
In presenting the dissertation as a partial fulfillment of
the requirements for an advanced degree from the Georgia
Institute of Technology, I agree that the Library of the
Institute shall make it available for inspection and
circulation in accordance with its regulations governing
materials of this type. I agree that permission to copy
from, or to publish from, this dissertation may be granted
by the professor under whose direction it was written, or,
in his absence, by the Dean of the Graduate Division when
such copying or publication is solely for scholarly purposes
and does not involve potential financial gain. It is under­
stood that any copying from, or publication of, this dis­
sertation which involves potential financial gain will not
be allowed without written permission.

/ /i

MIN-MAX PATH FLOW

IN DIRECTED NETWORKS

A THESIS

Presented to

The Faculty of the Division of Graduate

Studies and Research

by

Robert Glenn Hinkle

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in the School of Industrial and Systems Engineering

Georgia Institute of Technology

June, 1971

MIN-MAX PATH FLOW

IN DIRECTED NETWORKS

ACKNOWLEDGEMENTS

I would like to express my deep appreciation to Dr. J. J. Jarvis

who served as my advisor throughout this research and as chairman of my

reading committee. He provided the guidance, criticism, encouragement

and friendship which was necessary for the successful completion of this

work.

I am also grateful to the other members of the reading committee,

Dr. D. C. Fielder, Dr. C. M. Shetty and Dr. V. E. Unger for their helpful

suggestions. I am especially grateful to Dr. Shetty for several critical

suggestions which have improved this dissertation. Dr. D. R. Fulkerson

read a preliminary draft and offered some valuable suggestions.

I could never have reached this point in my education without the

help of many professors in my graduate studies. I would especially like

to acknowledge the guidance and encouragement given me by Dr. L. A.

Johnson and Dr. H. E. Smalley.

The idea for this research arose from an investigation of the

applicability of network flow theory to a specific strategic transporta­

tion problem. This investigation was being conducted by the author and

Dr. Jarvis for the Naval Weapons Laboratory (NWL), Dahlgren, Virginia.

My studies were financed through the Full-Time Advanced Study Program

of the Naval Weapons Laboratory, which has continued to support me

throughout this research. And for this support I express my appreciation

to NWL management, and particularly to my supervisor, Mr. 0. F. Braxton,

and to Mr. Ralph Niemann, Head of the Warfare Analysis Department at the

time I entered the Full-Time Advanced Study Program.

iii

I wish to thank Mrs. Dorothy Elam and Mrs. Janice Sullivan for the

excellent job they did on the typing while meeting very tight deadlines.

I also thank Mr. John Winder for the excellent drawings and Mr. F. L. Jones

for helping to arrange the typing and printing of this dissertation. I

appreciate the extra effort put forth by Mrs. Dorothy Elam in helping to

eleminate errors in the typing and format.

My deepest debt of gratitude must be to my wife, Doris, and my

two children, Kimberly and Kevin. They have sacrificed much while I have

been engrossed in this effort.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ii

LIST OF TABLES vi

LIST OF ILLUSTRATIONS vii

Chapter

I. INTRODUCTION 1

Statement of the Problem
Example
Graphs and Networks
Network Flow Problems
Objectives
Literature Survey
Results

II. CHARACTERIZATION OF THE MIN-MAX PATH FLOW PROBLEM 23

Formulation of the Min-Max Path Flow Problem
Comparison With Other Problems
Fractional Solutions
Approaches to Algorithm Development

III. A PRIMAL ALGORITHM FOR SOLVING THE MIN-MAX PATH FLOW

Reducing Flow on the Longest Path
The Constrained Shortest Path Problem
Example
The Path Removal Algorithm
Convergence

IV. AN EXPANDED NETWORK FORMULATION OF THE MIN-MAX PATH
FLOW PROBLEM 84

A Dynamically Expanded Network
The Relationship Between G(N,A) and D L(G)
Solution of the Bundle-Constrained Maximum Flow Problem
The Expanded Network Algorithm Convergence

PROBLEM 38

V

Page

Improving Computational Efficiency
Algorithm for Generating Dynamically Expanded
Network

V. CONCLUSIONS AND RECOMMENDATIONS 139

Other Applications
Extensions and Future Research
Results and Conclusions

APPENDIX 157

BIBLIOGRAPHY 160

v i

L IST OF TABLES

Table Page

1 . Path Enumerat ion 25

2 . Minimum Cost S o l u t i o n 27

3 . Min-Max Path S o l u t i o n 27

4 . Min-Max Path Flow S o l u t i o n ' 31

5 . Constra ined S h o r t e s t Path Labels 80

6. Simplex Tableau f o r Bundle -Const ra ined Maximum

Flow Problem 110

7. Column Seven o f B""1 147

8 . S implex Basis 149

9 . Basis I n v e r s e 150

vii

LIST OF ILLUSTRATIONS

Figure Page

1. Transportation Network 2

2. Graph of an Assignment Problem 6

3. Network Model of an Assignment Problem . , 9

4. Example Network •. 26

5. Network With Fractional Min-Max Flows 31

6. Network With Covered Flows 34

7. Minimum Cost Flow 73

8. Min-Max Path Flow 77

9. Network With Arc Lengths and Costs 79

10. Six-Period Expanded Network 85

11. D 1^G); 11-Period Expansion of G(N,A) 86

12. Network With Bundle Constraints 94

13. Arc Identification for Example Network 107

14. Reduced Network . 109

15. Network With Modified Cost 112

16. Network With all Shortest Path Labels 120

17. Network With Labels up to Period 11 . 121

18. Static Network 137

19. Six-Period Expansion G(N,A) 137

20. Computation of B" 1 on the Network 145

21. Network With Four Basic Paths 148'

V I 1 1

SUMMARY

The object ive of th i s d i s ser tat ion i s to report the resu l t s of

research on the min-max path flow problem. The min-max path flow prob­

lem i s a var ia t ion of the well known maximal flow problem. The v a r i a ­

t ion resul ts from the addit ion of a secondary object ive function which

i s to minimize, over a l l flows which produce the required t o t a l f low,

the length of the longest path which carr ies flow. The secondary

object ive function associates with a flow, the length of the longest

path from source to sink in the network which carr ies flow.

The research had two s p e c i f i c o b j e c t i v e s . The f i r s t was to

characterize the min-max path flow problem in terms compatible with

other network flow problems by character iz ing i t s so lut ion and by

showing i t s re lat ionship to other network flow problems. The second

object ive was to develop a so lut ion algorithm for the min-max path

flow problem.

The resul t s of th i s research are summarized as fo l lows: The

min-max path flow problem i s shown to be a general izat ion of the

bottleneck assignment problem and the time-minimizing transportat ion

problem. Both of these problems have a l l a l l - i n t e g e r extreme po ints .

Unlike these problems and unlike other single-commodity maximum flow

problems i t i s shown that the min-max path flow problem does not in

general have a l l a l l - i n t e g e r extreme po ints .

A comparison i s made between the min-max path problem and other

network flow problems. The structure of the min-max path problem i s

c loser to that of multicommodity networks than to s ing le commodity

networks.

The most natural formulation of the problem resul ts in a mixed-

integer programming problem. The problem i s to optimize a min-max

object ive function over a l l maximum path flows on the network.

Two algorithms were developed to solve th is problem. The

f i r s t algorithm solves the integer programming problem by so lv ing a

sequence of l inear programming problems. Successive problems d i f f e r

only in the c o e f f i c i e n t s in the object ive funct ion. Thus, throughout

the computations, the algorithm searches over the set of extreme

points of the same convex polytope. A procedure for moving from one

extreme point to another i s developed which cons is ts of solving a

constrained shortest path problem on the network. An algorithm for

solving the constrained shortest path i s presented. I t i s shown that

the amount of computation required to solve the constrained shortest

path problem i s of the same order of magnitude as that required to

determine the shortest path from s to a l l nodes in a network. That

i s , one so lut ion of the constrained shortest path problem requires on

the order of n 3 additions and comparisons, where n i s the number of

nodes in the network. The algorithm u t i l i z e s a maximum flow algorithm

to find an i n i t i a l f eas ib le solut ion to the problem. The flow i s de~

composed into path flows and the longest paths are i d e n t i f i e d . A

constrained shortest path problem i s then solved to ident i fy a non-

basic path which would, upon introduction into the b a s i s , tend to

reduce the net flow on the set of longest paths currently in the b a s i s .

X

The second a l g o r i t h m makes use o f an expanded v e r s i o n o f the n e t ­

work i n which o n l y paths of l e n g t h less than an a r b i t r a r y l e n g t h a r e

r e p r e s e n t e d . The min-max p a t h f l o w problem i s shown t o be e q u i v a l e n t

to a bundle c o n s t r a i n e d maximum f l o w on the expanded network f o r some

va lue o f L . The l eng th o f the min-max path i s then L.

Th is bundle c o n s t r a i n e d maximum f l o w problem i s so lved by the

use of a decomposi t ion procedure i n which t h e r e a re no more, and q u i t e

l i k e l y f e w e r , master c o n s t r a i n t s than arcs i n the o r i g i n a l ne twork .

The s i n g l e subproblem i s a minimum cost maximum f l o w prob lem.

The f i r s t a l g o r i t h m i s r e f e r r e d t o as the pa th removal a l g o r i t h m .

I t has p o s s i b l e a p p l i c a t i o n i n o t h e r network f l o w problems. I t can be

used , f o r example, to so lve a m u l t i t e r m l n a l maximal f l o w problem which

has one or two s o u r c e - s i n k p a i r s which a re i n a d m i s s i b l e .

The procedure i n the expanded network a l g o r i t h m f o r i m p l i c i t l y

r e p r e s e n t i n g a l l paths of l e n g t h L or less by the expanded network may

be u s e f u l i n o ther network problems which r e s t r i c t the s o l u t i o n t o

paths o f l e n g t h L or l e s s .

The expanded network a l g o r i t h m has a p p l i c a t i o n t o maximal

dynamic f lows w i t h t o t a l a rc c a p a c i t i e s i n a d d i t i o n t o the normal arc

f l o w r a t e s .

CHAPTER I

INTRODUCTION

The object ive of th i s d i s ser ta t ion i s to report the resu l t s of

research on the min-max path flow problem. The min-max path flow

problem i s a var iat ion of the wel l known maximal flow problem.

Stated b r i e f l y , the problem i s to determine the required flow

in a capacited network for which the maximum cost of any unit of flow

from the source to the sink i s minimized.

Before presenting the mathematical concepts of networks and

network flows on which th i s research bu i lds , we w i l l attempt to give

an i n t u i t i v e motivation of the min-max path flow problem by way of

example*

Example

A physical intrepretat ion of the min-max path flow concept i s

provided by the example transportat ion problem depicted in Figure 1 .

Suppose there are trucks located at c i t y s , the source node, and i t i s

desired to transport the trucks to c i t y t , the sink node, v i a c i t i e s

x , y , and z , ca l l ed transshipment nodes. The arcs between the nodes

(c i t i e s) represent transportation l inks that are ava i lab le and the

arc numbers represent, respect ive ly , the arc capac i ty (trucks/unit

time) and the time required to transverse the arc . There are , in

th i s transportation network, several routes that a given truck can

take. For example, i t could go from s to y , and from y to t ; or i t

Figure L. Transportation Network

3

could go from s to x, from x to y , from y to z , and z to t . The problem

t h e n , i s t h a t of s e l e c t i n g the se t o f routes t o be used i n t r a n s p o r t i n g

the t rucks from s to t so t h a t the r e q u i r e d number of t rucks a r r i v i n g a t

t per u n i t t ime (f l o w) i s achieved and the amount o f t ime i t takes a l l

t rucks to get from s to t i s m i n i m i z e d . H e n c e f o r t h , t h i s problem w i l l be

r e f e r r e d to as the min-max path f l o w problem. We do not lose any gener ­

a l i t y by assuming we want the maximum f l o w i n the network s ince we can

always p lace an a v a i l a b i l i t y r e s t r i c t i o n a t the source .

A f t e r p r e s e n t i n g the bas ic concepts i n network f l o w theory and

f o r m u l a t i n g some o f the impor tant models , we w i l l be i n a b e t t e r p o s i t i o n

to discuss the s p e c i f i c o b j e c t i v e s and the scope o f t h i s r e s e a r c h . Gen­

e r a l l y s p e a k i n g , our o b j e c t i v e has been to i n v e s t i g a t e the s t r u c t u r e o f

the min-max path f l o w problem, c h a r a c t e r i z e i t i n terms compat ib le w i t h

o t h e r r e s u l t s i n network f l o w t h e o r y , and develop a s o l u t i o n a l g o r i t h m .

Graphs and Networks

I t i s convenient t o beg in a d iscuss ion o f network f l o w t h e o r y by

f i r s t d iscuss ing the more genera l b a s i c concepts o f graph t h e o r y . There

a re s e v e r a l good r e f e r e n c e s f o r more complete d iscuss ions o f these t o p i c s .

See , f o r example, Busacker and Saaty (5) and Berge (2) f o r a d i s c u s s i o n o f

graph theory and i t s a p p l i c a t i o n s . The c l a s s i c t e x t i n network f l o w t h e o r y

i s t h a t o f Ford and Fu lkerson (1 2) . The books by Hu (2 3) and by Berge and

G o u i l a - H o u r i (3) a l so prov ide e x t e n s i v e t r e a t m e n t o f graphs and f l o w n e t ­

works . Elmaghraby (10) and (11) prov ides a good d i s c u s s i o n o f the a p p l i ­

c a t i o n s o f networks t o management s c i e n c e . We f o l l o w the n o t a t i o n o f Ford

and F u l k e r s o n .

4

Definition

A graph is a set of elements N and a relation A, where

A £ N X N .

Symbolically, we will use the notation (N,A) to represent the graph.

In other words, a graph is a set of objects and a relationship between

the objects. A network is called a finite network if N and A are

finite sets.

Notation

Nodes will be represented by letters x and y or by an index such

as i or j. The source node will sometimes be denoted by s and the sink

node by t.

Arcs will be identified by their end-points, (x,y) or by an index

i or j. Whether an index i refers to an arc or a node will be clear

from the context. Arc (x,y) is said to be incident to nodes x and y.

The initial node of arc (x,y) is x and the terminal node is y.

As an example of a situation which can be model by a graph let

us consider the personnel assignment problem. Suppose we have m men

and m jobs and we wish to assign each man to exactly one job and no

more than one man to any job. We can let the men and the jobs be nodes.

If we let {Pi>..«>Pm} represent the set of men and {*!,...,rm] be the

set of jobs, then the set of nodes N is given by

N = { Pi 9 • • • 9 Pffl 9 r i) ' " R J >

and the set of arcs (the relation) is given by

A = {(p t,r k) | man pt can be assigned to job r k]

The "assignment" problem can be solved by use of this model. A

solution is obtained by selecting a subset A± £ A which satisfies the

condition that \ is a one-to-one mapping of N x onto N 2, where

Ni = {Pi>"»>P f f l}

Ng = {x19...,r9) .

This model is obviously not complete since we have specified no

criteria for selecting one from among the many possible solutions to

this problem. Figure 2 is a graphical model of a specific assignment

problem. The arcs represent possible assignments; the heavy lines

represent a solution.

Definition

A flow network is a graph (N,A) in which the arcs represent the

possibility of flow of some commodity between the two nodes which are

the end-points of the arc. The notation G(N,A) designates the flow

network which consists of the graph (N,A); arc numbers which represent

the capacity of the arc; any special requirements for origin or termi­

nation of flow; and any cost associated with flow on specific arcs.

Figure 2. Graph of an Assignment Problem

7

Notation

We shall use a(x,y) or a(i) to denote the length of, or the unit

cost of flow on arc (x,y) or arc i, respectively.

The expression b(x,y) or b(i) will likewise represent the capacity

of arc (x,y) or arc i.

The variable f(x,y) or f(i) will be the amount of flow assigned

to arc (x,y) or i. F = F(A) will denote the vector of flows on the

arcs of A,

Definition

A flow network is called a directed network if the arcs are

orientated and net flow is allowed only in the specified direction.

If the arcs of a network are not directed then the network is

called an undirected network. Throughout this dissertation we will

be dealing only with directed networks.

Generally speaking, in a flow network, certain nodes will be

sources of the commodity in question and other nodes will be termina­

tion points or sinks. Nodes which are neither sources nor sinks will

be called transshipment nodes. Any assignment of flow in the network

must respect the conservation of flow requirement at transshipment

nodes. This condition states that the sum of flow into the node must

equal the flow out. Without loss of generality, we can assume that

the network has a single source and a single sink (12).

The assignment problem modeled as a graph in Figure 2 can also

be modeled as a flow network. A flow of one unit on arc (p t,r k)

indicates that the i t h man is assigned to job r k. The capacity of

each arc is one unit. If we can assign an efficiency index for each

8

man to each job, then we can let that index be a cost associated with

the arc joining the corresponding nodes. Our objective then in select­

ing a complete assignment of men to jobs may be to maximize the total

efficiency of the assignment.

We can expand the network to incorporate the constraint that each

man can be assigned to only one job and no more than one man can be

assigned to a single job. This is done by adding a fictitious source

node s and arcs (s,pt) for i = l,...,m. Each arc (s,Pj) has a capacity

of one and a cost of zero. Add also, a fictitious sink t and arcs

(r k,t), k = l,...,m. Each arc is given a capacity of one unit and a

cost of zero. This network is depicted in Figure 3.

We can thus solve the assignment problem by finding a flow through

the network of Figure 3 from s to t. We can interpret the objective

of maximizing the total efficiency of all assignments by letting the

arc cost a(x,y) be one minus the efficiency of the corresponding assign­

ment and finding the flow for which the sum of unit costs multiplied

by arc flows is minimum.

Paths, Chains and Cycles

A chain between two nodes x and x̂, in a graph (N,A) is a se­

quence of connected arcs and the incident nodes, x 1, (x ^ X g) ,

x s,...,x N_ 1, (x N_ 1,x N), . If the arcs are all directed toward the

higher index node, then the chain is called a path. If x x = x̂ , then

the path (chain) is called a directed cycle (cycle). A path (chain)

may contain a sub-path (chain) which is a directed-cycle (cycle). And

if the path (chain) contains no cycles, then it is called a simple

Figure 3. Network Model of an Assignment Problem

10

path (chain). A negative directed cycle is one, the sum of whose arc

costs is negative.

