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SUMMARY 

The object ive of th i s d i s ser tat ion i s to report the resu l t s of 

research on the min-max path flow problem. The min-max path flow prob­

lem i s a var ia t ion of the well known maximal flow problem. The v a r i a ­

t ion resul ts from the addit ion of a secondary object ive function which 

i s to minimize, over a l l flows which produce the required t o t a l f low, 

the length of the longest path which carr ies flow. The secondary 

object ive function associates with a flow, the length of the longest 

path from source to sink in the network which carr ies flow. 

The research had two s p e c i f i c o b j e c t i v e s . The f i r s t was to 

characterize the min-max path flow problem in terms compatible with 

other network flow problems by character iz ing i t s so lut ion and by 

showing i t s re lat ionship to other network flow problems. The second 

object ive was to develop a so lut ion algorithm for the min-max path 

flow problem. 

The resul t s of th i s research are summarized as fo l lows: The 

min-max path flow problem i s shown to be a general izat ion of the 

bottleneck assignment problem and the time-minimizing transportat ion 

problem. Both of these problems have a l l a l l - i n t e g e r extreme po ints . 

Unlike these problems and unlike other single-commodity maximum flow 

problems i t i s shown that the min-max path flow problem does not in 

general have a l l a l l - i n t e g e r extreme po ints . 

A comparison i s made between the min-max path problem and other 

network flow problems. The structure of the min-max path problem i s 



c loser to that of multicommodity networks than to s ing le commodity 

networks. 

The most natural formulation of the problem resul ts in a mixed-

integer programming problem. The problem i s to optimize a min-max 

object ive function over a l l maximum path flows on the network. 

Two algorithms were developed to solve th is problem. The 

f i r s t algorithm solves the integer programming problem by so lv ing a 

sequence of l inear programming problems. Successive problems d i f f e r 

only in the c o e f f i c i e n t s in the object ive funct ion. Thus, throughout 

the computations, the algorithm searches over the set of extreme 

points of the same convex polytope. A procedure for moving from one 

extreme point to another i s developed which cons is ts of solving a 

constrained shortest path problem on the network. An algorithm for 

solving the constrained shortest path i s presented. I t i s shown that 

the amount of computation required to solve the constrained shortest 

path problem i s of the same order of magnitude as that required to 

determine the shortest path from s to a l l nodes in a network. That 

i s , one so lut ion of the constrained shortest path problem requires on 

the order of n 3 additions and comparisons, where n i s the number of 

nodes in the network. The algorithm u t i l i z e s a maximum flow algorithm 

to find an i n i t i a l f eas ib le solut ion to the problem. The flow i s de~ 

composed into path flows and the longest paths are i d e n t i f i e d . A 

constrained shortest path problem i s then solved to ident i fy a non-

basic path which would, upon introduction into the b a s i s , tend to 

reduce the net flow on the set of longest paths currently in the b a s i s . 
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The second a l g o r i t h m makes use o f an expanded v e r s i o n o f the n e t ­

work i n which o n l y paths of l e n g t h less than an a r b i t r a r y l e n g t h a r e 

r e p r e s e n t e d . The min-max p a t h f l o w problem i s shown t o be e q u i v a l e n t 

to a bundle c o n s t r a i n e d maximum f l o w on the expanded network f o r some 

va lue o f L . The l eng th o f the min-max path i s then L. 

Th is bundle c o n s t r a i n e d maximum f l o w problem i s so lved by the 

use of a decomposi t ion procedure i n which t h e r e a re no more, and q u i t e 

l i k e l y f e w e r , master c o n s t r a i n t s than arcs i n the o r i g i n a l ne twork . 

The s i n g l e subproblem i s a minimum cost maximum f l o w prob lem. 

The f i r s t a l g o r i t h m i s r e f e r r e d t o as the pa th removal a l g o r i t h m . 

I t has p o s s i b l e a p p l i c a t i o n i n o t h e r network f l o w problems. I t can be 

used , f o r example, to so lve a m u l t i t e r m l n a l maximal f l o w problem which 

has one or two s o u r c e - s i n k p a i r s which a re i n a d m i s s i b l e . 

The procedure i n the expanded network a l g o r i t h m f o r i m p l i c i t l y 

r e p r e s e n t i n g a l l paths of l e n g t h L or less by the expanded network may 

be u s e f u l i n o ther network problems which r e s t r i c t the s o l u t i o n t o 

paths o f l e n g t h L or l e s s . 

The expanded network a l g o r i t h m has a p p l i c a t i o n t o maximal 

dynamic f lows w i t h t o t a l a rc c a p a c i t i e s i n a d d i t i o n t o the normal arc 

f l o w r a t e s . 



CHAPTER I 

INTRODUCTION 

The object ive of th i s d i s ser ta t ion i s to report the resu l t s of 

research on the min-max path flow problem. The min-max path flow 

problem i s a var iat ion of the wel l known maximal flow problem. 

Stated b r i e f l y , the problem i s to determine the required flow 

in a capacited network for which the maximum cost of any unit of flow 

from the source to the sink i s minimized. 

Before presenting the mathematical concepts of networks and 

network flows on which th i s research bu i lds , we w i l l attempt to give 

an i n t u i t i v e motivation of the min-max path flow problem by way of 

example* 

Example 

A physical intrepretat ion of the min-max path flow concept i s 

provided by the example transportat ion problem depicted in Figure 1 . 

Suppose there are trucks located at c i t y s , the source node, and i t i s 

desired to transport the trucks to c i t y t , the sink node, v i a c i t i e s 

x , y , and z , ca l l ed transshipment nodes. The arcs between the nodes 

( c i t i e s ) represent transportation l inks that are ava i lab le and the 

arc numbers represent, respect ive ly , the arc capac i ty ( trucks/unit 

time) and the time required to transverse the arc . There are , in 

th i s transportation network, several routes that a given truck can 

take. For example, i t could go from s to y , and from y to t ; or i t 



Figure L. Transportation Network 
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could go from s to x, from x to y , from y to z , and z to t . The problem 

t h e n , i s t h a t of s e l e c t i n g the se t o f routes t o be used i n t r a n s p o r t i n g 

the t rucks from s to t so t h a t the r e q u i r e d number of t rucks a r r i v i n g a t 

t per u n i t t ime ( f l o w ) i s achieved and the amount o f t ime i t takes a l l 

t rucks to get from s to t i s m i n i m i z e d . H e n c e f o r t h , t h i s problem w i l l be 

r e f e r r e d to as the min-max path f l o w problem. We do not lose any gener ­

a l i t y by assuming we want the maximum f l o w i n the network s ince we can 

always p lace an a v a i l a b i l i t y r e s t r i c t i o n a t the source . 

A f t e r p r e s e n t i n g the bas ic concepts i n network f l o w theory and 

f o r m u l a t i n g some o f the impor tant models , we w i l l be i n a b e t t e r p o s i t i o n 

to discuss the s p e c i f i c o b j e c t i v e s and the scope o f t h i s r e s e a r c h . Gen­

e r a l l y s p e a k i n g , our o b j e c t i v e has been to i n v e s t i g a t e the s t r u c t u r e o f 

the min-max path f l o w problem, c h a r a c t e r i z e i t i n terms compat ib le w i t h 

o t h e r r e s u l t s i n network f l o w t h e o r y , and develop a s o l u t i o n a l g o r i t h m . 

Graphs and Networks 

I t i s convenient t o beg in a d iscuss ion o f network f l o w t h e o r y by 

f i r s t d iscuss ing the more genera l b a s i c concepts o f graph t h e o r y . There 

a re s e v e r a l good r e f e r e n c e s f o r more complete d iscuss ions o f these t o p i c s . 

See , f o r example, Busacker and Saaty ( 5 ) and Berge (2 ) f o r a d i s c u s s i o n o f 

graph theory and i t s a p p l i c a t i o n s . The c l a s s i c t e x t i n network f l o w t h e o r y 

i s t h a t o f Ford and Fu lkerson ( 1 2 ) . The books by Hu ( 2 3 ) and by Berge and 

G o u i l a - H o u r i ( 3 ) a l so prov ide e x t e n s i v e t r e a t m e n t o f graphs and f l o w n e t ­

works . Elmaghraby (10 ) and (11 ) prov ides a good d i s c u s s i o n o f the a p p l i ­

c a t i o n s o f networks t o management s c i e n c e . We f o l l o w the n o t a t i o n o f Ford 

and F u l k e r s o n . 
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Definition 

A graph is a set of elements N and a relation A, where 

A £ N X N . 

Symbolically, we will use the notation (N,A) to represent the graph. 

In other words, a graph is a set of objects and a relationship between 

the objects. A network is called a finite network if N and A are 

finite sets. 

Notation 

Nodes will be represented by letters x and y or by an index such 

as i or j. The source node will sometimes be denoted by s and the sink 

node by t. 

Arcs will be identified by their end-points, (x,y) or by an index 

i or j. Whether an index i refers to an arc or a node will be clear 

from the context. Arc (x,y) is said to be incident to nodes x and y. 

The initial node of arc (x,y) is x and the terminal node is y. 

As an example of a situation which can be model by a graph let 

us consider the personnel assignment problem. Suppose we have m men 

and m jobs and we wish to assign each man to exactly one job and no 

more than one man to any job. We can let the men and the jobs be nodes. 

If we let {Pi>..«>Pm} represent the set of men and {*!,...,rm] be the 

set of jobs, then the set of nodes N is given by 

N = { Pi 9 • • • 9 Pffl 9 r i ) ' " R J > 



and the set of arcs (the relation) is given by 

A = {(p t,r k) | man pt can be assigned to job r k] 

The "assignment" problem can be solved by use of this model. A 

solution is obtained by selecting a subset A± £ A which satisfies the 

condition that \ is a one-to-one mapping of N x onto N 2, where 

Ni = {Pi>"»>P f f l} 

Ng = {x19...,r9) . 

This model is obviously not complete since we have specified no 

criteria for selecting one from among the many possible solutions to 

this problem. Figure 2 is a graphical model of a specific assignment 

problem. The arcs represent possible assignments; the heavy lines 

represent a solution. 

Definition 

A flow network is a graph (N,A) in which the arcs represent the 

possibility of flow of some commodity between the two nodes which are 

the end-points of the arc. The notation G(N,A) designates the flow 

network which consists of the graph (N,A); arc numbers which represent 

the capacity of the arc; any special requirements for origin or termi­

nation of flow; and any cost associated with flow on specific arcs. 



Figure 2. Graph of an Assignment Problem 
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Notation 

We shall use a(x,y) or a(i) to denote the length of, or the unit 

cost of flow on arc (x,y) or arc i, respectively. 

The expression b(x,y) or b(i) will likewise represent the capacity 

of arc (x,y) or arc i. 

The variable f(x,y) or f(i) will be the amount of flow assigned 

to arc (x,y) or i. F = F(A) will denote the vector of flows on the 

arcs of A, 

Definition 

A flow network is called a directed network if the arcs are 

orientated and net flow is allowed only in the specified direction. 

If the arcs of a network are not directed then the network is 

called an undirected network. Throughout this dissertation we will 

be dealing only with directed networks. 

Generally speaking, in a flow network, certain nodes will be 

sources of the commodity in question and other nodes will be termina­

tion points or sinks. Nodes which are neither sources nor sinks will 

be called transshipment nodes. Any assignment of flow in the network 

must respect the conservation of flow requirement at transshipment 

nodes. This condition states that the sum of flow into the node must 

equal the flow out. Without loss of generality, we can assume that 

the network has a single source and a single sink (12). 

The assignment problem modeled as a graph in Figure 2 can also 

be modeled as a flow network. A flow of one unit on arc (p t,r k) 

indicates that the i t h man is assigned to job r k. The capacity of 

each arc is one unit. If we can assign an efficiency index for each 
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man to each job, then we can let that index be a cost associated with 

the arc joining the corresponding nodes. Our objective then in select­

ing a complete assignment of men to jobs may be to maximize the total 

efficiency of the assignment. 

We can expand the network to incorporate the constraint that each 

man can be assigned to only one job and no more than one man can be 

assigned to a single job. This is done by adding a fictitious source 

node s and arcs (s,pt) for i = l,...,m. Each arc (s,Pj) has a capacity 

of one and a cost of zero. Add also, a fictitious sink t and arcs 

(r k,t), k = l,...,m. Each arc is given a capacity of one unit and a 

cost of zero. This network is depicted in Figure 3. 

We can thus solve the assignment problem by finding a flow through 

the network of Figure 3 from s to t. We can interpret the objective 

of maximizing the total efficiency of all assignments by letting the 

arc cost a(x,y) be one minus the efficiency of the corresponding assign­

ment and finding the flow for which the sum of unit costs multiplied 

by arc flows is minimum. 

Paths, Chains and Cycles 

A chain between two nodes x and x̂, in a graph (N,A) is a se­

quence of connected arcs and the incident nodes, x 1, ( x ^ X g ) , 

x s,...,x N_ 1, (x N_ 1,x N), . If the arcs are all directed toward the 

higher index node, then the chain is called a path. If x x = x̂  , then 

the path (chain) is called a directed cycle (cycle). A path (chain) 

may contain a sub-path (chain) which is a directed-cycle (cycle). And 

if the path (chain) contains no cycles, then it is called a simple 



Figure 3. Network Model of an Assignment Problem 
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path (chain). A negative directed cycle is one, the sum of whose arc 

costs is negative. 

In this dissertation we shall always use the term path but shall 

always be referring to simple paths from the source node s to the sink 

node t. 

A network flow given as flows on arcs can be expressed as flows 

on paths from s to t. For a proof of this, see (11). In the network 

of Figure 3 each path is of the form: 

s, (s,p t), pj , (p 4,r k), r k, (r k,t), t . 

A flow on the network can be expressed as a flow on paths of this type. 

The maximum flow assignable is the capacity of the smallest arc in the 

path. Thus the maximum flow which can be assigned any path in the 

given network is one. A flow of one indicates that man pt is assigned 

to job r k. 

Notation 

If G(N,A) is a directed network, then C(N,A) or C will denote 

the set of simple paths in G(N,A) from s to t. The individual paths 

will be denoted by an index C3 indicating the j t h path in the set C; 

or they will be indentified by their arc-path incidence vector P,. 

Throughout this dissertation, if indexed letters indicate 
variables or constants, such as P 4 3 , a(i), or f(y), then Pj, a, or 
F will be used to denote the vector of variables or constants. 
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1 if arc i is in path CI 

0 otherwise 

We will use h(Cj) or h(P^) to denote flow on path CI. H will be the 

vector of flows on all paths of G(N,A). 

The length of a path (or cost) is the sum of the lengths of 

all arcs in the path. Let Cj denote a path and C* denote the set of 

arcs in path Cj , then if J^(Cj) denotes the length of path Cj, 

« ( c , ) - t J A «< i ) • * % 

The length of a path in Figure 3 is defined as one minus the efficiency 

of the assignment represented in the path. If we refer to this as the 

inefficiency index of a particular man for a particular job, then a 

possible criterion for selecting an assignment of men to jobs is to 

select the assignment for which the most inefficient specific assignment 

is minimized. The problem, with this objective is the min-max path flow 

problem. This special case of the min-max path problem is called the 

bottleneck assignment problem; it has been solved by Gross (20). The 

simplicity of this special case of the min-max path problem is due to 

the fact that the graph is essentially a bipartite graph (if the 

fictitious source and sink nodes are dropped).* 

A directed bipartite graph is one in which the nodes can be 
divided into two disjoint sets, one with arcs only leaving and one with 
arcs only entering. 
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Network Flow Problems 

In this section we discuss three network flow problems which are 

related to the min-max path flow problem. The problems are the single 

commodity maximal flow problems, the general minimal cost maximum flow 

problem, and the multicommodity flow problem. 

Some additional notation is required. 

Notation 

Let G(N,A) be a network and let F be a function defined on A. 

Then 

f(N,y) = £ f(x,y) xeN 

f(x,n) = S f(x,y) xeN 

A(x) = (y | yeN, (x,y) e A) 

B(y) = (x | xeN, (x,y) e A) 

For any arc i e A, we let I(i) denote the initial node of arc i 

and T(i) denote the terminal node of arc i. 

Definition 

If G(N,A) is a directed network with single source s and single 

sink t, then D 5 A is a disconnecting set in G(N,A) with respect to s 

and t, if there exists no path from s to t in G(N,A - D), where A - D 

is the set of elements in A but not in D. 
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Definition 

A cut-set D £ A, with respect to s and t, is a minimal discon­

necting set of G(N,A), That is, it is a disconnecting set, no proper 

subset of which is a disconnecting set. 

Definition 

A minimum cut-set of G(N,A) is a cut-set, the sum of whose arc 

capacities is a minimum over all cut-sets. 

Definition 

An L-disconnecting set, D L, is a subset of A whose removal from 

A disconnects s from t along paths of length L or less. Minimum dis­

connecting sets and minimum L-disconnecting sets are analogous to 

minimum cut-sets. 

A key theorem in single-commodity network theory is that the 

maximum flow is equal to the capacity of the minimum cut-set. 

Network Flow 

Let G(N,A) be a network with source s and sink t. A node-arc 

flow on G(N,A) is a nonnegative real-valued function defined on A which 

satisfies the condition: 

!

v, x - s 
0, x / s 9t 

v, x - t 

f(x,y) ^ b(x,y), (x,y) e A 

The variable v is the net amount of flow passing through the network. 
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An arc-path flow on G(N,A) is a nonnegative real-valued function 

defined on C which satisfies the conditions: 

E h(C.)P, j * b(i), i e A 

There are two flow problems in network flow theory which appear 

to be closely related to the min-max path flow problem. These two 

problems, the maximum flow problem and the general minimal cost flow 

problem, will be formulated and then a formulation of the min-max path 

flow problem will be presented. 

