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SUMMARY 

 

The cell membrane remains a formidable barrier for antibody-based therapies, and 

efficient intracellular delivery of functional antibodies may be critical for modulating 

intracellular signaling mechanisms and protein-protein interactions involved in various 

disorders. This study utilized protein engineering techniques to develop a novel 

nanocarrier that is capable of delivering functional antibodies to the intracellular 

environment. Each nanocarrier contains six SPAB antibody-binding domains, and is 

therefore capable of delivering up to six antibodies. The interaction between the SPAB 

domain of the nanocarrier and the heavy chain constant region of the antibody is 

noncovalent, thus allowing the nanocarrier to bind different functional antibodies with the 

same affinity. Three iRGD domains were integrated into the nanocarrier structure to 

allow for selective targeting of integrin-overexpressing cells. We successfully expressed 

the protein monomers, assembled the functional nanocarrier, and investigated its 

antibody-binding properties. Results of cellular uptake studies involving HeLa, MCF-7, 

as well as SK-BR-3 cancer cell lines indicate significant cellular uptake of antibody-

loaded nanocarrier as compared to soluble antibody control. Without any modification of 

the carrier, we also used HER2 targeting antibodies to direct the carriers preferentially 

into HER2-positive SK-BR-3 cells. In addition to efficient cellular uptake, the highly 

biocompatible and modular nature of our nanocarrier makes it ideal for expanding the 

scope of antibody-based therapeutics to the intracellular environment.  
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CHAPTER 1 

INTRODUCTION 

 

Various cancers remain among the leading causes of death in the United States, 

and although the mortality rates for most cancers have stabilized or decreased, liver and 

pancreatic cancer mortality rates have increased for both men and women [1]. The 

National Cancer Institute estimates that about 40 percent of adult men and women in the 

United States will be diagnosed with some type of cancer in their lifetime [1]. Antibody-

drug conjugates (ADCs) are a novel treatment option for several disorders, including 

some cancers [2]. The U.S. Food and Drug Administration (FDA) recently approved 

several ADCs for treatment of lymphoma and leukemia [2].  

 Most ADCs, both FDA-approved and in development, utilize the antibody as a 

targeting moiety, relying on antibody binding to specific cell-surface receptors that are 

overexpressed by the specific cancer cells [2]. Antibody-receptor interactions then allow 

the ADC to be internalized by the cancer cell, resulting in drug release from the ADC 

inside the target cancer cell [2]. Current FDA-approved ADCs usually carry between 1 

and 8 small molecule drugs, but some prospective ADCs are comprised of a targeting 

antibody covalently linked to polymers or nanoparticles, thus allowing for targeted 

delivery of larger cargo molecules [2,3]. Several current and future ADC designs utilize 

stimulus-responsive covalent-linkers, such as those that may be cleaved by proteases 

once the cell internalizes the ADC, in order to achieve more sustained cargo release as 

well as lower toxicity towards healthy cells [4]. To further enhance the targeting 
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properties of ADCs, biparatopic rather than monoclonal antibodies have also been 

utilized [5].  

 ADCs have already shown significant potential as cancer therapeutics, however, 

one of the limitations of the current design is its reliance on a single antibody chemically 

conjugated to a single drug moiety or nanoparticle. Different cancer cells have many 

diverse mutations which result in overexpression of various cell-surface receptors, and 

although many overexpressed receptors, such as EGFR, are common to many cancer cell 

types, the current approach to ADC design may require the development of a separate 

ADC for each specific receptor, cancer cell type, as well as drug entity [3,6]. Another 

shortcoming of current ADC constructs is their use of antibodies as targeting moieties, 

rather than as possible therapeutic agents themselves. It was previously shown that 

antibodies may be used to modulate oncoprotein interactions inside cancer cells, and thus 

may be considered as viable chemotherapeutic agents [7,8].  

 We have previously described a protein nanocarrier that may be used for 

intracellular delivery of up to six functional antibodies [9]. The carrier exhibits low 

toxicity and high cytosolic delivery efficiency [9]. The goal of this thesis is to enhance 

the original nanocarrier design to achieve specific targeting ability. The end goal is 

delivery of functional, therapeutic antibodies to the intracellular environment of specific 

cell and tissue types. We considered two approaches to targeting: introduction of 

targeting peptide domains, as well as the use of targeting antibodies. A truly modular and 

specific nanocarrier design could expand the scope of antibody-based therapeutics to the 

intracellular environment.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 Antibody drug conjugates (ADCs) are a novel class of truly biocompatible and 

highly specific therapeutics, with several already approved by the U.S. Food and Drug 

Administration (FDA) for treatment of various disorders, including cancers such as 

lymphoma [2].Most currently used ADCs utilize the antibody as a targeting agent, and 

thus rely on the conjugate binding to the specific cell surface receptor to initiate cellular 

uptake and subsequent intracellular drug release for achieving their therapeutic goals [2].  