In this dissertation we shall always use the term path but shall

always be referring to simple paths from the source node s to the sink

node t.

A network flow given as flows on arcs can be expressed as flows

on paths from s to t. For a proof of this, see (11). In the network

of Figure 3 each path is of the form:

s, (s,p t), pj , (p 4,r k), r k, (r k,t), t .

A flow on the network can be expressed as a flow on paths of this type.

The maximum flow assignable is the capacity of the smallest arc in the

path. Thus the maximum flow which can be assigned any path in the

given network is one. A flow of one indicates that man pt is assigned

to job r k.

Notation

If G(N,A) is a directed network, then C(N,A) or C will denote

the set of simple paths in G(N,A) from s to t. The individual paths

will be denoted by an index C3 indicating the j t h path in the set C;

or they will be indentified by their arc-path incidence vector P,.

Throughout this dissertation, if indexed letters indicate
variables or constants, such as P 4 3 , a(i), or f(y), then Pj, a, or
F will be used to denote the vector of variables or constants.

11

1 if arc i is in path CI

0 otherwise

We will use h(Cj) or h(P^) to denote flow on path CI. H will be the

vector of flows on all paths of G(N,A).

The length of a path (or cost) is the sum of the lengths of

all arcs in the path. Let Cj denote a path and C* denote the set of

arcs in path Cj , then if J^(Cj) denotes the length of path Cj,

« (c ,) - t J A «< i) • * %

The length of a path in Figure 3 is defined as one minus the efficiency

of the assignment represented in the path. If we refer to this as the

inefficiency index of a particular man for a particular job, then a

possible criterion for selecting an assignment of men to jobs is to

select the assignment for which the most inefficient specific assignment

is minimized. The problem, with this objective is the min-max path flow

problem. This special case of the min-max path problem is called the

bottleneck assignment problem; it has been solved by Gross (20). The

simplicity of this special case of the min-max path problem is due to

the fact that the graph is essentially a bipartite graph (if the

fictitious source and sink nodes are dropped).*

A directed bipartite graph is one in which the nodes can be
divided into two disjoint sets, one with arcs only leaving and one with
arcs only entering.

12

Network Flow Problems

In this section we discuss three network flow problems which are

related to the min-max path flow problem. The problems are the single

commodity maximal flow problems, the general minimal cost maximum flow

problem, and the multicommodity flow problem.

Some additional notation is required.

Notation

Let G(N,A) be a network and let F be a function defined on A.

Then

f(N,y) = £ f(x,y) xeN

f(x,n) = S f(x,y) xeN

A(x) = (y | yeN, (x,y) e A)

B(y) = (x | xeN, (x,y) e A)

For any arc i e A, we let I(i) denote the initial node of arc i

and T(i) denote the terminal node of arc i.

Definition

If G(N,A) is a directed network with single source s and single

sink t, then D 5 A is a disconnecting set in G(N,A) with respect to s

and t, if there exists no path from s to t in G(N,A - D), where A - D

is the set of elements in A but not in D.

13

Definition

A cut-set D £ A, with respect to s and t, is a minimal discon­

necting set of G(N,A), That is, it is a disconnecting set, no proper

subset of which is a disconnecting set.

Definition

A minimum cut-set of G(N,A) is a cut-set, the sum of whose arc

capacities is a minimum over all cut-sets.

Definition

An L-disconnecting set, D L, is a subset of A whose removal from

A disconnects s from t along paths of length L or less. Minimum dis­

connecting sets and minimum L-disconnecting sets are analogous to

minimum cut-sets.

A key theorem in single-commodity network theory is that the

maximum flow is equal to the capacity of the minimum cut-set.

Network Flow

Let G(N,A) be a network with source s and sink t. A node-arc

flow on G(N,A) is a nonnegative real-valued function defined on A which

satisfies the condition:

!

v, x - s
0, x / s 9t

v, x - t

f(x,y) ^ b(x,y), (x,y) e A

The variable v is the net amount of flow passing through the network.

14

An arc-path flow on G(N,A) is a nonnegative real-valued function

defined on C which satisfies the conditions:

E h(C.)P, j * b(i), i e A

There are two flow problems in network flow theory which appear

to be closely related to the min-max path flow problem. These two

problems, the maximum flow problem and the general minimal cost flow

problem, will be formulated and then a formulation of the min-max path

flow problem will be presented.

If G(N,A) is a network with source s and sink t, the maximum flow

problem can be written as:

maximize: v

Iv, x = s

0, x ^ s,t (1)

v, x - t

0 s: f(x,y) < b(x,y),(x,y) e A

The maximum value of v = v m a x is of course unique, but there may be more

than one flow function f defined on A which yields this value. If there

is associated with each arc, a cost, a(x,y), per unit of flow on the arc,

then it may be desirable to determine that flow function for which the

total flow value v is maximum and the total cost is a minimum.

Let v = v m a x be the value of the maximum flow. Find F which will

1 5

minimize: F a(x,y)f(x,y) (2)
(x,y)eA

v , if x - s
IN A X

subject to: f(x,N) - f(N,x) - { 0 , if x £ s,t

- V , I F X - t
M A X '

0 < f(x,y) < b(x,y), (x,y) e A.

The solution to this problem, then is the minimum cost maximum flow for

the network. This problem is known in the literature as the general

minimal cost flow problem.

There is another class of network flow problems with which it

will be of value to compare the min-max path flow problem. That problem

is the multicommodity network problem.

The multicommodity network is characterized by pairs of nodes

(s^jt^), such thac flows originating at must terminate at ,

i = l,...,n. Let I = f1,2,...,nl.

If we let f(i : x,y) denote the flow of commodity i on arc (x,y),

then a multicommodity flow function on G(N,A) is a real-valued function

defined on I x A which satisfies:

f(i : x,y) >• 0, i e I , (x,y) e A (3)

16

S f (i : x , y) £ b (x , y) , (x ,y) e A

f (i : x,N) - f (i : N , x) = < 0,

1 ,aax » i f x = t j , i e I n

i f x = Sj

i f x / Sj , t j

0b1ective8

The object ive of th i s research was to inves t igate and character ize

as completely as possible the min-max path problem and to develop a compu­

t a t i o n a l l y f eas ib le algorithm to solve th i s problem. Since the min-max

path flow problem w i l l be formulated as a mixed-integer programming

problem, i t would be of interest to invest igate the development of a

solut ion algorithm based on the theory and methods of integer program­

ming. S p e c i f i c a l l y , i t might be useful to consider the approaches to

solving the f ixed charge problem or other branch and bound approaches.

In th i s research, however, we are r e s t r i c t i n g our at tent ion to a consid­

eration of the problem as a network flow problem. The ideal resul t would

be to develop a formulation of the problem that would allow the so lut ion

to be performed on the network as in the case with the maximum flow and

minimum cost maximum flow problem. An intermediate l eve l of e f f i c i e n c y

would be obtained i f the problem could be formulated as a l inear pro­

gramming problem which would require a simplex-based solut ion procedure.

This research i s l imited to a consideration of single-commodity

directed networks. The networks are assumed to be f i n i t e , and the arc

lengths and capac i t i e s are assumed to be nonnegative in tegers . This

17

could be relaxed to allow rat ional capac i t i e s and arc lengths; and

negative arc lengths could be allowed i f we require that there be no

negative directed c y c l e s .

L i terature Survey

While the l i t era ture on network flow theory i s quite extensive ,

no s p e c i f i c mention of the min-max path problem has been found. As

mentioned e a r l i e r , Gross (20) has developed an algorithm for solving

the problem in the specia l case that the network i s b i p a r t i t e and

a l l arc capac i t i e s are un i ty .

Hammer (22) has developed a procedure for solving the analagous

problem for a standard transportation s i t u a t i o n . The mathematical

formulation of th i s problem i s :

minimize: t 0

F

N
subject to : - £ f . = a , , i = l , . . . , m

i = l 1 3 1

N
S fl 3 = bJ » J = 1 » • • • » n

i = l

t 0 > t j j , V t j j such that f t 4 > 0

f u ;> 0.

AI represents the a v a i l a b i l i t y at warehouse i , bj i s the demand a

dest inat ion j , and f t . i s the amount of the resource that i s to be

18

shipped from warehouse i to destination j. The constant tti denotes

the time required to ship any amount from i to j.

The solution computations for both of these problems are carried

out on a modified form of the standard assignment and transportation

tableau, respectively.

No way of extending the solution procedure for these two prob­

lems to solve the min-max path flow problem is apparent.

Motivation and Relevance of This Research

In addition to the two problems mentioned earlier, the need for

a solution to this problem arises in several network flow problems,

especially those which represent scheduling problems. However, the

original problem which motivated this proposed research will be

described first and other potential applications will then be discussed.

Strategic Transportation Problem

Suppose there are located at M sources, various amounts of a

product. This cargo must be moved to intermediate loading points, loaded

on carriers and then moved to some third point. The source might be

inland marine bases, the cargo might be troops and equipment, the

loading points could be ports, the carriers could be ships, and the

sink could be some overseas port or beach. The problem, then, is to

assign the cargo to loading points, assign the carriers to the loading

points and schedule them through the loading points to on-load their

cargo, and allow them to proceed to the objective area. The criterion

for selecting an assignment and schedule is the minimum overall comple­

tion time.

19

The loading time of the carriers is taken as the unit of time

(all have the same loading time). Port capacities are specified as

the number of carriers that can be loaded per unit of time. It is

assumed that all carriers have the same cargo capacity and the unit of

cargo volume is taken as this capacity. It is arbitrarily assumed here

that there are sufficient carriers to meet the demand for cargo

capacity and the total amount of cargo at the bases must all be assigned

to some port. Each ship will be assigned to only one port.

At the time of an operation, the ships will procede to their

assigned ports and move into a loading berth in assigned sequence.

Once each ship gains access to a loading berth it will take on cargo

that has arrived at the port. Obviously the critical portion of

this operation is the sequence in which the ships assigned to a given

port are allowed to on-load cargo. Hence the decision variables in

this problem are the ports to which the ships are assigned and the

sequence in which the ships load at the port. The uncontrollable

variables whose values will determine the best values of the decision

variables are the time required for each ship to reach each of the

ports, the time required for each ship to reach the objective area

from each of the ports, the capacity of each port, and the time re­

quired to move the cargo from each base to each port and the amount

of cargo at each base.

In most cases, the availability of cargo at the ports is not

the problem. If we disregard that part of the problem, then the re­

maining part is a min-max path flow problem.

20

This problem arises quite frequently in s t ra teg i c transportat ion

problems.

A Dis tr ibut ion System for Perishable Goods

The min-max path problem has appl icat ion in cer ta in transporta­

t ion problems such as the one discussed here.

Suppose a d i s tr ibuter of perishable goods has a set of main d i s ­

tr ibut ion centers , a set of regional d i s t r ibut ion centers which may a lso

serve as r e t a i l o u t l e t s , and a set of l oca l r e t a i l o u t l e t s . The d i s t r i ­

bution system can be represented by a network in which the d i s t r ibut ion

centers and r e t a i l out le t s are nodes and the transportat ion l inks

between the points are represented by a r c s . The objec t ive i s to s a t i s f y

a l l demands while minimizing the del ivery time of las t unit de l ivered.

We provide one f i n a l example to show the wide-ranging f i e l d of

problems to which th i s work appl ies .

A Communications Network

Consider a communication network such as i s described in (25).

The network cons i s t s of a set of source nodes and a set of sink nodes.

The communication l ink between each pair of nodes has a cer ta in capaci ty

in terms of the number of simultaneous messages that can be transmitted

over the l ink represented by the arc between the nodes.

I f , as considered by J a r v i s (25), the r e l i a b i l i t y of a message

transmission decreases as the number of l inks over which the message

travels increases , then i t would be of interest to determine the routing

of messages, that i s the flow, so that the longest communication chain

i s minimized. In order words, in a s i tua t ion in which the network would

be saturated, that i s maximum flow i s desired, how should the message

21

be routed so that the maximum flow is achieved and the reliability of

the least reliable message is maximized, i.e., the number of arcs in

the longest path is a minimum.

Another problem would be to let the arc cost represent the time

required for a message to transverse the arc and then determine the flow

such that the time required for the last message to reach its destina­

tion is minimized.

Results

In Chapter II a network based mathematical formulation of the

min-max path flow problem is given. The structure of the problem is

examined in comparison with the maximum flow and minimum cost maximum

flow problems and multicommodity flow problem.

The most important result, which helps set the computational

structure in perspective, is the fact that the min-max path problem

may not always have an all-integer optimal solution. In this regard,

the problem is in the same class as the multieommodity flow problems

as contrasted with the single commodity minimum cost maximum flow problem.

In Chapters III and IV two distinct approaches to the problem

are formulated. In Chapter III a primal-type algorithm is developed.

The algorithm solves the maximum flow problem and then uses a con­

strained shortest path problem to generate paths which tend to drive

the longest path from the basis. A maximum flow algorithm is used to

obtain the initial basic feasible solution. The solution proceeds

from there in a revised simplex mode on the arc-path formulation of

the problem. The dynamic programming algorithm used to solve the

constrained shortest path is as efficient as algorithms for computing

22

shortest paths between a l l pairs of nodes of a network.

In Chapter IV a dual type algorithm i s presented. The algorithm

solves the min-max path problem by solving a sequence of bundle con­

strained maximum flow problems on a sequence of modified networks u n t i l

the maximum flow equals the required flow on the or ig ina l network. The

de f in i t i on of bundle-constrained maximum flow problems i s delayed u n t i l

Chapter I V .

23

CHAPTER II

CHARACTERIZATION OF THE

MIN-MAX PATH FLOW PROBLEM

In Chapter I we discussed the maximum flow problem and related

network flow problems.

In the maximal flow problem, there may be many flow functions

which will produce the optimal flow into the sink. Any one of these

is an acceptable solution. In the general minimal cost flow problem,

the objective is to select from among the flow functions which achieve

the maximal total flow, the one which has the minimum total cost. In

the min-max path problem which will now be formulated, the objective

is to select from among those flows which produce the maximum flow,

that function for which the most expensive path with positive flow

has minimum cost (length).

After deriving the mathematical formulation of the min-max path

flow problem we investigate the structure of the problem and compare

it with other network flow problems. This provides some insight

into the general level of computational efficiency we can expect

to achieve in an algorithm for solving the min-max path problem as

compared with other network flow algorithms.

Several approaches to develop an algorithm were investigated

before it was decided to develop completely two algorithms, one a

primal type algorithm and the other a dual type algorithm. These

24

1 i f arc i i s in path C

0 otherwise ,

The problem then i s to determine the flow H which w i l l

minimize: L°

subject to: 2 P t j h (Cj) <. b (i) , i e A

h (c p :> 0, Cj e U

S h C c p ^ v B a x

L° £ a 'P .6 ,

M6j ^ h (Cj)

6j - 0,1

approaches are discussed b r i e f l y in this chapter. We conclude the

chapter by b r i e f l y describing the two algorithms that are developed

in Chapters I I I and I V .

Formulation of the Min-Max Path Problem

Let P = (P j j) be the arc-path incidence matrix for the network

G(N,A)

25

Table 1T Path Enumeration

I d e n t i f i c a t i o n
Sequence of

Nodes
Length

Ci s, 1, 4, 5, t 6

c 3 s, 3, 6, t 12

c 3 s, 1, 2, 5, t 9

c 4 s, 3, 4, 5, 6, t 11

c 5 y s, 1, 2, 5, 6, t 11

c 6 s, 1, 4, 5, 6, t 8

c 7 s, 3, 4, 5, t 9

The object ive is to be minimized over a l l H which y i e ld the maximum flow

through the network. M i s selected greater than v B a x .

Comparison with Other Problems

In a previous sect ion, three network problems were discussed, the

maximum flow prpblem, the general minimal cost flow problem and the min-

max path problem.

Figure 4 is an example network. Table 1 i s an enumeration of

a l l paths in the network from the source to the sink. For purposes of

comparison we give the minimum cost maximal flow in arc-path form in

Table 2 and the min-max path flow solut ion in Table 3.

The maximum flow in the network is two u n i t s . The minimum cost

solut ion has a t o t a l cost of 18 and the longest path in th is so lut ion i s

path C 2 whose length is 12. Table 3 gives the min-max path so lut ion .

26

Figure 4. Example Network

Table 2. Minimum Cost Solut ion

Path Flow Length

Ci 1 6

c 2
1 12

Table 3. Min-Max Path So lut ion

Path Flow Length

c 3 1 9

c 4 1 11

28

The min-max path solution (with flow of two units) has a cost of

20, but the longest path is path C 4 of length 11.

Fractional Solutions

A natural question arises for any network flow problem concerning

the existence of an integer optimal solution. The answer to this ques­

tion gives us a clue as to the level of efficiency we might expect to

be able to achieve in a solution algorithm. For if, as is the case

with the maximum flow (1.1) and the minimum cost maximum flow (1.2)

problems, all basic solutions are all-integer, then one should be able

to devise a solution scheme for progressing through the extreme points

of the convex solution space by using only additions and subtractions.

This fact is what allows the solution of these two problems to be

carried out very efficiently on the network.

The characteristic of problems (1.1) and (1.2), of having all-

integer extreme points depends of course on the constraint matrix.

These matrices have the unimodular property.

Definition

An m X n matrix A is said to be unimodular if the determinant

of every m x m sub-matrix of A has value ±1, or 0.

Remark 1

A convex set S, defined by

S = { X | A X = b]

where b is an all-integer vector, has all integer extreme points if A

29

is unimodular. A proof of this is given by Hu(23).

A simple example is sufficient to show the following remark

(see for example, the minimum cost flow example in Chapter III of (12)).

Remark 2

The network arc-path incidence matrix is not unimodular.

Multicommodity flow problems do not in general have all-integer

optimal solutions. Much research has been conducted on the structure

of multicommodity flow problems. However, to date all computational

algorithms use a combination of graph theoretic and algebraic methods.

The algebraic portions are of the revised simplex, decomposition type,

with graph theoretic methods used to generate non-basic columns which

are candidates to enter the basis.

Hu (23) provides the most complete discussion of multicommodity

flow problems. Jewell (28), Sakarovitch (41) and Saigal (39) report

research on solution procedures they have developed. To date, the only

multicommodity case for which a combinatorial solution procedure has

been developed is the two-commodity algorithm of Rothschild and

Whinston (38).