If G(N,A) is a network with source s and sink t, the maximum flow 

problem can be written as: 

maximize: v 

Iv, x = s 

0, x ^ s,t (1) 

v, x - t 

0 s: f(x,y) < b(x,y),(x,y) e A 

The maximum value of v = v m a x is of course unique, but there may be more 

than one flow function f defined on A which yields this value. If there 

is associated with each arc, a cost, a(x,y), per unit of flow on the arc, 

then it may be desirable to determine that flow function for which the 

total flow value v is maximum and the total cost is a minimum. 

Let v = v m a x be the value of the maximum flow. Find F which will 
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minimize: F a(x,y)f(x,y) (2) 
(x,y)eA 

v , if x - s 
IN A X 

subject to: f(x,N) - f(N,x) - { 0 , if x £ s,t 

- V , I F X - t 
M A X ' 

0 < f(x,y) < b(x,y), (x,y) e A. 

The solution to this problem, then is the minimum cost maximum flow for 

the network. This problem is known in the literature as the general 

minimal cost flow problem. 

There is another class of network flow problems with which it 

will be of value to compare the min-max path flow problem. That problem 

is the multicommodity network problem. 

The multicommodity network is characterized by pairs of nodes 

(s^jt^), such thac flows originating at must terminate at , 

i = l,...,n. Let I = f1,2,...,nl. 

If we let f(i : x,y) denote the flow of commodity i on arc (x,y), 

then a multicommodity flow function on G(N,A) is a real-valued function 

defined on I x A which satisfies: 

f(i : x,y) >• 0, i e I , (x,y) e A ( 3 ) 
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S f ( i : x , y ) £ b ( x , y ) , (x ,y) e A 

f ( i : x,N) - f ( i : N , x ) = < 0, 

1 ,aax » i f x = t j , i e I n 

i f x = Sj 

i f x / Sj , t j 

0b1ective8 

The object ive of th i s research was to inves t igate and character ize 

as completely as possible the min-max path problem and to develop a compu­

t a t i o n a l l y f eas ib le algorithm to solve th i s problem. Since the min-max 

path flow problem w i l l be formulated as a mixed-integer programming 

problem, i t would be of interest to invest igate the development of a 

solut ion algorithm based on the theory and methods of integer program­

ming. S p e c i f i c a l l y , i t might be useful to consider the approaches to 

solving the f ixed charge problem or other branch and bound approaches. 

In th i s research, however, we are r e s t r i c t i n g our at tent ion to a consid­

eration of the problem as a network flow problem. The ideal resul t would 

be to develop a formulation of the problem that would allow the so lut ion 

to be performed on the network as in the case with the maximum flow and 

minimum cost maximum flow problem. An intermediate l eve l of e f f i c i e n c y 

would be obtained i f the problem could be formulated as a l inear pro­

gramming problem which would require a simplex-based solut ion procedure. 

This research i s l imited to a consideration of single-commodity 

directed networks. The networks are assumed to be f i n i t e , and the arc 

lengths and capac i t i e s are assumed to be nonnegative in tegers . This 
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could be relaxed to allow rat ional capac i t i e s and arc lengths; and 

negative arc lengths could be allowed i f we require that there be no 

negative directed c y c l e s . 

L i terature Survey 

While the l i t era ture on network flow theory i s quite extensive , 

no s p e c i f i c mention of the min-max path problem has been found. As 

mentioned e a r l i e r , Gross (20) has developed an algorithm for solving 

the problem in the specia l case that the network i s b i p a r t i t e and 

a l l arc capac i t i e s are un i ty . 

Hammer (22) has developed a procedure for solving the analagous 

problem for a standard transportation s i t u a t i o n . The mathematical 

formulation of th i s problem i s : 

minimize: t 0 

F 

N 
subject to : - £ f . = a , , i = l , . . . , m 

i = l 1 3 1 

N 
S fl 3 = bJ » J = 1 » • • • » n 

i = l 

t 0 > t j j , V t j j such that f t 4 > 0 

f u ;> 0. 

AI represents the a v a i l a b i l i t y at warehouse i , bj i s the demand a 

dest inat ion j , and f t . i s the amount of the resource that i s to be 
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shipped from warehouse i to destination j. The constant tti denotes 

the time required to ship any amount from i to j. 

The solution computations for both of these problems are carried 

out on a modified form of the standard assignment and transportation 

tableau, respectively. 

No way of extending the solution procedure for these two prob­

lems to solve the min-max path flow problem is apparent. 

Motivation and Relevance of This Research 

In addition to the two problems mentioned earlier, the need for 

a solution to this problem arises in several network flow problems, 

especially those which represent scheduling problems. However, the 

original problem which motivated this proposed research will be 

described first and other potential applications will then be discussed. 

Strategic Transportation Problem 

Suppose there are located at M sources, various amounts of a 

product. This cargo must be moved to intermediate loading points, loaded 

on carriers and then moved to some third point. The source might be 

inland marine bases, the cargo might be troops and equipment, the 

loading points could be ports, the carriers could be ships, and the 

sink could be some overseas port or beach. The problem, then, is to 

assign the cargo to loading points, assign the carriers to the loading 

points and schedule them through the loading points to on-load their 

cargo, and allow them to proceed to the objective area. The criterion 

for selecting an assignment and schedule is the minimum overall comple­

tion time. 
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The loading time of the carriers is taken as the unit of time 

(all have the same loading time). Port capacities are specified as 

the number of carriers that can be loaded per unit of time. It is 

assumed that all carriers have the same cargo capacity and the unit of 

cargo volume is taken as this capacity. It is arbitrarily assumed here 

that there are sufficient carriers to meet the demand for cargo 

capacity and the total amount of cargo at the bases must all be assigned 

to some port. Each ship will be assigned to only one port. 

At the time of an operation, the ships will procede to their 

assigned ports and move into a loading berth in assigned sequence. 

Once each ship gains access to a loading berth it will take on cargo 

that has arrived at the port. Obviously the critical portion of 

this operation is the sequence in which the ships assigned to a given 

port are allowed to on-load cargo. Hence the decision variables in 

this problem are the ports to which the ships are assigned and the 

sequence in which the ships load at the port. The uncontrollable 

variables whose values will determine the best values of the decision 

variables are the time required for each ship to reach each of the 

ports, the time required for each ship to reach the objective area 

from each of the ports, the capacity of each port, and the time re­

quired to move the cargo from each base to each port and the amount 

of cargo at each base. 

In most cases, the availability of cargo at the ports is not 

the problem. If we disregard that part of the problem, then the re­

maining part is a min-max path flow problem. 
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This problem arises quite frequently in s t ra teg i c transportat ion 

problems. 

A Dis tr ibut ion System for Perishable Goods 

The min-max path problem has appl icat ion in cer ta in transporta­

t ion problems such as the one discussed here. 

Suppose a d i s tr ibuter of perishable goods has a set of main d i s ­

tr ibut ion centers , a set of regional d i s t r ibut ion centers which may a lso 

serve as r e t a i l o u t l e t s , and a set of l oca l r e t a i l o u t l e t s . The d i s t r i ­

bution system can be represented by a network in which the d i s t r ibut ion 

centers and r e t a i l out le t s are nodes and the transportat ion l inks 

between the points are represented by a r c s . The objec t ive i s to s a t i s f y 

a l l demands while minimizing the del ivery time of las t unit de l ivered. 

We provide one f i n a l example to show the wide-ranging f i e l d of 

problems to which th i s work appl ies . 

A Communications Network 

Consider a communication network such as i s described in (25). 

The network cons i s t s of a set of source nodes and a set of sink nodes. 

The communication l ink between each pair of nodes has a cer ta in capaci ty 

in terms of the number of simultaneous messages that can be transmitted 

over the l ink represented by the arc between the nodes. 

I f , as considered by J a r v i s (25), the r e l i a b i l i t y of a message 

transmission decreases as the number of l inks over which the message 

travels increases , then i t would be of interest to determine the routing 

of messages, that i s the flow, so that the longest communication chain 

i s minimized. In order words, in a s i tua t ion in which the network would 

be saturated, that i s maximum flow i s desired, how should the message 
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be routed so that the maximum flow is achieved and the reliability of 

the least reliable message is maximized, i.e., the number of arcs in 

the longest path is a minimum. 

Another problem would be to let the arc cost represent the time 

required for a message to transverse the arc and then determine the flow 

such that the time required for the last message to reach its destina­

tion is minimized. 

Results 

In Chapter II a network based mathematical formulation of the 

min-max path flow problem is given. The structure of the problem is 

examined in comparison with the maximum flow and minimum cost maximum 

flow problems and multicommodity flow problem. 

The most important result, which helps set the computational 

structure in perspective, is the fact that the min-max path problem 

may not always have an all-integer optimal solution. In this regard, 

the problem is in the same class as the multieommodity flow problems 

as contrasted with the single commodity minimum cost maximum flow problem. 

In Chapters III and IV two distinct approaches to the problem 

are formulated. In Chapter III a primal-type algorithm is developed. 

The algorithm solves the maximum flow problem and then uses a con­

strained shortest path problem to generate paths which tend to drive 

the longest path from the basis. A maximum flow algorithm is used to 

obtain the initial basic feasible solution. The solution proceeds 

from there in a revised simplex mode on the arc-path formulation of 

the problem. The dynamic programming algorithm used to solve the 

constrained shortest path is as efficient as algorithms for computing 
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shortest paths between a l l pairs of nodes of a network. 

In Chapter IV a dual type algorithm i s presented. The algorithm 

solves the min-max path problem by solving a sequence of bundle con­

strained maximum flow problems on a sequence of modified networks u n t i l 

the maximum flow equals the required flow on the or ig ina l network. The 

de f in i t i on of bundle-constrained maximum flow problems i s delayed u n t i l 

Chapter I V . 
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CHAPTER II 

CHARACTERIZATION OF THE 

MIN-MAX PATH FLOW PROBLEM 

In Chapter I we discussed the maximum flow problem and related 

network flow problems. 

In the maximal flow problem, there may be many flow functions 

which will produce the optimal flow into the sink. Any one of these 

is an acceptable solution. In the general minimal cost flow problem, 

the objective is to select from among the flow functions which achieve 

the maximal total flow, the one which has the minimum total cost. In 

the min-max path problem which will now be formulated, the objective 

is to select from among those flows which produce the maximum flow, 

that function for which the most expensive path with positive flow 

has minimum cost (length). 

After deriving the mathematical formulation of the min-max path 

flow problem we investigate the structure of the problem and compare 

it with other network flow problems. This provides some insight 

into the general level of computational efficiency we can expect 

to achieve in an algorithm for solving the min-max path problem as 

compared with other network flow algorithms. 

Several approaches to develop an algorithm were investigated 

before it was decided to develop completely two algorithms, one a 

primal type algorithm and the other a dual type algorithm. These 
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1 i f arc i i s in path C 

0 otherwise , 

The problem then i s to determine the flow H which w i l l 

minimize: L° 

subject to: 2 P t j h (Cj) <. b ( i ) , i e A 

h ( c p :> 0, Cj e U 

S h C c p ^ v B a x 

L° £ a 'P .6 , 

M6j ^ h (Cj ) 

6j - 0,1 

approaches are discussed b r i e f l y in this chapter. We conclude the 

chapter by b r i e f l y describing the two algorithms that are developed 

in Chapters I I I and I V . 

Formulation of the Min-Max Path Problem 

Let P = ( P j j ) be the arc-path incidence matrix for the network 

G(N,A) 
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Table 1T Path Enumeration 

I d e n t i f i c a t i o n 
Sequence of 

Nodes 
Length 

Ci s, 1, 4, 5, t 6 

c 3 s, 3, 6, t 12 

c 3 s, 1, 2, 5, t 9 

c 4 s, 3, 4, 5, 6, t 11 

c 5 y s, 1, 2, 5, 6, t 11 

c 6 s, 1, 4, 5, 6, t 8 

c 7 s, 3, 4, 5, t 9 

The object ive is to be minimized over a l l H which y i e ld the maximum flow 

through the network. M i s selected greater than v B a x . 

Comparison with Other Problems 

In a previous sect ion, three network problems were discussed, the 

maximum flow prpblem, the general minimal cost flow problem and the min-

max path problem. 

Figure 4 is an example network. Table 1 i s an enumeration of 

a l l paths in the network from the source to the sink. For purposes of 

comparison we give the minimum cost maximal flow in arc-path form in 

Table 2 and the min-max path flow solut ion in Table 3. 

The maximum flow in the network is two u n i t s . The minimum cost 

solut ion has a t o t a l cost of 18 and the longest path in th is so lut ion i s 

path C 2 whose length is 12. Table 3 gives the min-max path so lut ion . 
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Figure 4. Example Network 



Table 2. Minimum Cost Solut ion 

Path Flow Length 

Ci 1 6 

c 2 
1 12 

Table 3. Min-Max Path So lut ion 

Path Flow Length 

c 3 1 9 

c 4 1 11 
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The min-max path solution (with flow of two units) has a cost of 

20, but the longest path is path C 4 of length 11. 

Fractional Solutions 

A natural question arises for any network flow problem concerning 

the existence of an integer optimal solution. The answer to this ques­

tion gives us a clue as to the level of efficiency we might expect to 

be able to achieve in a solution algorithm. For if, as is the case 

with the maximum flow (1.1) and the minimum cost maximum flow (1.2) 

problems, all basic solutions are all-integer, then one should be able 

to devise a solution scheme for progressing through the extreme points 

of the convex solution space by using only additions and subtractions. 

This fact is what allows the solution of these two problems to be 

carried out very efficiently on the network. 

The characteristic of problems (1.1) and (1.2), of having all-

integer extreme points depends of course on the constraint matrix. 

These matrices have the unimodular property. 

Definition 

An m X n matrix A is said to be unimodular if the determinant 

of every m x m sub-matrix of A has value ±1, or 0. 

Remark 1 

A convex set S, defined by 

S = { X | A X = b ] 

where b is an all-integer vector, has all integer extreme points if A 
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is unimodular. A proof of this is given by Hu(23). 

A simple example is sufficient to show the following remark 

(see for example, the minimum cost flow example in Chapter III of (12)). 

Remark 2 

The network arc-path incidence matrix is not unimodular. 

Multicommodity flow problems do not in general have all-integer 

optimal solutions. Much research has been conducted on the structure 

of multicommodity flow problems. However, to date all computational 

algorithms use a combination of graph theoretic and algebraic methods. 

The algebraic portions are of the revised simplex, decomposition type, 

with graph theoretic methods used to generate non-basic columns which 

are candidates to enter the basis. 

Hu (23) provides the most complete discussion of multicommodity 

flow problems. Jewell (28), Sakarovitch (41) and Saigal (39) report 

research on solution procedures they have developed. To date, the only 

multicommodity case for which a combinatorial solution procedure has 

been developed is the two-commodity algorithm of Rothschild and 

Whinston (38). 

Tomlin (44) formulates the minimum-cost multicommodity flow 

problem in node-arc form and in arc-path form. Jarvis (26) shows that 

the computations involved in the two cases are identical. Thus, it 

appears that the inherent structure of the multicommodity flow problem 

forces one to deal with flow on paths rather than flow on arcs. 

In the early stages of this research a conjecture was made con­

cerning the existence of an all-int;eger solution to the min-max path 

flow problem. Later, an analogous conjecture was found in Sakarovitch's 
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paper dealing with the a l l integer solut ions to multicommodity flow 

problems (41). 

Conjecture 

Let v be the maximum flow on G(N,A) and le t C 0 c C be a sub-

set of the paths in G(N,A) from s to t . Then i f there e x i s t s a flow 

function H defined on C 0 such that 

v = "cf h ( C l > = V b * x ' 

then there ex i s t s an a l l - i n t e g e r flow function HQ s a t i s f y i n g the same 

condit ion. 

This conjecture has i n t u i t i v e appeal s ince any flow which 

s a t i s f i e s th i s condition i s an a l ternate optimal solut ion to the maxi­

mum flow problem, which has a l l a l l - i n t e g e r extreme points . The problem 

which arises however, i s that we have introduced addit ional zerp-one 

variables and addit ional constraints which destroy the unimodular prop­

erty of the or ig ina l constraint se t . 

An example from Sakarovitch's paper i s a counter-example to th i s 

con je c t i ve . I t can also be modified to show that the min-max path flow 

problem may not have an a l l - i n t e g e r so lut ion . 

Figure 5 i s the example network. The optimal so lut ion i s given 

in Table 4; a l l arc capac i t i e s and arc lengths are given on the network. 

We sha l l l e t L*(G,N) or just L * denote the length of the longest path 

Sakarovitch expresses the corresponding concept for mult i 
commodity flows as "gapless" multicommodity networks. 
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Figure 5. Network With Fract ional Min-Max Flow 

Table 4. Min-Max Path Flow Solut ion 

Path (Nodes) Length Flow 

s ,1 ,5 ,6 ,10 ,13 , t 

8 , 2 , 1 , 5 , 9 , t 

s , 2 , l , 6 , 1 0 , 9 , t 

s , 4 , 8 , 7 , l l , 1 3 , t 

s ,3 ,4 ,8 ,12 , t 

s ,3 ,7 ,11,12, t 

25 

14 

14 

25 

14 

14 
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in the optimal solution to the min-max path flow problem. For the given 

network, L* =25. By enumerating all paths in the network we could see 

that there is no all-integer solution to the maximum flow problem on 

paths of length 25 or less. 

Sakarovitch shows that a sufficient condition for a multi-

commodity network to be gapless and all-integer is that it be completely 

planar.* With respect to the min-max path flow problem we can make 

the following remark. 

Remark 3 

For the min-max path flow on a directed network to be a11-integer 

it is neither necessary nor sufficient for the network to be planar. 

