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Abstract 

 This paper first presents an analysis of the global thermal field in many core processors in deep nanometer (to 16nm) nodes 

under power and thermal budget. We show that the thermal field can have significant spatiotemporal non-uniformity along 

with high maximum temperature. We propose spatiotemporal power multiplexing as a proactive method to reduce spatial 

and temporal temperature gradients. Several power multiplexing policies are evaluated for a 256 core many-core processor 

in 16nm nodes which demonstrate that the simple cyclic core-activation can achieve highly uniform thermal field with low 

maximum temperature.  

1. Introduction 

The semiconductor and computing industry is progressing towards chips with hundreds of on-chip cores. Moore’s Law 

will be sustained by growth in the number of cores rather than frequency scaling. [1-2]. However, the increase in number of 

cores can far outweigh the reduction in power-per-core in successive technology generations, resulting in unsustainable 

growth in chip-power and die-temperature. Thus we find that the power and thermal budget will limit the number of cores 

that can be simultaneously active. To overcome these limits requires a comprehensive look at the process of power 

consumption, heat generation, and management of thermals across the die – thermal field management.  

The management of maximum on-chip temperature is an integral part of integrated circuits (IC) in sub-100nm nodes [3-

7]. A higher on-chip temperature can cause functional failures and/or degrade circuit reliability [3, 8]. ICs in nanometer 

nodes experiences significant dynamic variation in the power dissipation due to workload variations or run-time power 

control methods. This results in temporal variation in temperature or thermal cycles. Large and fast temporal variation in 

temperature (i.e. faster thermal cycles) is also detrimental to circuit reliability [3]. Finally, on-chip spatial variation in power 

results in spatial gradients in on-chip temperature. A higher spatial gradient results in different operating parameters (e.g. 

different delay) for circuit blocks within a chip causing functional failures. Further, the higher maximum temperature and 

spatiotemporally non-uniform temperature distribution also increase the cooling energy [9]. Hence, reducing the maximum 

temperature and maintaining the spatiotemporal uniformity of on-chip temperature is very important for energy-efficient and 

reliable computing.  



The management of the maximum temperature in single or multi-core processors has received significant attention over 

the years. The basic principle that has been explored is to distribute the heat dissipation in space or time. For single or few-

core systems with pre-defined locations of hotspots (i.e. regions with higher temperature) thermal-aware floorplanning 

methods have been developed [10]. On the other hand, dynamic thermal management (DTM) and dynamic voltage frequency 

scaling approaches (DVFS) have been explored to distributed heat generation in time to reduce the maximum temperature [3-

7]. For DTM, power-aware scheduling techniques have been considered for single processor systems [4]. Chaparro et. al. 

considered thread migration (TM or core hopping) and DVFS techniques to reduce maximum temperature and improve 

performance in multicore architecture with 16 cores [5]. Coskun et. al. discussed spatial gradient and thermal cycles as 

important factors along with maximum temperature for multiprocessing SoCs [3]. The reactive thermal management 

strategies, such as thread migration, have been combined with scheduling policies to reduce the hotspot and temperature 

gradient in space and time [3]. However, there has been minimal effort to recognize and manage the global distribution of 

heat/temperature in many-core processors.  

This paper presents insights on the thermal fields for many core architectures in deep nanometer nodes (to 16nm), 

proposes proactive policies to simultaneously control the maximum temperature and spatiotemporal uniformity of 

temperature, and assesses the performance of these policies. Since we aim to analyze and manage the thermal field instead of 

only maximum temperature, the proposed approach is referred to as ‘thermal field management’. This paper makes 

following contributions:  

• We analyze the thermal field in a many-core processor in extremely scaled technology nodes and illustrate the 

challenges in thermal field management. 

• We propose proactive spatiotemporal power multiplexing as a principle for thermal field management to redistribute 
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Fig. 1: Limits to active cores (a) power, and (b) temperature. 



heat generation in both space and time. 

• We present different policies for the spatiotemporal power multiplexing and analyze its impact on spatiotemporal 

uniformity and maximum temperature.  

• We analyze the energy-efficiency of the proposed approach considering on-chip delay and leakage variations.  

