoclines. 

A number of other graphical methods of solution appear in the 

literature. A unique and powerful, but tedious, method is described by 

Hsia . The process in this case involves a combination of summations 

and of finite differences to replace a combination of integrals and de­

rivatives. If the second-order nonlinear equation 

2 
4-f • f(x) . |f + g (x) - h (t) (19) 
dt2 d t 
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is integrated once there is obtained 

|r + F(x) + H(t) • K3 (20) 

where 

f (t 
F(x) = \ f(x) dx, H(t) = \ h(t) dt. 

'o /o 

Letting Ax be the increment of x(t) for a small time interval At and with 

x the value of x at t = nAt one may write for the instant nAt n 

, x - x , Ax 
dx . n n -1 . __n 
dt At " At 

(21) 

and 

g(x)dt - K = Sn(t). (22) 

The use of equations (21) and (22) and the substitution 

•< - tan"1 ^ (23) 

permits one to write equation (20) for a particular small increment of 

time, as 

Axn tan -< + F(xn) + Sn(t) = H(nAT) (2li) 

a form which can be conveniently displayed piecemeal by graphical proc­

esses. A solution of van der Pol's equation can be readily determined 
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but if considerable accuracy is desired a large number of small increments 

must be utilized and thereby contribute to the tedious detail. 

The remaining references to be cited, and these without descrip­

tion, refer to a graphical method of solution of nonlinear equations des­

ignated as the phase-plane process. The basically similar methods have 

been lucidly described by Boland ' and by Ku^ . Each entails the con­

version of the second-order nonlinear differential equation into a first-

order equation relating velocity and displacement, given as 

« F(t) + G (vnx) 

£ - v l > ^ 

and relating the solution to the slope of the curve involved. 

This brief outline of various methods of treating van der Pol's 

equation indicates the difficulty involved in obtaining a solution. It 

has, therefore, been usually considered appropriate by many authors to 

discuss the behavior of the oscillator from a physical standpoint without 

primarily laying stress on mathematical rigor. In this way it is possible 

to make certain simplifying assumptions which permit more of a direct 

solution to the basic equation describing the oscillatory condition. A 

justification of the assumptions made may then be obtained by experimen­

tal means. The next two sections of this paper include several simplified 

theories which apply to an oscillator which is subjected to a forcing 

function and which as a result may achieve a steady-state frequency and 

amplitude different from that of its natural or free-running condition. 

Under prescribed conditions the frequency of the oscillator may become 

equal to that of the forcing function. This condition, usually 
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designated as that of synchronization, is of primry interest in this 

paper and will serve as the basis of the following discussion. 

Simplified Theories of Synchronisation of Oscillators by C-W Signals 

If to the feedback oscillator of Figure 3 there is added a voltage 

E = P sin ox.t in the grid circuit the differential equation of the cir­

cuit is essentially identical to equation (l) except that the new voltage 

appears as an added term. Van der Pol offered a method of solution of 

this equation which is quite similar to that of the method of variation 

of parameters employed with the free-running case. 

The essential step in van der Pol's procedure consists intaking 

for the voltage v(t) a solution of the form 

v(t) = b.,(t) sin ayt + b„(t) cos aLt (26) 

in which the functions b.(t) are assumed to be "slowly" varying functions 

of time, or, in other words, that the motion is essentially an oscilla­

tion with the frequency ox. of excitation but with slowly varying ampli­

tude and phase. The latter assumption is to be interpreted that the 

first and second-order derivatives of b,(t) and bp(t) are themselves very 

small. 

If equation (26) is differentiated twice there result two equa­

tions, the first containing b,,bp, and their first derivatives, the sec­

ond containing their second derivatives in addition. In actual solutions 

the second-order derivatives are neglected but the presence of the basic 

quantities and their first derivatives permits the separation of the 

original second-order differential equation into two first-order equations. 
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These two equations form the basis of extended discussions of the ampli­

tude and stability of the oscillations. The details are too numerous to 

describe here but a very complete discussion can be found in Stoker's 

(H) 
text on nonlinear vibrations . The significant results are displayed 

in the form of a family of response curves which are plotted against the 

"detuning", the frequency difference between that of the forcing function 

and of the free-running oscillator, and which employ the amplitude of the 

forcing function as a parameter. The resulting amplitude of oscillation 

and the regions of stable and unstable oscillations are illustrated in a 

series of figures presented by Stoker. 

The results of purely analytical studies of basic nonlinear equa­

tions are less simple to apply than are the conclusions reached by other 

authors who have employed a more physical line of reasoning. As an ex­

ample one may consider a very important paper which is ascribed to 

(9) Adlerx . He has studied the voltages and currents in an oscillator which 

is subjected to a synchronizing voltage and by a method of direct reason­

ing has obtained a fundamental differential equation which relates the 

relative phase of anode voltage, grid voltage, and externally injected 

voltage. His results have been widely utilized as a basis for more ex­

tended analysis. His method may be most easily understood by reference 

to Figure 5-

Figure 5> illustrates a tuned-plate oscillator, although the anal­

ysis is equally applicable to other varieties of harmonic oscillators. 

In the vector triangle shown the grid voltage is evidently the sum of 

the injected voltage V and the feedback voltage V„. The phase angle 0 
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between V R and V is a function of the resonant frequency and figure of 

merit of the tuned circuit and of the frequency of the forcing signal. 

It is known that in a simple tuned circuit, for small deviations of 

frequency, 

0 = 23 (« . B ). (27) 
O 

It is also evident from Figure $B that, for small 0 

-. V sin 9 Vn sin 0 
0 = tan'1 - ^ = -±^ , (28) 

g g 

and if equations (27) and (28) are combined, there is obtained 

03 ~ % = 2§ * V~ sin 6* ^29^ 

d6 

It is further evident from the same figure that if -rr is non­

zero a frequency transient exists. In this case the frequency <a dif­

fers from the injected frequency ax. by the relationship 

t ^ - to = | | , (30) 

which may be rewritten as 

K - »„> -<• - •<>>- i • <»> 

Now if the expression for (to - to ) from equation (2?) is sub­

stituted into equation (31) there is obtained the very important non­

linear differential equation 



21 

I - (Mi - V - inr sin e- <*> 
g 

It is convenient to write this as 

I • *s - *0
 s t a e> (33) 

where evidently, co = ecu - to and represents the difference between the 
S ^o Vl 

injected and free-running angular frequencies, and co = ? Q ? , which 
o 

will be shown to be equal to one-half the band of synchronization. 

The symbols to and co will be widely used throughout this paper. 
s c 

They may be represented as regions of a frequency spectrum in Figure 6. 

Their significance is illustrated. 

The injected angular frequency to. falls at point (B) of Figure 6 and 

differs from the free-running frequency by the quantity to • Point B 
s 

might equally well fall between points A and D without changing the phys­

ical conditions. Solutions of Adler's equation (32), to be discussed in 

some detail in later paragraphs, show that the angle 6 progresses montoni-

cally to some final and constant value 6 when the input is a c-w signal 

and co, falls within the limits C to D. 

An introduction to the concept of the synchronizing phenomenon can 

hardly be completed without the mention of two more important papers which 

seek to explain the action. The first is by Huntoon and Weiss and 

the second by van Slooten^ . Their papers approach the problem from 

widely divergent standpoints but arrive at the same conclusion as was 

attained by Adler. The analysis due to Huntoon and Weiss makes use of 
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FIGURE 5. VOLTAGE RELATIONSHIPS IN A DISTURBED OSCILLATOR. 

W r co. 
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B C 

FIGURE 6. SYNCHRONIZATION FREQUENCY BANDS. 
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a fictitious series impedance in the feedback circuit of the oscillator 

with the injected synchronizing signal then expressed as equivalent to 

an IZ drop in the fictitious impedance. By defining a complex set of 

compliance coefficients the authors obtain a differential equation which 

is very similar to that of Adler and the solution of which defines the 

transient change of phase of 6 in precisely the same form, if certain 

simplifying assumptions are made. 

Van Slooten describes the mechanism of synchronization in terms 

of periodic pulses of current which are injected into the tuned circuit 

of an LC oscillator. He determines the phase and amplitude variation 

resulting as incremental variations, and with these establishes a dif­

ferential equation relating frequency (a function of the phase shift), 

voltage, and period of the injected current pulses. This equation again 

closely resembles that due to Adler, if appropriate analogies are made 

between currents in the tuned circuit and voltages in the grid circuit. 

The final important result, however, is that the solution of the equation 

describes a transient rate of change of phase in a manner essentially 

identical to that of the solution of Adler's equation and to that of 

Huntoon and Weiss. 

The preceding references have been briefly mentioned to show that 

the solution of a nonlinear differential equation equivalent to that in 

equation (32) represents the conclusions common to many authors. This 

solution will now be described in some detail. 

Solutions of the Nonlinear Differential Equation of Synchronization. 

The nonlinear differential equation was given in most compact 
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form as 

ir = to - <a sin 9. (32) 
dt s c 

The condition of synchronization is evidently attained when d9/dt equals 

aero, at which time 

co = co sin 6 . (3li) 
s c 

The maximum value of co occurs when sin 9 = + 1, at which time 6 = + 90 . 
s — — 

Two important conclusions may be deduced: 

(a) The maxijiium phase angle which can exist between the input 

voltage V and the oscillator voltage V is 90 , and this condition 

applied when the frequency of the input signal lies at that point of the 

band of synchronization most remote from to , 

(b) The half-width of the band of synchronization is equal to 

co , which was defined in equation (29) as 

COQ V 

<°c = WT • (3iJ) 

g 

The nonlinear equation (32) can be solved by direct integration, 

(12) 
using formula U36.00 of Dwight's Table of Integrals , with the results 

(13) expressed in closed form. Jones has developed the results in the 

form 

-1 1 
0 = 2 tan 

co 
s 

co - L 2 - co 2 tanh ^ /co 2 - co 2 ( t + t )J , (36) c i / c s 2 J c s o ' i * 

i f co / co . Also, i f K = co /co , t h i s can be rewrit ten as s \ c s c 
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9 = 2 tan 
4 [if - S ? tanh Mc ^ H ^ (t + v] • (36a) 

Also, i f oo ><o , the solutipns are 
s * c 

e = 2 t an" 1 — 
CO 

s 

CO 

c 
• Y* - %

2 tan \ J* / - <oc
2 (t • to)] , (37) 

or 

_ 1 [ l + ^ i T ^ t a n I *c ^ < t + t o > ] • <3?a> 0 = 2 tan 

These two equations illustrate the important difference between 

the synchronising action of a signal which lies inside the band of syn­

chronization (co to ) and one which lies outside the band, (to to ). 

s c s c 

In the first equation, (36), which is applicable to a signal within the 

band, the phase angle 0 is seen to be a function of the hyperbolic tan­

gent of (t + t ). Since the quantity tanh (t + t ) is known to approach 

unity in an asymptotic manner as t increases without limit, the angle 0 

will approach a final value of 6 , where 8 becomes 
0 0 

2 2 
CO - / CO - CO 

e . 2 tan'1 - ^ L _ 5 5- , (38) 
s 

by virtue of equation (36) and the limiting value of tanh (t + t ). 

If the signal lies outside the band the effect upon the phase 

angle 6 is described by equation (37). As t increases the quantity 

- /co - co (t + t ) will pass through ^ , ~ , — > , etc., and 
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the tangent of the angle will pass through + 00, - GQ> , etc. At these 

instants 6/2 must be 5 > 75̂  3 etc. It is evident that within 

the band of synchronization the phasing action is well-behaved and orderly 

but that outside the band it can become violent and erratic. Experimen­

ters have found that the frequency spectrum in the latter case may, at 

its least stable point, be so violent in fluctuation as to defy photog­

raphy on presently available panoramic display systems. 

It is to be emphasized that the preceding analysis has been con­

cerned with the action resulting from a c-w synchronizing signal (or its 

equivalent in terms of current). It will be demonstrated in succeeding 

pages that the phasing actions, both the orderly one within the band of 

synchronization and the fluctuating one outside, may be put to use in a 

synchronizing action when the input signal is a periodically interrupted 

c-w wave. 



CHAPTER III 

TRANSIENTS IN PERIODIC MODULATION AND RELATED TOPICS 

Experimental Observations as Related to the Problem 

A large number of problems in applied mathematics and physics 

have found their origin in the observations of experimenters. If a phe­

nomenon is observed, can be repeated, and is subject to controlled ob­

servation then it may be presumed that a relationship between its vari­

ables and parameters may be found and expressed in analytical form. Sim­

plifying assumptions must often be made before a working solution can be 

obtained, and discrepancies between analytical and experimental results 

arise if the factors neglected in the analysis process are significant. 

However, it is very often possible to arrive at certain equations or for­

mulas which within certain specified limits of error completely describe 

the physical process from which the problem originated. 

Experimental observations have been utilized extensively in the 

present study and have provided definite clues to the manner in which 

the analysis should proceed. It was mentioned in the introduction that 

the preliminary experiment demonstrated conclusively that a form of syn­

chronization was actually effected, because the average frequency of the 

oscillator was found to be identically equal to that of the synchronizing 

signal, if testing and measurement was restricted to a limited region 

centered at the free-running frequency of the oscillator. It was also 

mentioned that there was evidence of phase-modulation in the output of 
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the synchronized oscillator. This last-named effect provided the most 

important single clue as to the mechanism of synchronization. The man­

ner in which a study of the changing phase angle of the oscillator con­

tributed to a solution of the problem is best understood by a detailed 

description of a controlled experiment which supplemented that mentioned 

in the introduction. 

In this experiment the response of the oscillator to a c-w syn­

chronizing signal was first obtained. The circuit arrangement of the 

tuned-plate oscillator shown in Figure $k was utilized and the phase 

angle between the input and output voltage was studied by means of 

Lissajou patterns. In the first portion of the experiment the angular 

frequency, co-, of the injected signal was varied slowly and the angle 9 

(as illustrated in Figure £B)was studied. Synchronization was obtained 

by adjusting the input frequency until it was very nearly equal to that 

of the free-running oscillator. In succeeding steps the angular differ­

ence between injected and free-running frequencies, co = COL - <a , was 
s x o 

increased. The Lissajou pattern which illustrated the magnitude of the 

phase angle 9 was of simple form for all frequencies of input which pro­

duced synchronization, consisting of a straight line when co. was equal 

to co and appearing as an ellipse for all other frequencies. 

If the response of the tuned circuit of the oscillator is symmet­

rical about the free-running frequency then it is invariably observed 

that an open circle (6 =90 ) represents the limiting point of synchro­

nization and that any attempt to increase further the angular frequency 

difference co results in a "break" in the pattern and the appearance of 
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a rather violent beat-frequency effect in the envelope of output volt­

age. If, however, the circuit response is not symmetrical the phase 

may advance to an angle of greater than 90 on one side of oo and of 

less than 90° on the other side. The region within which synchroniza­

tion persists, the "band of synchronization" is thus seen to be unsym-

metrical about the center frequency in some oscillators. In the experi­

ment being discussed efforts were made to insure near-symmetry in order 

better to interpret the effects of the next portion of the experiment. 

An equipment arrangement which was considerably more complete 

than that described in the introduction was prepared. This arrange­

ment is shown in Figure 7 and permits both the generation of an inter­

rupted wave train and a fairly complete analysis of the output of the 

oscillator. It is evident that the frequency of the output, the spec­

trum of the output, and the variations of the phase angle between input 

and output can be simultaneously studied by means of this arrangement. 

In this portion of the experiment procedures identical to those 

with a c-w synchronizing signal were employed, except that the synchro­

nizing signal was interrupted (gated) with a modulating frequency f . 