The example of Figure 5 is a planar network when arc (s,t) is 

included but it does not have an all-integer solution, on the other 

hand, both the bottleneck assignment network and the time-minimizing 

transportation networks are non-planar. Both always have all-integer 

solutions. 

Contained in the min-max path flow problem is the problem of find­

ing the min-max path decomposition of a given flow on a network G ( N , A ) . 

D. R. Fulkerson suggested in a private communication (16) a 

necessary condition for the min-max path decomposition to have longest 

path less than or equal to L. Let F be a node-arc flow defined on 

G ( N , A ) . Let ^ C A be defined: A, = {(x,y) | f(x,y) > 0,(x,y) e A ) . 

* A planar network is a network, including an arc from the source 
to the sink, that can be drawn on a plane in such a way that no two edges 
intersect except at their endpoints. A multicommodity network is 
completely planar if it is planar when all source-sink pairs are connected 
including the super source and super sink. 
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Let C1- be the set of all paths in G(N,A) from s to t of length L or less. 

Definition: 

The set of paths T5L is said to cover A1 if (x,y) e A implies that 

there exists a path Cj s C 1 which contains (x,y). 

Fulkerson's suggestion was that a necessary condition for the 

min-max path decomposition of F to have maximum path length less than 

or equal to L is that C 1 cover Â^ . 

The following example shows that this is not a sufficient con­

dition. In Figure 6 all arcs have a flow of one unit. 

The numbers adjacent to the arcs are arc lengths. Inspection 

shows that all flows can be covered by paths of length six. However, 

there is no path decomposition utilizing only paths of length six or 

less. 

Approaches to Algorithm Development 

Geoffrion (19) presents a thorough discussion of the solution of 

large scale linear programming problems. He classifies efforts in 

problem solving or more generally, algorithm development into one of 

two groups, search strategies or problem manipulation. Search strategies 

of course, are procedures for moving from one solution to a better one; 

problem manipulation is essentially attempts to formulate the problem 

in the most advantageous way for solution efficiency. Generally speaking, 

one considers both the proper problem formulation and the most efficient 

search strategies when developing a solution algorithm. 

We must consider the selection of search strategies and the problem 

formulation simultaneously since it is possible to formulate the problem 
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Figure 6 . Network With Covered Flows 
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in the most natural way only to find out that the best search s trategy 

for that formulation i s very i n e f f i c i n e t . Such i s the case, for the 

min-max path flow problem. The most natural formulation i s the integer-

l inear programming formulation; however, so lut ion algorithms for such 

problems are i n e f f i c i e n t as compared to those for l inear programming 

problems. Thus, we w i l l mention two formulations of the problem which 

w i l l be invest igated from the network theory viewpoint. 

Speaking in terms of the solut ion set over which we w i l l be 

searching, we can consider two broad approaches to the formulation of 

the min-max path flow problem. The f^rst w i l l be a dual type formula­

t ion , while the second w i l l be a primal type formulation. 

Dual Approach 

Begin with L = 1 and find the maximal flow in G(N,A) on paths 

of length )L or l e s s . Increment L by pne unit and continue u n t i l the 

maximum flow on paths of length 1̂  or less i s equal to the maximum flow 

J.n the network. 

Primal Approach 

Find the maximum flow on G(N,A) in arc-path form. Search over 

the set of maximum fl,ows for the flow function whose longest path i s 

minimized. 

The f i r s t thing that comes to mind in regard to £he dual approach 

i s to generate a l l paths of length L or less for some spec i f ied value of 

L > 1, and solve the obvious l inear programming problem to maximize the 

flow on these paths. There are two drawbacks to th i s approach. F i r s t , 

the problem of generating a l l paths of lengthy L or less is i n e f f i c i e n t 

when oply a few of them w i l l be in the so lut ion . Second, a great deal 
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of computer storage will be required. External storage will be required 

and this storage must be accessed very frequently in the simplex procedure. 

The time required for this access will dominate the actual computation 

time. 

In Chapter IV a formulation is presented along with a solution 

algorithm in which all paths of length L or less are represented 

implicitly in a modified network while paths of length greater than L 

are not in the network. While external storage will likely be required 

for certain information, it will be the type which is required at most 

L* times and quite likely much less often. 

During the course of this research, various primal approaches 

were considered. The first one was based on the idea of attaching a 

penalty to the arcs in the current longest path in an effort to force 

it out of the solution. The minimum cost maximum flow problem is 

solved. After decomposing the flow into arc-path form it is possible 

to attach penalties to increase the cost of certain arcs so that the 

current solution is no longer the minimum cost solution. It was felt 

that possibly this would ultimately force the longest path out of the 

solution. 

An example problem was found for which the optimal min-max path 

solution could not be found in this way. After later discovering that 

the min-max path flow problem did not have all-integer optimal solutions, 

the existence of such an example was proved. Since the above approach 

attempts to solve the problem by solving a sequence of minimum cost flow 

problems and such problems always have all-integer solutions, it follows 
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that there ex i s t s no such sequence, for problems that do not have a l l -

integer min-max path so lut ions . 

In Chapter I I I we present an algorithm for removing flow on the 

current longest path i f i t i s possible to do so while maintaining the 

maximum flow. 
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CHAPTER III 

A PRIMAL ALGORITHM FOR SOLVING THE 

MIN-MAX PATH FLOW PROBLEM 

In this chapter we present a primal algorithm for solving the min-

max path problem. The problem was initially presented as having a primary 

and a secondary objective function; the primary objective being to max­

imize the flow and the secondary objective being to minimize the length 

of the longest path assigned positive flow. 

Ford and Fulkerson's algorithm can be used to determine the optimal 

value of the flow, v x. With this knowledge, the primary objective func­

tion can be written as a constraint on the problem. Thus we have the 

problem 

minimize: L 

subject to: L > §^ A'Pj j =» l,...,,n 

n 

> V m a x 

j=l 

PX £ b 

X ^ 0 , 
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where 

1, if Xj > 0 
6 i = i . 

V 0, otherwise, 

X = fx ,x ,...,x 1 ' and x denotes the flow on path i. Thus n is the 
— L 1 ' 3 ' ' II-1 ' I 

cardinality of the set of all paths in G(N,A) from the source to the sink. 

P is the arc-path incidence matrix and b is the vector of arc capacities. 

Suppose we have a feasible solution. Then it follows from the 

nature of the objective function and the first n constraints that an 

improved solution can only be obtained by reducing to zero the flow x^ 

on all paths P̂j for which the corresponding constraint of this set is 

binding. Note that the general constraint of this set is 

L > *j • i% • 

if path Pj is assigned positive flow. Thus, the j T H constraint of this 

set will be binding if the j T H path has length L and has x^ positive. 

The algorithm presented in this chapter is based on the concept 

of finding non-basic paths to introduce into the basis which will tend 

to reduce the flow on those paths corresponding to these binding con­

straints while at the same time not introducing flow on longer paths. 

Reducing Flow on the Longest Path 

Consider the min-max path problem. A feasible solution can be 

obtained by solving the maximum flow problem on the network. Let us 
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consider the maximum flow problem formulated in arc-path form. 

Maximize: v = x 1 + x 2 + « - - x n (1) 

Subj to: PX £ b 

X £ 0. 

Let us suppose that we have an optimal solution to this problem 

and the basis is denoted by B . Suppose v m a x denotes the value of the 

flow. 

Let I B = {j | Pj e {B}}« if j i s greater than n, the total number 

of paths in G(N,A), then Pj is a slack path, or slack vector. 

Let 

Lg =» maximum [a'Pj } 

X j > 0 . 

Then 1̂  is the length of the longest path which carries positive 

flow in the current solution. 

We show in the appendix that we can obtain an initial feasible 

basis which will not contain any paths P^, such that X j = 0. At sub­

sequent iterations we will maintain a basis which contains no paths of 

: _~ ^ . 
The solution to this problem can be obtained by the Ford-Fulkerson 

algorithm. This algorithm produces a node-arc flow. However, a path de­
composition procedure can be used to obtain an arc-path equivalent flow. 
An algorithm is given in the appendix. 
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length greater than 1̂  , except those which cannot be in an adjacent solu­

tion at a positive level. Two basic solutions are said to be adjacent 

if they differ by precisely one vector. Thus, if a path Pj of length 

greater than L0 is in the basis at the zero level and one pivot could 

not increase it above zero, then it is left in the bases. Otherwise it 

must be removed before we continue. Later we shall introduce the term 

pure basis and show how it implements the above requirement. 

The min-max path flow problem can be thought of then in terms 

of minimizing L . 
B 

LEMMA 1 

The value of the optimal min-max path flow on a given network 

G(N,A) is equal to Lg if and only if B is an optimal basic solution 

to (1) and there does not exist an optimal set of basic paths B'such 

that, 

L / < L 
B B 

Proof. This follows from the definition of 1̂  and the definition 

of the value of the min-max path flow on G(N,A). 

We require some additional notation before we formulate a problem 

which will allow us to determine whether such a basis B 7 exists or not. 

Notation 

IL = {j e I B | a'Pj < L } 

I >= {j e I | a'p, = L } 
L B """ B 



J L = [j I j i I B and a'P. < 1̂  } 

J L ' = U I J * ̂  a n d
 I'll * h J * 

It follows from Lemma 1, that to obtain a solution better than 

the current solution to the min-max path problem it i s necessary to be 

able to find an optimal basis B'which does not contain paths of the set 

I L ' or for which the flow on such paths is zero, while at the same time 

no path longer than 1^-1 belongs to the basis B ;. 

Remark 1 

To determine whether there exists a solution to the maximum flow 

problem with: 

Lg / <, L B - 1 , 

it is only necessary to seek a solution to the following problem: 

N 

Minimize: E 6 I X

T

 = Z 

i=l 

Subject to: PX <, b 

N 

J . — J . 

X > 0. 
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The coe f f i c i en t 6 t i s defined as fo l lows, with R > 0 to be spec i f ied later: 

( R, i f i e JL / 

1, i f X e I L 

^ 0, otherwise 

Remark 2 

I f the optimal solut ion to (2J has Z * - 0, then th is so lut ion has 

a min-max path value of 

and hence i s a better so lut ion to the min-max path flow problem. I f Z 

i s pos i t i ve , then the previous solution was optimal and the min-max path 

flow has the length of i t s longest path 1̂  . 

The optimal solut ion to (1) i s of course a f eas ib l e solut ion to 

(2) . Finding the optimal solut ion to (2) w i l l e ither drive the current 

longest paths out of the basis or reduce their flow to zero, or w i l l 

reveal that they cannot be driven from the bas i s . 

We cap reformulate problem (2) as fol lows: 

minimize: E 5 , x , - p £ x. s z ' (2 ) 
i-1 1 1 i = l 

subject to: PX ^ b 

X £ 0 , 

with p > 0 . 



44 

Since we are interested in determining whether (2) has an optimal 

so lut ion with z • 0, the fol lowing lemma provides a s u f f i c i e n t statement 

of equivalence between problems (2) and ( 2 ' ) . 

Lemma 2 

The optimal solut ion to (2) has z * • - 0 i f and only i f the optimal 

solut ion to (2') has z ' * * - p v B f t 3 t . 

Proof. Suppose (2') has a solut ion X * with z * • 0. This implies that 

jS j . « i x t - o 

and 

* 

This solut ion i s a f eas ib le so lut ion to (2') with 

* z ' * * - p v a a x 

n n 

But s ince £ 6 I x 1 i s bounded below by zero, and -p 2 x i s bounded 
1 * 1 i = l 1 

below by - p v B a x , 

/ * 
2 * - P v a . x 

=» z ' * 
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I t follows that X* i s an optimal solut ion to (2*) . 

Since the dimension of the solut ion space i s greater for problem 

(2) than ( 2 ' ) , th i s may not be a basic solut ion but from the theory of 

the simplex method (18), a basic optimal so lut ion e x i s t s . 

Suppose (2') has an optimal so lut ion with z ' * * ~ P V B l l x , then^ 

that solut ion must have 

and 

£ 6 4 x t * = 0 . 
i « l 

This follows from the fac t that 

S 6 ,x s * 0 

and . 

-P S x 4 ^ - p v B „ . 

Thus X* i s an optimal solut ion to (2). 

The object ive function can be rewritten as 



z = £ (6 t - p)xt 

After substituting the appropriate expressions for 8j we have: 

Z = £ (R - p)xk + £ (1 - p)xk + 
k e J L / keIL / 

£ (-P)xk + £ ("P)xk . 
kel keJ 

L L 

If we order the basic vectors with those of length le first, 

those of length less than 1̂  next, and the slack paths last, then 

C_|2 ^ has the form 

c/ 2'' = [ { ( 1 - P)} : {(-P)}:: { 0 } ] . 

Since (1) and (2') have the same constraint set, and we are dealing with 

the same set of basic columns, B, in each problem, B" 1 is the same for 

both (1) and ( 2 7 ) . 

If we let rr denote the vector of dual variables for the current 

basic feasible solution to (1) , and let p denote the vector of dual 

variables of problem (2 7 ) with respect to this same basic feasible solu­

tion to ( 2 ' ) , then 

TT = ( 1 , 1 , . . . , 1 , 0 , 0 , . . . , 0)B~ 1 
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p = e (i - p ) ^ 1 + e ( - p ) b ; 1 

= e b ; 1 - P ( s b ; 1 + e b ; 1 ) 

p = E B ; 1 - pn 

We now state and prove a theorem which provides a set of necessary 

and sufficient conditions for a vector (path) Pj to be a candidate to 

enter the basis for problem (2')« 

Theorem 1 

A path Pj is a candidate to enter the basis of problem (1) (in 

the sense that its relative cost coefficient with respect to problem 

(2') is less than zero), if and only if it satisfies the following three 

conditions: 

2 By1 Is* > 0 <3> 
I, ' 

T T P.* * 1 (4) 

a'Pj* £ I* -1 . (5) 

Proof. We first show that if conditions (3) - (5) are satisfied 

by a vector Pj*> then it is a candidate to enter the basis in problem (2'). 

If 



a'P.* ^ LB - 1 , 

then Cj* ) = - P - From (4), we see that 

T T P 3 * - 1 ^ 0 , 

and for p > 0, 

P(TTPJ* - 1) £ 0 

-PTTPJ,V ^ ~P 

From (3), we have 

2 B ^ P ^ > 0 
k e V 

Thus, 

Z j * 0 = p P j * = S B ^ P . * - PTTPJ* > -P = C j * } 

keI L / 

It follows then that 

( 2 ' ) ( 2 0 
C j * - z . ^ < 0 . 

48 

Thus P . * is a candidate to enter the basis of (2'). 
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We now show that if P ^ is a candidate to enter the basis of (2'), 

then it satisfies conditions (3) - (5). 

Gass (18) shows that in solving a linear programming problem by 

the simplex method it is sufficient to consider only vectors Pj such 

that Cj - Z j < 0. We want to show then that a vector P j * which satisfies 

(2') (2') 
Cj * - Z j * < 0 , 

satisfies conditions (3) - (5). 

Consider 

c\l } - z\lf) = 6/* - P + (pn - E B ^ P j * , 
keI L / 

where 

I R, if j* e J L' 

1, if j* e I L/ 

0, otherwise 

Collecting terms we have, 

c\ln
 - z\l^ = P ( T T P J * " 1) - ( 2 B J 1 ) ! . * + 6/* . 

k GI L / 

Since we have an optimal solution to (1), we can assume that for paths 

of length 1̂  - 1 or less, 
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< 0 

If at some stage this does not hold then we can introduce the corre­

sponding vectors into the basis. If the solution is optimal and such 

a vector exists, it must come into the basis at the zero level, other­

wise the pivot operation would result in an increase in the value of 

the objective function. This would contradict the assumption of 

optimality. It will be shown that paths of length 1̂  - 1 or more are 

not candidates to enter the basis in any event. 

If 

1 - rrP,* £ 0 

then 

- 1 > 0 

and 

P ( T T P J - I) > 0 . 

Since 6' is also non-negative, we conclude 

< 0 
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P(nP.*-l) - ( S BJ1 )£.*+6,' < 0 
keIL ' 

( S B f 1 ) ^ * - L> ^ 0 ' 
keIL ' 

Hence condition (3) is satisfied. 

From (2') we see that 

R ( 3 ' ) - « / - P -

/ R - p, if a'Pj* £ LE 

"P otherwise 

If 

then 

V / } - z\lf) - R - P - ( 2 ^ 1 ) P J * + PTTP j * . 
K E L U ' 

We shall show later in this chapter that we can insure, for sufficiently 

large (finite) p, that 

-(2 B J 1 ) ^ * +PTTP.* >0 , for all j 
keIL ' 

Hence, if we select R, such that 
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R - p ;> ( S B ^ 1 ) P j * - p t t P j * = I] 
keI L ' 

then 

_ ( 2 ') 7(s ') 

I f we choose R = p, then 

R - p = 0 > Tl 

since 

Tl < 0 . 

I t follows that no path of length greater than or equal to Lg i s a 

candidate to enter tfye basis for problem ( 2 ' ) . Thus, in searching for 

a path to enter the bas i s , we can r e s t r i c t our search to paths of 

length Lg - 1 or less .This , i s condition (5) . 

Again consider 

k e I L ' 

Since we have only to consider non-basic paths of length L B - 1 or l e s s , 

we have 6,' = 0. Thus we have 
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k e I L ' 

For a given P j , the second term on the r ight i s f i x e d . By 

Lemma 2, p can be chosen a r b i t r a r i l y large . I t follows that P(TTPJ - 1) 

dominates the expression i f i t i s not zero. Hence p can be chosen large 

enough so that 

T T P J * > 1 

=» P f r l j * -1 ) > ( E B ^ X P J * 

We conclude that p can be selected large enough that no vector P j , such 

that 

T T P J * > 1 , 

w i l l have a negative r e l a t i v e cost c o e f f i c i e n t and i t i s not necessary 

to bring such vectors into the bas i s . Thus, condition (4) holds . 