The effectiveness of the proposed approaches is evaluated considering a predictive 256 core system at International 

Technology Roadmap of Semiconductor (ITRS) predicted 16nm node [1]. Our approach can achieve uniform spatiotemporal 

thermal field and reduce the maximum temperature across the chip.  

2. Analysis of the Thermal Field  

We first analyze the power/thermal behavior of many core processors at deep nanometer technologies using the methods 

described in Section 5. We consider a tile-type architecture where  the set of tiles (cores) are arranged in two dimensions [11, 

12]. The cores are connected by a mesh network. The core complexity (simple cores with 16 million gates) and frequency 

(3GHz) is assumed to constant over technology generations. The technology driven core power estimation tool proposed by 

Sekar et. al. [13, 14] and the ITRS predicted technology parameters [1] were considered in the analysis. We arrive at the 

following important observations.  

1. Thermal/power limited capacity of many-core processor: We find that the power and thermal budget will limit the 

number of cores that can be simultaneously active in a many-core processor. This is illustrated in Fig. 1 considering a 4X 

increase in the number of cores per generation (complexity and frequency was kept constant). Note that the reduction in the 

total power (active and leakage) per core is more than overshadowed by the increased number of cores. While the exact 

values of the power consumed and peak temperature will depend on the specifics of the device and processor architecture, 

we find the presence of the power/thermal limited capacity to be a fundamental architectural limitation to be explicitly 
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managed and overcome.  

2. Activate-deactivate core control for power management: We observe that the effectiveness of DVFS will reduce with 

scaling. This is illustrated in Fig. 2 considering circuit simulations of delay-voltage characteristics of an 8-stage FO4 ring-

oscillator at different predictive technology nodes [15]. For a target frequency reduction the opportunity for voltage 

reduction reduces at scaled nodes. For example, the allowable voltage reduction for a 20% frequency reduction target at 

16nm node is only 5% or ~40mV (considering ITRS predictions of ~0.7V supply voltage). This suggests the utility of fine-

grain DVFS will be limited at best. We predict that core level power management is better performed using activate-

deactivate control. The deactivated cores employ clock and supply gating and dissipate negligible power. The recent 

developments of many-core system supports this need for fine-grain activate-deactivate control of cores [12]. The increased 

process variation with scaling will also limit the opportunity for fine-grain DVFS.  

2.1. Structure of the Thermal field in Many-Core Processors 

Based on the above mentioned observations, we predict that at deep nanometer nodes effective power management 

approach is to operate each core at nominal power and control the number of active cores. If cores are activated on a 

schedule such that the number of active cores is fixed and less than the total number of cores, the workload and locations of 

the active cores vary over time. The interaction of this execution principle with physical nature of heat flow creates a 

spatiotemporally non-uniform global thermal field. The physical properties of heat flow, such as spatial and temporal 

variations, do not scale with area of the cores. Thus with the reduction of the physical area of a core across technology 

generations the temperature variation across the physical area of a scaled core continue to diminish until from a thermal 

perspective, each active core behaves as a thermal hotspot creating ‘distributed hotspots’ across the on-chip thermal 

variations. This increases the on-chip spatial gradients in thermal field (Fig. 3a). Both the location and temperature of the 

hotspots can change over time as the location of the active cores change. This creates a spatiotemporally non-uniform and 

non-deterministic global thermal field. In contrast, in modern low core count architectures hotspot locations are known, e.g., 

the register files. On the other hand, as each core experiences sequences of active-inactive states, there will be temporal 

variations in the core temperature (thermal cycles). The activation-deactivation sequence as well as temporal variation in 

workload of the core will have a strong impact on this temporal thermal gradient (Fig. 3b). Unlike the case of single or few 

core systems where maximum temperature mainly depends on the total power dissipation, in many-core processors the 

maximum on-chip temperature will depend on both the number (i.e. total chip-power) and location of the active cores. For 



example, same number of active cores but their different locations can result in 20oC change in temperature (Fig. 3c). If 

active cores are concentrated in a physical region of the chip (a physically compact set), the maximum on-chip temperature 

can rise faster and rise to a higher value. Hence, the power dissipation and thermal field in many-core processor has a 

complex time-varying relationship. Note if we assume all cores are always active we approach a special case of the generic 

thermal field discussed above that has spatial uniformity [16]. However, such an analysis neglects the technological trends in 

power-per-core and does not consider the challenges to arbitrary reduction of computation power under process variation 

while maintaining accuracy of the computation.  