Tomlin (44) formulates the minimum-cost multicommodity flow

problem in node-arc form and in arc-path form. Jarvis (26) shows that

the computations involved in the two cases are identical. Thus, it

appears that the inherent structure of the multicommodity flow problem

forces one to deal with flow on paths rather than flow on arcs.

In the early stages of this research a conjecture was made con­

cerning the existence of an all-int;eger solution to the min-max path

flow problem. Later, an analogous conjecture was found in Sakarovitch's

30

paper dealing with the a l l integer solut ions to multicommodity flow

problems (41).

Conjecture

Let v be the maximum flow on G(N,A) and le t C 0 c C be a sub-

set of the paths in G(N,A) from s to t . Then i f there e x i s t s a flow

function H defined on C 0 such that

v = "cf h (C l > = V b * x '

then there ex i s t s an a l l - i n t e g e r flow function HQ s a t i s f y i n g the same

condit ion.

This conjecture has i n t u i t i v e appeal s ince any flow which

s a t i s f i e s th i s condition i s an a l ternate optimal solut ion to the maxi­

mum flow problem, which has a l l a l l - i n t e g e r extreme points . The problem

which arises however, i s that we have introduced addit ional zerp-one

variables and addit ional constraints which destroy the unimodular prop­

erty of the or ig ina l constraint se t .

An example from Sakarovitch's paper i s a counter-example to th i s

con je c t i ve . I t can also be modified to show that the min-max path flow

problem may not have an a l l - i n t e g e r so lut ion .

Figure 5 i s the example network. The optimal so lut ion i s given

in Table 4; a l l arc capac i t i e s and arc lengths are given on the network.

We sha l l l e t L*(G,N) or just L * denote the length of the longest path

Sakarovitch expresses the corresponding concept for mult i
commodity flows as "gapless" multicommodity networks.

31

Figure 5. Network With Fract ional Min-Max Flow

Table 4. Min-Max Path Flow Solut ion

Path (Nodes) Length Flow

s ,1 ,5 ,6 ,10 ,13 , t

8 , 2 , 1 , 5 , 9 , t

s , 2 , l , 6 , 1 0 , 9 , t

s , 4 , 8 , 7 , l l , 1 3 , t

s ,3 ,4 ,8 ,12 , t

s ,3 ,7 ,11,12, t

25

14

14

25

14

14

32

in the optimal solution to the min-max path flow problem. For the given

network, L* =25. By enumerating all paths in the network we could see

that there is no all-integer solution to the maximum flow problem on

paths of length 25 or less.

Sakarovitch shows that a sufficient condition for a multi-

commodity network to be gapless and all-integer is that it be completely

planar.* With respect to the min-max path flow problem we can make

the following remark.

Remark 3

For the min-max path flow on a directed network to be a11-integer

it is neither necessary nor sufficient for the network to be planar.

The example of Figure 5 is a planar network when arc (s,t) is

included but it does not have an all-integer solution, on the other

hand, both the bottleneck assignment network and the time-minimizing

transportation networks are non-planar. Both always have all-integer

solutions.

Contained in the min-max path flow problem is the problem of find­

ing the min-max path decomposition of a given flow on a network G (N , A) .

D. R. Fulkerson suggested in a private communication (16) a

necessary condition for the min-max path decomposition to have longest

path less than or equal to L. Let F be a node-arc flow defined on

G (N , A) . Let ^ C A be defined: A, = {(x,y) | f(x,y) > 0,(x,y) e A) .

* A planar network is a network, including an arc from the source
to the sink, that can be drawn on a plane in such a way that no two edges
intersect except at their endpoints. A multicommodity network is
completely planar if it is planar when all source-sink pairs are connected
including the super source and super sink.

33

Let C1- be the set of all paths in G(N,A) from s to t of length L or less.

Definition:

The set of paths T5L is said to cover A1 if (x,y) e A implies that

there exists a path Cj s C 1 which contains (x,y).

Fulkerson's suggestion was that a necessary condition for the

min-max path decomposition of F to have maximum path length less than

or equal to L is that C 1 cover Â^ .

The following example shows that this is not a sufficient con­

dition. In Figure 6 all arcs have a flow of one unit.

The numbers adjacent to the arcs are arc lengths. Inspection

shows that all flows can be covered by paths of length six. However,

there is no path decomposition utilizing only paths of length six or

less.

Approaches to Algorithm Development

Geoffrion (19) presents a thorough discussion of the solution of

large scale linear programming problems. He classifies efforts in

problem solving or more generally, algorithm development into one of

two groups, search strategies or problem manipulation. Search strategies

of course, are procedures for moving from one solution to a better one;

problem manipulation is essentially attempts to formulate the problem

in the most advantageous way for solution efficiency. Generally speaking,

one considers both the proper problem formulation and the most efficient

search strategies when developing a solution algorithm.

We must consider the selection of search strategies and the problem

formulation simultaneously since it is possible to formulate the problem

34

Figure 6 . Network With Covered Flows

35

in the most natural way only to find out that the best search s trategy

for that formulation i s very i n e f f i c i n e t . Such i s the case, for the

min-max path flow problem. The most natural formulation i s the integer-

l inear programming formulation; however, so lut ion algorithms for such

problems are i n e f f i c i e n t as compared to those for l inear programming

problems. Thus, we w i l l mention two formulations of the problem which

w i l l be invest igated from the network theory viewpoint.

Speaking in terms of the solut ion set over which we w i l l be

searching, we can consider two broad approaches to the formulation of

the min-max path flow problem. The f^rst w i l l be a dual type formula­

t ion , while the second w i l l be a primal type formulation.

Dual Approach

Begin with L = 1 and find the maximal flow in G(N,A) on paths

of length)L or l e s s . Increment L by pne unit and continue u n t i l the

maximum flow on paths of length 1̂ or less i s equal to the maximum flow

J.n the network.

Primal Approach

Find the maximum flow on G(N,A) in arc-path form. Search over

the set of maximum fl,ows for the flow function whose longest path i s

minimized.

The f i r s t thing that comes to mind in regard to £he dual approach

i s to generate a l l paths of length L or less for some spec i f ied value of

L > 1, and solve the obvious l inear programming problem to maximize the

flow on these paths. There are two drawbacks to th i s approach. F i r s t ,

the problem of generating a l l paths of lengthy L or less is i n e f f i c i e n t

when oply a few of them w i l l be in the so lut ion . Second, a great deal

36

of computer storage will be required. External storage will be required

and this storage must be accessed very frequently in the simplex procedure.

The time required for this access will dominate the actual computation

time.

In Chapter IV a formulation is presented along with a solution

algorithm in which all paths of length L or less are represented

implicitly in a modified network while paths of length greater than L

are not in the network. While external storage will likely be required

for certain information, it will be the type which is required at most

L* times and quite likely much less often.

During the course of this research, various primal approaches

were considered. The first one was based on the idea of attaching a

penalty to the arcs in the current longest path in an effort to force

it out of the solution. The minimum cost maximum flow problem is

solved. After decomposing the flow into arc-path form it is possible

to attach penalties to increase the cost of certain arcs so that the

current solution is no longer the minimum cost solution. It was felt

that possibly this would ultimately force the longest path out of the

solution.

An example problem was found for which the optimal min-max path

solution could not be found in this way. After later discovering that

the min-max path flow problem did not have all-integer optimal solutions,

the existence of such an example was proved. Since the above approach

attempts to solve the problem by solving a sequence of minimum cost flow

problems and such problems always have all-integer solutions, it follows

37

that there ex i s t s no such sequence, for problems that do not have a l l -

integer min-max path so lut ions .

In Chapter I I I we present an algorithm for removing flow on the

current longest path i f i t i s possible to do so while maintaining the

maximum flow.

38

CHAPTER III

A PRIMAL ALGORITHM FOR SOLVING THE

MIN-MAX PATH FLOW PROBLEM

In this chapter we present a primal algorithm for solving the min-

max path problem. The problem was initially presented as having a primary

and a secondary objective function; the primary objective being to max­

imize the flow and the secondary objective being to minimize the length

of the longest path assigned positive flow.

Ford and Fulkerson's algorithm can be used to determine the optimal

value of the flow, v x. With this knowledge, the primary objective func­

tion can be written as a constraint on the problem. Thus we have the

problem

minimize: L

subject to: L > §^ A'Pj j =» l,...,,n

n

> V m a x

j=l

PX £ b

X ^ 0 ,

39

where

1, if Xj > 0
6 i = i .

V 0, otherwise,

X = fx ,x ,...,x 1 ' and x denotes the flow on path i. Thus n is the
— L 1 ' 3 ' ' II-1 ' I

cardinality of the set of all paths in G(N,A) from the source to the sink.

P is the arc-path incidence matrix and b is the vector of arc capacities.

Suppose we have a feasible solution. Then it follows from the

nature of the objective function and the first n constraints that an

improved solution can only be obtained by reducing to zero the flow x^

on all paths P̂j for which the corresponding constraint of this set is

binding. Note that the general constraint of this set is

L > *j • i% •

if path Pj is assigned positive flow. Thus, the j T H constraint of this

set will be binding if the j T H path has length L and has x^ positive.

The algorithm presented in this chapter is based on the concept

of finding non-basic paths to introduce into the basis which will tend

to reduce the flow on those paths corresponding to these binding con­

straints while at the same time not introducing flow on longer paths.

Reducing Flow on the Longest Path

Consider the min-max path problem. A feasible solution can be

obtained by solving the maximum flow problem on the network. Let us

40

consider the maximum flow problem formulated in arc-path form.

Maximize: v = x 1 + x 2 + « - - x n (1)

Subj to: PX £ b

X £ 0.

Let us suppose that we have an optimal solution to this problem

and the basis is denoted by B . Suppose v m a x denotes the value of the

flow.

Let I B = {j | Pj e {B}}« if j i s greater than n, the total number

of paths in G(N,A), then Pj is a slack path, or slack vector.

Let

Lg =» maximum [a'Pj }

X j > 0 .

Then 1̂ is the length of the longest path which carries positive

flow in the current solution.

We show in the appendix that we can obtain an initial feasible

basis which will not contain any paths P^, such that X j = 0. At sub­

sequent iterations we will maintain a basis which contains no paths of

: _~ ^ .
The solution to this problem can be obtained by the Ford-Fulkerson

algorithm. This algorithm produces a node-arc flow. However, a path de­
composition procedure can be used to obtain an arc-path equivalent flow.
An algorithm is given in the appendix.

4L

length greater than 1̂ , except those which cannot be in an adjacent solu­

tion at a positive level. Two basic solutions are said to be adjacent

if they differ by precisely one vector. Thus, if a path Pj of length

greater than L0 is in the basis at the zero level and one pivot could

not increase it above zero, then it is left in the bases. Otherwise it

must be removed before we continue. Later we shall introduce the term

pure basis and show how it implements the above requirement.

The min-max path flow problem can be thought of then in terms

of minimizing L .
B

LEMMA 1

The value of the optimal min-max path flow on a given network

G(N,A) is equal to Lg if and only if B is an optimal basic solution

to (1) and there does not exist an optimal set of basic paths B'such

that,

L / < L
B B

Proof. This follows from the definition of 1̂ and the definition

of the value of the min-max path flow on G(N,A).

We require some additional notation before we formulate a problem

which will allow us to determine whether such a basis B 7 exists or not.

Notation

IL = {j e I B | a'Pj < L }

I >= {j e I | a'p, = L }
L B """ B

J L = [j I j i I B and a'P. < 1̂ }

J L ' = U I J * ̂ a n d
 I'll * h J *

It follows from Lemma 1, that to obtain a solution better than

the current solution to the min-max path problem it i s necessary to be

able to find an optimal basis B'which does not contain paths of the set

I L ' or for which the flow on such paths is zero, while at the same time

no path longer than 1^-1 belongs to the basis B ;.

Remark 1

To determine whether there exists a solution to the maximum flow

problem with:

Lg / <, L B - 1 ,

it is only necessary to seek a solution to the following problem:

N

Minimize: E 6 I X

T

 = Z

i=l

Subject to: PX <, b

N

J . — J .

X > 0.

43

The coe f f i c i en t 6 t i s defined as fo l lows, with R > 0 to be spec i f ied later:

(R, i f i e JL /

1, i f X e I L

^ 0, otherwise

Remark 2

I f the optimal solut ion to (2J has Z * - 0, then th is so lut ion has

a min-max path value of

and hence i s a better so lut ion to the min-max path flow problem. I f Z

i s pos i t i ve , then the previous solution was optimal and the min-max path

flow has the length of i t s longest path 1̂ .

The optimal solut ion to (1) i s of course a f eas ib l e solut ion to

(2) . Finding the optimal solut ion to (2) w i l l e ither drive the current

longest paths out of the basis or reduce their flow to zero, or w i l l

reveal that they cannot be driven from the bas i s .

We cap reformulate problem (2) as fol lows:

minimize: E 5 , x , - p £ x. s z ' (2)
i-1 1 1 i = l

subject to: PX ^ b

X £ 0 ,

with p > 0 .

44

Since we are interested in determining whether (2) has an optimal

so lut ion with z • 0, the fol lowing lemma provides a s u f f i c i e n t statement

of equivalence between problems (2) and (2 ') .

Lemma 2

The optimal solut ion to (2) has z * • - 0 i f and only i f the optimal

solut ion to (2') has z ' * * - p v B f t 3 t .

Proof. Suppose (2') has a solut ion X * with z * • 0. This implies that

jS j . « i x t - o

and

*

This solut ion i s a f eas ib le so lut ion to (2') with

* z ' * * - p v a a x

n n

But s ince £ 6 I x 1 i s bounded below by zero, and -p 2 x i s bounded
1 * 1 i = l 1

below by - p v B a x ,

/ *
2 * - P v a . x

=» z ' *

45

I t follows that X* i s an optimal solut ion to (2*) .

Since the dimension of the solut ion space i s greater for problem

(2) than (2 ') , th i s may not be a basic solut ion but from the theory of

the simplex method (18), a basic optimal so lut ion e x i s t s .

Suppose (2') has an optimal so lut ion with z ' * * ~ P V B l l x , then^

that solut ion must have

and

£ 6 4 x t * = 0 .
i « l

This follows from the fac t that

S 6 ,x s * 0

and .

-P S x 4 ^ - p v B „ .

Thus X* i s an optimal solut ion to (2).

The object ive function can be rewritten as

z = £ (6 t - p)xt

After substituting the appropriate expressions for 8j we have:

Z = £ (R - p)xk + £ (1 - p)xk +
k e J L / keIL /

£ (-P)xk + £ ("P)xk .
kel keJ

L L

If we order the basic vectors with those of length le first,

those of length less than 1̂ next, and the slack paths last, then

C_|2 ^ has the form

c/ 2'' = [{ (1 - P)} : {(-P)}:: { 0 }] .

Since (1) and (2') have the same constraint set, and we are dealing with

the same set of basic columns, B, in each problem, B" 1 is the same for

both (1) and (2 7) .

If we let rr denote the vector of dual variables for the current

basic feasible solution to (1) , and let p denote the vector of dual

variables of problem (2 7) with respect to this same basic feasible solu­

tion to (2 ') , then

TT = (1 , 1 , . . . , 1 , 0 , 0 , . . . , 0)B~ 1

47

p = e (i - p) ^ 1 + e (- p) b ; 1

= e b ; 1 - P (s b ; 1 + e b ; 1)

p = E B ; 1 - pn

We now state and prove a theorem which provides a set of necessary

and sufficient conditions for a vector (path) Pj to be a candidate to

enter the basis for problem (2')«

Theorem 1

A path Pj is a candidate to enter the basis of problem (1) (in

the sense that its relative cost coefficient with respect to problem

(2') is less than zero), if and only if it satisfies the following three

conditions:

2 By1 Is* > 0 <3>
I, '

T T P.* * 1 (4)

a'Pj* £ I* -1 . (5)

Proof. We first show that if conditions (3) - (5) are satisfied

by a vector Pj*> then it is a candidate to enter the basis in problem (2').

If

a'P.* ^ LB - 1 ,

then Cj*) = - P - From (4), we see that

T T P 3 * - 1 ^ 0 ,

and for p > 0,

P(TTPJ* - 1) £ 0

-PTTPJ,V ^ ~P

From (3), we have

2 B ^ P ^ > 0
k e V

Thus,

Z j * 0 = p P j * = S B ^ P . * - PTTPJ* > -P = C j * }

keI L /

It follows then that

(2 ') (2 0
C j * - z . ^ < 0 .

48

Thus P . * is a candidate to enter the basis of (2').

49

We now show that if P ^ is a candidate to enter the basis of (2'),

then it satisfies conditions (3) - (5).

Gass (18) shows that in solving a linear programming problem by

the simplex method it is sufficient to consider only vectors Pj such

that Cj - Z j < 0. We want to show then that a vector P j * which satisfies

(2') (2')
Cj * - Z j * < 0 ,

satisfies conditions (3) - (5).

Consider

c\l } - z\lf) = 6/* - P + (pn - E B ^ P j * ,
keI L /

where

I R, if j* e J L'

1, if j* e I L/

0, otherwise

Collecting terms we have,

c\ln
 - z\l^ = P (T T P J * " 1) - (2 B J 1) ! . * + 6/* .

k GI L /

Since we have an optimal solution to (1), we can assume that for paths

of length 1̂ - 1 or less,

50

< 0

If at some stage this does not hold then we can introduce the corre­

sponding vectors into the basis. If the solution is optimal and such

a vector exists, it must come into the basis at the zero level, other­

wise the pivot operation would result in an increase in the value of

the objective function. This would contradict the assumption of

optimality. It will be shown that paths of length 1̂ - 1 or more are

not candidates to enter the basis in any event.

If

1 - rrP,* £ 0

then

- 1 > 0

and

P (T T P J - I) > 0 .

Since 6' is also non-negative, we conclude

< 0

51

P(nP.*-l) - (S BJ1)£.*+6,' < 0
keIL '

(S B f 1) ^ * - L> ^ 0 '
keIL '

Hence condition (3) is satisfied.

From (2') we see that

R (3 ') - « / - P -

/ R - p, if a'Pj* £ LE

"P otherwise

If

then

V / } - z\lf) - R - P - (2 ^ 1) P J * + PTTP j * .
K E L U '

We shall show later in this chapter that we can insure, for sufficiently

large (finite) p, that

-(2 B J 1) ^ * +PTTP.* >0 , for all j
keIL '

Hence, if we select R, such that

52

R - p ;> (S B ^ 1) P j * - p t t P j * = I]
keI L '

then

_ (2 ') 7(s ')

I f we choose R = p, then

R - p = 0 > Tl

since

Tl < 0 .