Several ADCs that are currently in development also utilize the antibody as a 

targeting moiety, but are able to deliver much larger and complex cargo molecules, such 

as nanoparticles, rather than smaller drug molecules. As reported by Palanca-Wessels et 

al., polymeric micelle nanoparticles loaded with siRNA molecules may be conjugated 

with specific targeting antibodies to enhance particle delivery to target cancer cells [3]. 

The study utilized antibodies specific for HER2 receptors, which are receptor tyrosine 

kinases known to be overexpressed by many types of cancer cells [3]. Targeted delivery 

of siRNA may be more therapeutically efficient than small molecule drug delivery, since 

siRNA is used to knockdown specific oncogenes responsible for the cancerous properties 

of the cell, while maintaining relatively low toxicity to healthy cells in the surrounding 

tissues [3]. The shape and structure of the nanoparticle also enhance the cytosolic 

delivery of the cargo through better endosomal escape as compared to small molecule 

drugs. However, the experimental results show significant uptake of nanoparticles that 

have not been conjugated with the targeting antibody, and thus the targeting efficiency of 
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this new design may be inconsistent. This design also relies on electrostatic interactions 

between siRNA and the nanoparticle backbone, and thus may behave differently in 

different tumor microenvironments.  

In order to achieve better targeting efficiency, several other novel ADC designs 

rely on biparatopic antibodies, which are engineered from the variable regions of two 

different monoclonal antibodies. Li et al. showed that an ADC composed of a biparatopic 

HER2-specific antibody conjugated to a microtubule-stabilizing agent achieved superior 

cytotoxic effects as compared to a current FDA-approved monoclonal analogue [5]. Their 

results indicate that the use of a biparatopic antibody promotes receptor clustering and 

thus enhances cellular uptake and subsequent endosomal degradation of the 

overexpressed receptors [5]. However, an immunoblotting analysis of cell lysate may not 

be sufficient for accurately determining whether the HER-2 receptors are truly degraded 

following internalization, and therefore the authors’ final conclusions do not seem well 

supported.  

Another novel method of enhancing targeting efficiency of ADCs involves the 

use of sensitive linker molecules, most of which either respond to chemical and physical 

changes in the microenvironment, or interact directly with chemical agents. Several pH-

sensitive linkers and monomers have been described, many of which take advantage of 

the slight decrease in pH in tumor microenvironments that is the direct result of the 

Warburg effect: increased anaerobic glycolysis rate in cancer cells [10]. Although pH 

sensitivity may be a viable way of achieving tumor targeting, pH changes may be too 

subtle initially and may only be sufficient for targeting once the cancer has progressed 

substantially. 
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 Several other studies have introduced a different approach: the use of enzyme-

responsive linkers and monomers. These nanoparticles and ADCs achieve targeted drug 

release due to cleavage of the linker by enzymes that are present either in the surrounding 

extracellular environment or within intracellular vesicles. Lehar et al. have proposed an 

ADC containing an enzyme-sensitive linker for delivery of antibiotics to methicillin-

resistant S. aureus (MRSA) bacteria that are located inside the phagolysosomes of 

macrophages [4]. Although most MRSA that are phagocytized by macrophages and 

neutrophils are rapidly cleared, some may be retained and transported throughout the 

body, thus contributing to recurring infections [4]. Therefore, MRSA trapped inside the 

phagolysosomes of macrophages may act as “Trojan horses” and effectively evade 

conventional antibiotic treatments [4]. The ADC design proposed by Lehar et al. 

effectively overcomes limitations of conventional antibiotics for treatment of intracellular 

MRSA [4]. Targeting is achieved through a specific antibody that binds MRSA, and the 

cytotoxic effect is achieved through proteasomal cleavage of the linker between the 

antibody and the antibiotic drug molecule inside the phagolysosome [4]. In vitro 

experiments on murine macrophages as well as in vivo tests on mice with bacteraemia 

indicate an advantage of this ADC design as compared to conventional antibiotic 

treatment [4]. This novel idea may have many potential applications and allows for more 

efficient and targeted delivery, while also minimizing potential side effects since the 

cargo molecule remains inactive until the sensitive linker is cleaved in the vicinity of its 

target.  

 Although numerous ADC designs have already been tested and many are 

currently in development, most of these conjugates fail to take advantage of the 
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therapeutic potential of antibodies themselves. High specificity, extended half-life in 

circulation, as well as excellent biocompatibility makes antibodies very suitable 

therapeutic agents [7]. Antibodies have been shown to play significant roles in cellular 

signaling pathways and protein-protein interactions, including mechanisms involved in 

progression of various diseases [7,8]. A major obstacle to antibody-based therapy, 

however, is the efficient cytosolic delivery of functional antibodies.  

Many current methods of intracellular delivery of functional antibodies require 

initial permeabilization of the cell membrane, thus rendering the cell nonviable [11]. 

