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[57] ABSTRACT 

A distributed instruction queue (DIQ) in a superscalar 
microprocessor supports multi-instruction issue, decoupled 
data flow scheduling, out-of-order execution, register 
renaming, multi-level speculative execution, and precise 
interrupts. The DIQ provides distributed instruction shelving 
without storing register values, operand value copying, and 
result value forwarding, and supports in-order issue as well 
as out-of-order issue within its functional unit. The DIQ 
allows a reduction in the number of global wires and 
replacement with private-local wires in the processor. The 
DIQ's number of global wires remains the same as the 
number of DIQ entries and data size increases. The DIQ 
maintains maximum machine parallelism and the actual 
performance of the microprocessor using the DIQ is better 
due to reduced cycle time or more operations executed per 
cycle. 
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Note: insLID ;:;unique instruction tag 
opcode =opcode of the instruction 
RS1 =register number of first source operand 
RS1 _tag =register tag of first source operand 
RS2 =register number of second source operand 
RS2_tag ""register tag of second source operand 

In-order Issue Distributed Instruction Queue(DIQ) 



Fetch Decode Dispatch Issue Execute Writeback 

Execution Unit 

instructions __J w Central ~ from Decoder • 
Window • 

I-cache • 
Execution Unit 

load 

Load/Store Unit 

load from D-cache 

(a) with a Central Instruction Window 

Fetch Decode Dispatch Issue Execute Write back 

Dist. Window Execution Unit 

instructions 
Decoder K : • 

from 
• • • 

I-cache • • 
Dist. Window I •I Execution Unit 

Dist. Window --- Load/Store Unit r ~1 

Fig. 1 
load from D-cache 

(a) with Distributed Instruction Windows 

Result 
Buffer 

Store 
Buffer 

Result 
Buffer 

Store 
Buffer 

Retire 

[[ 

Retire 

• 
• 
• 

results to 
Register 
File 

store to 
D-cache 

results to 
Register 
File 

store to 
D-cache 

d • 
\JJ. • 
~ 
~ ...... 
~ = ...... 

> = ~ 
N 
~~ 
N c c c 

'Jl 

=-~ 
~ ..... 
'"""' 0 ....., 
.i;;.. 
c 

0--, .... 
~ 
~ 
N .... = ~ 
\C 



Note: inst 1 and inst 2 can be a floating-point arithmetic and/or a load/store instruction 

inst 1 inst 2 

S2IS3 OPITIS1 IS2IS3 
I I I I I 

Free List (FL) 

Mapping Table 
32X6 

33 I 34 I 35 I 36 I 371 38 I 39 

Pending-Target 
Return Queue (PTRQ) 

Register Mapping Table in IBM RS/6000 Floating-Point Unit 

Fig. 2 

3 

d • 
\JJ. 
• 
~ 
~ ...... 
~ = ...... 

~ 
~ 
N 
~~ 
N c c c 

'Jl 

=­~ 
~ ..... 
N 
0 ....., 
.i;;.. 
c 

0--, .... 
~ 
~ 
N .... = ~ 
\C 



retire bus 

entry dest. 
number reg 

• • 
• • 
• • 

tail- 6 

5 0 

head- 4 4 

3 

Register File 
(In-Order State) 

Comparator/ 
Bypass Network 

• • • 

I : right_opr_bus (operand data 
I left_opr_bus to functional units) 

Result 
Shift 

Register 

entry number I 
Reorder Buffer - - - - J 

(Look-Ahead State) - result bus (result value & exception condition 
from a functional unit) 

Reorder Buffer Result Shift Register 

stage 
functional 

unit source 
valid tag 

result excep-
tions 

• • 
• • 
• • 

Fig. 3 

valid 

• 
• 
• 

0 

0 

program 
counter 

• 
• 
• 

17 

16 

shift 
direction 

l 

N 0 

• • • 
• • • 
• • • 

5 float add 1 

4 0 

3 0 

2 integer add 1 

1 0 

Note: N =the length of longest functional-unit pipeline 

Reorder Buffer Organization 

• 
• 
• 
4 

5 

d • 
\JJ. 
• 
~ 
~ ...... 
~ = ...... 

~ 
~ 
N 
~~ 
N c c c 

'Jl 

=­~ 
~ ..... 
~ 

0 ....., 
.i;;.. 
c 

0--, .... 
~ 
~ 
N .... = ~ 
\C 



tag oocode S1 a(S1) S2 a(S2) D a<D) B(D) 12 
top 

16 fadd RO 2 R4 2 RO 2 2 8 
15 fadd R4 1 R6 1 R4 1 1 4 
14 fadd R6 0 R7 0 R6 0 0 0 
13 fadd R4 0 RS 0 R4 0 0 0 
12 fadd RO 1 R2 1 RO 1 1 4 
11 fadd R2 0 R3 0 R2 0 0 0 

bottom IO fadd RO 0 R1 0 RO 0 0 0 

(a) Before Issue 

taa oocode S1 a(S1) S2 a(S2) D a<D) B(D) 12 
top 

empty spaces ready for 
subsequent instructions 

16 fadd RO 1 R4 1 RO 1 1 4 
15 fadd R4 0 R6 0 R4 0 0 0 

bottom T2 fadd RO 0 R? 0 RO 0 0 0 

(b) After Issue and Completion 

Note: S1/S2 =first/second source register identifier, D =destination register identifier, 
a(X) = # of times register X is designated as a destination register in preceding inst (below it), 
P(X) =#of times register Xis designated as a source register in preceding instruction (below it), 

= issue index= a(S1) + a(S2) + a(D) + p(D). 

8-Entry Dispatch Stack 

Fig. 4 
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(a) Instruction Timing 
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12 15 16 
I 15 16 

Note: "float add" takes 6 cycles 
to complete after issued. 

Opcode Source 0 lerand 1 Source 0 )erand 2 Destination Executed Excep-
·eady tag content ready tag 

fadd 0 0.2 - 0 4.2 

fadd 0 4.1 - 0 6.1 

fadd 1 - R60 1 -
fadd 1 - R40 1 -
fadd 0 0.1 - 0 2.1 

fadd 1 - R~ 1 -

conten tag con ten 

- 0.3 -
- 4.2 -

R~ 6.1 -
R50 4.1 -

- 0.2 -
R30 2.1 -

tions 

0 -
0 -

0 -
0 -
0 -

0 -

I+-

I+-

I+-

r+-

-+-

-+-

alloc 

not rdy 

4th issue 

3rd issue 

not rdy 

2nd issue 

head 1st issue - 0 IO fadd 1 - ROO 1 - R10 0.1 - 0 - -+-

Entry 
Number 

tail - 7 

6 

5 

4 

3 

2 

1 

head - 0 

(b) RUU Snapshot at Cycle 7 Note: Rik means the kth instance of 

PC Opcode Source Ooerand 1 Source Operand 2 
eady tag content ready tag conten 

16 fadd 0 0.2 . 0 4.2 -

15 fadd 0 4.1 - 0 6.1 -

14 fadd 1 - R60 1 - R?O 

13 fadd 1 - R40 1 - R50 

12 fadd 1 0.1 R0
1 1 2.1 R21 

11 fadd 1 - R20 1 - R30 

IO fadd 1 - ROO 1 - R10 

(c) RUU Snapshot at Cycle 9 

Register Update Unit 

Fig. 5 
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1 2 - 3 - 4 5 - 6 - 7 
IO, 11, 12, 13 14, 15, I6 

IO 11 13 14 12 15 
IO 11 13 14 

cycle­
allocate­

issue­
writeback­

retire- IO 11 13 14 

h 

h 

(a) Instruction Timing 
Note: Assume there are 4 allocate ports, 4 retire ports, 
-- 2 floating-point add FUs (class rum 2) with 3-cycle latency. 

Index 
Source Operand 1 Source Operand 2 Destination 

Locked R num ID Locked R num ID latest Rnum content 
7 
6 1 0 0.2 1 4 0.5 1 0 -
5 1 4 0.3 1 6 0.4 1 4 -
4 0 6 - 0 7 - 1 6 -
3 0 4 - 0 5 - 0 4 -
2 1 0 0.0 1 2 0.1 0 0 -
1 0 2 - 0 3 - 1 2 -
0 0 0 - 0 1 - 0 0 -

Disp. 