The resulting synchronizing signal is illustrated in Figure 8. 

It was now observed, upon introduction of the voltage of Figure 8 

as a synchronizing source, that the synchronizing action could still be 

effected. It was found that there existed a band of frequencies, centered 

at f , within which the frequency of the oscillator, as recorded by a 

frequency counter, was exactly equal to frequency of the input. This 

band could therefore be termed a "band of synchronization", but it was 
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WAVE TRAINS. 

FIGURE 8. INTERRUPTED WAVE-TRAIN AS SYNCHRONIZING SOURCE. 



31 

observed to be much narrower than the similar band produced by a c-w 

synchronizing signal of the same amplitude. 

The type of Lissajou pattern formed by the introduction of the 

original frequency upon the X-axis and the oscillator output upon the 

Y-axis of the oscilloscope provided significant information. In a pre­

liminary test it was observed that when the modulating frequency was 

relatively high with respect to the angular frequency difference, (i.e., 

co / CCL - w ), the Lissajou pattern behaved almost exactly as it did when 

a c-w synchronizing signal was applied, opening to a full circle (6 = 90 ) 

at the extreme limit of the synchronization band. But if the modulating 

frequency was decreased, all other parameters remaining unchanged, the 

pattern became quite different, 

In order to study the changing patterns, it was necessary to pro­

vide a form of synchroscope action. This was achieved by injecting the 

rectangular gating pulse into the Z-axis. With this arrangement it was 

possible to observe separately the pattern during the "on" time (pres­

ence of synchronizing signal) and during the "off" time (absence of syn­

chronizing signal). Further careful study of the patterns revealed that 

the phase angle, 6, behaved in a manner which was determined in part by 

the position of the synchronizing signal within the synchronizing band. 

The behavior of 9 was also affected by the ratio of the modulating fre­

quency to the frequency difference between that of the input and the 

natural free-running frequency f . Inasmuch as the greatest phase ex­

cursions were observed at the edge of the band of synchronization pri­

mary consideration was given to the action in that region. The effect 
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upon the phase angle is best described by reference to a series of photo­

graphs which apply to different conditions and varied parameters. These 

are shown in Figure 9 and illustrate three separate conditions. 

Each part of the figure represents a condition wherein the syn­

chronizing signal lies at or very near the edge of the band of synchro­

nization. In the upper figure, part (A), the modulating frequency is 

relatively high and the phase angle is seen to be nearly equal to °0 at 

all times. However, as the modulating frequency is decreased it is evi­

dent that the phase angle undergoes a greater excursion. Finally, with 

low modulation frequency the excursions become very large. 

Careful study of the photographs of part (C) reveals four signif­

icant features. First, the excursions of the phase angle are much greater 

than was the case when the modulation period was short. Second, the mag­

nitude of the total excursion during the "on" time exactly balances that 

during the "off" time. Third, the rate at which the phase progresses 

(i.e., the spacing between lines) is uniform during the "off" time but 

is non-uniform during the "on" time. Finally, when the modulation period 

is long the phase angle reaches and maintains, for a portion of the in­

terval, a constant value (heavy ellipse of section (C). This constant 

value corresponds to the constant angle maintained during synchronization 

by a c-w signal. As a final and separate observation, it will be noted 

that the phase angle varies, in section (C), between limits which roughly 

appear to be of the order of h$° - 13$°. 

These observations provide very helpful clues in development of 

analytical relationships. It will be found that all of these observations 
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(A) L - 12,100 fm = 1800 

(B) L = 12/00 fm m 750 

(C) L = 12,100 fm = 300 

FIGURE 9 . LISSAJOU PATTERNS ILLUSTRATING PHASE MODULATION IN OSCILLATOR. 
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can be explained in the light of established theory and that the tran­

sient conditions of phase can be predicted in terms of circuit parameters. 

The necessary analytical relationships are developed in succeeding sec­

tions. However, consideration of one additional experiment will prove 

helpful in establishing the validity of assumptions which must be made. 

A further insight into the behavior of the phase angle 9 may be 

gained if the synchronizing bandwidth of the oscillator is increased to 

a value considerably in excess of normal or usual conditions. Such an 

increase can be effected by decreasing the Q of the tuned circuit, or by 

increasing the ratio of V_/V . The increased bandwidth permits the es­

tablishment of to = ca. - o) as an appreciable percentage (10 per cent or 

greater) of to , the free-running angular frequency. In this case the 

individual cycles of voltage of angular frequency co and OCL will vary in 

period by at least ten per cent. They may be observed and compared on 

an oscilloscope with calibrated baseline, 

If the Q is decreased, or the ratio V../V increased so that the 

oscillator can be synchronized by a frequency markedly different from 

its free-running one, then a significant experiment can be conducted. 

The oscillator output is injected simultaneously into two oscilloscopes, 

synchronized Z-axis modulation is applied, and the waveforms occurring 

during "on" and "off" time are compared. For further reference, the 

waveforms occurring when the oscillator is allowed to free-run, and the 

waveform occurring when the oscillator is synchronized by a c-w signal 

of same frequency as used in the interrupted wave-train portion of the 

experiment, are observed and recorded. The various waveforms are illus­

trated in Figure 10. 
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FIGURE 10 . VARIATION OF INDIVIDUAL CYCLES OF OSCILLATOR. 
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The experiment illustrated by this figure involves the following 

steps. The oscillator, of natural (free-running) frequency co , is cou­

pled to the X-axis of an oscilloscope. The baseline upon which a por­

tion of the signal appears is varied until an integral number of cycles 

appear between two reference points. These points are represented by 

a and b in each section of Figure 10. This baseline calibration remains 

fixed during the remainder of the experiment. In the next step a c-w 

synchronizing voltage whose angular frequency is about 15 per cent less 

than to is applied to the oscillator. This frequency is chosen as one 

which lies within the band of synchronisation, consequently the oscil­

lator is "locked" to the input and the oscillator now runs at the fre­

quency of the c-w signal. About five and one-quarter cycles of oscil­

lator voltage appear between the calibration points a and b, whereas six 

cycles previously appeared in the absence of synchronizing signal. (Com­

pare Figure 10A. and 10B). 

The next and final steps involve the use of an interrupted signal 

as a synchronizing source. The signal is obtained by "gating11 the c-w 

signal just described as a synchronizing source, hence the output of the 

gating circuit is of the form of Figure 8. In order to study the action 

of the oscillator during the time the signal is applied (the "on" time) 

and during the time it is absent (the "off" time), Z-axis modulation is 

furnished to the oscillator by the pulse generator which simultaneously 

gates the signal input. Synchroscope action is thus obtained and the 

waveforms existing during either of the referenced times can be inde­

pendently studied and compared. 
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Figure IOC shows the situation daring the "off" time. The oscil­

lator voltage is observed to be identical to that occurring during the 

free-running condition, both in amplitude and in frequency. The same 

number of cycles occur within the time base a-b as were present when the 

oscillator was free-running. The significance of this observation is 

better understood by comparing this waveform to that which is present 

during the "on" time, illustrated in Figure 10D. This section (D) shows 

that the waveform in the presence of the synchronizing signal corresponds 

to none of the others, there being fewer cycles, (approximately four and 

one-half) within the period of comparison than were found in either the 

free-running or the c-w synchronized cases. 

The conclusions reached from experimental results may be summarized 

in the following statements. 

(a) During the "on" time, during the presence of synchronizing 

signal, a phase transient occurs which results in the frequency being 

different from both ox. and to , where OL and co are, respectively, the 

angular frequencies of the injected synchronizing signal and of the free-

running oscillator. 

(b) Daring the "off" time, when no synchronizing signal is pre­

sent, the oscillator frequency is equal to co . 

(c) Inasmuch as the average frequency during a modulation period 

is exactly equal to ox^, the average frequency during the "on" time must 

be co_ + Aoo. If the interrupting gate is of the square-wave type, so that 

the "on" and "off" times are equal in duration, then Aco must be the neg­

ative of the corresponding Aco occurring during the "off" time. This has 
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already been shown to be co - co. - <a . If the interrupting gate has the 

form of rectangular pulses, for which the on and off times are of unequal 

duration, then it may be shown in the same way that 

2n 
co - tn 

*1 s 

where the tijne intervals are illustrated in Figure 8. 

The action may be interpreted on a basis of phase deviations in 

the following manner. If the frequency is exactly equal to co it is 

evident that 

T = 2TI/CO - T 

' m 
§ . d T • 0 (UO) 

which can be more precisely expressed as 

-r- h rr= zn/«n 
^ dT + ) § dT = 0. (Ul) 

'r= o dt r- tx
 dt 

In the light of the conclusions reached from experimental data, and from 

Adler's differential equation, equation (itl) can be expressed as 

(U2) 

This equation will be used as a basis for determining several of the re­

quirements for synchronization. 

h r2nK 
(co - co sin 0) dt + s c co dt * 0. s 

0 
\ 
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Another important aspect of the phenomenon concerns the frequency 

spectrum of the oscillator voltage. Inasmuch as phase modulation is 

seen to occur during each portion of the modulation (gating) period the 

spectrum may be predicted to be of the form resulting from phase modula­

tion and may be analyzed accordingly. 

One final important experimental result must be recorded. To ob­

tain the data upon which conclusions are based, the input angular fre­

quency a^j modulated (gated) with an angular frequency co , is injected 

as in the previous experiments and is then manually varied in the manner 

to be described. The input angular frequency is first made identical to 

£0 and is then decreased monotonically toward zero frequency. The pro­

cedure is then repeated, but in the reverse direction, the angular fre­

quency being reset to co and then increased monotonically toward infinite 

frequency. During this procedure the inputs and output of the oscillator 

are monitored with a frequency counter. Upon completion of the test the 

frequency, f, as recorded by counter, is plotted. Figure 11 illustrates 

the results. The input frequency, f,, is utilized as the independent 

variable and is shown on the abscissa, while the actual frequency is the 

dependent variable and is shown as the ordinate. 

Two separate and important conclusions may be gained from this 

figure. First, it is seen that synchronization (f • f..) occurs over a 

band of frequencies centered around f . This region may be defined as 

a band of synchronization for the special case that this experiment con­

siders. The process might be termed "synchronization by the fundamental 

component of input signal". This terminology is made more significant 
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by next observing that similar regions appear at frequencies which are 

centered around the frequencies f + nf . Since these center frequen-
o — m 

cies correspond to the frequencies of the sidebands of the modulated 

input the situation illustrates a form of "side-band synchronization" 

and the first regions adjacent to f might be termed, "bands of syn­

chronization by first sideband of f-,", etc. 

The experimental results just stated are repeatable and control­

lable. They serve as a basis for an analysis of the synchronization 

phenomenon in accordance with principles stated in the first paragraph 

of this section. They incorporate the effect of several parameters 

whence it is evident that the analysis of the process may be expected 

to be more elaborate than in the case of synchronization by c-w signals. 

For example, such parameters as interruption frequency, f , and the 

ratio of duration of "on" time and "off" time are evidently important. 

In addition, the frequency spectrum of both input and output are perti­

nent to a discussion of the phenomenon and, although they are not truly 

parameters, are items necessary to complete the discussion of any specif­

ic synchronizing situation. 

Any analysis of the synchronizing process must include calcula­

tions of the deviations of the phase angle 6. This must be related to 

the condition that the sum of the phase deviations must be zero if syn­

chronization is to exist. An analysis should, in addition, establish 

the frequency spectrum which is found in the input signal and in the 

final oscillator voltage. These may be established by the usual methods 

of Fourier analysis, but with special emphasis upon the expected forms 
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of periodic structures peculiar to the problem under discussion. These 

are somewhat specialized, consequently the next several sections of this 

paper summarize aspects of Fourier analysis which will be required in 

later sections. 

General Forms of Fourier Series 

It is well known that any complex periodic waveform whose period 

is T = 2TI/W and which is presumed to exist throughout all time can be 

represented by the trigonometric Fourier series 

oo 

f («t) • a /2 + y (a cos ncot * b sin ncot) (U3) 

n=l 

where 

1 
a • -

n n 

'v. 

-n 

f(oit) cos ncot d(cot), (Uk) 

and 

b = - \ f(wt) sin neat d(oot). (US) 
n 11 

~/i 

It is perhaps less well known that the same wave form may be 

equally well represented in a complex Fourier series as follows, 

oo 

f (ort) = ]P Cn e^n* (1*6) 

n=-oo 
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where 

C n = h ) f(63t) e"JnC°rat *<«*>• ^ 7 > 
-Tl 

The forms represented in equations (U3) and (1*6) are identical, 

a statement that can be proved by expanding equation (h7) separately for 

n \ 0, n « 0, and n <̂  0, and then substituting the results into equation 

(1*6). Cuccia^"^ described this relationship in detail. By combining 

forms and utilizing the identities relating exponential and trigonometric 

forms the exact equivalence may be seen. 

The complex form may be derived in the following manner: 

Case I. n )>0 

When n is greater than zero 

e J m = cos nco t - j sin nto t, (U8) 
m ° m * x 

whence 

i r fn 

C = ~- \ f(cot) cos nco t d(cut) -j \ f(cot) sin nto t d(wt), (h9) 
' -71 -Tl 

which may be written, comparing equation (hh) and (h$)> as 

C L = a /2 - j b /2. (£o) 
+ n n' d n' w ' 

Case II. n <̂  0 

When n i s l e s s than zero 

-n(-n)co t . / r/, N 
e u ra = cos nto t + j s m nco t (51) 

m ° m w ' 
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whence 

cn 

f (» t ) cos nco t d(oyt) + j \ f(cot) sin nw t d(cot). (52) m x u ; N m 

which can be wri t ten as 

C-n= V 2 + 3V2- (53) 

Finally, it is evident that 

°n|= y<v2>2 + (V2)2- » ) 
The significance of the forms of C is, of course, that if the 

periodic function is even, only the real part will result and if odd 

only the imaginary part will result. If neither even nor odd it is often 

desirable to denote the value by use of equation (5U). This is illus­

trated in later paragraphs. 

The Complex Fourier Series in Phase Modulation 

In general, any wave of constant amplitude which is represented 

by a single rotating vector may be expressed as 

i = I eJ
9t (55) 

where 9. represents the instantaneous phase angle of the rotating vector. 

The instantaneous phase is related to the angular velocity of the rotating 

vector by the equation 

et = U t dt, »t - d8t/dt (56) 

where co. is the instantaneous angular velocity. 
1 
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The usual form of sinusoidal phase modulation i l l u s t r a t e s the 

process. In t h i s form 

e. = e + ae sin cot (57) 
U O IB 

where 

eQ - o^t. (58) 

By subst i tu t ing in to equation (55) one obtains 

i = I e J ( V + * e s i n %*> (5?) 

which may be written in the form 

i = i (eJ
Ae «** V ) (a*0]*) (60) 

The complex Fourier series may be written as 

OP 

i - K ]T Cn e
j n V ) e*°L* , (61) 

n= -

where 

• n / rn/m 
x \ / jA6 sin co tx -jnco t 
or \ (eJ m ) e J m , Cn 2^ ) <e m ) e m • <62> 

The combined exponential has been evaluated in many standard texts to 

yield Bessel functions of the first kind, whence equation (55) may be 

written as 

i - I 2 Jn(A6) ̂  + n%lt) ' • (63) 
n= - oo 
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There will now be given an example of the Fourier analysis of a 

phase-modulated signal which will later be seen to be almost directly 

applicable to the determination of the spectrum of an oscillator which 

is synchronized by an interrupted wave-train. The example is referred 

to as "Fourier Analysis of Square-Wave Frequency Modulation" and applies 

to a problem first solved by van der Pol ' but it is analyzed from the 

standpoint of phase modulation. 

