
I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111

United States Patent [19J

Chamdani et al.

[54] DISTRIBUTED INSTRUCTION QUEUE

[75] Inventors: Joseph I. Chamdani, Marietta; Cecil
0. Alford, Lawrenceville, both of Ga.

[73] Assignee: Georgia Tech Research Corp., Atlanta,
Ga.

[21] Appl. No.: 08/489,509

[22] Filed: Jun. 12, 1995

[51] Int. CI.7 .. G06F 9/22
[52] U.S. Cl. .. 395/390
[58] Field of Search 395/376, 378,

395/381, 382, 391, 393, 390

[56] References Cited

3,924,245
4,725,947
4,736,288
4,752,873
4,780,810
4,896,258
4,992,938
5,050,067
5,122,984
5,129,067
5,136,697
5,208,914
5,261,066
5,345,569
5,355,457
5,367,703
5,371,684
5,414,822
5,619,730

U.S. PATENT DOCUMENTS

12/1975 Eaton et al. 395/421.09
2/1988 Shonai et al. 395/585
4/1988 Shintani et al. 395 /395
6/1988 Shonai et al. 395/800.23

10/1988 Torii et al. 395 /800
1/1990 Yamaguchi et al. 395/583
2/1991 Cocke et al. 395/393
9/1991 McLogan et al. 395/678
6/1992 Strehler 365/49
7/1992 Johnson 395/375
8/1992 Johnson 395/375
5/1993 Wilson et al. 395/275

11/1993 Jouppi et al. 395/425
9/1994 Tran .. 395/393

10/1994 Shebanow et al. 395/394
11/1994 Levitan 395 /800
12/1994 Iadonato et al. 364/491
5/1995 Saito et al. 395/375
4/1997 Ando 395/855

OIBER PUBLICATIONS

Sohi, "Instruction Issue Logic for High-Performance, Inter­
ruptible, Multiple Function Unit, Pipelined Computers",
1990 IEEE, pp. 349-359.

365

mispred_flag

350
Tail Pointer

Logic
360

(from dispatch buses)

DIQ alloc_port
(O .. Nd-1)

US006112019A

[11] Patent Number:

[45] Date of Patent:

6,112,019
Aug. 29, 2000

"An Efficient Algorithm for Exploring Multiple Arithmetic
Units," Tomasulo IBM Journal, Jan. 1967, pp. 25-33.

"Implementation of Precise Interrupts In Pipelined Proces­
sors," James E. Smith Andrew R. Pleszkun,© 1985 IEEE,
pp. 36-44.

"Instruction Issue Logic in Pipelined Supercomputers",
Shlomo Weiss & James E. Smith,© 1984 IEEE, Transac­
tions on Computers, vol. c-33, No. 11, pp. 1012-1022 Nov.
1984.

"The Metafiow Architecture", Popescu et al, IEEE Micro,©
1991 IEEE, pp. 10-13, 63-73.

Primary Examiner-David Y. Eng
Attorney, Agent, or Firm-Thomas, Kayden, Horstemeyer
& Risley, L.L.P.

[57] ABSTRACT

A distributed instruction queue (DIQ) in a superscalar
microprocessor supports multi-instruction issue, decoupled
data flow scheduling, out-of-order execution, register
renaming, multi-level speculative execution, and precise
interrupts. The DIQ provides distributed instruction shelving
without storing register values, operand value copying, and
result value forwarding, and supports in-order issue as well
as out-of-order issue within its functional unit. The DIQ
allows a reduction in the number of global wires and
replacement with private-local wires in the processor. The
DIQ's number of global wires remains the same as the
number of DIQ entries and data size increases. The DIQ
maintains maximum machine parallelism and the actual
performance of the microprocessor using the DIQ is better
due to reduced cycle time or more operations executed per
cycle.

310

22 Claims, 40 Drawing Sheets

(to execution unit)

bottom_DIQ_entry
(issued_DIQ_entry)

391

340
300

/

Note: insLID ;:;unique instruction tag
opcode =opcode of the instruction
RS1 =register number of first source operand
RS1 _tag =register tag of first source operand
RS2 =register number of second source operand
RS2_tag ""register tag of second source operand

In-order Issue Distributed Instruction Queue(DIQ)

Fetch Decode Dispatch Issue Execute Writeback

Execution Unit

instructions __J w Central ~ from Decoder •
Window •

I-cache •
Execution Unit

load

Load/Store Unit

load from D-cache

(a) with a Central Instruction Window

Fetch Decode Dispatch Issue Execute Write back

Dist. Window Execution Unit

instructions
Decoder K : •

from
• • •

I-cache • •
Dist. Window I •I Execution Unit

Dist. Window --- Load/Store Unit r ~1

Fig. 1
load from D-cache

(a) with Distributed Instruction Windows

Result
Buffer

Store
Buffer

Result
Buffer

Store
Buffer

Retire

[[

Retire

•
•
•

results to
Register
File

store to
D-cache

results to
Register
File

store to
D-cache

d •
\JJ. •
~
~
~ =

> = ~
N
~~
N c c c

'Jl

=-~
~
'"""' 0,
.i;;..
c

0--,
~
~
N = ~
\C

Note: inst 1 and inst 2 can be a floating-point arithmetic and/or a load/store instruction

inst 1 inst 2

S2IS3 OPITIS1 IS2IS3
I I I I I

Free List (FL)

Mapping Table
32X6

33 I 34 I 35 I 36 I 371 38 I 39

Pending-Target
Return Queue (PTRQ)

Register Mapping Table in IBM RS/6000 Floating-Point Unit

Fig. 2

3

d •
\JJ.
•
~
~
~ =

~
~
N
~~
N c c c

'Jl

=­~
~
N
0,
.i;;..
c

0--,
~
~
N = ~
\C

retire bus

entry dest.
number reg

• •
• •
• •

tail- 6

5 0

head- 4 4

3

Register File
(In-Order State)

Comparator/
Bypass Network

• • •

I : right_opr_bus (operand data
I left_opr_bus to functional units)

Result
Shift

Register

entry number I
Reorder Buffer - - - - J

(Look-Ahead State) - result bus (result value & exception condition
from a functional unit)

Reorder Buffer Result Shift Register

stage
functional

unit source
valid tag

result excep-
tions

• •
• •
• •

Fig. 3

valid

•
•
•

0

0

program
counter

•
•
•

17

16

shift
direction

l

N 0

• • •
• • •
• • •

5 float add 1

4 0

3 0

2 integer add 1

1 0

Note: N =the length of longest functional-unit pipeline

Reorder Buffer Organization

•
•
•
4

5

d •
\JJ.
•
~
~
~ =

~
~
N
~~
N c c c

'Jl

=­~
~
~

0,
.i;;..
c

0--,
~
~
N = ~
\C

tag oocode S1 a(S1) S2 a(S2) D a<D) B(D) 12
top

16 fadd RO 2 R4 2 RO 2 2 8
15 fadd R4 1 R6 1 R4 1 1 4
14 fadd R6 0 R7 0 R6 0 0 0
13 fadd R4 0 RS 0 R4 0 0 0
12 fadd RO 1 R2 1 RO 1 1 4
11 fadd R2 0 R3 0 R2 0 0 0

bottom IO fadd RO 0 R1 0 RO 0 0 0

(a) Before Issue

taa oocode S1 a(S1) S2 a(S2) D a<D) B(D) 12
top

empty spaces ready for
subsequent instructions

16 fadd RO 1 R4 1 RO 1 1 4
15 fadd R4 0 R6 0 R4 0 0 0

bottom T2 fadd RO 0 R? 0 RO 0 0 0

(b) After Issue and Completion

Note: S1/S2 =first/second source register identifier, D =destination register identifier,
a(X) = # of times register X is designated as a destination register in preceding inst (below it),
P(X) =#of times register Xis designated as a source register in preceding instruction (below it),

= issue index= a(S1) + a(S2) + a(D) + p(D).

8-Entry Dispatch Stack

Fig. 4

d •
\JJ. •
~
~
~ =

~
~
N
~~
N c c c

'Jl

=­~
~
.i;;..

0,
.i;;..
c

0--,
~
~
N = ~
\C

U.S. Patent

issue
writeback

retire

Entry
Number

tail - 7

6

5

4

3

2

1

PC

16

15

14

13

12

11

Aug. 29, 2000

(a) Instruction Timing

Sheet 5 of 40 6,112,019

12 15 16
I 15 16

Note: "float add" takes 6 cycles
to complete after issued.

Opcode Source 0 lerand 1 Source 0)erand 2 Destination Executed Excep-
·eady tag content ready tag

fadd 0 0.2 - 0 4.2

fadd 0 4.1 - 0 6.1

fadd 1 - R60 1 -
fadd 1 - R40 1 -
fadd 0 0.1 - 0 2.1

fadd 1 - R~ 1 -

conten tag con ten

- 0.3 -
- 4.2 -

R~ 6.1 -
R50 4.1 -

- 0.2 -
R30 2.1 -

tions

0 -
0 -

0 -
0 -
0 -

0 -

I+-

I+-

I+-

r+-

-+-

-+-

alloc

not rdy

4th issue

3rd issue

not rdy

2nd issue

head 1st issue - 0 IO fadd 1 - ROO 1 - R10 0.1 - 0 - -+-

Entry
Number

tail - 7

6

5

4

3

2

1

head - 0

(b) RUU Snapshot at Cycle 7 Note: Rik means the kth instance of

PC Opcode Source Ooerand 1 Source Operand 2
eady tag content ready tag conten

16 fadd 0 0.2 . 0 4.2 -

15 fadd 0 4.1 - 0 6.1 -

14 fadd 1 - R60 1 - R?O

13 fadd 1 - R40 1 - R50

12 fadd 1 0.1 R0
1 1 2.1 R21

11 fadd 1 - R20 1 - R30

IO fadd 1 - ROO 1 - R10

(c) RUU Snapshot at Cycle 9

Register Update Unit

Fig. 5

register Ri (register renaming)

Destination Executed
tag conten

0.3 - 0

4.2 - 0

6.1 - 0

4.1 - 0

0.2 - 0

2.1 R21 1

0.1 R01 1

Excep-
tions

-
-

-
-

-
none

none

-+-

+-

-+-

-+-

-+-

-+-

-+-

not rdy

not rdy

in exec

in exec

ready

wrtback

retire

Register
File

•••

FU1

Retire

operand buses

Issue/Schedule

• • •

functional
units

FUn

Instruction
Cache

Fetch & Decode

ORIS

(Deferred-Scheduling, Register-Renaming
Instruction Shelf)

• • •

• • •

bypass
buses

operand and
instruction routing

Metaflow Architecture

Fig. 6

• • •

Write- I back

write back
buses

I • • •

d •
\JJ.
•
~
~
~ =

> = ~
N
~~
N c c c

'Jl

=­~
~
O'I

0,
.i;;..
c

0--,
~
~
N = ~
\C

1 2 - 3 - 4 5 - 6 - 7
IO, 11, 12, 13 14, 15, I6

IO 11 13 14 12 15
IO 11 13 14

cycle­
allocate­

issue­
writeback­

retire- IO 11 13 14

h

h

(a) Instruction Timing
Note: Assume there are 4 allocate ports, 4 retire ports,
-- 2 floating-point add FUs (class rum 2) with 3-cycle latency.

Index
Source Operand 1 Source Operand 2 Destination

Locked R num ID Locked R num ID latest Rnum content
7
6 1 0 0.2 1 4 0.5 1 0 -
5 1 4 0.3 1 6 0.4 1 4 -
4 0 6 - 0 7 - 1 6 -
3 0 4 - 0 5 - 0 4 -
2 1 0 0.0 1 2 0.1 0 0 -
1 0 2 - 0 3 - 1 2 -
0 0 0 - 0 1 - 0 0 -

Disp.

0
0
0
0
0
1
1

(b) ORIS Snapshot at Cycle 2

Source Operand 1 Source Operand 2 Destination
Disp. Index Locked R num ID Locked R num ID latest R num content

7
6 1 0 0.2 1 4 0.5 1 0 - 0
5 0 4 0.3 0 6 0.4 1 4 - 0
4 0 6 - 0 7 - 1 6 Rn1 1
3 0 4 0 5 0 4 R41 1
2 0 0 0.0 0 2 0.1 0 0 - 1
1 0 2 - 0 3 - 1 2 R?1 1
0 0 0 - 0 1 - 0 0 Rn1 1

(c) ORIS Snapshot at Cycle 6

8 - 9 -

12

FU Exec.
class

2 0
2 0
2 0
2 0
2 0
2 0
2 0

10 . -

15
12

Opcode

fadd
fadd
fadd
fadd
fadd
fadd
fadd

PC

I6
15
14
13
12
11
IO

11 ..

16

13

._alloc

._alloc
-alloc
._ready
.__not rdy
-1st iss
-1st iss

Note: Ri'\ means the ktn instance of
register Ri (register renaming)

FU Exec. class

2 0
2 0
2 1
2 1
2 0
2 1
2 1

Opcode PC

fadd 16
fadd 15
fadd 14
fadd 13
fadd 12
fadd 11
fadd IO

-not rdy
-ready
._wrtbk
._wrtbk

I

-issue
._retire
I-retire

Fig. 7 ORIS (Deferred-scheduling, Register-Renaming Instruction Shelf)

d •
\JJ.
•
~
~
~ =

~
~
N
~~
N c c c

'Jl

=­~
~
-..J
0,
.i;;..
c

0--,
~
~
N = ~
\C

Floating
Point

Operation
Stack

(FLOS)

i
Decoder

,-------i-----~------------~

I
I
I Floating
I Busy 1 Point
I Bits ags Registers - - - - - -
I (FLR) I
I I
I I
I I

I I I r-------------1------------------- --,-------~

I
I I I I I

I I
I I I : I
I I I
I I _____ __.________ I I I

-...... , I
tag tag source control tag sink tag source control I
tag sink tag source control Reservation Stations tag sink tag source control I
tag sink tag source control \

1

1

\ I
\ I I I I
I I I I

I I I I
: Add : I M~lt!ply/ I I
I er I I D1v1de I I
I I I I

I
dest_tag result dest_reg dest_tag result dest_reg I

Common Data Bus (COB) I
L _____ -----~-----------------~------------~----]

I I

Fig. 8
+ ______________________________ L _____ _

Tomasulo's Reservation Stations at IBM 360/91

d
•
\JJ.
•
~
~
~ =

~
~
N
~~
N c c c

'Jl

=­~
~
00
0,
.i;;..
c

0--,
~
~
N = ~
\C

Fixed Point :::

Branch Unit RF -+---

~
Machine-State Reg.

Link Register I-Buffers

Count Register I
Condition Register

Fixed-Point Unit

::: --+
I-Cache - Dispatch

I-Buffers --+
Arrays --+ Unit Register Float Point -

--+ Mapping RF
Table ...

I + + I

~
t t + I

Branch & Condition-
Register Execute Unit - I-Buffers

I

I
Floating-Point Unit

IBM RS/6000 Architecture

Fig. 9

I Store I
I Buffer

....._

-

float.
store
addr.

,,
I Store ~ -, Buffer -

D-Cache
Arrays

I

I
I

d •
\JJ.
•
~
~
~ =

~
~
N
~~
N c c c

'Jl

=­~
~
~

0,
.i;;..
c

0--,
~
~
N = ~
\C

Cycle -1 2 6 9 10 11 12 13 14 15 7 8 3 4 5
I I I I

Branch
{

IF

Unit Disp/BR

Fixed- FXE

{

FXD

Point c
Unit WB

Floating­
Point
Unit

PD

Remap

FPO
FPE1
FPE2
F1WB

Pipeline Stage

I 7o 171 1111 1151 I I 111° 115° I I I I I I 8° 112° 181 1121 I
I go 113° 191 1131

I I I I I I
110° 114° 1101 1141

I I I I I I
I I I I

17° Igo 111° 113° 171 191 1111 1131 I
I I I I I

E 18° 110° 112° 114° J81 1101 1121 1141 I I I I I 115° 115° 0151 1151 I I I I
170 190 1110 1130 171 19 1111 1131 I I I I

.................... rno 110° 112° 114° 181 110 1121 1141 I I I

.............................. T7° T9° T1~ T14° J71 191 T121 1141 I I
17° 19° T71 J91 I I

I 170
19° 111° 113° 171 191 1111 1131 I I I I

.................... T8o r10° T 1 ;20 T14o J81 T101 1121 1141 I I I I
17° 19° 111° 113° 171 191 1111 1131 I I I

.............................. 180 1100 112° 114° 181 1101 1121 1141 I I I

....................................... rnu 11ou l11u 113u 181 11 ffl 1111 1131 I
J8V 110° 111° 113° 181 1101 1111 1131 I ...

J8U l10u 111u l13u J81 1101 1111 1311 ...
J81 110° 111° 113° 181 1101 1111 131 I ..

Note: IF =Fetch 4 instructions from the I-cache arrays, place them into BU's I-buffers.
Disp/BRE =Dispatch fixed-and floating-point instructions to FXU and FPU. Execute branch and

FXD
FXE
c
WB

condition-register instructions.
=Decode a fixed-point instruction and access the integer RF for operands.
=Execute a fixed-point instruction. For load/store instruction, compute its address
=Access the D-cache arrays. Data is returned to either the FXU or FPU.
=Write back result value to the integer register file. Data for load is written in this cycle.
=Pre-decode instructions in preparation for register renaming.

Cycle-by-Cycle Execution
in the IBM RS/6000

PD
Remap
FPO
FPE1
FPE2
FPWB

=Map architectural registers of a floating-point instruction to physical registers.
=Decode a floating-point instruction and access the floating-point RF for operands
=Execute a floating-point instruction. This is the first cycle of MAF pipeline.
=Second cycle of MAF pipeline. Fig. 10
=Write back result value to the floating-point RF.

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
'"""' c
0,
.i;;..
c

0--,
~
~
N = ~
\C

Instruction Issue Unit(llU)

I I-Cache 111 Branch DCAF 1 I 8CT~i~h

Dataflow Integer Unit(DIU)

36

Cache Control /MMU/MBus Interface (CMB)

Memory
Management Unit

Cache
Control/Tags

Cache Coherency and
MBus Level-2 Bus Interface

Fig. 11 Lightning SPARC Architecture

3 instructions

17

cache address

data

address

Cache RAM
(Instructions/Data)

d
•
\JJ.
•
~
~
~ =

~
~
N
~~
N c c c

'Jl

=-~
~
'"""' '"""' 0,
.i;;..
c

0--,
~
~
N = ~
\C

FP
Inst.

Queue

Floating-Point Register Files

Floating-Point Unit

Instruction Unit
Scheduling and 1-----__,

Grouping Logic "take" signals

Target
Inst.

Queue

Sequential 1,. ,

Inst.
Queue PC Logic

SuperSPARC Architecture

Fig. 12

floating-point store data

floating-point load data

Integer Register File

Integer Unit

Shared MMU 1 • 1

I-Cache D-Cache
Write Buffer i-1

Dual Mode (MBus or Ext. Cache) Bus Interface

address J 36 data J: 64

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
'"""' N
0,
.i;;..
c

0--,
~
~
N = ~
\C

I-Cache I Branch History Table I I Tag

i i
EBox I Box

Multiplier - Pref etcher

Adder Resource Conflict

Shifter PC Calculation

Logic Unit 1-TLB

Pipeline Control
i
Integer RF I I

t
, , '

ABox I Store Buffer I I Address Generator I I D-TLB

'
,

D-Cache I Tag I I Data

DEC Alpha 21064 Architecture

Fig. 13

I I Instruction

FBox

~ - Multiplier I
Adder

Divider

t
- Floating-Point RF

I I Load Silo

I

I

I

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
'"""' ~
0,
.i;;..
c

0--,
~
~
N = ~
\C

0 1 2 3 4 5 6
IF SW I IO I I 1 A 1 I A2 I WR I

I I I I I
CACHE I DECODE I ALU1 I I IRF I EBox

ACCESS I I I I WRITE I }
: : I ~~~

SWAP I I ISSUE I I ALU2 I I
PREDICT I I RF READ I PC GEN I 1-TLB I I-CACHE I

: : : : : HIT/MISS: IBox

I Bo I I I VA GEN I D-TLB I D-CACHEI
x I I I I I HIT/MISS I ABox

I I I I I I
(a) Integer Pipeline Timing

I O I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 9 I 10
I IF I SW I IO I I 1 I F1 I F2 I F3 I F4 I F5 I FWR
I I J I I I I I I I
I --,------- - - ,--- I

I CACHE 1 I DECODE I I EXP LID SHIFT ADD/RND 1 FRF
I ACCESS I I I I I I I I I

I I SWAP I I ISSUE I 3XMCD MJL 1 MJL2 ADD~RND I
I IBox I PREDICT! IRF READI I I I I I
I I I I 11._~~+-~~-+-~~-+-~~-+-~--4
I I + I I

(b) Floating-Point Pipeline Timing

WRITE FBox
FRI

WRITE B ypass

Note: IRF = integer register file FRF =floating-point register file
ALU1 =ALU operation completes (except shift) ALU2 =shift operation completes
WRITE = write result to the appropriate register file PC GEN = generate new program counter value
VA GEN =generate new virtual address EXP =calculate exponent difference
LID =predictive leading 1 or 0 detector SHIFT =normalization shift and sticky bit calc.
ADD/RND = final addition and rounding 3XMCD =generate 3 x multiplicand
MUL 1 =in radix-8 pipeline array multiplier MUL2 =in radix-8 pipeline array multiplier

DECchip 21064 Pipeline Stages

Fig. 14

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
'"""' .i;;..

0,
.i;;..
c

0--,
~
~
N = ~
\C

To Off-Chip I-Cache
(4 Kbytes to I Mbytes)

address data tag
.l

64

I-Cache Interface

instructions

Unified
TLB

Integer Register File
(32 x 32 bits)

Integer Unit

To System Interface
(Memory, 1/0, Graphics)

To Off-Chip D-Cache
(3 Kbytes to 2 Mbytes)

address data tag address tag

System Bus
Interface

Control Unit

.l .l

64

D-Cache Interface

Floating-Point Register File
(28 x 64 bits or 56 x 32 bits)

Floating-Point Unit

HP PA7100 Architecture

Fig. 15

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
'"""' Ul
0,
.i;;..
c

0--,
~
~
N = ~
\C

lnstuction : Instruction i i D-cache i Register
1 Fetch

1
Decode

1
Execute

1
Access

1
Write Back

1

F I I I B I A I R I
I I I I l I

Load/Store .. I I-fetch .,I Decode I Daddr I ID-access I .. 1 IReg Wbl
I I I I I I I I I
I I I I I I I I I

integer Arithmetic
1

I-fetch .. : Decode:~ Ex~cute ----.: : : :Reg Wb
1

I I I I I I
I I I I I

Floating-Point Arithmetic "' I-fetch .,, Decode : Execute Reg Wb
(except DIV/SQRT) I I I I I I

I I I I I
I I I : I I I

Correctly Predicted 111 I-fetch I .,.I Addr 1.. Target I-fetch I
Branch I I I I I I I

I I ~ Cond Eval ---+J I I
I I I I I I I
I I I I I I I

Incorrectly Predicted 1.. I-fetch I .,I Decode I Laddr .. 1. Target I-fetch--•
Branch I I I I I I I I

I I I ~ Cond Eval -+J I I
I I I I I I I I

' I

HP PA7100 Pipeline Stages

Fig. 16

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~

'"""' O'I

0,
.i;;..
c

0--,
~
~
N = ~
\C

I-Cache

{2ss

Prefetch Buffers

U pipe Vpipe

Integer Integer
ALU ALU

64-Bit Bus --:r32 t32
Interface -

I Integer Register File

Integer /32 V32
Unit

/ /

" /

754
I D-Cache
I

Branch Prediction

Floating-Point Unit

exponent result l l mantissa
, ' result

Floating-Point Interface
Register File, and Control

(FIRC)

i I • ' .
\FAoo/ ~Frnv/ \FMUL/

FEXP !
FRND I

I i

Intel Pentium Architecture

Fig. 17

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
'"""' -..J
0,
.i;;..
c

0--,
~
~
N = ~
\C

U.S. Patent Aug. 29, 2000 Sheet 18 of 40 6,112,019

I-Cache I
Arrays

-JtNd
retire
DUSe5

I Fetch and I I Fixed-Point <;:/=. Fixed-Point ,
Decx::de Unit Register File Reorder Buffer r-- ,

/

source reg num~ fL Nret 1 f Nres

_.- / v2*Nd v ... 2*Nd
fixed-point Nd 2*Nd . ,. ~ r

instruction dispatch buses"""-Operand MuxeV
operand buses

2*Ndj{_ -

~hr- ~nr l ~!Ir =in m Reservation
" / " / " / " /

Station
PC \Branch/ \ALuo/ \ALU 1 / \ Fixed/Floating-t/ ~ - Unit Point Move Unit

t t t t t
I-

fixed-i:ioint result buses retire l
,___

Fl r p · t buses oa. ing- ~1n / Floating-Point , >- ,___

Register File N , Reorder Buffe " - , >-

source reg numbers ft ret 'f Nresfp
,

... 2*Nd
floating-,

~/ 2*Nd ,...v point
2*Nd ~ • ,. operand

instruction dispatch buses """- Ooerand Muxes / buses
I I

2*Nd-rf
-

liu==
-

~ru
- I+--- ,__
- ~ i-. . 7

" / " / " /

Reservation D-
Stations \FMDS j \FALU/ Cache ~ I/ \

,,
I

floating-point result buses

A Superscaler Processor w/ Reorder Buffer and Reservation Stations

Fig. 18

Nxrb-1

tail RB(Nd-1)

tail_RB(O)

Fig. 19

2

1

0

(from instruction
dispatch buses)
RB_alloc port

(O .. N d-1)

I -
Nd

RB_Cell[N xrb-1]

RB_Cell[k]

RB_Cell[1]

RB_Cell[O]

Nret

retire port
(O .. Nret-1)
(to retire
buses)

Nxwr

write_port (from result
(d .. Nxwr-1) buses)

Nxrd
RB-read_port (to read
(O .. Nxrd-1) buses)

read_reg_num(num(O .. Nxrd-1)

Note:

Each RB_Cell[i] contains n_empty, valid.
excp, reg_num, and reg_value field.

Reorder Buffer (RB) Implemented with True FIFO Array

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
'"""' ~
0,
.i;;..
c

0--,
~
~
N = ~
\C

Cycle t Cycle t+1 Cycle t+2

[/.-----~~ v \ v \ v-
Decode Ix, read I Dispatch Ix to : Execute Ix : Write R3 value
R1 and R2 I RS I I to RB
values from RB I 1 Arbitrate result

I 1 bus Forward R3
value to any RS
that needs it

I
I
I

Example:
t Ix: R3 <-R1 + R2
t+1 ly: R3 <-R3 * R3

Decode ly, read
R3 tag from RB

Dispatch I y to
RS

Result-Forwarding Hazard

Fig. 20

Can't execute ly
because operand
R3 is not
available

Waiting for R3
tag and value
at a result bus,
which will
never appear

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
N c
0,
.i;;..
c

0--,
~
~
N = ~
\C

100

~

165

\

(from dispatch

110
buses)

~port
(O .. Bd-1)

tail_RB(O)

~Nd

(from result
buses)

write_port
(O .. Nwr-1)

120
(to read

1\J buses)
RB_read_port

(O .. Nrd-1)

read reg tag· ,,,,,
U ' (O .. N rd-1) '
~,?Nwr JI JfNrd

(to retire
buses) 140

1 retire_port V
(O .. Nret-1)

....... ;:..

J1Nret 195(0ne cell is six
fields across here)

RB FAQ ... 0 Nxrb-1
I

1 0 0 14 -5 65528 Nxrb-2

1 1 o 31 -1 -1s2 headrRB(Nret-1)

1 I 0 I 0 I 2 I 31 .

RB_flush_tail 160
I ~ I I I .

270319552 I : tail_RB

I
150
tail

pointer
logic unit

~

f--o I e
• •

~ 1 I 1 I O I 14 I 30 65532
•

~
v

head RB(O)
2

taiLRB(Nd-1)1 : I I I I I h-- 195

195 .. tail_RB(1) O

r--------
mispred_flag I feilds: ~n-__ e...._m_p-ty~ 191

//j #bits: <1> 185 L ________ _

186 187 188 189 190
Note: r n empty =1 when entry is allocated, 0 when entry is retired or flushed

valid =O when entry is allocated, 1 when entry is written with result value
excp =O when entry is allocated, 1 when entry is written with exception error

head_RB

180
\
170

head
pointer

logic unit

with data reg_tag =register tag, insLID of the producer instruction
varies ~ reg_num =register number at the register file

or processor reg_ value =register value, written with result value upon completion of the producer instruction

or type Fig. 21 Modified Reorder Buffer (MRB)

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
N

"'""
0,
.i;;..
c

0--,
~
~
N = ~
\C

100

\
110 F1RB_alloc;_port(O .. Nd-1) I trrom 1nstruc11on ms paten ouses) tto register rneJ lretire_port(O .. N xrd-1) I

-130

rl write_port(O .. N xwr-1) l(from write buses) (from/to read buses)! read_port(O .. N xrd-1) [
/MRB_Cell[O] /195

120
115 RSFF/DFF RSFF/DFF 125

write_reg_tag(O .. N xwr-1) \ in)ut bus output bus / read_reg_tag(O .. N xrd-1)
writeJeg_value(O .. Nxwr-1)1 Write RSFFs/DFFs ::: read found[O .. N rd-1]

:: · - Read - x
I Logic µf--> Jl_em~_ ,__. Logic read_valid[O .. N xld-1]

175 Misp _~an__ read_reg value(O .. N xrct-1) _/

RD(O N _1) Logic ~~x~p_flaQ____. reLreg_num(O .. Nret-1)
· t ID(O .. Nd 1) J:_e_g-J{um_ reLreg_value(O .. Nret-1)
ms - .. d- Allocate J~W- H Retire I'd t(O N -1) - L · -+- reg_va ue . va 1 _re · · ret og1c Logic 1....

145_,.,-/ • "'-105 • 135
I I
I I

,______.. +---"
MRB_Cell[I] --+"

;:

. .

__....
____. +---"

MRB_Cell[Nxrb-1] __.,
195

~ tail(O .. Nd-1)_sel(O .. Nxrb-1) ~
RB_ head(O .. Nret-1) sel[O .. N xrb-1]

overflow
I\. I - RB_overflow

I
(to FDU)

R_aloc_en(O .. Nd-1) Flags
Tail Pointer RB_lull

I\. - Logic RB_empty
150__;-.i

Logic
155 j _ RB_flush_tail >lementation .