Other methods of delivering functional antibodies to live cells involve the use of silica-

based nanoparticles, but the loading of IgG onto the nanoparticle is very low (1.26 μg 

IgG/mg) [12]. The relatively low loading efficiency may be overcome by the use of 

virus-like particles, but immunogenicity remains a major concern for potential 

therapeutic uses. [13] Thus, a novel approach is necessary in order to expand the scope of 

antibody-based therapies to cytosolic targets. 

We have previously described a protein nanocarrier that may be used for 

intracellular delivery of up to six functional antibodies [9]. The nanocarrier contains two 

functional domains: a hexameric CC-HEX peptide that is formed through self- assembly 

of six α-helical domains into a coiled coil and the Staphylococcal protein A domain B 

(SPAB) that may non-covalently bind different antibodies with different affinities 

[16,17]. The CC-HEX peptide has good long-term stability and self-assembly properties, 

making it ideal for easy assembly of various domains into a complete, functional 

nanocarrier. The SPAB domain has good affinity for many human antibodies and binds 

them non-covalently, thus eliminating the need for complex chemical conjugation. The 
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functional nanoparticle has a central CC-HEX peptide linked to six SPAB domains, and 

is theoretically capable of delivering six functional antibodies to the intracellular 

environment. The goal of the current study is to increase the targeting specificity of the 

original HEX nanocarrier in order to enable intracellular antibody delivery to specific 

cancer cell types.   

Effective and efficient cytosolic delivery of large biological macromolecules, 

such as antibodies, may be facilitated by addition of various peptide domains to the 

conjugate or nanoparticle structure. One such domain, internalizing RGD (iRGD) has 

been shown to enhance the delivery and tumor penetration of a nanoparticle containing 

the variable domain from the heavy chain of an anti-EGFR antibody, which binds human 

epidermal growth factor receptors [14]. The iRGD domain contains the amino acids 

arginine (R), glycine (G), and aspartic acid (D), which are well known for their affinity 

for 3 and 5 integrins, as well as a CendR motif, which interacts with the receptor 

Neuropilin-1 (NRP-1), triggering the internalization cascade [14]. The 3 and 5 

integrins are overexpressed in many cancers, and such may be potential therapeutic 

targets [14,15]. Sha et al. demonstrated that addition of the iRGD domain substantially 

increased the penetration of the nanoparticle into deeper layers of tumor tissue, as 

indicated by confocal microscopy images of 3D multicellular spheroids that were 

incubated with the nanoparticle [14]. Although the authors state that the exact molecular 

mechanism for iRGD’s targeting and tumor penetration is yet unknown, the experimental 

results also indicate substantial antitumor activity of the anti-EGFR-iRGD peptide 

without addition of any drug molecules [14]. 

 Niikura, Horisawa, and Doi have also introduced additional peptide domains to 
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the anti-EGFR antibody; however, the B18 and B55 fusogenic peptides do not affect 

targeting properties, but rather increase the efficiency of endosomal escape [6]. Release 

of large molecules from endosomal vesicles is a critical step for cytosolic targeting, and 

remains a major obstacle for intracellular delivery of functional antibodies. B18 and B55 

have previously been shown to increase endosomal escape of smaller peptides through 

conformational changes at acidic pH, and Niikura et al. showed very similar results for 

the anti-EGFR antibody fragment.    

In this thesis, we investigated both the use of targeting peptide domains as well as 

HER2 receptor targeting antibodies. Introduction of the iRGD domain should allow the 

particle to bind and deliver non-targeting antibodies while still maintaining specific 

targeting as well as tissue-layer penetration properties. Anti-HER2 monoclonal antibodies 

have been approved by the FDA as viable agents for targeted breast cancer therapy and 

may be used in conjunction with our nanocarrier to achieve not only better targeting, but 

also increased anti-tumor efficacy [22]. The use of these targeting antibodies does not 

necessitate any changes in the design of the nanocarrier, but may require additional 

investigation of loading efficiency.   
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 Plasmid Preparation and Site-Directed Mutagenesis: 

Bacterial expression vectors pQE80-SPAB-HEX and pQE80-HEX-SPAB were 

synthesized by GenScript (Piscataway, NJ). The plasmid encoding SPAB-HEX-iRGD 

was prepared by site-directed mutagenesis of pQE80-SPAB-HEX. DNA primers were 

purchased from Eurofins Genomics (Louisville, KY). Phusion® High Fidelity DNA 

Polymerase, reaction buffers, and the deoxynucleotide (dNTP) solution mix were 

purchased from New England BioLabs (Ipswich, MA). TOP10 Escherichia Coli (E. Coli) 

were transformed with pQE80-SPAB-HEX-iRGD, pQE80-SPAB-HEX and pQE80-

HEX-SPAB.  