Consider the Fourier analysis of the square-wave FM signal pic­

tured in Figure 12A. Inasmuch as phase is the integral of frequency, as 

given in equation (56), the phase deviation may be obtained and is shown 

in part (B) of the same figure. 

The instantaneous phase may be described as 

9 = ox-t + m(n + co t ) — ^ t ^ O (6k) 
TJ J. m co 

m 

= a \ t + m(n - co t ) 0 ^ t ^ — 
1 m a) 

m 

where 

m = &o/co " modulation index. m 

The complex Fourier coefficients may now be evaluated. Letting 

0 - co t, one obtains 
m 

1 f ° j(™ • *0 - n0) (" eJ
(OTI - * " °<« 0. (65) 

Cn " $ ) * " ""' * 
-n 

Performing the integration, and noting that e~* = (-1) , one 



obtains 

C = n , 2 2v n(m - n ) 

[ „*. - (-Dn] 

whence 

which may be written as 

C = 
2m . mn 

sin n = c^y 7^" TV "*" 2 ' 
*—' n(m - n ) 
Ti­

ll even 

O Q 

E 
2m am 

2 2^ C0S 2 » 
n= -oo 

n(m - n ) 
n odd 

Finally, the expression for the wave can be written as 

i = I 

<*& 

E 
n=l 

2m 

n(m - n ) 
sin (m-n) -r M<*i - n V } 

h6 

2m 
r 2 2. Turn - n ) 

I cos mn - (-l)n + j sin mn] , (66) 

a 
2ra 

/ 2 2\ n(m - n j 
J sin mn + [(-1) - cos mn ", (67) 

OO 

z 
2m / \ n 

2 2 — s:m (m~n/ 2 

n- -oo 
n(m^ - nc) 

all n (68) 

* (-l)n e j ( wl + <%*> 21 
+ — sun o~ e mn 2 

jca.t (69) 

The general aspects of this series are illustrated in Figure 13, 

where AGO is kept constant and a> is varied. 
c m 
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FIGURE 13. SPECTRUM BEHAVIOR OF SQUARE-WAVE FM. 
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For small values of m, corresponding to a value of to which ex­

ceeds Aco in magnitude, the energy is distributed among the carrier and 

the first pair of sidebands. As m is increased toward 2.£ the energy is 

spread out and quite well distributed among a large number of frequencies, 

but as m increases above 2*5 the largest spectral amplitudes occur in the 

vicinity of co + Acô  and ox. - Aax.. Finally, as <o approaches zero all 

the energy concentrates in those two spectral lines. 

It may be recognized that the upper figure of Figure (13) must 

correspond closely to the observed experimental synchronizing action 

described in the first section of this chapter and illustrated in Figure 

(9). The phase deviation during one portion of the period is actually 

linear and that during the other portion of the period is nearly linear, 

hence the spectrum of the oscillator voltage may be expected to reason­

ably approximate that of the upper figure of Figure (13). However, more 

precise formulas are developed in the succeeding sections. 

Trigonometric Fourier Series in Phase Modulation 

A generalized expression for a phase-modulated wave, due to 

Corrington is developed as follows. 

If the phase deviation term is expressed as 6(t), it is evident 

that an expression for the phase-modulated signal is given by 

i - I sin [ait • e(t)j 

= I sin cot cos 6 ( t ) + I cos oyb sin 9 ( t ) . (70) 

Now 
oo 

cos 9 ( t ) = J T an sin n9 + b n cos n9 , (71) 

n=0 L •" 
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and 
oo 

S i l l 0 ( t ) = y [*c s i n n0 + d_ cos nel , 

n=0 

(72) 

where 

Then 

6 = 2nf t - co t . m m 

i = I s i n cot / (a s i n n8 + b cos n6) L^t n n 

+ I cos cot / (c s in n6 4- d cos n6) 
£_• n n (73) 

By multiplying through by sin cot and cos cot, and expanding the 

terras, the equation becomes 

i = I E - {& + d ) cos (co - co )t 
2 n n m 

- 7T (a - d ) cos (co + co )t 
2 n n' m 

+ T? (b - c ) sin (co - a) )t 
2 n n' m 

+ 7T (b + c ) sin (co + co )t 2 n n m (710 

Spectrum of Wave Train Modulated with Rectangular Pulse 

The interrupted wave train of Figure 8 is obtained by modulation 

(gating) a c-w signal by a rectangular pulse, of the form illustrated 

in Figure lUA.. The frequency spectrum of a rectangular pulse is shown 

in part (B) of the same figure being computed according to the following 

analysis. 
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The coefficients of the Fourier series may be found, using the 

complex form 

C -
n 

CO 

m 
2ti 

n/ sa 
-into t ,. 

e d m dt, 

-n/co 

(75) 

or 

co Ji 
c = - . 
n -jZnnto 

-j(nw -) + j(nw -) 
m co - e m co 

in 

(76) 

- —T- sin nkit . nnk ' 
(77) 

where 

, m i k = — = =- = co T m 
duty cycle, (78) 

Since sin nk* is zero for all integral values of the product nk, 

the harmonic component whose number n is equal to l/k or multiples thereof 

will also be zero. For example, if the pulse is a square wave it will be 

found that all even numbered components have zero amplitude since for a 

square wave k is equal to one-half. Otherwise stated, the spectrum of a 

square pulse contains only odd harmonics of the pulse repetition fre­

quency, f . 

If Figure lk represents the spectrum of a rectangular pulse, then 

the spectrum of a sine wave which is amplitude modulated by the rectangu­

lar pulse can be immediately inferred from the well-known principle that 

the spectrum of an amplitude-modulated wave finds the spectrum of the 

modulating function centered about the carrier. The spectrum, to the 
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first zero of a sine wave of frequency f, which has been modulated by 

a rectangular pulse, of frequency f and of duty cycle equal to one-

third is illustrated in Figure 1!>. 

This concludes the summary of those elements of Fourier analysis 

which will be required in the succeeding analysis. The next chapter 

takes up the fundamental problem of the method by which synchronization 

may be obtained when the synchronizing signal is an interrupted wave 

train. 
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(A) 

(B) 

FIGURE 14. SPECTRUM OF A RECTANGULAR PULSE. 

FIGURE 15. SPECTRUM OF SINE WAVE MODULATED BY RECTANGULAR PULSE. 



CHAPTER IV 

MECHANISM OF SYNCHRONIZATION WITH INTERRUPTED WAVE TRAINS 

Phase Requirements in Synchronization 

In the case of synchronization by a c-w signal it has been shown 
V* 

that the vector voltages may 

be represented in the form 

shown in Figure 16 and that 
V/ 

de/dt = to - w sin e, where Figure 16. VECTOR TRIANGLE OF VOLTAGES s c 

co • co. - co and co = one-half of the bandwidth of synchronization = 
S J* O L» 

COQ Vx 

?A y . This quantity, it will be noted, is a constant for any given set 
g 

of parameters, co , V.., Q and V . 

It is evident that synchronization occurs when (in the c-w case) 

^ = co -co sin9 = 0, (79) 
dt s c ' 

in which case, 

6 = sin" co /co (80) 
s c 

and in the extreme limit of synchronization, when co = co , 
s c 

0 = sin"1 1 = 90°. (81) 

Obviously the conditions for synchronization are quite different 

when the synchronizing signal is periodically interrupted. An understanding 
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of the mechanism of synchronization in this case is facilitated by con­

sidering a special case of the nonlinear equation d6/dt = co - oi sin 6, 

s c 
Using K = co /co , t h i s equat ion can be r e w r i t t e n as 

| | = coc(K - s i n 6) (82) 

and, since eo is a constant, the change of phase angle is described by 

the quantity K - sin G, with GO playing the role of a simple scaling 
o 

factor. 

If the synchronizing signal is modulated (interrupted) by a rec­

tangular pulse, the basic criterion for synchronization was shown in 

equation (U2) to be 

t , = TI/CO /̂ 2rc/co 
... f m ( ' m 

(co - to s i n 6) d t + \ w d t = 0 
s c j s 

0 \x 
or 

\ (2n/\ 
\ (K - s i n G) d t + coc \ K d t = 0 . (83) 

t . 

In the case of square-wave modulation, when t.. • T/2, the equation can 

be expressed as 

T/2 fT 

(K - sin e) dt = - \ K dt. (8U) 

0 A/2 

The special case to be now considered occurs when the modulating 

frequency f is relatively large and the oscillator is synchronized at m 
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one extreme limit of the band of synchronization. In Figure 9A photo­

graph of the change of phase angle in the case of high modulating fre­

quency and edge of synchronizing band showed that the angle 9 remained 

very nearly equal to 90 throughout the modulation cycle. 

If 0 is assumed to remain constant, then the function sin 6 may 

also be evidently assumed to be constant. In that case, equation (81;) 

can be evaluated with ease, becoming 

| (K - sin ft) - - p (85) 

whence 

K - ^f-e- . (86) 

If 0 reaches a maximum value of 90 it is evident that the maxi­

mum possible value that K may attain during square-wave modulation is 

one-half. In other words, the widest possible band of synchronization 

during square-wave modulation is one-half as wide as the band of syn­

chronization which would result from a c-w signal of equivalent ampli­

tude. The width of the band is maximum when the modulation frequency is 

high but is less when the modulation frequency decreases since in the 

latter case the angle 6 cannot remain at °0 and the average value of 

sin Q during a modulation cycle is less than unity. 

If the mechanism of synchronization is to be completely described 

it is evident that more generalized relationship must be obtained. A 

quantity yet to be determined is the maximum value of the angular 
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frequency difference to which can be utilized when the signal in inter-
s 

rupted at a specified modulation frequency. The maximum value of the 

ratio K = to /to conveniently represents this maximum value and will be 
s c 

referred to as K . It has been shown that in the case of square-wave max 

modulation that the largest possible value of K is one-half and that 
" max 

this value is attained only when the modulation frequency is high. Fur­

ther consideration of equation (8li) shows that for lower values of mod­

ulating frequency the values of K are smaller. It may be concluded 
JHEUL 

that for every value of modulating frequency there exists a maximum fre­

quency deviation K . In other words the bandwidth of synchronization 

is uniquely determined by the modulating frequency. 

To digress briefly from the analytical development of the solu­

tion, it seems desirable to comment briefly upon the physical aspects 

of the mechanism of synchronization since the equations to be derived 

achieve greater significance when seen as mathematical representations 

of apparent phenomena. The Lissajou patterns of Figure ° and the equa­

tion (83) both indicate that the phase angle 0 is an oscillating angle 

when the oscillator is synchronized by an interrupted wave train* Dur­

ing the absence of synchronizing signal the angle rotates in one direc­

tion at the angular velocity of to - to , during the presence of synchro­

nizing signal the relative gain, or loss, is made up and the angle ro­

tates in the opposite direction at the angular velocity to - to sin 0. 

With high modulating frequencies the modulation period is very short and 

the angle can change but little, during low modulation frequencies the 

period is long and the angle can rotate a significant amount. If the 
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magnitude of rotation during the absence of synchronizing signal becomes 

too great to be regained during the presence of that signal then synchro­

nization is lost. 

A mathematical development of an equation which defines the re­

lationship of the variables and parameters involved in the synchroniza­

tion process begins by consideration of the basic criterion for synchro­

nization. 

r= 2nMm 

| d T = o (HO) 
T- 0 dt 

and by combining the experimentally gained conclusions shown in Figure 

90 that the phase angle may include values of 0 which are greater than 

90° with the basic equation for G 

e = 2 tan"1 i - / ^ tanh °>JH^ <*+ v 06a) 

The requirement that the net phase must be zero when measured over 

a complete modulation cycle is now considered by restating equation (83) 

in the more explicit form, after the constant to has been divided out, as 
c 

(87) 

The quantity \ sin G dt is evaluated in the following manner. Using 

(K -- s i n 6) d t + 

/•2n/co 

\ K d t • 0 . 

0 

K 



the general equation for 0, one can write 

,sin 6 dt = \sin 2 tan 
-1 | . 4 ^ tanh J^- (ft,) dt. (88) 

This integral may be evaluated. If the substitutions, 

Tanh p = h - K2, cosh p = 1/K (89) 

are made, one can further write 

-1 0 = 2 tan" (cosh p - sinh p tanh 0) 

o + "^ /Cosh 0 cosh p - sinh 0 sinh fts 
* Xan ^ cosh 0 ; (90) 

— " ("*£}*>). 
Sin 6 can now be expressed as 

S i n e « 2 cosh (0 - p) cosh* 0 

cosh2(0 - p) + cosh2 0 
(91) 

and the integral becomes 

; 
Sin 8 dt * co sinh p 

c 

0 g 

2 cosh (0 - p) cosh 0 d0 

cosh2 0 + cosh2(0 - p) 
(92) 

The use of identities reduces this to 

co sinh p 
c ' 

1 

A 
<0 + | -

C 

>5 

;:. 

sinh p 

cosh2 0 + cosh2(0 p) 
d0 (93) 

2(0-0-.) ? 

co sinh p a 
c c 

-0 
seen (0 - p/2) tanh p/2 

L 1 - tanh2(0-P/2)tanh2p/2 
d0 (9k) 
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which is an elementary integral. One then obtains 

2(0 - 0X) 
co sinh S 
c 

2 L -1 ^__t- <ri .AO ^ ^ nJr, ._-! tan"1 tanh (0-B/2) tanh 6/2 - tan-J_ tanh (0-B/2) tanh 8/2 (95) 

where, as previously defined 

0 = co V1 ~ K (t + t ), and B = tanh"1 /l - K2. (96) 

Now consider the complete integral \ (K - sin 8) dt. The evalu-

r*i )° 
ation of the constant, that is, of \ K dt, is direct and gives as a 

result the quantity Kt-., The evaluation of sin 6 in its integral is given 

in the preceding equations and leads to the final form of equation (95). 

Now if the first expression of that equation, namely, 

2 (0 - 0X) 
OJ sinh B c r 

is reduced by replacing 0 and B by their equivalent expressions from equa­

tion (96) it is found that the final result is also the quantity Kt... 

The two equal quantities, Kt-, vanish by virtue of the negative sign pre-

r\ 
ceding sin 6. Accordingly, the integral \ " (I - sin 6) dt reduces to 

jo 
the negative of the term in brackets in equation (95). 

Relationships involving the parameter K and the bandwidth of syn­

chronization can now be determined. The first step is to replace the 

terms in equation (87) by their evaluated equivalents. If this is done, 
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and the quantities 0 and j3 are again replaced by their equivalents in 

terms of t and K, the result is 

2 tan"1 J ^ -

16? 
coc - £ — (tx + tQ) - tanh = _ 

Jl—K I 

-2 tan 
-1 jl-K 

\GF 
tanh . fiS t _ tanh"1 2 * , 

£F| 

l 
- cocK (211/a^). (97) 

This equation, (9?) is probably the single most important equation 

appearing in this paper. It will henceforth be called the EQUATION OF 

SYNCHRONIZATION. It is an equation which must be satisfied for every con­

dition of synchronization. Die left side show*; the change of phase angle 

that occurs during the presence of the synchronizing signal while the 

right side shows the change of phase angle that occurs during the absence 

of synchronizing signal. These changes must be balanced if the average 

frequency of the output, as measured over one complete modulating cycle, 

is to be identically equal to frequency of the input. 