Head Pointer I (f IAU)m1spred_flag
22 rom pred_OK - RBFAQ i----

165 Logic I valid_ret [O .. Nret-11
FAQ_alloc_en(O .. Nd-1) 170

195

MRB Circuit Im

Fig.
(from FDU) tail_RB(O .. Nd-1)

;:

-

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
N
N
0,
.i;;..
c

0--,
~
~
N = ~
\C

105 ,---1 ---------1 -~-----

1- .. ,Y [k] rl '-, - - - - - -
I I QI , _em,PtY [k] 125 Read Logic l

- - -.- - - - - - - - - - - 1 1- M"-predlction Logic 1
195 1 m\~pred_ fl~g branch_flush1

'\,_ 1 branch_ point <? I
""" I reg - t.a~ ~ ~ reset I

Comparison ~Wie(O .. Nret-1) etire-~n 1
/1==============---175 I

I
I
I

write _en 1 • •I

/! reg_tag[k]
115 :write_reg_t_ag(00~ .. 1

exception [J,

: write-reg-value(O)
I write[Nxwr-1]

I
I
I reg_value[k]

I

• . .

reg_tag[k]
read_reg_tag(O)

read_found[O]
read-valid[O]
read_reg_value(O)

read_tag[k]
read_reg_tag

(Nxrd-1)
read_found(Nxrd-1)
read_valid(N xrd-1)
read_reg value(Nxrd-1)

L-~------------------------I reg_tag[k] I 1

I write_reg_tag--i....__J .. ~ ~I ·+L I
1 write_reg_value wn'f'_en

1
I (Nxwr-1) write(O .. Nxwr-1) 1 1 1
1 Write Logic -----~~~~~~~~ I

----_____ I I
""= laif(D)-sel[k] alloc[OJ I

1
I R alloc-en[Of I l
I - empty[k] I

0
r~g_num[k],

1
I RD(O), , D I --+ /j insLID(O) : I

145 I tail(Nd-1)_sel[k] I valid-ret(Nret-1)
IR_alloc_en[Nd-1] reg_1ag[k] retire[Nret-1] reLreg_num(Nret-

1
1)

1 empty [k] 1 I reLreg_value(Nret
I RD(Nd-1), I 135 Retire Logic

valid-ret(O),
ret_reg-num(O),
ret-reg-value(O)

head(Nret -1)-sel[k]

I insLID(Nd-1) alloc(O .. Nd-1) all~-en : __ i_ ___ -:- ___ - - - - - - - - - - - - - - - -
:!-li?"'.'1e Log1:_ _____ - - - - - - - - Fig. 23 MRB Cell Circuitry

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
N
~

0,
.i;;..
c

0--,
~
~
N = ~
\C

U.S. Patent Aug. 29, 2000 Sheet 24 of 40 6,112,019

------------""------------------------,
I Tail Pointer Logic "..... . tail~O~ sel[O]
I 150 tail_RB(O) • tail O -sel[1]
I • -
1 • tail(O)_sel[Nxrb-1]
I log2Nxrb tail(1 }_sel[O]

tail(1}_sel[1] I
I
I
I
I
I
I
I
I
I
I
I
I
I

reset

tail_RB(1
R_alloc_en(O)-++t + ,____ __ ..,

R_alloc_en(O .. Nd-2)

tail(1)_sel[Nxrb-1]

tail(2)_sel[O]
ail(2)_sel[1]

tail(2}_sel[Nxrb-1]

tail(Nd-1)_sel[O]
tail(Nd-1)_sel[1]
tail(Nd-1)_sel[Nxrb-1]

l- ____________________________________ _

,-----------~-----------------------,

1 Head Pointer Logic 170 h d RB(O) head(Otsel(O] I
1 ea - • head(O sel[1] I

: : head(O)_sel[Nxrb-1] :

I log2Nxrb head_RB(1) head(1)_sel[O] I
I head(1)_sel[1] I

: valid_ret head(1)_sel(Nxrb-1] :

1
(O .. Nret-1) head(Nret-1 Lsel[O] I

I head(Nret-1)_sel[1] I
: head(Nret-1)_sel(Nxrb-1):
_____________________________________ __J

R_alloc_en(O .. Nd-1) RB_empty
total_alloc

reset

Note: i E[O,Nd-1], j e[O,Nrer1], k e[O,N xrb-1]
tail(i)_sel[k]= 1 means that the dest reg num and tag from dispatch bus i is routed
/allocated to MRB_Cell[k]
R_alloc_en[i]=1 means that there is an allocation to "R" MRB from inst dispatch bus i
headU)_sel[k] = 1 means that MRB_Cell(k) is currently in the jth retire port
valid_retU] =means that the jth retire port contains an MRB entry that is ready to retire

Support Logic for the MRB

Fig. 24

,~tail_RB(O .. Nd-1) (from RB Tail Pointer Logic) (to RB Tail Pointer Logic) RB_flush_tail
1-- FAQ_alloc_en (O .. Nd-1) (from FDU) /295

• •

I RBFAQ Cell(O) I

tail(O)_sel[k]

FAQ_alloc_en [O]

tail_RB(O)

• • •

205
head_sel[k]

•
1 tail(Nd-1)_sel[k]

I

FAQ_alloc_en[Nd-1]

tail_RB(Nd-1) alloc_en

RBFAQ_ Cell[k]
• • •

FAQ_overflow

alloc(O .. Nd-1)

295
- I

RBfAQ Cell[Ntng-1] ""'295

FAQ_ overflow 255

Tall Pointer

Flags
Logic FAQ_full (to FDU)

FAQ_ empty

Head Pointer ,
. Logic

ta11(0 .. Nd-1)_sel(O .. Ntag-1) I I I Logic ltead_sel(O .. Ntag-1)

RBFAQ Circuit Implementation

Fig. 25
l

1
270

'---------1 (from IAU)
mispred_flag pred_OK 250

165

I
d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
N
Ul
0,
.i;;..
c

0--,
~
~
N = ~
\C

U.S. Patent Aug. 29, 2000 Sheet 26 of 40 6,112,019

r----------------------------~--------

1 Tail Pointer Logic tail RB(O) ta!l(O)_sel[O] I
I - : ta11(0)_sel[1]

I • tail(O}_sel[Nfaq-1]

~ 250 log2Nfaq

FAQ_alloc_en[0 .. 1]

tail(1)_sel[O]
tail(1)_sel[1]

tail(1)_sel[Nfaq-1]

tail(2)_sel[O]
tail(2)_sel[1]

tail(2)_sel[Nfaq-1]

tail(Nd-1)_sel[O]
FAQ_alloc_en[O .. Nd-21 tail(Nd-1)_sel[1]

tail(Nd-1 }_sel[Nfaq-1]1
I

270 Q DFFD FAQ_alloc_en[Nd-1] I

I R :
.-----_-_t-_-_-_-_-_-_-_-_-_-~_-_-_-_-_-_-_-~ I I
1 Head Pointer Logic "1" + I 1 I
1 head_sel[O] • I I
I head-sel[1] : Q D log2Nfaq I : I
lheacLsel[Nfaq-1 W~FF R I I I
I I I
I pred_QK 1 mispred flag I ____________________ __, _______________ __J

---------~---------------------------1

I Flags Logic '\._ I
I 255 I

: QDFFD FAQ_fail :
I log2Nd R I
I I

: reset FAQ _overflow I
1

res~ I

I I
I

I R_alloc_en(O .. Nd-1) QDFFD FAQ_empty1
I total_alloc R I
I I
I
1 reset I _____________________________________ J

Notes: i E[O,Nd-1], k E[O,Ntaq-1]

tail(i)_sel[k] =1 means that dispatch bus i is routed/allocated to FA.Q_Cell[k]
head_sel[k]=1 means that FA.Q_Cell[k] is currently the bottom entry
FAQ_alloc_en[i]=1 means that there is an cond branch allocation to FAQ from
inst dispatch bus i

Support Logic for the RBFAQ

Fig. 26

365

DIQFAQ

(from dispatch buses)

DIQ_alloc_port
(O .. Nd-1)

Nd

310

(to execution unit)

bottom_DIQ_entry
(issued_DIQ_entry)

tail_DIQ(O) ~--~--..>C.--~--~-~-.............. ~--~

300
340 /

395 (I cell is six
fields across)

Nd· -1 1q

DIQ_flush_tail
-5 I ADDO I 14 I 27 I 1 I ~ Ndiq-2

tail DIQ

350
Tail Pointer

Logic
360

Fig. 27

-1 I EQD I 2

I 31 2 I CVTF2D

30 I SURF I 3 I

tail_DIQ(1)

Note: insLID =unique instruction tag
opcode =opcode of the instruction

31

I
14

30 0

24 I 9

RS1 =register number of first source operand
RS1 _tag =register tag of first source operand

I
I

RS2 =register number of second source operand
RS2_tag =register tag of second source operand

In-order Issue Distributed Instruction Queue(DIQ)

27

0

25

391

I
1-

2

1

• • •
380

I

395

11ead_DIQ
issued_DiQI

370
head(issue)
pointer logic

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
N
-..J
0,
.i;;..
c

0--,
~
~
N = ~
\C

300

~
DIQ all r+-1 (O .. Nrl-1) (f1 · truction disoatch b) ("") b

DIQ_Cell[O] L
.
• .

"
tail(O)_sel[k]

vlloc[O] 1--

"
DIQ_alloc_en[O] 305 head_sel[k]
inst(O) t' DIQ_entry[k]

. 1--------ti DD E F Q / ·~ • . tail(N,j-1)_sel[k] ~c[Nd-1] r WE N;nst bottom_inst
"

I>.
DIQ..alloc_en[Nd-1] DIQ_overflow

.. inst(Nd-1) . t< _ alloc_en~
alloc[O .. Nd-1]

DIQ_Cell[k]
• .
•

345 DIQ_Cell [N diq-1] 355 I \

\ I

~IQ_alloc_en[O .. Nd-1]
\

I
I DIQ_empty

Allocate Flags
I>. Logic Logic ~ FU_num(O .. Nd-1) bottom

DIQ_overflow -inst_ID I -
~ Tall Pointer DIQ_full

. Logic r---350 (to FDU)
a1l(O .. Nd-1)_sel[O .. Ndiq-1] . i,_--370

DIQ_; :t11<:1y.-

-395

L--- v 395

,

J-.-- i..-395

er Issue DIQ
mplementation

branch_point ~ fDIQJlush_tai Head P~mter
(from IAU) mispred flag Logic head_sel[O .. Nd

f?red..=-oK _____. DIQFAQ 365 t t

ig. 28

(fro U) FAQ_alloc_en[O .. Nd-1] _____. ' valid_read_L validJead_R
tail_DIQ(O .. Nd-1) (from FXRU read ports)

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
N
00

0,
.i;;..
c

0--,
~
~
N = ~
\C

U.S. Patent Aug. 29, 2000 Sheet 29 of 40 6,112,019

345 350

!---~-----.---~--------------------,
I I I . tail(O)_sel[O]
I "DIQ's FU_ num" : : tail_RB(0) • tail(O)_sel[O]

I I I tail(O)_sel[Ndiq-1]

: FU_num(O)
1

: log2~iq tail(1)_sel[O]
I

1
tail(1)_sel[1]

1 FU_num(1) T'0"'1 ,

I I I tail(1)_sel[Ndjq-1]
I log2Nfu I I

I I tail(1 }_sel[O]
IFU_num(Nd-1) I I tail(1)_sel[1]
I l'+----+i
: Allocate Logic 1 1rno_alloc_en[1] • tail(1)_sel[Ndiq-1]
-----~----~-- J :

I tail(Nd-1)_sel[O]
1
1

tail(Nd-1)_sel[1] 1
1 I DIQ_ alloc_en[O .. Nd-2] tail(Nd-1)_sel{Ndiq-111

I I
I I

3~ : DIQ_alloc_en[Nd-1] :

1_ Head ~~~e~L~~~~-----------------11 DIQ_flush_tail:

I 1
1

reset 1
I head_sel[O] 1 I I
I head_sel[1] 11

1
mispred flag 1

I 1 <? +-branch_poin~
lhead_sel[Ndiq-1] 11 full_flush
I I: DIQ reset bottom_inst_I~
I DIQ_empty - 35 I
I val.id_read L DIQ

0
11 I

I vahd_read R _p P 11 Tail Pointer Logic I I __________________ JI ___________ =.. ___ -___ _J

~------------------------------------,

: Flags Logic Q DFFD DIQ_tail :

I log2Nd R I
I I
I reset I
I DIQ_overflow

1
I I
I I
:rna_alloc_en[O .. Nci-1] Q OFF~ DIQ_empty :

I I
I reset I
L--------~---------------~-----------

Notes: 1 E[O,Nd-1], k E[O,Ndiq-1] 355
tail(i)_sel[k] = 1 means that inst dispatch bus i is routed/allocated to DIQ_Cell[k]
head_sel[k] =1 means that DIQ_Cell[k] is currently the bottom instruction entry
DIQ_alloc_en[i] =1 means that there is an allocation to this DIQ unit from inst
dispatch base

Fig. 29

400

~
(from dispatch buses) (to execution unit)

41 o (from result buses)
....___ DIQ_alloc_port resulLtag issued_DIQ_ent

(O .. Nd-1) (0 N -1)
.. res 420

Nd Nres 465

\
460

\

f'rltail_DIQ(OL
DIQFAQ

TRUE I -5 ADDO I 14 I 27 I TRUE I 1 I -3

440

TRUE

Issue
Logic

495

Ndiq-1

Ndiq-2

i,_--475

[._....---- 4 85

! DIQ_
flush_tail FALSEI -1 EQD I 2 I 31 I TRUE I 14 I 27

TRUE ____ ___,

taiLDIQ 1- • • •
FALSEI 31

FALSE 30

CVTF2DI 2

SUBF 3

: issue_DIQ
• 30 I FALSE I 0 0 FALSE

24 TRUE 9
25 FALSE - \ read D~

lmispJd_ flag ta - IQ(Nd-1) l----+---+----1----+--+----+--___,1---+------1 2 -
450 1 480
tail Pointer 1------1------1----+----+-----+----+----+-----1------l

0
4 70 .

logic :~;~:.IQl1Jissued inst_l-;;pcod- RsT - R.5f _!.;-ST_-;d; iiSf _!a; rf2~2~ ~9:85 heafo~~nter
~

bits· </> Nta > <Nore> <1092 <Nta > </> <1092> <Nta > <1 > 1
Nfrf> N frf> I

----- ----------- ----- -- --- __,

486 487 488 489 490 491 492 493 494
Note: issued =TRUE if instruction/entry has been issued

inst ID = unique instruction tag
opcode = opcode of the instruction

{

RS1 = reQister number of first source operand
. RS1_tag =register tag of first source operand

Vary.with RS1_rdy =TRUE if the first source operand is ready/available
functional RS2 = regiser number of second source operand

unit RS2_tag = register tag of second source operand
cl·g 30 RS2_rdy = TRUE if the second source operand is ready/available
r, . Out-of-Order Issue DIQ

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
~ c
0,
.i;;..
c

0--,
~
~
N = ~
\C

I-Cache
Arrays

510

511

D-Cache

N~ ~o~~~~~~~~~~~~~~~~~~~~k~~~~~~~~~~- i~~~on I
dispatch

560 }[buses / 500 /~nn nrdnn . / Nd

521

Fetch Buffer llU FDU

570 IAU

I BTB II DIQ \P€77
~

522 524

Multi-Instruction Decoder

\fjfJ}
FXU O
lo IQ 550

525

530

300
or400

540

505

FXRU

515F

~
~

"R" Register File

"F" Register

~525

300
or 400 '-----.--...----.--1

531

"R"MRB
525

100R

~525

Address
Adder

retire 541~--------i
buses I "F" MRB 525

100F

525-cl I p.

300
or400

506 ~
\.pjjj_/

300
or400

596

300
or400

300
or400

Fig. 31 A Superscalar Processor wl MRB and DIQ

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
~

'"""' 0,
.i;;..
c

0--,
~
~
N = ~
\C

530

~

(to read
buses)

read_ found(O)

read_ port(O)

• • •

read-found(Nxr -1)

read_ port(Nxrd -1)

Note:

Nxrd = number of read ports in FXRU

Nxwr = number of write ports in FXRU

Nret =number of retire ports in MRB

Nd = instruction decoder size

(from read buses)

read_reg_tag(O) read_reg_tag(Nxrd-1)
130R

110R

RB _read_port(O)

RB_ read_port(Nxrd-1)

• • •

retire_port(O)

RF_ read_port (0)

• • •
RF_ read _ port(Nxrd-1)

I .. • I 100R

Modified
Reorder
Buffer
(MRB)

• • •

• • •

RB_alloc_port(O)

RB_alloc_port(Nd-1)

write _port(O)

write_port(Nxwr-1)

retire_ port(Nrer1) 120R

Multi-Ported
Register

File
(RF)

•••

140R
515R

'--'"ead_reg_num(O) read_reg_num(Nxrd -1).,;

(from instruction
dispatch buses)

(from result
buses)

(from FU r~ad buses) Fixed-Point Register Unit (FXRU)

Fig. 32

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
~
N
0,
.i;;..
c

0--,
~
~
N = ~
\C

(from FDU)

inst_bus(O .. Nd-1)

550

DIQ

300 or400

517 516

(to FPRU)
FP _ RS1 _num,

FP_ RS1_tag
t
I
I
I
I
I

RS1,RS1_tag I

RS2, RS2_tag

inst-ID

(from FPRU)
FP_RS1_value

I
., I
I I

DIQ_empty I opcode I
Inst Issue
Register

.._ ____ +---
I I
I I
I I
I I
I I
I .----L-----
1 I

(from FPRU)
FP _ RS2 _value

L-r------
L.....--------,-~

!

506

I
(to FPRU)

FP-RS2 _ num,
FP-RS2_tag

t
I
I
I
I
I
I
I

FX_RD_tag FX_RD_value FP_RD_value FP_RD_tag
(to FXRU) (to FPRU)

Fig. 33 Floating-Point Arithmetic Logic Unit (FALU)

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
~
~

0,
.i;;..
c

0--,
~
~
N = ~
\C

,-------------curr-PC ---------~510
(from IAU)

1
I-Cache Arrays I I

F

(to IAU)
branch-PC+1
offset/target,

opcode

'+-

I
------0

1

~--------------------- --- I

• • •
' •

fetch(O) I fetch(1) I • • • I fetch(Nd-1)

I r inst-PC(O)
/

inst _PC(1)
Inst-ID

/ • • • • Unit
inst_PC(Nd-1) • • • • . /

520

/

1n _oraer_po1m

~curr_PC

~result-inst-ID
(O .. Nfu-1)

~ branch_poinrlf1

~ insLID(O .. Nd-1)

(to IAU) fi
indirect _reg,
ind_reg _tag

link_inst_ID

R_allo
F_allo

FAQ_allo

·~
~

·sLbranch-sel ----

...;;

:_en(O .. Nd-1) -
:_en(O .. Nd-1) +--
:_en(O .. Nd-1) +--

inst_bus(O)

'

-;.

RD(O .. Nd-1)
;

RS1 (O .. Nd-1)

Nd-Instruction Decoder RS1-tag(O .. Nd-1) Register Tag
Unit -

RS2(0 .. Nd-1)

_RS2_tag(O .. Nn-1)
~

• • • 524 ,.
inst_bus(1) inst_bus(Nd-1)

Fetch and Decode Unit (FDU)

Fig. 34

m\A\'.>)

523

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=-~
~
~
.i;;..

0,
.i;;..
c

0--,
~
~
N = ~
\C

U.S. Patent Aug. 29, 2000 Sheet 35 of 40 6,112,019

Fetch Stage Fetch Nd insts from I-Cache
(with instruction aligning)

+
Store insts at Fetch Buffer in FDU

--------t---------------------
Decode Stag e Any branch-taken inst YES

in the fetch group?

+NO '

Assign inst_ID's from llU Assign inst_ ID's from llU
for all Nd insts up to branch_taken inst

+ • For each destination reg, write the Decode the branch-taken
inst's tag (inst_ ID) to the RTU and inst early

allocate an MRB entry

+ Send the decoded inst
For each reg operand, read its reg information to IAQ for

tag from RTU early branch execution

+
Out-of-order issue NO

DIQ?

.YES

Determine each reg ready flag by
reading the complete bit of reg tag's

corresponding entry in llU
I

•
Determine which FU the inst will be
executed at by assigning FU_num to

each decoded inst

+
Dispatch each decoded inst to the

appropriate FU, to be allocated in its
DIQ

--------t---------------------
(Contiued to Figure 36)

Flowchart of Operations in Fetch and Decode Stages

Fig. 35

U.S. Patent Aug. 29, 2000 Sheet 36 of 40 6,112,019

(From Figure 35)
-------------------~-----------------

+
Out-of-order issue NO

DIQ?

YES
Any DIQ entry NO ' w/ all operand ready
flags TRUE?

YES

Select the oldest inst entry Select the inst entry
(closest to head pointer) at the bottom of DIQ

for issue for issue
I

+
Read command value from MRB
using reg tag, or from RF using

reQ num

NO All operand value(s)
valid?

YES
1

• YES Store K Out-of-order
inst? issue DIQ?

r NO +YES
Calculate store address Proceed with the instruction set "issued" flag of the

but do not commit the store execution executed inst to TRUE
to D-cache/memory yet

• ~.

Move store's DIQ entry to Arithmetic/Load Pop bottom DIQ

the Store Queue(SQ) Instruction Path entry if its inst has
been executed

------ -------------------------------
Store +

Instruction Write result value to the ~Out-of-order
Path corresponding MRB entry issue DIQ?

(found using the result tag)
!YES ------ -------------~------

Commit the store inst at Retire reg value at bottom Forward result tag to
bottom SQ entry if safe MRB in order entries to RS all related FUs. set

(inst _ID .$. in_ order_ point), if safe (reg_ tag ~ inst_ order operand ready flag
read the store reg value _point and excp_flag ~ tag to TRUE if result tag

from MRB/RF = operand tag

! I

+
Write store value to Update the complete

D-cache/ memory, update bit of the inst entry
complete bit in llU in llU

Flowchart of Operations in Issue/Execute, Writeback,
and Retire Stages Fig. 36 Writeback Stage

523~

RS1_tag(O)

RS1_tag(Nd-1)

(to Nd-Inst.
Decoder)

RS2 _tag(O)

RS2-tag(Nd-1)

RS1_found(O)
.......------..

•
: RS1_found(Nd-1)

--..

RS2 _found(O)
~

•
: RS2_found(Nd-1)

....---

RB_RS1(0)

• • •

branch_point

_ ~- . Register Tag
RB_RS1(Nd-1)l Reorder

RB_RS2(0) I Buffer

•

100RT

RTU
Allocate

Ports
810

... I RD(O .. Nd-1)

1.. • inst_IO(O .. Nd-1)

111 • valid_fetch(O .. Nd-1)

1.. 1 opcode(O .. Nd-1)

w 1: l I RS1(0 .. Nd-1)
RB_RS2(Nd-1) I T RS2(0 .. Nd-1)

840

RF_RS1(0)

• • •

retire_ po
(O .. Nd-1)

RF_ RS1(Nd-1)1 Register Tag
RF_ RS2(0) File

• • •

830
Read
Ports

RF_RS2(Nd-1)~---­

Fig. 37 Register Tag Unit (RTU)

600

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
~
-..J
0,
.i;;..
c

0--,
~
~
N = ~
\C

600

~

ret _reg _tag(O .. Nd-1)
695

RS2_tag(O .. Nd-1)
RS2(0 .. Nd-1)_sel[0 .. Nrtt-1]

RS1_tag(0 .. Nd-1) ret_reg _num(O .. Nd-1) sel(O .. Nrtr1)
valid_ret(O .. Nd-1) RS1 (O .. Nn -1)_sel[O .. Nrtt-1]

• • •

• • •

ret_reg_num(O)_sel[k]
valid_ret(O)

ret_reg_num(Nd-1)_sel[k]

valid-ret(N n-1)

retJeg_tag(Nd-1)

Comparison
Unit 652

in-order-point

RTF _Cell(O)
• • •

.write(O) I
0 I

• I Priority '
: Select

A\ Nd-1J

mux_sel

reg_tag[k]

DDFFQ
WE

RTF_ Cell[k]
• • •

RTF Cell[Nrtt-11

R

Register Tag File (RTF)

Fig. 38

RS1 (O)_sel[k]

, ... RS1_tag(O)

RS1 (Nd-1)_sel[k]

~ RS1_tag(Nd-1)

ouo RS2(0_sel[k])

RS2_tag(O)

RS2(Nd-sel[k]1)

RS2_tag(Nd-1)

695

695

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
~
00

0,
.i;;..
c

0--,
~
~
N = ~
\C

700----

n_empty
last
reg_num
reg_ tag

710.......__ 720'>. 730.......__ 740:....,,
I n_empty I last I reg_num I reg_tag I

=set when entry is allocated, reset when entry is retired
= set when entry is allocated, reset when there is a new assignment to register reg num
= register number, corresponds to register file address/location
= register tag, inst_ID of the producer instrucion

RTRB
ENTRY

Fig. 39

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
~
~

0,
.i;;..
c

0--,
~
~
N = ~
\C

RB-RS2-ta.~O .. Nd-1) -
a-,, -
-

-
~ ~ ~ R:~t~.·.·~~--1') / l1U\ RTRB_ce11(o;L~ Rs 1Rl~(o~~ci~~f--11 ,

Register
Buffe

Fig

(head_
head-R

ag Reorder
(RTRB)

895
. 40

"""

.

RTRB_full 895/

"RB) i taiLRTRB(O .. Nd-1~/
~B(O) I t
.... Tail Pointer i..----

850
~ Logic

RTRB_alloc_en(O .. Nd-1)

RSFFs/DFFs
.J1=em..12ty_

_ I Allocate I last
·: Logic I cie_9-nUf!!_

' reg_tag
845

RTRB-Cell[1]

+ + • + +

RTRB-Cell[N rtrb-1]

t '

RS2_bypass(1 .. Nd-1),
RS2-bypass en('l .. Nd-1)/

t 865
RS2 Bypass j-

lasLupdate Logic
-...... (O .. Nd-1) 855

t /
Last Update I

Logic I

'\ +
_.

Read ~ t-+
Logic ~

-
Retire

r+ Logic
... I

\
835 ~

.
.

!

+ . . .
+

-

•P retire _port(O .. Nd-1)
!'... branch _point

head-RTRB(O .. Nd-1)

RS1 _bypass(1 .. Nd-1), ~

S1 _bypass_en(1 .. Nd-1)
valid-ret + 875 (O .. Nd-1) I RS1 Bypass

Head Pointer I Logic
Logic I 870/

R_alloc_en(O .. Nd-1) F_alloc_en(O .. Nd-1) RS2(0 .. Nd-1) RD(O .. Nd-1) RS1(0 .. Nd-1)

d
•
\JJ.
•
~
~
~ =

~
~
N
~~

N c c c

'Jl

=­~
~
.i;;..
c
0,
.i;;..
c

0--,
~
~
N = ~
\C

6,112,019
1

DISTRIBUTED INSTRUCTION QUEUE

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to an apparatus and a
method for improving processor microarchitecture in super­
scalar microprocessors. In particular, the invention relates to
an apparatus and a method for a modified reorder buffer and
a distributed instruction queue that increases the efficiency
by reducing the hardware complexity, execution time, and
the number of global wires in superscalar microprocessors
that support multi-instruction issue, decoupled dataflow
scheduling, out-of-order execution, register renaming,
multi-level speculative execution, load bypassing, and pre­
cise interrupts.

2. Background of the Related Art
The main driving force in the research and development

of microprocessor architectures is improving performance/
unit cost. The true measure of performance is the time
(seconds) required to execute a program. The execution time
of a program is basically determined by three factors (see
Patterson and Hennessey, Computer Architecture: A Quan­
titative Approach, Morgan Kaufmann Publishers, 1990); the
number of instructions executed in the program (dynamic
Inst_Count), the average number of clock cycles per
instruction (CPI), and the processing cycle time (Clock_
Period), or

2
unit. Current state-of-the-art superscalar microprocessors
fetch two or four instructions simultaneously. Valid fetched
instructions (the ones that are not after a branch-taken
instruction) are decoded concurrently, and dispatched into a

5 central instruction window (FIG. la) or distributed instruc­
tion queues or windows (FIG. lb). Shelving of these instruc­
tions is necessary because some instructions cannot execute
immediately, and must wait until their data dependencies
and/or resource conflicts are resolved. After an instruction is

10 ready it is issued to the appropriate functional unit. Multiple
ready instructions are issued simultaneously, achieving par­
allel execution within the processor. Execution results are
written back to a result buffer first. Because instructions can
complete out-of-order and speculatively, results must be

15 retired to register file(s) in the original, sequential program
order. An instruction and its result can retire safely if it
completes without an exception and there are no exceptions
or unresolved conditional branches in the preceding instruc­
tions. Memory stores wait at a store buffer until they can

20 commit safely.
The parallel executions in superscalar processors

demands high memory bandwidth for instructions and data.
Efficient instruction bandwidth can be achieved by aligning
and merging the decode group. Branching causes wasted

25 decoder slots on the left side (due to unaligned branch target
addresses) and on the right side (due to a branch-taken
instruction that is not at the end slot). Aligning shifts branch
target instructions to the left most slot to utilize all decoder

T program= Inst_ CountxCPixClock_Period. (l) 30
slots. Merging fills the slots to the right of a branch-taken
instruction with the branch target instructions, combining
different instruction runs into one dynamic instruction To improve performance (reduce execution time), it is

necessary to reduce one or more factors. The obvious one to
reduce is Clock_Period, by means of semiconductorNLSI
technology improvements such as device scaling, faster
circuit structures, better routing techniques, etc. A second
approach to performance improvement is architecture
design. CISC and VLIW architectures take the approach of
reducing Inst_Count. RISC and superscalar architectures
attempt to reduce the CPI. Superpipelined architectures
increase the degree of pipelining to reduce the Clock_
Period.

The true measure of cost is dollars/unit to implement and
manufacture a microprocessor design in silicon. This hard­
ware cost is driven by many factors such as die size, die
yield, wafer cost, die testing cost, packaging cost, etc. The
architectural choices made in a microprocessor design affect
all these factors.

It is desirable to focus on finding microarchitecture
techniques/alternatives to improve the design of superscalar
microprocessors. The term microprocessor refers to a pro­
cessor or CPU that is implemented in one or a small number
of semiconductor chips. The term superscalar refers to a
microprocessor implementation that increases performance
by concurrent execution of scalar instructions, the type of
instructions typically found in general-purpose micropro­
cessors. It should be understood that hereinafter, the term
"processor" also means "microprocessor".

A superscalar architecture can be generalized as a pro­
cessor architecture that fetches and decodes multiple scalar
instructions from a sequential, single-flow instruction
stream, and executes them concurrently on different func­
tional units. In general, there are seven basic processing
steps in superscalar architectures; fetch, decode, dispatch,
issue, execute, writeback, and retire. FIG. 1 illustrates these
basic steps.

First, multiple scalar instructions are fetched simulta­
neously from an instruction cache/memory or other storage

stream. Efficient data bandwidth can be achieved by load
bypassing and load forwarding (M. Johnson, Superscalar
Microprocessor Design, Prentice-Hall, 1991), a relaxed or

35 weak-memory ordering model. Relaxed ordering allows an
out-of-order sequence of reads and writes, to optimize the
use of the data bus. Stores to memory cannot commit until
they are safe (retire step). Forcing loads and stores to
commence in order will delay the loads significantly and

40 stall other instructions that wait on the load data. Load
bypassing allows a load to bypass stores in front of it
(out-of-order execution), provided there is no read-after­
write hazard. Load forwarding allows a load to be satisfied
directly from the store buffer when there is a read-after-write

45 dependency. Executing loads early is safe because load data
is not written directly to the register file.

Classic superscalar architectures accomplish fine-grain
parallel processing at the instruction level, which is limited
to a single flow of control. They cannot execute independent

50 regions of code concurrently (multiple flows of control). An
instruction stream external to superscalar processors appears
the same as in CISC or RISC uniprocessors; a sequential,
single-flow instruction stream. It is internally that instruc­
tions are distributed to multiple processing units. There are

55 complexities and limitations involved in parallelizing a
sequential, single-flow instruction stream. The following six
superscalar features-multi-instruction issue, decoupled
dataflow scheduling, out-of-order execution, register
renaming, speculative execution, and precise interrupts-are

60 key in achieving this goal. They help improve performance
and ensure correctness in superscalar processors.

Multi-instruction issue is made possible by widening a
conventional, serial processing pipeline in the "horizontal"
direction to have multiple pipeline streams. In this manner

65 multiple instructions can be issued simultaneously per clock
cycle. Thus, superscalar microprocessors must have mul­
tiple execution/functional units with independent pipeline

6,112,019
3

streams. Also, to be able to sustain multi-instruction issue at
every cycle, superscalar microprocessors fetch and decode
multiple instructions at a time.

Decoupled dataflow scheduling is supported by buffering
all decoded instructions into an instruction window(s),
before they are scheduled for execution. The instruction
window(s) essentially "decouples" the decode and execute
stage. There are two primary objectives. The first is to
maintain the flow of instruction fetching and decoding by
not forcing a schedule of the decoded instructions right
away. This reduces unnecessary stalls. Instructions are
allowed to take time to resolve data dependencies and/or
resource conflicts. The second is to improve the look-ahead
capability of the processor. With the instruction window, a
processor is now able to look ahead beyond the stalled
instructions to discover others that are ready to execute. The
issue logic includes a dependency check to allow an instruc­
tion to "fire" or execute as soon as its operands are available
and its resource conflicts are resolved. Unlike sequential Von
Neumann machines, the control hardware does not have to
sequence each instruction and decide explicitly when it can
execute. This is the essence of dataflow scheduling.