0 
0 
0 
0 
0 
1 
1 

(b) ORIS Snapshot at Cycle 2 

Source Operand 1 Source Operand 2 Destination 
Disp. Index Locked R num ID Locked R num ID latest R num content 

7 
6 1 0 0.2 1 4 0.5 1 0 - 0 
5 0 4 0.3 0 6 0.4 1 4 - 0 
4 0 6 - 0 7 - 1 6 Rn1 1 
3 0 4 0 5 0 4 R41 1 
2 0 0 0.0 0 2 0.1 0 0 - 1 
1 0 2 - 0 3 - 1 2 R?1 1 
0 0 0 - 0 1 - 0 0 Rn1 1 

(c) ORIS Snapshot at Cycle 6 
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Fig. 7 ORIS (Deferred-scheduling, Register-Renaming Instruction Shelf) 
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Fig. 8 
+ ______________________________ L _____ _ 
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Fixed Point ::: 

Branch Unit RF -+---

~ 
Machine-State Reg. 

Link Register I-Buffers 

Count Register I 
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Fixed-Point Unit 

::: --+ 
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IBM RS/6000 Architecture 

Fig. 9 
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Cycle -1 2 6 9 10 11 12 13 14 15 7 8 3 4 5 
I I I I 

Branch 
{

IF 

Unit Disp/BR 

Fixed- FXE 

{ 

FXD 

Point c 
Unit WB 

Floating­
Point 
Unit 

PD 

Remap 

FPO 
FPE1 
FPE2 
F1WB 

Pipeline Stage 

I 7o 171 1111 1151 I I 111° 115° I I I I I I 8° 112° 181 1121 I 
I go 113° 191 1131 

I I I I I I 
110° 114° 1101 1141 

I I I I I I 
I I I I 

17° Igo 111° 113° 171 191 1111 1131 I 
I I I I I 

E 18° 110° 112° 114° J81 1101 1121 1141 I I I I I 115° 115° 0151 1151 I I I I .......... 
170 190 1110 1130 171 19 1111 1131 I I I I 

.................... rno 110° 112° 114° 181 110 1121 1141 I I I 

.............................. T7° T9° T1~ T14° J71 191 T121 1141 I I 
17° 19° T71 J91 I I ....................................... 

I .................... 170 
19° 111° 113° 171 191 1111 1131 I I I I 

.................... T8o r10° T 1 ;20 T14o J81 T101 1121 1141 I I I I 
17° 19° 111° 113° 171 191 1111 1131 I I I 

.............................. 180 1100 112° 114° 181 1101 1121 1141 I I I 

....................................... rnu 11ou l11u 113u 181 11 ffl 1111 1131 I 
J8V 110° 111° 113° 181 1101 1111 1131 I ................................................. 

J8U l10u 111u l13u J81 1101 1111 1311 ........................................................... 
J81 110° 111° 113° 181 1101 1111 131 I .................................................................... 

Note: IF =Fetch 4 instructions from the I-cache arrays, place them into BU's I-buffers. 
Disp/BRE =Dispatch fixed-and floating-point instructions to FXU and FPU. Execute branch and 

FXD 
FXE 
c 
WB 

condition-register instructions. 
=Decode a fixed-point instruction and access the integer RF for operands. 
=Execute a fixed-point instruction. For load/store instruction, compute its address 
=Access the D-cache arrays. Data is returned to either the FXU or FPU. 
=Write back result value to the integer register file. Data for load is written in this cycle. 
=Pre-decode instructions in preparation for register renaming. 

Cycle-by-Cycle Execution 
in the IBM RS/6000 

PD 
Remap 
FPO 
FPE1 
FPE2 
FPWB 

=Map architectural registers of a floating-point instruction to physical registers. 
=Decode a floating-point instruction and access the floating-point RF for operands 
=Execute a floating-point instruction. This is the first cycle of MAF pipeline. 
=Second cycle of MAF pipeline. Fig. 10 
=Write back result value to the floating-point RF. 
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Instruction Issue Unit(llU) 

I I-Cache 111 Branch DCAF 1 I 8CT~i~h 

Dataflow Integer Unit(DIU) 

36 

Cache Control /MMU/MBus Interface (CMB) 

Memory 
Management Unit 

Cache 
Control/Tags 

Cache Coherency and 
MBus Level-2 Bus Interface 

Fig. 11 Lightning SPARC Architecture 
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Floating-Point Register Files 

Floating-Point Unit 

Instruction Unit 
Scheduling and 1-----__, 

Grouping Logic "take" signals 

Target 
Inst. 

Queue 

Sequential 1,. , 

Inst. 
Queue PC Logic 

SuperSPARC Architecture 

Fig. 12 

floating-point store data 

floating-point load data 
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Integer Unit 
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address J 36 data J: 64 
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I-Cache I Branch History Table I I Tag 

i i 
EBox I Box 

Multiplier - Pref etcher 

Adder Resource Conflict 

Shifter PC Calculation 

Logic Unit 1-TLB 

Pipeline Control 
i 
Integer RF I I 

t 
, , ' 

ABox I Store Buffer I I Address Generator I I D-TLB 

' 
, 

D-Cache I Tag I I Data 

DEC Alpha 21064 Architecture 

Fig. 13 

I I Instruction 
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~ - Multiplier I 
Adder 

Divider 

t 
- Floating-Point RF 

I I Load Silo 
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0 1 2 3 4 5 6 
IF SW I IO I I 1 A 1 I A2 I WR I 

I I I I I 
CACHE I DECODE I ALU1 I I IRF I EBox 

ACCESS I I I I WRITE I } 
: : I ~~~ 

SWAP I I ISSUE I I ALU2 I I 
PREDICT I I RF READ I PC GEN I 1-TLB I I-CACHE I 

: : : : : HIT/MISS: IBox 

I Bo I I I VA GEN I D-TLB I D-CACHEI 
x I I I I I HIT/MISS I ABox 

I I I I I I 
(a) Integer Pipeline Timing 

I O I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 9 I 10 
I IF I SW I IO I I 1 I F1 I F2 I F3 I F4 I F5 I FWR 
I I J I I I I I I I 
I --,------- - - ,--- I 

I CACHE 1 I DECODE I I EXP LID SHIFT ADD/RND 1 FRF 
I ACCESS I I I I I I I I I 

I I SWAP I I ISSUE I 3XMCD MJL 1 MJL2 ADD~RND I 
I IBox I PREDICT! IRF READI I I I I I 
I I I I 11._~~+-~~-+-~~-+-~~-+-~--4 
I I + I I 

(b) Floating-Point Pipeline Timing 

WRITE FBox 
FRI 

WRITE B ypass 

Note: IRF = integer register file FRF =floating-point register file 
ALU1 =ALU operation completes (except shift) ALU2 =shift operation completes 
WRITE = write result to the appropriate register file PC GEN = generate new program counter value 
VA GEN =generate new virtual address EXP =calculate exponent difference 
LID =predictive leading 1 or 0 detector SHIFT =normalization shift and sticky bit calc. 
ADD/RND = final addition and rounding 3XMCD =generate 3 x multiplicand 
MUL 1 =in radix-8 pipeline array multiplier MUL2 =in radix-8 pipeline array multiplier 

DECchip 21064 Pipeline Stages 

Fig. 14 
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To Off-Chip I-Cache 
(4 Kbytes to I Mbytes) 

address data tag 
.l 

64 

I-Cache Interface 

instructions 

Unified 
TLB 

Integer Register File 
(32 x 32 bits) 

Integer Unit 

To System Interface 
(Memory, 1/0, Graphics) 

To Off-Chip D-Cache 
(3 Kbytes to 2 Mbytes) 

address data tag address tag 

System Bus 
Interface 

Control Unit 

.l .l 

64 

D-Cache Interface 

Floating-Point Register File 
(28 x 64 bits or 56 x 32 bits) 

Floating-Point Unit 

HP PA7100 Architecture 

Fig. 15 
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lnstuction : Instruction i i D-cache i Register 
1 Fetch 

1 
Decode 

1 
Execute 

1 
Access 

1 
Write Back 

1 

F I I I B I A I R I 
I I I I l I 
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I-Cache I 
Arrays 

-JtNd 
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Decx::de Unit Register File Reorder Buffer r-- , 
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Nxrb-1 

tail RB(Nd-1) 

tail_RB(O) 

Fig. 19 
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(from instruction 
dispatch buses) 
RB_alloc port 

(O .. N d-1) 

I -
Nd 
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Note: 
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I 
I 
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Example: 
t Ix: R3 <-R1 + R2 
t+1 ly: R3 <-R3 * R3 

Decode ly, read 
R3 tag from RB 

Dispatch I y to 
RS 
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Fig. 20 
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100 

~ 

165 

\ 

(from dispatch 

110 
buses) 

~port 
(O .. Bd-1) 

tail_RB(O) 

~Nd 

(from result 
buses) 

write_port 
(O .. Nwr-1) 

120 
(to read 

1\J buses) 
RB_read_port 

(O .. Nrd-1) 

read reg tag· ,,,,, 
U ' (O .. N rd-1) ' 
~,?Nwr JI JfNrd 

(to retire 
buses) 140 

1 retire_port V 
(O .. Nret-1) 

....... ;:.. 