Unfortunately, equation (°7)> the equation of synchronization, 

does not in itself uniquely define either of the quantities t1 and t for 

any specific value of K. Approximate methods which do provide a unique 

relationship between the maximum permissable frequency difference, defined 

as K , and the minimum permis sable value of t. can be employed by taking 

into account the simplifying assumptions which were employed in the case 

of high modulating frequencies. It will be recalled that, when the modu­

lating period is very short and operation is within but near the limits 

of the band of synchronization, the phase angle 9 must remain very close 

to 90 throughout the modulating cycle. This relationship is utilized 
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in the present analysis by assuming that, for high modulating frequencies, 

the angle 9 is equal to 90° when t = 0. 

Equation (36a) is referred to. This equation was given as the 

direct solution of the basic nonlinear differential equation d©/dt ~ 

®a "
 w« s^n 8- The solution, substituting K - co /to was given as s c s c 

e - 2 tan 
-1 1 Jl - K2 

K K 
tanh oo KH (t + V ) (36a) 

If now the additional substitutions, 9 = 90 when t * 0 are made, there 

is obtained 

CO t_ « 

c ° ^ 
tanh 

-1 1 - K 

£77" 
(98) 

for all w • 
c 

For this condition it may now be shown that the quantity (0 - p/2) 

vanishes, a result of the definition already given, 

Tanh p » j l - K2, cosh 0 - 1/K, (89) 

from which simple identities give 

P/2 
. -1 1 - K w 

tanh - - - 0.,. 

Jl - K* 
(99) 

With this identity the second term within the bracket of equation (95) also 

vanishes. Also, using 0, • p/2, the bracketed expression becomes 

Tan"1 [tanh (0 - 0-^ tanh 0.J 

« tan -1 1 - K 

JTT^ 
tanh o> A^? *i (100) 
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This result is extremely important in relating transient and steady-

state theory, as may be shown in the following manner. 

It will be recalled that the general criterion for synchronization 

is 

(K - sin 9) dt + \ K dt = 0 

o A, 
(87) 

a general solution to which is expressed by equation (97). For the pre­

sent modified case (8 - 90 , t = 0) the solution is relatively simple, 

becoming 

2 tan -1 1-K + u /l-R2 + tanh co — s — t. 
A ^ -r 

co K (25 - -fe.) 
C 01 1' 

m 

(101) 

and in the case of square-wave modulation, when t, = T/2, is simply 

(102) 
1-K K^ co fr-IT T co KT 
= = ^ t a n h ( ° i 

/ l - I T u 
•) = tan 

h ' 

Inasmuch as this equation is based upon the assumption that the period, 

T, is very short, a solution may be obtained by use of the first terms 

of the series: 

Tanh x - x - xr/3 , tan x = x + xr/3 (102) 

Utilization of the series for both the hyperbolic and the trigonometric 

tangents in equation (102) finally yields the relationship 

co T = 
c 

I h8 (1 - 2K) 

2K3- K2- K + 1 
(103) 

which shows that T—» 0 as K-* l/2. That is to say, f—>oo as £-» l/2. 
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This result shows, as was predicted by physical reasoning, that during 

square-wave modulation the maximum value of K is equal to one-half. Fur­

ther, since K is defined as the ratio co /to , the results also show that 
s c 

the maximum possible value of to , consistent with synchronization, is one-
s 

half of co . 
c 

The same procedure used in arriving at equation (103) may be ap­

plied for the relationships involved in other duty cycles. Restating the 

definition 

k = tx/T = duty cycle (10U) 

where 

T « 2n/a>m3 

a final relationship is developed as follows 

H—*—12 {K'k\ o (105) 

'k3 (K2 + K - 1 - K3) - (l-k)3K3 

from which it is evident that 

T-fO when K-» k. (106) 

The relationships expressed in equation (103) and (106) are sig­

nificant when transient and steady-state theory are compared. For ex­

ample, it was shown in the derivation of the Fourier components of pulse-

amplitude modulated waves that the amplitude of the fundamental component 

of the wave of duty cycle k was equal to the product of the amplitude of 

the unmodulated wave and of k, the duty cycle. Here, in equation (106) 
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it is shown that, for modulation frequencies which are large compared 

to the band of synchronization, the synchronizing action of an inter­

rupted wave-train of duty cycle k is less than that of the unmodulated 

wave in the ratio of k:l. In other words, the band of synchronization 

due to an interrupted wave-train which is interrupted at such a rate 

that oi /to yy 1 may be calculated as though the oscillator were re-

ceiving a c-w synchronizing signal whose amplitude was equal to the fun­

damental component of the interrupted wave train. Thus steady-state 

theory may be used to predict, in part, the expected response of the dis­

turbed oscillations. 

It has thus been shown that the bandwidth of synchronization may 

be computed if co /» ̂ / 1. However, a generalized expression by which 

to determine the band of synchronization for any value of the ratio GO /O> 

is required. The desired expression may be obtained through a method of 

maximization related to the deviation of the phase angle when the oscil­

lator is synchronized by the interrupted wave-train. The conditions which 

describe the phasing action within the band of synchronization are de­

scribed in the following paragraphs. 

Equation (97), the equation of synchronization, specifies that the 

total change of the phase, AG, occurring during the presence of synchro­

nizing signal (the left side of equation (9?) is exactly balanced by the 

change occurring during the absence of signal (the right side of the same 

equation). A graphical representation of the action is shown in Figure 

17. The various portions of each curve of that figure are explained as 

follows. 
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FIGURE 17. PHASE DEVIATIONS IN THE SYNCHRONIZED OSCILLATOR. 
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In the absence of signal (t, i£ t s£ 2n/co ) the rate of change of 

angle is given by d6/dt = COL- co -co • a constant, hence the slope 

of each curve in that portion of the period is equal to a constant value. 

This condition is illustrated in each of the three curves which represent 

different ratios of co /co . 

The phase deviations during the presence of synchronizing signal 

(0 ̂ t — t-i) is determined by the left side of equation (97) and is a 

nonlinear function of the time variable. Now if co is very large the 

modulating period is so short that the phase deviation must remain small. 

In addition, it has already been shown that under this condition the phase 

angle 9 remains very close to °0 throughout the cycle, hence the quan­

tity co (K - sin 6) is also very nearly a constant, and the effect is 
c 

to reduce the nonlinearity of the phase deviation curve to a minimum. 

This case is represented in part (C) of Figure 17• The other two curves 

represent cases of lower modulating periods wherein the period is suffi­

ciently long to permit considerable nonlinearity to develop. 

The particular item of interest in these figures which is signi­

ficant in the discussion of the bandwidth of synchronization is the ex­

cursion of 6 during any modulation period. This is represented in each 

part of the figure by the quantity d. 

It is evident that for each value of modulating period, 2n/co , 

there exists some maximum value of phase excursion d. Now the excursion 

d increases with increased slope of the straight portion of each curve, 

but this in turn becomes greater in direct proportion to the magnitude 

of the frequency difference, co - COL - co . Finally, the maximum possible 
S *'- O 
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value of co determines the bandwidth of synchronization for any particu-
s 

lar value of modulating frequency. 

Analytically, this maximum excursion of d may be determined by 

the method of undetermined coefficient, or Lagrange multipliers. The 

method includes the stated principle that if it is desired to maximize 

a function F(x,y), subject to the condition that another function is 

identically zero, that is, that 0(x,y) = 0, then the condition to sat­

isfy the condition of a maximum may be determined by the three simulta­

neous equations: 

X 4g -O, Jg 
2x 2x 

0(x,y) = 0. 

In the case under discussion the variables x and y are replaced 

by t, and t . If t, is set equal to kT the variables become T and t . 

These quantities appear in the basic equation (97) and inasmuch as that 

equation is used in the analysis here it is convenient to rewrite it in 

abbreviated form as 

2 tan" a tanh \ ^ ( \ + t ) - b - 2 tan" a tanh (ct - b) 

= to K (2TI/CO - t j = co K (T - kT) = to KT ( l - k ) , (108) 
c m J. c c 

cr 

2 tan"1 (a tanh A) - 2 tan"1 (a tanh B) = co KT (l-k), (109) 
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where 

1 - K . . -1 
a = a , b = tan a, c = oo h - r 

£ - K 
r , M « « * « , ~ ~ c 2 J 

A « c(t-j + t ) - b, and B * ct - b. (110) 

It is desired to maximize 

F(T,t ) - 2 tan"1 (a tanh A) - 2 tan"1 (a tanh B) 

subject to 

0(T,t ) * 0 = 2 tan"1 (a tanh A) - 2 tan"1 (a tanh B) - « KT (l-k). o c 

If equation (107) is utilized, there is obtained, after differen­

tiation and some simplification, the three following simultaneous equa­

tions T, t , and X. 

' o' 

co KX ( l - k ) 
" 2 — o * 0> 

(X + 1) 

ac (X • i ) 

i •*• t 2 
(a + 1) 

ac 

sinh2A 

ac 

1 + ( a 2 + 1) sinh2A 1 + ( a 2 + l ) siJih2B 
" 0, (111) 

and 0 (T t ) = 0. 

The solution is direct in this example because of the simplicity 

of the second equation. It is evident that it is satisfied if 

1 + (a2 + 1) sinh2 A = 1 + (a2 + 1) sinh2 B (112) 

which occurs if 

A = + B. (113) 
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The solution A = + B is trivial since in that case the excursion d 

would be identically equal to zero for all values of t. Therefore the 

solution A = - B must satisfy the conditions. If it is utilized, equa­

tion (109) can be written as 

- U tan"1 (a tanh B) = to KT (1-k), (111*) 
c 

and, since 

A = c(tx + t ) - b - c ^ + ctQ - b = et- + B , (115) 

and, with 

A - - B, also, with t, - kT 

there is obtained 

B = - ct.j/2 = - ckT/2 

so equation (llh) can finally be written as 

- h tan"1 (a tanh ^~) = c^KT (l-k). (117) 

This equation is extremely important because it permits calcula­

tion of the band of synchronization for any value of duty cycle k. It 

is best illustrated by an example. Let it be assumed that square-wave 

modulation is applied, in this case the duty cycle k has a magnitude of 

one-half. For simplification the scaling factor, co , can either be set 

equal to unity or incorporated into the time function (i.e., let to T = T 

as a new variable). Either method is valid, but in this example the value 
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of to will be taken as unity. Next, let the parameter K = 0.35* 

(Note: equation (103) showed that K cannot exceed a magnitude of 1/2 

when k = l/2). Now, with k - l/2 and K = 0*35 equation (117) reduces 

to 

- h tan"1 (0.69k tanh 0.17UT) = 0.175T. (118) 

This transcendental equation can be solved without great difficulty and 

in this case leads to an answer of approximately T = 13. Then co , which 

is 2n/T, becomes equal to 0.U8U. The given data and the results can be 

more generally stated as: given that the ratio of <o /co is equal to 
s c 

0.3£ it is found that the minimum permissable modulating frequency ratio, 

co /co , is 0.U8U-m c 

Equation (117) combined with equations (103) and (10$) permit cal­

culation of the band of synchronization for any prescribed condition. 

Data for three values of duty cycle have been computed and plotted in 

Figure 18. Data for the case of square-wave modulation have been computed 

and plotted in Figure 19. This latter figure also illustrates the results 

of experiments whose purpose was to determine the relationships expressed 

in equation (117). 

An example will illustrate the quantities described by Figures 

(18) and (19). Let it be presumed that an oscillator is subjected to an 

interrupted wave-train which has a modulating (interrupting) frequency 

f , a duty cycle k, and a frequency f,. The following data apply: 

f - free-running frequency of oscillator • 20,000 cps 

V - grid-voltage of free-running oscillator = 1.6 v. peak 

Q - effective Q of oscillator tuned circuit = £ 
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V.. = amplitude of synchronizing s ignal = 0.2 vo l t s peak 

k = duty cycle of interrupted wave t r a in = l / 2 . 

Then, 

co V 
co • J? y = 500n rad/sec, and f = 250 cps. 

a 

For this example, it has been assumed that the duty cycle, k, is 

equal to one-half. Then K , for high modulating frequencies, is also 

one-half, which is to say that f, must fall within the limits of 20,000 

+ 125 cps. Suppose that f, is selected to be 20,100 cycles. For this 

case K = f /f = 100/250 - O.U. Figure (19) is entered with this value s c 

of K, and the intersection of the vertical line K * O.U and the curve 

k = l/2, is located. It is then found that the ratio of co /co correspond­

ing to this point is approximately 0.55, whence the minijnum allowable 

value of co is 275n radians/sec and f - 137-5 cps. Therefore it is con-m m 

eluded that if synchronization is to persist under the assumed conditions 

the rate of interruption of the input signal must be equal to or greater 

than 137.5 times per second. Equivalent procedures follow for other values 

of duty cycle. 

The curves of Figures 18 and 19 are seen to assume the status 

of "Go-No Go" divisions. For any particular duty cycle, the region above 

and to the left of its applicable curve represents the area of synchro­

nization whereas that to the right and below represents the area of no 

synchronization. The curve itself of course represents the extreme limit 

of synchronization and is not presumed to represent a desirable condition 

of operation. It will be shown that the index of phase modulation becomes 
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large near the bounding curve but decreases as one moves to the left and 

up within the region of synchronization. 

Summary of Chapter 

It has been shown that the phase angle, 8, representing the in­

stantaneous phase between synchronizing signal and oscillator voltage, 

oscillates during both presence and absence of synchronizing signal. 

When the oscillation is within prescribed bounds synchronization may be 

attained, the basic requirement being that the net phase during a modu­

lation period shall be zero. If the oscillation exceeds the prescribed 

bounds synchronization is not possible. The maximum excursion of the 

oscillation increases with increase of modulation period, therefore it 

is evident that there is a minimum modulation frequency for which syn­

chronization can persist. 

It has been shown that the minimum modulation frequency and the 

maximum deviation of synchronizing frequency are uniquely related. It 

has been further shown that, for high modulating frequencies, the band­

width of synchronization is equal to the product of oi (the bandwidth 

with c-w synchronizing signal) and of k, the duty cycle. Since the am­

plitude of the fundamental component of the input is equal to the product 

of the unmodulated amplitude and of k, the duty cycle, it follows that: 

The synchronizing action of an interrupted wave train whose inter­

ruption frequency is such that as /co y> 1 is the same as though the os­

cillator were receiving a c-w synchronizing signal whose amplitude was 

equal to the fundamental component of the interrupted wave train. 



CHAPTER V 

FREQUENCY SPECTRUM OF SYNCHRONIZED OSCILLATOR 

Phase Deviations in Disturbed Oscillator 

In the introduction it was pointed out that if an oscillator is 

synchronized by a c-w signal its frequency spectrum is very simple. 

Prior to the injection of the synchronizing signal the spectrum contains 

energy at the free-running frequency f and its harmonics. After injec­

tion of a "locking" signal of frequency f.. the spectrum contains energy 

at the new frequency and its harmonics, the energy at the original fre­

quency having disappeared. If it is presumed that the synchronizing sig­

nal is a pure sinusoidal wave, containing the fundamental frequency f.. 

only, then any harmonics of f.. appearing in the output of the oscillator 

must be due to the nonlinear action of the self-limiting circuit. 

When the synchronizing signal is an interrupted wave train the 

frequency spectrum of the output must be expected to be less simple. That 

some complexity must exist may be inferred from a consideration of steady-

state theory and from transient theory. From the steady-state viewpoint 

one may consider the synchronizing signal as an interrupted wave train 

whose form and spectrum are shown in Figure l£. It is seen that the syn­

chronizing signal contains not only the frequency f, but also the frequen­

cies f, + nf . The presence of these added frequencies in the input 

would result in their presence in the output also. The oscillator, act­

ing as a regenerative amplifier, amplifies some frequencies and attenuates 
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others in amounts proportional to the selectivity of the amplifier (os­

cillator). 