 

3.2 Protein Expression and Purification: 

HEX-SPAB, SPAB-HEX, and SPAB-HEX-iRGD were expressed in TOP10 E. Coli that 

have acquired the appropriate plasmid vector through bacterial transformation. E. Coli 

cells were cultured in Lysogeny Broth (LB) media. Protein expression was induced by 

addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) once the optical density (OD) 

of the cell culture measured by the NanoDrop® spectrophotometer at 600 nm has reached 

0.6 [18]. The cells were then harvested by centrifugation, suspended in lysis buffer and 

further disrupted by sonication. The resulting cell lysate was separated using 

centrifugation; the supernatant was collected and purified using nickel–nitrilotriacetic 

acid (Ni-NTA) affinity chromatography under native conditions. 



10 

A total of ten eluted fractions were collected for each recombinant protein, and the 

concentration of each fraction was determined by the NanoDrop® spectrophotometer 

using the absorbance at 280 nm and known values of molecular weight and extinction 

coefficient (ε) of CC-HEX [16,18]. Fractions that contained less than 0.5 mg/mL of target 

protein were discarded. The first eluted fraction for each protein was also discarded due 

to high likelihood of presence of unwanted contaminant proteins. A PD-10 desalting 

column was used to exchange the buffer of the protein solutions from elution buffer to 1x 

phosphate buffered saline (PBS) [19]. 

The purity of the eluted fractions was analyzed by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE). The size of HEX-SPAB, SPAB-HEX, 

and SPAB-HEX-iRGD was characterized using dynamic light scattering (DLS), and 

verified using the known size values for CC-HEX and SPAB [16,17,20].  

 

3.3 Assembly of Functional Nanocarriers (HEX and HEX-iRGD): 

To produce the functional HEX nanocarrier, HEX-SPAB and SPAB-HEX recombinant 

proteins were initially mixed together at a molar ratio of 1:1 and denatured by addition of 

10% by volume sodium dodecyl sulfate (SDS). The same procedure was followed to 

assemble the HEX-iRGD nanocarrier, with the only exception being the use of SPAB-

HEX-iRGD instead of SPAB-HEX. The mixtures were allowed a total reaction time of 

30 minutes to ensure complete disassembly of HEX-SPAB, SPAB-HEX, and SPAB-

HEX-iRGD into their constituent monomeric peptides. The functional nanocarriers were 

then fabricated by reassembly of recombinant proteins into their hexameric state due to 

removal of SDS. PD-10 desalting columns as well as the ÄKTA fast protein liquid 
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chromatography (FPLC) system were used to completely remove SDS [19,21]. Purity of 

the resulting reassembled nanocarriers (HEX and HEX-iRGD) was verified using SDS-

PAGE. Proper assembly was also verified through size measurement using DLS [20].  

 

3.4 Antibody Binding: 

Size of HEX, HEX-iRGD, and rabbit immunoglobulin G (IgGRb) was measured using 

DLS [20]. Concentration of HEX and HEX-iRGD monomers as well as IgGRb was 

determined by the NanoDrop® spectrophotometer using the absorbance at 280 nm and 

known values of molecular weight and extinction coefficient (ε) of CC-HEX and IgGRb 

[16,18].  Several samples containing various molar ratios of HEX:IgGRb were prepared 

by mixing appropriate volumes of HEX and IgGRb and vortexing to ensure even mixing. 

Size of the HEX-IgGRb nanocarriers was measured using DLS [20]. 

 

3.5 Cellular Uptake Studies: HEX/HEX-iRGD + IgGRb 

HeLa, MCF-7, and SK-BR-3 cells were cultured in complete media supplemented with 

10% fetal bovine serum (FBS) at 37°C and 5% CO2 for 24 hours. The cells were then 

dissociated from the culture flask by addition of 0.25% trypsin, and cell density was 

determined by counting cells using a hemocytometer. The cells were then transferred to a 

96-well plate at a seeding density of 10,000 cells per well.  

IgGRb labeled with TAMRA red fluorescent dye was obtained from stock, and bound to 

HEX or HEX-iRGD as previously described. The appropriate volume of HEX-IgGRb-

Dye solution was mixed with complete media to bring the total volume of each well to 

100 μL. The working concentrations were 0.7 μM and 1.4 μM for HEX, IgGRb-TAMRA, 
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respectively.  The cells were incubated at 37°C and 5% CO2 for 24 hours, and visualized 

using fluorescence microscopy. All fluorescence microscopy images were collected at the 

same exposure time using a 10X magnification optical lens.  

 

3.6 Integrin Targeting Study 

Anti-integrin 3 antibodies were purchased from EMD Millipore (Billerica, MA). To 

investigate the efficiency of integrin targeting by HEX-iRGD, fixed HeLa cells were pre-

incubated with soluble anti-integrin 3 antibodies for 1 hour according to the 

manufacturer’s protocol.  The cells were then washed and incubated with a solution of 

HEX + IgGRb or HEX-iRGD + IgGRb with or without anti-integrin 3 antibodies for 

24 hours. The working concentrations were 0.7 μM for HEX/HEX-iRGD and 1.4 μM for 

IgGRb-TAMRA. A secondary anti-rabbit fluorescent antibody was used to visualize 

integrin binding of the primary antibody, and thus confirm its effectiveness as an 3 

blocking agent. Cells were visualized using fluorescence microscopy. All fluorescence 

microscopy images were collected at the same exposure time using a 10X magnification 

optical lens. 