J1Nret 195(0ne cell is six 
fields across here) 

RB FAQ ... 0 Nxrb-1 
I 

1 0 0 14 -5 65528 Nxrb-2 

1 1 o 31 -1 -1s2 headrRB(Nret-1) 

1 I 0 I 0 I 2 I 31 . 

RB_flush_tail 160 
I ~ I I I . 

270319552 I : tail_RB 

I 
150 
tail 

pointer 
logic unit 

~ 

f--o I e 
• • 

~ 1 I 1 I O I 14 I 30 65532 
• 

~ 
v 

head RB(O) 
2 

taiLRB(Nd-1)1 : I I I I I h-- 195 

195 .. tail_RB(1) O 

r--------
mispred_flag I feilds: ~n-__ e...._m_p-ty~ 191 

//j #bits: <1> 185 L ________ _ 

186 187 188 189 190 
Note: r n empty =1 when entry is allocated, 0 when entry is retired or flushed 

valid =O when entry is allocated, 1 when entry is written with result value 
excp =O when entry is allocated, 1 when entry is written with exception error 

head_RB 

180 
\ 
170 

head 
pointer 

logic unit 

with data reg_tag =register tag, insLID of the producer instruction 
varies ~ reg_num =register number at the register file 

or processor reg_ value =register value, written with result value upon completion of the producer instruction 

or type Fig. 21 Modified Reorder Buffer (MRB) 
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100 

\ 
110 F1RB_alloc;_port(O .. Nd-1) I trrom 1nstruc11on ms paten ouses) tto register rneJ lretire_port(O .. N xrd-1) I 

-130 

rl write_port(O .. N xwr-1) l(from write buses) (from/to read buses)! read_port(O .. N xrd-1) [ 
/MRB_Cell[O] /195 

120 
115 RSFF/DFF RSFF/DFF 125 

write_reg_tag(O .. N xwr-1) \ in)ut bus output bus / read_reg_tag(O .. N xrd-1) 
writeJeg_value(O .. Nxwr-1)1 Write RSFFs/DFFs ::: read found[O .. N rd-1] 

:: · - Read - x 
I Logic µf--> Jl_em~_ ,__. Logic read_valid[O .. N xld-1] 

175 Misp _~an__ read_reg value(O .. N xrct-1) _/ 

RD(O N _1) Logic ~~x~p_flaQ____. reLreg_num(O .. Nret-1) 
· t ID(O .. Nd 1) J:_e_g-J{um_ reLreg_value(O .. Nret-1) 
ms - .. d- Allocate J~W- H Retire I'd t(O N -1) - L · -+- reg_va ue . va 1 _re · · ret og1c Logic 1.... 

145_,.,-/ • "'-105 • 135 
I I 
I I 

,______.. +---" 
MRB_Cell[I] --+" 

;: 

------
. . 

__.... . . . . 
____. +---" 

MRB_Cell[Nxrb-1 ] __., 
195 

~ tail(O .. Nd-1)_sel(O .. Nxrb-1) ~ 
RB_ head(O .. Nret-1) sel[O .. N xrb-1] 

overflow 
I\. I - RB_overflow 

I 
(to FDU) 

R_aloc_en(O .. Nd-1) Flags 
Tail Pointer RB_lull 

I\. - Logic RB_empty 
150__;-.i 

Logic 
155 j _ RB_flush_tail >lementation . 

Head Pointer I (f IAU)m1spred_flag 
22 rom pred_OK - RBFAQ i----

165 Logic I valid_ret [O .. Nret-11 
FAQ_alloc_en(O .. Nd-1) 170 
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MRB Circuit Im 

Fig. 
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105 ,---1 ---------1 -~-----

1- .. ,Y [k] rl '-, - - - - - -
I I QI , _em,PtY [k] 125 Read Logic l 

- - -.- - - - - - - - - - - 1 1- M"-predlction Logic 1 
195 1 m\~pred_ fl~g branch_flush1 

'\,_ 1 branch_ point <? I 
""" I reg - t.a~ ~ ~ reset I 

Comparison ~Wie(O .. Nret-1) etire-~n 1 
/1==============---175 I 

I 
I 
I 

write _en 1 • •I 

/! reg_tag[k] 
115 :write_reg_t_ag(00~ .. 1 

exception [ J, 

: write-reg-value(O) 
I write[Nxwr-1] 

I 
I 
I reg_value[k] 

I 

• . . 

reg_tag[k] 
read_reg_tag(O) 

read_found[O] 
read-valid[O] 
read_reg_value(O) 

read_tag[k] 
read_reg_tag 

(Nxrd-1) 
read_found(Nxrd-1) 
read_valid(N xrd-1) 
read_reg value(Nxrd-1) 

L-~------------------------I reg_tag[k] I 1 

I write_reg_tag--i....__J .. ~ ~I ·+L I 
1 write_reg_value wn'f'_en 

1 
I (Nxwr-1) write(O .. Nxwr-1) 1 1 1
1 Write Logic -----~~~~~~~~ I 

----_____ I I 
""= laif(D)-sel[k] alloc[OJ I 

1 
I R alloc-en[Of I l 
I - empty[k] I 

0 
r~g_num[k], 

1 
I RD(O), , D I --+ /j insLID(O) : I 

145 I tail(Nd-1)_sel[k] I valid-ret(Nret-1) 
IR_alloc_en[Nd-1] reg_1ag[k] retire[Nret-1] reLreg_num(Nret-

1
1) 

1 empty [k] 1 I reLreg_value(Nret 
I RD(Nd-1), I 135 Retire Logic 

valid-ret(O), 
ret_reg-num(O), 
ret-reg-value(O) 

head(Nret -1)-sel[k] 

I insLID(Nd-1) alloc(O .. Nd-1) all~-en : __ i_ ___ -:- ___ - - - - - - - - - - - - - - - -
:!-li?"'.'1e Log1:_ _____ - - - - - - - - Fig. 23 MRB Cell Circuitry 

d 
• 
\JJ. 
• 
~ 
~ ...... 
~ = ...... 