A much more definitive approach is found in transient analysis, 

and the information relative to phase variations assembled in the previ­

ous chapter can be directly utilized. For example, it was shown that 

the basic criterion for synchronization was 

(\ (2nK 
coc \ (K - s i n 9) d t + o>c \ K dt = 0 (83) 

' 0 ' t x 

where 

6 = 2 t a n " 1 1 - £^ tanh -0 £ ? <*+ V (36a) 

and it was demonstrated that the miniinum modulating (gating) frequency 

for which synchronization could persist was given by equation (102). 

These minimum values were illustrated in Figures 18 and 19 by the curves 

which separate the regions of "synchronization" and those of "no synchro­

nization". 

It is convenient to begin an analysis by defining a modulation 

index of the form used in the discussion of square-wave frequency modula­

tion. This was given in chapter 3 as 

m = Aco/cô . (61*) 

An equivalent form applicable to the present analysis is 

m = ̂ V (±19^ 
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which is conveniently expressed as 

CO 

m = K — . (120) 
CO 

m 

Significant information applicable to the magnitude of the modu­

lation index can be obtained from the coordinate data of Figures 18 and 

19. These figures contain curves which define the limiting conditions 

for synchronization, but in particular they represent plots of functions 

wherein co is the independent variable and co is the dependent variable. 

Therefore it is evident that every point of each figure represents a 

specific ratio of co to co , and hence represents the specific modulation 

index which is associated with that point. 

Figure 19 is shown in part in Figure 20. The latter figure con­

tains boundary curves copied from the original figure and also includes 

several decimal values which are interpolated between segments of the 

boundary curves and appear at several points within the region of syn­

chronization. These numbers represent the modulation index (the ratio 

co /co ) which correspond to their respective positions in the figure. 

They show that, just as predicted in the previous chapter, the index 

corresponding to any selected value of K reaches its maximum value when 

co is the minimum for which synchronization is maintained, (that is, at 

the boundary curve) and decreases as co is increased. The increase is 

found, by definition of the modulation index, to be in inverse proportion 

to co . 
m 

A graphic illustration of the phase variations in each portion of 

a modulation cycle was shown in Figure 17 where it served as a guide in 
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determining the limits of the band of synchronization appropriate to a 

selected value of the ratio K = co /co . The same figure is useful in 
s m ° 

the discussion of the frequency spectrum because the linearity (or non-

linearity) of the variations in phase is illustrated therein. However, 

before attributing special significance to any part of that figure it is 

necessary to define the quantities considered and the parameters involved. 

The synchronising signal which is utilized was illustrated pre­

viously in Figure 8. It showed that the synchronizing voltage was applied 

between time zero and time t, but was absent during the remainder of the 

modulation cycle. It is repeated for reference in Figure 21. 

Inasmuch as the oscillator is to be synchronized to frequency f,, 

the variation of the phase angle 6 is referred to the vector which ro­

tates with angular frequency to,. This method of reference is in accord 

with the definitions used in previous sections. Then 

d6 . 0 -rr = to - co s i n G dt s c 

• co (K - s i n 9 ) , c 

OsS t f t x (121a) 

and 

| | - cos = » K, ^ 0 t - 2 n / c o m (121b) 

and if co is very large, 9 is approximately 90 (at the edge of the band 

of synchronization) whence sin 0 is then unity. In this case 

H * *c (K - 1). O ^ t - ^ (122) 
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Figure 17 graphically illustrated the variations of 6 for each 

of three values of the ratio co /co . In that figure, the time t,, which 
s m 1 

represents the instant at which the synchronizing signal is interrupted 

(becomes zero) has been chosen to lie on the same vertical line in all 

three examples. This location is a matter of convenience only and has 

no significance in the analysis. 

Consider part (C) of Figure 17. The curves shown illustrate the 

case given in equation (122) when co is very high and the rate of change 

of 0 is approximately a constant during the presence of the synchronizing 

signal. But the rate of change of angle during the absence of synchro­

nizing signal (t.,— t * 27t/co ) is always a constant and equal to co K. 

The straight lines in each of the parts (A), (B) and (C) have a slope 

given by co K. In part (C) the slope of the left portion is very nearly 

constant̂ , hence two constant slopes produce the triangular shape. 

Next consider the case when co is small, in part (A) of the fig­

ure. In this case the angle oscillates over a relatively wide range and 

the phase deviation follows the curve derived from the nonlinear equa­

tion for A 9 in the region t = 0 to t = t... 

The form of the frequency spectrum associated with each of these 

figures may be inferred by comparison of Figures 17(C), 12 and 13. These 

latter figures showed that if the phase deviations were linear and the 

modulation frequency was high then the spectrum was very simple, consist­

ing of a carrier, f-., and small sidebands of frequencies f, +; n£ . Now 

the triangular form of Figure 17(C) is essentially identical to that of 

Figure 12, hence it may be expected to be associated with a frequency 
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spectrum 13(A). Non-symmetry will result in some changes in the spec­

trum, but these will be changes in form rather than in substance. 

This somewhat special case of high modulating frequency is im­

portant because its frequency spectrum is simple and stable. It is there­

fore desirable to record generalized equations applicable to linear varia­

tions in phase which will permit calculation of the spectrum for any value 

of duty cycle. The analysis required has been performed and appears in 

the literature. The following discussion is due to Corrington . 

Spectrum of Rectangular Pulse F-M Wave 

A wave, the frequency and phase of which are given in Figure 22, 

is subjected to analysis. 

If the phase deviation, AG, is expressed as S(t) the equation for 

the modulated wave can be written 

e = E sin [oi + S(t)J 

- E sin tot cos S(t) + E cos cot sin S(t). (123) 

Since cos S(t) is symmetric about the origin it can be expanded in a 

cosine series. Similarly, sin S(t) is skew symmetric about the origin 

and can be expanded in a sine series. 

From Figure 22 

Cos S(t) • cos m9 0 ^ G -Enx 

„ cos mxin-e) nx ^ e ^ n (12U) 

o© 

= y b cos 2nn|xt, 

n=o 
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FIGURE 21. INTERRUFIED WAVE-TRAIN SYNCHRONIZING SIGNAL. 

FIGURE 22. PHASE AND FREQUENCY OF RECTANGULAR-PULSE FM WAVE. 
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where 

2 r 
b = — \ cos mO cos n0 d0 n n 1 

' 0 
n 

mx [7 
+ f \ (125) 

TtX 

and 

b~ = 7^7 s i n nirK- (126) 
O IUTK 

S i m i l a r l y , 

Sin S ( t ) - s i n me 0 ± G ±nx 

- s i n g J 2 - Q) n x ^ G - T i (127) 
.L ™ JL 

c s i n 2nnu.t, 

n=o 

where 

2 r l x 

c = - \ s i n m6 s i n n0 dG 

| \ s i n n ^ t * - 8> s i n n e d9. (128) 

' nx 

The i n t e g r a l s a re eva lua ted and the va lues of c and of b a r e 

s u b s t i t u t e d i n t he gene ra l equat ion (71;) t o g ive , f i n a l l y 
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e = —7 r~7 1—v si11 n x (m-n) sin (to + 2niui) t . (12?) 
it (m-n) (mx - nx + n) v ^ 

The carrier and first pair of sidebands are given as 

Carrier = E ^ E sin <& (l30) 
nmx 

First upper s.b. = ^ ^ ^ _ x + ^ sin nx (m-l) 

sin (w + 2nnn) t, (131) 

First lower s.b. = -^-—V®—^—^ sin nx (m • l) 

sin (co - 2nn̂ i) t. (132) 

The indeterminate cases must be evaluated separately: 

Case I. m = n ^ (b + c ) = x, 

Case II. T = -n 77 (b + c ) = —7 r 
1 - x 2 v n n n(m - n) 

sin itx(m-n) + (-l)n(l-x), (133) 

Case III. m * -n 75- (b - c ) = -x, 

Case IV. T - ^ - n ~ (b - c ) = 
1 - x 2 K n ir n(m + n) 

sin Tix(m + n) + (-l)n(l-x). 

If x - 1/2, Figure 22 illustrates square-wave frequency-modula-

tion and equation (12°) reduces to the same form as equation (68) an 
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equation which was developed directly from square-wave modulation using 

the complex Fourier analysis. 

Some aspects of the spectra are illustrated in Figure 23 for a 

few values of modulation index m and duty cycle k. Modulation indices 

of 0.25, 0.50, 0.75, and 1.50 are illustrated, and each of the correspond­

ing spectra is plotted for three separate values of duty cycle of 0.10, 

0.25> and 0.50. The frequency of the modulating signal has been maintained 

constant in order that the various spectra may be easily compared. 

It is seen for all values of m less than unity that the sidebands 

are relatively small compared to the carrier, but for modulation indices 

of 1.50 or greater the sidebands may exceed the carrier in amplitude. 

When the modulation index is equal to 1.5 and the duty cycle is equal to 

0.50 (a duty cycle of this value corresponds to that of square-wave modu­

lation) both the first and second pairs of sidebands are of greater ampli­

tude than the carrier. This condition is in accordance with the results 

obtained by van der Pol and described in chapter 3« 

Ihe modulation index of an oscillator synchronized by an interrupted 

wave train has been defined as the ratio of co to co and representative 
s m r 

indices computed from this ratio appeared in Figure 20. In the analysis 

thus far given the effect of phase modulation has been calculated upon the 

basis of linear rates of change of phase. When the phase change can be 

represented by straight lines the Fourier analysis results in the formulas 

already given. 

The actual rate of change of phase is nonlinear, although the de­

viation from linearity is in most cases insufficient to produce spectra 
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greatly different from those shown in Figure 23. An introduction to the 

actual form of the phase deviation was given in Figure 17 but numerical 

values were not included there. 

Actual magnitudes of A05 the phase deviation in an oscillator syn­

chronized by an interrupted wave train, have been calculated for two 

selected values of the ratio K - to /co chosen from data supplied in Fig­

ure 20. The values selected are representative of those existing when 

the modulation frequency is the minimum possible. That is, they represent 

indices lying along the curve which separates the region of synchroniza­

tion from that of no synchronization. It was previously stated, and it 

may be seen from Figure 20 that the largest indices are found at the 

bounding curve which also corresponds to the condition of greatese phase 

nonlinearity. 

The values of K which have been selected for illustration are 0.2 

and O.U. For each of these values of K the corresponding value of the 

ratio co / co has been determined from Figure 20. The phase deviation A0 
m c * 

has then been calculated and plotted for each value of K and by using co t 

as the total abscissa. The results are shown in Figure 2k where an arbi­

trary reference on the abscissa and positive and negative time intervals 

have been employed in order to present both curves on a comparative basis. 

The curves are best understood by considering the oscillator action 

corresponding to a selected value of K. For example, when K = 0.U, the 

modulation index found at the boundary curve in Figure 20 is given as 0,6. 

Hence K = co /co = 0.U and m = co /co = 0.6 from which it follows that s c — s m 

co T = 10. Inasmuch as square-wave modulation is involved, the time element 
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must be equally divided between presence and absence of synchronizing 

signal. This division may be observed in the figure. The succeeding 

steps in developing the curves includes determination, using equations 

(110) and (116), of the value of the quantity « t . It will be recalled 
c o 

that this quantity represented the constant of integration in the equa­

tion 

6 = 2 tan"1 i.^^CZ^g (36a) 

After determination of the value of the constant, discrete values of the 

angle 0 are calculated, employing values of 00 t between zero and + 5> 
c • 

(oi T - 10). The calculated values of 6 appear in the tables inserted in 

Figure 2h. The left portion of each curve of that figure represents the 

action of the phase angle during the presence of synchronizing signal, 

the right portion represents the action during the absence of synchronizing 

signal. 

The deviation from linearity of the left portion of the curve cor­

responding to K = 0.U is relatively small but is very much greater when 

K = 0.2. In the latter case the value of co T is calculated and shown to 
c 

be approximately twenty-four (-12— 00 t — 12). The considerably greater 
c 

time during which the phase angle may change results in the larger phase 

deviation calculated and illustrated. Time element is sufficiently great, 

in fact, to permit G to reach and maintain its terminal value 0 , where 
6 = 2 tan""1 (1 - ]l - K2)/K . 
o 

The usual methods of Fourier analysis may be employed to compute 

the spectra resulting from each of these curves but numerical integration 
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must be used in order to calculate the desired components. In Figure 

2% the spectrum for each of the two curves of Figure 2h are shown. The 

spectrum which would have resulted from the straight lines of Figure 2U 

(dotted plus solid) are also shown for purposes of comparison. 

The method of numerical analysis used to compute the components 

(17) 

follows that described by Scarborough in his text on numerical mathe­

matical analysis. A harmonic analysis of the curves employed the method 

in which 2i| equi-spaced ordinates are used and which results in approxi­

mate evaluation of the first eleven harmonics. 

The considerable nonlinearity of the reference curves leads to a 

difference between the resultant spectrum and the spectrum which would 

exist if the phase deviations were linear. Fortunately, operation of the 

synchronised oscillator may usually be expected to occur at frequencies 

other than those at the "edge of the band of synchronization". In this 

case the modulation index is much smaller and more nearly linear phase 

deviations result. Hence the spectra of Figure 23 may be utilized with 

small error in most cases. 

Experimentally determined spectra are shown in Figure 26. It is 

seen that these correspond in general form quite closely to those spectra 

computed and plotted in Figure 23, but that effects of nonlinearity appear 

in the form of nonsymmetry of the sidebands. Actually, a complete pre­

diction of the effect upon the sidebands must include one additional fac­

tor. This factor is the amplitude modulation which is present in an os­

cillator which is synchronized by an interrupted wave train. Such ampli­

tude variation is not great, if the synchronizing signal is considerably 
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smaller than the normal oscillator voltage, but its effect must be taken 

into consideration. The next section of this chapter described the ex­

pected magnitude of amplitude modulation and its effect upon the spectrum 

of the synchronized oscillator. 

Simultaneous Phase and Amplitude Modulation 

The amplitudes of the frequency components of a signal which is 

subjected to linear phase-modulation were computed in a previous section 

of this chapter. A general solution was given in equation (129) which is 

repeated here for reference, 

TrfE* 

e - 7 <r—J T — ^ — sin nx (m-n) sin (co + 2nnu.) t (129) 
^m-n; (mx - nx + n; n ' v ^' \ '/ 

which can be written as e = F(n) sin (to + 2nnu.)t, where F(n) represents 

the amplitude of the nth sideband. 

The analysis of the modulated signal considered the effect of a 

varying phase angle but did not consider the effect of amplitude modula­

tion. If amplitude modulation is present it will produce a change in 

the spectrum previously computed. 

It was shown previously that if the phase deviation, AG, is ex­

pressed as S(t), then the equation for the phase-modulated wave can be 

written as 

e = E sin [cot + S(t) 1 . (123) 

The presence of simultaneous amplitude modulation is expressed by in­

cluding a quantity M. (9) as a multiplying factor. If 6 again represents 

the time factor 2nu.t, the added multiplying factor is periodic with 
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the same period as the phase-modulating factor. In this case the change 

in the frequency spectrum resulting from the presence of amplitude modu­

lation can be computed in a relatively simple manner. 