 

3.7 HER2 Targeting Study 

Anti-HER2 antibodies were purchased from Sigma Aldrich (St. Louis, MO). MCF-7, and 

SK-BR-3 cells were cultured in complete media supplemented with 10% fetal bovine 

serum (FBS) at 37°C and 5% CO2 for 24 hours. The cells were then dissociated from the 

culture flask by addition of 0.25% trypsin, and cell density was determined by counting 

cells using a hemocytometer. The cells were then transferred to a 96-well plate at a 
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seeding density of 10,000 cells per well.  

Samples were prepared by mixing an appropriate volume of HEX, IgGRb-TAMRA, 

and/or anti-HER2 in serum-free media, with subsequent addition of FBS after 5-10 

minutes to allow sufficient time for HEX-antibody binding. The working concentrations 

were 0.2 μM, 0.4 μM, and 0.4 μM for HEX, IgGRb-TAMRA, and anti-HER2, 

respectively. Samples containing no anti-HER2 antibodies were supplemented with 

unlabeled rabbit IgG, in order to maintain an equal concentration of fluorescent antibody 

across all samples. Cells were incubated with the sample solutions for 10 hours and 

washed 3 times with sterile 1X PBS. The mean fluorescence intensity per well was then 

measured using a microplate reader and the cells were imaged using a fluorescent 

microscope. All fluorescence microscopy images were collected at the same exposure 

time using a 10X magnification optical lens. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

 

4.1 Purification of Recombinant Proteins and Assembly of Functional Nanocarriers 

The recombinant peptides SPAB-HEX, SPAB-HEX-iRGD, as well as HEX-SPAB were 

successfully expressed in E. Coli, and purified from cell lysate under native conditions. 

SDS-PAGE analysis of several eluted fractions shown in Figure 1 indicates high purity, 

and the apparent molecular weight readings coincide with the known values. It is worth 

noting the lower expression yield of HEX-SPAB, which was almost five times less than 

that of SPAB-HEX and SPAB-HEX-iRGD. Results shown in Figure 2 indicate successful 

assembly of the functional HEX-iRGD nanocarrier.       

                    

 

 

 

 

4.2 Binding of IgGRb to HEX-iRGD: 

Size of purified 10 μM HEX-iRGD and IgGRb was determined using DLS. Intensity-

based size distribution measurements presented in Figure 3 indicate an average size of 18 

nm for HEX-iRGD and 15 nm for IgGRb. The study of the concentration dependence of 

Figure 1. SDS PAGE analysis of SPAB-HEX-

iRGD (1,2,3,&4)  and HEX-SPAB(5&6) 

elutions. 

Figure 2. SDS PAGE analysis of 

assembled HEX-iRGD 

nanocarrier. 
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nanocarrier size indicates greater average particle size at higher ratios of HEX:IgGRb, as 

presented in Figure 3. Nanocarrier size was measured using DLS. A noteworthy 

observation, as shown in Figure A2, is the broad nature of the peaks at higher ratios of 

HEX:IgGRb, possibly indicating a more diverse population of IgGRb-bound nanocarrier 

species. 

 
Figure 3. DLS size measurements of HEX-iRGD + IgGRb at different molar ratios. 

 

 

 

4.3 Cellular Uptake Study: HEX + IgGRb 
 

HeLa cells were cultured in complete media supplemented with 10% fetal bovine serum 

(FBS) at 37°C and 5% CO2 for 24 hours. IgGRb labeled with TAMRA red fluorescent 

dye was obtained from stock, and bound to HEX or HEX-iRGD as previously described. 

The working concentrations were 0.7 μM and 0.9 μM for IgGRb-TAMRA, and 1.4 μM 

and 1.9 μM for HEX. The cells were incubated at 37°C and 5% CO2 for 24 hours, and 
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visualized using fluorescence microscopy. All fluorescence microscopy images were 

collected at the same exposure time.  

Fluorescence microscopy images presented in Figure 4 indicate increased uptake of 

HEX-IgGRb-TAMRA nanocarrier as compared to soluble IgGRb-TAMRA. The images 

also indicate a dose-dependence of uptake, with the higher-concentration sample showing 

a stronger fluorescent signal. The negative control group was treated with neither HEX 

nor IgGRb and therefore shows no fluorescent signals. Incubation with nanocarrier did 

not seem to have any negative effects on the morphology of HeLa cells. 

 

Figure 4. Fluorescence microscopy images of concentration-dependent cellular uptake of HEX-TAMRA 

and HEX-IgGRb-TAMRA by HeLa cells. The scale bar represents 100 μm. 
 