~ 
~ 
N 
~~ 

N c c c 

'Jl 

=­~ 
~ ..... 
N 
~ 

0 ....., 
.i;;.. 
c 

0--, .... 
~ 
~ 
N .... = ~ 
\C 



U.S. Patent Aug. 29, 2000 Sheet 24 of 40 6,112,019 

------------""------------------------, 
I Tail Pointer Logic "..... . tail~O~ sel[O] 
I 150 tail_RB(O) • tail O -sel[1] 
I • -
1 • tail(O)_sel[Nxrb-1] 
I log2Nxrb tail(1 }_sel[O] 

tail(1}_sel[1] I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

reset 

tail_RB(1 
R_alloc_en(O)-++t + ,____ __ .., 

R_alloc_en(O .. Nd-2) 

tail(1 )_sel[Nxrb-1] 

tail(2)_sel[O] 
ail(2)_sel[1] 

tail(2}_sel[Nxrb-1] 

tail(Nd-1 )_sel[O] 
tail(Nd-1 )_sel[1] 
tail(Nd-1 )_sel[Nxrb-1] 

l- ____________________________________ _ 

,-----------~-----------------------, 

1 Head Pointer Logic 170 h d RB(O) head(Otsel(O] I 
1 ea - • head(O sel[1] I 

: : head(O)_sel[Nxrb-1] : 

I log2Nxrb head_RB(1) head(1 )_sel[O] I 
I head(1 )_sel[1] I 

: valid_ret head(1 )_sel(Nxrb-1] : 

1 
(O .. Nret-1) head(Nret-1 Lsel[O] I 

I head(Nret-1)_sel[1] I 
: head(Nret-1 )_sel(Nxrb-1): 
_____________________________________ __J 

R_alloc_en(O .. Nd-1) RB_empty 
total_alloc 

reset 

Note: i E[O,Nd-1], j e[O,Nrer1 ], k e[O,N xrb-1] 
tail(i)_sel[k]= 1 means that the dest reg num and tag from dispatch bus i is routed 
/allocated to MRB_Cell[k] 
R_alloc_en[i]=1 means that there is an allocation to "R" MRB from inst dispatch bus i 
headU)_sel[k] = 1 means that MRB_Cell(k) is currently in the jth retire port 
valid_retU] =means that the jth retire port contains an MRB entry that is ready to retire 

Support Logic for the MRB 

Fig. 24 



,~tail_RB(O .. Nd-1) (from RB Tail Pointer Logic) (to RB Tail Pointer Logic) RB_flush_tail 
1-- FAQ_alloc_en (O .. Nd-1) (from FDU) /295 

• • 

I RBFAQ Cell(O) I 

tail(O)_sel[k] 

FAQ_alloc_en [O] 

tail_RB(O) 

• • • 

205 
head_sel[k] 

• 
1 tail(Nd-1 )_sel[k] 

I 

FAQ_alloc_en[Nd-1] 

tail_RB(Nd-1) alloc_en 

RBFAQ_ Cell[k] 
• • • 

FAQ_overflow 

alloc(O .. Nd-1) 

295 
- I 

RBfAQ Cell[Ntng-1] ""'295 

FAQ_ overflow 255 

Tall Pointer 

Flags 
Logic FAQ_full (to FDU) 

FAQ_ empty 

Head Pointer , 
. Logic 

ta11(0 .. Nd-1)_sel(O .. Ntag-1) I I I Logic ltead_sel(O .. Ntag-1) 

RBFAQ Circuit Implementation 

Fig. 25 
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r----------------------------~--------

1 Tail Pointer Logic tail RB(O) ta!l(O)_sel[O] I 
I - : ta11(0)_sel[1] 

I • tail(O}_sel[Nfaq-1] 

~ 250 log2Nfaq 

FAQ_alloc_en[0 .. 1] 

tail(1 )_sel[O] 
tail(1)_sel[1] 

tail(1 )_sel[Nfaq-1] 

tail(2)_sel[O] 
tail(2)_sel[1] 

tail(2)_sel[Nfaq-1] 

tail(Nd-1 )_sel[O] 
FAQ_alloc_en[O .. Nd-21 tail(Nd-1 )_sel[1] 

tail(Nd-1 }_sel[Nfaq-1]1 
I 

270 Q DFFD FAQ_alloc_en[Nd-1] I 

I R : 
.-----_-_t-_-_-_-_-_-_-_-_-_-~_-_-_-_-_-_-_-~ I I 
1 Head Pointer Logic "1" + I 1 I 
1 head_sel[O] • I I 
I head-sel[1] : Q D log2Nfaq I : I 
lheacLsel[Nfaq-1 W~FF R I I I 
I I I 
I pred_QK 1 mispred flag I ____________________ __, _______________ __J 

---------~---------------------------1 

I Flags Logic '\._ I 
I 255 I 

: QDFFD FAQ_fail : 
I log2Nd R I 
I I 

: reset FAQ _overflow I 
1 

res~ I 

I I 
I 

I R_alloc_en(O .. Nd-1) QDFFD FAQ_empty1 
I total_alloc R I 
I I 
I 
1 reset I _____________________________________ J 

Notes: i E[O,Nd-1], k E[O,Ntaq-1] 

tail(i)_sel[k] =1 means that dispatch bus i is routed/allocated to FA.Q_Cell[k] 
head_sel[k]=1 means that FA.Q_Cell[k] is currently the bottom entry 
FAQ_alloc_en[i]=1 means that there is an cond branch allocation to FAQ from 
inst dispatch bus i 

Support Logic for the RBFAQ 

Fig. 26 



365 

DIQFAQ 

(from dispatch buses) 

DIQ_alloc_port 
(O .. Nd-1) 

Nd 

310 

(to execution unit) 

bottom_DIQ_entry 
(issued_DIQ_entry) 

tail_DIQ(O) ~--~--..>C.--~--~-~-.............. ~--~ 

300 
340 / 

395 (I cell is six 
fields across) 

Nd· -1 1q 

DIQ_flush_tail 
-5 I ADDO I 14 I 27 I 1 I ~ Ndiq-2 

tail DIQ 

350 
Tail Pointer 

Logic 
360 

Fig. 27 

-1 I EQD I 2 

I 31 2 I CVTF2D 

30 I SURF I 3 I 

tail_DIQ(1) 

Note: insLID =unique instruction tag 
opcode =opcode of the instruction 

31 

I 
14 

30 0 

24 I 9 

RS1 =register number of first source operand 
RS1 _tag =register tag of first source operand 

I 
I 

RS2 =register number of second source operand 
RS2_tag =register tag of second source operand 

In-order Issue Distributed Instruction Queue(DIQ) 

27 

0 

25 

391 

I 
1-

2 

1 

• • • 
380 

I 

395 

11ead_DIQ 
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370 
head(issue) 
pointer logic 
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300 

~ 
DIQ all r+-1 (O .. Nrl-1) (f1 · truction disoatch b ) ( "") b 

DIQ_Cell[O] L 
. 
• . 

" 
tail(O)_sel[k] 

vlloc[O] 1--

" 
DIQ_alloc_en[O] 305 head_sel[k] 
inst(O) t' DIQ_entry[k] 

. 1--------ti DD E F Q / ·~ • . tail(N,j-1)_sel[k] ~c[Nd-1] r WE N;nst bottom_inst 
" 

I>. 
DIQ..alloc_en[Nd-1] DIQ_overflow 

.. inst(Nd-1) . t< _ alloc_en~ 
alloc[O .. Nd-1] 

DIQ_Cell[k] 
• . 
• 

345 DIQ_Cell [N diq-1] 355 I \ 

\ I 

~IQ_alloc_en[O .. Nd-1] 
\ 

I 
I DIQ_empty 

Allocate Flags 
I>. Logic Logic ~ FU_num(O .. Nd-1) bottom 

DIQ_overflow -inst_ID I -
~ Tall Pointer DIQ_full 

. Logic r---350 (to FDU) 
a1l(O .. Nd-1)_sel[O .. Ndiq-1] . i,_--370 

DIQ_; :t11<:1y.-

-395 

L--- v 395 

, 

J-.-- i..-395 

er Issue DIQ 
mplementation 

branch_point ~ fDIQJlush_tai Head P~mter 
(from IAU) mispred flag Logic head_sel[O .. Nd 

f?red..=-oK _____. DIQFAQ 365 t t 

ig. 28 

(fro U) FAQ_alloc_en[O .. Nd-1] _____. ' valid_read_L validJead_R 
tail_DIQ(O .. Nd-1) (from FXRU read ports) 
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345 350 

!---~-----.---~--------------------, 
I I I . tail(O)_sel[O] 
I "DIQ's FU_ num" : : tail_RB( 0) • tail(O)_sel[O] 

I I I tail(O)_sel[Ndiq-1] 

: FU_num(O) 
1 

: log2~iq tail(1 )_sel[O] 
I 

1 
tail(1 )_sel[1] 

1 FU_num(1) T'0"'1 , 

I I I tail(1 )_sel[Ndjq-1] 
I log2Nfu I I 

I I tail(1 }_sel[O] 
IFU_num(Nd-1) I I tail(1 )_sel[1] 
I l'+----+i 
: Allocate Logic 1 1rno_alloc_en[1] • tail(1)_sel[Ndiq-1] 
-----~----~-- J : 