Column Generation 

We now consider the problem of f inding vectors Pj which s a t i s f y 

conditions (3) - (5) . I f 

a ' l j < I * > 

then 



C j 2 0 - Z ( j 2 , ) = -p + (pir - 2 B - 1 ) ^ . 

The path Pj is a candidate to enter the basis then if 

-p + (pir - S B^ 1) Pj < 0 . 
keI L ' 

The problem of finding a vector to enter the basis can be expressed as 

the discrete programming problem: 

minimize: (pir - S B^ 1))^ 

subject to: a'Xj ^ Lg - 1 

Xj is a simple path in G(N,A) from s to t. 

If Xj„v is the optimal solution to this problem and 

-p + (pn - E B J 1 ) ^ * < 0, 
k €I L ' 

then bringing Pj* = Xj* into the basis in problem (2 X) will tend to 

improve the value of the objective function. In other words, bringing 

Pj* into the basis of problem (1) will tend to reduce the net flow on 

the set of longest paths in the basis. We have proved the following 

theorem which provides a necessary and sufficient condition for the 

existence of such a path. 
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Theorem 2 

A path Pj exists which satisfies the conditions (3) , (4), and 

(5) if and only if problem (6) has a solution Xj# for which 

-p + (pn - S B " 1 ) ^ * < 0. 
Ii / 

The conditions (3) , (4) and (5) can be seen intuitively by con­

sidering the current solution to problem (1) . Since this solution is 

assumed to be optimal to (1) , we have 

Continuing to let I L ' denote the set of paths in the basis whose lengths 

are greater than or equal to Lg, we see that if we find a non-basic path 

Pj,v such that 

2 P Ai* > 0 » 

where 

'ii* = B~ 1 P_ j * 

then, bringing P^v into the basis will tend to reduce the net flow on 

the set of longest paths. 

But since 
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we can write 

which is condition (3). 

In reducing the net flow on [P^jj 4eI L > , we do not want to reduce 

the total flow in the network since our primary objective is to maximize 

the flow. If PjV, is a non-basic vector, bringing it into the basis will 

not decrease the value of the objective function v below v„.„ if its 

relative cost coefficient is not negative, that is 

r ( i ) _ 7 ( i ) > o 

As indicated previously, 

c\V - i 

and 

Z ( 1 ) = T T P , 

Thus, this requirement can be expressed as 
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1 - T T P > 0 

or, 

This is condition (4). 

Finally, we do not want to replace P ^ with a path as long or 

longer than a ' P * = Lg , so that we have condition (5): 

As a result of Remark 1 and Theorems 1 and 2, we can outline a 

procedure for solving the min-max path flow problem. The two main com­

ponents of the algorithm are a maximum flow algorithm used to obtain an 

initial feasible solution and a constrained shortest path algorithm to 

find non-basic paths to introduce into the basis which will improve the 

value of the objective function. 

In broad terms the algorithm presented here takes the following 

form. 

a ' P j * * I * - 1 

1. Solve the maximum flow problem on G(N,A). 

2. Determine an arc-path decomposition of the maximum flow. 

3. Identify, from the set of basic paths with positive flow 

assigned, that subset of paths whose lengths are equal to that 

of the longest basic path with positive flow assigned. 
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4. Search for a non-basic path, shorter than the current 

longest chain, which, when introduced into the basis will tend 

to result in a net reduction of the flow assigned to the set 

of paths identified in step (3), while not introducing any flow 

on paths longer than the current longest path. 

5. Repeat steps (3) and (4) until no such path as described 

in step (4) exist. The current solution then is optimal. 

Step (1) can be carried out using Ford and Fulkerson's maximum 

flow algorithm. The path decomposition procedure is straight-forward 

and the one used here is given in Appendix A. It is shown that the 

set of paths obtained by the path decomposition algorithm, augmented 

by appropriate slack paths is a basis for problem (1). 

Step (4) of the algorithm will make use of B" 1. Following the 

identification of B in Step (2), B""1 can be computed by one of the 

known methods for computing the inverse of a sparse matrix (44). From 

then on, B""1 is updated in the usual revised simplex method. In 

Chapter V, we discuss another approach for obtaining the information 

needed from B""1 without actually computing the entire matrix. 

Based on the results of step (2), step (3) is obvious. Step (3) 

will be modified later to simplify step (4). This leaves step (4) which 

requires considerable elaboration. As indicated previously, step (4) 

can be carried out by finding the path in G(N,A) to 

minimize: (prr - Z B^ 1)}^ ( 6 ' ) 
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subject to: a'Xj ^ Lg - 1 

Xj is a path from s to t. 

Thus, the problem is that of finding the shortest path with respect to 

the arc numbers 

which is no longer than Lg - 1 with respect to arc numbers a. 

This problem is referred to as the constrained shortest path 

problem. Efficient shortest path and constrained shortest path 

algorithms require that arc numbers must be positive or at least there 

be no negative directed cycles. 

We can assume tt ^ 0, for if tTj < 0 for some i, the appropriate 

slack variable can be introduced in the basis. 

(PTT - S B;1) , 
keI L ' 

Since p is arbitrarily large, pick p such that: 

S Bj 
keIL ' 

P > for all tt, > 0 
TT 

from which it follows that 

(prr - 5 ,BkJ> * °> i f > °-
•L 
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Thus, a problem could arise only if there exists a directed cycle 

in G such that T T j = 0 on all arcs of the cycle, while: 

S > 0 

keI L' 

on some arc of the cycle. This can be avoided by adopting the following 

procedure: 

If the simplex multiplier T T j , corresponding to arc j is, T T J - 0, 

and £ Bkj > 0> introduce the slack path S t corresponding to a t, into 
keIL / 

basis. 

Lemma 4 and Theorem 3 which will shortly be stated and proved will 

establish the fact that this convention will eliminate the possibility of 

G(N,A) containing negative directed cycles with respect to the arc lengths 

of problem (6). In order to simplify the statements of Lemma 4 and 

Theorem 3, we adopt the following definition: an optimal basic set of 

p a t h s , B ? for problem ( 1 ) i s s a i d to be a pure b a s i s i f the following 

three conditions hold: 

(a) T T T £ 0 

(b) T T j — 0 =* S t e {JBj } 

(c) P, e { B ^ a ' P , <: , 

where {B t} denotes the set of columns of B. Condition (a) holds as a 

result of adjustments suggested previously. We can show that if, at some 
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stage, condition (c) does not hold for some path, then we can replace 

that path in the basis by a slack path. Consider a path Pr and suppose 

it is the r T H basic vector. Let P̂  be any non-basic path. Bringing Pj 

into the basis will tend to increase the flow on Pr only if 

< o . 

But 

and since 

P n s 0, for all i, 

some component of B" 1, say B ^ J must be positive. That is 

b ; J > o . 

It follows then that 

B 7 l st • B7l > 0 . 

and S t can be brought into the basis to replace P p. Since Pr is in 

the basis at the zero level, the new solution will remain optimal. 
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We can verify the possibility of always satisfying condition (b) 

by proving Lemma 3. 

Lemma 3 

Let B represent an optimal basis for (1) and Lq denote the length 

of the longest path in {Bj} which has positive flow assigned. Let I L ' 

denote the index set of longest paths in } and rr the vector of simplex 

multipliers corresponding to the current basis. If 

Z BT} > 0 , 
keI L/ ^ 

and 

TTjt = 0 , 

then the slack vector S t can be introduced into the basis and the result­

ing basis will be an optimal feasible basis for (1) also. 

Proof. It is well known from the theory of the simplex method that 

given an optimal basis B to a linear programming problem, an alternate 

optimal solution can be generated by bringing into the basis any non-

basic vector whose reduced price is zero. 

If rr is the vector of simplex multipliers corresponding to the 

current optimal basis, then 
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Zs, " C S J = TTSJ - 0 = n t = 0 

or 

Z S - C S = 0 

Thus Sj can be brought into the basis without changing the value of 

the objective function. Thus the resulting basis containing S t is an 

optimal basis. 

The fact that the solution remains basic, that is, the new set 

of vectors produced by bringing S t into the basis is independent,can be 

argued as follows. Since 

Z BjJ > 0 , 
k eI L ' 

* >0 

for some specific k e IL It follows that 

Bk"1S1 > 0 . 

If we apply the standard simplex rule for change of basis, the 

k T H basic variable will be a blocking variable. If no other variable 

reaches zero before x k reaches zero, then S t replaces in the basis. 

In any event, some current basic variable is driven to zero for a finite 
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value of . Gass (18) proves that if there exists a blocking variable 

in the basis with respect to S t and if x S j is increased until any one of 

the blocking variables becomes zero, then the resulting set of vectors 

is an independent set of vectors and hence correspond to an extreme point 

of the convex solution set. 

We conclude then that S t can be brought into the basis and the 

result is an alternate optimal basic feasible solution to (1). 

Q.E.D. 

Throughout the remainder of this chapter, when discussing a basic 

optimal solution to (1) we will assume that the basis satisfies condi­

tions (a), (b), and (c) just discussed and is hence a pure basis. The 

solution algorithm to be presented in this chapter will include necessary 

procedures to ensure that a current basis is transformed to a pure basis 

before it is used in the subsequent computations. 

We now return to a formal statement and proof of Lemma 4 and 

Theorem 3. 

Lemma 4 

Let B be an optimal pure basis for problem (1), and let rr be the 

corresponding vector of simplex multipliers. For a given arc i e A and 

any row B^ 1 of B" 1, 

S B^1 > 0 = > T T 4 > 0. 
keIL ' 

Proof. To prove this theorem, we prove the contrapositive of it, 

that is, 
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T T 1 = 0 => S B^1 = 0 for all k ^ i. 
k e I L / 

If T T j = 0, then Sj, the slack path i, is the basic vector with respect 

to arc . The i T H column of B is e t, where, as usual, e t is the column 

vector all of whose elements are zero except the i T H element and it is 

one. We can express the inverse of B as: 

B"1 = (Adjoint B ) / |B| 

B - 1 = ( c k i )7 |B| , 

C being the cofactor of element B I K . The value of C l k is determined 

by 

C l k = ( - D I + k K J 

where Mj is the (m-1) by (m-1) submatrix of B obtained by deleting row 

i and column k. 

It follows that 

= (c l k ) / |B| 

For k / i, 

K I - 0 



66 

since M l k i s obtained by delet ing row i and column k from B and row i 

i s the only row which has a non-zero element in column i . As a r e s u l t , 

for a l l k / i , 

Bfi1 = 0 > 

and 

However, since the basic path associated with arc i i s the s lack path 

i M L ' 

hence 

£ B k j = 0 . 
keI L / 

Q . E . D . 

To transform a given basis B into a pure basis we carry out the 

fol lowing s teps . 

a. I f < 0, introduce S t into the bas i s . 

b. I f P R E [ B J ] , a ' P R > I3 , then replace by a s lack 

path. 



c. Begin at •n1 and scan TT for T T J = 0. If ^ > 0, 

introduce S t into the basis. Return to TT-^ and begin the search again. 

Continue until n n is reached and no changes have been made on the 

current pass. The new basis is a pure basis. 

If we choose p such that 

p > E B^ 1 / T T j , 

i e I L / 

for all i such that T T J > 0, then 

p T T j " E BjJ > 0, for all i . 

ieIL / 

The value of p can be selected so that the lengths of all arcs, with 

respect to the arc numbers 

prii - E B ^ 
ieIL / 

are nonnegative. 

We can now state the following theorem: 

Theorem 3 

Let G'(N,A) be a network with arc numbers defined by 

d(i) = pri^ - E , 
ieIL / 

where B is a pure optimal basis for the maximum flow problem defined 

on G(N,A), and I L/ is the index set of a subset of the real paths in 

the basis. 



68 

Then there exists a real number p 0 such that for 

P ?- Po > 

there are no negative directed cycles in G'(N,A). 

Proof. Let 

P 0 = £ [T, B^ 1 / rr, } . 
iel[ / 
n 4>"0 

As indicated previously, then d(i) as defined in this theorem, is non-

negative for all arcs of the network and hence no negative directed 

cycles can exist. 

Q.E.D. 

The Constrained Shortest Path Problem 

In this section we prerent a dynamic programming algorithm to 

solve the constrained shortest path problem (6). As indicated, solving 

this problem will generate a candidate path to enter the basis of prob­

lem (2) or alternately, problem (1). 

Theorems 2 and 3 of the last section will be used to show that 

if we-maintain a pure basis to (1) at all times, the algorithm to be 

presented here will converge in a finite number of iterations. 

The dynamic programming algorithm presented here is a modifica­

tion of Saigal's algorithm for finding the shortest path through a 

network which passes through a specified number of nodes or no more than 
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a specified number of arcs (40). Joksch also presents a similar algo­

rithm for solving the constrained shortest path problem (30). Both 

algorithms are themselves based on Ford and Fulkerson's combinatorial 

algorithm for determining the shortest path in a network (12). 

Conceptually, the dynamic programming formulation of the problem 

can be viewed as follows. The stages of the problem correspond to 

discrete integral values of 4, the remaining length available with re­

spect to the arc numbers a. In other words, for a given node j, at 

stage 4, the remaining partial path to t must be of length 4 or less. 

The states of the system are the possible nodes in the network. The 

optimality question at each stage 4 is: if a unit of flow is currently 

at node j and the remaining path length available is 4, then what is 

the best node to move to next in order to minimize the cost of the path 

from j to t with respect to the arc numbers d. 

The calculations are carried out on the network and take the form 

of recursive labeling on each node of the network. At the 4 t h iteration 

of the labeling we calculate for each node j, the cheapest path of 

length 4 or less from j to t, given that the current label on all other 

nodes j' represents the cheapest path from j' to t whose length is 

4 ~ a(J>J /) o r less. The labeling begins at node t. At a given iteration 

we attempt to create a new label for every node. After every node has 

been considered we increase 4 to 4 + 1 and begin at node t again. The 

labeling procedure terminates after iteration 4 = L. If s has a label, 

then the labels can be traced back to t to obtain the path with minimum 

cost and hence minimum relative cost coefficient with respect to the 
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current basis for problem (2). We proceed in the normal simplex fashion 

depending upon whether this relative cost coefficient indicates optimality 

or not. 

If s was not labeled, the current solution is optimal. 

The labeling procedure proceeds as follows: 

1. Set & = L = minimum [a(i,t)}. 

(i,t)eA 

2. Label all nodes, (-,00,00). The first element, m ( j ) is the 

node from which the current node, j , was labeled, the second 

element, g ( j ) , is the distance associated with the current partial 

path from the node j to t and the third element, h ( j ) , is the 

cost associated with the current partial path from node j to t. 

3. Select an unscanned node j and let 

r ( j ) = { j ' e N | e A and g(j') + a ( j , j ' ) = £ } 

4. Compute 6 = minimum [h(j') + dCjjj'^oo} 

r ( j ) 

Let m ' ( j ) be any node j ' for which the minimum occurs if 6 < ». Other­

wise set m ' ( j ) = 0. 
5. If m ' ( j ) > 0, and 6 < h ( j ) , then set 

m ( j ) = m ' C j ) 

g ( j ) = i 

h ( j ) = 6. 
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6. Mark this node as scanned for iteration 4 and go to the 

next unscanned node. When all nodes have been scanned, if 4 < L, 

increase 4 to 4 + 1, mark all nodes unscanned and begin at node 

t again. If 4 = L, terminate. 

7. If there is a subset of arcs of zero length, then after 

all nodes have been scanned on a given iteration, repeatedly 

attempt to find improved labels on the nodes of this subset until 

a complete iteration through this subset generates no new labels. 

Return to step (3) with 4 = 4 + 1 . 

In solving the constrained shortest path problem we must make up 

to L - L complete iterations through the seven steps. It is not neces­

sary to completely scan one node before going to the next. Thus, we 

simply move through a list of arcs, checking each to determine whether 

it allows a better label on it's initial node. Each time we check an 

arc, it requires two additions and comparisons. The total computations 
A 

required then is on the order of 2(L - L)m, where m is the number of 

arcs in the network. 

If there is an arc between each pair of nodes, then m = n(n - 1), 

where n is the number of nodes. If L is the same order of magnitude as n, 

then the number of additions and comparisons is of the same order of 

magnitude as n 3. This compares with the computations required to deter­

mine the shortest path from s to all nodes of a network, n(n - 1)(n - 2) 

« n 3. 

We conclude then that the constrained shortest path procedure 

for generating paths to enter the basis in the path removal algorithm 
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is as efficient as column generating procedures for the multicommodity 

flow problems. 

Other modifications can also be made to further reduce the com­

putations required. For example, if we let 6}, denote the shortest path 

from s to t with respect to a, then there is no need to generate labels 

on node j at any iteration beyond i if 

I = Qfj = L - & i . 

No completion of such a partial path would satisfy the constraint. 

Recall also that we are solving the constrained shortest path 

problem to generate a path which satisfies conditions (3), (4), and 

(5). The computations are carried out in such a way that (4) and (5) 

are always satisfied. We can terminate the labeling procedure anytime 

s is labeled such that 

£ B ^ P . * > 0 . 

Example 

We shall use the network of Figure 4 to illustrate the calcula­

tions for solving the constrained shortest path problem. The network 

is given in Figure 7. The circled number adjacent to each arc is the 

flow on that arc with respect to maximum flow on the network. All arc 

capacities are one and the arc lengths are given on each arc. 

The minimum cost flow solution is given by one unit of flow on 

C 2 = { 1, 4, 8, 10} and one unit of flow on C 2 = {2, 6, 11}. We 



73 

Figure 7. Minimum Cost Flow 



consider C x and C 2 to be basic with respect to arcs one and two, 

respectively. The remainder of the basis consists of the appropriate 

slack paths. 