Out-of-order execution helps reduce instruction stalls due
to data dependencies, bypassing the stalled or incomplete
instructions. There are three types of out-of-order execution,
categorized by their aggressiveness: (a) in-order issue with
out-of-order completion, (b) partial out-of-order issue with
out-of-order completion, and (c) full out-of-order issue with
out-of-order completion. The first type always issues
instructions sequentially, in the original program order, but
they can complete out-of-order due to different latencies or
stages in some functional units' pipelines. The second type
restricts instruction issue to be in order only within a
functional unit, but can be out of order amongst multiple
functional units. The third type allows full out-of-order issue
within a functional unit as well as amongst multiple func­
tional units.

Register renaming is necessary to eliminate the side
effects of out-of-order execution, i.e., artificial dependencies
on registers-those dependencies other than true date depen­
dency (read-after-write hazard). There are two types of
artificial dependencies, anti dependency (write-after-read
hazard) and output dependency (write-after-write hazard)
(M. Johnson, Superscalar Microprocessor Design, Prentice­
Hall, 1991). They are caused by register-set limitations. The
compiler's register allocation process minimizes the register
usage by reusing registers as much as possible. This action
blurs the distinction between register and value. Register
renaming effectively reintroduces the distinction by renam­
ing the registers in hardware, creating a new instance of a
register for each new register assignment.

Speculative execution avoids stalls and reduces the pen­
alty due to control dependencies. For every conditional
branch, a superscalar processor predicts the likely branch
direction, with help from software (static branch prediction)

4
Precise interrupts are supported to guarantee the correct

processor state before servicing the interrupt. Out-of-order
execution complicates the restarting of an interrupted pro­
gram. At the time an exception is detected, some instructions

5 beyond the exception instruction might have been executed,
as a result of allowing out-of-order execution. The effects on
registers and memory by any instructions beyond the
precise-repair point [?] must be nullified or repaired before
going to the interrupt handler routine. The hardware support

10 for precise interrupts should not be too costly if there is
already hardware support for speculative execution.

There are two key microarchitecture elements in super­
scalar hardware that determine the success in achieving the
above goal, result shelving and instruction shelving. Result

15 shelving is the key to support register renaming, out-of­
order execution, speculative execution, and precise inter­
rupts. Instruction shelving is the key to support multi­
instruction issue, decoupled dataflow scheduling, and out­
of-order execution. Review of the literature suggests that the

20 reorder buffer (RB) is the most complete result shelving
technique (see, for example U.S. Pat. Nos. 5,136,697 to
Johnson and No. 5,345,569 to Tran for discussions of
conventional reorder buffers), and the reservation station
(RS) is the best instruction shelving technique to give

25 maximum machine parallelism. However, these two tech­
niques have implementation drawbacks. The RB requires
associative lookup that must be prioritized during each
operand read. This results in relatively complex and slow
circuit implementation. Also, the RB requires substantial

30 shared-global buses for its operand and result buses, and the
need to use dummy branch entries to support speculative
execution which increases the RB entry usage. The RS
requires tremendous amounts of shared (heavily-loaded),
global (chip-wide) wires to support its operand value copy-

35 ing and result value forwarding. With increasingly smaller
transistor sizes, the dominant factors in determining silicon
area and propagation delays is not the transistor, but metal
wire, especially the ones that run across or all over the chip.

With the many promises that lie ahead, the research
40 challenges in superscalar architecture design are to find: an

efficient utilization of the vast chip real-estate, the high­
speed transistors, and the available instruction parallelism.
The hardware improvements that lead to enhanced perfor­
mance must be coupled with compiler/software scheduling

45 improvements, however. There is a need for these improve­
ments to be cost effective, or, at best, to actually reduce the
cost of a superscalar microprocessor while increasing effi­
ciency. In accordance with the above, we should avoid the
tendency to design an overly complex superscalar architec-

50 ture that produces mediocre gains which could have been
easily achieved by compiler optimizations or that are cost
limiting.

The present invention is discussed at length in the doc­
toral dissertation entitled "Microarchitecture Techniques to

55 Improve Design of Superscalar Microprocessors," Copy­
right© 1995, Georgia Institute of Technology, of one of the
co-inventors, Joseph I. Chamdani, the subject matter of
which is incorporated herein by reference. Hereinafter, the
above dissertation will be referred to as Chamdani's disser-

or hardware (dynamic branch prediction). Instructions from
the predicted path are fetched and executed speculatively,
without waiting for the outcome of the branch test. By
scheduling instructions across multiple, unresolved condi­
tional branches (multi-level speculative execution), more
instruction parallelism is potentially extracted, improving
the processor's performance. Due to the speculative nature,
some conditional branches may be incorrectly predicted. A
mechanism to recover and restart must be provided so that
correct results can still be produced in the event of mispre­
dicted branches. Recovery cancels the effect of instructions 65

processed under false predictions, and restart reestablishes
the correct instruction sequence.

60 tation.
This invention addresses architectural improvements to

the design of superscalar processors that support the six key
superscalar features. The primary objective of the invention
was to find a better design alternative to the reservation
station technique (considered the best known distributed
instruction shelving technique to give maximum machine
parallelism). The superscalar technique invented is: the

6,112,019
5

Distributed Instruction Queue (DIQ). The DIQ is a new
distributed instruction shelving technique that offers a sig­
nificantly more efficient (i.e., better performance/cost)
implementation than the reservation station (RS) technique
by eliminating operand value/copying and result value for- 5

warding.

6
determine the correct tail pointer position of each of the at
least one allocate port; a head pointer logic unit to adjust a
head pointer to point to a predetermined one of the at least
one entry cell; an issue pointer logic unit to adjust an issue
pointer to point to the one of the at least one entry cell for
issuing of the instructions; the distributed instruction queue
eliminates operand value copying and result value forward­
ing; the distributed instruction queue is operated indepen­
dently of any other distributed instruction queue; the instruc­
tions are issued in-order; the instruction are issued out-of­
order; and the instructions are issued in some form of limited
out-of-order issue.

These above and other objects, advantages, and features
of the invention will become more apparent from the fol-

15 lowing description thereof taken in conjunction with the
accompanying drawings.

The DIQ shelving technique offers a more efficient (i.e.,
good performance/cost) implementation of distributed
instruction windows by eliminating the two major imple­
mentation drawbacks in the RS technique, operand value 10

copying and result forwarding. The DIQ can support
in-order issue as well as out-of-order issue within its func­
tional unit. The cost analysis suggests an improvement in
almost every hardware component, with major reductions in
the use of global wires, comparators, and multiplexers (see
Chamdani's dissertation). The expensive shared-global
wires are mostly replaced by private-local wires that are
easier to route, have less propagation delay, and occupy
much smaller silicon area. The DIQ's number of global
wires remains the same as the number of DIQ entries and 20

data size increase. A performance analysis using cycle-by­
cycle simulators confirms that the good characteristics of the
RS technique in achieving maximum machine parallelism
have been maintained in the DIQ technique (see Chamdani's
dissertation). The out-of-order DIQ technique is at par with 25

the RS technique in terms of cycle-count performance, but
higher in terms of overall performance if the improved clock
frequency is factored in. The in-order issue DIQ sacrifices
slightly on the cycle-count performance, which can easily be
recovered through faster and simpler circuit implementation. 30

In the end, the actual speed or performance of a processor
using the DIQ technique is faster due to reduced cycle time
or more operations executed per cycle.

One object of the invention is to provide an improved
superscalar processor.

Another object of the invention is to provide a distributed
instruction queue that does not store register values.

A further object of the invention is to eliminate the need
for operand value copying in a superscalar microprocessor.

35

Yet another object of the invention is to eliminate the need 40

for result value forwarding in a superscalar processor.
One other object of the invention is to provide a processor

having reduced global buses.
One advantage of the invention is that it can improve the

speed of a superscalar processor.
Another advantage of the invention is that it can reduce

the amount of global buses required in a superscalar pro­
cessor.

Afurther advantage of the invention is that it can allow for
issuing of instructions in any order.

Still another advantage of the invention is that it can
support multi-level speculative execution.

One feature of the invention is that it includes local bus
architecture between register units and functional units.

45

50

These and other objects, advantages, and features are 55

provided by a distributed instruction queue, comprising: at
least one entry cell having at least one entry field; at least one
allocate port, each of the at least one allocate port connected

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows basic steps in superscalar architectures.
FIG. 2 shows a register mapping table in the IBM

RS/6000 floating point unit.

FIG. 3 illustrates reorder buffer organization.

FIG. 4 shows an 8-entry dispatch stack.

FIG. 5 depicts a register update unit.

FIG. 6 is a diagram of the Metafiow architecture.
FIG. 7 shows the DRIS (Deferred-Scheduling, Register­

Renaming Instruction Shelf).
FIG. 8 shows Tomasulo's Reservation Stations at IBM

360/91.
FIG. 9 is a diagram of the IBM RS/6000 architecture.
FIG. 10 shows cycle-by-cycle execution in the IBM

RS/6000.
FIG. 11 is a diagram of the Lightning SPARC architec­

ture.
FIG. 12 is a diagram of the SuperSPARC architecture.
FIG. 13 is a diagram of the DEC Alpha 21064 architec-

ture.
FIG. 14 shows the DECchip 21064 pipeline stages.
FIG. 15 shows the HP PA-7100 architecture.
FIG. 16 shows the HP PA-7100 pipeline stages.
FIG. 17 shows the Intel Pentium architecture.
FIG. 18 is a diagram of a superscalar processor with

reorder buffer and reservation stations.
FIG. 19 depicts a reorder buffer (RB) implemented with

true FIFO array.
FIG. 20 shows a result-forwarding hazard.
FIG. 21 shows a modified reorder buffer (MRB) accord-

ing to the invention.
FIG. 22 depicts an MRB circuit implementation.
FIG. 23 illustrates an MRB_cell circuitry.
FIG. 24 shows a support logic for the MRB.
FIG. 25 shows an RBFAQ circuit implementation.
FIG. 26 depicts a support logic for the RBFAQ.
FIG. 27 shows an in-order issue distributed instruction

queue (DIQ) according to the invention.
FIG. 28 illustrates an in-order issue DIQ circuit imple­

mentation.
FIG. 29 shows a support logic for the DIQ.
FIG. 30 shows an out-of-order issue DIQ according to the

to each of the at least one entry cell for allocation of a
decoded instruction to the at least one entry cell; an issue 60

port connected to a predetermined one of the at least one
entry cell, wherein instructions are issued through the issue
port under logic control in any order from one of the at least
one entry cell and the distributed instruction queue stores no
register value. 65 invention

Implementations of the invention may include one or
more of the following features: a tail pointer logic unit to

FIG. 31 shows a superscalar processor with MRB and
DIQ according to the invention.

6,112,019
7

FIG. 32 depicts a fixed-point register unit (FXRU).

FIG. 33 illustrates a floating-point arithmetic logic unit
(FALU).

FIG. 34 shows a fetch and decode e unit (FDU).
5

FIG. 35 shows a flowchart of operations (processes) in
fetch and decode stages.

FIG. 36 continues from FIG. 35 and shows a flowchart of
operations in issue/execute, writeback, and retire stages.

8
guaranteed to contain the same state as if the processor
executed the code in the original, serial, sequential program
order.

Register Scoreboarding

FIG. 37 depicts a register tag unit (RTU).

FIG. 38 shows a register tag file (RTF).

FIG. 39 shows an RTRB entry.

FIG. 40 shows a register tag reorder buffer (RTRB).

The register scoreboarding technique was originally intro­
duced by Thornton in the CDC 6600 (see J. E. Thornton,
Design of a Computer-The Control Data 6600, Scott, Fores­
man and Co., 1970, M. Johnson, Superscalar Microproces­
sor Design, Prentice-Hall, 1991). It is the simplest form of

10 result shelving. There is only one level of result shelving,
which is accomplished by copying operands and forwarding
results to an instruction window. It only allows a maximum
of one pending update to a register. Each register in the
register file is associated with a scoreboard bit. A "O"

DETAILED DESCRIPTION OF IBE
PREFERRED EMBODIMENTS

The present invention is discussed at length in the above­
cited Chamdani's dissertation, the subject of which is incor­
porated herein by reference.

15 indicates the register content is valid, and a "1" indicates
there is a pending update. When a register is updated/
written, its scoreboard bit is reset. The term "scoreboarding"
used in typical commercial microprocessors, such as the
Motorola 88100 and Intel i960CA, does not fit Thornton's

20 definition because they are only used to detect and enforce
dependencies (see Johnson, 1991). Instead of buffering to an
instruction window, these microprocessors simply stall
instruction decoding when data dependencies and resource
conflicts are detected.

To achieve the best result in parallelizing a sequential
instruction stream, a superscalar microprocessor design typi­
cally s supports multi-instruction issue, decoupled dataflow
scheduling, out-of-order execution, register renaming,
multi-level speculative execution, and precise interrupts. 25

There are two key microarchitecture elements in superscalar
hardware that determine the success in achieving the above
goal, result shelving and instruction shelving. Result shelv­
ing is the key to support register renaming, out-of-order
execution, speculative execution, and precise interrupts. 30

Instruction shelving is the key to support multi-instruction
issue, decoupled dataflow scheduling, and out-of-order
execution.

Thornton's scoreboarding algorithm can be summarized
as follows. First, when an instruction is decoded, the score­
board bit of the instruction's destination register is checked.
If it is set, instruction decoding stalls until the destination
register is updated by the pending instruction. However, if
the destination register's scoreboard bit is clear, instruction
decoding proceeds. The decoded instruction is shelved at an
instruction window, together with the operand values (if the
operand register's scoreboard bit is clear) or the operand
register numbers (if the operand register's scoreboard bit is

The following sections discuss, analyze, and compare
existing result shelving and instruction shelving techniques.
A discussion and analysis of some current state-of-the-art
commercial microprocessors are also given. All this infor­
mation leads to the two superscalar techniques of the
invention, the DIQ and MRB, which are described in detail.

35 set). Thus, instruction decoding does not stall at data depen­
dencies. The instruction waits at the instruction window
until all of its operands become available. Any new instruc­
tion result is monitored. If its result register number matches
the operand register number, the result value is taken as the

Result Shelving Techniques

40 operand value. Once all the instruction operands become
available, it is ready for issue.

Result shelving is a technique to temporarily shelve
register results before they can be safely retired to a register
file. This usually involves buffering of multiple updates to
the same register, thus allowing multiple copies/instances of

Register scoreboarding is a simple alternative to register
renaming. Output dependencies are avoided by allowing
only one pending update to a register. Anti dependencies are

45 also avoided by copying of operands to the instruction
window. Data dependencies are enforced by forwarding
results to the instruction window, to free locked operands. a register to exist in a processor. Four result shelving

techniques are discussed in the following sections: register
scoreboarding, register-mapping table, checkpoint repair,
and reorder buffer. These result shelving techniques are used 50

to support certain superscalar features such as out-of-order
execution, register renaming, speculative execution, and
precise interrupts.

To support the above superscalar features, the complete
processor state, which includes not only register file(s) but 55

also software-visible memory, should be shelved. (It is
assumed that a processor's register file(s) contains all archi­
tectural registers, including status/control registers.) Stores
to the memory can be shelved separately into a store buffer.
Each store instruction in the store buffer is committed only 60

if it is safe, meaning: (a) the store instruction can be
executed without an exception error (page fault, illegal
address), (b) instructions prior to the store instruction are
also exception-free, and (c) prior conditional branches have
been resolved. These conditions guarantee in-order, non- 65

speculative stores. Thus, despite possible out-of-order and
speculative executions inside the processor, the memory is

Register scoreboarding can support out-of-order execu­
tion because it preserves data dependencies while avoiding
anti and output dependencies. However, it does not support
speculative execution nor precise interrupts, because only
the most recent updates of registers (architectural state) are
maintained, without regard to speculative or out-of-order
updates. For speculative execution and precise interrupts to
work properly, there must be a mechanism to recover old
values and restart at the in-order state prior to the speculative
branching or exception instruction.

Register scoreboarding has a serious performance bottle­
neck. It stalls instruction decoding if there is a pending
update to the instruction's destination register. Unlike scalar
processors, superscalar processors fetch and decode instruc-
tions at a prodigious rate, at two, four, or maybe eight
instructions at a time. The probability of an instruction
decode stall becomes great. The available instruction paral­
lelism is wasted if there are many register reuses, which is
a common practice in most compiler register allocation
algorithms.

6,112,019
9

Register-Mapping Table

Keller suggested implementing register renaming by lit­
erally renaming the registers (see R. M. Keller, "Look­
Ahead Processors," Computing Surveys, Vol. 17, No. 4, pp.
177-195, 1975). A mapping table is used to maintain the s
mapping or association of an architectural register to its
physical register. An architectural register is the register
specified in an instruction, which can actually be viewed as
the variable name representing a value. A physical register
is the true hardware register. The mapping table effectively 10
reintroduces the distinction between register (physical
register) and value (architectural register), the essence of
register renaming. To avoid anti and output dependencies
there must be more physical registers than architectural
registers.

lS
The floating-point unit of the IBM RS/6000 (Trademark

of IBM, Inc.) uses a 32-entry, 6-bit-wide register mapping
table to implement register renaming, as shown in FIG. 2.
There are 32 architectural registers and 40 physical registers.
Some parts of the register-renaming structure are intention­
ally omitted from the original diagram to focus on the 20

register mapping table. This register-renaming structure is
implemented as a solution to the out-of-order completion
problem of floating-point load/store and floating-point arith­
metic instructions. In the IBM RS/6000, floating-point load/
store instructions are performed independently at the fixed- 2s
point unit, which involve load/store address calculations.
Without renaming, out-of-order completion can violate anti
or output dependency. For example, in a floating-point load
operation, the load data may return too early and overwrite
a register that is still needed (i.e., it has not been read by an
earlier floating-point arithmetic instruction).

The register renaming process is done as follows. For
notational purpose, MP(i)=j (the contents of the mapping
table at address i is j) indicates that architectural register Ri
maps to physical register Rj. Initially, the mapping table
(MP) is reset to identity mapping, MP(i)=i for i=O, ... , 31.
A remapping is performed for every floating-point load/store
instruction decoded. Suppose a floating-point load to archi­
tectural register 3, FLD R3, arrives at MP. First, the old entry
of MP(3), i.e., index 3, is pushed onto the pending-target
return queue (PTRQ). Then, a new physical register index
from the free list (FL), index 32, is entered to MP(3). This
means R3 is now remapped to R32. Further instruction
codes with source operand R3 will automatically be changed

30

3S

40

to R32. Index 3 in the PTRQ is returned to FL (for reuse)
only when the last arithmetic or store instruction referencing 4S

R3, prior to the FLD R3 instruction, has been performed.
This ensures that the current value in physical register R3 is
not overwritten while still being used or referenced.

10
(allocate) and popped out (retire) in a FIFO (first-in-first­
out) manner. It was originally proposed by Smith and
Plezkun (see J. E. Smith and A R. Pleszkun, "Implemen­
tation of Precise Interrupts in Pipelined Processors," Pro­
ceedings of the 12th Annual Symposium on Computer
Architecture, pp. 36-44, 1985) as a hardware scheme to
support precise interrupts in pipelined, scalar processors
with out-of-order completion. FIG. 3 shows the RB organi­
zation. The RB contains the processor's look-ahead state,
while the register file (RF) contains the in-order state. The
result shift register (RSR) is used to control/reserve the
single result bus. (In Smith and Plezkun's processor model,
multiple functional units share one result bus.) When an
instruction is issued, it reserves stage i of the RSR, where i
is the instruction latency (in cycles). If stage i is already
reserved, the instruction issue is stalled. The RSR shifts one
position every cycle (toward a smaller stage number). When
a valid RSR entry reaches stage 1, the result bus control is
set such that in the next cycle the result from the entry's
functional unit is gated to the RB.

There are four operations involving the RB: allocate
(entry allocation), read (read operand), write (result write),
and retire (entry retirement to RF). To best describe these
operations, consider the instruction sequence shown below
from (see Smith and Pleszkun).

Program Example for Reorder Buffer

PC Instructions Comments Latency

IO: 0 R2 <- 0 ;initialize loop index
11: RO<- 0 ;initialize loop count
12: 2 RS<- 1 ;loop increment value
13: 3 R7 <- 100 ;maximum loop count
14: 4 Ll:Rl <- (R2 +A) ;load A(!) 11 cycles
IS: s R3 <- (R2 + B) ;load B(I) 11 cycles
16: R4 <- Rl + R3 ;floating-point add 6 cycles
17: 7 RO<- RO+ RS ;increment loop count 2 cycles
18: 8 (RO+ C) <- R4 ;store C(I)
19: 9 R2 <- R2 +RS ;increment loop index 2 cycles
110: 10 P ~ L1 : RO! ~ R7 ;cond. branch not equal

Smith and Plezkun state that the RB's allocate operation
is performed when an instruction is issued for execution to
a functional unit. However, this will restrict the RB to
support only out-of-order completion with in-order-issue. To
also support out-of-order issue (full or partial), it is neces­
sary to allocate entry when an instruction is decoded. This
guarantees that instructions are allocated RB entries in the
original program order. For example, FIG. 3 shows the
contents of the RB after the RB allocations of I6 and I7.
When I7 is decoded, an entry is allocated at the tail of RB
(then at entry number 5), following I6's entry. The allocated
entry is initialized with "dest. reg."=0 and "program
counter"= 7. The "valid" bit is also reset to indicate that the
RO value is being computed. The tail pointer is then
incremented, modulo RB size. FIG. 3 also shows the RSR
contents after I7 is issued (a cycle after I6 is issued). An
entry is entered at stage 2 to reserve the result bus, because
an integer add takes 2 cycles to complete. The previously
allocated RB entry number/tag (5) is written to the RSR
entry. The valid bit is set to validate entry.

In terms of meeting superscalar objectives, the register­
mapping table clearly supports register renaming and out- so
of-order execution. However, speculative execution and
precise interrupt are not supported because shelving (register
mapping) is done only if there are multiple updates to the
same register. A speculative or out-of-order update to a
register without pending update is not buffered or remapped. SS

With out-of-order execution, recovery from branch mispre­
dictions and exceptions would be impossible. In terms of
performance, the register mapping table technique has a
disadvantage. The access to the mapping table and the
renaming process introduce at least one additional pipeline 60

stage. In the case of the IBM RS/6000, two pipeline stages
(PD and Remap) are actually dedicated to the register The RB's read operation is performed prior to instruction

issue. Reading an operand directly from the RB (bypassing,
without waiting for the RB to retire it to the RF) requires an

6S associative search based on the operand's register number.

renaming process.

Reorder Buffer

The reorder buffer (RB) is a content-addressable, circular
buffer with head and tail pointers. Entries are pushed in

As an example, suppose I7 is about to be issued. I7's
operand register numbers (0 and 5) are presented to both RB

6,112,019
11

and RF. The comparators/bypass network compares 0 and 5
to the "dest. reg." field of all RB entries between head and
tail pointers. If there is no match then the RF has the latest
value. RO (RS) from the RF is gated to the left_opr_bus
(right_opr_bus). If there is a match in RB with "valid"=l, 5

then the "result" field is gated to the left or right operand bus.
If the "valid" bit is not set (meaning the operand has not been
produced), then I7 is not issued and must wait.

12
because results are written directly to the RF. Any out-of­
order issue between two instructions with an identical des­
tination register will cause a wrong register value to be
written/read (violate output and anti dependencies). The
future file provides a very limited, single-level result shelv­
ing and still requires an RB to recover from a branch
misprediction or exception. The future file is actually a
second RF that is used to store a processor's architectural
state, in addition to the first, in-order state RF. Only a single Multi-entry matching can occur in the RB because reg­

ister number is not a unique associative-search key. Smith
and Plezkun refer to this as the "multiple-bypass check"
problem, which is also referred to as the "prioritized asso­
ciative lookup" problem (see Johnson, 1991). obviously,
only the "latest" entry should generate a bypass path to the
operand bus. For in-order instruction issue, the "latest" entry

10 pending update to a register is allowed. Johnson studied
these two hardware schemes in supporting speculative
execution for superscalar processors (see Johnson, 1991).
The history buffer requires excessive cycles to recover and
restart from a branch misprediction. The future file also adds

15 delay penalties to mispredicted branches, because the
in-order state prior to the branch must be restored to the first
RF.

is simply the last allocated entry among the matched entries.
For out-of-order instruction issue, the "latest" entry is the
last allocated entry among the matched entries prior to the
instruction's RB entry. This becomes the greatest implemen­
tation disadvantage for the RB. A significant amount of logic 20

circuitry is required because matched entries can appear in
any entry combinations. The RB's write operation is per­
formed when an instruction completes execution. The result
value from the result bus is written to the instruction's RB
entry ("result" field). The "tag" field in the RSR (stage 1) is 25

used to guide the instruction to the correct RB entry. The
exception conditions are written to the RB entry's "excep­
tions" field. To indicate that the result value has been
generated, the "valid" bit is set.

Summary of Comparisons

Table 1 summarizes result shelving techniques, their
features and shortcomings. Review of the literature suggests
that the reorder buffer (RB) is the most complete result
shelving technique (see Table 1). The closest contender to
the RB is the register-mapping table, (also called "rename
buffer", implemented as a multi-ported lookup table array),
which is used in IBM POWERPCs, MIPS RlOOOO
(Trademark of MIPS Technologies, Inc.), and HP PA-8000
(Trademark of Hewlett-Packard, Inc.). The register-mapping

The RB' s retire operation is performed to retire completed
result values to the RF (in-order state). Every cycle, the entry

30 table technique has four disadvantages compared to the RB.
First, to read a register operand, it has to access the mapping
table, using the logical register number, to get the corre­
sponding physical register number in the register file. This
additional delay could potentially lengthen the processor's

at the head of the RB is monitored for retiring. If the result
value has already been generated ("valid"=l) and there is no
exception ("exceptions"=O), then the head RB entry is
retired to the RF. The result value in the "result" field is
written based on its register number in "dest. reg.". The head
pointer is then incremented, modulo RB size.

35 cycle time or introduce another pipeline stage. The third
pipeline stage in the MIPS RlOOOO is dedicated solely to
read operand registers.

Second, the mapping table is not a small circuit. For
instance, the MIPS RlOOOO requires two 32x6 mapping

40 tables, one with 12 read ports and 4 write ports for the
integer register map, and another with 16 read ports and 4
write ports for the floating-point register map.

In terms of meeting superscalar objectives, it is obvious
that the RB supports precise interrupts and out-of-order
execution. Results are updated to the in-order state (RF) in
the original, sequential program order, after checking their
exception conditions. The RB also supports register renam­
ing by creating a new instance/entry for every register
assignment. Speculative execution is not readily supported.

45
To support it, requires a mechanism to flush certain RB
entries at a variable reset point (branch point). Johnson
suggested allocating an entry in the RB for every conditional
branch instruction, even though no result value is produced
(see Johnson, 1991). When a conditional branch is

50
mispredicted, the processor searches the corresponding
"branch" entry in the RB. This entry becomes the reset point;
all entries subsequent to it are flushed (tail pointer="branch"
entry number). Or alternatively, we can let the "branch"
entry reach the bottom (head) of the RB. However, this adds

55
delay to the recovery and restart from a branch mispredic­
tion.

Smith and Plezkun presented two other methods for
supporting precise interrupts: history buffer and future file.
The history buffer does not fit in the result shelving category

Third, precise interrupts are not supported. To overcome
this problem, an additional component, called the "active
list" in the MIPS RlOOOO, is needed to track every active
instruction and maintain the old physical register number
prior to the new mapping/renaming (if the instruction
updates a register) in the decode stage. If the instruction
completes out of order and there is an exception at a
preceding instruction, the mapping must be unmapped by
writing back the old physical register number from the
active list to the mapping table.

Fourth, speculative execution is not supported. To over­
come it, the processor must save the whole mapping table in
a storage area (called "shadow registers" in the MIPS
RlOOOO) for every speculated branch. When a branch is
mispredicted, the processor yanks the old mapping table.
The storage area increases as more levels of speculative
execution are added.

6,112,019
13 14

TABLE 1

Comparisons of Result Shelving Techniques

Checkpoint
Register Score- Register-Mapping Repair (not
board Table discussed) Reorder Buffer

Super- ~Out-of-order ~Out-of-order ~Out-of-order ~Out-of-order
scalar execution execution execution execution
Features Register ~Register ~Register
Supported renaming ~enaming renaming

nSpeculative ~Precise
execution ~nterrupts
~Precise nSpeculative
interrupts execution (with

branch entry

~Simple ~No associative ~No associative
lpcation)

Notable nThe most
Features alternative to lookup, direct lookup. complete result

register renaming. renaming of shelving tech-
register numbers. I]-ique.

nFastest branch
misprediction
recovery and
restart

Shortcomi ~Multiple pending ~Introduces new ~Requires ~Requires associ-
ngs updates stall l?ipeline stages. substantial stor- ative lookup cir-

instruction nDoes not age for the logi- ~uitry.
decoding. support ~al spaces. nRequires
nDoes not support speculative nNeeds complex significant amount
speculative execution nor logic to route of comparators and
execution nor precise result to the logic circuitry to
precise inter- interrupts. appropriate overcome the pri-
rupts. lpgical spaces. oritized associ-

nSlow branch alive lookup
misprediction problem.
recovery due to a
wait to get the
in-order logical
space to the
Current Space
position.

Instruction Shelving Techniques at the top and issued from the bottom. After a set of

Instruction shelving is a technique to temporarily shelve
decoded instructions until they can be issued and executed
at the appropriate functional unit. Thus, an instruction shelf
(also called instruction window) is a wait station between
decode and execution. Instructions in the instruction win­
dow can be dynamically scheduled to achieve multi­
instruction issue, decoupled datafiow scheduling, and out­
of-order execution. It is also possible to combine result
shelving in the instruction window (called the integrated
shelving technique) to support other superscalar features;
register renaming, speculative execution, and precise inter­
rupts. An instruction in an instruction window is issued (or
ready to be issued) if all of its operand(s) are available, and
all resources required (functional unit, operand buses, result
bus) are granted.

There are two types of instruction windows: central
window and distributed window. In the following sections
we will discuss three central window techniques (the dis­
patch stack, register update unit, DRIS) and one distributed
window technique (reservation stations).

Dispatch Stack

The dispatch stack (DS) is a central instruction window
that performs dynamic code scheduling on the dynamic
instruction stream of multiple functional unit processors. It
allows out-of-order, multi-instruction issue. The instruction
window behaves like a stack where instructions are allocated

40 instructions is issued, the gaps (freed entries) are filled with
unissued instructions above it (compression). Then, the next
set of instructions can be pushed in. This is important to
determine instruction order during dependency checks. A
DS entry consists of an instruction tag, opcode, source and

4
s destination register identifiers, dependence fields, and issue

index. To explain how the DS works, consider the program
example shown below (see R. D. Acosta, J. Kjelstrup, and H.
C. Torng, "An Instruction Issuing Approach to Enhancing
Performance in Multiple Functional Unit Processors," IEEE
Transactions on Computers, Vol. C-35, pp. 815-828, 1986), so
which adds floating-point numbers in RO through R7 and
leaves the sum in RO.

SS Program Example with Tight Data Dependencies

IO: fadd RO,Rl,RO ;RO<- Rl +RO
11: fadd R2,R3,R2 ;R2 <- R3 + R2
12: fadd RO,R2,RO ;RO<- R2 +RO
13: fadd R4,RS,R4 ;R4 <-RS+ R4

60 14: fadd R6,R7,R6 ;R6 <- R7 + R6
IS: fadd R4,R6,R4 ;R4 <- R6 + R4
16: fadd RO,R4,RO ;RO<- R4 +RO

FIG. 4 shows the DS contents after the above sequence of
6S instructions is decoded and allocated into the window. Since

there is no register renaming mechanism in this case, the a
and ~ dependence fields must include not only data

6,112,019
15

dependencies, but also artificial (anti and output) dependen­
cies. The a(Sl) and ~(S2) count the number of data depen­
dencies (among its preceding instructions in the window).
The a(D) counts the number of output dependencies, and
~(D) counts the number of anti dependencies. An instruction 5

is ready to issue if its issue index (I2
) is zero (meaning no

dependencies). In FIG. 4(a), four instructions (IO, 11, I3, and
I4) are issued, assuming there are adequate functional units
and data paths to transmit operands and results. At the
completion of each issued instruction, the destination reg- 10

ister identifier (D) is forwarded to the DS, which is com­
pared to the Sl, S2, and D fields of all unissued instructions.
Wherever there is a match, the appropriate a or ~ is
decremented by 1. FIG. 4(b) shows the updated dependence
fields, assuming IO, 11, I3, and I4 complete at the same time. 15

Also note that the window has been compressed. In the next
two issues, instructions I2 and I5 are issued simultaneously,
followed by I6.