4.4 Cellular Uptake Study: HEX + IgGRb vs. HEX-iRGD + IgGRb 

HeLa, MCF-7, and SK-BR-3 cells were cultured in complete media supplemented with 

10% fetal bovine serum (FBS) at 37°C and 5% CO2 for 24 hours. IgGRb labeled with 

TAMRA red fluorescent dye was obtained from stock, and bound to HEX or HEX-iRGD 

as previously described. The working concentrations were 0.7 μM for IgGRb-TAMRA, 

and 1.4 μM for HEX. The cells were incubated at 37°C and 5% CO2 for 24 hours, and 
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visualized using fluorescence microscopy. All fluorescence microscopy images were 

collected at the same exposure time.  

Microscopy images shown in Figure 5 indicate a difference in uptake of HEX-IgGRb and 

HEX-iRGD-IgGRb by Hela, MCF-7, and SK-BR-3 cells. The intensity of the fluorescent 

signal is evidently stronger for HEX-iRGD-IgGRb as compared to HEX-IgGRb. 

However, flow cytometry data shown in Figure A1 indicate that this difference is not 

significant, and therefore may not be attributed to enhanced targeting or internalization of 

HEX-iRGD. It is also worth noting the difference in uptake pattern between the three cell 

lines. Fluorescent signals in MCF-7 cells tends to be concentrated in a smaller number of 

cells, while HeLa and SK-BR-3 cells show a more uniform distribution across cells. 

To confirm that the observed fluorescent signal does indeed correspond to uptake and not 

membrane interactions, the efficiency of the cell washing protocol was investigated. SK-

BR-3 and MCF-7 cells were incubated with solutions of HEX+IgGRb-TAMRA at 4 °C 

for 24 hours. The cells were then subject to washing protocols of varying rigor, collected 

by adding trypsin and analyzed on the flow cytometer. The results shown in Figure A5. 

indicate no significant difference between cells that were not incubated with HEX-

IgGRb-TAMRA (Negative Control), and cells subjected either to the regular washing 

protocol (3 washes with 1X PBS), or the extra washing protocol (7 washes with 1X PBS). 

There is, however, a pronounced difference between the previously mentioned samples 

and cells that were not washed at all. This result confirms that the standard washing 

protocol is effective for removing any nanocarriers that adhere to the cell membrane. 

Thus, it may be concluded that fluorescence microscopy data are indicative of cellular 

uptake of the nanocarriers.   
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Figure 5. Fluorescence microscopy images showing uptake patterns of HEX + IgG-TAMRA and HEX-

iRGD + IgG-TAMRA by HeLa, MCF-7 cells, and SK-BR-3 cells. The scale bar represents 100 μm. 
 

4.5 Integrin Targeting Study: HEX + IgGRb vs. HEX-iRGD + IgGRb 

To investigate the efficiency of integrin targeting by HEX-iRGD, fixed HeLa cells were 

pre-incubated with soluble anti-integrin 3 antibodies for 1 hour according to the 

manufacturer’s protocol.  The cells were then washed and incubated with a solution of 

HEX + IgGRb or HEX-iRGD + IgGRb with or without anti-integrin 3 antibodies for 

24 hours. The working concentrations were 0.7 μM for HEX/HEX-iRGD and 1.4 μM for 

IgGRb-TAMRA. A secondary anti-rabbit fluorescent antibody was used to visualize 

integrin binding of the primary antibody, as shown in Figure A6, and thus confirm its 

effectiveness as an 3 blocking agent. Cells were visualized using fluorescence 

microscopy. All fluorescence microscopy images were collected at the same exposure 

time. 
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Microscopy images presented in Figure 6 show no significant difference in 

membrane interactions of HEX and HEX-iRGD either in the presence or absence of anti-

integrin 3 antibodies.  

 

Figure 6. Fluorescence microscopy images showing membrane interaction patterns  

of HEX-IgGRb and HEX-iRGD-IgGRb by fixed HeLa cells in the presence or 

absence of anti-integrin 3 antibodies. The scale bar represents 100 μm.  

 

4.6 HER2 Receptor Targeting 

MCF-7 and SK-BR-3 cells were cultured in complete media supplemented with 10% 

fetal bovine serum (FBS) at 37°C and 5% CO2 for 24 hours. The working concentrations 

were 0.2 μM, 0.4 μM, and 0.4 μM for HEX, IgGRb-TAMRA, and anti-HER2, 

respectively. Samples containing no anti-HER2 antibodies were supplemented with 

unlabeled rabbit IgG, in order to maintain an equal concentration of fluorescent antibody 

across all samples. Cells were incubated with the sample solutions for 10 hours and 

washed 3 times with sterile 1X PBS. The mean fluorescence intensity per well was then 
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measured using a microplate reader and the cells were imaged using a fluorescent 

microscope. All fluorescence microscopy images were collected at the same exposure 

time. 