After two iterations we still have x1 = h(C 1) = 1, and X g = 

h(C 2) = 1, but we also have C 3 = {l, 3, 7, 10} and C 7 = [2, 5, 8, 10} 

in the basis with x 3 = x? = 0 . 

At this point we have: 

Lg = j>(C2) = 12 , 

L B - 1 = 11 , 

and 

1 0 0 0 0 0 0 1 0 -1 0 0 
1 1 0 0 0 0 0 0 0 -1 0 0 
0 0 1 0 0 0 0 1 0 -1 0 0 
-1 0 0 1 0 0 0 -1 0 -1 0 0 
1 0 0 0 1 0 0 0 0 -1 0 0 

-1 -1 0 0 0 1 0 0 0 -1 0 0 
0 0 0 0 0 0 1 1 0 -1 0 0 
-1 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 -1 0 1 0 0 
-1 -1 0 0 0 0 0 0 0 1 1 0 
1 1 0 0 0 0 0 0 0 0 0 1 

The last row of B" 1 

n = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 



Since the second basic path is the longest, we have 

B;1 = (1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0) 

If we let p = 4 , we have 

prr - BJ1 = (3, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0) 

Thus we want to find P. to 

minimize: (3, 3, 0, 0, 0, 0, 0, 0, 1, 0)X. 

Subject to: (1, 5, 3, 2, 1, 4, 3, 1, 1, 2, 3)X. £ 11 

Xj is a path from s to t. 

The optimal solution to this constrained shortest path problem is 

C 4 = [2, 5, 8, 9, 11}. 

If we bring this path into the basis we obtain a solution: 



The remaining basic variables are slack paths. 

In Figure 8 the arc flows corresponding to the current solution 

are shown by circled numbers. All arc capacities are one unit and the 

arc lengths are shown. The number with a decimal point following it is 

the arc identification number. For this solution 

L B = £ ( C 4 ) = 11 

LB - 1 = 10 , 

and 

r o -1 0 0 0 0 0 1 0 0 0 0 
1 1 0 0 0 0 0 0 0 -1 0 0 

-1 -1 1 0 0 0 0 1 0 0 0 0 
0 1 0 1 0 0 0 -1 0 0 0 0 
0 -1 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 

-1 -1 0 0 0 0 1 1 0 0 0 0 
-1 0 0 0 0 0 0 0 0 1 0 0 
-1 -1 0 0 0 0 0 0 1 1 0 0 

1 1 0 0 0 0 0 1 0 0 0 0 
-1 -1 0 0 0 0 0 0 0 1 1 0 
. 1 1 0 0 0 0 0 0 0 0 0 1 

The simplex multipliers are 

TT = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

The longest path with flow in the basis is the second path in the 

basis, C 4. Its length is 11. Thus 
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Figure 8. Min-Max Path Flow 



I* - 1 = 10 , 

and if we let p = 4, we have 

d = 4TT - B;1 = (3, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0). 

Figure 9 is the network with the capacities deleted. The arc 

numbers are the lengths a and costs d. The number adjacent to each 

node j is ofj . The labels are given in Table 5. For each value of I 

only new labels are given. 

The optimal solution to the corresponding constrained shortest 

path problem can be read from the table: C 6 = [l, 4, 8, 9, 11}. Aft 

pivoting we have 

* 4 *3 = 1 

X G = X 7 = 0 

The longest path in the basis remains C 4 . We have 

- 1 = 10 

B;1 = (1, 2, 0, 0, 0, 0, 0, -1, 1, 0, -1, 0) 

rr = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
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Figure 9. Network With Arc Lengths and Costs 



Table 5. Constrained Shortest Path Labels 

g ( j ) = I Node h ( j ) m(j) 

5 1 t 

3 4 1 5 
6 0 t 

4 3 1 4 
5 0 6 

5 1 1 4 
2 1 5 
3 0 4 
4 0 5 

6 S 5 1 

7 1 0 4 
2 0 5 

8 S 4 1 
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4TT - Bi 1 = (3, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0) 

With these arc costs, the constrained shortest path is C 3 a path already 

in the basis, with B" 3^ = 0. Thus, we conclude that the current solu­

tion to the problem is optimal. 

The Path Removal Algorithm 

We shall now present a step-by-step statement of the algorithm 

suggested in this chapter for solving the min-max path flow problem. 

1. Solve the maximum flow problem on G(N,A). Let F* be an 

optimal solution and let v m t x be maximum flow. 

2. Decompose F to an arc-path flow. Let B be a corresponding 

basic set of paths. Let rr be the simplex multipliers. 

3. Let B° be the corresponding Mpure basis". 

4. Determine I^o, the maximum length path in {B 0}. 

5. Determine I L / = {i | a'B° = I^ 0}. 

6. Let p be large positive number and compute 

d = prr - £ B" 1. 
kel,. ' 

7. Determine Pj*> the solution to the constrained shortest 

path problem. 

8. Check rrP.,v = 0, if not increase p and return to (6). 

9. Check £ B^ 1 > 0, if not, terminate. The current solu-
k e I L / 

tion is optimal. Otherwise go to (10). 

10. Introduce P.* into the basis. Return to Step (3). 
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Convergence 

The optimal solution to the min-max path problem has a positive 

value of 1̂  . The iterations through Steps (3) - (10) begin with a 

finite value of Lg . Each time 1̂  is reduced, it is reduced by an integer 

value. Thus, in order to prove convergence, we must establish that 

there can be only a finite number of consecutive iterations through 

(3) - (10) without reducing 1̂  , and, that the dynamic programming 

algorithm used in Step (7) converges. We consider the former question 

first. 

Solving problem (2) by the simplex algorithm will consist of one 

or more iterations of Steps (3) - (10) in which flow is reduced and 

finally driven off the set of longest paths. We can adopt the lexi­

cographic pivot selection rule of Dantzig (7) in order to insure the 

convergence of the simplex on that problem. Thus, we can insure that 

problem (2) will be solved with Z = 0 if such a solution exists in a 

finite number of iterations and it follows that at such an event the 

value of Lg has been reduced. 

The convergence of the dynamic programming algorithm follows 

from the fact that there are no negative directed cycles with respect 

to either d or a. At each iteration, Z is increased by one unit and 

hence it will reach its upper bound of Lg - 1 in a finite number of 

steps. We need not concern ourselves with labeling repeatedly around a 

cycle with zero length with respect to a, since no paths including such 

a cycle would be cheaper than the residual simple path. Hence the 

labels would not be generated under the labeling procedure defined. 



We conclude then that the algorithm converges in a finite number 

steps to the min-max path, maximum flow on network G(N,A). 
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CHAPTER IV 

AN EXPANDED NETWORK FORMULATION 

OF THE MIN-MAX PATH FLOW PROBLEM 

In this chapter the min-max path flow problem is interpreted as 

a maximum flow problem on an expanded version of the original network. 

The problem differs from the standard maximum flow problem in that it 

has imposed on it bundle constraints. Bundle constraints are inequali­

ties which restrict the sum of flows on subsets of arcs of A. At this 

time, no totally graph theoretic methods have been developed to solve 

the maximum flow problem with bundle constraints except for some special 

planar graphs (3) . 

The algorithm developed in this chapter makes use of the decompo­

sition concept of Dantzig and Wolfe (8) . The master constraints number 

no more than the number of arcs in the original network G(N,A), and there 

will be a single sub-problem of the shortest path or minimum cost maximum 

flow type.* 

A Dynamically Expanded Network 

If we interpret the length of arcs in the network G(N,A) as the 

time required to transverse the arc, then we can define an expanded 

*An alternative treatment would be to consider the bundle con­
straints as generalized upper bounds and make use of Dantzig and Van 
Slykes method for treating upper bounds on sums of variables. Using 
this approach one loses the network structure after the initial itera­
tion however, and thus that procedure would be less attractive than the 
procedure presented here. 
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version of G(N,A) in which all paths along which a unit of flow could 

reach t by time period L are represented but paths which have a trans­

versal time greater than L are not included. We shall refer to this as 

the L-period expanded version of G(N,A) and denote it D L(G). 

The L-period expanded version D L(G) of G(N,A) can be constructed 

from G(N,A) as follows. The source s of G(N,A) is the unique source sL 

of DL (G). For node x e N, x ^ s, there will be a sequence of nodes 

x T, T = 0,1,...,L in NL . If (x,y) e A and a(x,y) denotes the length of 

(time to transverse) arc (x,y), then there will be in A L a sequence of 

arcs (x^ yT-a(x,y))> T = 0,1,...,L-a(x,y). Each arc in the sequence 

will have capacity b(x,y). We complete the network by adding a super 

sink tL and arcs (tT, t L ) , T - 0,1,...,L, with infinite capacity. All 

arcs in A L have zero cost. 

The network just described can be drastically reduced since many 

of the nodes and arcs generated are disconnected from either sL or t L. 

A procedure for generating DL(G) from G(N,A) and D L_!(G) is given at 

the end of this chapter. This procedure generates only nodes and arcs 

which are connected to both sL and t L. Further reduction procedures are 

also discussed at that time. 

Figure 10 is part of the 6-period expanded version of the network 

of Figure 4. Figure 11 is the reduced 11-period expanded version of 

the same network. We use ( X , T ) on the network to represent node (x̂ -) . 

Comparison of D, (G) with the Full Dynamic Version of G(N,A) 

The network D L(G) is an abridged version of Ford and Fulkerson's 

dynamically expanded network corresponding to G(N,A). In the dynamic 

network flow problem the arc capacity is not an actual total capacity 
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FL = [ f ^ , yT+a(x,y))]> (*,y) e A, T = 0,1,... ,L-a(x,y), 

for flow on the given arc but is instead a capacity per unit of time. 

Thus, flow can enter an arc in an amount equal to the arc capacity at 

time t and an equal amount can enter at time t+1. Therefore, each node 

is replicated for each period of time considered. A given path through 

the network may appear several times in the expanded version and it may 

be assigned flow in each case. On the other hand, the arcs in our 

problem have total flow capacities. Thus, it serves no purpose to 

allow the repetition of a given path in D L(G). 

The replicates of a given node of G(N,A) which appear in D L(G) 

represent the discrete points in time at which flow, leaving the source 

at time zero, could arrive at that node. Also, a given arc of G(N,A) 

may appear more than once, or not at all, depending upon whether it 

can be used to transport flow, which can be made available at its 

initial node at a particular point in time, to its terminal node at 

a time which will enable it to ultimately reach the sink on or before 

time L, the maximum allowable time. In other words, a given arc will 

appear in D L(G) if it appears in a path of length L or less in G(N,A). 

The Relationship Between G(N,A) and D L (G) 

In D L(G) there is a subset of arcs (xT, yT+a(x,y))> T = 0 , 1 , . . . , 

L-a(x,y), corresponding to arc (x,y) g A. We refer to this set of arcs 

in D L(G) as a bundle of arcs and denote it as A L(x,y). 

Theorem 1 

Suppose we have a feasible flow F L on D L(G), 
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then the function on A defined by; 

f(x,y) = E P L(x T, yT+a(x,y))» (x>y> e A , 
AL(x,y) 

is a flow function defined on A. That is, the network flow conservation 

equations are satisfied by; 

F=[f(x,y)]. 

Proof. Since F L is a feasible flow on D L(G), 

v1 , x̂ - * s L 

f^x^tf) - ^(Kf-.xr) = « 0 , x̂ . s u, t, 

k -v1 , x T = \ 

For x = s: 

f(s,N) = E f L(s L, y a ( x > y ) ) = v̂  
y«N 

For x = t: 

but 

-E f L(t T, tL) = 
T=0 

- f*-(N, t L) = - v1 
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Thus, 

- f ( N , t ) - -v1-

For x e N, x ^ s, t: 

L - a ( x , y ) L 
f ( x , N ) - f ( N , x ) = S S ^ ( ^ " y T + a C x . y ) ) " ! s f L ( v

T - a ( y , x ) > X T > -
N T = 0 N T = a ( y , x ) 

I f we define f t ( x T , y T ' ) = 0, for T < 0 or T ' > L , then we can write: 

L L 
f ( x , N ) - f ( N , x ) = S S f ( x ^ V T + a ^ . y ) - S S fL ( y T - a ( x , y ) > X

T > 

N T = 0 w T = 0 

We can now bring the second summation out and we have: 

f ( x , N ) - f ( N , x ) = ^ Z f ' C X r , y T + a ( x > y ) ) -£ f L ( y T - a ( y , x ) » X

T > 

Each term inside the brackets i s i d e n t i c a l l y zero since x T s L , t L . 

Hence we have 

v1- , i f x = s 

f ( x , N ) - f ( N , x ) = < 0 , i f x £ s, t 

rv*- , i f x = t , 

which is a flow function defined on G ( N , A ) . 

Q.2.D. 



Theorem 2 

I f F L i s a flow defined on D L ( G ) and F i s the corresponding flow 

on G ( N , A ) as defined in theorem 1, then F is a f eas ib le flow on G ( N , A ) 

i f and only i f 

f ( x , y ) = T, f L ( X r , y T + a ( x , y ) ) ~ b ( x » y ) » ( x » y ) e A . 
A L ( x , y ) 

Constraints of this type imposed on the flow on network D L ( G ) are ca l l ed 

bundle constra ints . 

Proof. By theorem 1, the flow F corresponding to ^ L i s a flow on 

G ( N , A ) . I f the bundle constraints are s a t i s f i e d , then the indiv idual 

arc capac i t i e s on G ( N , A ) are s a t i s f i e d . I f : 

f L < * r . y T + a ( x , y ) > 2 5 ° > 

t h e n c e r t a i n l y 

f ( x , y ) ^ 0. 

Q . E . D . 

At the end of this chapter we present an algorithm which generates 

the reduced version of DL (G) and prove, based on the construction of 

D L (G)> t n a t w e can solve the min-max path flow problem by f inding the 

minimum value of L for which 

max — vaa x » 



where \4ax denotes the value of the maximum bundle-constrained flow on 

D L(G) and v m a X denotes the maximum flow on G(N,A). 

We turn our attention now to the bundle-constrained maximum flow 

on L\ (G). 

Bundle Constrained Maximum Flow 

The problem of finding a node-arc flow on D L(G) which corresponds 

to a maximal feasible flow on G(N,A) can be stated as follows: 

Find arc flows f L(x T, y T+ a( x,y)) t o : 

maximize: v1" 

subject to: f L(x T,N L) - f L(N L,x ) = 

( v1" , if X T = s L 

0 , if ^ * sL , 

l-v1 , if x T = tL 

(1) 

(2) 

E f L( x
T»y T+a(x,y)) * b(x,y), (x,y) e A 

A L (x,y) 
(3) 

f L(x T, y T +a(x,y)) * 0, ( x T , y T + a ( x > y ) ) e A L (4) 

Equations (3) are the bundle constraints. If the optimal solution to 

(1) - (4) has value 

v»ax < v B a x , 

then there exists no feasible flow on D L(G) whose corresponding flow 

on G(N,A) is a maximal feasible flow. In this case, we must expand the 
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network to L+l time periods. That is, we generate D L + 1 ( G ) and resolve 

(1) - (4). If 

^i f tx * vmax 

and 

v i . i < v a a x , 

then any path decomposition of the resulting flow is a min-max path 

flow on G(N,A) and the min-max path length is L. 

Iri (24) discusses the network with bundle constraints. He 

credits Kobayashi (34) with the development of the dual technique whereby 

the network flow problem with one bundle constraint can be reduced to a 

linear network flow problem in which the computations are carried out 

on the network. However he has the following to say about the general 

linear network flow problem with bundle constraints: 

The network problems with bundle constraints cannot 
be solved in a purely graphical procedure, unlike ordinary 
network flow problems, but they require in general some­
thing like a simplex method for the general linear pro­
gramming problems. 

Example 

It is helpful at this time to consider an example problem. 

After further reductions, the network of Figure 11 is shown in 

Figure 12 with bundle arcs indicated by slash marks.* For convenience, 

*Techniques for further reduction of the network will be dis­
cussed later. 
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Figure 12. Network With Bundle Constraints 



we use a single number to identify arcs. They are given in Figure 12 

adjacent to each arc followed by a decimal. 

The mathematical statement of the problem is: 

maximize: v 1 1 

subject to: 

-vi:L+f(l) +f(3) = 0 (5) 

-f(l)-f(2) +f(5)+f(6) = 0 (6) 

f(2)-f(3)+f(4) = 0 

-f(4) f(7)+f(8) = 0 

v 1 1 -f(5)-f(6)-f(7)-f(8) = 0 

f(l) +f(4) ^ 1 (7) 

f(5) +f(7) ^ 1 

f(6) +f(8) £ 1 

f(2) ^ 1 

f(3) <s 1 

f(i) ^ 0, i = 1,..., 8 (8) 

Solution of the Bundle Constrained Maximum Flow 

The general form of the bundle constrained maximum flow problem is: 

maximize: v1 (g) 

subject to: B X ^ b x ( 1 0) 



AiX - AgVL = 0 ( I D 

X :> 0. 

B is the bundle matrix corresponding to constraints (7) of the example 

problem, A x is the node-arc incidence matrix of D L (G), and Ag is the 

vector (-1,0,0,...,0,1). The dimension of this vector is equal to the 

number of nodes in the network. The maximum dimensions of B, depending 

upon the amount of possible reduction, are m x m, where m is the number 

of arcs in G(N,A). This includes bundles containing only one arc, i.e., 

upper bounds on arc flows are included where necessary. Those arcs 

which belong to bundles of more than one arc do not require separate 

constraints for individual arc flows since the bundle capacity is 

identical to the individual arc capacities. 

Equations (11) are the conservation of flow equations, thus, 

feasible solutions to these equations can be generated by the use of 

one of the efficient maximum flow algorighms. It would be desirable 

to retain this structure on (11). To do so we can make use of the 

Dantzig-Wolfe decomposition concept (8). We shall do so by treating 

(10) as the master constraints and (11) as a single subproblem. Before 

continuing with this we will digress briefly to discuss the decomposi­

tion procedure. Our discussion follows that of Gass (18). 