The multiplying factor l\(Q) is expressed as in a Fourier series, 

as follows: 

V6^ = Ao + ^ ^An Sin n 6 + Bn C0S n G ^ (13i^ 
n=l 

whence the wave i s expressed as 

| A + ? (A s i n 2nTui t + B cos 2nnp. t ) 
n=. 

F(n) s i n (u + 2nii|x t ) . (135) 

The general solution of equation (135) involves many terms and 

the numerical calculation required may be very tedious if all significant 

terms are considered. Fortunately, the spectrum of the synchronized os­

cillator being investigated does not include a large number of sidebands 

of large amplitude. The sidebands resulting from phase-modulation were 

shown in the previous section to be, in most cases, considerably smaller 

than the carrier. The additional energy due to simultaneous amplitude 

modulation will now be shown to be quite small when the amplitude of the 

synchronizing signal is considerably less than that of the free-running 

oscillator voltage. 

The amplitude modulation which is generated is directly due to the 

varying phase angle 6. It was shown previously that the phase angle 9 

oscillates about some mean value and with a total excursion which is 
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subject to calculation. It was also shown that if the synchronizing sig­

nal was placed at either extreme edge of "the band of synchronization" 

then the mean value of 9 was 90 . The oscillation of 9 about this mean 

value was small for large values of the angular modulating frequency co 

but increased with decreasing modulating frequencies. 

The action is visualized with the aid of vector triangles of volt­

age which are similar to those given in the early discussion of the phe­

nomenon of synchronization. Figure 27 illustrates the oscillating phase 

angle and the effect upon the amplitude of the oscillator voltage. 

The oscillator grid voltage is equal to the sum of the vector V.., 

which represents the injected synchronizing signal, and of VR, which 

represents the voltage returned from the tuned circuit of the oscillator. 

The magnitude of V is given to a close approximation by 

V = VR + V1 cos 9. (136) 

In Figure 27 V, represents the condition when 0 is minimum and V_ 

the condition when 9 is maximum. If 9 is very nearly equal to 180 
max 

- 9 . , it follows directly that the maximum and minimum values of mm' 

V (i.e., V and V . ) are symmetrically displaced about a mean value 

of V and that the relative change is given by Vn cos 9 . /V . go * 1 nun g 

The form of the envelope of oscillator voltage is predicted by 

these vector triangles. Actual observed forms of these envelopes are 

illustrated in the sketches of Figure 28. The left figure represents 

a case when the modulating frequency is relatively low. In this case 

the effects of the time constant of the grid circuit are negligible and 
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the envelope follows very closely the changes which would be predicted 

from the vector triangle. Note that during that portion of the modula­

ting cycle when the synchronizing signal is absent the amplitude is con­

stant and equal to that of the undisturbed oscillator* The envelope shown 

in the right hand figure illustrates one observed when the modulating fre­

quency was considerably higher. Here the time constant of the grid cir­

cuit does not permit the rapid return of amplitude to that of the undis­

turbed oscillator and a more nearly triangular form of envelope results. 

The effect of the tijne constant is also to reduce the magnitude of the 

change in amplitude. 

The analysis of the effects of amplitude-modulation which follows 

is based upon the figure at the left because the relative amount of modu­

lation is greater. The upper half of the envelope representing one modu­

lation period is shown in Figure 29, but with the curved portion replaced 

by a straight line. This substitution simplified the analysis without 

significantly affecting the computed values of those frequency components 

which constitute the spectrum of this envelope. 

The Fourier series representing this envelope is now computed, 

using the terminology illustrated and subject to the following condition 

PA 

f(e) = E (1 + —) f o^e=?2xn, 
xn 

= E 2XTI — 6 =£ 2n. (137) 

In the usual manner 

f(9) = E 

oo 

+ / . (a sin n8 + b cos n9) o <—< n n n=l 
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FIGURE 27. VECTOR TRIANGLES OF OSCILLATOR VOLTAGE ILLUSTRATING AMPLITUDE 
MODULATION. 

(A) (B) 

FIGURE 28. FORMS OF OSCILLATOR VOLTAGE ILLUSTRATING AMPLITUDE MODULATIONS. 

c = 
V^ cos 8m\n 

- X 7 7 X?7 2?T 6 = 277/Xt 

FIGURE 29. UPPER HALF OF ENVELOPE OF VOLTAGE OF SYNCHRONIZED OSCILLATOR, 



98 

where 

1 a - -
n n 

2n 

; 

f (0) sin n9 

and 

The substitution of the values for f(0) leads to the following results 

2C 
a = _ — cos nxTi, b = 0 . and a = 1 . (138) 
n n i i * n ' o \ •* * 

The application of the series to a specific case illustrates the 

effect upon the spectrum of the amplitude modulation which is due to a 

varying phase angle* The case selected is that spectrum appearing in 

the bottom row of Figure 23 for which the modulation index was given to 

be 0.75 and the duty cycle was given as 0.£. The spectrum there illus­

trated was originally calculated by the use of equation (129), an equa­

tion which considered phase modulation only. When the values of m = 0/7£ 

and of x = 0.5 were substituted in equation (129) the first five terms 

of the phase-modulated wave were found to be expressable as 

e = S I 0.783 sin ayt + 0.U16 sin (co,+ oi ) t + 0.1;l6 sin (ca.-oa )t 

+ 0.13 sin (cĉ  + 2com)t + 0.13 sin (a^- 2oim)tl . (139) 

The amplitude modulating factor is now taken into account by the 

use of the series whose coefficients are calculated by use of equation 
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(138). For this illustration the amplitude excursion C, illustrated in 

Figure 29, is selected to have the value 1/6. This numerical value is 

obtained by assuming a ratio of V_/V of l/6 and then calculating C 

(which is equal to V_ cos 0 . /V ) as though cos 0 . were equal to 
1 mm' g & m m ^ 

unity. This is a realistic assumption for in the previous chapters it 

was shown that when the modulation index was large (i.e., greater than 

0.5) the excursion of the phase angle 6 was such as to make the angle 

approach 180 at its maximum and 0 at its minimum. 

If now the value of x = 0.5 is placed in equation (138) the 

coefficients of the series for amplitude modulation becomes, simply 

2C , - vn/2 
a = - — (-1) n even, 
n nit * 

= 0 n odd. (1U0) 

The evaluation of these coefficients for the given value of C of 

1/6 permits writing the first few terms of the amplitude modulation 

series as 

e = E 11 + 0.053 sin 2oi t-0.027 sin Up T + 0.01U sin 6co t .1 .(lip.) 
L m m m 

Referring to equation (135) it is seen that the total spectrum 

which includes the effects of phase modulation and of amplitude appears 

as an infinite series of products of terms. Since the sidebands due to 

phase modulation and those due to amplitude modulation diminish rapidly, 

sufficient information regarding the spectrum can be gained by employing 

only a few of the possible number of terms. The effect of amplitude 
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modulation will be small unless the amplitude of the synchronizing sig­

nal is unusually large. Practical values of the ratio V-./V may be 

considered to be of the order of l/lO or less, the ratio of 1/6 adopted 

here for illustration was chosen because some of the experimental work 

employed that ratio and comparison of calculated and experimental results 

is facilitated thereby. 

If the product of equations (139) and (lliO) is taken and the neces­

sary trigonometric simplifications carried through, the first several 

terms of the product are given closely as 

e = E [0.78U sin ayb + 0.U18 sin (ca, + co )t + O.blS sin (to-to )t 

+ O.li; sin (05 + 2com) + O.lU sin (<o - 2o)m)t] . (llt2) 

If this equation is compared to equation (139) it is seen that 

the effect of amplitude modulation is small. Similar analyses may be 

applied to any specific condition but it has been concluded from experi­

mental observations and analyses of the form recorded here that the effect 

of amplitude modulation upon the spectrum may be usually neglected in 

comparison to the effect of phase modulation unless the synchronizing sig­

nal is of large amplitude. 



CHAPTER VI 

SYNCHRONIZATION BY SIDEBANDS OF INTERRUPTED WAVE TRAINS 

Physical Viewpoint of Sideband Synchronization 

In chapter 3 an experiment was described in which the frequency 

of the synchronizing signal was varied over wide limits. In this ex­

periment it was demonstrated that the frequency of the oscillator was 

"locked" to that of the input not only in the region centered around 

f , the free-running undisturbed frequency of the oscillator, but also 

in regions centered about the frequencies f + nf , where f is the 
b n o - jar m 

frequency of the modulation (gating) and n is an integer. Inasmuch as 

frequencies of f + nf correspond to sidebands of the modulated input o — m 

it may be said that the oscillator is subjected to synchronization by 

these sidebands. 

The action occurring in this phenomenon can be explained in a 

manner similar to that employed in chapter h* In that chapter it was 

shown that synchronization was effected if the net phase, when measured 

over a modulation period, was equal to zero. Analytically this require­

ment was expressed as 

T» 2TE/<B 

§ dT= 0. (lio) 
T= 0 

An equivalent expression can be stated for the condition of synchroniza­

tion by sidebands. It is 
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T= 2TI/CO 

T- 0 

m Hft 

|| dT = 2 Nn (N = 1,2,3,™) OU3) 

and states that a "locked" condition exists between the input and out­

put if exactly N cycles are gained, or lost, per modulation cycle. 

Relationships between frequencies involved, or used for reference, 

are shown for two particular cases in Figure 30. A condition of "syn­

chronization by the first upper sideband" is illustrated. The angular 

frequency of the input signal is ox. and it is modulated with an angu­

lar frequency co . In part (A) of Figure 30 the first upper sideband, 

OCL + oo , falls near but slightly below the angular frequency co , where­

as in part (B) the frequency ox. has been changed sufficiently to let 

the first upper sideband fall near to but slightly above co . 

If an experiment is conducted for the purpose of illustrating 

these relationships, and if the input and output frequencies are monitored 

with counters, it is observed that there is a narrow band of frequencies 

(cross-hatched in the figure and designated with half-width as ox. ) 

within which the following action occurs. 

(1) If an injected signal of frequency f_ and modulating fre­

quency f is so positioned that the frequencies fn + f or f-. - f 

m l m l m 
l i e within the band (cross-hatched) the osc i l l a to r i s observed to sh i f t 

i t s frequency from f t o f, + f or f_ - f , whichever i s appl i -* o 1 m 1 m 

cable. 

(2) If the frequency of the input is then shifted exactly n 

cycles the frequency of the oscillator also shifts exactly n cycles so 

that the frequency difference between input and output remains exactly 
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equal to the modulating frequency f . This action persists until the 

edge of the band is reached when synchronizing action is lost. 

(3) The synchronizing action persists over a band which is much 

narrower than is the band which exists when c-w signals are applied. 

That band has already been designated as 2f . where f = 00 /2n. The 
c c c 

synchronizing band is also narrower than is that region designated as 

"bandwidth of synchronization by fundamental component of input signal" 

which was defined in chapter U-

(h) The band is distinctly defined if the modulating frequency 

is relatively high and moderately well-defined at all modulating fre­

quencies . 

From this experiment it is concluded that well-defined relation­

ships exist between the parameters of the circuit and of the injected 

signal. The following paragraphs are devoted to an analysis of the fac­

tors involved and of the necessary conditions for synchronization. 

A physical understanding of the action is facilitated by a study 

of the vector diagram of voltages. The basic triangle of voltages was 

first used in the explanation of synchronization by c-w signals and 

appeared as Figure 31. This figure can also be applied to the present 

problem. 

In Figure 31 the injected voltage is represented by the vector 

V . This vector rotates at an angular velocity oa.. The grid voltage 

of the oscillator is represented by V and rotates at an angular ve-
o 

locity of 00. The angle between them changes at the rate d6/dt unless 

the oscillator is synchronized by a c-w signal in which case d6/dt 
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FIGURE 30. ANGULAR FREQUENCIES INVOLVED IN SYNCHRONIZATION BY FIRST 
UPPER SIDEBAND. 

V ^ at co^ 

66 
d7 

FIGURE 31. VECTOR DIAGRAM OF OSCILLATOR VOLTAGES. 
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becomes identically equal to zero. The vector VR represents the 

voltage returned from the tuned circuit of the oscillator and is nor­

mally not in phase with V . 

In the case of synchronization by c-w signals the angle 0 reaches 

and maintains a constant value 0 . In the case of synchronization by 

the fundamental component of an interrupted wave train the angle has been 

shown to oscillate continuously but is so constrained in its movements 

that its net deviation with respect to the vector V., is identically 

equal to zero, if the measurement of phase includes a complete modula­

tion cycle. In the case being considered in this chapter neither of 

these conditions apply. The phase requirements indicate that the action 

of the synchronizing signal must be to speed up or slow down the rate of 

phase deviation by just the right amount so that the net deviation, as 

measured over a modulation cycle, can be exactly 2Kn radians. 

To illustrate the action, an experiment is considered in which a 

vector of voltage V.., interrupted with a modulating frequency f , is 

to be compared to the vector V of the oscillator. It is first pre-

sumed that the vector V , rotating at angular frequency ox., remains 

exterior to the oscillator. That is, the oscillator is not subjected to 

any disturbing force and hence is illustrated by a vector V which 

rotates at angular velocity co . If the frequencies correspond to those 

illustrated in part (B) of Figure 30 then the relative rate of angular 

velocity of the two vectors, to - co,, will be less than co . 

In the next step in the experiment the vector V., is injected 

into the grid of the oscillator so that the voltages may add as repre­

sented in Figure 31. Thereupon the vector ? is found to rotate so 
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that its average velocity, measured over a modulation cycle, is ci + co• , 

This can occur only if the vector V has been speeded up during the 

"on" time (presence of synchronizing signal) by just the right amount to 

make its average value identically co, + co . 

An analytical explanation begins as before with the basic equa­

tion describing the deviation of the angle 0 

de 
-7T- = to - co sin 
dt s c 

= co (K - sin 0) 
C 

where co , co , and K have the same connotation as in the previous chap-
s c 

ter. 

The phase deviations of the angle 6 can be illustrated in much 

the same way as in chapter £. The form of the synchronizing signal may 

be presumed to be the same as in Figure 21, and the phase deviations may 

be shown in a form similar to that of Figure 17. In that figure the net 

deviation was zero, in the present case (first sideband) the net devia­

tion must be 2n. Figure 32 illustrates the phasing conditions appli­

cable to both parts of Figure 30. 

In part (A) consider the lower (dotted) line the slope of which 

is to K = cou - co . This line represents the phase deviations of V 

with respect to ?, for an undisturbed oscillator when ¥- remains ex­

terior to the oscillator. During a modulation period, T, the angle 0 

completes an excursion A6, which is less than 2it. Next consider the 

effect when the synchronizing signal is injected during the time interval 
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t = 0 to t = t... If its effect during this time interval is to speed 

up the rate of change of 9 according to the value of the equation 

^ = as (K - sin 6) 
dt c 

then it is possible for the net phase to be equal to 2n radians. Such 

a condition is illustrated in Figure 32 which shows that the speeded up 

or slowed down rate of phase deviation during the presence of synchro­

nizing signal may be sufficient to meet the synchronizing requirements 

and that a net phase deviation of 2n radians per modulation period may 

be obtained. In part (B) the reverse situation is illustrated wherein 

the effect of the synchronizing signal during the "on" time must be to 

slow down the rate of phase excursion of the angle 6. 

Analyses which are accurate within the limitations of the neces­

sary simplifying assumptions can be applied to predict the relation­

ships between the parameters involved. The procedure follows somewhat 

the same lines as in the previous chapters. It is first necessary to 

establish formulas for the phase angle 0 and the phase deviation A0, 

then the excursions of the angle 6 must be anticipated and described. 