The hardware implementation of a DS is very complex.
Each entry requires five counters for the dependence fields 20

and issue index. When an instruction is decoded and allo-

16
decoupled dataflow scheduling, out-of-order execution, reg­
ister renaming, speculative execution, and precise interrupts.

To allow multiple instances of a register (register
renaming), each register in the register file is associated with
two counters (NI and LI). The NI counter represents the
number of instances of a register in the RUU, while the LI
counter represents the latest instance number. When an
instruction with destination register Ri is decoded and
allocated to the RUU, Ri's NI and LI counters are incre-
mented. Wrap around in the LI counter is allowed (modulo
counter). However, when the NI counter reaches its maxi­
mum value, the instruction decoding is stalled. When an
instruction is retired from the RUU and updates the desti­
nation register, the NI counter is decremented. With these
counters, tag allocations and deallocations become simple. A
register tag now simply consists of the register number
appended to the LI counter.

In each clock cycle, the RUU performs four operations
simultaneously: (a) dispatch/allocate one instruction from
the decoder, (b) issue one instruction nearest to the head
pointer with ready operands, (c) writeback any result value
to the instruction's RUU entry, and forward this result to any
matching operand(s), and (d) retire one completed instruc­
tion at the head entry and update its result value to the
register file. To describe these operations, consider the

cated to the DS, these counters must be set by comparing the
instruction's register identifier with every instruction in the
window, requiring (5xnumber of instructions decoded per
cyclex(number of DS entries -1)) comparators. The alloca­
tion process also requires each entry to be able to receive an
instruction from any decoder position. Since instructions can
be issued from any position, every functional unit must be
able to receive an instruction from any DS entry. When an
issued instruction completes, its destination register identi­
fier must be compared to the register identifiers of all
instructions in the DS, requiring another set of (5xnumber of
instructions completed per cyclexnumber of DS entries)
comparators. And, what could be the most complex circuitry,
compressing the window requires each entry to be able to
receive from any entry above it. Dwyer and Torng estimated
that the issue, compression, and allocation circuitry for a
mere 8-entry dispatch stack would consume 30,000 gates
and 150,000 transistors (see H. Dwyer and H. C. Torng, A
Fast Instruction Dispatch Unit for Multiple and Out-of­
Sequence Issuances, School of Electrical Engineering Tech­
nical Report EE-CEG-87-15, Cornell University, Ithaca,
N.Y., 1987 and Johnson, 1991). This complexity makes the
dispatch stack unattractive.

25 previous program listing. FIG. 5(a) shows the instruction
timing when each instruction is allocated, issued, written
back, and retired. It is assumed that each floating-point add
takes six cycles to complete. FIG. 5(b) shows the snapshot
of the RUU contents at cycle 7. Instruction I6 (fadd RO,R4,

Register Update Unit

30 RO) has just been allocated at the tail of the R UU. Its
program counter, functional unit source, operands, and des­
tination register tag are written. The destination register tag
(0,3) is simply the register number (0) appended with the
current LI counter value for RO (3). The "executed" flag is

35 reset to indicate entry 6 as unissued. Operands are read
directly from the register file. If an operand is available, its
value is copied to the allocated entry and the "ready" flag is
set. However, if an operand has not been produced, then its
register tag is copied to the allocated entry and the "ready"

40 flag is reset. Later when the operand value is produced, the
RUU forwards it. By copying operands and forwarding
results to the instruction window, anti and output dependen­
cies are effectively eliminated (see Johnson, 1991).

The issue operation is carried out by first checking
45 "ready" flags of source operand 1 and 2. Any unissued

instruction with both operands' "ready" flags set is consid­
ered ready. Since only one instruction can be issued per
cycle, priority is given to the one nearest to the head pointer.
This instruction can issue if all accesses to the functional

Sohi and Vajapeyam proposed a simpler central window
than the dispatch stack, called the register update unit (R UU)
(see G. S. Sohi and S. Vajapeyam, "Instruction Issue Logic
for High-Performance Interruptable Pipelined Processors,"
Proceedings of the 14th Annual Symposium on Computer
Architecture, pp. 27-34, 1987). It avoids window compres­
sion by keeping issued instructions until they reach the
bottom of the R UU, then retire if completed. It has a simpler
allocation and issue logic, mainly because it was designed 55

for scalar (single-instruction issue) processors with multiple
functional units and long pipeline stages (CRAY-1
category). The RUU resolves data dependencies
dynamically, avoids artificial dependencies, and supports
out-of-order issue. What is interesting about the RUU design 60

is that it combines the principles of Tomasulo's reservation
stations (see R. M. Tomasulo, "An Efficient Algorithm for
Exploiting Multiple Arithmetic Units," IBM Journal of
Research and Development, Vol. 11, No. 1, pp. 25-33, 1967)
and Smith and Plezkun's reorder buffer. Thus, an RUU is an 65

instruction window as well as a result buffer (an integrated
shelving technique). It supports five superscalar features;

50 unit, operand buses, and result bus have been resolved. The
issue may be out of order, as shown by the example in FIG.
5(b). Instructions are issued in the following order: IO, 11, I3,
I4, I2, I5, and I6.

When an instruction completes execution, its result value
is written back to the instruction's RUU entry at the desti­
nation's "content" field (writeback operation). The
"executed" flag is set. To free locked instruction(s) that wait
on this result, the destination's "tag" is compared to any
source operand's "tag". A match triggers the forwarding of
the result value to the operand's "content" field. The "ready"
flag is then set. FIG. 5(c) shows the contents ofRUU at cycle
9 where RUU performs a writeback operation due to the
completion of 11. Because the 11's destination register tag
(2,1) matches with I2's second operand, 11's result value is
forwarded to I2's source operand 2 "content" and the
"ready" flag is set. Now both of I2's operands are available
and I2 is ready for issue.

6,112,019
17

The retire operation is performed on the instruction at the
bottom entry of the RUU. If its "executed" flag=l, the result
value (destination's "content") is retired to the register file
and the head pointer is incremented, modulo RUU size (see
IO in FIG. 5(c)). Retiring from the bottom entry ensures that
the register file is updated in the original program order. If
the instruction does not complete successfully due to excep­
tion or branch misprediction, then a recovery action is
initiated by flushing the entire contents of R UU. The register
file automatically contains the correct in-order state at the
branch point or precise-repair point. The NI and LI counters
are reset to zero since the only instance of a register is in the
register file (register instances in RUU are completely
flushed).

Although the RUU meets many of the superscalar
objectives, it is not directly applicable to superscalar pro­
cessors. The RUU has serious performance bottlenecks (see
Johnson, 1991):

18
size), if the DRIS index goes back to zero, the color-bit
register is toggled. In determining the order of two instruc­
tions X and Y, we compare their IDs. If index(X)>index(Y)
and color(X)=color(Y), then instruction Xis "younger" (was

5 allocated later) than instruction Y. If their color bits are
opposite then the relationship is reversed.

There are four stages/operations in the Metaflow archi­
tecture involving the DRIS: dispatch/allocate, issue,
writeback, and retire. (To be consistent with the terms used

10 in this document, the Metaflow' s terms of "issue",
"schedule", and "update" have been changed to the similar
terms dispatch/allocate, issue, and writeback, respectively.)
To describe these operations, consider the previous program
example. FIG. 7(a) shows the instruction timing when each

15 instruction is allocated, issued, written back, and retired. It
is assumed that there are four allocate ports, four retire ports,
and two floating-point adders with 3-cycle latency. FIGS.
7(b) and 7(c) show the DRIS contents at different time
points.

The instruction issue rate is limited to one instruction per
cycle (because it was designed for scalar, instead of 20

superscalar processors).

The allocate operation is performed when a set of decoded
instructions arrives at the DRIS. For each instruction, the
allocated DRIS entry is written with the program counter,
opcode, functional unit class number, register numbers of
source and destination operand(s), register tags of source

The window entries of issued instructions are not imme­
diately deallocated. Since only one entry (bottom entry)
is freed at a time, a small window size results in
frequent stalls at the decoder when the RUU is full. For
the R UU to be effective, the window size must be
relatively large. Simulation results reported by Sohi
and Vajapeyam on Lawrence Livermore loop bench­
mark programs, show that a relative speedup
(compared to the scalar CRAY-1 simulator) greater
than 1.8 requires at least 50 entries (see Sohi and
Vajapeyam).

An instruction with branch misprediction or exception is
detected very late, after it reaches the bottom of the
RUU. This is a substantial delay that causes many
instructions beyond the branch or exception instruction
to be fetched, decoded, and executed unnecessarily,
wasting the processor's time with decreased perfor­
mance.

DRIS

The DRIS (deferred-scheduling, register-renaming
instruction shelf) is an improved version of Sohi and Vajap­
eyam's RUU that is more suitable for superscalar proces­
sors. The DRIS is the integrated shelving technique of the
Metaf low architecture (see V. Popescu, M. Schultz, J.
Spracklen, G. Gibson, B. Lightner, and D. Isaman (Metaflow
technologies, Inc.), "The Metaflow Architecture," IEEE
Micro, pp. 10--13 and 63-73, 1991), shown in FIG. 6. The
DRIS supports all six superscalar features; multi-instruction
issue, decoupled dataflow scheduling, out-of-order
execution, register renaming, speculative execution, and
precise interrupts. The first implementation of DRIS, named
DCAF (dataflow content-addressable FIFO), appears in the
Metaflow LIGHTNING(fHUNDER SPARC microproces­
sor (Trademark of Metaflow Technologies, Inc.).

The key process to do register renaming, dependency
checking, and result forwarding is the tagging of register
results. The DRIS uses a different register tagging scheme
than RUU. Each register in DRIS is tagged with the iden­
tifier (ID) of the producer instruction. The ID of a newly
allocated instruction consists of the current "color" bit
appended with its DRIS index (entry number). The color bit
is used to distinguish the age or order of instructions when
the valid entry area (from head pointer to tail pointer) wraps
around. When incrementing the tail pointer (modulo DRIS

25 operand(s), and some control information. FIG. 7(b) shows
a snapshot of the DRIS at cycle 2 when I4, I5, and I6 have
just been allocated. The "dispatched" and "executed" bits
are initially reset. There are three associative searches
involved for each entry allocation; during the setting of

30 "latest" bit in the destination section and during the setting
of "locked" bit and "ID" fields in both source operand
sections (dependency checking). Consider next the alloca­
tion of I6. To determine the "latest" bit, the DRIS allocate
logic searches and compares all other entries (including the

35 ones currently being allocated) with the same destination
register number as I6 (0). If no match, the "latest" bit is
automatically set. In this case, there are two matched entries
(IO and I2). The ID (color, index) comparisons of IO, I2, and
I6 show that I6's entry is the youngest. This means I6 is the

40 last instruction in the DRIS that updates RO. So, I6's "latest"
bit is set and I2's and IO's "latest" bits are reset. To
determine the "locked" bit and "ID" fields of I6's second
operand (R4), register number 4 is associatively searched
among the destination registers of other older entries. If no

45 match is found, no instructions in the DRIS updates R4 and
R4 must be retrieved from the register file. The "locked" bit
is cleared and the "ID" field is set to a default value (e.g. the
instruction's own ID) to indicate that the operand is in the
register file. However, in this case, two matches are found

50 (13 and I5), but I5's entry contains the latest R4. Therefore,
its index (5) plus the current color bit (0) becomes the ID
(0,5) of I6's second operand. The "locked" bit and "ID"
fields of I6's first operand are determined similarly.

The issue operation is performed by checking the
55 "locked" bits of unissued instructions ("dispatched"=O). The

oldest instruction with both operands unlocked ("locked"=O)
is given priority for issue, provided the requisite functional
unit is available. The DRIS issue logic strives to find as
many instructions to issue as possible. FIG. 7(b) shows a

60 case where the DRIS finds two instructions (IO and 11) to
issue. The DRIS issue logic checks the ID field of each
source operand to determine the operand location (either in
the register file or the DRIS). Since IO's and Il's source
operand IDs are the instruction's own ID (default value for

65 register file location), the operand values are fetched from
the register file. In the case that an operand is in the DRIS,
the operand ID's index part locates the DRIS entry, where

6,112,019
19

the "content" field of the destination section is then routed
20

are not immediately deallocated. DRIS entries are freed only
when instructions are retired, which proceeds in order, from
the bottom of the DRIS. This could result in frequent stalls
at the decoder as the DRIS gets full, which may occur due

as the operand value. In any case, the DRIS issue logic
passes the opcode, operand values, and ID of each issued
instruction to the corresponding functional unit. The "dis­
patched" bit of the issued entry is then set.

The write back operation is performed when an instruction
completes execution. The instruction's DRIS entry is found
by the result ID's index part. The result value is then written
to the "content" field of the destination section. The result ID

5 to a small window size or relatively long waits due to many
data dependencies or unresolved conditional branches. For
the DRIS to be effective, the window size must be suffi­
ciently large, which increases hardware cost. Another poten-

is broadcast and compared to the operand IDs of other valid
10

DRIS entries. A match clears the corresponding "locked" bit.
Thus, the result forwarding unlocks any locked operands
that are dependent on the result value. FIG. 7(c) shows how
13's and I4's results unlock both operands of IS.

The retire operation is performed in order, starting from
15

the oldest instruction in the DRIS (bottom entry). Multiple
instructions may be retired simultaneously depending on the
number of retired ports and the eligibility of instructions. An
instruction is eligible to retire if (see Popescu, et al.): (a) it
has completed successfully ("executed"=l and no exception

20
error), (b) all older instructions have been retired or are
being retired in this clock cycle, and (c) there is an available
retire port to write the register "content" to the register file.
FIG. 7(c) shows two instructions (IO and 11) are eligible to
retire.

25
The DRIS handles memory-reference instructions (loads

and stores) by forcing them to go through the dispatch/
allocate, issue, execute, and writeback operations twice: first
to compute the load/store address, and second to load/store
the memory data. Load bypassing is allowed. 30

The DRIS supports multi-level speculative execution by
shelving multiple instances of condition code. The condition
code value is written to the DRIS entry of a condition
code-setting instruction (at the "content" field of the desti­
nation section). When a branch instruction is decoded and 35
allocated a DRIS entry, the branch's operand "ID" field is
written with the ID of the youngest condition code-setting
instruction (associatively searched). When this instruction
completes execution, the writeback operation causes the
branch operand to be unlocked. As the oldest branch entry 40
is issued, the predicted branch direction (part of the
"opcode" field) is compared to the branch operand, i.e., the
condition code fetched from DRIS. If the branch was
correctly predicted, then the "executed" bit is set and opera­
tion continues as usual (the speculative execution is sue- 45
cessful so far). However, if a branch misprediction is
detected, then a branch repair action is invoked. To flush all
entries following the mispredicted branch, the DRIS tail
pointer is set to the branch ID's index.

Compared to the register update unit, the DRIS improves 50

three areas (see Popescu, et al.): (a) register renaming, (b)
operand storage and routing, and (c) branch misprediction
delay. First, the implementation of register renaming is
improved by a more efficient register tagging (ID). Costly
counters per register are avoided. The LI and NI counters 55

also limit the number of instances of a register, which could
result in more stalling. Second, the storage per entry in the
DRIS is less than the RUU because operand values are not
copied to DRIS entries. Rather, the operand values are read
directly from the DRIS destination section (or the register 60

file) at issue time. This strategy also saves expensive data
routing during result forwarding, eliminating paths from
result values to operand fields. Third, branch misprediction
is repaired as soon as it is issued and executed, not when it
is retired at the bottom of the window.

Despite these improvements, the DRIS still carries one
RUU disadvantage: window entries of issued instructions

65

tial disadvantage of DRIS is long load and store delays.
Many cycles could be saved if the load/store address com­
putation is implemented as a separate instruction and sched-
uled as early as possible.

Reservation Stations

Tomasulo introduced reservation stations in the floating­
point section of the IBM 360/91 to exploit the multiple
execution units. The main objective was to permit simulta­
neous execution of independent instructions while preserv­
ing the precedence (data dependency) constraints in the
instruction stream. Reservation stations are essentially an
implementation of distributed instruction windows with
some result shelving. The result shelving, done by copying
operands and result forwarding to reservation stations, are
necessary to support register renaming. FIG. 8 shows the
hardware implementation of Tomasulo's algorithm. (To
focus the discussion on the reservation stations, two hard­
ware units (floating point buffers and store data buffers) are
intentionally omitted from the original diagram.)

There are four key components in Tomasulo's concept:
busy bit, tag, reservation station, and common data bus. A
busy bit is associated with each floating-point register or
operand as a dependency mechanism. If set (busy bit=l)
then it means the register is not available, currently being
generated. A tag is associated with each register instance,
which is used in place of the register number/identifier. This
reintroduces the distinction between register and value, the
essence of register renaming. In Tomasulo' algorithm, a tag
corresponds directly (1-to-lto a reservation station. For
example, in the IBM 360/91, tag numbers 10 through 12
correspond to the three reservation stations of the adder unit.
However, Weiss and Smith suggested a more flexible way of
assigning tags (S. Weiss and J. E. Smith, "Instruction Issue
Logic in Pipelined Supercomputers," IEEE Transactions on
Computers, Vol. C-33, No. 11, pp. 1013-1022, 1984). When
an instruction is decoded, a new tag is assigned for its
destination register from a "tag pool" that consists of some
finite set of tags. When the instruction completes, the tag is
returned to the pool for reuse.

The reservation station is a wait station for an instruction
that is about to be executed. Each execution unit has its own
set of reservation stations. Each reservation station consists
of four fields: sink tag, sink value (first operand), source tag,
source value (second operand), and control. The control field
contains opcode and destination register number informa­
tion. It also contains information defining whether the res-
ervation station is ready to issue or not. Two busy bits for the
sink and source can be used. If both clear then both operands
are available and the reservation station is ready to issue.
Note that the IBM 360/91 has two-operand instructions. A
sink register is a destination register as well as a source
operand. A three-operand processor would have a different
reservation station format: source 1' s busy bit, tag, value,
source 2's busy bit, tag, value, dest tag, and control.

The actions taken during instruction decode are as fol­
lows. The decoder decodes one instruction from the top of
the floating point operation stack (FLOS). A reservation

6,112,019
21

station is allocated at the appropriate execution unit. Instruc­
tion operands (sink and source) are copied from FLR to the
reservation stations. If the busy bit of an operand register in
FLR is clear (indicating the register value is valid), then the
register content, tag, and busy bit are copied to the reser­
vation station (at sink or source fields). Anew tag is updated
to the destination register in FLR, and the busy bit is set.
This new tag is the reservation station's assigned number.
However, if the busy bit of the operand register in FLR is
already set (indicating another instruction is currently gen­
erating the register value), then only the register tag and
busy bit are copied to the reservation station.

The actions taken during instruction issue are as follows.

22
fetched, decoded, and executed speculatively, then the FLR
only contains the architectural state. Only the most recent
updates of registers are maintained, regardless of whether
they are speculative updates or not. For speculative execu-

5 tion to work properly, there must be a mechanism to recover
certain old values and restart at the in-order state prior to the
speculative branching. To support speculative execution, the
register file can be accompanied by a reorder buffer. The
original Tomasulo's algorithm also lacks multi-instruction
fetch and decode. A single-instruction decoder really

10 underutilizes the potential machine parallelism. It is not
difficult however, to expand Tomasulo's reservation stations
to handle multi-instruction decode and become a superscalar
distributed window (see Johnson, 1991).

For each execution unit, one waiting instruction from its
reservation station set is selected for issue/execution. This 15

instruction must satisfy the following requirements: (a) all of

Summary of Comparisons

Table 2 is a summary of instruction shelving techniques.
The features which support superscalar design are defined
and the good and poor features of each technique are also
noted. Review of the literature suggests that the reservation
station (RS) is the best instruction shelving technique to give

its operands are available, (b) it has priority over other
waiting instructions that are also ready, and (c) its request for
the result bus (common data bus), at the clock period when
the result will be generated, has been granted. The reserva- 20

tion station number of the issued instruction becomes the
destination register tag (dest_tag). The issued instruction
then releases the reservation station for others to use.

maximum machine parallelism (see Table 2). The closest
contender to the RS is the DRIS (Deferred-scheduling,
Register-renaming Instruction Shelf), a central window
technique used in the Metaflow Thunder SPARC. The DRIS
central window technique has five disadvantages compared
to the RS distributed window. First, the DRIS has long load When the instruction completes execution, the result

value, destination register number (dest_reg) and tag (dest_
tag) are placed at the common data bus (CDB). This result
is updated to the FLR based on dest_reg and dest_tag. The
FLR compares the dest_tag to the last tag of the dest_reg
to ensure that only the most recent instruction changes the
register. The result is also forwarded to the reservation
stations. Each active reservation station compares its sink
and source tags to the dest_tag. If they match, the result is
written to the sink and/or source fields. This may free some
waiting instruction(s).

Implementing instruction shelving by Tomasulo's reser­
vation stations accomplishes the following superscalar
objectives:

Achieves multi-instruction issue by allowing each func­
tional unit to independently issue an instruction from its
reservation station set,

Achieves decoupled dataflow scheduling by shelving all
decoded instructions and not stalling instructions at the
decoder,

Permits out-of-order execution while preserving data
dependency constraints, and

Achieves register renaming (enforces data dependencies,
eliminates anti and output dependencies) by tagging
registers, copying operands and result forwarding to
reservation stations.

Anti dependencies (write-after-read hazards) are avoided
by copying operands to reservation stations. Once
operands are read from the FLR and copied to the
reservation stations (at decode stage), they cannot be
overwritten by writes/updates from subsequent instruc­
tions. If an operand value is not available from the FLR
at the decode stage, its register tag is copied instead to
the reservation station. When the operand value is
finally generated by one of the execution units, it will
be delivered to the reservation station. Thus, result
forwarding enforces data dependencies (read-after­
write hazards). Output dependencies (write-after-write
hazards) are avoided by comparing tags at the FLR on
every register write, to ensure that only the most recent
instruction changes the register.

Tomasulo's algorithm lacks a mechanism to handle
speculative execution. If instructions are allowed to be

25 and store delays because it forces all memory-reference
instructions to go through the dispatch, issue, execute, and
writeback pipeline stages twice; first to compute the load/
store address, and second to load/store the memory data.

Second, inherently, the DRIS has less parallel issue capa-
30 bility (machine parallelism) than the RS. In the RS

technique, by distributing the windows to each execution
unit, the number of instructions that can be issued in parallel
is as many as the total number of execution units, because
each execution unit's window can issue an instruction. On
the contrary, the maximum number of parallel issues in the

35 DRIS central window is limited to the number of issue ports.
Third, the hardware to support multiple out-of-order

issues is very complex because the issue logic has to deal
with greater numbers of instructions and resource allocation
conflicts relative to the RS technique, which deals with

40 fewer instructions locally and only needs to issue one
instruction.

Fourth, the instruction routing in the DRIS central win­
dow with out-of-order issue requires that there is an issue
path from any window entry to any functional unit. The
requirement in the reservation-station distributed window is

45 simpler, one issue path from any window entry to one
functional unit. Moreover, since the RS window has con­
siderably fewer entries than the DRIS window, the instruc­
tion routing complexity becomes even simpler.

Fifth, in DRIS, window entries of issued instructions are
50 not immediately retired/freed, resulting in inefficient use of

the window especially if there are long chains of data
dependencies or long, unresolved conditional branches. This
inefficiency could result in frequent decode stalls and reduce
performance. As a result, the DRIS window size must be

55
made relatively large, which increases hardware cost con­
sidering each DRIS entry contains many comparators, reg­
ister bits, and logic to update different kinds of flags (locked,
latest, dispatched, executed). The other penalty is the need
for DRIS to retire/deallocate multiple entries per cycle. In
contrast, the RS only issues one instruction at a time, in

60 which the issued-entry is deallocated immediately.
The proof of DRIS hardware complexity is seen in the

Metaflow Thunder SPARC which requires a three-chip set
implementation even using IBM's advanced 0.5-micron
CMOS process (see R. Wilson, "RISC Face-Off Coming to

65 Hot Chips," Electronic Engineering Times, pp. 1-68, 1994).
In general, a central window technique is more complex to
implement than a distributed window technique.

6,112,019
23

TABLE 2

Comparisons of Instruction Shelving Techniques

Register Update
Dispatch Stack Unit ORIS

Type Central window Central window Central window

Supersca- ~Multi-ins true- ~Decoupled data- ~Multi-instruc-
lar tion issue flow scheduling tion issue
Features ~Decoupled data- nOut-of-order ~Decoupled data-
Supported flow scheduling execution flow scheduling

nOut-of-order ~Register rena- nOut-of-order
execution :tping execution

nSpeculative ex- ~Register rena-
ecution :tping
~Precise inter- nSpeculative
rupts execution

~Precise inter-

~Immediately ~Integrated
i;ipts

Notable nintegrated
Features frees issued shelving (instruc- shel-ving

entries for tion +result), (instruction +
reuse. combining the result), an im-

principles of re- proved version of
ervation stations RUU
and reorder buf- ~No need to copy
fer. operands to ORIS
~Simple tag entries, reduces
allocation and de- storage require-
allocation using ment.
the NI and LI nSupports multi-
counters. level speculative

execution.

Shortcom- ~rtificial ~Single-instruc- ~To be
in gs dependencies tion issue. effective, the

stall instruction ~To be effective, window size must
issue. the window size be relatively
~Requires very must be relatively large because is-
complex circuitry large because is- sued entries are
especial! y for sued entries are not immediately
window not immediately freed.
~ompression). freed. ~Long load and
nUses many coun- ~Late detection store delays be-
ters and compar- of branch mispre- cause they are
tors. diction and excep- processed in ORIS
~8-entry dis- tion. twice.
patch stack al- ~Copying operands ~The hardware to
ready consumes and to RUU increases support out-of-
30,000 gates storage/area. order is complex,
150,000 transis- Result forwar- lengthens clock
tors. ding to all window period, and adds

entries increases ~ pipeline stage.
global bus rou- nResult forwar-
ting. ding to all ORIS

entries increases
global bus
routing.

Commercial Superscalar Microprocessors

Reservation
Stations

Distributed win­
dows
~Multi-instruc­
tion issue
~Decoupled data­
flow scheduling
~Out-of-order
execution
~Register rena­
ming

~Integrated
shel-ving
instruction +
result).
~The result
shel-ving
supports register
renaming.
~More parallel
issue capability
than a central
window; each
func-tional unit
has a window to
issue
instruction.
~Result shelving
at reservation
stations does not
support specula­
tive execution,
unless the regi­
ster file is ac­
companied by a
reorder buffer.
~Copying oper­
ands to reserva­
tion stations in­
creases storage
and global bus
routing.
~Result forwar­
ding to all
reser-vation
stations
increases global
bus routing.

24

Computer Design, pp. 134--137, 1989). Many other super­
scalar microprocessors followed later.

The following sections describe six commercial super­
scalar microprocessor architectures: the IBM RS/6000,
Metafiow LIGHTNING(fHUNDER SPARC, TI SUPER­
SPARC (Trademark of Texas Instruments, Inc.), DECchip
21064 (ALPHAAXP), HP PA-7100 (Trademark of Hewlett-

The first commercial superscalar microprocessor was the 55

Intel i960 CA, which was introduced in 1989. The super­
scalar features supported were limited, excluding specula­
tive execution and register renaming. The i960 CA decodes
four instructions at once, issues up to three of them per
cycle, and can sustain a maximum execution rate of two
instructions per cycle. The Intel i960 CA was followed by
many other versions (CF, MM, etc.). A more complete
superscalar processor that supports (single-level) specula­
tive execution and register renaming, the IBM RS/6000, was
also introduced in1989 (see R. D. Groves and R. R, Oehler,
"An IBM Second Generation RISC Processor Architecture,"
Proceedings of the 1989 IEEE International Conference on

60 Packard, Inc.), and Intel PENTIUM. The discussions focus
on the superscalar aspects of the processors. A summary of
upcoming superscalar microprocessors that have been
recently announced to reach their sampling status in 1995 or
1996 is also given at the end. These include the DEC

65 ALPHA 21164, Sun Microsystems ULTRA-SPARC
(Trademark of Sun Microsystems Computer Corporation),
IBM POWERPC 620 (Trademark of IBM, Inc.), MIPS

6,112,019
25

RlOOOO, HP PA-8000, and AMD KS. All of these new
microprocessors adopt some kind of superscalar techniques

26
The BU has four special purpose registers (see R. R.

Oehler and R. D. Groves, "The IBM RISC/6000 Processor
Architecture," IBM Journal of Research and Development,
Vol. 34, No. 1, pp. 23-36, 1990); the machine-state register

5 (to control system states), the link register (for subroutine
return address), the count register (to control loop iteration),
and the condition register (to support multiple condition
codes for conditional branches). Zero-delay branch for loops

to support out-of-order and speculative execution. Other
trends are the migration to true 64-bit architectures, larger
bandwidths, multimedia hardware support, and glueless
two- or four-way symmetric multiprocessing. Among all
existing microprocessors to date, the DEC Alpha 21164, the
follow-on to Alpha 21064, currently has the highest perfor­
mance. Its single-chip architecture is a combination of
superpipelined and superscalar architectures. Volume-wise,

10
the Intel PENTIUM is currently the superscalar micropro­
cessor sold in the largest quantities, used in PCs and
low-priced workstations, mainly due to its large x86
software-base.

with a known iteration count is achieved with the branch­
and-count instruction that uses the count register. The con­
dition register contains eight condition fields, two of which
are reserved to contain the condition code results of arith­
metic computations in the FXU and FPU. The remaining six
can be explicitly set by other fixed- or floating-point com-

IBM RS/6000

The IBM RS/6000 is a multi-chip superscalar processor
with a RISC instruction set (derivation of the 801 instruction
set), capable of executing up to four instructions per cycle.
FIG. 9 shows the architecture of the IBM RS/6000. There
are three functional units-the branch unit (BU), fixed-point
unit (FXU), and floating-point unit (FPU)-that are capable
of executing instructions in parallel. The BU can issue up to
two instructions per cycle, a branch and a condition-register
instruction. The FXU issues one instruction per cycle, which
can be a fixed-point arithmetic, a fixed-point load/store, or a
floating-point load/store. The FPU issues one floating-point
arithmetic instruction per cycle including a multiply-add
instruction. Each functional unit has instruction buffers
(I-buffers) to shelve instructions. These I-buffers are orga­
nized as a FIFO instruction window with in-order issue. The
BU's I-buffers are a central window that contain all fetched
instructions (not decoded yet). The FXU's and FPU's
I-buffers are distributed windows. Both receive the same
fixed- and floating-point instructions (not decoded at this
point).

The instruction cache (I-cache) is a two-way set­
associative cache with 16-instruction cache lines. The
I-cache can supply four instructions per cycle for each fetch
address (PC) presented, regardless of whether the PC is
quad-word aligned or not. Instruction aligning is achieved
by implementing the I-cache with four independent I-cache
arrays, each fetching one instruction per cycle. By adjusting
the address and rerouting (aligning) the output of each
I-cache array, four instructions can always be fetched,
provided they reside in the same cache line. It is to be
understood that memory or other storage units may be used
instead of an I-cache array.

15 pare instructions and special branch-unit instructions. The
setting of each condition field is controlled by the record bit
(Re) of arithmetic instructions. There are advantages to
having multiple, setable condition fields. First, the compiler
can schedule a compare instruction early, as far away as

20 possible from the conditional branch instruction. Second,
several compare instructions can be scheduled first (their
results written into separate condition fields), which are then
followed by a single conditional branch instruction. This is
useful to implement a guarded statement/code section with

25 multiple guard conditions, eliminating the typical structure
of a series of single compares followed by a single branch.