3. Basic Principles for Thermal Field Management  

The primary goal of thermal field management is to reduce the spatial variation in temperature across cores and temporal 

variation at a core, i.e., we seek to maintain a uniform spatiotemporal field while minimizing the maximum temperature (Fig. 

4). The thermal field is characterized using the following metrics (Fig. 4).  

• Spatial gradient: The temperature difference between two adjacent cores at a given time. 

• Spatial difference: The difference between maximum and minimum on-chip temperature at a given time.  

• Temporal gradient: The temporal temperature variation a core experiences within a short time interval (~10-100μs).  
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Fig. 3: Thermal field in many-core: (a) spatial, (b) temporal, (c) maximum temperature 



• Temporal difference: The difference between the maximum and minimum temperature for a core over a long time period 

(~10ms). 

3.1 Spatiotemporal Power Multiplexing  

Consider a 256 core processor at the 16nm technology node with a target throughout equivalent to 64 active cores (each 

active core dissipates ~1.5W as per our model from Section 5). We now consider the methods for distributing the heat 

generation in space and time. First, we consider a spatial approach with 64 active cores distributed spatially in the entire die 

(i.e. die-area for a 256 core processor, low power cache memory between neighboring cores). We call this approach 

“Selected Core On” (Fig. 5). Next we consider distribution of heat over time by activating all cores and turning ‘all’ of them 

periodically (Fig. 5). This condition is called “Full core on and off” since all cores are active during same time interval and 

off periodically. Our approach is to distribute the heat in both space and time –i.e. we select a set of 64 cores and keep them 

on for a given period of time (time-slice). The power is migrated to a different set of 64 cores in the next time-slice. As over 

time the total power is multiplexed between different spatially distributed core sets, we refer to this as spatiotemporal power 

multiplexing. Note that a 64 core die (all cores are physically close and active) would have much higher power density and 

temperature compared to all the above cases (e.g. 1100C in our simulation at predictive 16nm node).  

3.2 Thermal equivalent RC network  

 

 
Fig. 4:  Spatial and temporal frequency concept diagram 



First, we physically explain the advantage of the spatiotemporal power multiplexing using a thermal RC circuit (Fig. 6, 

represents a 4 core system). The heat generation is represented by the current sources and the voltage at each node represents 

the temperature. For the spatial (‘Selected Core on’) one current source remains always active. The temporal (‘Full Core on 

and off’) and spatiotemporal (‘Cyclic’) cases consider pulsed current source (Fig. 6). For the temporal case, all sources are 

activated and deactivated simultaneously. In spatiotemporal mode, each source is active at the successive time-intervals and 

only one source is active at a time. For all these approaches average current (i.e. heat generation) over time is constant 

(equivalent to that of one current source).   

Since a single core (i.e. current source) is always active with the selected core on case it allows maximum temperature to 

rise at the active location and create high temperature difference. However, as the cores are not deactivated thermal cycles 

are low. The temperature behavior for the temporal and spatiotemporal case depends on the time-slice interval. First we 

explain the effect of time-slice interval on the spatiotemporal multiplexing based approach. If the current source is activated 

(deactivated) for a smaller time (i.e. smaller time-slice) the thermal capacitor at that location gets less time to charge 

(discharge). Thus a faster time-slicing reduces the voltage change across the thermal capacitors between two activations 

leading to a lower thermal cycles. Further, a faster switching allows less time to develop voltage difference across the lateral 

resistors resulting in less spatial variation in temperature (i.e. voltage) across the different nodes. Finally, a lower rate of 

increase in temperature in all locations implies a lower maximum temperature. Hence, for spatiotemporal power multiplexing 

a faster time-slicing can better manage the physical heat flow and leads to a reduced maximum temperature and lower spatial 

and temporal variations. However, the advantage diminishes if the time-slice is reduced beyond a certain point. The effect of 

 

 
Fig. 5: Spatiotemporal Power multiplexing  



time-slicing for the temporal (i.e. full core on and off) case is similar to the spatiotemporal case explained earlier. However, 

as the overall heat generation (i.e. total current) during the active period is much higher, the temperature rise at a much faster 

rate and to a higher value. Similarly, the temperature reduction is also higher. For a given timeslice, full core on and off case 

results in a higher maximum temperature and temporal gradients, particularly, for larger time-slice intervals (Fig. 6).  