I t follows that no path of length greater than or equal to Lg i s a

candidate to enter tfye basis for problem (2 ') . Thus, in searching for

a path to enter the bas i s , we can r e s t r i c t our search to paths of

length Lg - 1 or less .This , i s condition (5) .

Again consider

k e I L '

Since we have only to consider non-basic paths of length L B - 1 or l e s s ,

we have 6,' = 0. Thus we have

53

k e I L '

For a given P j , the second term on the r ight i s f i x e d . By

Lemma 2, p can be chosen a r b i t r a r i l y large . I t follows that P(TTPJ - 1)

dominates the expression i f i t i s not zero. Hence p can be chosen large

enough so that

T T P J * > 1

=» P f r l j * -1) > (E B ^ X P J *

We conclude that p can be selected large enough that no vector P j , such

that

T T P J * > 1 ,

w i l l have a negative r e l a t i v e cost c o e f f i c i e n t and i t i s not necessary

to bring such vectors into the bas i s . Thus, condition (4) holds .

Column Generation

We now consider the problem of f inding vectors Pj which s a t i s f y

conditions (3) - (5) . I f

a ' l j < I * >

then

C j 2 0 - Z (j 2 ,) = -p + (pir - 2 B - 1) ^ .

The path Pj is a candidate to enter the basis then if

-p + (pir - S B^ 1) Pj < 0 .
keI L '

The problem of finding a vector to enter the basis can be expressed as

the discrete programming problem:

minimize: (pir - S B^ 1))^

subject to: a'Xj ^ Lg - 1

Xj is a simple path in G(N,A) from s to t.

If Xj„v is the optimal solution to this problem and

-p + (pn - E B J 1) ^ * < 0,
k €I L '

then bringing Pj* = Xj* into the basis in problem (2 X) will tend to

improve the value of the objective function. In other words, bringing

Pj* into the basis of problem (1) will tend to reduce the net flow on

the set of longest paths in the basis. We have proved the following

theorem which provides a necessary and sufficient condition for the

existence of such a path.

55

Theorem 2

A path Pj exists which satisfies the conditions (3) , (4), and

(5) if and only if problem (6) has a solution Xj# for which

-p + (pn - S B " 1) ^ * < 0.
Ii /

The conditions (3) , (4) and (5) can be seen intuitively by con­

sidering the current solution to problem (1) . Since this solution is

assumed to be optimal to (1) , we have

Continuing to let I L ' denote the set of paths in the basis whose lengths

are greater than or equal to Lg, we see that if we find a non-basic path

Pj,v such that

2 P Ai* > 0 »

where

'ii* = B~ 1 P_ j *

then, bringing P^v into the basis will tend to reduce the net flow on

the set of longest paths.

But since

56

we can write

which is condition (3).

In reducing the net flow on [P^jj 4eI L > , we do not want to reduce

the total flow in the network since our primary objective is to maximize

the flow. If PjV, is a non-basic vector, bringing it into the basis will

not decrease the value of the objective function v below v„.„ if its

relative cost coefficient is not negative, that is

r (i) _ 7 (i) > o

As indicated previously,

c\V - i

and

Z (1) = T T P ,

Thus, this requirement can be expressed as

57

1 - T T P > 0

or,

This is condition (4).

Finally, we do not want to replace P ^ with a path as long or

longer than a ' P * = Lg , so that we have condition (5):

As a result of Remark 1 and Theorems 1 and 2, we can outline a

procedure for solving the min-max path flow problem. The two main com­

ponents of the algorithm are a maximum flow algorithm used to obtain an

initial feasible solution and a constrained shortest path algorithm to

find non-basic paths to introduce into the basis which will improve the

value of the objective function.

In broad terms the algorithm presented here takes the following

form.

a ' P j * * I * - 1

1. Solve the maximum flow problem on G(N,A).

2. Determine an arc-path decomposition of the maximum flow.

3. Identify, from the set of basic paths with positive flow

assigned, that subset of paths whose lengths are equal to that

of the longest basic path with positive flow assigned.

58

4. Search for a non-basic path, shorter than the current

longest chain, which, when introduced into the basis will tend

to result in a net reduction of the flow assigned to the set

of paths identified in step (3), while not introducing any flow

on paths longer than the current longest path.

5. Repeat steps (3) and (4) until no such path as described

in step (4) exist. The current solution then is optimal.

Step (1) can be carried out using Ford and Fulkerson's maximum

flow algorithm. The path decomposition procedure is straight-forward

and the one used here is given in Appendix A. It is shown that the

set of paths obtained by the path decomposition algorithm, augmented

by appropriate slack paths is a basis for problem (1).

Step (4) of the algorithm will make use of B" 1. Following the

identification of B in Step (2), B""1 can be computed by one of the

known methods for computing the inverse of a sparse matrix (44). From

then on, B""1 is updated in the usual revised simplex method. In

Chapter V, we discuss another approach for obtaining the information

needed from B""1 without actually computing the entire matrix.

Based on the results of step (2), step (3) is obvious. Step (3)

will be modified later to simplify step (4). This leaves step (4) which

requires considerable elaboration. As indicated previously, step (4)

can be carried out by finding the path in G(N,A) to

minimize: (prr - Z B^ 1)}^ (6 ')

59

subject to: a'Xj ^ Lg - 1

Xj is a path from s to t.

Thus, the problem is that of finding the shortest path with respect to

the arc numbers

which is no longer than Lg - 1 with respect to arc numbers a.

This problem is referred to as the constrained shortest path

problem. Efficient shortest path and constrained shortest path

algorithms require that arc numbers must be positive or at least there

be no negative directed cycles.

We can assume tt ^ 0, for if tTj < 0 for some i, the appropriate

slack variable can be introduced in the basis.

(PTT - S B;1) ,
keI L '

Since p is arbitrarily large, pick p such that:

S Bj
keIL '

P > for all tt, > 0
TT

from which it follows that

(prr - 5 ,BkJ> * °> i f > °-
•L

60

Thus, a problem could arise only if there exists a directed cycle

in G such that T T j = 0 on all arcs of the cycle, while:

S > 0

keI L'

on some arc of the cycle. This can be avoided by adopting the following

procedure:

If the simplex multiplier T T j , corresponding to arc j is, T T J - 0,

and £ Bkj > 0> introduce the slack path S t corresponding to a t, into
keIL /

basis.

Lemma 4 and Theorem 3 which will shortly be stated and proved will

establish the fact that this convention will eliminate the possibility of

G(N,A) containing negative directed cycles with respect to the arc lengths

of problem (6). In order to simplify the statements of Lemma 4 and

Theorem 3, we adopt the following definition: an optimal basic set of

p a t h s , B ? for problem (1) i s s a i d to be a pure b a s i s i f the following

three conditions hold:

(a) T T T £ 0

(b) T T j — 0 =* S t e {JBj }

(c) P, e { B ^ a ' P , <: ,

where {B t} denotes the set of columns of B. Condition (a) holds as a

result of adjustments suggested previously. We can show that if, at some

61

stage, condition (c) does not hold for some path, then we can replace

that path in the basis by a slack path. Consider a path Pr and suppose

it is the r T H basic vector. Let P̂ be any non-basic path. Bringing Pj

into the basis will tend to increase the flow on Pr only if

< o .

But

and since

P n s 0, for all i,

some component of B" 1, say B ^ J must be positive. That is

b ; J > o .

It follows then that

B 7 l st • B7l > 0 .

and S t can be brought into the basis to replace P p. Since Pr is in

the basis at the zero level, the new solution will remain optimal.

62

We can verify the possibility of always satisfying condition (b)

by proving Lemma 3.

Lemma 3

Let B represent an optimal basis for (1) and Lq denote the length

of the longest path in {Bj} which has positive flow assigned. Let I L '

denote the index set of longest paths in } and rr the vector of simplex

multipliers corresponding to the current basis. If

Z BT} > 0 ,
keI L/ ^

and

TTjt = 0 ,

then the slack vector S t can be introduced into the basis and the result­

ing basis will be an optimal feasible basis for (1) also.

Proof. It is well known from the theory of the simplex method that

given an optimal basis B to a linear programming problem, an alternate

optimal solution can be generated by bringing into the basis any non-

basic vector whose reduced price is zero.

If rr is the vector of simplex multipliers corresponding to the

current optimal basis, then

63

Zs, " C S J = TTSJ - 0 = n t = 0

or

Z S - C S = 0

Thus Sj can be brought into the basis without changing the value of

the objective function. Thus the resulting basis containing S t is an

optimal basis.

The fact that the solution remains basic, that is, the new set

of vectors produced by bringing S t into the basis is independent,can be

argued as follows. Since

Z BjJ > 0 ,
k eI L '

* >0

for some specific k e IL It follows that

Bk"1S1 > 0 .

If we apply the standard simplex rule for change of basis, the

k T H basic variable will be a blocking variable. If no other variable

reaches zero before x k reaches zero, then S t replaces in the basis.

In any event, some current basic variable is driven to zero for a finite

64

value of . Gass (18) proves that if there exists a blocking variable

in the basis with respect to S t and if x S j is increased until any one of

the blocking variables becomes zero, then the resulting set of vectors

is an independent set of vectors and hence correspond to an extreme point

of the convex solution set.

We conclude then that S t can be brought into the basis and the

result is an alternate optimal basic feasible solution to (1).

Q.E.D.

Throughout the remainder of this chapter, when discussing a basic

optimal solution to (1) we will assume that the basis satisfies condi­

tions (a), (b), and (c) just discussed and is hence a pure basis. The

solution algorithm to be presented in this chapter will include necessary

procedures to ensure that a current basis is transformed to a pure basis

before it is used in the subsequent computations.

We now return to a formal statement and proof of Lemma 4 and

Theorem 3.

Lemma 4

Let B be an optimal pure basis for problem (1), and let rr be the

corresponding vector of simplex multipliers. For a given arc i e A and

any row B^ 1 of B" 1,

S B^1 > 0 = > T T 4 > 0.
keIL '

Proof. To prove this theorem, we prove the contrapositive of it,

that is,

65

T T 1 = 0 => S B^1 = 0 for all k ^ i.
k e I L /

If T T j = 0, then Sj, the slack path i, is the basic vector with respect

to arc . The i T H column of B is e t, where, as usual, e t is the column

vector all of whose elements are zero except the i T H element and it is

one. We can express the inverse of B as:

B"1 = (Adjoint B) / |B|

B - 1 = (c k i)7 |B| ,

C being the cofactor of element B I K . The value of C l k is determined

by

C l k = (- D I + k K J

where Mj is the (m-1) by (m-1) submatrix of B obtained by deleting row

i and column k.

It follows that

= (c l k) / |B|

For k / i,

K I - 0

66

since M l k i s obtained by delet ing row i and column k from B and row i

i s the only row which has a non-zero element in column i . As a r e s u l t ,

for a l l k / i ,

Bfi1 = 0 >

and

However, since the basic path associated with arc i i s the s lack path

i M L '

hence

£ B k j = 0 .
keI L /

Q . E . D .

To transform a given basis B into a pure basis we carry out the

fol lowing s teps .

a. I f < 0, introduce S t into the bas i s .

b. I f P R E [B J] , a ' P R > I3 , then replace by a s lack

path.

c. Begin at •n1 and scan TT for T T J = 0. If ^ > 0,

introduce S t into the basis. Return to TT-^ and begin the search again.

Continue until n n is reached and no changes have been made on the

current pass. The new basis is a pure basis.

If we choose p such that

p > E B^ 1 / T T j ,

i e I L /

for all i such that T T J > 0, then

p T T j " E BjJ > 0, for all i .

ieIL /

The value of p can be selected so that the lengths of all arcs, with

respect to the arc numbers

prii - E B ^
ieIL /

are nonnegative.

We can now state the following theorem:

Theorem 3

Let G'(N,A) be a network with arc numbers defined by

d(i) = pri^ - E ,
ieIL /

where B is a pure optimal basis for the maximum flow problem defined

on G(N,A), and I L/ is the index set of a subset of the real paths in

the basis.

68

Then there exists a real number p 0 such that for

P ?- Po >

there are no negative directed cycles in G'(N,A).

Proof. Let

P 0 = £ [T, B^ 1 / rr, } .
iel[/
n 4>"0

As indicated previously, then d(i) as defined in this theorem, is non-

negative for all arcs of the network and hence no negative directed

cycles can exist.

Q.E.D.

The Constrained Shortest Path Problem

In this section we prerent a dynamic programming algorithm to

solve the constrained shortest path problem (6). As indicated, solving

this problem will generate a candidate path to enter the basis of prob­

lem (2) or alternately, problem (1).

Theorems 2 and 3 of the last section will be used to show that

if we-maintain a pure basis to (1) at all times, the algorithm to be

presented here will converge in a finite number of iterations.

The dynamic programming algorithm presented here is a modifica­

tion of Saigal's algorithm for finding the shortest path through a

network which passes through a specified number of nodes or no more than

69

a specified number of arcs (40). Joksch also presents a similar algo­

rithm for solving the constrained shortest path problem (30). Both

algorithms are themselves based on Ford and Fulkerson's combinatorial

algorithm for determining the shortest path in a network (12).

Conceptually, the dynamic programming formulation of the problem

can be viewed as follows. The stages of the problem correspond to

discrete integral values of 4, the remaining length available with re­

spect to the arc numbers a. In other words, for a given node j, at

stage 4, the remaining partial path to t must be of length 4 or less.

The states of the system are the possible nodes in the network. The

optimality question at each stage 4 is: if a unit of flow is currently

at node j and the remaining path length available is 4, then what is

the best node to move to next in order to minimize the cost of the path

from j to t with respect to the arc numbers d.

The calculations are carried out on the network and take the form

of recursive labeling on each node of the network. At the 4 t h iteration

of the labeling we calculate for each node j, the cheapest path of

length 4 or less from j to t, given that the current label on all other

nodes j' represents the cheapest path from j' to t whose length is

4 ~ a(J>J /) o r less. The labeling begins at node t. At a given iteration

we attempt to create a new label for every node. After every node has

been considered we increase 4 to 4 + 1 and begin at node t again. The

labeling procedure terminates after iteration 4 = L. If s has a label,

then the labels can be traced back to t to obtain the path with minimum

cost and hence minimum relative cost coefficient with respect to the

70

current basis for problem (2). We proceed in the normal simplex fashion

depending upon whether this relative cost coefficient indicates optimality

or not.

If s was not labeled, the current solution is optimal.

The labeling procedure proceeds as follows:

1. Set & = L = minimum [a(i,t)}.

(i,t)eA

2. Label all nodes, (-,00,00). The first element, m (j) is the

node from which the current node, j , was labeled, the second

element, g (j) , is the distance associated with the current partial

path from the node j to t and the third element, h (j) , is the

cost associated with the current partial path from node j to t.

3. Select an unscanned node j and let

r (j) = { j ' e N | e A and g(j') + a (j , j ') = £ }

4. Compute 6 = minimum [h(j') + dCjjj'^oo}

r (j)

Let m ' (j) be any node j ' for which the minimum occurs if 6 < ». Other­

wise set m ' (j) = 0.
5. If m ' (j) > 0, and 6 < h (j) , then set

m (j) = m ' C j)

g (j) = i

h (j) = 6.

71

6. Mark this node as scanned for iteration 4 and go to the

next unscanned node. When all nodes have been scanned, if 4 < L,

increase 4 to 4 + 1, mark all nodes unscanned and begin at node

t again. If 4 = L, terminate.

7. If there is a subset of arcs of zero length, then after

all nodes have been scanned on a given iteration, repeatedly

attempt to find improved labels on the nodes of this subset until

a complete iteration through this subset generates no new labels.

Return to step (3) with 4 = 4 + 1 .

In solving the constrained shortest path problem we must make up

to L - L complete iterations through the seven steps. It is not neces­

sary to completely scan one node before going to the next. Thus, we

simply move through a list of arcs, checking each to determine whether

it allows a better label on it's initial node. Each time we check an

arc, it requires two additions and comparisons. The total computations
A

required then is on the order of 2(L - L)m, where m is the number of

arcs in the network.

If there is an arc between each pair of nodes, then m = n(n - 1),

where n is the number of nodes. If L is the same order of magnitude as n,

then the number of additions and comparisons is of the same order of

magnitude as n 3. This compares with the computations required to deter­

mine the shortest path from s to all nodes of a network, n(n - 1)(n - 2)

« n 3.

We conclude then that the constrained shortest path procedure

for generating paths to enter the basis in the path removal algorithm

72

is as efficient as column generating procedures for the multicommodity

flow problems.

Other modifications can also be made to further reduce the com­

putations required. For example, if we let 6}, denote the shortest path

from s to t with respect to a, then there is no need to generate labels

on node j at any iteration beyond i if

I = Qfj = L - & i .

No completion of such a partial path would satisfy the constraint.

Recall also that we are solving the constrained shortest path

problem to generate a path which satisfies conditions (3), (4), and

(5). The computations are carried out in such a way that (4) and (5)

are always satisfied. We can terminate the labeling procedure anytime

s is labeled such that

£ B ^ P . * > 0 .

Example

We shall use the network of Figure 4 to illustrate the calcula­

tions for solving the constrained shortest path problem. The network

is given in Figure 7. The circled number adjacent to each arc is the

flow on that arc with respect to maximum flow on the network. All arc

capacities are one and the arc lengths are given on each arc.

The minimum cost flow solution is given by one unit of flow on

C 2 = { 1, 4, 8, 10} and one unit of flow on C 2 = {2, 6, 11}. We

73

Figure 7. Minimum Cost Flow

consider C x and C 2 to be basic with respect to arcs one and two,

respectively. The remainder of the basis consists of the appropriate

slack paths.

After two iterations we still have x1 = h(C 1) = 1, and X g =

h(C 2) = 1, but we also have C 3 = {l, 3, 7, 10} and C 7 = [2, 5, 8, 10}

in the basis with x 3 = x? = 0 .