I tail(Nd-1 )_sel[O] 
1
1 

tail(Nd-1)_sel[1] 1
1 I DIQ_ alloc_en[O .. Nd-2] tail(Nd-1 )_sel{Ndiq-111 

I I 
I I 

3~ : DIQ_alloc_en[Nd-1] : 

1_ Head ~~~e~L~~~~-----------------11 DIQ_flush_tail: 

I 1
1 

reset 1 
I head_sel[O] 1 I I 
I head_sel[1] 11

1 
mispred flag 1 

I 1 <? +-branch_poin~ 
lhead_sel[Ndiq-1] 11 full_flush 
I I: DIQ reset bottom_inst_I~ 
I DIQ_empty - 35 I 
I val.id_read L DIQ 

0 
11 I 

I vahd_read R _p P 11 Tail Pointer Logic I I __________________ JI ___________ =.. ___ -___ _J 

~------------------------------------, 

: Flags Logic Q DFFD DIQ_tail : 

I log2Nd R I 
I I 
I reset I 
I DIQ_overflow 

1 
I I 
I I 
:rna_alloc_en[O .. Nci-1] Q OFF~ DIQ_empty : 

I I 
I reset I 
L--------~---------------~-----------

Notes: 1 E[O,Nd-1], k E[O,Ndiq-1] 355 
tail(i)_sel[k] = 1 means that inst dispatch bus i is routed/allocated to DIQ_Cell[k] 
head_sel[k] =1 means that DIQ_Cell[k] is currently the bottom instruction entry 
DIQ_alloc_en[i] =1 means that there is an allocation to this DIQ unit from inst 
dispatch base 

Fig. 29 



400 

~ 
(from dispatch buses) (to execution unit) 

41 o (from result buses) 
....___ DIQ_alloc_port resulLtag issued_DIQ_ent 

(O .. Nd-1) (0 N -1) 
.. res 420 

Nd Nres 465 

\ 
460 

\ 

f'rltail_DIQ(OL 
DIQFAQ 

TRUE I -5 ADDO I 14 I 27 I TRUE I 1 I -3 

440 

TRUE 

Issue 
Logic 

495 

Ndiq-1 

Ndiq-2 

i,_--475 

[._....---- 4 85 

! DIQ_ 
flush_tail FALSEI -1 EQD I 2 I 31 I TRUE I 14 I 27 

TRUE ____ ___, 

taiLDIQ 1- • • • 
FALSEI 31 

FALSE 30 
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Fetch Stage Fetch Nd insts from I-Cache 
(with instruction aligning) 

+ 
Store insts at Fetch Buffer in FDU 

--------t---------------------
Decode Stag e Any branch-taken inst YES 

in the fetch group? 

+NO ' 

Assign inst_ID's from llU Assign inst_ ID's from llU 
for all Nd insts up to branch_taken inst 

+ • For each destination reg, write the Decode the branch-taken 
inst's tag (inst_ ID) to the RTU and inst early 

allocate an MRB entry 

+ Send the decoded inst 
For each reg operand, read its reg information to IAQ for 

tag from RTU early branch execution 

+ 
Out-of-order issue NO 

DIQ? 
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Determine each reg ready flag by 
reading the complete bit of reg tag's 

corresponding entry in llU 
I 

• 
Determine which FU the inst will be 
executed at by assigning FU_num to 

each decoded inst 

+ 
Dispatch each decoded inst to the 

appropriate FU, to be allocated in its 
DIQ 

--------t---------------------
(Contiued to Figure 36) 

Flowchart of Operations in Fetch and Decode Stages 

Fig. 35 
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(From Figure 35) 
-------------------~-----------------
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DISTRIBUTED INSTRUCTION QUEUE 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

This invention relates generally to an apparatus and a 
method for improving processor microarchitecture in super­
scalar microprocessors. In particular, the invention relates to 
an apparatus and a method for a modified reorder buffer and 
a distributed instruction queue that increases the efficiency 
by reducing the hardware complexity, execution time, and 
the number of global wires in superscalar microprocessors 
that support multi-instruction issue, decoupled dataflow 
scheduling, out-of-order execution, register renaming, 
multi-level speculative execution, load bypassing, and pre­
cise interrupts. 

2. Background of the Related Art 
The main driving force in the research and development 

of microprocessor architectures is improving performance/ 
unit cost. The true measure of performance is the time 
(seconds) required to execute a program. The execution time 
of a program is basically determined by three factors (see 
Patterson and Hennessey, Computer Architecture: A Quan­
titative Approach, Morgan Kaufmann Publishers, 1990); the 
number of instructions executed in the program (dynamic 
Inst_Count), the average number of clock cycles per 
instruction (CPI), and the processing cycle time (Clock_ 
Period), or 

2 
unit. Current state-of-the-art superscalar microprocessors 
fetch two or four instructions simultaneously. Valid fetched 
instructions (the ones that are not after a branch-taken 
instruction) are decoded concurrently, and dispatched into a 

5 central instruction window (FIG. la) or distributed instruc­
tion queues or windows (FIG. lb). Shelving of these instruc­
tions is necessary because some instructions cannot execute 
immediately, and must wait until their data dependencies 
and/or resource conflicts are resolved. After an instruction is 

10 ready it is issued to the appropriate functional unit. Multiple 
ready instructions are issued simultaneously, achieving par­
allel execution within the processor. Execution results are 
written back to a result buffer first. Because instructions can 
complete out-of-order and speculatively, results must be 

15 retired to register file(s) in the original, sequential program 
order. An instruction and its result can retire safely if it 
completes without an exception and there are no exceptions 
or unresolved conditional branches in the preceding instruc­
tions. Memory stores wait at a store buffer until they can 

20 commit safely. 
The parallel executions in superscalar processors 

demands high memory bandwidth for instructions and data. 
Efficient instruction bandwidth can be achieved by aligning 
and merging the decode group. Branching causes wasted 

25 decoder slots on the left side (due to unaligned branch target 
addresses) and on the right side (due to a branch-taken 
instruction that is not at the end slot). Aligning shifts branch 
target instructions to the left most slot to utilize all decoder 

T program= Inst_ CountxCPixClock_Period. (l) 30 
slots. Merging fills the slots to the right of a branch-taken 
instruction with the branch target instructions, combining 
different instruction runs into one dynamic instruction To improve performance (reduce execution time), it is 

necessary to reduce one or more factors. The obvious one to 
reduce is Clock_Period, by means of semiconductorNLSI 
technology improvements such as device scaling, faster 
circuit structures, better routing techniques, etc. A second 
approach to performance improvement is architecture 
design. CISC and VLIW architectures take the approach of 
reducing Inst_Count. RISC and superscalar architectures 
attempt to reduce the CPI. Superpipelined architectures 
increase the degree of pipelining to reduce the Clock_ 
Period. 

The true measure of cost is dollars/unit to implement and 
manufacture a microprocessor design in silicon. This hard­
ware cost is driven by many factors such as die size, die 
yield, wafer cost, die testing cost, packaging cost, etc. The 
architectural choices made in a microprocessor design affect 
all these factors. 

It is desirable to focus on finding microarchitecture 
techniques/alternatives to improve the design of superscalar 
microprocessors. The term microprocessor refers to a pro­
cessor or CPU that is implemented in one or a small number 
of semiconductor chips. The term superscalar refers to a 
microprocessor implementation that increases performance 
by concurrent execution of scalar instructions, the type of 
instructions typically found in general-purpose micropro­
cessors. It should be understood that hereinafter, the term 
"processor" also means "microprocessor". 

A superscalar architecture can be generalized as a pro­
cessor architecture that fetches and decodes multiple scalar 
instructions from a sequential, single-flow instruction 
stream, and executes them concurrently on different func­
tional units. In general, there are seven basic processing 
steps in superscalar architectures; fetch, decode, dispatch, 
issue, execute, writeback, and retire. FIG. 1 illustrates these 
basic steps. 