The FXU contains I-buffers, an arithmetic logic unit
(ALU), a general-purpose fixed-point register file, and a
single-entry store buffer. The I-buffers receive both fixed-

30 and floating-point instructions from the BU's dispatch unit,
but issue only fixed-point instructions and floating-point
load/store instructions to the ALU. Addresses of all loads/
stores are computed in the FXU. The ALU includes a
multiply/divide unit with 3- to 5-cycle multiply and 19- to

35 20-cycle divide latencies. The store buffer holds data and
address of one fixed-point store instruction. The store buffer
makes load bypassing possible. Address and data of
floating-point store instructions are buffered in the FPU. The
I-buffer is a strictly FIFO instruction window with in-order

40 issue. Partial out-of-order issue is achieved among different
functional units. Since there is only one ALU and no
out-of-order issue in the FXU, the integer RF is not accom­
panied by a result buffer. Result values are written directly
to the integer RF, except on speculative results which are

45 held off in the pipeline until the branch condition is known.

The BU receives four instructions per cycle from the
I-cache arrays into the BU's 12-entry I-buffers and dispatch
unit. The dispatch unit dispatches externally to the FXU 50

and/or FPU any two-instruction combination of fixed- and
floating-point instructions. If the remaining two instructions
contain a branch and/or a condition-register instruction, they
are dispatched and executed internally in the BU. When a
conditional branch instruction is encountered, the BU 55

fetches the branch-not-taken path instructions (default
branch prediction direction) and dispatches them to the FXU
and FPU. These instructions are executed speculatively and
can be canceled if the branch is mispredicted (by postponing
retirement to register files and flushing the pipelines). The 60

branch-taken path instructions are also fetched from the
I-cache arrays and placed at the BU's I-buffers, but their
dispatching (or flushing) is held off until the branch outcome

Further instruction issue/execution in the FXU must be
stalled. This limits the speculative execution capability in
the IBM RS/6000.

The FPU contains I-buffers, a unified floating-point
multiply-add-fused unit (MAF), a floating-point register file,
a register-mapping table, and a store buffer. FPU's I-buffers
receive the same instructions as FXU's I-buffers, but issue
only floating-point arithmetic instructions to the MAF. The
MAF can perform an indivisible multiply-accumulate opera-
tion (AxB)+C, which reduces the latency for chained
multiply-add operations, rounding errors, chip busing, and
the number of adders/normalizers. The latency of a floating­
point multiply-add instruction (FMA) is two cycles (see R.
K. Montoye, et al., "Design of the IBM RISC System/6000
Floating-Point Execution Unit," IBM Journal of Research
and Development, Vol. 34, No. 1, pp. 59-70, 1990). The
register-mapping table provides register renaming (8 renam­
ing registers) to allow independent, out-of-order executions
of floating-point load/store and arithmetic instructions. The
store buffer contains five entries for addresses and four
entries for data. A floating-point store instruction is issued at

is known. The worst-case penalty for a branch misprediction
is three cycles. The penalty can be eliminated if there are 65

enough independent instructions to separate the compare
from the branch. the FXU where the store address is calculated and placed at

6,112,019
27

the store buffer. Once the FPU produces the store value, it is
placed at the corresponding entry in the store buffer, ready
to be committed to the data cache (it is to be understood that
memory or other storage units may be used instead of a data
cache). By buffering stores, the FXU can continue issuing s
subsequent loads (load bypassing).

28
The IBM RS/6000 processor chipset consists of nine

chips (including I-cache and D-cache arrays, bus controller,
and 1/0 controller), which are implemented in a 1-µm,
three-metal CMOS process. The total number of transistors

The number of pipeline stages in the BU, FXU, and FPU
are two, four, and six, respectively. To describe how instruc­
tions are executed in the RS/6000 pipeline stages, consider
the following 2-D graphics transform program example
shown below in RS/6000 pseudo-assembly code (see G. F.
Grohoski, "Machine Organization of the IBM RISC System/
6000 Processor," IBM Journal of Research and
Development, Vol. 34, No. 1, pp. 37-58, 1990).

is 6.9 million. The benchmark performance figures on the
top of the line system, the IBM RS/6000 POWERSTATION
(Trademark of IBM Corporation) 580 (62.5 MHz), are
SPECint92 61.7, SPECfp92 133.2 (see R. Myrvaagnes,
"Beyond Workstations," Electronic Products, pp. 17-18,
1993), and 38.1 MFLOPS on (double precision, N=lOO)

10 UNPACK (Trademark of Digital Equipment Corporation­
see Digital Equipment Corporation, ALPHAAXP Worksta­
tion Family Performance Brief-Open VMS, 1992).

11: FL
12: FL
13: FL
14: FL
IS: FL

2-D Graphics Transform Program Example

FRO,sin_theta ;load
FRl,-sin_ theta ;rotation matrix
FR2,cos_ theta ;constants
FR3,xdis ;load x and y
FR4,ydis ;displacements

In general, the IBM RS/6000 supports all six superscalar
features (multi-instruction issue, decoupled dataflow

16: MTCTR ;load count register with loop count
17: LOOP: UFL FRS,x(i) ;load x(i)
18: FMA FR10,FR8,FR2,FR3 ;form x(i)*cos + xdis
19: UFL FR9,y(i) ;load y(i)
110: FMA FR11,FR9,FR2,FR4 ;form y(i)*cos + ydis
111: FMA FR12,FR9 ,FRl ,FR10 ;form y(i)*sin + FR10
112: FST FR12,x(i)' ;store x(i)'
113: FMA FR13,FR8,FRO,FR11 ;form x(i)*sin + FR11
114: FST FR13y(i)' ;store y(i)'
115: BCT LOOP ;continue for all points

FIG. 10 shows the cycle-by-cycle execution of the inner
loop. The superscripts indicate the iteration numbers. During 35

cycle 1, four instructions (17°, 18°, 19°, 110°) starting from_
LOOP label are fetched from the I-cache arrays and placed
into BU's I-buffers. During cycle 2, the first load and
multiply-add instructions (17°, 18°) are sent to the FXU and
FPU, respectively. The next four instructions are fetched 40

(111°, 112°, 113°, 114°)). During cycle 3, the FXU decodes
the floating-point load (17°) and discards the floating-point
multiply-add (18°). The FPU pre-decodes both instructions
for register renaming. The loop-closing BCT instruction
(115°) is fetched. During cycle 4, there is no valid instruction 45

fetch because the branch target address is still being com­
puted. The FXU computes the address of the first load (17°),
while decoding the second load (19°). The FPU renames the
floating-point registers of 17° and 18°. The BU detects the
BCT instruction and generates the branch target address. so
During cycle 5, instructions from the next iteration (171

, 181
,

191
, 1101

) are fetched. The D-cache is accessed for the first
load (17°). The FXU computes the address of the second load
(19°). The first FMAinstruction (18°) is decoded at the FPU.
During cycle 6, the FPU executes the first FMA instruction ss
while decoding the second FMA instruction (110°). The
D-cache is read for the second load (19°). In summary, the
first iteration outputs x(i)' and y(i)' are stored at cycle 10 and
11, respectively. The iteration period of this loop is 4 cycles.
In FIG. 10, there is no branch penalty (zero-cycle branch) in 60

FXU's and FPU's pipelines. The execute pipeline stages
(FXE, FPEl, FPE2) are always full, primarily because the
instruction fetch rate is twice the instruction issue rate at the
arithmetic units. However, a true branch penalty should be
seen at the fetch stage (IF), which in this case shows a 65

one-cycle branch delay due to the branch address calcula­
tion.

scheduling, out-of-order execution, register renaming,
speculative execution, and precise interrupts), some in a
limited way. Although four instructions are fetched per
cycle, only two (fixed- and floating-point) or three
(including a branch) instructions are typically issued per
cycle. Only single-level speculative execution is supported.
Multiple unresolved conditional branches cause issue stalls
because of the lack of a result buffer. Precise interrupts are
not supported in the regular mode. They are only supported
when the processor is put in the "synchronize" mode, which
slows the processor significantly.

Metaflow LIGHTNING/THUNDER SPARC

The LIGHTNING SPARC microprocessor, from Metaf
low Technologies, Inc., is the first implementation of the
Metaf low architecture that executes the SPARC (v.8) RISC
instruction set. The architecture is based on the DCAF
(dataflow content-addressable FIFO), a DRIS implementa­
tion. Although the DRIS is conceptually a central window,
it is implemented as three physical windows: (a) the central
DCAF in DIU which shelves all instructions (complete
DRIS), (b) the floating-point DCAF in FPU which shelves
only floating-point instructions, and (c) the branch DCAF in
nu which shelves only conditional branch instructions. The
central DCAF is the central window that is responsible for
retiring operations; while others are only a subset of the
central DCAF. FIG. 11 shows the LIGHTNING SPARC
module which consists of an external cache (up to 1 Mbyte)
and four ASICs; the instruction issue unit (nU), the dataflow
integer unit (DIU), the floating-point unit (FPU), and the
cache controller/MMU/bus interface (CME). The external
cache consists of the first-level cache for data and the
second-level cache for instructions (the first-level is in the
nu chip).

6,112,019
29

The nu fetches four instructions per cycle from the
on-chip instruction cache (I-cache), assigns a unique ID to
each instruction, and computes their PCs. Instruction align­
ing is achieved by the self-aligning I-cache with an
8-instruction cache line. To guarantee supplying four 5
instructions at all times, a branch to the last three instruc­
tions of a cache line causes a read and concatenation of two
cache lines. of these four instructions, up to three of them are
sent to both the DIU and FPU. If one of the four instructions
is a control-transfer instruction (branch, call, return), the nu 10

executes that instruction itself (at the branch unit). Thus for
a typical cycle, all four instructions fetched are not taken/
processed. The nu also contains a one-entry shelf for the
processor state registers. A second instruction attempting to
write the same state register before the first has retired, is
stalled. 15

The nu's branch unit executes a conditional branch
instruction speculatively, and shelves it at the branch DCAF
for a later misprediction check. The branch DCAF is a
specialized DRIS implementation that shelves conditional
branch instructions that were speculatively executed. The ID 20

of the oldest, unresolved conditional branch instruction is
sent to the retire logic in the central DCAF, to prevent
retiring speculative instructions. During the writeback stage,
the IDs and results of up to three condition code-setting
instructions (two from the integer ALUs in DIU and one 25

from the floating-point adder in FPU) are updated to the
branch DCAF. During the execute stage, all branch entries
with unlocked operands compare their condition code result
with the prediction. If not the same, then the conditional
branch was misspeculated. Branch repair is initiated on the 30
oldest mispredicted branch. Its ID is broadcast to all DCAFs.
All entries with younger IDs are flushed by moving the tail
pointers accordingly.

The DIU contains the central DCAF, two integer ALUs,
one memory-address ALU, and retire logic. Up to three 35
instructions can be allocated into the central DCAF, includ­
ing floating-point instructions which are used for retirement
purposes. The central DCAF invokes issue and writeback
operations only on integer and memory-reference instruc­
tions. To allow proper retiring, each cycle the central DCAF 40
is informed by the FPU on all IDs of successfully executed
floating-point instructions. The retire logic can retire up to
eight instructions per cycle in the central DCAF (see
Popescu, et al.): three that update integer registers or con­
dition codes, two that update floating-point registers, one 45
store instruction, and any two instructions of other types
(control transfers, processor state updates). The FPU con­
tains the floating-point DCAF, a floating-point adder, and a
floating-point multiplier. The floating-point DCAF invokes
allocate, issue, and writeback only on floating-point instruc- 50
tions. To deallocate entries, the floating-point DCAF is
informed by the DIU on the IDs of retired floating-point
instructions.

30
original foundry LSI Logic Corp. These shortcomings found
during the first design implementation may have also con­
tributed to the failure:

Low Clock Speed: The out-of-order issue hardware
greatly affects control logic delays. Within each clock
cycle, the scheduler must examine a large number of
instructions in the DCAF, determine which instructions
are ready to issue, and select based on priority rules
(see Popescu, et al.). This lengthens the basic clock
cycle when compared to conventional RISC proces­
sors. The estimated clock speed is relatively low, in the
40-MHz range. The out-of-order issue in DCAF also
adds a pipeline stage for scheduling.

No Breakthrough in Performance: The performance on
lOOxlOO Linpack is around 18 MFLOPS while its
competitors (the IBM RS/6000, HP PA-7100, DEC
ALPHA AXP) are in the 30-40 MFLOPS range. The
performance on Dhrystone (Version 1.1) is estimated at
116,000 D/s. The single-chip, 40-MHz SUPERSPARC
(on the SPARCSTATION (Trademark of SPARC
International, Inc.) 10/41 system) has a Dhrystone
performance of 192,400 D/s.

Expensive Implementation Cost: The design complexity
of the DCAF requires substantial VLSI real estate and
forces an implementation with four ASICs. Several
other single-chip processors with simpler designs have
better performance. The medium performance of the
Lightning SPARC does not justify the expensive hard­
ware cost and complex design.

In 1994, Metaflow Technologies Inc.'s new partnerships
with VLSI Technology Inc. and IBM Microelectronics gave
a new birth to the Lightning SPARC design as the Thunder
SPARC (see Wilson). With IBM's 0.5-micron, four-metal
CMOS implementation the Thunder SPARC chip set is
expected to operate at 80 MHz and deliver performance
close to 200 SPECint92 and 350 SPECfp92.

TI SUPERSPARC

The SUPERSPARC processor from Texas Instruments,
Inc. is the first commercial superscalar implementation of
the SPARC version 8 architecture (Sum Microsystems Com­
puter Corporation, The SUPERSPARC Microprocessor­
Technical White Paper, 1992). A virtually identical version
from Ross Technology, Inc. and Cypress Semiconductor
Corporation is called the HYPERSPARC (Trademark of
Ross Technology, Inc. and Cypress Semiconductor
Corporation). FIG. 12 shows the SUPERSPARC architec­
ture which primarily consists of three functional units: an
instruction unit, integer unit, and floating-point unit. There
are also a 20-Kbyte I-cache that fetches four instructions per
cycle, and a 16-Kbyte D-cache that can handle one 64-bit
load or store per cycle. These on-chip caches can interact
with the MBus or a second-level cache controller that The simulation study shows that the Lightning SPARC

can exploit instruction parallelism by mainly relying on its
dynamic hardware scheduling. The processor is observed to

55 supports up to 1-Mbyte of external cache.
The instruction unit is responsible for instruction fetch,

decode, issue, and branch execution. It fetches four instruc­
tions from the I-cache to either the 8-entry sequential
instruction queue (for sequential or untaken branch path) or
the 4-entry target instruction queue (for taken branch path)
(see F. Abu-Nofal, et al., "A Three-Million-Transistor
Microprocessor," Digest of Technical Papers of the 1992
IEEE International Solid-State Circuits Conference, pp.
108-109, 1992) The SUPERSPARC always predicts all

be insensitive to the quality of the SPARC compiler's code
generator, especially toward code scheduling and register
allocation (see Popescu, et al.). Speculative execution also
plays an important role. The processor always has to execute 60

some instructions speculatively, with at least one unresolved
conditional branch. The performance limitations observed
are memory bandwidth, FPU bandwidth, branch prediction
accuracy, branch address calculation latency, and instruction
cache hit rate (see Popescu, et al.). 65 branches are taken (see Sun Microsystems Computer

Corporation, 1992), and fetches instructions in the branch­
target path with one-cycle branch delay (to calculate the

The Lightning SPARC never became a commercial prod­
uct due to the disintegration of the partnership with the

6,112,019
31

target address). The selected instruction queue is essentially
32

is resolved). If mispredicted, all instructions and results
currently in processing pipelines are flushed. The multiple­
path fetching into the sequential and target queues helps
reduce the branch misprediction penalty. The SUPER­
SPARC architecture is still somewhat limited in its super­
scalar capabilities: (1) The multi-instruction issue has a lot
of restrictions/rules, and is limited to three instructions
despite the four-instruction fetch. Output dependencies also
stall instruction issue because register renaming is not

a central instruction window with in-order issue. Three
oldest/bottom instructions from the selected instruction
queue are presented to the scheduling and grouping logic
block, where: (a) opcodes are decoded, (b) instruction 5

grouping is determined, (c) intergroup data dependencies are
checked, (d) resources are allocated, and (e) bypassing is
controlled. Not all three candidate instructions can be issued.
There are some grouping restrictions (a total of 23 rules)
such as (G. Blanck ans S. Krueger, "The SUPERSPARC
Microprocessor," Proceedings of the 31th COMPCON, pp.
136-142, 1992):

10 supported.

Maximum of two integer results,

Maximum of one shift instruction,

Maximum of one floating-point arithmetic instruction,

Maximum of one control transfer (branch) instruction,

Certain "hard" instructions (e.g., subroutine save/restore,
integer multiply/divide, control-register update) are
issued as a single-instruction group exclusively.

Instructions are never issued out of order. Thus if the third
instruction is issued then so are the first and second instruc­
tions. Remaining instruction(s) that cannot issue are recir­
culated to the sequential instruction queue.

The integer unit executes all integer arithmetic instruc­
tions (except integer multiply and divide) and load/store
address calculations. A virtual address adder and two RF
read ports are dedicated to load/store address calculations.
Three ALUs are dedicated to arithmetic instructions. The
shift instructions can only execute at the first-level ALU
with shifter. The second-level ALU is provided for "cas­
caded" arithmetic operations, to allow back-to-back depen­
dent integer instructions within an instruction group.

The floating-point unit provides a 4-entry floating-point
instruction queue, 5-port floating-point register file, floating­
point adder, and floating-point multiplier. A floating-point
instruction is issued from the bottom (oldest entry) of the
instruction queue when the operands and resources are
available. All floating-point instructions start in order and
complete in order (see Sun Microsystems Computer
Corporation, 1992). The floating-point adder performs
addition, subtraction, format conversion, comparison, abso­
lute value, and negation. The floating-point multiplier per­
forms single- and double-precision multiplication, division,
square root, and integer multiplication and division. Bypass­
ing capabilities from the result buses and load bus to
arithmetic units are provided. The latency of most floating­
point operations is three cycles.

(2) Only single-level speculative execution is supported
because of the lack of a result buffer.

(3) Only limited out-of-order execution is supported; no
load bypassing, and strictly in-order issue with the possibil-

15 ity of out-of-order completion of floating-point instructions
from the floating-point queue with respect b integer instruc­
tions.

20

25

DEC ALPHA 21064

The DEC ALPHA 21064 processor is the first implemen­
tation of Digital Equipment Corporation's 64-bit ALPHA
AXP architecture (see E. McLellan (Digital Equipment
Corporation), "The APLHA AXP Architecture and 21064
Processor," IEEE Micro, pp. 36-47, 1993). It is currently the
fastest single-chip microprocessor in the industry. The archi­
tecture is a combination of superpipelined and superscalar
architectures. The integer and floating-point pipelines are

30
seven- and ten-stages deep, respectively. Since DEC has an
existing, large customer base of software, it offers compat­
ibility with VAX and MIPS codes through binary translation.
Executable program codes are converted to AXP code
without recompilation (with some performance

35
degradation). FIG. 13 shows the DEC ALPHA 21064
architecture, which has four functional units: an instruction
unit (IBox), an integer unit (EBox), a floating-point unit
(FBox), and an address unit (ABox). There are also 32 entry
by 64-bit integer and floating-point register files (RFs),

40
8-Kbyte D-cache, and 8-Kbyte I-cache with a 2K by 1-bit
branch history table. The branch history table is provided for
dynamic prediction and achieves 80% accuracy on most
programs. Static prediction is also supported based on the
sign of the branch address displacement field as the default;

45
backward branches are predicted taken and forward
branches are predicted not-taken.

The SUPERSPARC processor is implemented using a 0.8
µm, three-metal BiCMOS process. It integrates 3.1 million 50

transistors and currently runs at 50 MHz. The pipeline is
implemented based on a two-phase, non-overlapping clock­
ing scheme. Instruction processing consists of eight pipeline
stages/phases: two phases of instruction fetch (FO, Fl), three
phases of decode (DO, Dl, D2), two phases of execution (EO, 55

El), and a writeback phase (WB). The top benchmark
performance figures are: SPECint92 68 and SPECfp92 85.

The IBox fetches a pair of instructions from the on-chip
I-Cache, decodes them, and issues up to two instructions that
pass all register conflict checking. Branch instructions are
also executed in this unit. The virtual branch target address
is translated to its physical address, which is simply accessed
from the I-TLB (instruction translation look-aside buffer).
The DEC ALPHA 21064 restricts the instruction pairs that
can be issued simultaneously, because of the limited RF
ports and instruction issue buses. If an instruction pair
cannot dual issue, either the pair is swapped with another
pair capable of dual issue, or the pair is serialized, issuing
one instruction at a time in order. Although it is not men­
tioned in McLellan, it is interpreted that pair swapping and
serialization operations require some kind of shelving of
fetched instructions into a pref etch buffer (central instruction
window). Based on the rules shown below, the IBox deter­
mines which instruction pairs can dual issue.

The SUPERSPARC processor supports five superscalar
features; multi-instruction issue, decoupled dataflow
scheduling, speculative execution, out-of-order execution, 60

and precise interrupts. Speculative execution is handled by
holding a speculative result at the end of the pipeline before
being written to the register file (until the conditional branch

6,112,019
33 34

Dual Instruction Issue Rules in the DEC ALPHA 21064 (see McLellan)

Valid Dual Issue: Instruction A Instruction B

integer operate
integer/floating-point load
integer store
floating-point store
integer store
floating-point store
integer branch
floating-point branch

floating-point operate
integer/floating-point operate/branch
integer operate
integer branch
floating-point branch
floating-point operate
integer operate
floating-point operate

15
Note that a branch instruction is formatted as an integer

(floating-point) instruction if its condition code is in an
integer (floating-point) register. The DEC ALPHA 21064
avoids condition codes, special registers, or any other single
copy of a resource which can potentially become a point of 20
contention in a multi-instruction issue environment. Com­
pare instructions write directly to any general-purpose reg­
ister (integer or floating-point, depending on the compare
operation type).

The EBox contains dedicated integer multiplier, adder, 25
shifter, and logic units. The multiplier unit is not pipelined

FIG. 14(a) shows that all integer arithmetic and logic
instructions (EBox), except shift instructions, have one­
cycle latency, through bypass paths. Shift instructions have
two-cycle latency. All results in EBox are actually written
back to the integer RF in stage 6. Without the bypass path,
the latency would be three cycles. But with the bypass path,
the latency is reduced to one or two cycles. This improves
the probability that back-to-back dependent instructions
execute at full pipeline speed. The DECchip 21064 dedicates
45 different bypass paths. Conditional branch instructions
(IBox) are resolved in stage 4. If a branch misprediction is
detected, a branch repair is initiated. Instructions subsequent
to the branch (in the wrong path) and their intermediate
results are flushed from all pipeline stages. The alternate
branch target address is computed as the new PC. The first
instruction pair of the correct branch path is fetched at stage
6. This branch misprediction causes a four-cycle delay.
Primary, on-chip D-cache accesses of load and store instruc­
tions (ABox) complete in stage 6. So, the latency of loads

to save silicon area. The adder and logic units have single­
cycle latency with bypass paths for register write data. The
shifter takes two cycles to produce results, but is fully
pipelined (one-cycle throughput). The FBox contains dedi- 30
cated floating-point multiplier/adder and divider units. It
supports both VAX- and IEEE-standard data types and
rounding modes. The divider unit generates one bit of
quotient per cycle. All other floating-point operate instruc­
tions have six-cycle latency and one-cycle throughput. 35

and stores is three cycles. FIG. 14(b) shows that results of
floating-point operations (from the multiplier/adder unit) are
written back to the floating-point RF in stage 9, thus giving
a 6-cycle latency. The ALPHAAXP architecture has several
notable characteristics:

The ABox performs all load and store instructions. It has
a dedicated displacement adder to compute load/store
addresses independently from the IBox. A 4-entryx32-byte
store buffer is provided for load bypassing and merging of
data from adjacent stores to increase effective bandwidth. A 40

memory barrier instruction is provided to disable load
bypassing when necessary. The ABox also contains a
32-entry data TLB to translate the virtual load/store address
to its physical address, and 3-entry load silo to buffer
outstanding load misses. With a hit at the primary D-cache, 45

the latency of a load is three cycles.
FIG. 14 shows the pipeline stages of the DEC ALPHA

21064 processor for integer and floating-point instructions.
Up to two instructions can be processed in each stage. The
first three stages (IF, SW, IO) can be stalled, while stages 50

beyond IO advance every cycle (see D. W. Dobberpuhl, et
al., "A 200-MHz 64-Bit Dual-Issue CMOS
Microprocessor," Digital Technical Journal, Vol. 4, No. 4,
Special Issue, pp. 35-50, 1992). In stage IF, a pair of
instructions is fetched from the on-chip I-cache. In stage 55

SW, a swap or serialization operation is performed based on
the dual-issue rules. If there is a conditional branch
instruction, the branch direction is predicted statically or
dynamically (using the branch history table). In stage IO,
instruction(s) are decoded and checked for dependencies 60

between the two fetched instructions (if any). In stage 11,
instructions) are issued to the appropriate functional unit,
provided there is no register conflict. The source operands
are read from the integer and/or floating-point RFs and sent
to the EBox, IBox, ABox, and FBox. In stage 4, instruction 65

executions start (stage Al for integer instructions, stage Fl
for floating-point instructions).

Design Simplicity: The architecture avoids direct hard­
ware support of features that are seldom used or prone
to limit performance due to cycle-time restrictions. For
example, it omits support for direct-byte load/store
instructions and precise arithmetic exceptions. Some
functionality sacrifices have to be made to get a very
high processor clock frequency. Full functionality is
achieved through software assistance.

Privilege Architecture Library (PAL): The architecture
supports multiple operating system (0/S) ports
(currently OpenVMS, 64-bit Unix DEC OSF/1,
Microsoft WINDOWS NT (Trademark of Microsoft
Corporation)) using a set of privileged software
subroutines, the PALcode. The PLACODE routines are
written by the 0/S programmer and can be completely
customized since they use a superset of the AXP
instruction set. They can implement lowest-level
hardware-related tasks unique to a particular 0/S, such
as interrupts, exceptions, context switching, memory
management, etc. The PALcode routines are invoked
by hardware traps or explicit CALL_PAL instructions.

Conditional Move Instructions: The AXP instruction set
includes conditional move instructions for both integer
and floating-point data. These instructions should help
remove some conditional branches (see section below
entitled Condition Move Transformation).

Imprecise Interrupts: Precise exceptions are not sup­
ported. A user must use the trap barrier instruction

6,112,019
35

when precise interrupt behavior is necessary. In this
case, the performance is sacrificed.

The DEC ALPHA 21064 single-chip processor is imple­
mented using a 0.15 µm, three-metal CMOS process, with
operating speeds up to 200 MHz. The extremely high clock 5

frequency presents a difficult clocking situation. To avoid
race conditions for latched data, the clock edge rate must be
extremely fast (0.5 ns) and only very little clock skew can
be tolerated. DEC's solution is to implement a very large,
on-chip clock driver with a final stage containing 156 to 10

172-mil-wide pMOS and 63 to 18-mil-wide nMOS devices
(see McLellan). The clock driver occupies about 5% of the
total chip area and draws a peak switching current of 43 A
A0.13-µF on-chip decoupling capacitance must be added to
overcome the supply voltage problem. The chip's power 15

dissipation is 30 W at 200 MHz with a 3.3-V supply.
Sophisticated packaging is used to cool the chip. These
hardware cost and implementation problems are compen­
sated by top performance. The benchmark performance
figures on the top-of-the-line system, the DEC 10000/610 20

(200 MHz), are: SPECint92 116.5, SPECfp92 193.6, and
40.5 MFLOPS on lOOxlOO Linpack (double precision).

The DECchip 21064 processor supports three superscalar
features; multi-instruction issue (dual issue), decoupled
dataflow scheduling, and limited out-of-order execution (by 25

load bypassing and pair swapping for dual issue). The load
bypassing permits out-of-order execution between loads and
stores. The pair swapping selects the two oldest instructions
capable of dual issue, resulting in out-of-order issue. The
DEC ALPHA 21064 does not push the superscalar design 30

aggressively since the main goal is to achieve very high
clock frequency. Some of the restrictions are:

(1) Only two instructions are fetched per cycle, which are
issued with some pairing restrictions. DEC has just
tackled this problem by having a quad-issue on its next 35

generationALPHA21164.

36
balanced performance across a wide range of applications.
Typically, on-chip I-caches range from 8 to 20 Kbytes, and
on-chip D-caches range from 8 to 16 Kbytes. The PA- 7100
processor can have up to 1 Mbyte I-cache and 2 Mbyte
D-cache. Unlike most processors with small on-chip caches,
a secondary cache becomes unnecessary. Another advantage
is the flexibility of cache size and speed to configure
different systems, from low-end to high-end systems.

The objective of pathlength reduction is to resolve the key
disadvantage of RISC architectures, the code/pathlength
expansion. There are two instruction types added to the
RISC instruction set. First, two or three operations that
frequently occur together are combined into a fixed-length,
32-bit instruction. This results in multi-operation, VLIW-
like instructions (except they are contained within a short
32-bit instruction), such as Shift&Add (perform integer
multiplications with a small constant), Multiply&Add
(floating-point), Compare&Branch, Add&Branch, Branch_
on_Bit, etc (see Lee, et al.). Other streamlined RISC
architectures such as MIPS require multiple instructions to
perform these tasks. Second, SIMD-like instructions are
added to operate, in parallel, on multiple data units smaller
than a 32-bit word. These instructions are particularly useful
in parallel character and decimal operations. For example, in
the C language, character manipulations frequently involve
finding the null byte (zero) that marks the end of a variable-
length string of characters. PA-RISC's Unit_Exclusive_Or
instruction speeds this process by testing a "no byte zero" in
a word of four bytes in a single cycle (see Lee, et al.). The
addition of the two instruction types is accommodated in the
hardware without impacting the cycle time or the CPI. This
gives the PA-RISC architecture some of the advantages of a
very simple VLIW architecture (with short 32-bit
instructions), without losing the advantages of a RISC
architecture.

FIG. 15 shows the PA-7100 architecture. The processor
chip consists of six major blocks; the integer unit, floating­
point unit, cache control/interface, unified TLB, control unit,
and system bus interface. The control unit is responsible for

(2) Register renaming is not supported which inhibits
implementation of full out-of-order execution. Anti and
output dependencies will stall instruction issue.

(3) No speculative execution is supported due to the lack
of a result buffer. A conditional branch must be resolved
at stage 4 before the predicted path can proceed further
into the execution pipeline. An unresolved conditional
branch will stall the decode and issue pipelines.

40 fetching, decoding, and issuing of instructions. Two instruc­
tions are fetched from the off-chip I-cache per cycle, and
buffered in a small prefetch buffer (central window). The
control unit can issue up to two instructions per cycle, one
to the integer unit and one to the floating-point unit. There

(4) Precise interrupts are not supported in hardware. The
software solution complicates debugging and slows
down the processor significantly.

HP PA-7100

45 are no alignment or order constraints on the pair of instruc­
tions (see E. DeLano, et al., "A High Speed Superscalar
PA-RISC Processor," Proceedings of the 31th COMPCON,
pp. 116-121, 1992). However, no two integer or floating­
point instructions can be issued simultaneously. If a condi-

The HP PA-7100 processor is the seventh implementation
50 tional branch instruction is encountered, a simple static

branch prediction scheme is used to minimize branch pen­
alty. All forward conditional branches are untaken and
backward conditional branches are taken.

of Hewlett-Packard's PA-RISC (precision architecture,
reduced instruction set computer-Trademark of Hewlett­
Packard, Inc.) architecture (T. Asprey, et al. (Hewlett­
Packard), "Performance Features of the PA-1100 55

Microprocessor," IEEE Micro, pp. 22-35, 1993). It is the
first superscalar PA-RISC design, which issues up to two
instructions per cycle. Its design also has a VLIW flavor.
There are two notable design approaches in the PA-RISC
architecture; (a) the use of off-chip, rather than on-chip, 60

primary caches (I-cache and D-cache), and (b) the reduction
of instruction count in programs (pathlength reduction-see
R. Lee, et al., Pathlength Reduction Features in the PA-RISC
Architecture," Proceedings of the 31th COMPCON, pp.
129-135, 1992) by adding VLIW-like and SIMD-like 65

instructions. The motivation to use off-chip caches is the fact
that on-chip caches are usually not large enough to achieve

The integer unit contains an ALU, shift-merge unit
(SMU), dedicated branch adder, and a 32x32-bit, general­
purpose, integer register file. Besides integer arithmetic
instructions, the integer unit also executes branch
instructions, loads and stores of integer and floating-point
registers, and all VLIW-like and SIMD-like instructions,
except the floating-point Multiply&Add and
Multiply&Subtract. The VLIW-like instructions improve the
utilization of the three hardware units. For example, the
Add&Branch uses the ALU and the branch adder
simultaneously, while the Branch_on_Bit uses the SMU
and the branch adder (see Lee, et al.). The register bypass
paths produce a one-cycle latency for integer arithmetic
instructions.