Mean fluorescence intensity readings indicate significant differences in HEX+2 anti-

HER2+2 IgGRb-TAMRA uptake between SK-BR-3 and MCF-7 cells. This result is 

expected, since SK-BR-3 cells overexpress the HER2 receptor, while MCF-7 cells do 

not. Additionally, there is a significant difference in uptake of nanocarriers with and 

without anti-HER2 antibodies for SK-BR-3 cells, as expected. Conversely, there is no 

significant difference in uptake of HEX-IgGRb between these two cell types. This result 

indicates that the nanocarrier may be effectively targeted to specific cell types through 

binding of targeting antibodies. Fluorescence intensity data is shown in Figure 7. 

Additional microscopy images are presented in Figures 8 and 9.  

 

Figure 7. Mean fluorescence intensity data collected by microplate reader for SK-BR-3 and MCF-7 cells 

incubated with HEX nanocarriers bound to IgGRb-TAMRA or anti-HER2 + IgGRb-TAMRA. (* indicates 

p = 0.0004; ** indicates p < 0.0001; Significance threshold was set at p < 0.05). 
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Figure 8. Microscopy images of MCF-7 cells following a 10-hour incubation with HEX nanocarriers 

bound to IgGRb-TAMRA or anti-HER2+IgGRb-TAMRA. The scale bar represents 100 μm.  
 

 

Figure 9. Microscopy images of SK-BR-3 cells following a 10-hour incubation with HEX nanocarriers 

bound to IgGRb-TAMRA or anti-HER2+IgGRb-TAMRA. The scale bar represents 100 μm. 
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CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

 

We have successfully shown that both HEX and HEX-iRGD nanocarriers are 

capable of delivering functional antibodies to the intracellular environment of live cells. 

These nanocarriers are highly biocompatible and modular, easy to produce and maintain, 

and do not have a negative effect on cell viability or morphology. In the current study, we 

investigated two possible modifications to the original HEX nanocarrier with the goal of 

increasing targeting specificity. The functional nanocarriers HEX and HEX-iRGD were 

constructed from the recombinant proteins HEX-SPAB, SPAB-HEX, and SPAB-HEX-

iRGD. High overall yield and purity of the recombinant proteins and assembled 

nanocarriers were confirmed through SDS-PAGE analysis. 

The results of the IgGRb binding study confirmed the initial hypothesis that 

increasing the HEX:IgGRb ratio increases the size of the nanocarrier. However, the 

increase in size was not linear and coincided with broadening of the peaks, possibly 

indicating a diverse population of molecular species within a similar size range. The 

broad nature of the peaks at higher mixing ratios makes the average measured value 

harder to interpret, and it is yet unclear if there is any particular mixing ratio at which 

optimal saturation of HEX with IgGRb would be achieved. Future studies may include 

higher mixing ratios and different starting concentrations of HEX and IgGRb. 

 Cellular uptake studies indicate a significant level of uptake of both IgGRb-

bound nanocarrier as well as unbound HEX by HeLa cells after a 24-hour incubation 

period. The results of the HEX + IgGRb cellular uptake study indicate a rather strong 
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concentration dependence of uptake, as evidenced by much higher intracellular 

fluorescent signals from cells incubated with higher concentrations of HEX + IgGRb. 

Further studies are necessary to determine an optimal concentration, which would allow 

for better uptake in a reduced incubation time.  

Although HEX and IgGRb are very similar in size, HEX is readily internalized by 

HeLa cells, while IgGRb is not, as evidenced by the diffuse fluorescent signal of the 

IgGRb control. A possible explanation for this result is the relative shape of the 

hexameric self-assembling scaffold, which resembles a pore-forming complex. However, 

further investigation is needed to determine the molecular mechanisms of HEX uptake.  

HEX-iRGD uptake by HeLa, MCF-7, and SK-BR-3 cells differed from HEX 

uptake in terms of both the intensity of signal from internalized nanocarriers as well as 

the pattern of the signal. Overall, all three cell lines internalized HEX-iRGD more 

readily, although images MCF-7 and SK-BR-3 cells do show an intense signal around the 

outside of some cells. Results of the integrin specific targeting study indicate no 

difference in membrane interaction patterns of HEX and HEX-iRGD when in the 

presence of anti-integrin 3 antibodies, suggesting that integrin targeting is not 

effective. These results may be a consequence of the iRGD domains affecting the 

interactions between HEX and the cell membrane. 

 The failure of HEX-iRGD to achieve targeting specificity may be due to several 

factors, with the most probable being steric hindrance of the iRGD peptide by linkers, 

SPAB domains, as well as bound antibodies in the assembled functional nanocarrier. To 

investigate this hypothesis, it may be worthwhile modifying the original HEX nanocarrier 

with iRGD domains that are connected via flexible linkers, similar to those connecting 
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HEX to the SPAB domains. A representative diagram of the HEX nanocarrier is shown 

in Figure A7.  