The above observation is verified using full-chip thermal simulations of a 256 core system with a targeted throughput 

equivalent to 64 active cores (Fig. 7). Fig. 7 shows that the selected core on case has low temporal gradient, but has high 

spatial gradient. The full chip core on and off case has higher temporal gradient but has lower spatial gradient. The 

spatiotemporal power multiplexing provides better temporal uniformity compared to the temporal method; better spatial 

uniformity compared to the spatial method; and lower maximum temperature compared to both approaches. We also observe 

that to maintain a target maximum temperature and temporal gradients, a much faster timeslicing is required for when heat is 

distributed only temporally. 

4. Spatiotemporal Power Multiplexing Policies 

We discuss three policies to determine the next set of active cores at the end of each time-slice interval.  
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Fig. 6: RC Equivalent Circuit Analysis: (a) circuit, (b) maximum temperature, (c) spatial gradient, (d) temporal 
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4.1. Random power multiplexing 

In this policy a random set of cores are activated at every timeslice, while currently active cores are deactivated. This can 

be achieved by using an on-chip random number generator that generates a new set of random number in every time slice. 

This is a proactive approach as no real-time temperature information is used. But the activation sequences of the cores are 

random resulting in increased complexity of state migration (i.e. transferring state information from one location to another). 

However, this policy allows a fine-grain control of the number of ‘on’ cores for highly time-varying parallel workload. 

4.2. Cyclic Multiplexing: 

A very simple but effective policy is the cyclic multiplexing policy (Fig.8). The entire chip is divided into smaller blocks 

called local areas. In our simulations, we divide the chip into 64 blocks of 2x2 cores each. To reduce thermal interaction 

between neighboring units, we initially placed active cores in checker board fashion.  The active cores are then shifted after 

each timeslice, in a circular fashion as illustrated in Fig.8 [sequence: (a)→(b)→(c)→(d))]. This policy requires very simple 

hardware implementation and has a predefined core-activation sequence. As the cores are physically located in the vicinity of 

each other, cache sharing may also be possible which can significantly decrease the state transition time and energy (i.e. the 

energy associated with transferring data from one location to another). The primary disadvantage is that fine-grain control of 
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Fig. 8: Spatiotemporal power multiplexing with the cyclic policy. 



the number of ‘on’ cores is more difficult.  

4.3. Global Coolest Replace 

A partially reactive control approach using on-chip real-time temperature data is to replace the hottest 64 cores with the 

coolest 64 cores. This can help decrease the maximum temperature of the chip, as the coolest cores in the chip are turned on 

at the end of each timeslice. However, it requires complex implementation involving sampling of temperatures of all the 

cores and maintaining a sorted list of all the cores according to the instantaneous temperatures at the end of each timeslice. 

The core-activation sequence is also not predefined and the state migration can be costly (active cores may migrate to 

physically distant locations). 

5. Modeling and Simulation Methodology  

We demonstrate the effectiveness of spatiotemporal multiplexing on a tile-type homogeneous 256-core processor in 

predictive 16nm technology [11, 12]. A complete circuit and/or architectural level simulation of this predictive many-core 

processor is currently not feasible. Hence, we have used the technology driven power estimation tool (Intsim) presented by 
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Sekar et. al. to estimate the power of each core at 16nm [13-14]. The total power of a logic core is computed by taking the 

dynamic (assuming activity of 0.1) and leakage power of the logic gates including the wiring capacitance into account, the 

register and clock power, and the power associated with the repeaters in the signal interconnects [13]. The core power is 

determined by the system level parameters such as number of logic gates, the total silicon area of a core, operating 

frequency, etc. and the technology parameters such as feature size, device on/off current, threshold and supply voltage, 

interconnect dielectric thickness etc. The technology parameters are obtained from ITRS high-frequency logic process 

roadmap [1]. Each core is assumed to have 16 million gates, a local cache, and running at 3GHz frequency. Note the number 

of gates is much lower than that in the current microprocessor cores (to reflect simple cores) and the frequency is not scaled 

over the generations. For simplicity, we have neglected the cache power.  Under these assumptions, we predict ~1.5W power 