6,112,019
37

The floating-point unit contains a floating-point ALU
(FALU), multiplier (FMUL), divide/square root unit (FDIV/
SQR1), and a 32x64-bit floating-point register file. Although
there are 32 physical registers, the first four registers (0-3)

38
scheduling, out-of-order execution, and precise interrupts.
However, it does not support register renaming and specu­
lative execution. Note that static branch prediction is only
used for speculative prefetch, not speculative execution.

5 Instructions following an unresolved conditional branch are
stalled and not executed. The HP PA-7100 designers rely on
aggressive VLIW-like software scheduling and chose not to
push the superscalar hardware too aggressively:

are dedicated for status register and exception registers. The
remaining 28 registers (4-31) are used as register operands
for arithmetic operations. Each register can be access as a
64-bit double word or as two 32-bit single words. The FALU
performs single- and double-precision add/subtract,
compare/complement, and format conversion instructions. 10
The FMUL performs single- and double-precision
multiplications, and also 32-bit unsigned integer multipli­
cations (64-bit result). The multiplier array is based on a
radix-4 Booth encoding algorithm. The register bypass paths
produce a two-cycle latency for all floating-point instruc- 15
tions performed in the FALU and FMUL. The FDIV/SQRT
performs floating-point divide and square-root operations
based on a modified radix-4 SRT (Sweeney, Robertson, and
Tocher-see Asprey, et al.) algorithm. The main modifica­
tion is running the radix-4 division hardware at twice the 20
processor clock frequency to effectively achieve a radix-16
performance. Four quotient bits are computed each clock
cycle, giving a latency of 8 and 15 cycles for single- and
double-precision divide/square root operations. The
floating-point register file has five read ports and three write 25
ports to allow concurrent execution of a floating-point
multiply, a floating-point add, and a floating-point load or
store. This occurs when a Multiply&Add or a
Multiply&Subtract instruction is issued concurrently with a
floating-point load/store instruction (categorized as an inte- 30
ger instruction).

The instruction execution pipeline for various types of
instructions is shown in FIG. 16. The pipeline frequency is
determined by the read cycle time of the off-chip cache
RAMs (see Asprey, et al.). Each pipeline stage is divided 35
into two equal phases (2-phase clocking scheme). The first
three phases are dedicated for instruction fetching from the
off-chip I-cache. Instruction decode and issue can be done in
a mere single phase because a pre-decoded bit is dedicated
in the instruction-field format to steer instructions to the 40
integer and floating-point units. The phases for instruction
execution depend on the instruction type, as depicted in FIG.

(1) The multi-instruction issue is limited to dual issue of
integer and floating-point instruction pairs. No two
integer or floating-point instructions can be issued
simultaneously. To increase machine parallelism, the
VLIW-like and SIMD-like instructions are included,
which increases the complexity of the compiler.

(2) The decoupled dataflow scheduling is limited by a
small central window (prefetch buffer) that only issues
instructions in order.

(3) The out-of-order execution is limited to in-order issue
with the possibility of out-of-order completion.

Intel PENTIUM

The Intel PENTIUM microprocessor is the first supersca­
lar implementation that runs the widely-used x86 CISC
instruction set. The x86 instructions use only two operands
and permit combinations of register and memory operands.
Thus, unlike all other commercial superscalar processors,
the PENTIUM processor is not a typical register-to-register,
three-address machine. Despite the complexity of CISC
instructions, many of which require microcode sequencing,
the PENTIUM processor manages to differentiate the
"simple" (RISC-like) instructions and executes them in
superscalar mode (dual-instruction issue). However, com­
plex instructions and almost all floating-point instructions
must still run in scalar mode (single-instruction issue). The
superscalar execution and architectural improvements in
branch prediction, cache organization, and a fully-pipelined
floating-point unit result in a substantial performance
improvement over its predecessor, the i486 processor. When
compared with an i486 processor with identical clock
frequency, the PENTIUM processor is faster by factors of
roughly two and five in integer and floating-point
performance, respectively (D. Alpert and D. Avnon-Intel
Corporation, "Architecture of the PENTIUM

16. For a conditional branch instruction, instructions along
the predicted path are fetched (static branch prediction)
while the branch condition is evaluated. In the meantime the
alternate link address (Laddr) is also calculated. If at the end
of the execute stage the branch is found to be mispredicted,
the previous speculative instruction fetch is flushed and new
instructions along the correct path are fetched. If the delay

45 Microprocessor," IEEE Micro, pp. 11-21, 1993).

is viewed from the I-fetch to the Target I-fetch, the minimum 50
branch delay of correctly and incorrectly predicted branches
is one cycle and two cycles, respectively. The PA-7100
processor has extensive register bypass capability to mini­
mize pipeline interlock penalties. As illustrated in FIG. 16,
the penalty for integer ALU pipeline interlock is zero cycles. 55
The penalty for load use, floating-point ALU, or floating­
point multiply pipeline interlocks is one cycle.

FIG. 17 shows the PENTIUM architecture. The core
execution units are two integer ALUs and a floating-point
unit with dedicated adder, multiplier, and divider. The
prefetch buffers fetch a cache line (256 bits) from the I-cache
and performs instruction aligning. Because x86 instructions
are of variable length, the prefetch buffers hold two cache
lines; the line containing the instruction being decoded and
the next consecutive line (see Alpert and Avnon). An instruc­
tion is decoded and issued to the appropriate functional unit
(integer or floating-point) based on the instruction type. Two
instructions can be decoded and issued simultaneously if
they are "simple" instructions (superscalar execution).
Because x86 instructions typically generate more data
memory references than RISC instructions, the D-cache
supports dual accesses to provide additional bandwidth and
simplify compiler instruction scheduling algorithms (see
Alpert and Avnon).

The HP PA-7100 processor is implemented using a 0.8
µm, three-metal CMOS process. It operates at 100 MHz and
integrates about 850,000 transistors. The use of off-chip 60

caches results in a large pin-count package, 504-pin PGA.
The reported benchmark performance figures on the top-of­
the-line system, the HP9000/735 (99 MHz), are: SPECint92
80.0, SPECfp92 150.6, and 40.8 MFLOPS on lOOxlOO
Linpack (double precision).

The integer unit consists of two integer pipelines, the U
pipe and V pipe. Two consecutive integer instructions 11 and

65 I2 can be issued simultaneously to U pipe and V pipe,
respectively, if: (a) 11 and I2 are from the class of "simple"
instructions, (b) 11 is not a jump instruction, (c) destination

The HP PA-7100 processor supports four superscalar
features; multi-instruction issue, decoupled dataflow

6,112,019
39

of 11 "' source of I2 (no data dependency), and (d) destina­
tion of 11 "' destination of I2 (no output dependency).
Otherwise, only 11 is issued to the U pipe. Note that an
instruction issue is stalled on output dependency (artificial
dependency) because the PENTIUM processor does not 5
implement register renaming. However, the PENTIUM anti
dependencies are of no concern since instructions are issued
in order and operand reads occur in an earlier pipeline stage
than result writes. The V pipe can execute ALU operation,
memory reference, and jump instructions. The U pipe can 10
execute an additional set that uses special hardware avail­
able only in the U pipe, such as the barrel shifter. The
"simple" instruction class is limited to instructions that can
be executed directly and do not require microcode sequenc­
ing. Intel's study shows that more than 90% of instructions 15
executed in the integer SPEC benchmark suite (SPECint92)
are "simple" (see Alpert and Avnon).

The PENTIUM processor employs dynamic branch pre­
diction using a branch target buffer (BTB), which holds
entries for 256 branches. When a conditional branch instruc- 20
tion is decoded, the processor searches the BTB to find if
there is a history (taken or untaken) on the branch instruc­
tion. If the branch has untaken history or no history at all,
then the processor continues to fetch and decode instructions
along the sequential path. If there is a taken history, then the 25
processor uses the target address in the BTB entry to fetch
and decode instructions along the target path. The condi­
tional branch is resolved early in the writeback stage. If the
branch is mispredicted, the processor flushes the pipeline
and resumes fetching along the correct path. The branch 30
history in the BTB is updated. This speculative execution
with the BTB allows the PENTIUM processor to execute
correctly-predicted branches with no delay. Also, because a
conditional branch is resolved after the execute stage, a
conditional branch instruction in the V pipe can be paired 35
with a compare instruction or other instruction in the U pipe
that sets the condition flag.

The floating-point unit consists of six functional blocks:
the floating-point interface, register file, and control (FIRC),
the floating-point exponent (FEXP), the floating-point mul- 40

tiplier (FMUL), the floating-point adder (FADD), the
floating-point divider (FDIV), and the floating-point rounder
(FRND). The FIRC contains a floating-point register file,
interface logic, and centralized control logic. The x86
floating-point instructions treat the register file as a stack of 45

eight registers, with the top of the stack (TOS) acting as the
accumulator. They typically use one source operand in
memory and the TOS register as the other source operand as
well as the destination register. In the case of 64-bit memory
operands, both ports of the D-cache are used. To swap the 50

content of the TOS register with another register, the FXCH
instruction (non-arithmetic floating-point instruction) is
used. The FIRC also issues floating-point arithmetic instruc­
tions to the appropriate arithmetic blocks. Non arithmetic
floating-point instructions are executed within the FIRC 55

itself. Floating-point instructions cannot be paired with any
other integer or floating-point instructions, except FXCH
instructions.

The FEXP calculates the exponent and sign results of all
floating-point arithmetic instructions. The FADD executes 60

floating-point add, subtract, compare, BCD (binary coded
decimal), and format conversion instructions. The FMUL
executes single-, double-, extended-precision (64-bit
mantissa) floating-point multiplication and integer multipli­
cation instructions. The FDIV executes floating-point 65

divide, remainder, and square-root instructions. And, the
FRND performs the rounding operation of results from

40
FADD and FDIV. The floating-point unit also supports eight
transcendental instructions such as sine (FSIN), cosine
(FCOS), tangent (FPTAN), etc. through microcode
sequences. These instructions primarily involve the FADD
arithmetic block and sometimes other arithmetic blocks.

The PENTIUM processor is implemented using a 0.8 µm
BiCMOS process. It integrates 3.1 million transistors and
currently runs at 66 MHz. The integer pipeline consists of
five stages: prefetch (PF), first decode (Dl), second decode
(D2), execute (E), and writeback (WB). The floating-point
pipeline consists of eight stages, where the first three stages
(FP, Dl, and D2) are processed with the resources in the
integer pipeline. The other floating-point stages are: operand
fetch (E), first execute (Xl), second execute (X2), write float
(WF), and error reporting (ER). The reported benchmark
performance figures of the PENTIUM processor are: SPE­
Cint92 64.5 and SPECfp92 56.9.

The PENTIUM processor supports five superscalar fea­
tures; multi-instruction issue, decoupled dataflow
scheduling, speculative execution, out-of-order execution,
and precise interrupts (using the safe instruction recognition
mechanism (see Alpert and Avnon). However, most of these
features still have serious limitations which are supposed to
be improved in the P6 and P7 designs:

(1) The multi-instruction issue is generally limited to two
"simple" integer instructions with certain restrictions.
Output dependencies (artificial dependencies) stall
instruction issue because register renaming is not sup­
ported Floating-point instructions also cannot be paired
with any other instructions, except occasionally with
FXCH instructions (but FXCH may be considered as a
useless or unnecessary instruction in true register-to­
register architectures). The multiple floating-point
arithmetic blocks (FADD, FMUL, FDIV) are underuti­
lized by the limitation of one floating-point instruction
per cycle.

(2) The decoupled dataflow scheduling becomes extra
difficult and inefficient by the variable length of x86
instructions. Some allocated bits of entries in the
instruction window (prefetch buffers) are seldom used
and wasted.

(3) Only single-level speculative execution is supported
because of the lack of a result buffer. An unresolved
conditional branch instruction at the WB stage will stall
the processor and inhibits further speculative execu­
tion. Adding a result buffer is not easy because an x86
instruction can have a memory source operand and
destination. Memory-to-register, memory-to-memory,
register-to-memory, and immediate-to-memory
instructions are permitted. Unlike register identifiers,
memory identifiers (addresses) are relatively long. The
result buffer will require extra storage and wide com­
parators for long identifier bits.

(4) The out-of-order execution is limited to in-order issue
with the possibility of out-of-order completion between
instructions in the integer and floating-point pipelines.
Load bypassing is also not supported.

Summary of Comparisons

Table 3 is a summary of existing commercial superscalar
microprocessors (except the Thunder SPARC) discussed in
previous sections. The integration, clock speed, SPEC
benchmark performance, superscalar features supported,
instruction and result shelving type, execution unit
composition, instruction decoder size, instruction issue
capability, branch prediction type, and notable characteris-

6,112,019
41

tics of each microprocessor are described. "All six" super­
scalar features means multi-instruction issue, decoupled­
dataflow scheduling, out-of-order execution, register
renaming, speculative execution, and precise interrupts.

Table 4 is a summary of upcoming commercial supersca­
lar microprocessors in 1995/1996. DEC continues to lead
the pack with its new ALPHA 21164 design. The major
architectural improvements from its ALPHA 21064 prede­
cessor are quad-issue, additional integer and floating-point
execution units (total 2 each), and the inclusion of a sec­
ondary cache on chip (see L. Gwennap, "Digital Leads the
Pack with 21164," Microprocessor Report, Vol. 8, No. 12,
pp. 1 and 6-10, Sep. 12, 1994). The last feature is the first

42
decoupled dataflow scheduling) with a set of three central
windows (16-entry queues) for memory, integer, and
floating-point instructions (see L. Gwennap, MIPS RlOOOO
Uses Decoupled Architecture," Microprocessor Report, Vol.

5 8, No. 14, pp. 17-22, Oct. 24, 1994). The RlOOOO uses a
register-mapping table (also called rename buffer) to support
register renaming. Both integer and floating-point units have
64, 64-bit physical registers that are mapped to 32 logical
registers. To handle multi-level speculative execution (up to

10 4 conditional branches), the RlOOOO saves the mapping table
in shadow registers when encountering a conditional branch.
The HP PA-8000 is the first 64-bit PA-RISC architecture
implementation (see L. Gwennap, "PA-8000 Combines

in the history of microprocessors and makes the ALPHA
21164 the densest with 9.3 million transistors. Sun Micro- 15

Complexity and Speed," Microprocessor Report, Vol. 8, No.
15, pp. 1 and 6-9, Nov. 14, 1994). Like its predecessors
(PA-7100, PA-7200), the PA-8000 will not have on-chip systems' ULTRASPARC (Trademark of Sun Microsystems

Computer Corporation) incorporates nine independent
execution units, including dedicated graphics add and mul­
tiply units. The ULTRASPARC is the first implementation
of the new 64-bit SPARC version 9 instruction-set
architecture, which supports conditional move instructions.
It also supports MPEG-2 graphics instructions in hardware
to boost multimedia application performance. The IBM
POWERPC 620 is the latest and currently fastest among
other PowerPC models (601, 603, 604, 615). It uses reser­
vation stations to shelve instructions at six execution units
(see L. Gwennap, "620 Fills Out POWERPC Product Line,"
Microprocessor Report, Vol. 8, No. 14, pp. 12-17, Oct. 24,
1994). IBM put two entries for each execution unit with the
exception at load/store unit (3 entries) and branch unit (4
entries). The MIPS Technologies' RlOOOO, also known as
TS, uses "decoupled architecture" (another term for

cache. PA-RISC is the only advanced, general-purpose
microprocessor architecture that uses off-chip Ll cache. The
AMD KS is currently the fastest x86 processor, claimed to

IBM
RS/6000

Integra- Multi-chip
tion
Clock 62.5 MHz
Speed
SPECint92 61.7
SPECfp92 133.2
Supersca- All six
lar Fea-
tu res

Instruction FIFO I-buf-
Shelving fers (cen-

tral, dist.
in FXU and
FPU)

Result Reg.-map-
Shelving ping table

in FPU
Indepen 1 branch
dent unit,
Execution 1 FX unit,
Units 1 FP unit

(MAF)

20 be at least 30% faster than the Intel PENTIUM at the same
clock rate (on integer code-see M. Slater, "AMD's KS
Designed to Outrun PENTIUM," Microprocessor Report,
Vol. 8, No. 14, pp. 1 and 6-11, 1994). Despite the CISC x86
instruction set, the architecture internally runs RISC

25 instructions, called ROPs (RISC operations). To achieve
this, x86 instructions are predecoded as they are fetched
from memory to the I-cache. The predecoder adds five bits
to each byte, causing an increase of about 50% at the I-cache
array. The KS applies all the superscalar techniques that

30 Johnson believed to be the best, the reservation station for
instruction shelving and the reorder buffer for result shelving
(see Johnson, 1991).

TABLE 3

Comparisons of Commercial Superscalar Microprocessors

Metaflow
THUNDER TI DEC HP Intel
SPARC SUPERSPARC ALPHA21064 PA-7100 PENTIUM

Multi-chip Single-chip Single-chip Multi-chip Single-chip

80 MHz 50 MHz 200 MHz 99 MHz 66 MHz
(est)
200 (est) 68 116.5 80.0 64.5
350 (est) 85 193.6 150.6 56.9
All six All six, Multi-inst. All six, All six,

except re- issue, except re- except re-
gister decoupled gister re- gister re-
renaming dataflow naming and naming

sched., speculative
out-of-or- execution.
der exec.

DCAFs Central Central Central Central
(ORIS) win-dow and window window window
(central, dist. win- (pre-fetch (prefetch (pre fetch
branch, dow (for FP buf-fers) buffers) buffers)
floating- inst.)
point)
DCAFs None None None None

1 branch 1 branch 1 branch 1 integer 2ALUs,
unit, unit, unit, unit (ALU, 1 FP unit
3 ALUs, 3 ALUs, 1 address shift, add, mult,
1 FP add, 1 address unit, branch div)
1 FP mult add, 1 integer add),

1 FP unit unit, 1 FP unit
(add, mult) 1 FP unit (mult,

(add, mult, div/sqrt)
div)

6,112,019
43 44

TABLE 3-continued

Com12arisons of Commercial Su12erscalar Micro12rocessors

Metaflow
IBM THUNDER TI DEC HP Intel
RS/6000 SPARC SUPERSPARC ALPHA21064 PA-7100 PENTIUM

Decode 4 instruc- 4 instruc- 4 instruc- 2 instruc- 2 instruc- 2 instruc-
Size tions tions tions tions tions tions
Max Issue lFXorFP 1 branch Triple Dual issue Dual issue Dual issue

load/store inst., issue with of certain of integer of simple
inst., 2 integer certain integer/ and floa- ins true-
1 FP arith. inst., restriction floating- ing-point tions.
inst., 1 load/ s. point ins true-
1 branch store inst, operate, tions.
inst., 1 FP add/ branch, and
1 condi- sub, load/store.
tion-regi- 1 FP
ster inst. multiply

Branch Static Dynamic Static (al- Static and Static Dynamic
Prediction (con-slant ways taken) dynamic (BTFN)

pre-dieted-
i;ot-taken)

~Has the ~Multiple- ~Hybrid of ~Uses off-Notes nFP mult- nSupports
add in 2 most com- path fetch- superpipe- chip, pri- the wide-
~ycles. plete dyna- ing into lined and mary caches ly-used x86
nThis mic hard- se-quential supersca- for size inst. set.
RS/6000 de- ware sche- and target lar. and speed ~The only
sign is the duler with inst. ~True 64- flexi- superscalar
foundation full out- queues bit archi- bility processor
of of-order helps lecture. nSupports that is not
follow-on issue. reduce ~Supports VLIW-like a register-
single-chip ~Low clock branch cond. move and SIMD- to-regi-
versions speed due mispredic- inst. like inst. ster, 3-ad-

(Power PC to complex tion ~Supports for path- dress ma-
601, 603, out-of-or- penalty. multiple length chine.
604, 620) der issue. 0/S using reduction. n
~Precise ~Thunder PALcode. Inefficient
interrupts SPARC was a ~Imprecise inst.
only in reborn of interrupts. window due

synchroniz the to vari-
mode. unsuccessfu able-length

1 Lightning x86 inst.
SPARC.

TABLE 4

Com12arisons of U12coming Comercial Su12erscalar Micro12rocessors

MIPS
Sun Technolo-
Micro- IBM gies

DEC ALPHA systems POWERPC RlOOOO HP AMO
21164 ULTRASPAR 620 (TS) PA-8000 KS

Integra- Single-chip Single-chip Single-chip Single-chip Mult-chip Single-chip
tion
Clock 300 MHz 167 MHz 133 MHz 200 MHz n/a n/a
Speed
SPECint92 330 275 (est) 225 (est) 300 (est) n/a n/a
SPECfp92 500 305 (est) 300 (est) 600 (est) n/a n/a
Supersca- Multi-inst All six, All six All six All six All six
lar . issue, except re-
Features de-coupled gister

da-taflow renaming
sched.,
out-of-or-
der exec.

Instruc- Central Central Reservatio Central/ Central Reserva-
tion window window and ~Stations dist. win- window tion Sta-
Shelving pre-fetch dist. win- dow (mem- (56 tions

buffers) dow (for ory, inte- entries)
FP inst.) ger, FP

queues)
Result None None Rename Register- Rename Reorder
Shelving buf-fers mapping buf-fer buffer

(reg. map table

6,112,019
45 46

TABLE 4-continued

Com12arisons of U12coming Comercial Su12erscalar Micro12rocessors

MIPS
Sun Technolo-
Micro- IBM gies

DEC ALPHA systems POWERPC RlOOOO HP AMO
21164 ULTRASPAR 620 (TS) PA-8000 KS

table)
Indepen- 1 branch 1 branch 1 branch 1 branch 1 branch 1 branch
dent unit, unit, unit, unit, unit, unit,
Execution 1 address 1 address 1 address 1 address 2 address 2ALUs,
Units unit unit, unit, unit, units, 2 load/

(load/ 2ALUs, 2ALUs, 2ALUs, 2ALUs, store,
store), 1 FP add, 1 complex 1 FP add, 2 FPUs 1 FPU
2 integer 1 FP mult, integer 1 FP multi (MAC
units, 1 FP div/ unit, div/sqrt /div/sqrt)
2 FP add/ sqrt, 1 FP unit
div, 1 graphics
1 FP mult add,

1 graphics
mult

Decode 4 instruc- 4 instruc- 4 instruc- 4 instruc- 4 instruc- 4 instruc-
Size tions tions tions tions ti on tions
Max Issue Quad issue Quad issue 6 (w/ 6 instruc- 4 instruc- 6 ROP in-

of 2 dist. tions (1 tions (2 structions
integer windows, instructio to address (1 inst
and 2 each exec. ~from unit, 2 to from each
floating- unit can each ALUs/ execution
point in- issue an execution FPUs) unit)
structions. inst. unit)

Branch Static and Dynamic Dynamic Dynamic Dynamic Dynamic
Predic- dynamic
tion
Notes •Towering • Include •Based on •Has a •First •Claimed

manufactur a special SPECint92, "resume" 64-bit PA- to deliver
-ing cost purpose the 620 cache to RISC at least
($430) graphics design hold se- archi- 30% faster
leads to unit that does not quential tecture than PEN-
an supports improve alternate- im- TIUM at
expensive MPEG-2 in- much from path in- plementa- the same
initial structions 604, par- structions ti on clock rate
price of •First ticularly in case of • Like its (on
$2,937 (9/ 64-bit V9 if the 604 branch predeces- integer
12/94) instructio reaches mis- sors, no code).
•Most n-set 133 MHz prediction on-chip •On the
dense mi- archi- also. Key •Handles cache, average
croproces- tecture advan-tage 4-level off- 16-bit x86
sor to im- of 620 is speculativ setting code
date at plementa- its higher penalty by produces
9.3M ti on mem-ory execution having 1.9 ROPs/
transistor band- large off- inst., 32-

width. chip L1 bit x86
cache code pro-

duces 1.3
ROPs/inst.

55

Motivation for the Invention Assume the processor has eight execution units: a branch
unit, two fixed-point AL Us, a floating-point ALU, a fioating­
point multiply /divide/square-root unit, two load/store units,
and a fixed/floating-point move unit. The processor begins

60 by fetching at least one instruction or multiple instructions
(Na instructions in this case, which is the decoder size) from
the I-cache. It is to be understood that one or more memories
or other storage units may be employed instead of the

The primary objective of the invention is to find a better
design alternative to the reorder buffer (considered the most
complete, known result shelving technique) and the reser­
vation station (considered the best known instruction shelv­
ing technique to give maximum machine parallelism) tech­
niques. Before pointing out to the drawbacks in the two best,
existing techniques in result and instruction shelving, let us
understand fully how the two operate in a superscalar
processor. FIG. 18 illustrates how the RB and the RS 65

techniques can be combined to fully support all six super­
scalar features.

I-cache for performing the same function as the I-cache.
These instructions are decoded in parallel and dispatched to
their respective execution unit's reservation station. For
each decoded instruction, an entry is allocated at the RB to

6,112,019
47 48

shelve its result. To read its operand(s), each operand's
register number is presented to the RB and register file, in
which three situations can occur. First, if there is a matched
entry in the RB and the register operand value has been
calculated, then the operand value is routed/copied to the 5

instruction's reservation station. Second, if there is a match
entry in the RB but the value has not finished calculation,
then the operand tag is copied instead to the reservation
station. Third, if there is no match entry in the RB then the
value from RF is the most recent one and copied to the 10

tical because reads from and writes to the RB are very
difficult and incur more propagation delay due to changing
FIFO entry positions in a processor cycle. At the end the
processor cycle time will just get longer. Second is to
implement the FIFO as a barrel-shift register array with a
variable number of shifts from 1 to Nret' as shown in FIG.
19. Now each entry at position i must be able to mux in from
any entry above it at positions i+l, i+2, ... , i+Nret or the
last FIFO array index. This barrel-shift register array imple-
mentation requires a substantial number of multiplexers.

Besides the prioritized associative lookup problem, the
RB has two other drawbacks, the need to allocate dummy
branch entries (entries without a result/register value) and
the substantial use of shared global buses. To support

reservation station.
During the issue/execute stage, one ready instruction (i.e.,

all of its operand values are available) is issued and executed
immediately, even if it is out of order, and independent of
other execution units' issues. If there are multiple ready
instructions, one is chosen based on the arbitration protocol
(aging, random, pseudo-random, small index, etc.).

During the writeback stage, the execution result is written
to the RB (not RF) and also forwarded to any reservation
station waiting for this result value. In every cycle, each
valid reservation station with unavailable operand(s) com­
pares its operand tag(s) with all result tags to determine
when to grab certain result value(s). Note that if each
execution unit's output port does not have a dedicated result
bus (Nres<fixed-point output ports, or Nresfp<fioating-point
output ports), then arbitration logic must be provided to
resolve who can use the shared result buses at a given time.

During the retire stage, the bottom entry at the RB FIFO
is checked to see if the value can retire to the RF or not. An
instruction's RB entry can only retire if: (a) the instruction
completed execution without an exception error, (b) all
preceding instructions also completed without exception,
and (c) the instruction is not speculative (beyond an unre­
solved conditional branch). To keep up with the input rate at
the fetch/decode stage, multiple entries (Nret) must be
retired, in order, from RB to RF.

Drawbacks in the Reorder Buffer Technique

The major implementation drawback in the RB technique
is the slow and expensive prioritized associative lookup.
During operand read in the decode stage, a register number
is presented to the RB to find the most recent entry that
matches the register number. However, the register number
is not a unique associative key. Often there are multiple
entries in the RB with the same register number, due to
register re-uses (multiple updates to the same register of
different instructions). In such a case, the associative lookup
must be prioritized so that the most recent entry (of the most
recent assignment) is selected from the RB and also from
preceding instructions in the decode group that are currently
in RB allocation ports (about to be written). If the RB is
implemented as a circularly addressed register array, then
the prioritizing circuit is complicated by the constant change

15 multi-level speculative execution, a typical RB allocates a
dummy RB entry for every decoded conditional branch
instruction. This increases the usage of RB entries unnec­
essarily. The RB technique also requires that operand values
to be distributed to all participating functional units, result-

20 ing in a large amount of global (chip-wide) wire traces that
are heavily loaded. The result buses that carry result values
to be written back to the RB also require shared-global wires
that are heavily loaded with multiple driving sources, which
are prone to transmission line noise problem. With the

25 continuing shrinkage of transistor sizes, global wires are
becoming more dominant in terms of silicon area
consumption, propagation delay, and signal noise.

The complexity of RB circuit implementation is a proven
fact. AMD found out in their superscalar 29K processor (see

30 B. Case, "AMD Unveils First Superscalar 29K Core,"
Microprocessor Report, Vol. 8, No. 14, pp. 23-26, 1994), an
"intellectual predecessor" to the KS, that a mere 10-entry RB
plus its operand and result buses consumed a significant chip
area, about the same as a 4-Kbyte cache, with the chip

35 fabricated in an advanced 0.5-micron CMOS technology!

Drawbacks in the Reservation Station Technique

There are two major drawbacks in the RS concept; (1)
operand value copying and (2) result forwarding. Both result

40
in tremendous amounts of shared (heavy-loading), global
(chip-wide) wires. With increasingly smaller transistor sizes,
the dominant factors in determining silicon area and propa­
gation delays is not the transistor, but metal wire, especially
the ones that run across or all over the chip. Therefore, we

45
should view the global wire as a precious item in designing
a circuit, in particular if it is a shared line with many fanouts
or loadings.

The wide operand buses required for operand value
copying waste a lot of precious data bandwidth in the

50 processor chip. Most of the time only a few of the total
operand buses (2*2*Na*64 global wires for a 64-bit
architecture) are used. The DLX simulation results show a
low bandwidth usage of less than 7% for the operand buses!
The waste is due to several factors:

of the head and tail pointer positions with the possibility of 55

a wrap around. The extra delay incurred by the prioritizing
logic will slow down operand reads.

Many decoded instructions have only one register oper­
and (arithmetic instructions with immediate value
operand, loads, conditional branches, floating-point
convert instructions), or worse, no register operands at
all Gumps, traps).

The prioritizing circuit complexity can be reduced by
constructing the RB as a true FIFO array. However, the FIFO
array implementation has a penalty in supporting multi-entry 60

retire. A FIFO typically shifts out one entry at time. With
multiple-instruction fetch and decode, multiple RB entries in
the FIFO must be deallocated/freed to keep up with the
allocation rate and reduce decode stalls due to RB being full.
To shift multiple entries at a time, two things can be done. 65

First is to clock the shift-register array using a frequency that
is Nret times the processor clock frequency. This is imprac-

When there is a branch-taken instruction (either
predicted-taken conditional branch or unconditional
jump) in the decode group, the subsequent instructions
are invalidated, resulting in zero operand bus usage.

When a register operand value is not available at the RB
(still being calculated), the operand bus only carries a
small number of operand tag bits (e.g., a 6-bit tag in a
64-bit data bus uses only 9% of that bus bandwidth).

6,112,019
49

When the decode stage stalls, zero operand buses are
used.

Besides the expensive global wire cost, result forwarding
also requires complex circuitry. Each reservation station
must have comparators to associatively match any tag in 5
result buses, and wide multiplexers (64-bit, [2*Na+Nres]:l
muxes) to receive operand values not only from operand
buses, but also result buses.