This information is assembled in the next section, and finally the syn­

chronization equation (lU3) is applied. 

Phase Deviations Occurring During Synchronization by Sidebands 

In chapter 2 the equations for the phase angle 6 were shown to 

be direct solutions of the basic differential equation d9/dt = o> - oa 
s o 

sin 6. The solution for the case when co was less than co (that is, 
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the synchronizing signal lies within the band of synchronization) con­

tained a hyperbolic tangent of the time function. The equation was 

utilized as a basis for determining the relationships between inter­

rupting frequency and bandwidth of synchronization. 

In the same section the equation was given for the case when co 

was greater than co and appeared as equations (37) and (37a). The 
c 

latter will be utilized in the present analysis and is given here as 

equation (1UU), 

6 = 2 tan"1 
1 L / K 2 - 1 , /K 2-1 /. . x 

(1UU) 

In this equation the variation of 6 is now dependent upon the 

tangent rather than the hyperbolic tangent of the time quantity and may 

be expected to vary rapidly for some values of the time quantity in 

accordance with the known properties of the tangent of an angle. 

The analysis is begun by considering the criterion for synchro­

nization for sidebands 

'T= 2n/co 

£| d T = 2 N n , (N = 1,2,3, ) (11*3) 

T= 0 

which can be more explicitly expressed as 

(h r2nK 
coc \ (K - sin 0J dt • coc \ K d t m 2 fc< QkS) 

0 *1 

The integrand containing the quantity (K - sin 0) can be evaluated in 

a manner almost identical to that followed In equations (87) through (96) 



109 

and the equation f ina l ly yields 

-1 J K-l 
2 tan A . tan 7K2-I 

/K - 1 / , , \ v - 1 K-l 
cort — 5 - ( t , + t ) - t an 

C 2 1 0 y?~ 

-2 tan" < _J"_ tan 

F-: 
/i?— 
/ K - 1 . . - 1 K-l 

co —R— t - tan c 2 o JF-: 

2 N* - co K(2n/co - t , } . c m 1 OW) 

I t i s convenient to use T • 2n/co and tn - kT as has been the prac-
m 1 r 

tice heretofore. With this substitution the right hand side of equa­

tion (ll*6) becomes 

2 Nn - co KT(l-k). c 
(167) 

Equation (lH6) is similar in form to the equation defining syn­

chronization by the fundamental component of the synchronizing signal. 

That equation appeared in chapter k as equation (9?) and was discussed 

in considerable detail. It was shown that each value of the constant 

of integration, t , is associated with a specific value of the variable 

t, if the equation is to be satisfied. In particular, it was shown that 

there exists a certain t for which the variable t is equal to T 
o - max 

and, since co • 2n/T, this greatest possible value of T determines the 

minimum modulating frequency consistent with synchronization. The value 

of T could, in theory, vary between the limits of zero and infinity and 

it could, in practice, vary over wide limits. The situation was illus­

trated in Figures 18 and 19 which showed the variation of co - 2n/T 
and the limiting conditions for synchronization. 
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When synchronization is effected by sidebands of the injected 

signal the permissable variations of the modulation period T are rela­

tively small. The limitations are imposed by the fact that each side­

band is represented by an angular frequency of co. + nco , or what is 

the same thing, co. _+ n —m . Evidently co, and T are uniquely related. 

Finally, the difference frequency co, - to = to K may be expected in 

most cases to be not greatly different in magnitude from co. - nw . 

This condition for the first sideband is illustrated in Figure 33. This 

figure is equivalent in form to Figure 30(B) but is normalized with re­

spect to to by making that quantity equal to unity and replacing 

"o " "1 b y K* 

The band within which synchronization by the first sideband oc­

curs is represented by the cross-hatched area. The band of synchroniza­

tion by a c-w signal of same amplitude is 2x(co = l) = 2. The injec-
c 

tion angular frequency co. lies outside the band of synchronization 

therefore K * co - to., is greater than unity. If co. now remains fixed 

but co is made variable, the frequency co • to + to may vary within very 

limited bounds if it is to remain within the cross-hatched area. When 

co = co + co is adjusted to become identically equal to co it is evident 
that 

co = 2n/T = K, or T = 2n/K (1U8) 

whence it is further evident that the period T varies only about the 

center value of 2it/K and then by amounts which are relatively small. 

The extent of the cross-hatched area, or the "bandwidth of syn­

chronization by the first sideband of the injected signal" may be 
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determined by a process of maximization similar to that used in the pre­

vious chapter. The quantities involved in the analysis are represented 

in Figure 32 where the effect of the nonlinear phasing action during the 

presence of synchronizing signal (the "on" time) is illustrated by the 

curved lines with slopes of <*>(& - sin 0). In this figure it is seen 

that the difference in magnitude of the ordinate at the time t, is 

represented by the quantity d. This quantity is evidently a measure of 

the change in total excursion of the angle Q that can be effected by the 

synchronizing signal. It follows, by comparison of Figures 33 and 32 

that d is zero when the angular frequency cou. + oo is equal to to and 

that d increases as co. + co recedes from co , reaching its maximum value 

consistent with synchronization, when co. + co lies at either extreme of 

the cross-hatched area. 

The conditions determining the permissable excursion of d can be 

analyzed by finding the maximum value of 

d = co \ (K - sin 6) dt — co Ktn (lltf) 
C ) C X 

subject to the condition that 

(2nK 
\ (K - sin 0) dt + coc \ Kdt = 2it. (l£o) 

tl 

The integral of equation (l^O) is identical to that of equation 

(lli6), if N = 1» Also the integral of equation (1U°) is equal to the 

left side of equation (1^6) decreased by the quantity Kt,. 
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The method of maximization follows that of chapter 5 except that 

the hyperbolic tangent is replaced by the tangent of the angle 6. The 

results are quite similar in form, and lead to the equation 

Sin2 A = sin2 I, (l5l) 

which is satisfied if 

A = + B (152) 

and 2nn radians may be added to B if physical conditions so prescribe. 

With the aid of equation (152) the synchronization equation 

may be expressed as a function of one unknown. For example, 

A = ctx + ctQ - b = + B, (1^3) 

and it was given that 

ot - b * B, (110) 

therefore 

ct! = ~B 1 B- (!&) 

Evidently the positive sign in the parenthesis must be deleted or t.. 

would be a constant, a condition contrary to experimental conclusions. 

Therefore, using the negative sign and replacing t-, by kT, an equa­

tion for the modulating period may be written 

T = =§ (155) 
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and the quantity KT(l-k) becomes 

^ 5 (3^). (156) 

With these relationships between A, B, and T, the equation of synchroni­

zation becomes 

-h tan"1 (a tan B) - 2Nn + ̂ J ^ 1 " ^ . (19?) 

Finally, since B * - ct-,/2 = - ckT/2, as shown by equation (116), 

the equation may be expressed in terms of T. Values of T have been 

computed using equation (157) for the condition of square-wave modulation 

(k = 1/2) and for various magnitudes of K. From these values of T the 

quantity co . (co = 2n/T), corresponding to each value of T has been com­

puted and finally a quantity denoted as tou , has been tabulated. The 

term co is analogous to the term co which was used in synchroniza-
J-SD C 

tion by a c-w signal, co represented one-half of the bandwidth of syn-

chronization due to a c-w signal. Ii; a similar manner the term to. , 

which is illustrated in Figure 33 and which is numerically given by the 

equation 

o o , , = eo - (ox + co ) , and • K - co when co = 1 (158) 
isb o *± m ' m c 

represents one-half of the bandwidth of synchronization by the first 

sideband of the interrupted wave train. 

The results of the calculation of co, , appear both in Table 1 

and Figure 3U. The table lists the computed values and Figure 3h illus­

trates the width of this "band of synchronization" by showing the ratio 
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TABLE 1 

WIDTH OF BAND OF SYNCHRONIZATION DUE TO 
FIRST SIDEBAND OF INTERRUPTED WAVE TRAIN 

K = °*L ~ 
(when a) = 

G 
1) 

T co = 2TI/T 
m ' 

«W K " w m 

10 0*65 9.68 0.32 

9 0.725 8.67 0.33 

6 1.11 5.67 0.33 

3 2.38 2.6U 0.36 

2 3.9 1.62 0.38 

1.5 5.9 1.06 o.UU 
1.25 8.11 0.77 0.U8 

0.75 13.6 0.U6 0.29 

0.85 13.33 0.1*7 0.33 

0.85 12.8 0.U9 0.36 

0.7 lii.O o.U5 0.25 

"lsb 
CO 

c 
0.32 -/4Y ~v" ^ r^-rr-=^-a_ 

Solid Line - Computed Points 
A - Experimentally Determined 
Points 

10 K co /co 
s' c 

FIGURE 3U- BANDWIDTH OF SYNCHRONIZATION BY FIRST SIDEBAND OF 
SQUARE-WAVE INTERRUPTED WAVE TRAIN 
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of GO. to a) for each of several values of K. Values Of ox. , have 

not been computed for magnitudes of K equal or approximately equal to 

unity, since the synchronization equation is undefined in that region. 

This follows from the fact that the quantities a and £ become identically 

equal to zero when K becomes equal to unity. 

Table 1 and Figure 3U show that the relative width of the band 

of synchronization for a signal which is interrupted by a square-wave 

is equal to 0,32 when the modulating frequency is high. It has already 

been shown in chapter k that the bandwidth of synchronization by the 

fundamental component of signal is equal to 0.5>. Reference is now made 

to Figure 15 and to equation (77). The figure cited shows that the 

spectrum of a c-w signal which is interrupted by a rectangular pulse 

has an envelope given by r—— , where k is the duty cycle of the 

interrupted wave, and also shows that the fundamental component of the 

spectrum has an amplitude which is equal to the product of the amplitude 

of the unmodulated signal and the duty cycle of the interrupting signal. 

In the case of square-wave modulation the fundamental component must then 

have an amplitude which is one-half that of the original (unmodulated) 

signal. The synchronizing action of this waveform has been shown to give 

a bandwidth of synchronization which, at its maximum, is also equal to 

one-half the bandwidth of synchronization due to a c-w signal of same 

amplitude. 

The calculation of the other components of the spectrum shows 

that the amplitude of the first sideband is given by 

Sin n 
H 
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and that this is numerically equal to 0.32. But Table 1 and Figure 3U 

show that the average ratio to. , /co is also numerically equal or very 

nearly equal to the same value, i.e., 0,32. The two equal numerical 

values have been obtained, it will be noted, by completely different 

methods. 

These results are significant, particularly in view of the uni­

formity of response as the frequency difference is varied. It may there­

fore be tentatively concluded, from this example of square-wave modula­

tion of the synchronizing signal and in a manner quite similar to that 

of chapter U, that: 

"The synchronizing action of the 'first sideband' of the synchro­

nizing signal may be computed by steady-state theory by calculating the 

bandwidth of synchronization of a c-w signal whose amplitude is equal in 

magnitude to the first sideband of the actual synchronizing signal". 

It may also be shown that other duty cycles result in synchro­

nizing actions which are comparable to that expected from a c-w signal 

having an amplitude equal to the strength of the sideband under consider­

ation. In particular, it can be easily demonstrated that when the duty 

cycle is very short the synchronizing action of the first sideband 

approaches that of the fundamental. 

Consider equation (15*7) in the case when k becomes very small, 

1-k 
i.e., k \< 1. When k is small, the quantity -g- is very large and the 

OTJir "l _ v 

quantity C-tT") can remain less than 2n (as required to satisfy 
C ix 

the equation when N is equal to unity) only if B approaches zero. But 

B was defined to be equal to the quantity ct - b, whence ct —> b 

as B->0. 
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This relationship is now utilized in the equation for the angle 

9 = 2 tan .1 [i + G?Z 
[if + T~ 

tan (ot + ct ) (159) 

—1 K-.1 
and at time t = 0, with ct = -b = tan"" . a , there results 

/K2-I 

9 - 2 tan 
-".] 1 . /K 2-1 . f. -1 K-l 1-=?— tan (tan . 

y?3 K 

= 2 tan -
1 [ 1 • 5dt] 
[ K K J 

= 90°. (160) 

This equation states that when the duty cycle is very small the 

phase angle © is very nearly equal to 90° during the "on" time. Since 

the sine of 90° is unity the basic equation for synchronization by the 

first sideband (N = 1) becomes 

kT ri 

(K - 1) dt + \ Kdt = 2n, 

kT 

(161) 

whence, after integration, there results 

KT - kT • 2n 

and 

K - k - 2n /T • m $ or K = <& + k 
m* m 

(162) 

But, since oi, , = K - co , there i s obtained 
Br 

<*LSb
 = <<\ + k ) - o.m = k. (163) 
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This equation states that for small values of duty cycle the half-

width of the "band of synchronization by the first sideband" is equal 

numerically to k, the duty cycle. Now, again referring to the spectrum 

of a rectangular-pulse-modulated signal, it may be quickly computed that 

for small duty cycles the amplitude of the first sideband approaches that 

of the fundamental. But this amplitude was shown to be equal to kE, where 

E is the amplitude of the signal before modulation and is also the ampli­

tude of signal during the "on" time. 

The final conclusions to be gained from the foregoing analysis 

correspond in form to those reached in chapter h when synchronization by 

the fundamental component was evaluated. It has been shown, by a specif­

ic value in the case of square-wave modulated signals and in general for 

all cases of small duty cycle, that the theoretical magnitude of the 

"bandwidth of synchronization by the first sideband of the injected sig­

nal" is equal, or very nearly equal, to the bandwidth which would be ob­

tained by a c-w signal of amplitude equal to that of the first sideband. 

The same logic and procedure may be extended to other sidebands. 

In some cases a simplified approach may suffice to explain the action. 

For example, it is shown by Fourier analysis that the second sideband of 

a square-wave modulated signal should have zero amplitude. In this case 

the synchronizing action of the second sideband should be non-existent. 

An analytical expression leading to this conclusion can be obtained very 

simply from the equation of synchronization for the second sideband 

T/2 / T 

(K - sin 6) + o>c \ K d t = UTU (16U) 

0 ' T / 2 

>< 
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If K is considerably greater than unity it is evident that the primary 

quantity in the first integral is K and that the nonlinearity produced 

by sin 6 will be relatively small. In this case the angle 6 will have 

an excursion of very nearly 2n during the time interval t = 0 to 

t = T/2, and the integral of sin 6 must be equal, or very nearly equal 

to zero, since the bounds of integration encompass one complete cycle. 

In this case it is quickly shown that sa can have one value only, that 

of co = K/2, which is another way of saying that the bandwidth of syn­

chronization is zero. 

The final conclusions applicable to this section are simply that 

the synchronizing action of a particular sideband of an interrupted wave 

train may be predicted within small limits of error by utilizing steady 

state theory and computing the bandwidth of synchronization due to a 

signal with an amplitude equal to that of the sideband in question. 

Frequency Spectrum of Oscillator Synchronized by Sidebands of Injected 
Signal 

The frequency spectrum of an oscillator which has been synchro­

nized by a sideband of an interrupted wave train can be computed in the 

same manner as was utilized for synchronization by the fundamental of 

the input. The phase modulation which occurs determines the basic form 

of the spectrum but there is normally less non-linearity with sideband 

synchronization than with synchronization by the fundamental. The valid­

ity of this statement can be inferred from an inspection of the integral 

which determines the deviation of phase during the "on" time. This 

integral has appeared many times, and is 
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ch 
o>c \ (K - sin 9) dt. (165) 

' 0 

In the case of synchronisation by the fundamental component of signal 

the quantity K was stated to be less than unity. In that case the 

quantity sin 6 plays a prominent role in the total value of the ex­

pression (K - sin 6). But in the present case, synchronization by side­

bands, K is usually much greater than unity whence it is evident that 

sin 0 can have relatively little influence upon the rate of change of 

the phase angle. 