At this point we have:

Lg = j>(C2) = 12 ,

L B - 1 = 11 ,

and

1 0 0 0 0 0 0 1 0 -1 0 0
1 1 0 0 0 0 0 0 0 -1 0 0
0 0 1 0 0 0 0 1 0 -1 0 0
-1 0 0 1 0 0 0 -1 0 -1 0 0
1 0 0 0 1 0 0 0 0 -1 0 0

-1 -1 0 0 0 1 0 0 0 -1 0 0
0 0 0 0 0 0 1 1 0 -1 0 0
-1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 -1 0 1 0 0
-1 -1 0 0 0 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0 0 0 0 1

The last row of B" 1

n = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Since the second basic path is the longest, we have

B;1 = (1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0)

If we let p = 4 , we have

prr - BJ1 = (3, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0)

Thus we want to find P. to

minimize: (3, 3, 0, 0, 0, 0, 0, 0, 1, 0)X.

Subject to: (1, 5, 3, 2, 1, 4, 3, 1, 1, 2, 3)X. £ 11

Xj is a path from s to t.

The optimal solution to this constrained shortest path problem is

C 4 = [2, 5, 8, 9, 11}.

If we bring this path into the basis we obtain a solution:

The remaining basic variables are slack paths.

In Figure 8 the arc flows corresponding to the current solution

are shown by circled numbers. All arc capacities are one unit and the

arc lengths are shown. The number with a decimal point following it is

the arc identification number. For this solution

L B = £ (C 4) = 11

LB - 1 = 10 ,

and

r o -1 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 -1 0 0

-1 -1 1 0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 -1 0 0 0 0
0 -1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

-1 -1 0 0 0 0 1 1 0 0 0 0
-1 0 0 0 0 0 0 0 0 1 0 0
-1 -1 0 0 0 0 0 0 1 1 0 0

1 1 0 0 0 0 0 1 0 0 0 0
-1 -1 0 0 0 0 0 0 0 1 1 0
. 1 1 0 0 0 0 0 0 0 0 0 1

The simplex multipliers are

TT = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

The longest path with flow in the basis is the second path in the

basis, C 4. Its length is 11. Thus

77

Figure 8. Min-Max Path Flow

I* - 1 = 10 ,

and if we let p = 4, we have

d = 4TT - B;1 = (3, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0).

Figure 9 is the network with the capacities deleted. The arc

numbers are the lengths a and costs d. The number adjacent to each

node j is ofj . The labels are given in Table 5. For each value of I

only new labels are given.

The optimal solution to the corresponding constrained shortest

path problem can be read from the table: C 6 = [l, 4, 8, 9, 11}. Aft

pivoting we have

* 4 *3 = 1

X G = X 7 = 0

The longest path in the basis remains C 4 . We have

- 1 = 10

B;1 = (1, 2, 0, 0, 0, 0, 0, -1, 1, 0, -1, 0)

rr = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

79

Figure 9. Network With Arc Lengths and Costs

Table 5. Constrained Shortest Path Labels

g (j) = I Node h (j) m(j)

5 1 t

3 4 1 5
6 0 t

4 3 1 4
5 0 6

5 1 1 4
2 1 5
3 0 4
4 0 5

6 S 5 1

7 1 0 4
2 0 5

8 S 4 1

81

4TT - Bi 1 = (3, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0)

With these arc costs, the constrained shortest path is C 3 a path already

in the basis, with B" 3^ = 0. Thus, we conclude that the current solu­

tion to the problem is optimal.

The Path Removal Algorithm

We shall now present a step-by-step statement of the algorithm

suggested in this chapter for solving the min-max path flow problem.

1. Solve the maximum flow problem on G(N,A). Let F* be an

optimal solution and let v m t x be maximum flow.

2. Decompose F to an arc-path flow. Let B be a corresponding

basic set of paths. Let rr be the simplex multipliers.

3. Let B° be the corresponding Mpure basis".

4. Determine I^o, the maximum length path in {B 0}.

5. Determine I L / = {i | a'B° = I^ 0}.

6. Let p be large positive number and compute

d = prr - £ B" 1.
kel,. '

7. Determine Pj*> the solution to the constrained shortest

path problem.

8. Check rrP.,v = 0, if not increase p and return to (6).

9. Check £ B^ 1 > 0, if not, terminate. The current solu-
k e I L /

tion is optimal. Otherwise go to (10).

10. Introduce P.* into the basis. Return to Step (3).

82

Convergence

The optimal solution to the min-max path problem has a positive

value of 1̂ . The iterations through Steps (3) - (10) begin with a

finite value of Lg . Each time 1̂ is reduced, it is reduced by an integer

value. Thus, in order to prove convergence, we must establish that

there can be only a finite number of consecutive iterations through

(3) - (10) without reducing 1̂ , and, that the dynamic programming

algorithm used in Step (7) converges. We consider the former question

first.

Solving problem (2) by the simplex algorithm will consist of one

or more iterations of Steps (3) - (10) in which flow is reduced and

finally driven off the set of longest paths. We can adopt the lexi­

cographic pivot selection rule of Dantzig (7) in order to insure the

convergence of the simplex on that problem. Thus, we can insure that

problem (2) will be solved with Z = 0 if such a solution exists in a

finite number of iterations and it follows that at such an event the

value of Lg has been reduced.

The convergence of the dynamic programming algorithm follows

from the fact that there are no negative directed cycles with respect

to either d or a. At each iteration, Z is increased by one unit and

hence it will reach its upper bound of Lg - 1 in a finite number of

steps. We need not concern ourselves with labeling repeatedly around a

cycle with zero length with respect to a, since no paths including such

a cycle would be cheaper than the residual simple path. Hence the

labels would not be generated under the labeling procedure defined.

We conclude then that the algorithm converges in a finite number

steps to the min-max path, maximum flow on network G(N,A).

84

CHAPTER IV

AN EXPANDED NETWORK FORMULATION

OF THE MIN-MAX PATH FLOW PROBLEM

In this chapter the min-max path flow problem is interpreted as

a maximum flow problem on an expanded version of the original network.

The problem differs from the standard maximum flow problem in that it

has imposed on it bundle constraints. Bundle constraints are inequali­

ties which restrict the sum of flows on subsets of arcs of A. At this

time, no totally graph theoretic methods have been developed to solve

the maximum flow problem with bundle constraints except for some special

planar graphs (3) .

The algorithm developed in this chapter makes use of the decompo­

sition concept of Dantzig and Wolfe (8) . The master constraints number

no more than the number of arcs in the original network G(N,A), and there

will be a single sub-problem of the shortest path or minimum cost maximum

flow type.*

A Dynamically Expanded Network

If we interpret the length of arcs in the network G(N,A) as the

time required to transverse the arc, then we can define an expanded

*An alternative treatment would be to consider the bundle con­
straints as generalized upper bounds and make use of Dantzig and Van
Slykes method for treating upper bounds on sums of variables. Using
this approach one loses the network structure after the initial itera­
tion however, and thus that procedure would be less attractive than the
procedure presented here.

87

version of G(N,A) in which all paths along which a unit of flow could

reach t by time period L are represented but paths which have a trans­

versal time greater than L are not included. We shall refer to this as

the L-period expanded version of G(N,A) and denote it D L(G).

The L-period expanded version D L(G) of G(N,A) can be constructed

from G(N,A) as follows. The source s of G(N,A) is the unique source sL

of DL (G). For node x e N, x ^ s, there will be a sequence of nodes

x T, T = 0,1,...,L in NL . If (x,y) e A and a(x,y) denotes the length of

(time to transverse) arc (x,y), then there will be in A L a sequence of

arcs (x^ yT-a(x,y))> T = 0,1,...,L-a(x,y). Each arc in the sequence

will have capacity b(x,y). We complete the network by adding a super

sink tL and arcs (tT, t L) , T - 0,1,...,L, with infinite capacity. All

arcs in A L have zero cost.

The network just described can be drastically reduced since many

of the nodes and arcs generated are disconnected from either sL or t L.

A procedure for generating DL(G) from G(N,A) and D L_!(G) is given at

the end of this chapter. This procedure generates only nodes and arcs

which are connected to both sL and t L. Further reduction procedures are

also discussed at that time.

Figure 10 is part of the 6-period expanded version of the network

of Figure 4. Figure 11 is the reduced 11-period expanded version of

the same network. We use (X , T) on the network to represent node (x̂ -) .

Comparison of D, (G) with the Full Dynamic Version of G(N,A)

The network D L(G) is an abridged version of Ford and Fulkerson's

dynamically expanded network corresponding to G(N,A). In the dynamic

network flow problem the arc capacity is not an actual total capacity

88

FL = [f ^ , yT+a(x,y))]> (*,y) e A, T = 0,1,... ,L-a(x,y),

for flow on the given arc but is instead a capacity per unit of time.

Thus, flow can enter an arc in an amount equal to the arc capacity at

time t and an equal amount can enter at time t+1. Therefore, each node

is replicated for each period of time considered. A given path through

the network may appear several times in the expanded version and it may

be assigned flow in each case. On the other hand, the arcs in our

problem have total flow capacities. Thus, it serves no purpose to

allow the repetition of a given path in D L(G).

The replicates of a given node of G(N,A) which appear in D L(G)

represent the discrete points in time at which flow, leaving the source

at time zero, could arrive at that node. Also, a given arc of G(N,A)

may appear more than once, or not at all, depending upon whether it

can be used to transport flow, which can be made available at its

initial node at a particular point in time, to its terminal node at

a time which will enable it to ultimately reach the sink on or before

time L, the maximum allowable time. In other words, a given arc will

appear in D L(G) if it appears in a path of length L or less in G(N,A).

The Relationship Between G(N,A) and D L (G)

In D L(G) there is a subset of arcs (xT, yT+a(x,y))> T = 0 , 1 , . . . ,

L-a(x,y), corresponding to arc (x,y) g A. We refer to this set of arcs

in D L(G) as a bundle of arcs and denote it as A L(x,y).

Theorem 1

Suppose we have a feasible flow F L on D L(G),

89

then the function on A defined by;

f(x,y) = E P L(x T, yT+a(x,y))» (x>y> e A ,
AL(x,y)

is a flow function defined on A. That is, the network flow conservation

equations are satisfied by;

F=[f(x,y)].

Proof. Since F L is a feasible flow on D L(G),

v1 , x̂ - * s L

f^x^tf) - ^(Kf-.xr) = « 0 , x̂ . s u, t,

k -v1 , x T = \

For x = s:

f(s,N) = E f L(s L, y a (x > y)) = v̂
y«N

For x = t:

but

-E f L(t T, tL) =
T=0

- f*-(N, t L) = - v1

90

Thus,

- f (N , t) - -v1-

For x e N, x ^ s, t:

L - a (x , y) L
f (x , N) - f (N , x) = S S ^ (^ " y T + a C x . y)) " ! s f L (v

T - a (y , x) > X T > -
N T = 0 N T = a (y , x)

I f we define f t (x T , y T ') = 0, for T < 0 or T ' > L , then we can write:

L L
f (x , N) - f (N , x) = S S f (x ^ V T + a ^ . y) - S S fL (y T - a (x , y) > X

T >

N T = 0 w T = 0

We can now bring the second summation out and we have:

f (x , N) - f (N , x) = ^ Z f ' C X r , y T + a (x > y)) -£ f L (y T - a (y , x) » X

T >

Each term inside the brackets i s i d e n t i c a l l y zero since x T s L , t L .

Hence we have

v1- , i f x = s

f (x , N) - f (N , x) = < 0 , i f x £ s, t

rv*- , i f x = t ,

which is a flow function defined on G (N , A) .

Q.2.D.

Theorem 2

I f F L i s a flow defined on D L (G) and F i s the corresponding flow

on G (N , A) as defined in theorem 1, then F is a f eas ib le flow on G (N , A)

i f and only i f

f (x , y) = T, f L (X r , y T + a (x , y)) ~ b (x » y) » (x » y) e A .
A L (x , y)

Constraints of this type imposed on the flow on network D L (G) are ca l l ed

bundle constra ints .

Proof. By theorem 1, the flow F corresponding to ^ L i s a flow on

G (N , A) . I f the bundle constraints are s a t i s f i e d , then the indiv idual

arc capac i t i e s on G (N , A) are s a t i s f i e d . I f :

f L < * r . y T + a (x , y) > 2 5 ° >

t h e n c e r t a i n l y

f (x , y) ^ 0.

Q . E . D .

At the end of this chapter we present an algorithm which generates

the reduced version of DL (G) and prove, based on the construction of

D L (G)> t n a t w e can solve the min-max path flow problem by f inding the

minimum value of L for which

max — vaa x »

where \4ax denotes the value of the maximum bundle-constrained flow on

D L(G) and v m a X denotes the maximum flow on G(N,A).

We turn our attention now to the bundle-constrained maximum flow

on L\ (G).

Bundle Constrained Maximum Flow

The problem of finding a node-arc flow on D L(G) which corresponds

to a maximal feasible flow on G(N,A) can be stated as follows:

Find arc flows f L(x T, y T+ a(x,y)) t o :

maximize: v1"

subject to: f L(x T,N L) - f L(N L,x) =

(v1" , if X T = s L

0 , if ^ * sL ,

l-v1 , if x T = tL

(1)

(2)

E f L(x
T»y T+a(x,y)) * b(x,y), (x,y) e A

A L (x,y)
(3)

f L(x T, y T +a(x,y)) * 0, (x T , y T + a (x > y)) e A L (4)

Equations (3) are the bundle constraints. If the optimal solution to

(1) - (4) has value

v»ax < v B a x ,

then there exists no feasible flow on D L(G) whose corresponding flow

on G(N,A) is a maximal feasible flow. In this case, we must expand the

93

network to L+l time periods. That is, we generate D L + 1 (G) and resolve

(1) - (4). If

^i f tx * vmax

and

v i . i < v a a x ,

then any path decomposition of the resulting flow is a min-max path

flow on G(N,A) and the min-max path length is L.

Iri (24) discusses the network with bundle constraints. He

credits Kobayashi (34) with the development of the dual technique whereby

the network flow problem with one bundle constraint can be reduced to a

linear network flow problem in which the computations are carried out

on the network. However he has the following to say about the general

linear network flow problem with bundle constraints:

The network problems with bundle constraints cannot
be solved in a purely graphical procedure, unlike ordinary
network flow problems, but they require in general some­
thing like a simplex method for the general linear pro­
gramming problems.

Example

It is helpful at this time to consider an example problem.

After further reductions, the network of Figure 11 is shown in

Figure 12 with bundle arcs indicated by slash marks.* For convenience,

*Techniques for further reduction of the network will be dis­
cussed later.

94

Figure 12. Network With Bundle Constraints

we use a single number to identify arcs. They are given in Figure 12

adjacent to each arc followed by a decimal.

The mathematical statement of the problem is:

maximize: v 1 1

subject to:

-vi:L+f(l) +f(3) = 0 (5)

-f(l)-f(2) +f(5)+f(6) = 0 (6)

f(2)-f(3)+f(4) = 0

-f(4) f(7)+f(8) = 0

v 1 1 -f(5)-f(6)-f(7)-f(8) = 0

f(l) +f(4) ^ 1 (7)

f(5) +f(7) ^ 1

f(6) +f(8) £ 1

f(2) ^ 1

f(3) <s 1

f(i) ^ 0, i = 1,..., 8 (8)

Solution of the Bundle Constrained Maximum Flow

The general form of the bundle constrained maximum flow problem is:

maximize: v1 (g)

subject to: B X ^ b x (1 0)

AiX - AgVL = 0 (I D

X :> 0.

B is the bundle matrix corresponding to constraints (7) of the example

problem, A x is the node-arc incidence matrix of D L (G), and Ag is the

vector (-1,0,0,...,0,1). The dimension of this vector is equal to the

number of nodes in the network. The maximum dimensions of B, depending

upon the amount of possible reduction, are m x m, where m is the number

of arcs in G(N,A). This includes bundles containing only one arc, i.e.,

upper bounds on arc flows are included where necessary. Those arcs

which belong to bundles of more than one arc do not require separate

constraints for individual arc flows since the bundle capacity is

identical to the individual arc capacities.

Equations (11) are the conservation of flow equations, thus,

feasible solutions to these equations can be generated by the use of

one of the efficient maximum flow algorighms. It would be desirable

to retain this structure on (11). To do so we can make use of the

Dantzig-Wolfe decomposition concept (8). We shall do so by treating

(10) as the master constraints and (11) as a single subproblem. Before

continuing with this we will digress briefly to discuss the decomposi­

tion procedure. Our discussion follows that of Gass (18).

Decomposition

Consider the problem

97

maximize: C X (12)

subject to: B X + I W = b x (13)

A X » bg (14)

X , S 2: 0 (15)

The solut ion space to (14) i s a bounded convex set . Thus, any

point in this set can be expressed as a convex l inear combination of the

extreme points of th i s set . I f we le t X x , Xg, . . . , X n be the extreme

points of the set S , where

S = [x | A X = b 2 , X ^ O }

then for any element X in S , there ex i s t nonnegative rea l numbers,

, . . . , X N , such that

X - X J X J . + XjjXg + . . . + XNXN . (16)

The values X1, . . . , X N s a t i s f y the convexity condit ion:

X x + X s + ... + X n * 1 .

Any solut ion to problem (12) - (15) must, of course, s a t i s f y (14)

and hence must belong to S . As a r e s u l t , i f we let Xa denote the general

98

solut ion to (13)-(15), then we can express this so lut ion in terms of the

mult ip l iers XI and the extreme points of S as given by (16).

Subs t i tu t ing (16) into (13) we get the equations:

B(X 1 X 1 + X22k + ... + X n X n) + IW = v

or

BXiXj. + BXgX 2 + . . . + B X NX N + IW = b x .

A l s o , subst i tut ing in (12), we have

C'(X 1 X 1 + XgX^ + .. . + X J J X J J .

or

C , X 1 x 1 + C'X s x s + ... + C'X n x „ .

I f we assume then that the extreme points of S are known, then

the problem (12)-(15) can be expressed as that of f inding pos i t ive rea l

numbers X T to:

maximize: (C'XOXI + (C'Xg)X 2 + . . . + (C_'XN)XN (17)

subject to: (BX 1)X 1 + (BX^XP + . . . + (BX R)X N + IW = Jb^ (18)

XI + x 2 + . . . + x n = 1. (19)

99

We of course do not require an enumeration of a l l the extreme

points of S . We w i l l generate the a c t i v i t y vectors as fo l lows. Suppose

we have a basic f eas ib le so lut ion to (17)-(19). Let (T T , y) be the cor­

responding simplex mul t ip l i er s , where rr is a vector corresponding to

(18) and y is a scalar corresponding to the s ing le convexity constraint

(19).