Another possible explanation for the apparent lack of iRGD function may be the 

relatively large size of antibody-bound HEX-iRGD, as large particles may have difficulty 

interacting with NRP-1 following integrin binding. However, this hypothesis is not 

supported by literature results, since a recent study has shown significant increase in 

tumor-selective accumulation and penetration of iRGD-functionalized polymersomes, 

indicating that iRGD effects on targeting and internalization are applicable to larger 

nanoparticles [23].  

 HER2 receptor targeting, however, does show promise and should be investigated 

further. This approach to targeting does not require any modifications of the original 

HEX nanocarrier, and is therefore simpler than the introduction of additional targeting 

domains. However, given the covalent nature of the binding between the SPAB domain 

of the nanocarrier and antibodies, it may prove difficult to achieve a truly homogeneous 

population of particles. Although the HEX nanocarrier is introduced into a solution that 

has the desired concentration ratio of targeting antibodies to intracellular antibodies, it is 

essentially impossible to guarantee that each HEX nanocarrier contains the desired 

amount of targeting and intracellular antibodies. This notion, although an advantage in 

terms of carrier fabrication and preparation, may prove a disadvantage for future in vivo 

investigations.   
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CHAPTER 6 

FUTURE WORK 

  

Additional studies are necessary to evaluate the stability of HEX + Antibody at 

higher loading ratios and working concentrations. Our preliminary data indicate that at 

certain higher ratios and concentrations, the antibody-bound nanocarriers may form 

aggregates, which potentially hinders uptake and targeting, and may present a significant 

limitation for future in vivo studies. Studies in the near future should investigate the 

stability of antibody-bound HEX at higher concentrations and ratios that were previously 

shown to be therapeutically relevant. DLS may be used as an initial “quality check” 

method to evaluate stability and aggregation over time, but additional methods, such as 

size-exclusion chromatography and analytical ultracentrifugation should also be 

considered for evaluation of stability and particle size distribution over time.        

To further investigate the reasons for the failure of the iRGD targeting approach, 

it may be worthwhile engineering a HEX nanocarrier with iRGD-domains connected via 

flexible linkers to reduce steric effects and promote iRGD-integrin interactions. If iRGD 

targeting still does not show significant differences, the original HEX nanocarrier may be 

bound to anti-integrin 3 antibodies to test whether integrin targeting is an effective 

strategy for our nanocarrier design. 

The next tasks involve delivery of an intracellular therapeutic antibody to cells 

representing a certain disease model. Future studies should utilize HEX nanocarriers 

bound to a combination of targeting antibodies as well as antibodies that will have the 

desired therapeutic effect once delivered to the cytosol. Effect of these antibodies may be 
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evaluated by measuring cell viability via MTT assay or live-dead staining, or as an 

alternative, a western blot may be used to show successful binding of the delivered 

antibody to its cytosolic target protein.    

In the long term, it may be worth investigating the use of a combination of 

targeting antibodies to increase delivery specificity. Many disease models, such as cancer 

cells, are known to overexpress numerous key receptors that may present excellent 

extracellular protein targets. Theoretically, using a combination of targeting antibodies 

should increase the likelihood of successful targeting, but in certain cases, it may also 

lead to increased off-site effects. The effectiveness of this approach should first be 

evaluated in vitro to determine whether it holds promise for potential in vivo trials.  
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APPENDIX A 

ADDITIONAL FIGURES 

 

Figure A1. Flow cytometry analysis of HEX + IgGRb and HEX-iRGD + IgGRb uptake by HeLa, MCF-7, 

and SK-BR-3 cells. 

 

 

Figure A2. DLS time course data for stability of HEX + IgGRb when mixed at a 1:5 ratio of HEX to 

IgGRb. 
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Figure A3. Size distribution by intensity of concentrated HEX (30 µM) + IgGRb (36 µM)  

at t = 0 hours. 

 

 
Figure A4. Size distribution by intensity of concentrated HEX (30 µM) + IgGRb (36 µM)  

at t = 17.5 hours. 
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Sample SK-BR-3 Mean FL2-A MCF-7 Mean FL2-A 

Negative Control 5,223.16 2,524.83 

Regular Wash 6,792.81 3,126.87 

Extra Wash 5,973.01 3,376.03 
No Wash 32,341.23 11,032.01 

 

 
Figure A5. Flow cytometry data for the washing protocol efficiency study. Regular wash refers to 3X wash 

with 1X PBS, while Extra Wash refers to 7X wash with 1X PBS. 

 

 
Figure A6. Fluorescence microscopy images showing successful integrin blocking by the primary anti-

integrin 3 antibodies that were subsequently labeled with a secondary anti-rabbit-FITC antibody. The 

scale bar represents 100 μm. 
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Figure A7. Representative diagram of antibody-bound HEX nanocarrier structure. *** Note: not drawn to 

scale (molecular weight of HEX nanocarrier: ~ 76 kDa, molecular weight of 1 IgG: ~ 150 kDa) 
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