Figure 32 illustrated the type of phase deviation which exists 

and which will determine the frequency spectrum of the synchronized os­

cillator. If the curved portion is approximated by a straight line it 

is found that there is little error in computing the spectrum except 

for minimum values of the frequency difference co K. The following anal-
c 

ysis utilizes straight lines, but methods of numerical analysis must be 

applied in some few cases. 

The phase deviations in an oscillator which is synchronized by a 

sideband of the injected signal are presented in Figure 35. If the 

slope of that portion of the curve existing between 0 = 2kn and 0 = 2n 

is m?, the slope of the first portion may be given as 

N - n^ (1 - k) 
— F~ * 

With the aid of this expression the value of the phase deviation, A6, 

is 
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Ae -
N - nig (l-k) 

0 0 -± 0 =£ 2kn 

= a + m20 2kn a 0 ^2TT (166) 

where a • 2Nn - 2m?n • 2n (N - m?) 

2Nn 

FIGURE 3$. PHASE DEVIATIONS IN OSCILLATOR SYNCHRONIZED 
BY SIDEBANDS OF INJECTED SIGNAL. 

Consider cos A8, to be expanded in a Fourier series. 

2kn '2n 

a • - \ cos m,0 sin n0 d0 + - \ cos (a + m„0) s in n0 d0, 

0 2kn 

and 

b - i 
n TT 

2kit 

C 

cos BU0 cos n0 d0 + cos (a + JTU0) cos n0 d0. (167) 

2kn 
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Also consider sin A6, to be expanded 

,2kn p 
c = - V sin 10,0 sin n0 d0 + - \ sin(a+mg0) sin n0 d0 

'o ' 2kn 

and 

2kn / 2n 

d = - \ sin m_0 cos n0 d0 + - \ sin(a+mg0) cos n0 d0. (168) 

0 ' 2kn 

also 

/2kn 
mh ) cos V d0 + h 

' 0 

2n 

2kit 

cos (a+m?0) d0, and 

'2kn 

b - 7T" 
o 2TI 

sin m^0 d0 + o~ 

•2n 

2kn 

sin (a+m^) d0. (169) 

When the integrals are evaluated the amplitude of the various 

components of the spectrum is computed by use of the relationships de­

rived in chapter 3. By this means, there is obtained 

= s /* \o (K * O cos (® - "O* 
c—' 12 n n m n=-ocn 

— -x (b - c ) cos (a> + noi )t 2 n n m 

-f TT (a - d ) sin (GO - no) )t 2 n n' m 

+ 2 ̂ an + dn^ sin ^w + n o o m ^ (170) 
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The r e s u l t s of eva lua t ing equa t ions (167) , (168) , and (169) a re 

summarized as f o l l o w s : 

1 ( b + c ) = 1 
2 v n nJ 2n *1 

"2 

s i n 2(10,- n)kn 

I s i n f a + 2(nu-n)n - s i n a+2k(mp-n)n]l 

I ( V cn} = h "1 
—— s i n 2k(m,- n)n 

"2 
1 s i n J a + 2(ifip-n)n - s i n a+2k(m?-n)Ti I 

I < V dn> - B m l 
— [ l - cos 2k(m1+ n ) j 

+ I cos [ a + 2(m2+n)-Fi] - cos [a+2k(m +n)n]l 

1 (a - d ) = i-
2 n n ' 2n L ™x 

— [ l - cos 2k (m,- n)n] 

+ m 2 ni
 c o s [a + 2(m2-n)n1 - cos f a+2k(m2-n)7i]l 

a = o 2m, TI 
s i n 2 k ^ 

- ^ 
-~ [ s i n (a + 21^11) - s in (a + 2knyn)J 
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bo = 25^ [ X " 00S (21aY°] 

- 2m~n [ c o s ^a + 2 m 2 n ^ * o o s ^a + 2km2Tl)j • (1?U) 

Equation (17U) has been utilized for the calculation of the 

spectrum shown in Figure 36. Values of duty cycle, k, of l/3 and l/2 

have been chosen for illustration in order that a convenient comparison 

with experimentally determined data may be made. 

Experimental data have been employed in Figure Jl * The left 

half of the figure illustrates the results of applying a synchronizing 

signal of duty cycle k = l/3 and one whose amplitude relative to V 

is very large (V /V • 0,9). The right half of the figure represents 

the more practical case where the relative amplitude of the synchro­

nizing signal is small (V-./V" = l/6). The spectrum of the input is 

•*• g 

shown in part (A), that of the oscillator when synchronized by the first 

sideband in part (B) and that of the oscillator when synchronized by 

the second sideband of the input in part (C). 
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( " V ^ t 

K = 0.7 (Calculated by numerical analys is) . 
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FIGURE 36. SPECTRA OF OSCILLATOR SYNCHRONIZED BY SIDEBANDS OF INTERRUPTED 
WAVE TRAIN, COMPUTED VALUES. 
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FIGURE 37. SPECTRA OF OSCILLATOR SYNCHRONIZED BY SIDEBANDS, EXPERIMENTAL 
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CHAPTER VII 

EXPERIMENTAL PROCEDURES AND APPLICATIONS OF THE SINCHRONIZED OSCILLATOR 

Details of Experimental Equipment 

The test equipment employed and the interconnections between 

units is illustrated in chapter 3. The basic form of oscillator used 

as a test vehicle was also shown in that chapter. It is the purpose of 

this section to give a brief, but more detailed, description of the os­

cillator and of the method of obtaining and inserting the synchronizing 

signal. 

The actual circuit of the oscillator and associated elements is 

shown in Figure 38. The circuit is recognized to be that of a simple 

tuned-plate oscillator with pentode drive, a form which is conveniently 

used at low frequencies. 

The experiments which have formed a basis for most of the dis­

cussion and analysis recorded in the previous chapters were conducted 

at frequencies in the range from 10,000 cps to 30,000 cps. When square-

wave modulation was desired the gating (interrupting) device was avail­

able in a commercial piece of equipment, a Measurements Corporation 

square-wave generator which incorporates a square-wave gating circuit. 

It is controllable in frequency (gating) from about 6 cps to 100,000 cps 

and utilizes a balance control by which the d-c component of signal can 

be eliminated. When rectangular-pulse modulation with a different duty 

cycle was desired a locally-constructed monostable multivibrator of 
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variable pulse width was employed. A negative-going 50-volt rectan­

gular pulse was applied to one control grid of a mixer which was con­

tinuously receiving a c-w signal on the other control grid. The in­

terrupted signal was taken from the plate circuit by means of magnetic 

coupling to a tuned circuit. This method of coupling is preferred be­

cause of its relative insensitivity to change in d-c levels at the 

anode. 

Tests similar to those already described were also conducted at 

higher frequencies. In this case a Colpitts type oscillator was used 

and the experiments were conducted in the frequency range centered at 

6 megacycles. The input (synchronizing) signal was interrupted at ap­

proximately 100,000 cps while the r-f signal was variable in frequency 

and amplitude. Experiments conducted in this frequency range and with 

the different form of oscillator produced results which were essentially 

identical to those obtained at low frequencies. Synchronization was 

effected in bands centered at 5.7, 5.8, £#o, 6.0, 6.1, 6.2, and 6.3 Mc. 

These correspond to the first three lower sidebands, the fundamental, 

and the three first upper sidebands, respectively, of the synchronizing 

signal. 

Later, tests of similar type were conducted in the three hundred 

megacycle range but the technical difficulties arising from efforts to 

gate a signal of this frequency were severe and these tests were termi­

nated. Still later, other means of obtaining the desired synchronizing 

signal were suggested. One form of gated signal and its application 

is described in the following pages. 
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Limitations of Signals of Small Duty Cycle 

The analysis and discussion has thus far been concerned with a 

sigial which is interrupted by a rectangular pulse. The Fourier anal­

ysis of the form of modulating signal showed that the envelope of the 

spectral components of the signal has the familiar sin x/x form and 

that the relative amplitudes of each component of the spectrum due to 

a rectangular pulse can be predicted by that curve. The analysis also 

showed that the relative amplitudes of the first several harmonics in­

crease when the duty cycle, k, is decreased. Now the analysis of syn­

chronization by sidebands has demonstrated that the synchronizing ac­

tion is essentially the same as that which would be due to c-w signals 

whose amplitudes were given by the Fourier analysis. Therefore it would 

appear that a desired signal is one in which the various harmonics (side­

bands) of the input are each of large amplitude. An example is found in 

Figure 39. One might deduce that, since a small duty cycle leads to har­

monics of large relative amplitude, a preferred form should be a signal 

with a very small duty cycle. There is no error in the logic, with the 

exception that the energy in each of many sidebands, though nearly 

equal, is small in magnitude. The fundamental component of a signal of 

amplitude E, interrupted with a duty cycle k, has been shown to be equal 

to the product of the two—kE. 

It is evident that if a small duty cycle is to be employed the 

original amplitude of the signal to be gated must be very large if the 

components are to be sufficiently large to be employed as synchronizing 

signals. In fact, it is this requirement which leads to an immediate 
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conclusion concerning synchronizing properties of the voltage wave which 

was discussed in the introduction chapter 1. In that chapter an experi­

ment was described in which a piezoelectric quartz crystal was caused 

to vibrate at a high mechanical overtone, thereby producing short bursts 

of high frequency voltage. These "bursts" were of small amplitude and 

very short duty cycle, therefore it is evident that they would not be 

adequate for use as synchronizing signals unless they were strongly am­

plified prior to insertion in another circuit. The difficulties of 

amplification of this type of signal at frequencies above 300 Mc indi­

cates that synchronization by such signals is probably impractical al­

though theoretically possible. 

Methods of Increasing the Range of Synchronization 

If an oscillator is to be synchronized by the sidebands of an 

interrupted wave train and if the range of synchronization is to be as 

large as possible, then a preferred synchronizing signal is one in which 

the sideband components are of equal amplitude. An ideal envelope of 

the frequency spectrum is one in which all amplitudes remain constant 

within the range of interest and all others have zero amplitude. Al­

though a form of this type is not attainable in practice, there does 

exist an envelope which is a reasonable approximation to the ideal. The 

interested reader is referred to a volume of the Hewlett-Packard Jour-

("i ft) 

nalv ' which describes numerous waveforms and their respective frequen­

cy components. In particular, it is shown that a wave of the type illus­

trated in Figure 39(A) has a spectrum of the form shown in the (B) part 

of the same figure. The resulting spectrum approximates the desired 

ideal to a significant degree. 



133 

Two methods of producing a waveform of this type are well known. 

The first is to shock-excite a tuned circuit whose decrement is suffi­

ciently great to produce the desired damping, the second is to provide 

plate voltage briefly to an oscillator whose free-running frequency is 

that within the envelope of Figure 39(A). These methods do not appear 

to have great promise when the stabilities associated with piezoelectric 

crystals are desired for it is well known that it is difficult to ob­

tain shock-excited outputs from quartz crystals and also difficult to 

obtain rapid initiation of oscillations in a crystal-controlled oscil­

lator. 

When frequency stabilities of the order associated with crystals 

are desired the most obvious way of obtaining them is to interrupt the 

output of a crystal-controlled oscillator by a gating circuit. The 

gating frequency itself needs to be crystal controlled in order that 

both fundamental and sidebands have a high order of stability. The 

technical problems involved with interruption of high frequency signals 

have been mentioned and certainly must be a factor in the design and 

construction of an oscillator which is to be synchronized by interrupted 

wave trains. However, the possible advantages to be gained by utiliza­

tion of such a synchronizing signal indicate that" attempts to solve the 

application problem at high frequencies may be rewarded by the attain­

ment of considerable flexibility of control. Comments upon various 

applications of the process appear in the next section. 

Applications of the Synchronized Oscillator 

A number of applications of an oscillator which is synchronized 

by an interrupted wave train can be cited, but the device which apparently 
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gains most flexibility from the process is that form which is subject 

to what is usually referred to in the art as "detent tuning". The 

latter term usually is taken to signify a process during which a con­

trol switch is rotated and drops into "detents". Each semi-fixed 

position so attained denotes a specific step in the process being con­

trolled. In the present case the steps controlled are steps in fre­

quency and these have a frequency separation roughly equal to the spacing 

between two sidebands in the spectrum of the synchronizing signal. The 

action of the switch is then to tune the oscillator, in steps, to free-

running frequencies each of which lies within a band of synchronization. 

The proper sideband of the synchronizing signal, falling within this 

band, then "locks" the oscillator to its prescribed frequency. 

This principle has been successfully applied by a colleague of 

the author as a means of obtaining several crystal-controlled frequen­

cies from one crystal. He employed a slight modification of the inter­

rupted wave train theory, but achieved a spectrum which had many com­

ponents of sufficient amplitude to serve as adequate synchronizing sig­

nals. The system included a blocking oscillator whose natural frequency 

was close to 70 kc, a crystal-controlled 70 kc oscillator whose output 

served to "fire" the blocking oscillator, and such circuitry as was re­

quired to inject the output of the blocking oscillator into test vehi­

cles. The blocking oscillator, controlled by the stable 70 kc source, 

became a spectrum generator whose output consisted of many large ampli­

tude harmonics of 70 kc. 

The test vehicle chosen was a Hartley oscillator, free-running 

in the vicinity of one megacycle and arranged for step tuning in 
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approximate 70 kc steps. This oscillator was basically no more stable 

than a normal LC oscillator operating in this range, but the addition 

of the synchronizing signals from the spectrum generator resulted in 

crystal-controlled stability at each of the steps. A numerical example 

will clarify the process. For instance, in absence of the synchronizing 

signal one of the "steps" might result in a frequency of 981 kc. This 

would be a nominal quantity because the instability of the free-running 

oscillator would cause it to drift considerably about the mean figure. 

Now upon application of the synchronizing signal it is found that the 

harmonic existing at 98O.OO kc "locks" the oscillator to that frequency 

whereupon a high order of stability results. 

Such a device may have promise in the communications field where 

considerable thought and effort has been directed toward the topic of 

"crystal saving", a process of obtaining many crystal-controlled fre­

quencies with the use of few crystals. Extensions of the idea of syn­

chronizing by interrupted wave trains might include combinations of os­

cillators so controlled by which a multiplication of crystal-controlled 

channels would result. 

It will be recalled, and it is important, that phase-modulation 

is present in the synchronized oscillator. However, experimental and 

analytical work have shown that the frequency spectrum is simple and 

that in most cases the sideband rejection is sufficient to permit use 

of the signal in many applications where a single frequency is desired. 

However, in those applications where synchronization of both frequency 

and phase are required such as color television the proposed system 

would not be satisfactory. 
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Another possible application of the system may be found in fre­

quency dividers, particularly those in which it might be desired to 

divide a frequency by other than integral numbers. It is only neces­

sary to choose an interrupting frequency such that the desired output 

frequency corresponds to a specific sideband of the synchronizing sig­

nal. For example, a 28,000 cps signal could be changed to a 17,jj>00 cps 

signal by interrupting (modulating) the 28,000 cycle signal at a rate 

of 3,500 per second and synchronizing an oscillator with the third lower 

sideband of the output. 

The various suggestions listed above have been successfully 

demonstrated, usually at low frequencies, by the author. If the tech­

niques of producing a desired spectrum at high frequencies can be solved 

it is believed that the process studied may find considerable applica­

tion in other portions of the frequency spectrum. 
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