Suppose now that X, i s an extreme point of S which is not repre­

sented in the current basic f eas ib le so lut ion to (17)-(19). The cor­

responding a c t i v i t y vector i s

Z j = [C ' X j , B X . , 1] m (20)

The vector P. is a candidate to enter the basis in (17)-(19) i f

rrBX. + y - C ' X 3 < 0 . (21)

I f there are no extreme points X . of S for which (21) holds , then

the current solut ion is optimal. Thus, we can determine whether the

current solut ion to (17)-(19) is optimal and i f not f ind a candidate

to enter the basis by f inding the extreme point of S which maximizes

rrBX. - c ' X .

Suppose X . * is such a vector , then i f

T T B X . - C ' X . + Y 2: 0,

100

the current solution is optimal and if not, the vector Pj*> defined by

(20), is a candidate to enter the basis. The vector Xj* can be obtained

by solving

minimize: (T T B - C ^ X . (22)

subject to: AX. = bg (23)

Xj £ 0. (24)

Throughout this discussion we have assumed that S is bounded. Only

a modification is required if this is not the case. In our problem, any

solution feasible to the master constraints (18) is feasible to the sub-

problem (23). Thus, (19) is always satisfied if (18) is satisfied.

Hence we can drop the convexity constraint. We rewrite the problem as

maximize: (£ /X 1)X 1 + (C'X 2)X g + ... + (£%)\n (25)

subject to: (BX1)X1 + ... + (BXn)Xfi + IW = ^

X > 0,

where XT, i = 1, n, are the extreme point solutions to S.

S = { x|AX = b E , X ^ 0] .

101

An i n i t i a l basic f eas ib le solut ion to (25) is given by:

IW = b, .

Since the convexity constraint has been dropped, the dual var iable y i s

no longer in the problem. Thus, the dual variables are given by I T and

we wish to determine whether the optimal so lut ion to (22)-(24) i s negat ive .

Let us assume that the matrix A of (14) is written

A = : A ,1 ,

where A1 and are the matrices of (11). A l s o , l e t

B - [0 : B] ,

X ' - [v : x1 . . . x m 1

C 7 = [1 : 0 0 0 . . . 01 .

Then

T T B - C ' = T T B - 1 ,

and solving (22)-(24) can be done by searching for a path whose length

with respect to arc lengths TTB i s less than one. I f the shortest path

has length greater than or equal to one, then the current so lut ion to

102

(25) is optimal. If not, as indicated before, the shortest path identified

is a candidate to enter the basis. Since (22)-(24) is unbounded, this

path can be assigned any amount of flow consistent with (25).

The arc lengths, rrB, can be assumed to be nonnegative since B has

all nonnegative elements and if T T J < 0, for some i, the corresponding

slack variable can be introduced into the basis and T T J becomes zero.

An alternative way of formulating this bundle-constrained maximum

flow problem is to introduce all individual arc capacity constraints into

the subproblem and delete all bundle-constraints from the master problem

which involve only one arc. A solution to the master problem is now not

necessarily feasible to the subproblem. Thus, it is necessary to include

the convexity constraint.

Let bg be the vector of individual arc capacities of D L(G). The

problem can be written

maximize: v L

subject to: B X < b^

A XX - Agv1" = 0

0 < X £ — — —s

The master problem is the same as before as given by equations (25)

except that it has fewer constraints and it includes the convexity con­

straint. A vector X, is a candidate to enter the basis in the master

103

problem if

TT B (Xjtv1-)' - C'QCjtv1-)' + y < 0.

We are again searching for the vector Xj which will

minimize: (T T B - C 7) (X : V L) '

subject to: A XX - AgV1" = 0

0 £ X £ b,
— — —S3

Since c ' = (0':1), and B l j i n + 1 = 0 , i = 1, 2, . . ., , we can rewrite

the problem as:

minimize: rrBX - V L (26)

subject to: A 1X - AgV1" - _0

0 < X < b 0
— — — 2

If Xj* is the optimal solution and

T T B X J * - V l + y < 0,

104

then the current solution to the master problem is optimal and hence we

have the maximum bundle constrained flow on D L(G). If

rrBX.*- v L + y < 0

then Xj*d-S brought into the basis and we continue. The subproblem (26)

is a minimum cost flow problem and it can be solved by Busacker and Gowen's

algorithm or any of the algorithms available for this problem (5).

Due to the relation between the bundle constraints and the arc

capacity constraints, the following modification is made to the standard

decomposition method. The algorithm is outlined here.

1. Solve the maximum flow problem on D L(G). This is what would

be done the first time the subproblem is solved in the decomposition

method.

2. Select the first bundle constraint which is not presently in

the master problem and check to see if it is satisfied by the current

solution. If so, go to the next bundle constraint not currently in the

master problem. If not, go to step 3.

3. Introduce this constraint into the master problem and intro­

duce an artificial variable for this constraint into the basis. Go to

step 4.

4. Find a feasible solution to the master problem using the

phase I procedure. Return to step 2.

5. Terminate the procedure when all constraints not in the

master problem have been checked without a violation.

105

The Expanded Network Algorithm

We now present an out l ine of the expanded network algorithm af ter

which some addit ional comments w i l l be considered.

1. Find v f f l a x on G(N,A) .

2. Expand D L (G) u n t i l the sum of the capaci t ies on a l l arcs

leading into (t , L) equals or is greater than v B f t x .

3. Solve the bundle constrained maximum flow problem on D L (G) .

4. I f v m f t X £ v m a x , terminate, otherwise

5. Set L =» L + l , expand D L (G) and return to step 3. Repeat u n t i l

The labels which are recorded when D L (G) is generated w i l l be used

also in generating D L + 1 (G) . Thus, i t i s not necessary to begin step (5)

anew each i t e r a t i o n . A l s o , the optimal solut ion on D L (G) is a f eas ib l e

solut ion to D L + 1 (G) . Hence i t can be used to provide a good i n i t i a l

solut ion to D L + 1 (G) .

So lut ion to the Example Problem

Suppose we know that the maximum flow on our example problem (see

Figure 4) is

v = 2

and suppose we know that

Vmax " 1-

106

We want to determine vj;ix. Figure 11 i s the 11-period expanded version

of the or ig ina l network. The arc capaci t ies and bundle constraints are

given in Figure 12. In Figure 13 the arcs are numbered to s implify the

problem matrix. Table 6 is the simplex tableau corresponding to equations

(5)-(7) with appropriate slack variables added to (7) , and with a l l in ­

dividual arc capaci t ies stated separately from the bundle constra ints .

We begin by ignoring the bundle constraints (the f i r s t three constraints

in Table 6 fol lowing the object ive row). Thus, we are jus t f inding the

maximum flow from s to (t , l l) . A solut ion i s Xx » (2, 1, 0, 1, 1, 1, 0,

1, 0) .

The f i r s t value is the flow v and the remaining values are the

arc flows. We check th is solut ion against the constraints in the master

problem.

The f i r s t constraint is v io la ted since

X g + x 5 = 2 > 1.

Hence the master problem w i l l now be

maximize: v - x a l

subject to: 2XX '+ x, x - x a l = 1

107

Figure 13. Arc I d e n t i f i c a t i o n for Example Network

108

where X a l i s an a r t i f i c i a l var iab le , given a cost of -1 to drive i t

from the bas i s . The current basic solut ion i s

xal = l

X T = 1.

The new set of simplex mul t ip l i ers i s given by

[rrry] = [-1:2] |"-1 2~j - [1:01

TT - [1] , Y = 0 •

The subproblem i s

maximize: v L - x 1 - x 4

- V 1 +Xj + X 3 = 0

- X I - X G - H X G + X S - 0

^ - X G ^ = 0

- X 4 -H^ + X G =» 0

V L - X 5 - X G - ^ - X G = 0

0 < X J £ 1, 1-1, 8

vL £ 0.

This i s a minimum cost maximum flow problem. The network with arc costs

and capac i t ies is given in Figure 14.

109

Figure 14. Reduced Network

110

Table 6. Simplex Tableau for the Bundle-Constrained
Maximum Flow Problem

b V 1 2 3 4 5 6 7 8 S i • J 8

- z

0 1 0 0 0 0 0 0 0 0 0 1 1

1 0 1 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 1 0 I 0 0
1 0 0 0 0 0 0 1 0 1

-1 1 1
0 -1 -1 1 1

0 0 1 -1 1 0 0 0
0 -1 1 1
1 -1 -1 -1 -1

1 1
1 1
1 1
1 1 0 I 0
1 1
1 1
1 1
1 1

I l l

V

L - U

^ = [1 : 0 : 11

We use the revised simplex notation.

X B B - 1

- v L 0 1 1 0

1 0 -1 2

1 0 0 1

- v L 1 1
2 -1

1
IS 0 1

~ 2 1

Xi 1
2 0 * 0

The optimal solut ion i s :

= [1 0 1 1 0 0 1 0 01 ',

with value 1.

Since y = 0.

C 3 - Z 2 = v L - TrBXg - v = 1 > 0.

Hence, we wish to bring X j * into the basis of the master problem.

& = [C % : B X , : 11

112

Figure 15. Network With Modified Costs

113

T T B = [0 | 0 0 | 0 0 0 0] .

The subproblem is now the minimum cost flow problem on the network of

Figure 15.

The optimal solut ion i s ;

= [2 1 1 1 0 1 1 0 0 1 ' ,

with value 1 .

C 3 - Z S = V 3 - T T B X s - y = 1 + 1 = 0 £ > 0 ,

Thus, th i s vector i s a candidate to enter the b a s i s .

Po =

-v L
1

1

"B -1
1* 0 -* 1

i 0 * 0

- v L
- 2 1 2 - 4

X 3

1 0 - 1 2

h 0 0 1 - 1

*

1 1 4

Since v^&x = v m a X , we have an optimal basic feasible solution to

the current problem (with one bundle constraint).

We go back now and check the current solution against each bundle

constraint. The bundle constraints are the first three constraints given

in Table 6. Since X 3 = 1 , the solution is

v L - 2

x 1 = x 2 = x 3 = x 5 = x 6 = l

Substituting in the bundle constraints we have:

x x + x 4 = 1 < 1

X B + x 7 = 1 < 1

^ + X Q = 1 < 1

All bundle constraints are satisfied and the current solution is optimal

on D X 1(G). Since vj,ax = 2 = v m a x , this solution is optimal min-max path

flow on G(N,A), the network of Figure 4.

Convergence

Since L* is finite and L is increased by one unit each time steps

(3)-(5) are performed, the speed of convergence depends upon the two sub-

algorithms. The generation of D L(G) is certainly a finite process since

there is a finite number of arcs between any pair of nodes. The convergence

of the decomposition procedure of step (3) is the only real question.

115

Since step (3) makes use of the decomposition method to solve the

linear programming problem, i.e., the constrained shortest path problem,

we must consider the convergence of the master problem and the con­

vergence of the subproblem.

The subproblem is a shortest path problem with all nonnegative

arc lengths, hence it terminates in a finite number of iterations. (See

Ford and Fulkerson's combinatorial algorithm (12)) .

We can use the lexicographical rule for selecting the vector to

leave the basis in case of ties in a given iteration of the revised

simplex method of solving the master problem. Dantzig proves that this

rule will insure the finite convergence of the revised simplex method

(7) . As is normally the case for linear programming algorithms, no

provisions are incorporated to prevent cycling. However, if it turns

out that the structure of these problems causes cycling to occur, we

can incorporate the lexicographic choice rule.

Improving Computational Efficiency

There are three areas in which improvements may be made to the

computational efficiency of the algorithm. First, since we must begin

at some specific value of L and increase the value of L until a solution

is obtained, we can reduce the number of iterations of the algorithm

required by beginning with L as close to L*, the optimal value of L, as

possible. Secondly, the computational efficiency of the decomposition

algorithm for solving the bundle constrained maximum flow on D L will be

improved by reducing the number of nodes and arcs in D L to the minimum

necessary (as was done for the example problem). Thirdly, provisions

can be incorporated to allow recognition of the optimal solution as soon

116

as it is obtained. We shall now elaborate on these three approaches in

the order they were presented.

The Initial Value of L. We mentioned earlier that in expanding

D L , it should be expanded until the sum of the capacities of all arcs

leading into (t,L) equals or exceeds v f f l a x. We can also check to ensure

that the capacity of all arcs leading out of s equals v f f l a x. We can

determine an upper bound by finding the longest path in a path decomposi­

tion of the maximum flow on G (N , A) . We can find generally tighter bounds

on L* by solving the minimum cost maximum flow problem. If Z is the

cost and 1^ is the longest path in any path decomposition of the flow,

then

LZ = < Z / v m a X > < L* < 1^,

where ̂ x > denotes the smallest integer greater than or equal to x.

The following remark and lemma also provide other constraints on

the smallest value of L for which it is possible that VHB~ = VM€,„.
^ m a x m a x

Remark 1

If we disregard the bundle constraints and find the maximum flow

on D L (G) to be less than v f f l a X, then L* > L.

Lemma 1

If we disregard the bundle constraints and any minimum cut-set

of DL (G) contains more than one arc belonging to the same bundle, then

L* > L, if v L £ v m

Proof. If two or more arcs of the same bundle belong to any

minimum cut-set, then any maximum flow must have these arcs saturated.

117

Since the bundle has the same capacity as each arc in the bundle there

is no way the bundle constraint can be satisfied by a maximal flow.

Q.E.D.

These two tests have not been incorporated into the algorithm so

that nothing is known about their effect on the solution time.

Searching on L. The solution procedure presented begins at the

largest known lower bound on L. It might be more efficient, however,

to use a direct search method on L. This is possible since we know that:

vi a x > v B a X => L* ^ L

and

vb „ < v„ „ => L* > L.

Network Reductions. Step (4) of the network expansion algorithm

outlined some reduction techniques to reduce the size of the network.

Lemma 1 allows some additional reduction. If a given arc of D L(G) is

in a minimum cut-set but no other arcs of its bundle are in any minimum

cut-set then we must solve the bundle-constrained maximum flow on D L (G).

Before doing so, however, we can delete all arcs that are in a common

bundle with any arc in any minimum cut-set if the maximum flow (without

regard to the bundle constraints) is equal to v m a x .

Another way the network D L(G) can be reduced is to delete any

node having only one arc entering it and only one arc leaving it. These

two arcs are replaced by a single arc between the initial node of the

118

former and the terminal node of the latter. This arc will have capacity

equal to the minimum capacity of the two original arcs. The arc will

belong to both bundles of the original arcs. This will be helpful only

to eliminate arcs not in bundles.

Termination Procedure. Due to the likelihood of degeneracy in

the bundle constrained maximum flow problem it is quite possible, for a

given value of L, several iterations will be required after v B a x is obtained

before it is recognized as the optimal solution. Thus, after each itera­

tion of the master problem v L should be compared to v m a x . If they are

equal, then the current solution is optimal to the min-max path problem,

so that no further improvement on v L is required. Thus we terminate the

algorithm at this point without having to verify that the current solution

is optimal to DL(G).

Algorithm for Generating Dynamically Expanded Network

Let G(N,A) be a static network with arc costs or lengths given by

a(x,y). Let L be an arbitrary positive integer.

The following algorithm will generate the corresponding L-period

dynamic representation D L(G) of the network G(N,A).

Step 1. Solve the shortest path problem from the source s to all

nodes of N. Identify all alternate labels with respect to the labeling

method of Ford and Fulkerson (12). The labels used here shall be of the

form [-,-,-]. The first element designates the node from which this label

originates, the second denotes the index of this label on the current node,

and the last element denotes the length of the path from s to the current

node along the path of labels (nodes) indicated. Thus, a label on any

node can be traced back to the origin node, s. The label is associated

with one or more partial paths from the origin to that node, and the

value of the fourth element in the label is the length of that partial

path. Henceforth, we shall refer to partial paths of a specified length

to node y instead of labels on node y . The fact that a given label is

associated with one or more paths of the same length causes no confusion.

Figure 16 is an example network with all optimal labels for shortest

paths from the source s to all nodes of A.

In the context of this labeling procedure, the path (6,1) will

refer to the partial path(s) associated with the first label on node 6.

That path consists of arcs {1,4,7,9} and has length five as indicated

by the last element of the label.

Step 2. Begin with the first node and attempt to generate a new

partial path to this node the length of which exceeds the length of

current longest path to this node by exactly § units, g is initially

set at zero. When a new label (partial path) is obtained, 5 is reset

at zero and the process begins again with the first node. If a new

label cannot be generated for a given node, the next node is considered

until the terminal node is reached. If the terminal node is reached

and cannot be labeled, increase g by one unit and begin the search

again at the first node.

If L is the number of periods desired, the labeling procedure

terminates anytime 5 reaches the value L-TT(t,T)+1 , where TT(t,i") denotes

the length of the longest partial path to t which has been generated.

Figure 17 is the network of Figure 16 with labels up to those for paths

of length 11.

(•.1.5) (5,1,5)

Figure 16. Network With a l l Shortest Path Labels

o

(4,1,4)

Figure 17. Network With Labels up to Period 11

N >

122

Step 3. Generate the nodes and arcs of D L(G) from the labels on

G(N,A). Initially include a node for each label on G(N,A), except,

include only one node for node t. Call that node (t,L). Each label

also designates an arc which will be in DL (G) . The capacity of this

arc will be the same as its capacity in G(N,A). For example, if

(X , K , T) is a label on node y, then there will be a node in D L(G) cor­

responding to node y at time period T . Let (s,L) denote the source.

There will also be a node corresponding to node x at time period

T-a(x,y). There will be an arc in Dj_ (G) joining these two nodes.

The capacity of this arc will be b(x,y) and it will have a length equal

to a(x,y).

At times we shall identify a node in D L(G) by an ordered pair

of numbers (X , T) where x denotes the corresponding node in G(N,A) and

T denotes the time period at which the named node appears in 1̂ (G).

Thus we observe the following

Remark 2. If arc j of DL (G) has end points (x , T i) and (y , T s)

respectively, then the length of j is

x(j) - T S - T J . (27)

except for arcs generated from labels (-y-yT<L) on node t. In this

case the length of the arcs will be less than that indicated by (1).

In general then

(28)

123

Step 4. Reduce the network by deleting nodes and arcs by alterna­
tely carrying out the following two steps until one or the other yields

no further reductions to the network.