First, multiple scalar instructions are fetched simulta­
neously from an instruction cache/memory or other storage 

stream. Efficient data bandwidth can be achieved by load 
bypassing and load forwarding (M. Johnson, Superscalar 
Microprocessor Design, Prentice-Hall, 1991), a relaxed or 

35 weak-memory ordering model. Relaxed ordering allows an 
out-of-order sequence of reads and writes, to optimize the 
use of the data bus. Stores to memory cannot commit until 
they are safe (retire step). Forcing loads and stores to 
commence in order will delay the loads significantly and 

40 stall other instructions that wait on the load data. Load 
bypassing allows a load to bypass stores in front of it 
(out-of-order execution), provided there is no read-after­
write hazard. Load forwarding allows a load to be satisfied 
directly from the store buffer when there is a read-after-write 

45 dependency. Executing loads early is safe because load data 
is not written directly to the register file. 

Classic superscalar architectures accomplish fine-grain 
parallel processing at the instruction level, which is limited 
to a single flow of control. They cannot execute independent 

50 regions of code concurrently (multiple flows of control). An 
instruction stream external to superscalar processors appears 
the same as in CISC or RISC uniprocessors; a sequential, 
single-flow instruction stream. It is internally that instruc­
tions are distributed to multiple processing units. There are 

55 complexities and limitations involved in parallelizing a 
sequential, single-flow instruction stream. The following six 
superscalar features-multi-instruction issue, decoupled 
dataflow scheduling, out-of-order execution, register 
renaming, speculative execution, and precise interrupts-are 

60 key in achieving this goal. They help improve performance 
and ensure correctness in superscalar processors. 

Multi-instruction issue is made possible by widening a 
conventional, serial processing pipeline in the "horizontal" 
direction to have multiple pipeline streams. In this manner 

65 multiple instructions can be issued simultaneously per clock 
cycle. Thus, superscalar microprocessors must have mul­
tiple execution/functional units with independent pipeline 
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streams. Also, to be able to sustain multi-instruction issue at 
every cycle, superscalar microprocessors fetch and decode 
multiple instructions at a time. 

Decoupled dataflow scheduling is supported by buffering 
all decoded instructions into an instruction window(s), 
before they are scheduled for execution. The instruction 
window(s) essentially "decouples" the decode and execute 
stage. There are two primary objectives. The first is to 
maintain the flow of instruction fetching and decoding by 
not forcing a schedule of the decoded instructions right 
away. This reduces unnecessary stalls. Instructions are 
allowed to take time to resolve data dependencies and/or 
resource conflicts. The second is to improve the look-ahead 
capability of the processor. With the instruction window, a 
processor is now able to look ahead beyond the stalled 
instructions to discover others that are ready to execute. The 
issue logic includes a dependency check to allow an instruc­
tion to "fire" or execute as soon as its operands are available 
and its resource conflicts are resolved. Unlike sequential Von 
Neumann machines, the control hardware does not have to 
sequence each instruction and decide explicitly when it can 
execute. This is the essence of dataflow scheduling. 

Out-of-order execution helps reduce instruction stalls due 
to data dependencies, bypassing the stalled or incomplete 
instructions. There are three types of out-of-order execution, 
categorized by their aggressiveness: (a) in-order issue with 
out-of-order completion, (b) partial out-of-order issue with 
out-of-order completion, and (c) full out-of-order issue with 
out-of-order completion. The first type always issues 
instructions sequentially, in the original program order, but 
they can complete out-of-order due to different latencies or 
stages in some functional units' pipelines. The second type 
restricts instruction issue to be in order only within a 
functional unit, but can be out of order amongst multiple 
functional units. The third type allows full out-of-order issue 
within a functional unit as well as amongst multiple func­
tional units. 

Register renaming is necessary to eliminate the side 
effects of out-of-order execution, i.e., artificial dependencies 
on registers-those dependencies other than true date depen­
dency (read-after-write hazard). There are two types of 
artificial dependencies, anti dependency (write-after-read 
hazard) and output dependency (write-after-write hazard) 
(M. Johnson, Superscalar Microprocessor Design, Prentice­
Hall, 1991). They are caused by register-set limitations. The 
compiler's register allocation process minimizes the register 
usage by reusing registers as much as possible. This action 
blurs the distinction between register and value. Register 
renaming effectively reintroduces the distinction by renam­
ing the registers in hardware, creating a new instance of a 
register for each new register assignment. 

Speculative execution avoids stalls and reduces the pen­
alty due to control dependencies. For every conditional 
branch, a superscalar processor predicts the likely branch 
direction, with help from software (static branch prediction) 

4 
Precise interrupts are supported to guarantee the correct 

processor state before servicing the interrupt. Out-of-order 
execution complicates the restarting of an interrupted pro­
gram. At the time an exception is detected, some instructions 

5 beyond the exception instruction might have been executed, 
as a result of allowing out-of-order execution. The effects on 
registers and memory by any instructions beyond the 
precise-repair point [?] must be nullified or repaired before 
going to the interrupt handler routine. The hardware support 

10 for precise interrupts should not be too costly if there is 
already hardware support for speculative execution. 

There are two key microarchitecture elements in super­
scalar hardware that determine the success in achieving the 
above goal, result shelving and instruction shelving. Result 

15 shelving is the key to support register renaming, out-of­
order execution, speculative execution, and precise inter­
rupts. Instruction shelving is the key to support multi­
instruction issue, decoupled dataflow scheduling, and out­
of-order execution. Review of the literature suggests that the 

20 reorder buffer (RB) is the most complete result shelving 
technique (see, for example U.S. Pat. Nos. 5,136,697 to 
Johnson and No. 5,345,569 to Tran for discussions of 
conventional reorder buffers), and the reservation station 
(RS) is the best instruction shelving technique to give 

25 maximum machine parallelism. However, these two tech­
niques have implementation drawbacks. The RB requires 
associative lookup that must be prioritized during each 
operand read. This results in relatively complex and slow 
circuit implementation. Also, the RB requires substantial 

30 shared-global buses for its operand and result buses, and the 
need to use dummy branch entries to support speculative 
execution which increases the RB entry usage. The RS 
requires tremendous amounts of shared (heavily-loaded), 
global (chip-wide) wires to support its operand value copy-

35 ing and result value forwarding. With increasingly smaller 
transistor sizes, the dominant factors in determining silicon 
area and propagation delays is not the transistor, but metal 
wire, especially the ones that run across or all over the chip. 

With the many promises that lie ahead, the research 
40 challenges in superscalar architecture design are to find: an 

efficient utilization of the vast chip real-estate, the high­
speed transistors, and the available instruction parallelism. 
The hardware improvements that lead to enhanced perfor­
mance must be coupled with compiler/software scheduling 

45 improvements, however. There is a need for these improve­
ments to be cost effective, or, at best, to actually reduce the 
cost of a superscalar microprocessor while increasing effi­
ciency. In accordance with the above, we should avoid the 
tendency to design an overly complex superscalar architec-

50 ture that produces mediocre gains which could have been 
easily achieved by compiler optimizations or that are cost 
limiting. 

The present invention is discussed at length in the doc­
toral dissertation entitled "Microarchitecture Techniques to 

55 Improve Design of Superscalar Microprocessors," Copy­
right© 1995, Georgia Institute of Technology, of one of the 
co-inventors, Joseph I. Chamdani, the subject matter of 
which is incorporated herein by reference. Hereinafter, the 
above dissertation will be referred to as Chamdani's disser-

or hardware (dynamic branch prediction). Instructions from 
the predicted path are fetched and executed speculatively, 
without waiting for the outcome of the branch test. By 
scheduling instructions across multiple, unresolved condi­
tional branches (multi-level speculative execution), more 
instruction parallelism is potentially extracted, improving 
the processor's performance. Due to the speculative nature, 
some conditional branches may be incorrectly predicted. A 
mechanism to recover and restart must be provided so that 
correct results can still be produced in the event of mispre­
dicted branches. Recovery cancels the effect of instructions 65 

processed under false predictions, and restart reestablishes 
the correct instruction sequence. 

60 tation. 
This invention addresses architectural improvements to 

the design of superscalar processors that support the six key 
superscalar features. The primary objective of the invention 
was to find a better design alternative to the reservation 
station technique (considered the best known distributed 
instruction shelving technique to give maximum machine 
parallelism). The superscalar technique invented is: the 
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Distributed Instruction Queue (DIQ). The DIQ is a new 
distributed instruction shelving technique that offers a sig­
nificantly more efficient (i.e., better performance/cost) 
implementation than the reservation station (RS) technique 
by eliminating operand value/copying and result value for- 5 

warding. 