Decomposition 

Consider the problem 
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maximize: C X (12) 

subject to: B X + I W = b x (13) 

A X » bg (14) 

X , S 2: 0 (15) 

The solut ion space to (14) i s a bounded convex set . Thus, any 

point in this set can be expressed as a convex l inear combination of the 

extreme points of th i s set . I f we le t X x , Xg, . . . , X n be the extreme 

points of the set S , where 

S = [ x | A X = b 2 , X ^ O } 

then for any element X in S , there ex i s t nonnegative rea l numbers, 

, . . . , X N , such that 

X - X J X J . + XjjXg + . . . + XNXN . (16) 

The values X1, . . . , X N s a t i s f y the convexity condit ion: 

X x + X s + ... + X n * 1 . 

Any solut ion to problem ( 12 ) - (15 ) must, of course, s a t i s f y (14) 

and hence must belong to S . As a r e s u l t , i f we let Xa denote the general 
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solut ion to (13)-(15), then we can express this so lut ion in terms of the 

mult ip l iers XI and the extreme points of S as given by (16). 

Subs t i tu t ing (16) into (13) we get the equations: 

B(X 1 X 1 + X22k + ... + X n X n ) + IW = v 

or 

BXiXj. + BXgX 2 + . . . + B X NX N + IW = b x . 

A l s o , subst i tut ing in (12), we have 

C'(X 1 X 1 + XgX^ + .. . + X J J X J J . 

or 

C , X 1 x 1 + C'X s x s + ... + C'X n x „ . 

I f we assume then that the extreme points of S are known, then 

the problem (12)-(15) can be expressed as that of f inding pos i t ive rea l 

numbers X T to: 

maximize: (C'XOXI + (C'Xg)X 2 + . . . + (C_'XN)XN (17) 

subject to: (BX 1)X 1 + (BX^XP + . . . + (BX R)X N + IW = Jb^ (18) 

XI + x 2 + . . . + x n = 1. (19) 
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We of course do not require an enumeration of a l l the extreme 

points of S . We w i l l generate the a c t i v i t y vectors as fo l lows. Suppose 

we have a basic f eas ib le so lut ion to (17)-(19). Let ( T T , y ) be the cor­

responding simplex mul t ip l i er s , where rr is a vector corresponding to 

(18) and y is a scalar corresponding to the s ing le convexity constraint 

(19). 

Suppose now that X, i s an extreme point of S which is not repre­

sented in the current basic f eas ib le so lut ion to (17)-(19). The cor­

responding a c t i v i t y vector i s 

Z j = [ C ' X j , B X . , 1] m (20) 

The vector P. is a candidate to enter the basis in (17)-(19) i f 

rrBX. + y - C ' X 3 < 0 . (21) 

I f there are no extreme points X . of S for which (21) holds , then 

the current solut ion is optimal. Thus, we can determine whether the 

current solut ion to (17)-(19) is optimal and i f not f ind a candidate 

to enter the basis by f inding the extreme point of S which maximizes 

rrBX. - c ' X . 

Suppose X . * is such a vector , then i f 

T T B X . - C ' X . + Y 2: 0, 
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the current solution is optimal and if not, the vector Pj*> defined by 

(20), is a candidate to enter the basis. The vector Xj* can be obtained 

by solving 

minimize: ( T T B - C ^ X . (22) 

subject to: AX. = bg (23) 

Xj £ 0. (24) 

Throughout this discussion we have assumed that S is bounded. Only 

a modification is required if this is not the case. In our problem, any 

solution feasible to the master constraints (18) is feasible to the sub-

problem (23). Thus, (19) is always satisfied if (18) is satisfied. 

Hence we can drop the convexity constraint. We rewrite the problem as 

maximize: (£ /X 1)X 1 + (C'X 2)X g + ... + (£%)\n (25) 

subject to: (BX1)X1 + ... + (BXn)Xfi + IW = ^ 

X > 0, 

where XT, i = 1, n, are the extreme point solutions to S. 

S = { x|AX = b E , X ^ 0 ] . 
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An i n i t i a l basic f eas ib le solut ion to (25) is given by: 

IW = b, . 

Since the convexity constraint has been dropped, the dual var iable y i s 

no longer in the problem. Thus, the dual variables are given by I T and 

we wish to determine whether the optimal so lut ion to (22)-(24) i s negat ive . 

Let us assume that the matrix A of (14) is written 

A = : A ,1 , 

where A1 and are the matrices of (11). A l s o , l e t 

B - [ 0 : B ] , 

X ' - [v : x1 . . . x m 1 

C 7 = [1 : 0 0 0 . . . 01 . 

Then 

T T B - C ' = T T B - 1 , 

and solving (22)-(24) can be done by searching for a path whose length 

with respect to arc lengths TTB i s less than one. I f the shortest path 

has length greater than or equal to one, then the current so lut ion to 
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(25) is optimal. If not, as indicated before, the shortest path identified 

is a candidate to enter the basis. Since (22)-(24) is unbounded, this 

path can be assigned any amount of flow consistent with (25). 

The arc lengths, rrB, can be assumed to be nonnegative since B has 

all nonnegative elements and if T T J < 0, for some i, the corresponding 

slack variable can be introduced into the basis and T T J becomes zero. 

An alternative way of formulating this bundle-constrained maximum 

flow problem is to introduce all individual arc capacity constraints into 

the subproblem and delete all bundle-constraints from the master problem 

which involve only one arc. A solution to the master problem is now not 

necessarily feasible to the subproblem. Thus, it is necessary to include 

the convexity constraint. 

Let bg be the vector of individual arc capacities of D L(G). The 

problem can be written 

maximize: v L 

subject to: B X < b^ 

A XX - Agv1" = 0 

0 < X £ — — —s 

The master problem is the same as before as given by equations (25) 

except that it has fewer constraints and it includes the convexity con­

straint. A vector X, is a candidate to enter the basis in the master 
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problem if 

TT B (Xjtv1-)' - C'QCjtv1-)' + y < 0. 

We are again searching for the vector Xj which will 

minimize: ( T T B - C 7 ) ( X : V L ) ' 

subject to: A XX - AgV1" = 0 

0 £ X £ b, 
— — —S3 

Since c ' = (0':1), and B l j i n + 1 = 0 , i = 1, 2, . . ., , we can rewrite 

the problem as: 

minimize: rrBX - V L (26) 

subject to: A 1X - AgV1" - _0 

0 < X < b 0 
— — — 2 

If Xj* is the optimal solution and 

T T B X J * - V l + y < 0, 
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then the current solution to the master problem is optimal and hence we 

have the maximum bundle constrained flow on D L(G). If 

rrBX.*- v L + y < 0 

then Xj*d-S brought into the basis and we continue. The subproblem (26) 

is a minimum cost flow problem and it can be solved by Busacker and Gowen's 

algorithm or any of the algorithms available for this problem (5). 

Due to the relation between the bundle constraints and the arc 

capacity constraints, the following modification is made to the standard 

decomposition method. The algorithm is outlined here. 

1. Solve the maximum flow problem on D L(G). This is what would 

be done the first time the subproblem is solved in the decomposition 

method. 

2. Select the first bundle constraint which is not presently in 

the master problem and check to see if it is satisfied by the current 

solution. If so, go to the next bundle constraint not currently in the 

master problem. If not, go to step 3. 

3. Introduce this constraint into the master problem and intro­

duce an artificial variable for this constraint into the basis. Go to 

step 4. 

4. Find a feasible solution to the master problem using the 

phase I procedure. Return to step 2. 

5. Terminate the procedure when all constraints not in the 

master problem have been checked without a violation. 
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The Expanded Network Algorithm 

We now present an out l ine of the expanded network algorithm af ter 

which some addit ional comments w i l l be considered. 

1. Find v f f l a x on G(N,A) . 

2. Expand D L (G) u n t i l the sum of the capaci t ies on a l l arcs 

leading into ( t , L ) equals or is greater than v B f t x . 

3. Solve the bundle constrained maximum flow problem on D L ( G ) . 

4. I f v m f t X £ v m a x , terminate, otherwise 

5. Set L =» L + l , expand D L (G) and return to step 3. Repeat u n t i l 

The labels which are recorded when D L (G) is generated w i l l be used 

also in generating D L + 1 ( G ) . Thus, i t i s not necessary to begin step (5) 

anew each i t e r a t i o n . A l s o , the optimal solut ion on D L (G) is a f eas ib l e 

solut ion to D L + 1 ( G ) . Hence i t can be used to provide a good i n i t i a l 

solut ion to D L + 1 ( G ) . 

So lut ion to the Example Problem 

Suppose we know that the maximum flow on our example problem (see 

Figure 4) is 

v = 2 

and suppose we know that 

Vmax " 1-
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We want to determine vj;ix. Figure 11 i s the 11-period expanded version 

of the or ig ina l network. The arc capaci t ies and bundle constraints are 

given in Figure 12. In Figure 13 the arcs are numbered to s implify the 

problem matrix. Table 6 is the simplex tableau corresponding to equations 

(5)-(7) with appropriate slack variables added to (7) , and with a l l in ­

dividual arc capaci t ies stated separately from the bundle constra ints . 

We begin by ignoring the bundle constraints (the f i r s t three constraints 

in Table 6 fol lowing the object ive row). Thus, we are jus t f inding the 

maximum flow from s to ( t , l l ) . A solut ion i s Xx » (2, 1, 0, 1, 1, 1, 0, 

1, 0) . 

The f i r s t value is the flow v and the remaining values are the 

arc flows. We check th is solut ion against the constraints in the master 

problem. 

The f i r s t constraint is v io la ted since 

X g + x 5 = 2 > 1. 

Hence the master problem w i l l now be 

maximize: v - x a l 

subject to: 2XX '+ x, x - x a l = 1 
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Figure 13. Arc I d e n t i f i c a t i o n for Example Network 
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where X a l i s an a r t i f i c i a l var iab le , given a cost of -1 to drive i t 

from the bas i s . The current basic solut ion i s 

xal = l 

X T = 1. 

The new set of simplex mul t ip l i ers i s given by 

[rrry] = [-1:2] |"-1 2~j - [1:01 

TT - [ 1 ] , Y = 0 • 

The subproblem i s 

maximize: v L - x 1 - x 4 

- V 1 +Xj + X 3 = 0 

- X I - X G - H X G + X S - 0 

^ - X G ^ = 0 

- X 4 -H^ + X G =» 0 

V L - X 5 - X G - ^ - X G = 0 

0 < X J £ 1, 1-1, 8 

vL £ 0. 

This i s a minimum cost maximum flow problem. The network with arc costs 

and capac i t ies is given in Figure 14. 
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Figure 14. Reduced Network 
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Table 6. Simplex Tableau for the Bundle-Constrained 
Maximum Flow Problem 

b V 1 2 3 4 5 6 7 8 S i • J 8 

- z 

0 1 0 0 0 0 0 0 0 0 0 1 1 

1 0 1 0 0 1 0 0 0 0 
1 0 0 0 0 0 1 0 1 0 I 0 0 
1 0 0 0 0 0 0 1 0 1 

-1 1 1 
0 -1 -1 1 1 

0 0 1 -1 1 0 0 0 
0 -1 1 1 
1 -1 -1 -1 -1 

1 1 
1 1 
1 1 
1 1 0 I 0 
1 1 
1 1 
1 1 
1 1 



I l l 

V 

L - U 

^ = [1 : 0 : 11 

We use the revised simplex notation. 

X B B - 1 

- v L 0 1 1 0 

1 0 -1 2 

1 0 0 1 

- v L 1 1 
2 -1 

1 
IS 0 1 

~ 2 1 

Xi 1 
2 0 * 0 

The optimal solut ion i s : 

= [ 1 0 1 1 0 0 1 0 01 ', 

with value 1. 

Since y = 0. 

C 3 - Z 2 = v L - TrBXg - v = 1 > 0. 

Hence, we wish to bring X j * into the basis of the master problem. 

& = [ C % : B X , : 11 
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Figure 15. Network With Modified Costs 
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T T B = [ 0 | 0 0 | 0 0 0 0 ] . 

The subproblem is now the minimum cost flow problem on the network of 

Figure 15. 

The optimal solut ion i s ; 

= [2 1 1 1 0 1 1 0 0 1 ' , 

with value 1 . 

C 3 - Z S = V 3 - T T B X s - y = 1 + 1 = 0 £ > 0 , 

Thus, th i s vector i s a candidate to enter the b a s i s . 

Po = 

-v L 
1 

1 

"B -1 
1* 0 -* 1 

i 0 * 0 

- v L 
- 2 1 2 - 4 

X 3 

1 0 - 1 2 

h 0 0 1 - 1 

* 



1 1 4 

Since v^&x = v m a X , we have an optimal basic feasible solution to 

the current problem (with one bundle constraint). 

We go back now and check the current solution against each bundle 

constraint. The bundle constraints are the first three constraints given 

in Table 6. Since X 3 = 1 , the solution is 

v L - 2 

x 1 = x 2 = x 3 = x 5 = x 6 = l 

Substituting in the bundle constraints we have: 

x x + x 4 = 1 < 1 

X B + x 7 = 1 < 1 

^ + X Q = 1 < 1 

All bundle constraints are satisfied and the current solution is optimal 

on D X 1(G). Since vj,ax = 2 = v m a x , this solution is optimal min-max path 

flow on G(N,A), the network of Figure 4. 

Convergence 

Since L* is finite and L is increased by one unit each time steps 

(3)-(5) are performed, the speed of convergence depends upon the two sub-

algorithms. The generation of D L(G) is certainly a finite process since 

there is a finite number of arcs between any pair of nodes. The convergence 

of the decomposition procedure of step (3) is the only real question. 
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Since step (3) makes use of the decomposition method to solve the 

linear programming problem, i.e., the constrained shortest path problem, 

we must consider the convergence of the master problem and the con­

vergence of the subproblem. 

The subproblem is a shortest path problem with all nonnegative 

arc lengths, hence it terminates in a finite number of iterations. (See 

Ford and Fulkerson's combinatorial algorithm (12)) . 

We can use the lexicographical rule for selecting the vector to 

leave the basis in case of ties in a given iteration of the revised 

simplex method of solving the master problem. Dantzig proves that this 

rule will insure the finite convergence of the revised simplex method 

(7) . As is normally the case for linear programming algorithms, no 

provisions are incorporated to prevent cycling. However, if it turns 

out that the structure of these problems causes cycling to occur, we 

can incorporate the lexicographic choice rule. 

Improving Computational Efficiency 

There are three areas in which improvements may be made to the 

computational efficiency of the algorithm. First, since we must begin 

at some specific value of L and increase the value of L until a solution 

is obtained, we can reduce the number of iterations of the algorithm 

required by beginning with L as close to L*, the optimal value of L, as 

possible. Secondly, the computational efficiency of the decomposition 

algorithm for solving the bundle constrained maximum flow on D L will be 

improved by reducing the number of nodes and arcs in D L to the minimum 

necessary (as was done for the example problem). Thirdly, provisions 

can be incorporated to allow recognition of the optimal solution as soon 
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as it is obtained. We shall now elaborate on these three approaches in 

the order they were presented. 

The Initial Value of L. We mentioned earlier that in expanding 

D L , it should be expanded until the sum of the capacities of all arcs 

leading into (t,L) equals or exceeds v f f l a x. We can also check to ensure 

that the capacity of all arcs leading out of s equals v f f l a x. We can 

determine an upper bound by finding the longest path in a path decomposi­

tion of the maximum flow on G ( N , A ) . We can find generally tighter bounds 

on L* by solving the minimum cost maximum flow problem. If Z is the 

cost and 1^ is the longest path in any path decomposition of the flow, 

then 

LZ = < Z / v m a X > < L* < 1^, 

where ̂  x > denotes the smallest integer greater than or equal to x. 

The following remark and lemma also provide other constraints on 

the smallest value of L for which it is possible that VHB~ = VM€,„. 
^ m a x m a x 

Remark 1 

If we disregard the bundle constraints and find the maximum flow 

on D L ( G ) to be less than v f f l a X, then L* > L. 

Lemma 1 

If we disregard the bundle constraints and any minimum cut-set 

of DL ( G ) contains more than one arc belonging to the same bundle, then 

L* > L, if v L £ v m 

Proof. If two or more arcs of the same bundle belong to any 

minimum cut-set, then any maximum flow must have these arcs saturated. 
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Since the bundle has the same capacity as each arc in the bundle there 

is no way the bundle constraint can be satisfied by a maximal flow. 

Q.E.D. 

These two tests have not been incorporated into the algorithm so 

that nothing is known about their effect on the solution time. 

Searching on L. The solution procedure presented begins at the 

largest known lower bound on L. It might be more efficient, however, 

to use a direct search method on L. This is possible since we know that: 

vi a x > v B a X => L* ^ L 

and 

vb „ < v„ „ => L* > L. 

Network Reductions. Step (4) of the network expansion algorithm 

outlined some reduction techniques to reduce the size of the network. 

Lemma 1 allows some additional reduction. If a given arc of D L(G) is 

in a minimum cut-set but no other arcs of its bundle are in any minimum 

cut-set then we must solve the bundle-constrained maximum flow on D L (G). 

Before doing so, however, we can delete all arcs that are in a common 

bundle with any arc in any minimum cut-set if the maximum flow (without 

regard to the bundle constraints) is equal to v m a x . 

Another way the network D L(G) can be reduced is to delete any 

node having only one arc entering it and only one arc leaving it. These 

two arcs are replaced by a single arc between the initial node of the 
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former and the terminal node of the latter. This arc will have capacity 

equal to the minimum capacity of the two original arcs. The arc will 

belong to both bundles of the original arcs. This will be helpful only 

to eliminate arcs not in bundles. 