4a. Delete all nodes except the terminal node which

have no arcs emanating from them.

4b. Remove all arcs incident to only one node.

This completes a general statement of the algorithm for generating

the L-period expanded version of a network. (See Figure 11.)

The pair of numbers in the boxes (nodes) designate the corres­

ponding node of the original network and the time period. The algorithm

here generates the same network as the reduced version of the full L-

period expansion of G(N,A).

Proof of the Relationship Between D L(G) and G(N,A)

In order to establish the relationship between G(N,A) and D L(G)

we must establish a correspondence between the nodes, arcs, and paths of

the two networks.

Nodes. The source node of the two networks are identical and no

other node of D L(G) corresponds to the source node of G(N,A). Likewise,

the two terminal nodes are identical. The terminal node in D L(G)

corresponds to node t of G(N,A) at time L and at all previous time

periods at which flow could reach t. As indicated previously, node

(X , T) in D L(G) corresponds to node x of G(N,A) at time period T .

Lemma 2

If there is an arc (x T l, y T^) in D L(G), then there is an arc

(x,y) in G(N,A), with a(x,y) » T g - T l .

124

Proof. The arc in D L(G) is generated by labeling node y from

x. Such a label is produced only if there is an arc (x,y) in G(N,A).

Q.E.D.

Paths. Based on the correspondence between arcs of DL(G) and

G(N,A) and as a consequence of the construction of DL(G), it follows

that any simple path (from source to sink) in DL (G) corresponds to a

(not necessarily simple) path in G(N,A). For completeness we state

this as a lemma.

Lemma 3

Let {s •,x1 , T 1 ix2 , T 2 *, • • • Jxn , T N *, t̂ , tj_ 1 be a simple path in DL (G) .

Then [s L , X ! , X g , . . . , x n , t l is a path in G(N,A).

Proof. This follows immediately from the definitions of path

and simple path, and lemma 2.

Remark 3

If there are no directed cycles in G(N,A) then every simple

path in DL(G) corresponds to a simple path in G(N,A).

Proof. We are assuming all positive arc lengths. Thus, any

directed cycle would have positive length. By construction, any cycle

in G(N,A) would then be represented by a path in D L(G) that contained

node (x , T T) and (X , T 3) for the node that appeared twice in the cycle in

G(N,A) and for two distinct values of T . If there is no partial path

from x back to x , which passes through some other node in between, then

no such pairs of nodes, connected by an arc or a sequence of arcs will

occur in D, (G) .

This last lemma and remark are not necessary to the development

but are given to help characterize the relationship between DL(G) and

125

G(N,A). Hence, our original statement allowing the relaxation of the re­

quirement for all positive arc lengths remains valid.

If there are directed cycles in G(N,A) or if the requirement for

positive arc lengths in G(N,A) is relaxed, then there is the possibility

of a simple path in D L(G) corresponding to a path in G(N,A) containing

a directed cycle. Even so, this will cause no problems as we can derive

the flow on G(N,A) by assigning the flow on each path of D,_ (G) to its

corresponding path in G(N,A) and then deleting from each path in G(N,A)

which has flow assigned, its directed cycles. This will produce a new

path flow in G(N,A) in which each path is no longer than the corres­

ponding original path in which it is contained.

Obviously, removing flow on cycles in the network will not reduce

the net flow into the sink.

Let us consider the arc-path formulation of the maximum flow

problem defined on D L(G).

Let P L be the set of all simple paths from s to t in D L(G) and

let P be the corresponding set of simple paths in G(N,A). Also let

X L denote the vector of path flows defined on [P L] and let X denote

the corresponding vector of path flows defined on {p}. The maximum

flow problem is to find X ^ 0 to

maximize: v = x\ + . . . + xl:
± n L

subject to: £ at i x̂ < bj"
3=1

where A = (a 1 3) is the arc-path incidence matrix and B\ is the capacity

of the i t h arc in D L(G).

The corresponding vector of path flows defined on G(N,A) is given

by

xj = h(Pj) = E h L (P1}) = S x\,

where the summation is taken over all simple paths in [P L} associated

with the simple path Pj in fP]. From this definition of corresponding

flows on D L (G) and G(N,A) we can state the following

Lemma 4

If H L and H are arc-path flows on D[_ (G) and G(N,A) respectively,

then the values of these two flows, v L and v are equal, i.e.,

v = vL .

The next theorem provides a necessary condition on a flow on D L(G)

for its corresponding flow on G(N,A) to be a maximal flow.

Theorem 3

Let v m a x be the maximum feasible flow on G(N,A). Let H L denote

a feasible arc-path flow defined on D L(G). Let H denote the corres­

ponding arc-path flow on G(N,A) defined as indicated. Then the flow H

is a maximum feasible flow on G(N,A) if the value of the flow H L is

v m a X and H, as defined above, is a feasible flow on G(N,A).

Proof. This theorem follows directly from lemma 4.

Q.E.D,

12

As a result of theorem 1 we see how to obtain the arc-path flow

on G(N,A) corresponding to a given arc-path flow on D L (G). An arc-path

flow on D L (G) can be obtained by solving for a node-arc flow and then

decomposing that into flows on simple paths of D L (G).

Theorem 3 gives a necessary condition for a path flow on (G)

to produce a corresponding maximum flow on G(N,A). Obviously this con­

dition can be interpreted analogously with respect to a node-arc flow.

Theorem 2 provides the condition for a node-arc flow on DL (G) to have a

corresponding feasible flow on G(N,A).

We will now show that the length of the longest simple path

between the source and the sink in DL (G) is equal to L. Thus, any path

decomposition of any flow, in particular the solution to (l) - (4) , has a

longest path value less than or equal to L.

Lemma 5

Let DL (G) be the L-period expanded version of G(N,A) and let

[Pj] be the set of simple paths from the source to the sink in D L (G).

Let £(PLj) be the length of the path PLj . Then

4(Pj) < L, j .

Proof. D L(G) represents the L-period expanded version of G(N,A)

for which node t at time period L is the terminal node. In other words,

node t at time period L is in D L (G) but node t at any later time period

is not in D L (G). Let us consider any path in I\ (G) from (s,L) to (t,L)

say Pj = f(s,L),(x 1, T l),...,(x n ,T n),(t,L) l . The length of Pj is given by

128

MPj) - E G(x,y) - £ a(x,y),
(x,y)ePj (x,y)ePj

Substituting (28), we obtain

n-2
J K P J) < L - T n + S (T n - k - T ^ k - x) + T l .

k=0

After collecting terms, we get

4(Pj) £ L

Q.E.D.

As a result of this lemma, we know that the maximum path length

for any flow on D L (G) is no greater than L. The following lemma shows

that the arc-path flow in G(N,A) corresponding to any arc-path flow in

D L(G) has maximum path length less than or equal to L also.

Recall that we can associate with every path of ty_ (G), a unique

simple path in G(N,A).

Lemma 6

If we let Pj represent the simple path in G(N,A) associated with

Pj in D L (G), then

J&(P 3) < je(p^).

Proof. This follows from the fact that P̂ is a subset of the arcs

in G(N,A) corresponding to the arcs in P^. The arcs in G(N,A) have length

equal to the length of their corresponding arcs in DL(G).

Q.E.D.

129

We shall, now state and prove an important theorem concerning the

relationship between the paths of G(N,A) and those of D L(G).

Theorem 4

Let D, (G) be the L-period expanded version of the network G(N,A)

and let f P L 1 be the set of all simple paths in DL (G) from the source to

the sink. Let [PQ] denote the set of simple paths in G(N,A) corres­

ponding to the paths in {P1'}. Then all paths in G(N,A) of length L or

less are in (Pel.

Proof. The proof follows immediately from the construction of

D L(G) and the correspondence between paths in D L(G) and G(N,A).

Let Pj = {s ,x1 ,Xj, , . . . ,xn , 11 be a path in G(N,A) of length L or

less. If we let

= a<s,x1)

T n = a (x N . 1 , X N) + T J - J

then r n = a(s, X l) + ... + a(x n„ 1,t) .

Since the length of Pj is assumed to be less than or equal to L, we

conclude that

130

Thus (t , T P) appears in the L-period expanded version of G(N,A). It

follows then, since the arcs of Pj allow the labels (x N , T N) on the

respective arcs of G(N,A), that the corresponding arcs will appear

in D L(G). There will be arcs in D L(G) corresponding to the arcs of

Pj which connect the nodes in I\ (G). Hence there is a path in 1\ (G)

corresponding to Pj and we conclude that P̂ e {PG " } «

Q.E.D.

Remark 4

As a result of the expansion and reduction techniques used to

generate D L(G) there will be one or more paths in D L(G) corresponding

to each path of length L or less in G(N,A). However, each path in D l(G)

will correspond to a unique path of length L or less in G(N,A).

Lemma 7

If v J ; a X is the optimal value of (3) , subject to (4) , (5) , and (6) ,

and

v m a x — v

f f l a x '

then the min-max path flow on G(N,A) has maximum path value less than

or equal to L.

Proof. Suppose we have an optimal solution to (3)-(6) and

v L - v .
m a x v m a x

Then the corresponding flow on G(N,A) is a maximum feasible flow on

G(N,A).

131

By lemma 5, if fPQ} is the set of paths in any simple path de­

composition of the flow on D L (G), then

JL(?\) < L, V j such that F\ e fP B
Ll.

The unique set of simple paths in G(N,A) corresponding to

will be denoted by [PB} and will form, with flows equal to that of their

corresponding paths in [Pg], a path decomposition of the flow on G(N,A).

By 1emma 6,

j&(Pj) < Jl(Pj1,V j such that Pj e CPB 1.

Thus, we conclude that

J K P J) < L, V j such that Pj e fPB 1.

We have exhibited a maximum flow on G(N,A) the length of whose longest

path (with flow) is less than or equal to L.

Q.E.D.

This lemma provides a necessary condition on DL (G) for the min-

max path solution to have maximum path length not greater than L. The

next lemma provides a necessary and sufficient condition for the solu­

tion to have maximum path length greater than or equal to L.

Lemma 8

If D L-i(G) is the L-l period expanded version of G(N,A), then

the min-max path flow on G(N,A) has maximum path length greater than

132

or equal to L if and only if

TO a x M a A

Proof. Let L* denote the length of the maximum length path with

positive flow in the optimal solution to the min-max path flow problem.

We must establish the following two statements:

(a) L* ^ L => V^l < v n a X

(b) v * a x < v n a x => L* :> L.

Let us consider case (a) first. We shall prove the contrapositive of

(a). That is, suppose

v L _ 1 > v
m a x m a x .

By applying lemma 7, we conclude that

L* < L-l

=> L* < L.

Thus, since the contrapositive is valid, the original statement, (a), is

valid.

133

We now consider case (b). Again we approach the proof by way of

the contrapositive.

Suppose that

L* < L,

=* L* < L-l.

This means that there exists a maximum path flow on G(N,A) which in­

volves flow only on paths of length L-l or less. Let {p} be such a set

of paths in G(N,A), then there exists a corresponding set of paths in

D u - i (G) .

Since by construction, D L_ a(G) contains that portion of G(N,A)

appearing in paths of length L or less, and corresponding arcs have

equal capacities, the maximum flow or paths of length L-l or less,

will be feasible on D L_ x(G). Thus

vL "i ;> v,

It follows then that

v i l i < v _ T =* L* ^ L.

Q.E.D.

We can now summarize the above discussion by stating and proving

the following theorem which provides necessary and sufficient conditions

for the min-max path flow problem to have optimal maximum chain length of L

134

Theorem 5

The network G(N,A) has a min-max path value of L if and only if

v L > v (29)
v m a x — m a x . v '

while

v L _ 1 < v (30)
in a x m a x » v /

where v m a x is the maximum flow on G(N,A), and v^ a x and v"^^ are the solu­

tions to (3)-(6) defined on DL (G) and D L - 1 (G) respectively.

Proof. Again let L* denote the actual length of the longest path

in the min-max path flow in G(N,A). By lemma 7, if

V * a x > V m a x >

then

L* < L.

By lemma 8, if

v 1 " 1 < v
m a x m a x >

then

135

L* > L.

Thus, if (29) and (30) hold, we have

L* < L < L*

=» L* = L.

then conditions (29) and (30) hold. By lemma 8, if

L* > L

then

Via"x < vmax

To show that

L* = L =» v L > v
max max >

we assume otherwise and demonstrate that this leads to a contradiction,

Suppose

v L < v
max ^ vmax

136

then from lemma 8,

L* > L+l.

But this contradicts the assumption that

L* = L.

Thus we conclude that

vL > v
m a x — v m a x

Q.E.D.

As a consequence of this theorem we can solve the min-max path

flow problem on G(N,A) by solving a sequence of maximum flows with bundle

constraints on ty. (G). We begin at some value of L and solve (3)-(6) on

D L(G). If v m a x < v m a x , then we increase L by one and continue. As soon

as we obtain a value of L for which vl:„_ > v_._, we terminate the pro-

cedure and the min-max path flow has longest path value L. The path

flow on G(N,A) which produces this solution is obtained simply by finding

any path decomposition of the optimal flow on D L(G) and converting this,

as suggested previously, to a set of flows on simple paths in G(N,A).

If we drop the bundle constraints and add all individual arc

capacities, then the maximum flow v^ a x may exceed v f f i a x as the following

example shows.

137

Figure 19. Six-Period Expansion G(N,A)

138

The maximum flow, v m a x , for this network is v m a x = 3. Figure 19

is the six-period reduced dynamic expansion of this network. The maximum

flow on this network is v,f-_ = 4, hence
m a x *

* 6 V_ „

139

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This research has been concerned with a study of the min-max

path flow problem on a directed network. While this problem has wide

application in network problems, it had not, to the author's knowledge,

been explicitly treated in the literature.

The objectives of the research were to characterize the structure

of the problem within the framework of other network flow problems that

have been treated in the literature and to develop a solution algorithm.

To more explicitly define the latter objective, we observe that the

problem could be solved by enumerating all paths of length L or less

and then solving the maximum flow problem on that set of paths. The

value of L could then be adjusted and a new linear program be solved.

Obviously the procedure terminates when the smallest value of L is found

for which the linear programming solution saturates a minimum cut set

of the network. The disadvantage of this approach is that the set of

paths is quite large and only a very few are likely to be in the solu­

tion. This means a large storage is required for problems of any size

and many computations are required to test for optimality.

Thus, the objective is to develop an algorithm which will not

require the explicit enumeration of all paths but which will generate

only paths which are candidates to enter the basis.

140

Results and Conclusions

The specific results of this research are:

1. The minimum cost flow algorithm does not solve the min-

max path flow problem. The min-max path problem is similar in structure

to the multicommodity flow problems.

2. The min-max path flow problem does not have all-integer

solutions as does the minimum cost flow problem.

3. The computations for solving the min-max path problem are

comparable to those for solving arc-path formulations of other network

flow problems.

4. An algorithm was developed which utilizes a minimum cost

maximum flow algorithm to achieve an initial feasible solution to the

problem and then moves toward optimality by solving a sequence of con­

strained shortest path problems to force flow off the current longest

path. A revised simplex type procedure is used after the minimum cost

maximum flow problem has been solved.

5. An alternative algorithm was developed which solves the

min-max path flow problem by implicitly representing all paths of

length L or less on a dynamically expanded network and solving a bundle-

constrained maximum flow problem on the expanded network.

6. The path removal algorithm has application to multiterminal

maximal flow problems with one or two inadmissible source-sink pairs.

7. The expanded network could be adapted to solve maximal

dynamic flows with total arc capacities. Implicit in the statement of

the algorithm is the fact that it could also be used to find the maximum

141

flow in a network on paths of length L or less. There would be no

difficulty in adding arc costs in addition to arc lengths. We could

then use the algorithm to find minimal cost maximum flows on paths of

length L or less.

8. Several areas for future research have been identified,

including work toward developing the most efficient computational scheme

and applications of the results of this research to other problems.

Other Applications

Some of the results of this research have application to other

network flow problems. Consider, for example, the multiterminal maxi­

mum flow problem. There are several sources and several sinks, each

may have a specific availability or demand. If any source can ship

to any sink, the problem can be treated the same way the single source,

single sink problem is handled. If, on the other hand, we require that,

say source s1 cannot ship to sink t 2, and source s 2 cannot ship to

sink t-L , then it is not a single-commodity problem.

Replace node s t , i = 1,2, with two nodes S j , s t ' and connect

them with arc (S J J S J ') • Do likewise with nodes tx and t 2. Give each

new arc infinite capacity and costs as follows:

a(s1 ') = a(ts ,t2 ') = co

a(s 2,s 2 ') = a(tx ,tx ') = 0

142

We can solve the min-max path flow problem. If a maximum flow exists

which satisfies the restrictions on flow specified, then such a solu­

tion will be generated by the min-max path flow algorithm.

Minimal Cost, Min-Max Path Flows

If we add arc costs to the min-max path flow problem, we may wish

to find the minimal cost min-max path flow. This is easy to handle on

expanded network algorithm. This simply alters the objective function

in the decomposition approach. The subproblems remain minimal cost

maximal flow problems.

Maximal Dynamic Flows With Arc Capacities

In the maximal dynamic flow problem, the arc capacities are

replaced with flow rates, or the amount of flow which can enter or leave

the arc per unit of time. If we impose on this problem, a total flow

capacity, then we can handle these additional constraints as bundle

constraints. The decomposition procedure of Chapter IV can then be

used. The time expanded network would generally be much larger than

that required for the min-max path flow problem however. Further research

is needed to determine the possibility of working with the original

static network as is the case for the standard maximal dynamic flow

problem (12).

Extensions and Future Research

Since a feasible solution to the min-max path can be obtained by

solving the max-flow problem without recourse to the simplex method,

whereas the elements of B^ 1 are required to compute arc lengths for the

shortest route problem of phase II, it is worthwhile to investigate the

143

possibility of computing the elements of B""1 on the network, making use

of the basic paths in the solution.

The potential for doing this is illustrated by describing the

concepts of a procedure and pointing out the theoretical justification

of the procedure. Whether the procedure is viable for large problems

remains to be seen. In the arc-path formulation of the maximum flow

problem, we introduced slack vectors (slack paths) for each arc. Suppose

we have a basic feasible solution with B, and B" 1 such that:

XB = B"1 _b, Xn - 0

Let A = (a t J) denote the entire updated tableau for this solution. Then

a u = B^Pj is the amount of change in Xg^ required by a unit of in­

crease in X j .