6 
determine the correct tail pointer position of each of the at 
least one allocate port; a head pointer logic unit to adjust a 
head pointer to point to a predetermined one of the at least 
one entry cell; an issue pointer logic unit to adjust an issue 
pointer to point to the one of the at least one entry cell for 
issuing of the instructions; the distributed instruction queue 
eliminates operand value copying and result value forward­
ing; the distributed instruction queue is operated indepen­
dently of any other distributed instruction queue; the instruc­
tions are issued in-order; the instruction are issued out-of­
order; and the instructions are issued in some form of limited 
out-of-order issue. 

These above and other objects, advantages, and features 
of the invention will become more apparent from the fol-

15 lowing description thereof taken in conjunction with the 
accompanying drawings. 

The DIQ shelving technique offers a more efficient (i.e., 
good performance/cost) implementation of distributed 
instruction windows by eliminating the two major imple­
mentation drawbacks in the RS technique, operand value 10 

copying and result forwarding. The DIQ can support 
in-order issue as well as out-of-order issue within its func­
tional unit. The cost analysis suggests an improvement in 
almost every hardware component, with major reductions in 
the use of global wires, comparators, and multiplexers (see 
Chamdani's dissertation). The expensive shared-global 
wires are mostly replaced by private-local wires that are 
easier to route, have less propagation delay, and occupy 
much smaller silicon area. The DIQ's number of global 
wires remains the same as the number of DIQ entries and 20 

data size increase. A performance analysis using cycle-by­
cycle simulators confirms that the good characteristics of the 
RS technique in achieving maximum machine parallelism 
have been maintained in the DIQ technique (see Chamdani's 
dissertation). The out-of-order DIQ technique is at par with 25 

the RS technique in terms of cycle-count performance, but 
higher in terms of overall performance if the improved clock 
frequency is factored in. The in-order issue DIQ sacrifices 
slightly on the cycle-count performance, which can easily be 
recovered through faster and simpler circuit implementation. 30 

In the end, the actual speed or performance of a processor 
using the DIQ technique is faster due to reduced cycle time 
or more operations executed per cycle. 

One object of the invention is to provide an improved 
superscalar processor. 

Another object of the invention is to provide a distributed 
instruction queue that does not store register values. 

A further object of the invention is to eliminate the need 
for operand value copying in a superscalar microprocessor. 

35 

Yet another object of the invention is to eliminate the need 40 

for result value forwarding in a superscalar processor. 
One other object of the invention is to provide a processor 

having reduced global buses. 
One advantage of the invention is that it can improve the 

speed of a superscalar processor. 
Another advantage of the invention is that it can reduce 

the amount of global buses required in a superscalar pro­
cessor. 

Afurther advantage of the invention is that it can allow for 
issuing of instructions in any order. 

Still another advantage of the invention is that it can 
support multi-level speculative execution. 

One feature of the invention is that it includes local bus 
architecture between register units and functional units. 

45 

50 

These and other objects, advantages, and features are 55 

provided by a distributed instruction queue, comprising: at 
least one entry cell having at least one entry field; at least one 
allocate port, each of the at least one allocate port connected 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows basic steps in superscalar architectures. 
FIG. 2 shows a register mapping table in the IBM 

RS/6000 floating point unit. 

FIG. 3 illustrates reorder buffer organization. 

FIG. 4 shows an 8-entry dispatch stack. 

FIG. 5 depicts a register update unit. 

FIG. 6 is a diagram of the Metafiow architecture. 
FIG. 7 shows the DRIS (Deferred-Scheduling, Register­

Renaming Instruction Shelf). 
FIG. 8 shows Tomasulo's Reservation Stations at IBM 

360/91. 
FIG. 9 is a diagram of the IBM RS/6000 architecture. 
FIG. 10 shows cycle-by-cycle execution in the IBM 

RS/6000. 
FIG. 11 is a diagram of the Lightning SPARC architec­

ture. 
FIG. 12 is a diagram of the SuperSPARC architecture. 
FIG. 13 is a diagram of the DEC Alpha 21064 architec-

ture. 
FIG. 14 shows the DECchip 21064 pipeline stages. 
FIG. 15 shows the HP PA-7100 architecture. 
FIG. 16 shows the HP PA-7100 pipeline stages. 
FIG. 17 shows the Intel Pentium architecture. 
FIG. 18 is a diagram of a superscalar processor with 

reorder buffer and reservation stations. 
FIG. 19 depicts a reorder buffer (RB) implemented with 

true FIFO array. 
FIG. 20 shows a result-forwarding hazard. 
FIG. 21 shows a modified reorder buffer (MRB) accord-

ing to the invention. 
FIG. 22 depicts an MRB circuit implementation. 
FIG. 23 illustrates an MRB_cell circuitry. 
FIG. 24 shows a support logic for the MRB. 
FIG. 25 shows an RBFAQ circuit implementation. 
FIG. 26 depicts a support logic for the RBFAQ. 
FIG. 27 shows an in-order issue distributed instruction 

queue (DIQ) according to the invention. 
FIG. 28 illustrates an in-order issue DIQ circuit imple­

mentation. 
FIG. 29 shows a support logic for the DIQ. 
FIG. 30 shows an out-of-order issue DIQ according to the 

to each of the at least one entry cell for allocation of a 
decoded instruction to the at least one entry cell; an issue 60 

port connected to a predetermined one of the at least one 
entry cell, wherein instructions are issued through the issue 
port under logic control in any order from one of the at least 
one entry cell and the distributed instruction queue stores no 
register value. 65 invention 

Implementations of the invention may include one or 
more of the following features: a tail pointer logic unit to 

FIG. 31 shows a superscalar processor with MRB and 
DIQ according to the invention. 
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FIG. 32 depicts a fixed-point register unit (FXRU). 

FIG. 33 illustrates a floating-point arithmetic logic unit 
(FALU). 

FIG. 34 shows a fetch and decode e unit (FDU). 
5 

FIG. 35 shows a flowchart of operations (processes) in 
fetch and decode stages. 

FIG. 36 continues from FIG. 35 and shows a flowchart of 
operations in issue/execute, writeback, and retire stages. 

8 
guaranteed to contain the same state as if the processor 
executed the code in the original, serial, sequential program 
order. 

Register Scoreboarding 

FIG. 37 depicts a register tag unit (RTU). 

FIG. 38 shows a register tag file (RTF). 

FIG. 39 shows an RTRB entry. 

FIG. 40 shows a register tag reorder buffer (RTRB). 

The register scoreboarding technique was originally intro­
duced by Thornton in the CDC 6600 (see J. E. Thornton, 
Design of a Computer-The Control Data 6600, Scott, Fores­
man and Co., 1970, M. Johnson, Superscalar Microproces­
sor Design, Prentice-Hall, 1991). It is the simplest form of 

10 result shelving. There is only one level of result shelving, 
which is accomplished by copying operands and forwarding 
results to an instruction window. It only allows a maximum 
of one pending update to a register. Each register in the 
register file is associated with a scoreboard bit. A "O" 

DETAILED DESCRIPTION OF IBE 
PREFERRED EMBODIMENTS 

The present invention is discussed at length in the above­
cited Chamdani's dissertation, the subject of which is incor­
porated herein by reference. 

15 indicates the register content is valid, and a "1" indicates 
there is a pending update. When a register is updated/ 
written, its scoreboard bit is reset. The term "scoreboarding" 
used in typical commercial microprocessors, such as the 
Motorola 88100 and Intel i960CA, does not fit Thornton's 

20 definition because they are only used to detect and enforce 
dependencies (see Johnson, 1991). Instead of buffering to an 
instruction window, these microprocessors simply stall 
instruction decoding when data dependencies and resource 
conflicts are detected. 