per core. This is a reasonable estimate if we extrapolate the each core of 45nm microprocessors running at 3GHz which 

consumes ~100W of power [18]. Assuming a 2X reduction in switching capacitance in successive generations due to scaling 

and ~70% reduction of VDD as predicted by ITRS from 45nm to 16nm node, we obtain ~6W of power per-core. If we 

consider 3-4X reduction in core complexity, this reduces to ~1.5W-2W. We consider different numbers and locations of the 

active cores in a chip to emulate the time-varying power map. While the different number of active cores modifies the total 

power, the different locations only modifies the power map. The generated time-varying power map is coupled to the full-

chip thermal simulator HotSpot to obtain the on-chip temperature distribution [17]. The spatiotemporal power multiplexing 

policies are used to dynamically vary the on-chip power map and estimate their effect of temperature distribution.  Although 

this approach disregards the exact architecture details of the core, it brings important insights into the thermal behavior of the 

many-core systems. 

6. Impact of Spatiotemporal Power Multiplexing  

We analyze the impact of spatiotemporal power multiplexing based proactive control mechanism on the thermal field. We 

show our results considering a throughput target of 64 active cores. Similar trends were observed for other throughput values 

as well.  

6.1. The effect of the Timeslice Interval 

 As the thermal behavior of the chip is similar to a distributed RC network, it is clear that a larger timeslice will lead to a 

higher maximum temperature and higher spatiotemporal non-uniformity (as explained in section 3). This is captured in Fig. 9 

which shows the effect of time slice on maximum temperature, spatial gradient, temporal gradient, spatial difference, and 



temporal difference. A smaller timeslice shows reduced maximum temperature (Fig. 9a). However, the improvement from 

1000K to 100K is more pronounced than that from 100K to 10K clock cycles. A faster migration implies that core-to-core 

temperature variation is much less (Fig. 9b). Both the spatial difference and spatial gradient reduce with a faster timeslice 

(Fig. 9c,d). This implies that on-chip thermal variations are more uniform at all time instants which imply better functional 

reliability, cooling efficiency, and physical reliability. Finally, both the average value and core-to-core variations of temporal 

gradients and temporal difference of all cores reduce significantly at a faster timeslice (Fig. 9e,f). This implies all the cores 

have a lower thermal cycle (better reliability). Further, the reliability degradations across cores are similar.  

6.2. The effect of Migration Policies  

For a fixed timeslice, the effectiveness of the spatiotemporal power multiplexing depends on the policy. Our analysis 

shows that the cyclic policy realizes a much lower maximum temperature, spatial difference/gradients, and temporal 

difference/gradients (Fig. 10), i.e., for a fixed timeslice cyclic migration provides better uniformity. On the other hand, for a 

given maximum temperature or spatiotemporal uniformity target, the cyclic migration can be performed much less 
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frequently. Hence, a co-design of the migration policies and timeslice is necessary to maximize the advantage. To understand 

the reason for the above mentioned differences, we estimate the physical compactness of the set of active cores over the 

entire time duration. The physical compactness is measured by computing the core-to-core distance between all pairs of cores 

in an active core set and estimating the inverse of the average of all the distances. A higher value of compactness implies the 

active cores are physically close which results in a faster rise in temperature. Fig. 11a shows the physical compactness 

distribution for different policies. The active core sets in the cyclic policy always has the same compactness (because of the 

checkerboard configuration). Note that both global coolest and random policy generates several instances of very high 

compactness leading to higher maximum temperature and spatiotemporal non-uniformity. This explains why cyclic policy 

performs better. However, to explain the difference between global coolest and random policies we estimate the thermal 

proximity, defined as the difference between the average temperature of current set of active cores and the next set of cores 

to be activated at each timeslice intervals. A more negative difference implies that migration is performed to a set of more 

cool cores. As expected, the global coolest policy always migrates to a much cooler set of cores compared to the random 

policy resulting in a lower maximum temperature compared to the random migration (Fig. 11b).  
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Fig. 11: Effect of migration policies: (a) Compactness (b) Proximity, (c) Utilization, and (d) Core-to-core 
temperature variation 



One point to note here is that by executing power multiplexing, the utilization of any core per unit time is reduced. The 

cyclic policy ensures all cores have equal utilization (25%). However, the core utilization can vary between 15-35% for 

random and 20-30% for global coolest replace policies (Fig. 11c). This implies that while cores age at a similar rate for 

cyclic policy, the global coolest replace and random policy can result in different aging rates. The core-to-core temperature 

distribution is much tighter for the cyclic policy for a fixed timeslice (~1000K for Fig. 10d) condition. 