Termination Procedure. Due to the likelihood of degeneracy in 

the bundle constrained maximum flow problem it is quite possible, for a 

given value of L, several iterations will be required after v B a x is obtained 

before it is recognized as the optimal solution. Thus, after each itera­

tion of the master problem v L should be compared to v m a x . If they are 

equal, then the current solution is optimal to the min-max path problem, 

so that no further improvement on v L is required. Thus we terminate the 

algorithm at this point without having to verify that the current solution 

is optimal to DL(G). 

Algorithm for Generating Dynamically Expanded Network 

Let G(N,A) be a static network with arc costs or lengths given by 

a(x,y). Let L be an arbitrary positive integer. 

The following algorithm will generate the corresponding L-period 

dynamic representation D L(G) of the network G(N,A). 

Step 1. Solve the shortest path problem from the source s to all 

nodes of N. Identify all alternate labels with respect to the labeling 

method of Ford and Fulkerson (12). The labels used here shall be of the 

form [-,-,-]. The first element designates the node from which this label 

originates, the second denotes the index of this label on the current node, 

and the last element denotes the length of the path from s to the current 

node along the path of labels (nodes) indicated. Thus, a label on any 

node can be traced back to the origin node, s. The label is associated 



with one or more partial paths from the origin to that node, and the 

value of the fourth element in the label is the length of that partial 

path. Henceforth, we shall refer to partial paths of a specified length 

to node y instead of labels on node y . The fact that a given label is 

associated with one or more paths of the same length causes no confusion. 

Figure 16 is an example network with all optimal labels for shortest 

paths from the source s to all nodes of A. 

In the context of this labeling procedure, the path (6,1) will 

refer to the partial path(s) associated with the first label on node 6. 

That path consists of arcs {1,4,7,9} and has length five as indicated 

by the last element of the label. 

Step 2. Begin with the first node and attempt to generate a new 

partial path to this node the length of which exceeds the length of 

current longest path to this node by exactly § units, g is initially 

set at zero. When a new label (partial path) is obtained, 5 is reset 

at zero and the process begins again with the first node. If a new 

label cannot be generated for a given node, the next node is considered 

until the terminal node is reached. If the terminal node is reached 

and cannot be labeled, increase g by one unit and begin the search 

again at the first node. 

If L is the number of periods desired, the labeling procedure 

terminates anytime 5 reaches the value L-TT(t,T)+1 , where TT(t,i") denotes 

the length of the longest partial path to t which has been generated. 

Figure 17 is the network of Figure 16 with labels up to those for paths 

of length 11. 



(•.1.5) (5,1,5) 

Figure 16. Network With a l l Shortest Path Labels 

o 



(4,1,4) 

Figure 17. Network With Labels up to Period 11 

N > 
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Step 3. Generate the nodes and arcs of D L(G) from the labels on 

G(N,A). Initially include a node for each label on G(N,A), except, 

include only one node for node t. Call that node (t,L). Each label 

also designates an arc which will be in DL (G) . The capacity of this 

arc will be the same as its capacity in G(N,A). For example, if 

( X , K , T ) is a label on node y, then there will be a node in D L(G) cor­

responding to node y at time period T . Let (s,L) denote the source. 

There will also be a node corresponding to node x at time period 

T-a(x,y). There will be an arc in Dj_ (G) joining these two nodes. 

The capacity of this arc will be b(x,y) and it will have a length equal 

to a(x,y). 

At times we shall identify a node in D L(G) by an ordered pair 

of numbers ( X , T ) where x denotes the corresponding node in G(N,A) and 

T denotes the time period at which the named node appears in 1̂  (G). 

Thus we observe the following 

Remark 2. If arc j of DL (G) has end points ( x , T i ) and ( y , T s ) 

respectively, then the length of j is 

x(j) - T S - T J . (27) 

except for arcs generated from labels (-y-yT<L) on node t. In this 

case the length of the arcs will be less than that indicated by (1). 

In general then 

(28) 



123 

Step 4. Reduce the network by deleting nodes and arcs by alterna­
tely carrying out the following two steps until one or the other yields 

no further reductions to the network. 

4a. Delete all nodes except the terminal node which 

have no arcs emanating from them. 

4b. Remove all arcs incident to only one node. 

This completes a general statement of the algorithm for generating 

the L-period expanded version of a network. (See Figure 11.) 

The pair of numbers in the boxes (nodes) designate the corres­

ponding node of the original network and the time period. The algorithm 

here generates the same network as the reduced version of the full L-

period expansion of G(N,A). 

Proof of the Relationship Between D L(G) and G(N,A) 

In order to establish the relationship between G(N,A) and D L(G) 

we must establish a correspondence between the nodes, arcs, and paths of 

the two networks. 

Nodes. The source node of the two networks are identical and no 

other node of D L(G) corresponds to the source node of G(N,A). Likewise, 

the two terminal nodes are identical. The terminal node in D L(G) 

corresponds to node t of G(N,A) at time L and at all previous time 

periods at which flow could reach t. As indicated previously, node 

( X , T ) in D L(G) corresponds to node x of G(N,A) at time period T . 

Lemma 2 

If there is an arc (x T l, y T^) in D L(G), then there is an arc 

(x,y) in G(N,A), with a(x,y) » T g - T l . 
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Proof. The arc in D L(G) is generated by labeling node y from 

x. Such a label is produced only if there is an arc (x,y) in G(N,A). 

Q.E.D. 

Paths. Based on the correspondence between arcs of DL(G) and 

G(N,A) and as a consequence of the construction of DL(G), it follows 

that any simple path (from source to sink) in DL (G) corresponds to a 

(not necessarily simple) path in G(N,A). For completeness we state 

this as a lemma. 

Lemma 3 

Let {s •,x1 , T 1 ix2 , T 2 *, • • • Jxn , T N *, t̂  , tj_ 1 be a simple path in DL (G) . 

Then [ s L , X ! , X g , . . . , x n , t l is a path in G(N,A). 

Proof. This follows immediately from the definitions of path 

and simple path, and lemma 2. 

Remark 3 

If there are no directed cycles in G(N,A) then every simple 

path in DL(G) corresponds to a simple path in G(N,A). 

Proof. We are assuming all positive arc lengths. Thus, any 

directed cycle would have positive length. By construction, any cycle 

in G(N,A) would then be represented by a path in D L(G) that contained 

node ( x , T T ) and ( X , T 3 ) for the node that appeared twice in the cycle in 

G(N,A) and for two distinct values of T . If there is no partial path 

from x back to x , which passes through some other node in between, then 

no such pairs of nodes, connected by an arc or a sequence of arcs will 

occur in D, (G) . 

This last lemma and remark are not necessary to the development 

but are given to help characterize the relationship between DL(G) and 
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G(N,A). Hence, our original statement allowing the relaxation of the re­

quirement for all positive arc lengths remains valid. 

If there are directed cycles in G(N,A) or if the requirement for 

positive arc lengths in G(N,A) is relaxed, then there is the possibility 

of a simple path in D L(G) corresponding to a path in G(N,A) containing 

a directed cycle. Even so, this will cause no problems as we can derive 

the flow on G(N,A) by assigning the flow on each path of D,_ (G) to its 

corresponding path in G(N,A) and then deleting from each path in G(N,A) 

which has flow assigned, its directed cycles. This will produce a new 

path flow in G(N,A) in which each path is no longer than the corres­

ponding original path in which it is contained. 

Obviously, removing flow on cycles in the network will not reduce 

the net flow into the sink. 

Let us consider the arc-path formulation of the maximum flow 

problem defined on D L(G). 

Let P L be the set of all simple paths from s to t in D L(G) and 

let P be the corresponding set of simple paths in G(N,A). Also let 

X L denote the vector of path flows defined on [P L] and let X denote 

the corresponding vector of path flows defined on {p}. The maximum 

flow problem is to find X ^ 0 to 

maximize: v = x\ + . . . + xl: 
± n L 

subject to: £ at i x̂  < bj" 
3=1 



where A = (a 1 3) is the arc-path incidence matrix and B\ is the capacity 

of the i t h arc in D L(G). 

The corresponding vector of path flows defined on G(N,A) is given 

by 

xj = h(Pj) = E h L (P1}) = S x\, 

where the summation is taken over all simple paths in [P L} associated 

with the simple path Pj in fP]. From this definition of corresponding 

flows on D L (G) and G(N,A) we can state the following 

Lemma 4 

If H L and H are arc-path flows on D[_ (G) and G(N,A) respectively, 

then the values of these two flows, v L and v are equal, i.e., 

v = vL . 

The next theorem provides a necessary condition on a flow on D L(G) 

for its corresponding flow on G(N,A) to be a maximal flow. 

Theorem 3 

Let v m a x be the maximum feasible flow on G(N,A). Let H L denote 

a feasible arc-path flow defined on D L(G). Let H denote the corres­

ponding arc-path flow on G(N,A) defined as indicated. Then the flow H 

is a maximum feasible flow on G(N,A) if the value of the flow H L is 

v m a X and H, as defined above, is a feasible flow on G(N,A). 

Proof. This theorem follows directly from lemma 4. 

Q.E.D, 
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As a result of theorem 1 we see how to obtain the arc-path flow 

on G(N,A) corresponding to a given arc-path flow on D L (G). An arc-path 

flow on D L (G) can be obtained by solving for a node-arc flow and then 

decomposing that into flows on simple paths of D L (G). 

Theorem 3 gives a necessary condition for a path flow on (G) 

to produce a corresponding maximum flow on G(N,A). Obviously this con­

dition can be interpreted analogously with respect to a node-arc flow. 

Theorem 2 provides the condition for a node-arc flow on DL (G) to have a 

corresponding feasible flow on G(N,A). 

We will now show that the length of the longest simple path 

between the source and the sink in DL (G) is equal to L. Thus, any path 

decomposition of any flow, in particular the solution to (l ) - (4) , has a 

longest path value less than or equal to L. 

Lemma 5 

Let DL (G) be the L-period expanded version of G(N,A) and let 

[Pj] be the set of simple paths from the source to the sink in D L (G). 

Let £(PLj) be the length of the path PLj . Then 

4(Pj) < L, j . 

Proof. D L(G) represents the L-period expanded version of G(N,A) 

for which node t at time period L is the terminal node. In other words, 

node t at time period L is in D L ( G ) but node t at any later time period 

is not in D L (G). Let us consider any path in I\ (G) from (s,L) to (t,L) 

say Pj = f(s,L),(x 1, T l),...,(x n ,T n),(t,L ) l . The length of Pj is given by 
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MPj) - E G(x,y) - £ a(x,y), 
(x,y)ePj (x,y)ePj 

Substituting (28), we obtain 

n-2 
J K P J ) < L - T n + S ( T n - k - T ^ k - x ) + T l . 

k=0 

After collecting terms, we get 

4(Pj) £ L 

Q.E.D. 

As a result of this lemma, we know that the maximum path length 

for any flow on D L (G) is no greater than L. The following lemma shows 

that the arc-path flow in G(N,A) corresponding to any arc-path flow in 

D L(G) has maximum path length less than or equal to L also. 

Recall that we can associate with every path of ty_ (G), a unique 

simple path in G(N,A). 

Lemma 6 

If we let Pj represent the simple path in G(N,A) associated with 

Pj in D L (G), then 

J&(P 3 ) < je(p^). 

Proof. This follows from the fact that P̂  is a subset of the arcs 

in G(N,A) corresponding to the arcs in P^. The arcs in G(N,A) have length 

equal to the length of their corresponding arcs in DL(G). 

Q.E.D. 
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We shall, now state and prove an important theorem concerning the 

relationship between the paths of G(N,A) and those of D L(G). 

Theorem 4 

Let D, (G) be the L-period expanded version of the network G(N,A) 

and let f P L 1 be the set of all simple paths in DL (G) from the source to 

the sink. Let [PQ] denote the set of simple paths in G(N,A) corres­

ponding to the paths in {P1'}. Then all paths in G(N,A) of length L or 

less are in (Pel. 

Proof. The proof follows immediately from the construction of 

D L(G) and the correspondence between paths in D L(G) and G(N,A). 

Let Pj = {s ,x1 ,Xj, , . . . ,xn , 11 be a path in G(N,A) of length L or 

less. If we let 

= a<s,x1) 

T n = a ( x N . 1 , X N ) + T J - J 

then r n = a(s, X l) + ... + a(x n„ 1,t) . 

Since the length of Pj is assumed to be less than or equal to L, we 

conclude that 
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Thus ( t , T P ) appears in the L-period expanded version of G(N,A). It 

follows then, since the arcs of Pj allow the labels ( x N , T N ) on the 

respective arcs of G(N,A), that the corresponding arcs will appear 

in D L(G). There will be arcs in D L(G) corresponding to the arcs of 

Pj which connect the nodes in I\ (G). Hence there is a path in 1\ (G) 

corresponding to Pj and we conclude that P̂  e {PG " } « 

Q.E.D. 

Remark 4 

As a result of the expansion and reduction techniques used to 

generate D L(G) there will be one or more paths in D L(G) corresponding 

to each path of length L or less in G(N,A). However, each path in D l(G) 

will correspond to a unique path of length L or less in G(N,A). 

Lemma 7 

If v J ; a X is the optimal value of (3) , subject to (4 ) , (5) , and (6) , 

and 

v m a x — v

f f l a x ' 

then the min-max path flow on G(N,A) has maximum path value less than 

or equal to L. 

Proof. Suppose we have an optimal solution to (3)-(6) and 

v L - v . 
m a x v m a x 

Then the corresponding flow on G(N,A) is a maximum feasible flow on 

G(N,A). 
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By lemma 5, if fPQ} is the set of paths in any simple path de­

composition of the flow on D L (G), then 

JL(?\) < L, V j such that F\ e fP B
Ll. 

The unique set of simple paths in G(N,A) corresponding to 

will be denoted by [PB} and will form, with flows equal to that of their 

corresponding paths in [Pg], a path decomposition of the flow on G(N,A). 

By 1emma 6, 

j&(Pj) < Jl(Pj1,V j such that Pj e CPB 1. 

Thus, we conclude that 

J K P J ) < L, V j such that Pj e fPB 1. 

We have exhibited a maximum flow on G(N,A) the length of whose longest 

path (with flow) is less than or equal to L. 

Q.E.D. 

This lemma provides a necessary condition on DL (G) for the min-

max path solution to have maximum path length not greater than L. The 

next lemma provides a necessary and sufficient condition for the solu­

tion to have maximum path length greater than or equal to L. 

Lemma 8 

If D L-i(G) is the L-l period expanded version of G(N,A), then 

the min-max path flow on G(N,A) has maximum path length greater than 
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or equal to L if and only if 

TO a x M a A 

Proof. Let L* denote the length of the maximum length path with 

positive flow in the optimal solution to the min-max path flow problem. 

We must establish the following two statements: 

(a) L* ^ L => V^l < v n a X 

( b ) v * a x < v n a x => L* :> L. 

Let us consider case (a) first. We shall prove the contrapositive of 

(a). That is, suppose 

v L _ 1 > v 
m a x m a x . 

By applying lemma 7, we conclude that 

L* < L-l 

=> L* < L. 

Thus, since the contrapositive is valid, the original statement, (a), is 

valid. 
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We now consider case (b). Again we approach the proof by way of 

the contrapositive. 

Suppose that 

L* < L, 

=* L* < L-l. 

This means that there exists a maximum path flow on G(N,A) which in­

volves flow only on paths of length L-l or less. Let {p} be such a set 

of paths in G(N,A), then there exists a corresponding set of paths in 

D u - i (G) . 

Since by construction, D L_ a(G) contains that portion of G(N,A) 

appearing in paths of length L or less, and corresponding arcs have 

equal capacities, the maximum flow or paths of length L-l or less, 

will be feasible on D L_ x(G). Thus 

vL "i ;> v, 

It follows then that 

v i l i < v _ T =* L* ^ L. 

Q.E.D. 

We can now summarize the above discussion by stating and proving 

the following theorem which provides necessary and sufficient conditions 

for the min-max path flow problem to have optimal maximum chain length of L 
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Theorem 5 

The network G(N,A) has a min-max path value of L if and only if 

v L > v (29) 
v m a x — m a x . v ' 

while 

v L _ 1 < v (30) 
in a x m a x » v / 

where v m a x is the maximum flow on G(N,A), and v^ a x and v"^^ are the solu­

tions to (3)-(6) defined on DL (G) and D L - 1 ( G ) respectively. 

Proof. Again let L* denote the actual length of the longest path 

in the min-max path flow in G(N,A). By lemma 7, if 

V * a x > V m a x > 

then 

L* < L. 

By lemma 8, if 

v 1 " 1 < v 
m a x m a x > 

then 
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L* > L. 

Thus, if (29) and (30) hold, we have 

L* < L < L* 

=» L* = L. 

then conditions (29) and (30) hold. By lemma 8, if 

L* > L 

then 

Via"x < vmax 

To show that 

L* = L =» v L > v 
max max > 

we assume otherwise and demonstrate that this leads to a contradiction, 

Suppose 

v L < v 
max ^ vmax 
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then from lemma 8, 

L* > L+l. 

But this contradicts the assumption that 

L* = L. 

Thus we conclude that 

vL > v 
m a x — v m a x 

Q.E.D. 

As a consequence of this theorem we can solve the min-max path 

flow problem on G(N,A) by solving a sequence of maximum flows with bundle 

constraints on ty. (G). We begin at some value of L and solve (3)-(6) on 

D L(G). If v m a x < v m a x , then we increase L by one and continue. As soon 

as we obtain a value of L for which vl:„_ > v_._, we terminate the pro-

cedure and the min-max path flow has longest path value L. The path 

flow on G(N,A) which produces this solution is obtained simply by finding 

any path decomposition of the optimal flow on D L(G) and converting this, 

as suggested previously, to a set of flows on simple paths in G(N,A). 