Result value forwarding also requires a set of additional
comparators (exactly 2*Na*Nres+2*Na*Nresf comparators)

10
to avoid potential pipeline hazards in the forwarding logic
(see Weiss and Smith, and Johnson, 1991). The hazard arises
when a decoded instruction's operand tag matches with the
result tag of a result value that will be forwarded at the same
time the decoded instruction is dispatched to a reservation
station. Had this hazard not been detected, the instruction 15

will miss the forwarded result and stall in the RS for a long
time until the tag has wrapped around, causing an incorrect
operation. FIG. 20 illustrates what happens if this result­
forwarding hazard is not detected. The example shows that
instruction Ix is decoded at cycle t, executed on the first half 20

of cycle t+ 1, and its result is forwarded or appears at a result
bus on the second half of cycle t+l. In the meantime,
instruction IY, which has a data dependency with Ix on result
R3, is decoded on the first half of cycle t+l and dispatched
to a RS with R3's tag on the second half of cycle t+l, not 25
knowing that the R3 value is being forwarded at this time.
At cycle t+2, IY tries to execute but its R3 operands are
unavailable, hopelessly waiting for the missed R3 value to
appear at one of the result buses. To overcome this result­
forwarding hazard problem, we can simply stall the decode

30 stage with some performance penalty, or provide a set of
wide-bus multiplexers to allow operand value bypassing
from the result buses. Under normal condition, a RS receives
operand values from the register unit. When a result­
forwarding hazard is detected, then the RS can receive the
correct operand value directly from the corresponding result 35

bus.

Proposed Solution to Drawbacks in the Reorder
Buffer and Reservation Station Techniques

The invention involves a design alternative that will solve 40

the drawbacks in the reorder buffer and reservation station
techniques.

The invention presents new or improved result shelving
and instruction shelving techniques that maintain the good
characteristics of reservation station and reorder buffer 45

50
Then the MRB circuit structure is explained. To support
multi-level speculative execution without the need to enter
dummy branch entries in the RB, a new small circuit, the
Flush Address Queue (FAQ) is added and described.

Rationale for the MRB

The reorder buffer was originally proposed by Smith and
Plezkun to handle precise interrupts in pipelined, scalar
processors with out-of-order completion. Conceptually, the
RB is a content-addressable, circular buffer with head and
tail pointers. To use Smith and Plezkun's RB "as is" in
superscalar processors will produce unreasonable hardware
cost and seriously limit performance because of the
"multiple-bypass check" (prioritized associative lookup)
problem (see Smith and Pleszkun), the limited access ports
(only 1 allocate port, 2 read ports, 1 write port, and 1 retire
port) that impedes machine parallelism, and the inability to
support speculative execution. This RB paper design was
modified by Johnson to make it more suitable for superscalar
processors (see Johnson, 1991), and later realized in the
superscalar 29K and AMD K5 processors (see Slater, Case).
The modifications include: (a) providing multiple ports for
allocate (Na ports), read (2*Na ports), write (Nres ports) and
retire (Nret ports), (b) allocating a dummy entry for every
conditional branch instruction to support speculative
execution, and (c) eliminating the unnecessary "result shift
register" to reserve a result bus, since the reservation stations
already contain an arbitration mechanism for result buses.

Although Johnson's RB is probably considered the most
complete result shelving technique, it still has one major
implementation drawback, the prioritized associative lookup
This problem originates from a flaw in the RB concept, the
use of a non-unique associative key (register number) during
RB's associative read. This non-unique associative key
forces the RB to prioritize the associative lookup, which
results in a slow and complex hardware. Therefore it is
logical that we need to replace this register number with a
unique associative key.

Ideally we want to use the same result register tag, which
is used during the result write operation, as the unique
associative key for read operation. This tag is written to the
RB entry during allocation. Smith and Plezkun use the RB
identifier or array index as the result tag. But this tag is not
unique with the presence of a second RB (e.g., for a
floating-point register file). Moreover, the tag will keep
changing as the FIFO queue is advanced during multi-entry
retire. Tracking many different register tags plus conditional
branch tags can be a nightmare. Weiss and Smith suggested

designs, but eliminate or reduce their major implementation
disadvantages. By maintaining/improving the good charac­
teristics in the new design, we can reasonably target a
performance that is on par or better on a cycle-by-cycle basis
(cycle count). By eliminating or reducing the implementa­
tion drawbacks we ensure that the hardware cost decreases
(smaller circuit/die area) and the actual speed or perfor­
mance of the processor increases (faster circuit leading to
reduced cycle time or more operations done per cycle).
However, care must taken not to propose a hardware sim­
plification which could result in some penalty on the cycle
count. Intelligent choices must be made to minimize the
cycle count penalty such that it can be easily recovered
through faster and more efficient circuit implementation.

50 a more flexible way of assigning unique result tags, which
was originally proposed to be used in reservation stations
(see above section entitled Reservation Stations). When an
instruction is decoded, a new tag or identifier (inst_ID) is
assigned from a "tag pool" that consists of some finite set of

The following sections describe the invention, the Modi­
fied Reorder Buffer (MRB) and the Distributed Instruction
Queue (DIQ.An example of how the MRB and DIQ are used
together in a superscalar processor is given below.

Modified Reorder Buffer (MRB)

Before the MRB technique is presented, the thinking
process that led to the proposed MRB solution is described.

55 tags. Each destination register is then tagged with the
inst_ID of the producer instruction. When the instruction
completes, the inst_ID is returned to the pool for reuse. This
tag pool, called the Instruction ID Unit (IIU), can be
implemented as a circular instruction array (IA). The inst_

60 ID is composed of (color_bit, IA_index-these are dis­
cussed in more detail below), the current "color" bit
appended with its IA index (entry address), the same scheme
used in the DRIS technique (see above section entitled
DRIS). The color bit is used to distinguish the age or order

65 of instructions when the valid entry area wraps around.
Now the question is, how do we get the source operand

tag to be used as the unique associative key when reading the

6,112,019
51 52

field 191 of the previously allocated MRB entry cell 195.
This MRB entry cell 195 can be found because every result
is accompanied by its unique producer inst_ID (reg_tag=
result tag). If the instruction completes with an exception,

RB, without reading the RB first? Remember that each
decoded instruction with register operands needs operand
tags (or operand values in the case of a reservation station
technique) before being dispatched to an instruction win­
dow. To accommodate these operand tags at the decode
stage, a Register Tag Unit (RTU) is added in the fetch and
decode unit. Each decoded instruction presents its source
register numbers to the RTU to get the corresponding
register tags. The RTU can be viewed as a small register file
that maintains the most recent tag (not value) of every
register. The most recent tag of a register is the inst_ID of
a producer instruction that updates the register last. When an
instruction is assigned an inst_ID by the IIU, the destination
register entry in the RTU is written with the inst_ID.

5 the excp bit is set. However, the processor (may be processor
500 in FIG. 31) is not interrupted immediately but delayed
until the retire stage. This ensures precise interrupts and
prevents the processor from servicing false exceptions
caused by: (a) a speculative instruction in a mispredicted

10 path, or (b) an out-of-order instruction that completed early
with an exception, but is then followed by a second excep­
tion of an older instruction (2nd exception's inst_ID<lst
exception's inst_ID). This MRB entry cell 195 with a false
exception will eventually be flushed before reaching the

15 bottom of MRB 100, due to branch misprediction's flush or
another exception's flush.

With minimal hardware support in the fetch and decode
unit (IIU and RTU), we can now construct the modified
reorder buffer (MRB) that uses a unique associative key for
read, write, and retire operations. With this unique associa­
tive key we can implement the MRB as a simpler, circularly
addressed register array instead of the more expensive true
FIFO array, because we do not have to prioritize the asso­
ciative read/lookup anymore! Moreover, with circular array
implementation, multiple-entry retire is simply done by
moving the head pointer several locations up. Therefore, we
have eliminated one implementation drawback in a typical 25

RB.

During the retire stage, Nret entries at the bottom of MRB
100 are checked to see if some or all can retire to the
corresponding RF 515R or 515F. When the retire operation

20 occurs, the reg_ value 191 field values are retired from MRB
entry cells 195 to the corresponding RF 515R or 515F (see
FIG. 31). The conditions for the field 191 value in an MRB
entry cell 195 to retire are:

MRB Structure

(1) the producer instruction has completed without an
exception (excp=O) and the result value has been writ­
ten (valid=l),

(2) instructions preceding the producer instruction also
completed without an exception (reg_tag<in_order_
point), and

(3) the producer instruction is non-speculative (reg_
tag <branch_point).

FIG. 21 shows the MRB 100 structure with Nxrb entry
cells 195, Nd allocate ports 110, Nrd read ports 130, Nwr 30
write ports 120, and Nret retire ports 140. An MRB entry
consists of six fields 185: not empty flag 186 (1 bit), valid
flag 187(1 bit), exception error flag 188 (1 bit), register
number 189 (log2 Nxrf bits, Nxrf is fixed-point RF size),
register tag 190 (N,ag bits, N,ag=l+log2 N;m N;a=tag pool/
array size), and register value 191 (Ndatabits) Each MRB
entry cell 195 consists ofD flip-flops (DFFs) or RS flip-flops
(RSFFs)105 to hold the MRB entry fields 185 and logic
circuits for allocate 145, read 125, write 115, and retire
operations 135.

The in_order_point (generated by fetch and decode unit
520) is the inst_ID of the "oldest" instruction that has not
completed or completed with an exception. Thus, any

35 instruction with inst_ID<in_order_point, has completed
successfully without an exception. The branch_point
(generated by the branch unit-not shown) is the inst_ID of
the "oldest" unresolved conditional branch. Therefore, all
instructions prior to the conditional branch (inst_

40 ID>branch_point) are non-speculative. During the decode stage, an entry is allocated to MRB 100
for each register assignment (R_alloc_en (i)=l). The set­
ting of a new MRB 100 entry is: n_empty=l, valid=O,
excp=O, reg_num=destination register number, and reg_
tag=inst_ID assigned to the instruction. There can be up to
Nd entries allocated in a cycle. To prevent overlapping/
overflowing during allocation, the n_empty flag must be 0
(indicating the MRB cell 195 is empty) before an allocation
is made. overlapping must be prevented because of the
circular buffer nature. If MRB 100 overflows, a fetch and 50
decode unit 520 is notified immediately so that the fetch and
decode stages are stalled until there is room in MRB 100.

The head pointer logic unit or block (head_RB)l 70
generates retire locations and adjusts the head pointer 180
positions for the next cycle. Since all Nret entries at the
bottom of MRB 100 are simultaneously evaluated to retire,

45 head_RB(i)=(head_RB(O)+i) mod Nxrb is generated for
each i E [O,NrlJ. Each valid retirement (valid_ret(i)=l)
moves the head pointers 180 "up" by one position. So, the
next cycle head pointer 181 is,

During the issue stage, operand tags are presented to
MRB 100 from read ports 130 to read their register values
from register value field 191. If a matched entry is found 55

(reg_tag=operand tag), the register value has been calcu­
lated (valid=l), and the producer instruction completes
without exception (excp=O), then the reg_ value is passed to

(

N,"-1)
(next) head_RB = head_RB+ ~ valid_ret(k) mod Nxrb·

(2)

The tail pointer logic unit or block (tail_RB)150 deter­
mines the correct tail pointer 160 position of every alloca­
tion port 110:

tail_RB (i) = (rail_RB(O) + ~ R_alloc_en(k)) mod Nxrb.
(3) an execution unit (505, 506, 560, 570, 580, 590, 595, or

596-see FIG. 31). If the MRB entry at MRB 100 is found 60

but the register value is not valid (valid=O or excp=l), then
the issue is put on hold or stalled. If no entry is found at
MRB 100, then the register value is in RF 515R or 515F.
This means RF 515R or 515F contains the most up-to-date
value of the operand.

where i E [1,Nr 1]. The increment from the base tail pointer
160 is determined based on the number of allocations (how

65 many R_alloc_en(k)=l for k<i) in the previous allocate
ports 110. The next cycle's tail_RB(O) is set to (tail_RB
(Nrl)+R_alloc_en(Na-1) mod Nxrb' provided no branch

During the writeback stage, as the instruction completes
its execution, the result value is written to the reg_ value

6,112,019
53

misprediction is detected (mispred_flag=O). If mispred_
flag=l, then the next cycle tail_RB(O) is set to the
RB_flush_tail from the RB Flush Address Queue (RBFAQ)
165.

FIG. 22 shows a circuit implementation of MRB 100,
with the cell circuitry shown in FIG. 23 and the support logic
(tail pointer logic 150, head pointer logic 170, and flags logic
155) shown in FIG. 24. As shown in FIG. 22, each MRB cell
195 comprises RSFFs or DFFs 105, write logic 115, read
logic 125, retire logic 135, allocate logic 145, and mispre­
diction logic 175. In FIG. 23 Retire logic 135 has compari­
son unit 152 which may be a comparator or other device
capable of comparing inputs as is well-known to those of
ordinary skill in the art for checking to see if it is safe to
retire and misprediction logic 175 has comparison unit 151
which may also be a comparator or other device capable of
comparing inputs as is well-known to those of ordinary skill
in the art for flushing misspeculative MRB 100 entries.
Throughout all schematics, a thick line indicates a multi-bit
bus (multiple wires), while a thin line indicates a single-bit
wire. For notational consistency, the following signal name
conventions are made. A signal named "X(i)" indicates that
the signal is the i'h bus in a group of buses named X. A signal
named "Y[k]" indicates that the signal is the k'h bit of bus

54
starting flush tail/address of each unresolved conditional
branch. RBFAQ 165 can be implemented as a true FIFO, or
better, a circular array. Each RBFAQ 165 entry in entry cells
295 consists of only log2Nxrb-bits of MRB tail pointer 160

5 (flush_addr). When a conditional branch instruction is
decoded (e.g., at decode slot i), an entry is allocated at the
tail of RBFAQ 165, with the entry's flush_addr set to the
current tail_RB position, tail_RB(i). Up to Na entries can
be allocated per cycle. When the "oldest" conditional branch

10 instruction completes at the branch unit, the misprediction
flag (mispred_flag) is checked. If mispred_flag=O (no
misprediction), then the corresponding entry in RBFAQ 165,
which is obviously at the bottom entry cell 295, is simply

15 discarded/popped. If mispred_flag=l (misprediction), all
speculative entries in MRB 100 are flushed by simply setting
tail_RB(O) to the old tail position when the conditional
branch was decoded (RB_flush_tail=entry's flush_addr).
RBFAQ 165 is then reset (completely flushed) because all

20 subsequent entries belong to branches in the mispredicted
path. The number of entries in RBFAQ 165 (Nfaq) defines
the maximum levels of speculative execution (total unre­
solved conditional branches) supported.

Y. A signal named "Z(i)_z[k]" means that the signal is the 25

k'h bit of bus Z_z, which is the i'h bus in the group bus Z.

The FAQ tail pointer determined by tail pointer logic 250
(FIG. 25) for an allocation at decode slot i (FAQ_alloc_
en(i)=l if there is a valid conditional branch instruction) is
calculated as follows:

A signal name "X[k]" can also denote a register output name
(at position k) if it is part of a register array.

The following section describes how multi-level specu­
lative execution can be supported efficiently with the addi- 30

tion of RBFAQ 165.

Flush Address Queue (FAQ)

To support speculative execution, a mechanism to recover
and restart must exist so that correct results can still be 35

tail_FAQ(i) = (rail_FAQ(O) + ~ FAQ_alloc_en(k)) mod Nfaq•

(4)

where i E [1,Na-lJ. The increment from the b base tail
pointer is determined based on the number of allocations in
the previous ports. The next cycle tail_FAQ(O) is set to
(tail_FAQ(Na-l)+FAQ_alloc_en (Na-1)) mod Nfaq·
However, if a branch misprediction is detected, the tail_

produced in the event of branch misprediction. Recovery
cancels the effect of instructions under false predictions, and
restart re-establishes the correct instruction sequence. When
a branch misprediction is detected, speculative RB entries
(that turn out to be mis-speculated) must be flushed to nullify
the effect of wrong updates. The main difficulty is to quickly
locate the starting speculative entry (reset point) for

40 FAQ(O) is set back to zero. There is only one head pointer
determined by head pointer logic 270 which is updated as
follows:

0, if branch completes w / mispred_jlag = 1 (5)

{
(head_FAQ+ !)mod Nfaq. if branch completes w /mispred_jlag = 0

head_FAQ=
head_FAQ, otherwise (unchanged)

50
An example of the RB flush address queue (RBFAQ)165

circuit implementation, comprising DFFs 205 or other
equivalent devices, is shown in FIG. 25, with supporting
logic in FIG. 26. Supporting logic for RBFAQ 165 also
includes flags logic 255 for d determining the state of

flushing, so that recovery and restart can be done with
minimum delay. Johnson suggests allocating a "dummy"
branch entry in the RB for every conditional branch instruc­
tion decoded (see Johnson, 1991). The branch entry is
dummy because there will be no register update or result
value produced. When the conditional branch is detected to
be mispredicted, processor searches the corresponding
branch entry in the RB. This entry becomes the reset point;

55 RBFAQ 165.

all entries subsequent to it are flushed by setting the tail
pointer to the branch entry number. Or alternatively, we can
let the "branch" entry reach the bottom (head) of the RB. 60
However, this adds delay to the recovery and restart from a
branch misprediction. The main disadvantage with the
dummy-branch-entry method is the increase in RB usage.
There can easily be multiple unresolved branch entries in the
RB that increases the number of decode stalls due to RB
full/overflow, or forces more entries in the RB. 65

As a solution to this problem, a small RB Flush Address
Queue (RBFAQ)165 is added to MRB 100 to hold the

Distributed Instruction Queue (DIQ)

The DIQ is a new distributed instruction shelving tech­
nique that offers a solution to drawbacks in the reservation
station (RS) technique. First, a rationale that led to the DIQ
solution is described. Then, the in-order DIQ 300 circuit
structure is explained. Finally, an enhancement to the DIQ,
the out-of-order DIQ 400 that will allow full out-of-order
issue is described.

Rationale for the DIQ

First, based on comparisons of the DRIS central window
and RS distributed window, it was decided early that the

6,112,019
55

proposed instruction shelving should be a distributed win­
dow technique. A distributed window implementation has
advantages over a central window implementation because
of its:

maximum machine parallelism (all execution units can
issue an instruction simultaneously),

simpler, independent issue logic (issue only one instruc­
tion locally from a relatively small group of
instructions, independent of other windows' issues),

simpler instruction issue routing (many-to-one instead of
many-to-many routing paths),

simpler deallocation logic (free only one window entry at
a time), and

more efficient use of the window (deallocate issued entry
immediately).

To compensate for the implementation complexity of a
central window, most commercial processors with a central
window method have to split the large central window into
smaller sub-central windows (see Table 4 and 5). This
half-way solution still has most of the central window
drawbacks.

The reservation station (RS) technique, currently consid­
ered the best technique, was originally introduced by Toma­
sulo in 1967 in the floating-point section of the IBM 360/91
(see Tomasulo). The main objective was to permit simulta­
neous execution of independent instructions while preserv­
ing the precedence (data dependency) constraints in the
instruction stream. Tomasulo's RS technique was essentially
ahead of its time. It actually accomplishes several supersca­
lar objectives; multi-instruction issue, decoupled dataflow
scheduling, out-of-order execution, and register renaming
(eliminating anti and output dependencies). Anti dependen­
cies (write-after-read hazards) are avoided by tagging
registers, copying operands to reservation stations, and
forwarding results directly to reservation stations. Output
dependencies (write-after-write hazards) are avoided by
comparing tags at the FLR (floating-point register unit in the
IBM 360/91) on every register write, to ensure that only the
most recent instruction changes the register. However,
Tomasulo's algorithm lacks a mechanism to handle specu­
lative execution. Only the most recent updates of registers
are maintained, regardless of whether they are speculative
updates or not. To support multi-level speculative execution,
the register file can be accompanied by a reorder buffer (RB)
as seen in the AMD superscalar 29K (see Case) and KS (see
Slater), or multiple copies of register-mapping tables (RMT)
as seen in IBM POWERPCs and MIPS RlOOOO (see
Gwennap, Oct. 24, 1994).

56
Ready instructions can be issued from the DIQ in different

fashions. First, the simplest way, is to allow only in-order
issue within a functional unit. Out-of-order executions can
still be achieved amongst execution units (partial out-of-

5 order issue with out-of-order completion). Second is to
allow some form of limited out-of-order issue such as
checking the next entry if the bottom entry has waited for
some time (could be as short as one cycle), or to read
operands of the bottom two entries simultaneously. Third is

10 to allow full out-of-order issue by keeping track of the ready
operand tags. The selection of the issue logic protocol can
vary from one functional unit to another. For example, the
branch unit's DIQ which stores all pending conditional
branch instructions may be better off to use in-order issue

15 logic. But the fixed-pointALU's DIQ could benefit from the
out-of-order issue logic. Extensive simulations must be
performed across a good set of benchmark programs that
represent the intended applications. The quality of the com­
piler and its optimization options will significantly influence

20 the simulation results.
In general, the in-order issue (simplest way) may be good

enough due to several reasons. First, the performance loss
could be recovered through faster circuit implementation by
the simplicity of in-order versus out-of-order issue logic.

25 Second, this problem could be easily solved in software by
reordering instructions using list scheduling, control depen­
dence analysis, software pipelining, etc. If instructions were
ordered or entered properly in the distributed instruction
window, issuing instructions out of order within an execu-

30 tion unit does not increase performance significantly. Third,
even without software scheduling, Johnson's extensive
trace-driven simulations show that the performance loss of
in-order issue versus out-of-order issue reservation stations
is negligible in most cases. Across the entire range of

35 reservation-station sizes, the biggest loss in average perfor­
mance is 0.6% for a two-instruction decoder (Na=2) and 2%
for a four-instruction decoder (Na=4) (see Johnson, 1991).
(The real-application benchmark programs used were
ccom---{)ptimizing C compler), irsim---delay simulator for

40 VLSI layouts, troff-text formatter for typesetting device,
and yacc---compiles a context-free grammar into LR(l)
parser tables. These programs were compiled into MIPS
instructions.) The analogy is that, when a dependency stalls
instruction issue at a particular execution unit, it is more

45 important to issue instructions at other execution units
(which will free the stall) than to issue a newer instruction
at the stalled execution unit (see Johnson, 1991).

With DIQs, we can efficiently construct distributed
instruction windows that gives maximum machine

50 parallelism, but eliminates completely both implementation
drawbacks in the RS concept, operand value copying and
result value forwarding. The DIQ technique reduces the
number of shared-global wires, comparators, and multiplex­
ers significantly.

As we can see above, there is an overlap of task since both
the RS and RB/RMT support register renaming. And we
know that RS's efforts to support register renaming by
operand value copying and result value forwarding actually
penalize the RS implementation, due to excessive shared­
global wires, comparators, and multiplexers. Therefore, if
we already have RB or RMT or MRB result shelving, it 55

seems logical to eliminate the expensive operand value
copying and result value forwarding concept. The key
concept is that no register values are stored in the DIQ, only
their register tags. This eliminates large amount of global
buses and wide-bus multiplexers or tristate buffers for data 60

routing. Operand values are read directly during the issue/
execute stage from the reorder buffer or register file, when
they are available. Unlike the RS technique which reads
operand values during decode stage, the DIQ technique does
not have the result forwarding hazard problem. Therefore, 65

we save a substantial number of comparators and wide-bus
multiplexers (no operand value bypassing).

In-Order Issue DIQ Structure

FIG. 27 shows in-order issue DIQ 300 structure with Na;q
entry cells 395 and Na allocate ports 310, implemented as a
circularly addressed register array. It has multiple allocate
ports 310 and a single issue port 340. The DIQ 300 entry
fields 385 vary from one execution unit to another with the
first two fields, 386 and 387 (inst_ID and opcode) always
present. The example shown is of a floating-point ALU
which consists of: instruction tag 386 (N,ag bits), opcode 387
(Nope bits), source 1 register number 388 (log2 N1rf bits, N1rf
is floating-point RF size), source 1 register tag 389 (N,ag
bits), source 2 register number 390 (log2 N1rf bits), and

6,112,019
57 58

pointer logic 350, and head pointer logic 370) shown in FIG.
29. The DIQFAQ 365 circuit is identical to the RBFAQ 165,
except the role of tail_RB is replaced by tail_DIQ. Note
that in FIG. 29 tail pointer logic 350 comprises comparison

source 2 register tag 391 (N,ag bits). Note that in contrast to
MRB 100 which only retires field values in field 191 of
appropriate cells 195 in the retire operation, DI Q 300 issues
all field values of fields 386, 387, 388, 389, 390, and 391 of
a single cell 395 in order during the issue operation to
instruction issue register 516 (see FIG. 33). Each DIQ entry
cell 395 consists of D flip-flops (DFFs) or other storage units
305 (FIG. 28) to hold these DIQ entry fields and logic for the
allocate operation as determined by allocate logic in DIQ
cell 395.

5 unit 351 which may be a comparator or equivalents thereof
as would be understood by those of ordinary skill in the art.
Comparison unit 351 is used for flushing misspeculative
DIQ entries.

At the end of the decode stage, the fetch and decode unit
10

(may be 520-see FIG. 31) dispatches the decoded instruc­
tions to all execution units (may be 560, 570, 580, 590, 595,
596, 505, or 506 in FIG. 31). Each execution unit monitors
the FU_num field (execution/functional unit number) in all
dispatch buses (may be 550 in FIG. 31). If the FU_num 15

matches with the execution unit's assigned FU_num, it
allocates a DIQ entry for that decoded instruction. The
allocate logic 345 generates the control signal to enable the
DIQ 300 allocation,

Out-of-order Issue DIQ Structure

FIG. 30 shows an enhanced DIQ 400 structure of the same
floating-point ALU's DIQ 300 example in FIG. 27 to allow
full out-of-order issue, although a DIQ for any functional
unit could be used. Note, as shown in FIG. 30 (and FIG. 27),
some of fields 485 (385 in FIG. 27) vary with the type of
functional unit. The enhancements in the DIQ 400 comprise
the additions of: (l)"issued" 486, "RSl_rdy" 491, and
"RS2_rdy" 494 flags or fields in each entry (fields 487, 488,
489, 490, 492, and 493 are identical to fields 386, 387, 388,

{

1, if FU_num(J) =execution unit's FU_num
DIQ_alloc_en(i) = .

0, otherwise

(6)

20 389, 390, and 391, respectively, of FIG. 27), (2) comparators
(not shown) to match a result tag with all operand tags
(RSl_tag and RS2_tag) to update their ready flags (RSl_
rdy and RS2_rdy), and (3) an issue logic 475 circuitry to
determine which instruction entry should be issued next.

25 where i E [O,Na-lJ. Up to Na entries can be simultaneously
allocated to DIQ (300). If DIQ 300 overflows, the fetch and
decode unit is notified immediately so that the fetch and
decode stage are stalled until there is room in DIQ 300. The
tail pointer logic unit or block (tail_DIQ)350 determines the
correct tail pointer 360 position of every allocation port 310: 30

tail_DIQ(J) = (rail_DIQ(O) + ~ DIQ_alloc_en(k)) mod Nd;q,

(7)

In the out-of-order issue DIQ 400 structure, an entry is
still allocated from the tail side. Multiple tail pointers 460
are provided to handle multiple entry allocations in entry
cells 495 per cycle. A newly allocated entry has its RSl_rdy
491 and RS2_rdy 493 fields initially set based on the
operand value availability at decode time. These flags are
updated during the writeback stage, by forwarding result
tags 420 (NOT the result values as in the RS technique) to
the appropriate functional units (for example, tags of

35
floating-point results go only to selected functional units that
use floating-point operands). These result tags 420 are
compared to each entry's operand tags. A match will set the
corresponding ready flag (RSl_rdy 491orRS2_rdy493) to
TRUE.

where i E [1,Na-1]. The increment from the base tail pointer
360 is determined based on the number of allocations in the
previous ports. The next cycle tail_DIQ(0)361 is set to
(tail_DIQ(Na-l)+DIQ_alloc_en(Na-1)) mod Ndiq' pro­
vided no branch misprediction is detected (mispred_flag= 40

0). If mispred_flag=l, then the next cycle tail_DIQ(0)361
is set to the DIQ_flush_tail from the DIQ Flush Address
Queue (DIQFAQ)365. This essentially flushes instructions
in the mispredicted branch path (if any). DIQFAQ 365 is
identical to the one used MRB 100, providing multi-level 45

speculative execution. Instructions are issued in order from
the bottom of DIQ 300, pointed by issue pointer 380 as
determined by head (issue) pointer logic 370. Issue pointer
380 is equivalent to a head pointer (issue_DIQ=head_DIQ)
and therefore may also be designated as head pointer 380. If 50

there is an instruction (DIQ_empty=O), its register operands
are read from the result shelf or directly from the register
file. If both reads are successful (valid_read(L)=l and
valid_read(R)=l) then the instruction is issued for
execution, and DIQ 300 is popped. The DIQ head pointer 55

380 is then advanced by one position,

head_DIQ =

Issue logic 475 selects an unissued instruction entry with
both operands ready (RSl_rdy 491=RS2_rdy 493=TRUE).
If there are multiple ready entries than the oldest one (the
one closest to head pointer 480) is selected. The entry's
issued flag is then set to TRUE. This entry will be popped
from DIQ 400 when it reaches the bottom of DIQ 400. This
simplification is necessary to reduce the complexity of issue
logic 475 and allocate logic (not shown, but can be the same
as allocate logic 345 in FIG. 29). If an issued entry is
immediately freed then, a new entry can potentially be
allocated in the middle of DIQ 400's "queue".
Consequently, the age or order of instructions inside DIQ
400 is no longer easily determined by issue logic 475.
Multiple entry allocations from allocation ports 410 also
become more complicated since they are not sequentially
pushed at the tail side, but rather at random locations with
possible contentions to resolve. Note that in contrast to DIQ
300 which issues all field values of fields 385 of a single cell
395 in-order during the issue operation to instruction issue
register 516 (see FIG. 33), DIQ 400 issues all field 485

{

(head_DIQ + 1) mod Nd;q,

head_DIQ,

if (! DIQ_empty &

valid_read(L) & valid_read(R)

otherwise (wait, no issue)

60 values during the issue operation (field values for fields 487,
488, 489, 490, 492, and 493 of a single cell 495) out-of-order
to instruction issue register 516, except newly added field
values 486, 491, and 494, which are discarded.

FIG. 28 shows an example of a DIQ 300 circuit imple- 65

mentation according to the preferred embodiment, with the
supporting logic (allocate logic 345, flags logic 355, tail

Combining MRB and DIQ

FIG. 31 shows superscalar processor 500 that utilizes DIQ
300 or 400 instruction shelving and MRB lOOR or lOOF

6,112,019
59

(both have identical structure to MRB 100, but MRB lOOR
buffers fixed-point register values, while MRB lOOF buffers
floating-point register values) result shelving techniques.
Processor 500 has execution units 560, 570, 580, 590, 595,
596, 505, and 506 analogous to the execution units shown in 5
FIG. 18. Superscalar processor 500 as shown in FIG. 31
clearly reveals a significant reduction in global buses and
multiplexers compared to the processor of FIG. 18. By
eliminating operand value copying and result value
forwarding, shared-global operand buses and both shared- 10
global result buses and wide-bus multiplexers are avoided,
replaced by private-local (module-to-module) read buses
and write buses 525, respectively. The only shared-global
buses left are the required instruction dispatch buses 550 to
deliver decoded instructions to every execution unit's DIQ 15
300 or 400. In the case of out-of-order issue DIQs 400 a
small number of global wires to carry result tags are added
(not shown in FIG. 31).