6.3. Effect on Delay and Leakage Variations 

By providing lower temperature and more uniformity, spatiotemporal power multiplexing helps to reduce the core-to-core 

delay and leakage variations. The delay variations are estimated considering an 8 stage FO4 ring-oscillator using 16nm 

predictive models [15]. Fig. 12 shows the histogram of delay and leakage increase (estimated for an inverter) compared to 

45oC temperature, considering random migration policy for different timeslice. A lower on-chip delay and leakage variation 

implies a better functional reliability. From Fig. 11d we expect that cyclic policy will provide even lower delay/leakage 

spread. 

6.4. The Power overhead and overall Power Saving 

We estimate the power overhead of activation-deactivation of all possible cores at the same time (i.e. 64 cores are turned 

off and 64 cores are turned on). We assume during transition all internal nodes make transition (i.e. entire core capacitance 

switches). The switched capacitance is estimated from the power-per-core. Further, we consider all registers need to make 

transition for state migration. Finally, the transition of the supply network capacitance (estimated based on ITRS roadmap) 

and 10% additional core level decoupling capacitance is considered. However, as the per core switch capacitance is reduced 

at deep nanometer nodes and time-slicing is performed at very low frequency, the power overhead is very low (Table. 1). 

This is overshadowed by the dynamic and leakage power saving achievable by operating the system at a lower voltage. This 

is permissible as lower temperature implies that same target frequency can be achieved at a lower voltage (Table. 1, 

estimated based on the ring-oscillator simulation in predictive 16nm models [15]). Compared to ‘Selected Core on’ (i.e. with 

no transition case), even with random migration policy, the overall power saving (i.e. after accounting for the additional 

transition power) can be ~5-6%. 



6.5. Discussion 

We analyze the impact of variation in the active power of a core (Normal distribution with standard deviation of 20% of 

nominal value) and non-zero power in the deactivated mode (finite leakage in case of state-preserving supply gating i.e. 

voltage is not reduced to ‘0’). Our analysis shows that these conditions will increase the maximum on-chip temperature 

requiring a smaller time-slice interval. Also, we study the effect of a lower power density for each core. Since lower power 

density implies reduced heat generation in each active core, a much larger time-slice interval can be used to control the 

maximum temperature and uniformity for all policies. As in case of the higher power density, the cyclic policy shows better 

performance compared to the random approach  (Table. 2) 

7. Summary 

We have analyzed the unique thermal behavior in many-core system to show that the thermal field in many-core systems 

can have significant spatiotemporal non-uniformity. Hence, global management of the thermal field to reduce such non-

uniformity along with the maximum temperature is necessary in many-core systems. We have presented spatiotemporal 

power multiplexing at fixed time intervals (timeslice) as a feasible approach for thermal field management. The key idea is to 

distribute the generated heat in space and time to reduce temperature as well as maintain uniformity. Several migration 
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Fig. 12: Effect on delay (left) and leakage (right) distribution. 
Table. 1: Power overhead and saving [% of total chip power] 

Timeslice Interval  100K 200K 500K 1000K 
Power overhead 0.028 0.014 0.006 0.003 
Power Savings  6.1 6.1 6.1 6.1 

Table. 2: Results with 4X lower Power Density and 10000K Timeslice 
 

 
Max 

Temp. 
[°C] 

Spatial 
Difference 

[°C] 

Spatial 
Gradient 
[°C/Δx] 

Temporal 
Difference 

[°C] 

Temporal Gradient 
[°C/Δt] 

Random 64.63 17.32 11.53 18.19 14.95 

Cyclic 59.52 11.42 8.61 11.92 10.38 

 



policies are discussed. The effects of migration policies and timeslice on the thermal management are estimated. Our analysis 

shows that timeslicing provides effective proactive management of the thermal field to reduce maximum temperature, spatial 

and temporal gradients.  
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