If X j is the K T H basic variable, then

11, if = K

0, otherwise

For non-basic variables, from

XB = B"" 1^ - B " 1 ^ - B ~ 1 S X S

where S is the non-basic slack vectors ,

144

Xs t = B7 xb - B ; 1 ^ - B 7 1 s x s

B 7 i S K j = 0 , j F4 K; S K = e K

S K K = 1; SKI = 0 K ^ j .

Thus

B 1 1 S K = B 1J S KK = B l J »

and

XB i = B 7 l b " 2 B 7 j X S J ; - 0 •

Hence B"j"j is the amount of change in Xg t if X S I , the value of the i T H

slack path is increased while holding all other non-basic paths at zero

flow.

Thus, the potential procedure is to perturb the flow on the non-

basic slack paths of the network and determine the change required on

basic path i in order to keep the flow in balance.

To illustrate, consider the example of Figure 20.

The subscripted lower case letters on the arcs indicate the basic

paths which contain the given arc. Slack basic paths are not recorded.

The circled letters Ct denote the arc for which the given path is basic

146

1 1
1

1 1
1 1

1 1
B = 1

1
1 1

1 1
1 1

The seventh column of B' is given by

^ = [- 1 0 1 - 1 1 0 1 1 1 - 1] '

This can be derived by increasing the flow on the non-basic slack path

S 7 and determining the adjustments required to the other basic paths in

order that the equations remain satisfied.

The following table shows the basic paths corresponding to the

numbered arcs and the change in flow required along each path caused by

a unit increase in the value of flow on S 7. These values are taken from

Figure 20.

For more complicated networks, this heuristic procedure becomes

unwieldly. The problem of finding the elements of a given column of

B""1 can be represented as a system of m equations in m unknowns, where

m is the number of real paths in the basis.

In the network shown in Figure 21, there are four real chains

in the basis.

The simplex basis is given in Table 8. Its inverse is given in

Table 9.

147

Table 7. Column Seven of B 1

Basic Flow
Arc Variable Change

1 - 1

2 0

3 1

4 s 4 - 1

5 s 5
1

6 s 6
0

7 c 3
1

8 s 8
1

9 s 9
1

10 c 2
- 1

The flow change column corresponds to the seventh column of B'

149

Table 8. Simplex Basis

Arc
Number

Basic
Path 1 2 3 4 5 6 7 8 9 10 11

1 c i 1 1

2 c 4
1 1

3 s 3
1 1

4 s 4
1 1

5 s 5
1 1 1

6 s 6

1

7 s 7

1 1

8 c 7 1 1 1

9 1 1

10 c 3 1 1 1

11 1 1

150

Table 9. Basis Inverse

Arc
Number

Basic
Path 1 2 3 4 5 6 7 8 9 10 11

1 Ci 0 -1 1

2 c 4 -1 1 -1

3 s 3
1 1 1 1

4 s 4
0 1 1 -1

5 s B
1

6 s 6
1

7 s 7
-1 -1 1

8 c 7
+1 +1 -1

9 s e
1 -1 1 1

10 c 3
-1 1

11 sll 1 -1 1 1

151

Suppose we want to find the first column of B" 1. Let Sj - B ^ . From

the network, we can write the following equations

° i + 6 1 0

6 2 + 6 Q

8j_ + 6 2 + 6 a

&i + 6 1 0 + ss

The solution is

61 = 0

°io = °s = 1

« i - -i ,

all other arcs of the network have slack paths as basic. The corre­

sponding value of 6 t is that necessary to balance the change in flow.

It can be achieved by adjusting the flow on X t since X t represents

flow on a slack path and does not interact with other basic variables.

From the network, we get

63 = 69 = 6g = 6 X 1 = 1

84 = 6 5 = 8G = 0 i 6 7 = - 1 »

= 1

= 0

= 0

= 0

152

The vector A = [6j] ' = [0 1 1 0 0 0 -1 -1 1 1 1]' .

B^1 = -A

Lower Bounds on L for D, (G)

In Chapter IV it was pointed out that it may be necessary to

solve the bundle constrained maximum flow problem on D L(G) for several

values of L until we find L such that

v L - i < v = V-max v»ax vaax

It was pointed out that an important part of the algorithm is the pro­

cedure for searching over L. In Chapter II we discussed a necessary

condition suggested by Fulkerson that the min-max path decomposition

of a given flow has longest path L. A profitable area for further

research is the adoption of this concept into a procedure for finding

a strong lower bound on L. The following approach should be investigated.

1. Generate D L(G),

2. For each a r c (x T , y T + a (x t y)) in D L(G), cover arc (x,y)

in G(N,A),

3. Delete all uncovered arcs in G(N,A),

4. Solve the maximum flow on the new network. If the maximum

flow is less than v n a x , then

153

5. Increase L by one and return to Step 1. Otherwise,

L* <; L .

After each iteration we have a good starting solution for the next

iteration.

The algorithm presented in Chapter III solves the min-max path

flow problem by solving a maximum flow problem and then searching for

a path to bring into the basis which will tend to reduce the net flow

on the set of longest paths in the basis. This algorithm can be

viewed as a modification of the parametric linear programming problem.

Suppose we restate the maximum flow problem as follows:

ti
maximize: 2 (\ - 6 1X)x i

1=1

subject to: PX <. b

X >: 0

Suppose we have an optimal basis B to the maximum flow problem with

X = 0. Let Lg be the length of the longest path in the basis with

positive flow assigned.

We want to determine whether the optimal solution to the min-

max path flow problem has longest path of length 1̂ or less. We

define 6t as before

154

' R i f a'Pj s> Lg and x t = 0

6 4 = { 1 i f a'Pj = Lg and x t > 0

k 0 otherwise

We now consider for X > 0. We are not interested in solving paramet-

r i c a l l y on X , but instead want to resolve for X = XQ>» We have shown

in Chapter I I I that for any value of X > 0, the problem defined above

w i l l have a so lut ion which maximizes the value of the flow while

minimizing the flow on paths of length Lg or greater .

U t i l i z i n g th i s approach, i t i s possible that a candidate to enter

the basis may have

t tP j > 1,

where rr i s the vector of simplex mul t ip l i ers for the maximum flow problem

(X = 0) . That i s

CI - Zj = 1 - rrPj < 0.

What th is means i s that there may be vectors Pj with negative

r e l a t i v e cost c o e f f i c i e n t which could be brought into the b a s i s . The

introduction of such paths may or may not reduce the flow in the network

below v o a x . We might have to solve the a u x i l i a r y problem to opt imal i ty

to ensure that the flow remains at v » . v .

155

In Chapter III, the algorithm presented does not consider such

vectors as candidates to enter the basis. It would be of value to com­

pare the two approaches from a computational point of view.

It was also shown that in considering paths to enter the basis in

order to reduce the net flow on paths of length Lg or less, we need not

consider paths of length 1̂ . It may be, however, that non-basic

paths exist whose introduction into the basis will tend to reduce

the net flow on paths of length Lg. It would be of interest to investi­

gate further the trade-offs between the two approaches. We can observe,

for example that if indeed the optimal solution L* = Lg, then we might

detect this more quickly if we do not allow paths of length L B to enter

the basis. On the other hand, if L* < Lg, then any path of length 1̂

brought into the basis will eventually be removed. Thus, the approach

we presented in Chapter III appears to be superior to the standard

parametric approach.

Generating Paths of Length L or Less

In Chapter IV, we developed and made use of a technique for

representing all paths in a network of length L or less on a dynamically

expanded version of the network. The procedure and representation appears

to be significantly more efficient than known methods for generating

and storing all paths of length L or less or the K shortest routes or

paths. Additional investigation is required before definitive state­

ments can be made however.

The use of D L(G) in place of generating and storing all paths of

length L or less should be considered in problems which require such

L56

paths. Further investigation is needed in this area. The Dantzig-Wolfe

decomposition method is used with the single subproblem being a short­

est route problem. Because of the dominance of certain constraints over

others, a modification of the standard decomposite appears to offer some

computational advantages.

Rerouting Flow

If one were to delete the bundle constraints from the bundle-

constrained maximum flow problem on D L(G), then the result is a standard

maximum flow problem.

A standard maximum flow algorithm can be used to solve the problem.

If none of the bundle constraints are violated then the solution is

optimal. Otherwise, some bundle constraint is violated.

It would be of interest to investigate a primal-dual approach to

rerouting flow through the network. There would be three classes of arcs

to consider: those which belong to violated bundles, those which belong

to saturated bundles and those which belong to unsaturated bundles. Results

here might be useful in the decomposition approach to solving the bundle

constrained maximum flow on D L(G).

157

APPENDIX A

CHAIN DECOMPOSITION

Let F be an node-arc flow defined on A. Then F can be decomposed

into an arc-path flow as follows:

1. Path identification: a labeling procedure is used to

identify a path to which flow can be assigned. Suppose

we have identified j - 1 paths, Cj_ ,C3 , . . . J C ^ J . Each

path has flow h(C k). Each time a path is identified, it

is assigned the maximum flow possible consistent with the

remaining flow on its arcs. The flow assigned to a path

is subtracted from the flow on the arcs of the path. Thus,

each time a path is identified and flow assigned, at least

one arc of the path has its flow reduced to zero. The path

will be considered the basic variable corresponding to one

such arc. Begin at node s with the label (-,00) and label

across the network with labels (x,h) until node t is

labeled or it is revealed that t cannot be labeled. If t

cannot be labeled, then the procedure terminates with the

desired path decomposition. The labeling proceeds as

follows:

l.a. Select a labeled node x and search for an unlabeled

y such that (x,y) e A and f'(x,y) > 0. To initiate, set

f'(x,y) = f(x,y) for all (x,y) e A. If no such y can be

L 5 8

found select another node x. If all nodes have been con­

sidered, terminate the labeling procedure and go to Set (3).

l.b. If nodes x and y can be found satisfying the above

conditions, label node y with the label (x,h), where

h(y) = minimum [h(x), f'(x,y)} .

If f'(x,y) is the minimum let I By = y(x,y) where Y(x,y)

is the index of the arc (x,y) and I B i is the relative

position of path Cj in the basis. In other words, vector
TH

is the I B j basic vector. We say that Pj is basic

to arc I B j .

Continue to label until node t is labeled or the procedure

terminates with no additional labeling possible. As indi­

cated, if t cannot be labeled, the desired decomposition

has been achieved. Otherwise go to Step (2) .

2. Flow assignment: Let Cj denote the path identified in

Step (1) . We must generate the arc-path incidence vector

Pj and the amount of flow h(Cj). We assume that the arcs

of A are indexed.

2.a. Set I = t and initialize Pj at 0.

2.b. Let (N|,h(I)) be the label on I. Then h(Cj) = h(I).

2.c. Let k be the index of the arc (N, ,I),k = T(N, ,1) .

Then set Pk 3 = 1. Set f'(N, ,1) = f'(N,,I) - h(Cj). If

I = S, remove all labels except on S, and return to Step
(l.a.).

15

Completing the basis: Each path Pj assigned flow by the

above procedure is associated with (basic to) a unique

arc of the network G(N,A) while no two are associated with

the same arc. If we associate with arcs which have no

basic path the slack path (vector) of the constraint

corresponding to that arc, the set of real paths and slack

paths form a basis for the solution set of problem (1) in

Chapter III. This follows from the fact that the above

set of vectors could be generated by the simplex method

on problem (1) if only chains are brought into the basis

which can be brought in at a positive level. The simplex

method always produces a basic feasible solution.

160

BIBLIOGRAPHY

1. Balas, E., "Minimaximal Path in a Disjunctive Pert Network," in
Theory of Graphs, International Symposium, Rome 1966, Gordon and
Breach, New York, 1967.

2. Berge, C., Theory of Graphs and Its Application, John Wiley and
Sons, Inc., New York, 1960.

3. Berge, Claude and A. Ghouila-Houri, Programming Games and
Transportation Networks, Translated by Maxine Merrington and
C. Ramanujacharyulu, Wiley, New York, 1962.

4. Busacker, R. G. and P. J. Gowen, "A Procedure for Determining
a Family of Minimal-Cost Network Flow Patterns," Operations Research
Office,Technical Paper 15, 1960.

5. Busacker, R. G. and T. L. Saaty, Finite Graphs and Networks,
McGraw-Hill, New York, 1965.

6. Clark, S., A. Krikorian and J. Rausen, "Computing the N Best
Loop less Paths in a Network," SIAM Journal on Applied Mathematics,
11, 1963.

7. Dantzig, George B., Linear Programming and Extensions, Princeton
University Press, Princeton, New Jersey, 1963.

8. Dantzig, George B. and P. Wolfe, "The Decomposition Algorithm
for Linear Programming," Econometrica, 29, 1961.

9. Edmonds, Jack and D. R. Fulkerson, "Bottleneck Extrema," Journal
of Combinatorial Theory, 8, 1970.

10. Elmaghraby, Salah E., "The Theory of Networks and Management Science,
Part I," Management Science, 17, 1970.

11. Elmaghraby, Salah E., "The Theory of Networks and Management Science,
Part II," Management Science, 17, 1970.

12. Ford, L. R. and D. R. Fulkerson, Flows in Networks, Princeton
University Press, Princeton, N. J., 1962.

13. Ford, L. R. and D. R. Fulkerson, "A Suggested Computation for
Multicommodity Network Flows," Management Science, 5, 1958.

161

14. Fulkerson, D. R., "On the Equivalence of the Capacity-Constrained
Transshipment Problem and the Hitchcock Problem," The Rand Corpora­
tion, Research Memorandum RM-2480, Jan. 13, 1960.

15. Fulkerson, D. R., "An Out-of Kilter Method for Minimal Cost Flow
Problems," SIAM Journal on Applied Mathematics, 9, 1961.

16. Fulkerson, D. R., Private Communication, 19 March 1971.

17. Gale, D., "Transient Flows in Networks," Michigan Mathematics
Journal, 6, 1959.

18. Gass, Saul I., Linear Programming, McGraw-Hill, New York, 1969.

19. Geoffrion, Arthur, "Elements of Large-Scale Mathematical Program­
ming," Management Science, 16, 1970.

20. Gross, 0., "The Bottleneck Assignment Problem," The Rand Corpora­
tion Paper P-1630, March 6, 1959.

21. Hadley, G., Linear Programming, Addison-Wesley Publishing Co.,
Reading, Mass., 1962.

22. Hammer, P. L., "Time-Minimizing Transportation Problems," Naval
Reaseach Logistics Quarterly, 16, 1969.

23. Hu, T. C , Integer Programming and Network Flows, Addison-Wesley,
Reading, Mass., 1969.

24. Iri, Masao, Network Flow, Transportation and Scheduling, Theory
and Algorithms, Academic Press, New York, 1969.

25. Jarvis, John J., "Optimal Attack and Defense of a Command and
Control Communications Network," Ph.D. Dissertation, Johns Hopkins
University, 1968.

26. Jarvis, J. J., "On the Equivalence Between the Node-Arc and Arc-
Chain Formulation of the Multicommodity Maximal Flow Problem,"
Naval Research Logistics Quarterly, 16, 1969.

27. Jewell, W. S., "Optimal Flow Through Networks," Ph.D. Dissertation,
MIT, Cambridge, June 1958.

28. Jewell, W. S,, "Multicommodity Network Solutions," Operations
Research Center, Report ORC-66-23, University of California,
Berkeley, 1966.

29. Johnson, Ellis L., "Networks and Basic Solutions," Operations
Research, 14, 1966.

162

30. Joksch, H. C , "The Shortest Route Problem with Constraints,"
Journal of Mathematical Analysis and Applications, 14, 1966.

31. Kalaba, R. E. and M. L. Juncosa, "Optimal Design and Utilization
of Communication Networks," Management Science, 3, 1956.

32. Kaufmann, A., Graphs, Dynamic Programming and Finite Games,
Academic Press, New York, 1967, Chapter 1.

33. Klein, Morton, "A Primal Method for Minimal Cost Flows," Manage­
ment Science, 14, 1967.

34. Kobayashi, Takashi, "On Maximal Flow Problem in a Transportation
Network with a Bundle," Journal of the Operations Research Society
of Japan, 10, 1968.

35. Pollack, Maurice, "Solutions of the Kth Best Route Through a
Network-A Review," J. Math. Anal, and Appl., 3, 1961.

36. Ridley, Tony M., "An Investment Policy to Reduce the Travel Time
in a Transportation Network," ORC 65-34, University of California,
Berkeley, 1965.

37. Rothfarb, W., N. P. Shein and I. T. Frisch, "Common Terminal
Multicommodity Flow," Operations Research, 16, 1968.

38. Rothschild, B. and A. Whinston, "On Two-commodity Network Flows,"
Operations Research, 14, 1964.

39. Saigal, Romesh, "Multicommodity Flows in Directed Networks,"
ORC-67-38, University of California, Berkeley, 1967.

40. Saigal, Romesh, "A Constrained Shortest Route Problem," Operations
Research, 16, 1968.

41. Sakarovitch, M., "The Multicommodity Maximal Flow Problem," ORC-
66-25, University of California, Berkeley, 1966.

42. Sakarovitch, Michel, "The K Shortest Routes and the K Shortest
Chains in a Graph," ORC-66-32, University of California,
Berkeley, Oct. 1966.

43. Szwarc, W., "On Some Sequencing Problems," Naval Research Logistics
Quarterly, 15, 1968.

44. Tewarson, R. P., "On the Product Form of Inverses of Sparse Matrices,"
SIAM Review, 8, 1966.

45. Tomlin, J. A., "Minimum-Cost Multicommodity Network Flows,"
Operations Research, 14, 1966.

163

VITA

Robert Glenn Hinkle was born at Buckhannon, West Virginia, on

February 13, 1939, the son of Glenn E. and Ocie V. Hinkle, nee Lang.

He attended public schools in West Virginia and was graduated from

Fairmont State College, Fairmont, West Virginia, with a B. S. degree

in Mathematics in 1961. In 1963 he was awarded the M. S. degree in

Mathematics from West Virginia University.

He enrolled in Georgia Institute of Technology in September,

1967, as a participant in the Naval Weapons Laboratory's Full-Time

Advanced Study Program. He has been an Operations Research Analyst

at the Naval Weapons Laboratory, Dahlgren, Virginia, since 1963.