In processor 500, separate register units 530 and 540 are
provided for fixed-point and floating-point register results. 20
(It is also possible to combine both types of register results
in a single register unit.) With two register units, the pro­
cessor 500 core area is basically segmented by Fixed-Point
Register Unit (FXRU)530 to hold general-purpose "R"
registers, and the Floating-Point Register Unit (FPRU)540 25
to hold floating-point "F" registers. Special purpose registers
for condition codes can use any of the "R" registers,
following the "no-single copy of any resource" philosophy
of the DEC ALPHA architecture. A single-copy of any
resource can become a point of resource contention. The "R" 30
and "F" registers (which may be contained in either register
units 530 and 540 in 515R and 515F or in MRB lOOR and
MRB lOOF) are also used to hold fixed- and floating-point
exception conditions and status/control information, respec­
tively. 35

Each of register units 530 and 540 contain register files
515R and 515F accompanied by MRBs lOOR and lOOF,
respectively, to support register renaming, out-of-order
execution, multi-level speculative execution, and precise
interrupts. FIG. 32 shows the organization of a FXRU 530 40

(FPRU 540 is similar). RF 515R contains the in-order state,
while MRB lOOR contains the look-ahead state. An MRB
lOOR entry is retired to RF 515R only if it is safe. To read

60
FXRU 530 and FPRU 540, as well as within FXRU 530/
FPRU 540 itself. CIMU 596 can also be dedicated to handle
conditional move instructions as seen in the SPARC-64
(version 9) instruction set. Load & Store Units (LSU 0 and
LSU 1)590 and 595 perform all load and store operations
and include store queues (SQ)591 and 594, respectively, to
queue the store instructions until they can be committed/
executed safely, with load bypassing and two simultaneous
data accesses to D-cache 511 allowed. It is to be understood
that one or more memories or other storage units may be
employed instead of a cache for D-cache 511 for performing
an equivalent function as D-cache 511. Branch instructions
and PC address calculations are executed in the Instruction
Address Unit (IAU)560. A BTB (branch target buffer),
which is a combination of a branch-target address cache (or
other memory or storage unit) and branch history table, is
provided in IAU 560 to help eliminate some branch delays
and predict branch direction dynamically. During processor
500 implementation, it is best to physically layout circuit
modules/blocks such that execution units 560, 570, 580,
590, 595, 596, 505, and 506 surround their corresponding
register unit 530 or 540. Execution units that access both
register units 530 and 540, such as LSUs 590 and 595 and
CIMU 596, can be placed between the two. In this way, local
bus 525 wiring is more direct and shorter.

DIQ 300 or 400 resides in each execution unit (560, 570,
580, 590, 595, 596, 505, and 506). FIG. 33 shows FALU 506
organization, which gives an example how DIQ 300 or 400
is connected. An instruction issue register can be added to
reduce the operation delays in the issue/execute pipeline. To
allow immediate instruction execution following an instruc-
tion allocation to an empty DIQ 300 or 400, a bypass route
from the instruction dispatch buses 550 to instruction issue
register 516 is provided through multiplexer 517.

During normal operations, arithmetic and load/store
instructions proceed through five processing steps/stages;
fetch, decode, issue/execute, writeback, and retire. (Note
that a stage does not necessarily represent a single hardware
pipeline stage that can be performed in one clock cycle.) At
the fetch stage, multiple instructions (Na) are fetched
through fetch buffer 521 simultaneously from I-cache arrays
(or other memory or storage unit)510 (see FIG. 34). With
instruction aligning done in I-cache arrays (or other memory
or storage unit)510 (as in the IBM RS/6000 processor-see an operand, the register tag (reg_tag, a unique associative

search key) is presented to MRB lOOR and the register
number (reg_num) is presented to RF 515R, thus perform­
ing the read on both RF 515R and MRB lOOR. If a match
entry is found in MRB lOOR (read_found=l), then the
register content in RF 515R is considered old and ignored.
However, if the register is not found in MRB lOOR then the
RF 515R's read gives the correct register value. Note that
finding a matched entry in MRB lOOR does not guarantee
that the register value has been found. The register value
may still be computed in one of the execution units (560,
570, 580, 590, 595, 596, or 506) and has not been written to
MRB lOOR. MRB lOOR includes allocate ports HOR, write
ports 120R, read ports 130R, and retire ports 140R similar

45 Grohoski), Na instructions can be fetched each cycle, with­
out wasted slots, as long as they reside in the same cache (or
other memory or storage unit)510 line. At the decode stage,
multiple fetched instructions are decoded by instruction
decoder 524 simultaneously. Each valid instruction is

to MRB 100.
Fixed-point arithmetic instructions are executed in the

Fixed-Point Units (FXU 0 and FXU 1)570 and 580.
Floating-point arithmetic instructions are executed in the
Floating-Point Arithmetic Logic Unit (FALU)506 and
Floating-Point Multiply/Divide/Square-Root Unit (FMDS)
505. Note that FALU 506 also performs floating-point
compare/set instructions and writes its condition code
directly to FXRU 530. Conditional/Immediate Move Unit
(CIMU)596 performs register move instructions between

50 assigned a tag by IIU (Instruction ID Unit)522, which is also
used to tag the destination register of the instructions. An
entry is allocated at the "R" (lOOR) or "F" (lOOF) MRB for
each new register assignment. Register tags of an instruc­
tion's operands are acquired from the RTU (Register Tag

55 Unit)523. Finally, at least one valid decoded instruction or
all (or multiple) valid decoded instructions are dispatched to
the appropriate execution unit's (560, 570, 580, 590, 595,
596, 505, or 506) DIQ 300 or 400. Decoded instructions are
shelved by DIQs 300 or 400 to allow more time to resolve

60 data dependencies. Each DIQ 300 or 400 includes depen­
dency check logic that automatically issues an instruction at
the bottom of DIQ 300 or 400 as soon as its operands
become available, independent of other DIQs 300 or 400.
Unlike typical von Neumann processors, no centralized

65 control unit is required to explicitly and rigidly sequence
every instruction, deciding when it can execute. This is the
essence of dynamic, dataflow scheduling. At burst

6,112,019
61 62

major reductions in the use of comparators, multiplexers,
and global wires with respect to the reservation station
technique. The expensive shared-global wires are mostly
replaced by private-local wires 525 that are easier to route,

situations, all execution units 560, 570, 580, 590, 595, 596,
505, and 506 simultaneously issue an instruction, achieving
maximum machine parallelism. Results are not directly
written back to their register file 515R or 515F, but shelved
first at MRB lOOR or lOOF. Retiring of an instruction's result
from MRB lOOR or lOOF to register file 515R or 515F is
done when safe, i.e., (a) there is no exception in the
execution of the instruction and instructions preceding it,
and (b) there is no prior conditional branch instruction that
is outstanding or unresolved. This ensures correct execution

5 have less propagation delay, and occupy much smaller
silicon area. DIQ 300's or 400's number of global wires
remain the same as the number of DIQ 300 or 400 entries
and data size increase. DIQ 300's or 400's cost complexity/
growth for comparators is O(nlog2 n) or O(n2

) compared to
O(n3

) for RS. For multiplexers, DIQ 300 cost grows as
10 2 of a program, giving the same results as if the program was

run sequentially. Retiring of a store instruction, which
involves a permanent write to D-cache (or memory, 1/0
device, or other storage unit)511, follows the same proce­
dure. A summary of the flow of operations involved in each
processing stage is depicted in a flowchart shown in FIGS. 15

35 and 36.

O(log2 n) while the RS cost grows as O(n). Also, DIQ 300's
or 400's number of comparators is not affected by increases
in entry size or data size. This makes the DIQ 300 or 400
technique more adaptable to future 64-bit superscalar archi-
tectures.

On the performance side, the good characteristics of the
RS technique in achieving maximum machine parallelism
have been maintained in the DIQ 300 or 400 technique. The
only sacrifice made in DIQ 300 technique is the use of
in-order issue with an instruction window. This may penal-

A unique retire process, using the branch_point and
in_order_point, has been introduced. The branch_point
(generated by IAU 560) is the inst_ID of the "oldest"
unresolved conditional branch (inst_ID of IAU 560's bot­
tom DIQ 300 or 400 entry). Therefore, all instructions prior
to the conditional branch (inst_ID<branch_point) are non­
speculative. The in_order_point (generated by nu 522) is
the inst_ID of the "oldest" instruction that has not com­
pleted or completed with an exception. Thus, if an instruc­
tion has inst_ID<in_order_point, then its preceding
instructions completed without an exception. Unlike
Johnson's RB and the Metaflow THUNDER SPARC's cen­
tral DCAF, this retire process using the branch_point and
in_order_point eliminates the need for allocating "dummy
entries" to the result shelf for branches, stores, or any other
instructions that do not write to a register file. It also eases
synchronization in multiple result shelves and store buffers.

20 ize performance slightly on the cycle count, which can be
easily recovered through faster and simpler circuit imple­
mentation. In the end, the actual speed or performance of the
processor is faster due to reduced cycle time or more
operations executed per cycle. (The out-of-order issue DIQ

25 400 technique is at par with the RS technique in terms of
cycle-count performance, but higher in terms of overall
performance if the improved clock frequency is factored in.)
The performance analysis confirms that a good performance
speedup, on the cycle count basis, is still achieved. Based on

Cost and Performance Analysis

30 the benchmark set used, a speedup between 2.6x to 3.3x was
realized in a 4-way superscalar model over its scalar coun­
terpart. Moreover, the performance saturates at a relatively
low number of 4 DIQ 300 or 400 entries. These results can
be compared to 4-way superscalar processors which typi-

In Sections 5 and 6, respectively, of Chamdani 35

dissertation, the subject of which is incorporated herein by
reference, cost and performance analyses are addressed for
MRB 100 and DIQ 300. The cost DIQ 400 is slightly higher
in number of comparators and global wires, however per­
formance is also increased slightly. For MRB 100, the cost 40

analysis suggests a major reduction in the MRB lOO's usage
of multiplexers and global wires, relative to the RB's usage.
MRB lOO's cost complexity/growth for multiplexers is
O(n2

) while the RB's is O(n3
) where 0 is interpreted to

mean the order-of-magnitude of what is contained between 45

parentheses and n is the number of individual units of the
particular item being referred to. The complexity of existing
RB techniques (Unlike the RB, the number of global wires
used via the MRB 100 is unaffected by the data size Naata.)
is a proven fact. AMD found out in their superscalar 29K 50
processor (see Case), an "intellectual predecessor" to the
KS, that a mere 10-entry RB plus its operand and result
buses consumed a significant chip area, about the same as
4-Kbyte cache! And this is with the chip fabricated in an
advanced 0.5-micron CMOS technology.

55
The performance analysis confirms that the MRB 100

technique does work, and retains all of RB's good perfor­
mance characteristics. Based on the benchmarking done on

cally gain less than 2.0x over scalar designs on the SPE­
Cint92 benchmarks (see L. Gwennap, "Architects Debate
VLIW, Single Chip MP," Microprocessor Report, Vol. 8, No.
16, pp. 20-21, Dec. 5, 1994).

The following sections give a more detailed description of
the nu 522 and RTU 523 blocks in Fetch & Decode Unit
(FDU)520 shown in FIG. 31.

Inst_ID Unit (nU)

Inst_ID Unit (nU)522 has several responsibilities; (a)
assign inst_ID to every decoded instruction, (b) record the
PC address of every decoded instruction, (c) give the PC
address of an exception instruction, and (d) determine the
oldest instruction that has not completed or completed with
an exception (its inst_ID is called in_order_point). The
main component of nu 522 is an Instruction Array (IA),
which stores the PC address and status of every active
instruction currently in a processor (for example, processor
500). The IA is implemented as a circular FIFO buffer with
head and tail pointers (head_IA and tail_IA). During nor­
mal instruction run, the next tail_IA is incremented based
on the number of valid instructions in the decode group.
However, when a branch misprediction is detected, the
tail_IA must be adjusted. All IA 522 entries following the
mispredicted branch entry are flushed. Thus, next tail_IA is
set to the IA 522 address of the mispredicted branch entry,
which is the branch_point less its color_bit. Note that the
branch_point (generated by IAU 522) is the inst_ID of the
current "oldest" unresolved conditional branch.

a 4-way superscalar model, the performance was observed to
saturate at a relatively low number of 12 to 16 MRB 100
entries. With dummy branch entry allocation in the RB for 60

conditional branches, the RB's performance is expected to
saturate at a higher number. Or, if the number of entries in
the RB is set based on MRB lOO's saturation number, then
the RB's performance could be lower due to the additional
decode stalls from RB full.

A tag or active instruction identifier, inst_ID, is com­
posed of (color_bit, IA_addr), where IA_addr is the
address/index of an entry in the IA (color_bit is defined

65 below). It provides the "age/order" information during
instruction-order comparisons. An instruction with a smaller
inst_ID indicates that the instruction is "older", because it

For DIQ 300 or 400, the cost analysis suggests an
improvement in almost every hardware component, with

6,112,019
63 64

operands RSl(O .. Na-1) and RS2(0. Na-1) are read from
both RTF 600 and RTRB lOORT (see left side of FIG. 37).
If a match is found in RTRB, then it contains the most
updated register tag, and the tag in RTF is considered old.

appeared earlier in the decode sequence. NULL inst_IDS
with IA_addr=O, (0,0) and (1,0), are reserved to indicate
non-existence or no-value. This is important to indicate no
pending conditional branch instruction, branch_point=(O,O)
or (1,0). It can also mean no register operand (e.g., replaced
by immediate value, does not have second operand, default
zero register value in RO, etc.) when register tag is (0,0) or
(1,0).

The color_bit (as used in the Metaflow architecture-see
Popescu, et al.) is a single binary bit that is appended to
distinguish instruction order when the IA address starts to
wrap around. It is toggled at each wrap around. For example,
consider an inst_ID with 7-bit IA_addr (array size of 128).
If an instruction has inst_ID of (0,127), its next decoded
instruction has inst_ID of (1,1). When the two inst_IDs are
compared, (0,127) <(1,1). In the next wrap around (now the
color_bit is toggled from 1 to 0), (1,127)<(0,1). The rule for
comparing two inst_IDs (inst_IDA and inst_IDs) is:

5
Tags in RTRB lOORT are updated to RTF 600 as quickly as
possible, provided that all previous conditional branches
have been resolved. Thus, RTRB lOORT will mostly contain
"speculative" register tags. These tags are flushed when the
conditional branch is found to be mispredicted. To keep up
with the instruction fetch rates up to Nd entries at the bottom

10 of RTRB lOORT can be simultaneously retired to RTF 600.
FIG. 38 shows the structure of RTF 600. RTF cells 695
which include DFFs 605 (or equivalents thereof) are shown
in FIG. 38. Also shown in cell 695 is comparison unit 652
(may be an equivalent device to perform the same function
as would be understood to those of ordinary skill in the art)

15 for clearing the stale/old register tag. Note that Since there
can be multiple updates to the same register location among
Nd retirees, a priority selector is accommodated to make sure

if (color_bitA" color_bit8) then
/* reverse compare result *I
compare(inst_IDA,inst_ID8)~NOT compare(IA_addrA,IA_addr8)

else
/* same color bit */
compare(inst_ID A,inst_ID8) ~ compare(IA_addrA,IA_addr8).

only the last update is written. Also note that a difference Thus the sense of comparison is reversed when the color
bits are different. 30 between RTRB lOORT and RTF 600 with regard to specu­

lative tags is that RTRB lOORT holds speculative register
tags while RTF 600 holds nonspeculative tags of active
instructions (not stale).

Another responsibility of nu 522 is to determine the
in_order_point, the inst_ID of oldest instruction that has
not completed or completed with an exception. The
in_order_point will be used during instruction retirings.
The in_order_point less its color_bit is actually the IA

35
address of oldest IA entry with "complete" bit=O (the one
closest to head_IA). The ideal way of computing
in_order_point is to check the "complete" bits of all IA
entries between head_IA and tail_IA. However, this is not
efficient for hardware implementation. Instead, the checking
can be limited to within a window of N;w entries. This 40

"in_order_point" window starts from the IA address of
current in_order_point (called iop_IA_addr) to (iop_
IA_addr+N;w) mod N;a· This simplification will not alter
program correctness. The only potential penalty is a post­
ponement in instruction retiring, if the in_order_point 45

moves "up" (toward tail_IA) too slow. This should be
infrequent if the size of "in_order_point" window (N;w) is
not too small.

Register Tag Unit
50

RTRB lOORT is implemented as a multi-ported, content­
addressable, circular FIFO buffer with the register number
(reg_num 730-see below) used as the associative search
key during read operations. The circular FIFO control is
implemented by a set of head and tail pointers (head_RTRB
and tail_RTRB) which are not shown, but are analogous to
head pointers 180 and tail pointers 160 of FIG. 21. The
content of an RTRB entry 700 for RTRB lOORT is shown in
FIG. 39 with fields n_empty 710, "last" 720, reg_num 730,
and reg_tag 740. To avoid prioritized associative lookup,
"last" bit 720 is provided for each RTRB entry 700. Thus,
the most recent tag (740) of a register number (730) is read
from the matched RTRB entry 700 with "last" bit 720=1.
"Last" bit 720 is set during entry allocation if its register
number 730 is the most recent one within the decode group.
Each entry's "last" bit 720 is reset when a more recent entry
allocation "overwrites" its register number 730.

The structure of RTRB lOORT is shown in FIG. 40. Each
RTRB cell 895 consists of D flip-flops (DFFs) or RS
flip-flops (or other storage devices)805 to hold RTRB entry
700, and logic circuits for allocate 845, read 825, and retire
835 operations. RTRB lOORT is a simplified reorder buffer

55 with the following modifications; (1) buffer only register
tags 740, no register values or program counters, (2) no write
port, (3) multiple allocate and retire ports, and (4) allow read
bypassing from allocate ports.

FIG. 37 shows the organization of Register Tag Unit
(RTU) 523. RTU 523 maintains the most recent tag of every
"R" and "F" register (which may be in 515R and 515F or in
MRBs lOOR and lOOF). The most recent tag of a register is
the inst_ID of producer instruction that updates the register
last. To store tags of all "R" and "F" registers (may be in
515R and 515F or in MRB lOOR and lOOF), Register Tag
File (RTF)600 is used. RTF 600 has the structure of a
register file, except the register content is not a value, but
rather a tag. To support speculative execution, Register Tag
Reorder Buffer (RTRB) lOORT accompanies RTF 600. RTF 60

600 are similar to 515R or 515F except that it holds to
register values, only register tags, and it was in_order_
point to clear the stale/old register tag. (Note that RTRB is
not similar to MRB 100.) RTRB lOORT has RTU allocate
ports 810, both RTRB lOORT and RTF 600 share read ports 65

830, and tags are updated from RTRB lOORT to RTF 600
through RTRB retire ports 840. Register tags of source

The fourth modification, read bypassing, is necessary
because the most recent tag 740 of a register may still be in
allocate ports 810, not yet written to RTRB lOORT. Consider
the following example where ((x-y)2 +z)2 computation is
about to take place. Assume all calculations are performed
in single-precision floating point arithmetics; variables x, y,
z were already loaded into register Fl, F2, F3, respectively;
and the result is written to register F4. Suppose the current
decode group is as follows: (Nd=4)

6,112,019
65 66

inst_ID(i) opcode(i) RD(i) RSl(i) RSl_tag(i) RS2(i) RS2_tag(i) Operation

0 (0,126) sub.s F4 Fl n/a F2 n/a F4 <-Fl - F2
(0,127) mul.s F4 F4 (0,126) F4 (0,126) F4 <- F4 * F4

2 (1,0) add.s F4 F4 (0,127) F3 n/a F4 <- F4 + F3
3 (1,1) mul.s F4 F4 (1,0) F4 (1,0) F4 <- F4 * F4

Consider the register tag reading of the third instruction
(i=2) in the decode group. When RS1(2) is presented to
RTRB cells 895, it is also checked for possible bypassing at
the RSl Bypass Logic unit or block 875 (see FIG. 40).
Because allocations and reads occur in the same cycle,
RTRB lOORT does not have the current decode group's
register tags available for reading. The register tag read must
be satisfied directly from one of allocate ports 810. In

10
where i E [1,Nr 1]. The increment from the base tail pointer
is determined based on the number of allocations in the
previous ports. Note that the next cycle tail_RTRB is simply
(tail_RTRB(Nrl)+RTRB_alloc_en(Na-1)) mod Nrtrb·

15 The Tail Pointer Logic 850 also activates the RTRB_full
flag if an allocation is about to overwrite the head entry.
Thus,

(11)

1, if (head_RTRB ttailRs) n LJ (head_RTRB =? tail_RTRB(k))) ! (Nrl

RTRBJull = k~I

0, otherwise

25

If RTRB_full=l, the fetch and decode stage are stalled
until there is room in RTRB lOORT.

general, bypassing at RSl read ports 830 are enabled with
the following condition:

The Last Update Logic block 855 determines whether a
register assignment is the last update within the decode

(9)

{

1, if \J (RSl(i) =? RD(k))
RS I _bypass_en(i) = k~o

0, otherwise

30 group, so that the "last" bit can be set properly during
allocation. For a register assignment to be the last update,
there must be no subsequent assignment to the same register
within the decode group. Thus, in general,

where i E [1,Nrll In this case, RSl_bypass_en(2)=1
35

because RS1(2)=RD(l) and/or RS1(2)=RD(O). Despite two
{

Nd-!

. 1, if LJ (RD(i) =? RD(k))
last_update(J) = k~;+1

(12)

0, otherwise

40
where i E [O,Nr2J. Obviously, last_update(Na-1) is always
1 because the last instruction (of the decode group) updates
the last.

match ups, the RSl_bypass(2) must come from the second
allocate port (inst_ID (1)) of allocate ports 810 with inst_
ID=(0,127) because it updates F4 last. With RSl_bypass
en(2)=1, the RSl_tag(2) is satisfied from RSl_bypass(2)
and not from RTRB lOORT. Read bypassing at RS2 ports (of
read ports 830) follows the same analogy using RS2 Bypass
Logic unit or block 865. obviously, RSl bypass_en(O) and
RS2_bypass_en(O) are always 0 because the register tags

45 of the first instruction's source operands would have been

Finally, register tags 740 in the bottom RTRB cells/entries
895 are retired to RTF 600 if all its previous conditional
branch instructions have been resolved. No "speculative"
register tag may be updated to RTF 600. Thus, a retiree at
retire_port(i) is green-lighted (valid_ret(i)=l) if its reg_
tag(i)<branch_point. The branch_point (generated by IAU
560) is the inst_ID of the current "oldest" unresolved
conditional branch. Since all Na entries at the bottom

updated to RTU 523 in the previous cycle(s).

The entry allocation at the tail (determined by tail pointer
logic 850) of RTRB lOORT involves setting n_empty 710=
1, last 720=1 (if the register assignment is the last update­
controlled by last update logic 855-among instructions in
the decode group), reg_num 730=RD, and reg_tag 740=
inst_ID. There can be up to Na RTRB lOORT entries
allocated in a cycle. An allocation of an RTRB lOORT entry

50 (cells/entries 895) are simultaneously evaluated to retire,
head_RB(i)=(head_RB+i) mod Nrtrb is generated for
i=O ... Nrl. Each valid retirement moves the head pointer
"up" by one position as determined by head pointer logic
unit or block 870. So, the next cycle head pointer is,

is enabled (RTRB_alloc_en(i)=l) if the fetched instruction 55

at position i is not following a branch-taken instruction and
writes to an "R" or "F" register (R_alloc_en(i) or (

Nd-!)

(next) head_RTRB= head_RTRB+ ~ valid_ret(i) mod Nnrb·

(13)

F _alloc_en(i) is set), which may be in 515R and 515F, or
in MRB lOOR and MRB lOOF. The Tail Pointer Logic unit
or block 850 determines the correct tail pointer position for 60

every allocation port 810:
Retiring is done as quickly as possible by providing Na

retire ports 840. Only "non-speculative" entries (reg_
tag<branch_point) can be retired from RTRB lOORT to RTF
600. When a branch misprediction is detected, any "non­
speculative" entries left in RTRB lOORT are retired tail_RTRB(i) = (rail_RTRB+ ~ RTRB_alloc_en(k)) mod N,.,,b,

(10)

65 immediately, if any usually within a cycle. Then, RTRB
lOORT is simply reset to repair from any misprediction side
effects.

6,112,019
67 68

instruction queue and no result values are received by said
distributed instruction queue.

Another condition that causes flushing is when an excep­
tion error is detected. In this case, both RTRB lOORT and
RTF 600 are flushed. No register tags are needed when
resuming from an exception, because all register values in
FXRU 530's MRB lOOR and FPRU 540's MRB lOOF
would have been retired to RFs 515R and 515F, respectively,
before going to the exception handler. To read register
operands from RFs 515R and 515F, register number is used
instead of register tag.

6. The distributed instruction queue as claimed in claim 1,
wherein said distributed instruction queue is operated inde-

5 pendently of any other distributed instruction queue.
7. The distributed instruction queue as claimed in claim 1,

wherein said decoded instructions are issued in-order.
8. The distributed instruction queue as claimed in claim 1,

wherein said decoded instructions are issued out-of-order.
9. The distributed instruction queue as claimed in claim 1,

wherein said decoded instructions are issued in some form
of limited out-of-order issue.

Finally, stale register tags in RTF 600 must also be 10

cleared/reset to 0. The condition to reset is reg_tag <in_
order_point, which means that the reg_tag has been deal­
located from nu 522. 10. The distributed instruction queue as claimed in claim

15 1, wherein the distributed instruction queue issues the
decoded instructions to a functional unit for execution, the
functional unit being external to the distributed instruction

Numerous and additional modifications and variations of
the present invention are possible in light of the above
teachings. It is therefore to be understood that within the
scope of the appended claims, the invention may be prac­
ticed otherwise than as specifically claimed.

queue.

What is claimed is:
1. A distributed instruction queue comprising:

11. The distributed instruction queue as claimed in claim
20 1, wherein the distributed instruction queue shelves said

at least two entry cells, each of said at least two entry cells
being capable of holding a decoded instruction corre­
sponding to at least one source operand, said at least
one source operand for each decoded instruction being 25

stored in storage means external to said distributed
instruction queue, said at least one source operand not
being copied into said distributed instruction queue;

an allocate port connected to said at least two entry cells
30

for allocation of decoded instructions to said entry cells
without reading the at least one source operand corre­
sponding to each of the decoded instructions; and

an issue port connected to said at least two entry cells for
issuance of decoded instructions under logic control in 35

any order from said entry cells to a functional unit
external to said distributed instruction queue after such
time as all of the source operands corresponding to the
decoded instruction to be issued are available in the
external storage means, the source operands being read 40

from the external storage means at such time as the
decoded instruction is issued, and wherein no result
value is forwarded from the functional unit to said
distributed instruction queue.

2. The distributed instruction queue as claimed in claim 1,
further comprising a tail pointer logic unit to adjust a tail
pointer to point to the one of said at least two entry cells into
which the next decoded instruction should be allocated from
said allocate port.

3. The distributed instruction queue as claimed in claim 1,
further comprising:

45

50

means for determining the one of said at least two entry
cells in which the decoded instruction that was earliest 55
allocated is held; and

a head pointer logic unit to adjust a head pointer to point
to the one of said at least two entry cells in which the
decoded instruction that was earliest allocated is held.

4. The distributed instruction queue as claimed in claim 1, 60

further comprising an issue pointer logic unit to adjust an
issue pointer to point to the one of said at least two entry
cells from which the next decoded instruction is to be issued
through said issue port. 65

5. The distributed instruction queue as claimed in claim 1,
wherein no operand values are copied into said distributed

decoded instructions.
12. The distributed instruction queue as claimed in claim

1, wherein said distributed instruction queue is a circular
array.

13. The distributed instruction queue as claimed in claim
1, further comprising additional allocate ports connected to
said at least two entry cells for allocation of decoded
instructions to said at least two entry cells.

14. A distributed instruction queue comprising:

means for receiving at least two decoded instructions,
each of the at least two decoded instructions corre­
sponding to at least one source operand, said at least
one source operand for each decoded instruction being
stored in storage means external to said distributed
instruction queue, said at least one source operand not
being copied into said distributed instruction queue;

means for determining when all of the source operands for
each of the decoded instructions are present in the
external storage means without reading the source
operands; and

means for issuing each of the decoded instructions in any
order to a functional unit external to said distributed
instruction queue after determination by said determin­
ing means that all of the operands for the decoded
instruction to be issued are available in the external
storage means, the source operands being read from the
external storage means at such time as the decoded
instruction is issued, and wherein no result value is
forwarded from the functional unit to said distributed
instruction queue.

15. A method for issuing instructions in a superscalar
processor, comprising the steps of:

allocating at least two decoded instructions, each of the at
least two decoded instructions corresponding to at least
one source operand;

determining when all of the source operands for each of
the decoded instructions are available without reading
the source operands and without copying the source
operands;

issuing each of the decoded instructions in any order after
all of the source operands for the decoded instruction to
be issued are available; and

6,112,019
69

reading the source operands for the decoded instruction
issued in said issuing step at such time as the decoded
instruction is issued.

16. The method of claim 15 wherein said issuing step
further comprises issuing each of said decoded instructions
in-order.

17. The method of claim 15 wherein said issuing step
further comprises issuing each of said decoded instructions
out-of-order.

18. The method of claim 15 wherein said issuing step
further comprises issuing each of said decoded instructions
in some form of limited out-of-order issue.

19. The method of claim 15 wherein said allocating step
further comprises allocating the decoded instructions with-

70
out allocating the source operands corresponding to the
decoded instructions.

20. The method of claim 15 wherein said issuing step
further comprises issuing the decoded instructions without

s issuing the source operands corresponding to the decoded
instructions.

21. The method of claim 15 wherein said issuing step
further comprises issuing each of said decoded instructions
to a functional unit.

10 22. The method of claim 15, further comprising a step of
shelving said decoded instructions, said shelving step being
performed after said allocating step and before said deter­
mining step.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO.

DATED

INVENTOR(S) :

6,112,019
AUGUST 29, 2000
Chamdani, et al.

Page 1 of 3

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 2, line 22, change "demands" to --demand--.

Column 4, line 8, delete"[?]".
Column 4, line 36, change "factors" to --factor--.
Column 4, insert "Summary of the Invention" between lines 52 and 53.
Column 6, line 10, change "instruction" to --instructions--.
Column 7, lines 22-23, change "typically s supports" to --typically supports--.
Column 8, line 8, change "1970, M. Johnson" to --1970; M. Johnson--.
Column 17, line 49, change "technologies" to --Technologies--.
Column 20, line 38, change "Tomasulo"' to --Tomasulo's--.
Column 20 line 39, change "(l-to-1" to --(l-to-1)--.
Column 23: align underscore of heading "Comparisons of Instruction Shelving

Techniques".

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO.

DATED

INVENTOR(S) :

6, 112,019
August 29, 2000
Chamdani, et al.

Page 2 of 3

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 28, lines 47-48, change "Metaf[line 47] low [line 48]" to --Metaflow--.
Column 28, line 49, change "Metaflow" to --Metaflow--.
Column 29, line 8, change "lines. of' to --Jines. Of--.
Column 30, line 42, change "Sum" to --Sun--.
Column 31, line 10, change "ans" to --and--.
Column 32, line 16, change "respect b integer" to --respect to integer--.
Column 34, line 50, insert"," after --Unix--.
Column 34, line 53, change "PLACODE" to --PALcode--.
Column 36, line 3, change "PA-7100" to --PA-7100--.
Column 37, line 7, change "access" to --accessed--.
Column 38, line 50, change "performs" to --perform--.
Column 45, line 62, delete "to".
Column 48, line 19, delete the first appearance of"to".
Column 48, line 42, change "factors" to --factor--.
Column 49, line 32, change "condition" to --conditions--.
Column 50, line 32, add"." after --lookup--.
Column 53, line 11, change "Retire" to --retire--.
Column 54, line 54, change "logic 255 ford determining" to --logic 255 for
determining--.

PATENT NO.

UNITED STA TES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

6, ll2,019 Page 3 of 3

DATED August 29, 2000

INVENTOR($) : Chamdani, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 57, line 45, insert "in" between --used-- and --MRB--.
Column 58, line 42, change "than" to --then--.
Column 60, line 57, change "unit's" to --units--.
Column 61, line 38, insert "of'' between --cost-- and -~DIQ 400--.
Column 63, line 61, change "600 are" to --600 is--.
Column 64, line 16, change "Since" to --since--.
Column 67, line 5, change "MRB 100F" to --MRB JOOF--.

Attest:

Attesting Officer

Signed and Sealed this

Twenty-ninth Day of May, 2001

NICHOLAS P. GODICI

Ac1i11g Director of the U11ired States Pate111 a11d Trademark Office