If we drop the bundle constraints and add all individual arc 

capacities, then the maximum flow v^ a x may exceed v f f i a x as the following 

example shows. 
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Figure 19. Six-Period Expansion G(N,A) 
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The maximum flow, v m a x , for this network is v m a x = 3. Figure 19 

is the six-period reduced dynamic expansion of this network. The maximum 

flow on this network is v,f-_ = 4, hence 
m a x * 

* 6 V_ „ 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

This research has been concerned with a study of the min-max 

path flow problem on a directed network. While this problem has wide 

application in network problems, it had not, to the author's knowledge, 

been explicitly treated in the literature. 

The objectives of the research were to characterize the structure 

of the problem within the framework of other network flow problems that 

have been treated in the literature and to develop a solution algorithm. 

To more explicitly define the latter objective, we observe that the 

problem could be solved by enumerating all paths of length L or less 

and then solving the maximum flow problem on that set of paths. The 

value of L could then be adjusted and a new linear program be solved. 

Obviously the procedure terminates when the smallest value of L is found 

for which the linear programming solution saturates a minimum cut set 

of the network. The disadvantage of this approach is that the set of 

paths is quite large and only a very few are likely to be in the solu­

tion. This means a large storage is required for problems of any size 

and many computations are required to test for optimality. 

Thus, the objective is to develop an algorithm which will not 

require the explicit enumeration of all paths but which will generate 

only paths which are candidates to enter the basis. 
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Results and Conclusions 

The specific results of this research are: 

1. The minimum cost flow algorithm does not solve the min-

max path flow problem. The min-max path problem is similar in structure 

to the multicommodity flow problems. 

2. The min-max path flow problem does not have all-integer 

solutions as does the minimum cost flow problem. 

3. The computations for solving the min-max path problem are 

comparable to those for solving arc-path formulations of other network 

flow problems. 

4. An algorithm was developed which utilizes a minimum cost 

maximum flow algorithm to achieve an initial feasible solution to the 

problem and then moves toward optimality by solving a sequence of con­

strained shortest path problems to force flow off the current longest 

path. A revised simplex type procedure is used after the minimum cost 

maximum flow problem has been solved. 

5. An alternative algorithm was developed which solves the 

min-max path flow problem by implicitly representing all paths of 

length L or less on a dynamically expanded network and solving a bundle-

constrained maximum flow problem on the expanded network. 

6. The path removal algorithm has application to multiterminal 

maximal flow problems with one or two inadmissible source-sink pairs. 

7. The expanded network could be adapted to solve maximal 

dynamic flows with total arc capacities. Implicit in the statement of 

the algorithm is the fact that it could also be used to find the maximum 
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flow in a network on paths of length L or less. There would be no 

difficulty in adding arc costs in addition to arc lengths. We could 

then use the algorithm to find minimal cost maximum flows on paths of 

length L or less. 

8. Several areas for future research have been identified, 

including work toward developing the most efficient computational scheme 

and applications of the results of this research to other problems. 

Other Applications 

Some of the results of this research have application to other 

network flow problems. Consider, for example, the multiterminal maxi­

mum flow problem. There are several sources and several sinks, each 

may have a specific availability or demand. If any source can ship 

to any sink, the problem can be treated the same way the single source, 

single sink problem is handled. If, on the other hand, we require that, 

say source s1 cannot ship to sink t 2, and source s 2 cannot ship to 

sink t-L , then it is not a single-commodity problem. 

Replace node s t , i = 1,2, with two nodes S j , s t ' and connect 

them with arc ( S J J S J ' ) • Do likewise with nodes tx and t 2. Give each 

new arc infinite capacity and costs as follows: 

a(s1 ') = a(ts ,t2 ') = co 

a(s 2,s 2 ') = a(tx ,tx ' ) = 0 
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We can solve the min-max path flow problem. If a maximum flow exists 

which satisfies the restrictions on flow specified, then such a solu­

tion will be generated by the min-max path flow algorithm. 

Minimal Cost, Min-Max Path Flows 

If we add arc costs to the min-max path flow problem, we may wish 

to find the minimal cost min-max path flow. This is easy to handle on 

expanded network algorithm. This simply alters the objective function 

in the decomposition approach. The subproblems remain minimal cost 

maximal flow problems. 

Maximal Dynamic Flows With Arc Capacities 

In the maximal dynamic flow problem, the arc capacities are 

replaced with flow rates, or the amount of flow which can enter or leave 

the arc per unit of time. If we impose on this problem, a total flow 

capacity, then we can handle these additional constraints as bundle 

constraints. The decomposition procedure of Chapter IV can then be 

used. The time expanded network would generally be much larger than 

that required for the min-max path flow problem however. Further research 

is needed to determine the possibility of working with the original 

static network as is the case for the standard maximal dynamic flow 

problem (12). 

Extensions and Future Research 

Since a feasible solution to the min-max path can be obtained by 

solving the max-flow problem without recourse to the simplex method, 

whereas the elements of B^ 1 are required to compute arc lengths for the 

shortest route problem of phase II, it is worthwhile to investigate the 
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possibility of computing the elements of B""1 on the network, making use 

of the basic paths in the solution. 

The potential for doing this is illustrated by describing the 

concepts of a procedure and pointing out the theoretical justification 

of the procedure. Whether the procedure is viable for large problems 

remains to be seen. In the arc-path formulation of the maximum flow 

problem, we introduced slack vectors (slack paths) for each arc. Suppose 

we have a basic feasible solution with B, and B" 1 such that: 

XB = B"1 _b, Xn - 0 

Let A = (a t J) denote the entire updated tableau for this solution. Then 

a u = B^Pj is the amount of change in Xg^ required by a unit of in­

crease in X j . 

If X j is the K T H basic variable, then 

11, if = K 

0, otherwise 

For non-basic variables, from 

XB = B"" 1^ - B " 1 ^ - B ~ 1 S X S 

where S is the non-basic slack vectors , 
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Xs t = B7 xb - B ; 1 ^ - B 7 1 s x s 

B 7 i S K j = 0 , j F4 K; S K = e K 

S K K = 1; SKI = 0 K ^ j . 

Thus 

B 1 1 S K = B 1J S KK = B l J » 

and 

XB i = B 7 l b " 2 B 7 j X S J ; - 0 • 

Hence B"j"j is the amount of change in Xg t if X S I , the value of the i T H 

slack path is increased while holding all other non-basic paths at zero 

flow. 

Thus, the potential procedure is to perturb the flow on the non-

basic slack paths of the network and determine the change required on 

basic path i in order to keep the flow in balance. 

To illustrate, consider the example of Figure 20. 

The subscripted lower case letters on the arcs indicate the basic 

paths which contain the given arc. Slack basic paths are not recorded. 

The circled letters Ct denote the arc for which the given path is basic 





146 

1 1 
1 

1 1 
1 1 

1 1 
B = 1 

1 
1 1 

1 1 
1 1 

The seventh column of B' is given by 

^ = [ - 1 0 1 - 1 1 0 1 1 1 - 1 ] ' 

This can be derived by increasing the flow on the non-basic slack path 

S 7 and determining the adjustments required to the other basic paths in 

order that the equations remain satisfied. 

The following table shows the basic paths corresponding to the 

numbered arcs and the change in flow required along each path caused by 

a unit increase in the value of flow on S 7. These values are taken from 

Figure 20. 

For more complicated networks, this heuristic procedure becomes 

unwieldly. The problem of finding the elements of a given column of 

B""1 can be represented as a system of m equations in m unknowns, where 

m is the number of real paths in the basis. 

In the network shown in Figure 21, there are four real chains 

in the basis. 

The simplex basis is given in Table 8. Its inverse is given in 

Table 9. 
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Table 7. Column Seven of B 1 

Basic Flow 
Arc Variable Change 

1 - 1 

2 0 

3 1 

4 s 4 - 1 

5 s 5 
1 

6 s 6 
0 

7 c 3 
1 

8 s 8 
1 

9 s 9 
1 

10 c 2 
- 1 

The flow change column corresponds to the seventh column of B' 
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Table 8. Simplex Basis 

Arc 
Number 

Basic 
Path 1 2 3 4 5 6 7 8 9 10 11 

1 c i 1 1 

2 c 4 
1 1 

3 s 3 
1 1 

4 s 4 
1 1 

5 s 5 
1 1 1 

6 s 6 

1 

7 s 7 

1 1 

8 c 7 1 1 1 

9 1 1 

10 c 3 1 1 1 

11 1 1 
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Table 9. Basis Inverse 

Arc 
Number 

Basic 
Path 1 2 3 4 5 6 7 8 9 10 11 

1 Ci 0 -1 1 

2 c 4 -1 1 -1 

3 s 3 
1 1 1 1 

4 s 4 
0 1 1 -1 

5 s B 
1 

6 s 6 
1 

7 s 7 
-1 -1 1 

8 c 7 
+1 +1 -1 

9 s e 
1 -1 1 1 

10 c 3 
-1 1 

11 sll 1 -1 1 1 
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Suppose we want to find the first column of B" 1. Let Sj - B ^ . From 

the network, we can write the following equations 

° i + 6 1 0 

6 2 + 6 Q 

8j_ + 6 2 + 6 a 

&i + 6 1 0 + ss 

The solution is 

61 = 0 

°io = °s = 1 

« i - -i , 

all other arcs of the network have slack paths as basic. The corre­

sponding value of 6 t is that necessary to balance the change in flow. 

It can be achieved by adjusting the flow on X t since X t represents 

flow on a slack path and does not interact with other basic variables. 

From the network, we get 

63 = 69 = 6g = 6 X 1 = 1 

84 = 6 5 = 8G = 0 i 6 7 = - 1 » 

= 1 

= 0 

= 0 

= 0 
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The vector A = [6j] ' = [0 1 1 0 0 0 -1 -1 1 1 1]' . 

B^1 = -A 

Lower Bounds on L for D, (G) 

In Chapter IV it was pointed out that it may be necessary to 

solve the bundle constrained maximum flow problem on D L(G) for several 

values of L until we find L such that 

v L - i < v = V-max v»ax vaax 

It was pointed out that an important part of the algorithm is the pro­

cedure for searching over L. In Chapter II we discussed a necessary 

condition suggested by Fulkerson that the min-max path decomposition 

of a given flow has longest path L. A profitable area for further 

research is the adoption of this concept into a procedure for finding 

a strong lower bound on L. The following approach should be investigated. 

1. Generate D L(G), 

2. For each a r c ( x T , y T + a ( x t y ) ) in D L(G), cover arc (x,y) 

in G(N,A), 

3. Delete all uncovered arcs in G(N,A), 

4. Solve the maximum flow on the new network. If the maximum 

flow is less than v n a x , then 



153 

5. Increase L by one and return to Step 1. Otherwise, 

L* <; L . 

After each iteration we have a good starting solution for the next 

iteration. 

The algorithm presented in Chapter III solves the min-max path 

flow problem by solving a maximum flow problem and then searching for 

a path to bring into the basis which will tend to reduce the net flow 

on the set of longest paths in the basis. This algorithm can be 

viewed as a modification of the parametric linear programming problem. 

Suppose we restate the maximum flow problem as follows: 

ti 
maximize: 2 (\ - 6 1X)x i 

1=1 

subject to: PX <. b 

X >: 0 

Suppose we have an optimal basis B to the maximum flow problem with 

X = 0. Let Lg be the length of the longest path in the basis with 

positive flow assigned. 

We want to determine whether the optimal solution to the min-

max path flow problem has longest path of length 1̂  or less. We 

define 6t as before 
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' R i f a'Pj s> Lg and x t = 0 

6 4 = { 1 i f a'Pj = Lg and x t > 0 

k 0 otherwise 

We now consider for X > 0. We are not interested in solving paramet-

r i c a l l y on X , but instead want to resolve for X = XQ>» We have shown 

in Chapter I I I that for any value of X > 0, the problem defined above 

w i l l have a so lut ion which maximizes the value of the flow while 

minimizing the flow on paths of length Lg or greater . 

U t i l i z i n g th i s approach, i t i s possible that a candidate to enter 

the basis may have 

t tP j > 1, 

where rr i s the vector of simplex mul t ip l i ers for the maximum flow problem 

(X = 0 ) . That i s 

CI - Zj = 1 - rrPj < 0. 

What th is means i s that there may be vectors Pj with negative 

r e l a t i v e cost c o e f f i c i e n t which could be brought into the b a s i s . The 

introduction of such paths may or may not reduce the flow in the network 

below v o a x . We might have to solve the a u x i l i a r y problem to opt imal i ty 

to ensure that the flow remains at v » . v . 
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In Chapter III, the algorithm presented does not consider such 

vectors as candidates to enter the basis. It would be of value to com­

pare the two approaches from a computational point of view. 

It was also shown that in considering paths to enter the basis in 

order to reduce the net flow on paths of length Lg or less, we need not 

consider paths of length 1̂  . It may be, however, that non-basic 

paths exist whose introduction into the basis will tend to reduce 

the net flow on paths of length Lg. It would be of interest to investi­

gate further the trade-offs between the two approaches. We can observe, 

for example that if indeed the optimal solution L* = Lg, then we might 

detect this more quickly if we do not allow paths of length L B to enter 

the basis. On the other hand, if L* < Lg, then any path of length 1̂  

brought into the basis will eventually be removed. Thus, the approach 

we presented in Chapter III appears to be superior to the standard 

parametric approach. 

Generating Paths of Length L or Less 

In Chapter IV, we developed and made use of a technique for 

representing all paths in a network of length L or less on a dynamically 

expanded version of the network. The procedure and representation appears 

to be significantly more efficient than known methods for generating 

and storing all paths of length L or less or the K shortest routes or 

paths. Additional investigation is required before definitive state­

ments can be made however. 

The use of D L(G) in place of generating and storing all paths of 

length L or less should be considered in problems which require such 
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paths. Further investigation is needed in this area. The Dantzig-Wolfe 

decomposition method is used with the single subproblem being a short­

est route problem. Because of the dominance of certain constraints over 

others, a modification of the standard decomposite appears to offer some 

computational advantages. 

Rerouting Flow 

If one were to delete the bundle constraints from the bundle-

constrained maximum flow problem on D L(G), then the result is a standard 

maximum flow problem. 

A standard maximum flow algorithm can be used to solve the problem. 

If none of the bundle constraints are violated then the solution is 

optimal. Otherwise, some bundle constraint is violated. 

It would be of interest to investigate a primal-dual approach to 

rerouting flow through the network. There would be three classes of arcs 

to consider: those which belong to violated bundles, those which belong 

to saturated bundles and those which belong to unsaturated bundles. Results 

here might be useful in the decomposition approach to solving the bundle 

constrained maximum flow on D L(G). 
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APPENDIX A 

CHAIN DECOMPOSITION 

Let F be an node-arc flow defined on A. Then F can be decomposed 

into an arc-path flow as follows: 

1. Path identification: a labeling procedure is used to 

identify a path to which flow can be assigned. Suppose 

we have identified j - 1 paths, Cj_ ,C3 , . . . J C ^ J . Each 

path has flow h(C k). Each time a path is identified, it 

is assigned the maximum flow possible consistent with the 

remaining flow on its arcs. The flow assigned to a path 

is subtracted from the flow on the arcs of the path. Thus, 

each time a path is identified and flow assigned, at least 

one arc of the path has its flow reduced to zero. The path 

will be considered the basic variable corresponding to one 

such arc. Begin at node s with the label (-,00) and label 

across the network with labels (x,h) until node t is 

labeled or it is revealed that t cannot be labeled. If t 

cannot be labeled, then the procedure terminates with the 

desired path decomposition. The labeling proceeds as 

follows: 

l.a. Select a labeled node x and search for an unlabeled 

y such that (x,y) e A and f'(x,y) > 0. To initiate, set 

f'(x,y) = f(x,y) for all (x,y) e A. If no such y can be 
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found select another node x. If all nodes have been con­

sidered, terminate the labeling procedure and go to Set (3). 

l.b. If nodes x and y can be found satisfying the above 

conditions, label node y with the label (x,h), where 

h(y) = minimum [h(x), f'(x,y)} . 

If f'(x,y) is the minimum let I By = y(x,y) where Y(x,y) 

is the index of the arc (x,y) and I B i is the relative 

position of path Cj in the basis. In other words, vector 
TH 

is the I B j basic vector. We say that Pj is basic 

to arc I B j . 

Continue to label until node t is labeled or the procedure 

terminates with no additional labeling possible. As indi­

cated, if t cannot be labeled, the desired decomposition 

has been achieved. Otherwise go to Step (2) . 

2. Flow assignment: Let Cj denote the path identified in 

Step (1) . We must generate the arc-path incidence vector 

Pj and the amount of flow h(Cj). We assume that the arcs 

of A are indexed. 

2.a. Set I = t and initialize Pj at 0. 

2.b. Let (N|,h(I)) be the label on I. Then h(Cj) = h(I). 

2.c. Let k be the index of the arc (N, ,I),k = T(N, ,1) . 

Then set Pk 3 = 1. Set f'(N, ,1) = f'(N,,I) - h(Cj). If 

I = S, remove all labels except on S, and return to Step 
(l.a.). 
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Completing the basis: Each path Pj assigned flow by the 

above procedure is associated with (basic to) a unique 

arc of the network G(N,A) while no two are associated with 

the same arc. If we associate with arcs which have no 

basic path the slack path (vector) of the constraint 

corresponding to that arc, the set of real paths and slack 

paths form a basis for the solution set of problem (1) in 

Chapter III. This follows from the fact that the above 

set of vectors could be generated by the simplex method 

on problem (1) if only chains are brought into the basis 

which can be brought in at a positive level. The simplex 

method always produces a basic feasible solution. 
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