To achieve the best result in parallelizing a sequential 
instruction stream, a superscalar microprocessor design typi­
cally s supports multi-instruction issue, decoupled dataflow 
scheduling, out-of-order execution, register renaming, 
multi-level speculative execution, and precise interrupts. 25 

There are two key microarchitecture elements in superscalar 
hardware that determine the success in achieving the above 
goal, result shelving and instruction shelving. Result shelv­
ing is the key to support register renaming, out-of-order 
execution, speculative execution, and precise interrupts. 30 

Instruction shelving is the key to support multi-instruction 
issue, decoupled dataflow scheduling, and out-of-order 
execution. 

Thornton's scoreboarding algorithm can be summarized 
as follows. First, when an instruction is decoded, the score­
board bit of the instruction's destination register is checked. 
If it is set, instruction decoding stalls until the destination 
register is updated by the pending instruction. However, if 
the destination register's scoreboard bit is clear, instruction 
decoding proceeds. The decoded instruction is shelved at an 
instruction window, together with the operand values (if the 
operand register's scoreboard bit is clear) or the operand 
register numbers (if the operand register's scoreboard bit is 

The following sections discuss, analyze, and compare 
existing result shelving and instruction shelving techniques. 
A discussion and analysis of some current state-of-the-art 
commercial microprocessors are also given. All this infor­
mation leads to the two superscalar techniques of the 
invention, the DIQ and MRB, which are described in detail. 

35 set). Thus, instruction decoding does not stall at data depen­
dencies. The instruction waits at the instruction window 
until all of its operands become available. Any new instruc­
tion result is monitored. If its result register number matches 
the operand register number, the result value is taken as the 

Result Shelving Techniques 

40 operand value. Once all the instruction operands become 
available, it is ready for issue. 

Result shelving is a technique to temporarily shelve 
register results before they can be safely retired to a register 
file. This usually involves buffering of multiple updates to 
the same register, thus allowing multiple copies/instances of 

Register scoreboarding is a simple alternative to register 
renaming. Output dependencies are avoided by allowing 
only one pending update to a register. Anti dependencies are 

45 also avoided by copying of operands to the instruction 
window. Data dependencies are enforced by forwarding 
results to the instruction window, to free locked operands. a register to exist in a processor. Four result shelving 

techniques are discussed in the following sections: register 
scoreboarding, register-mapping table, checkpoint repair, 
and reorder buffer. These result shelving techniques are used 50 

to support certain superscalar features such as out-of-order 
execution, register renaming, speculative execution, and 
precise interrupts. 

To support the above superscalar features, the complete 
processor state, which includes not only register file(s) but 55 

also software-visible memory, should be shelved. (It is 
assumed that a processor's register file(s) contains all archi­
tectural registers, including status/control registers.) Stores 
to the memory can be shelved separately into a store buffer. 
Each store instruction in the store buffer is committed only 60 

if it is safe, meaning: (a) the store instruction can be 
executed without an exception error (page fault, illegal 
address), (b) instructions prior to the store instruction are 
also exception-free, and (c) prior conditional branches have 
been resolved. These conditions guarantee in-order, non- 65 

speculative stores. Thus, despite possible out-of-order and 
speculative executions inside the processor, the memory is 

Register scoreboarding can support out-of-order execu­
tion because it preserves data dependencies while avoiding 
anti and output dependencies. However, it does not support 
speculative execution nor precise interrupts, because only 
the most recent updates of registers (architectural state) are 
maintained, without regard to speculative or out-of-order 
updates. For speculative execution and precise interrupts to 
work properly, there must be a mechanism to recover old 
values and restart at the in-order state prior to the speculative 
branching or exception instruction. 

Register scoreboarding has a serious performance bottle­
neck. It stalls instruction decoding if there is a pending 
update to the instruction's destination register. Unlike scalar 
processors, superscalar processors fetch and decode instruc-
tions at a prodigious rate, at two, four, or maybe eight 
instructions at a time. The probability of an instruction 
decode stall becomes great. The available instruction paral­
lelism is wasted if there are many register reuses, which is 
a common practice in most compiler register allocation 
algorithms. 
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Register-Mapping Table 

Keller suggested implementing register renaming by lit­
erally renaming the registers (see R. M. Keller, "Look­
Ahead Processors," Computing Surveys, Vol. 17, No. 4, pp. 
177-195, 1975). A mapping table is used to maintain the s 
mapping or association of an architectural register to its 
physical register. An architectural register is the register 
specified in an instruction, which can actually be viewed as 
the variable name representing a value. A physical register 
is the true hardware register. The mapping table effectively 10 
reintroduces the distinction between register (physical 
register) and value (architectural register), the essence of 
register renaming. To avoid anti and output dependencies 
there must be more physical registers than architectural 
registers. 

lS 
The floating-point unit of the IBM RS/6000 (Trademark 

of IBM, Inc.) uses a 32-entry, 6-bit-wide register mapping 
table to implement register renaming, as shown in FIG. 2. 
There are 32 architectural registers and 40 physical registers. 
Some parts of the register-renaming structure are intention­
ally omitted from the original diagram to focus on the 20 

register mapping table. This register-renaming structure is 
implemented as a solution to the out-of-order completion 
problem of floating-point load/store and floating-point arith­
metic instructions. In the IBM RS/6000, floating-point load/ 
store instructions are performed independently at the fixed- 2s 
point unit, which involve load/store address calculations. 
Without renaming, out-of-order completion can violate anti 
or output dependency. For example, in a floating-point load 
operation, the load data may return too early and overwrite 
a register that is still needed (i.e., it has not been read by an 
earlier floating-point arithmetic instruction). 

The register renaming process is done as follows. For 
notational purpose, MP(i)=j (the contents of the mapping 
table at address i is j) indicates that architectural register Ri 
maps to physical register Rj. Initially, the mapping table 
(MP) is reset to identity mapping, MP(i)=i for i=O, ... , 31. 
A remapping is performed for every floating-point load/store 
instruction decoded. Suppose a floating-point load to archi­
tectural register 3, FLD R3, arrives at MP. First, the old entry 
of MP(3), i.e., index 3, is pushed onto the pending-target 
return queue (PTRQ). Then, a new physical register index 
from the free list (FL), index 32, is entered to MP(3). This 
means R3 is now remapped to R32. Further instruction 
codes with source operand R3 will automatically be changed 

30 

3S 

40 

to R32. Index 3 in the PTRQ is returned to FL (for reuse) 
only when the last arithmetic or store instruction referencing 4S 

R3, prior to the FLD R3 instruction, has been performed. 
This ensures that the current value in physical register R3 is 
not overwritten while still being used or referenced. 

10 
(allocate) and popped out (retire) in a FIFO (first-in-first­
out) manner. It was originally proposed by Smith and 
Plezkun (see J. E. Smith and A R. Pleszkun, "Implemen­
tation of Precise Interrupts in Pipelined Processors," Pro­
ceedings of the 12th Annual Symposium on Computer 
Architecture, pp. 36-44, 1985) as a hardware scheme to 
support precise interrupts in pipelined, scalar processors 
with out-of-order completion. FIG. 3 shows the RB organi­
zation. The RB contains the processor's look-ahead state, 
while the register file (RF) contains the in-order state. The 
result shift register (RSR) is used to control/reserve the 
single result bus. (In Smith and Plezkun's processor model, 
multiple functional units share one result bus.) When an 
instruction is issued, it reserves stage i of the RSR, where i 
is the instruction latency (in cycles). If stage i is already 
reserved, the instruction issue is stalled. The RSR shifts one 
position every cycle (toward a smaller stage number). When 
a valid RSR entry reaches stage 1, the result bus control is 
set such that in the next cycle the result from the entry's 
functional unit is gated to the RB. 

There are four operations involving the RB: allocate 
(entry allocation), read (read operand), write (result write), 
and retire (entry retirement to RF). To best describe these 
operations, consider the instruction sequence shown below 
from (see Smith and Pleszkun). 

Program Example for Reorder Buffer 

PC Instructions Comments Latency 

IO: 0 R2 <- 0 ;initialize loop index 
11: RO<- 0 ;initialize loop count 
12: 2 RS<- 1 ;loop increment value 
13: 3 R7 <- 100 ;maximum loop count 
14: 4 Ll:Rl <- (R2 +A) ;load A(!) 11 cycles 
IS: s R3 <- (R2 + B) ;load B(I) 11 cycles 
16: R4 <- Rl + R3 ;floating-point add 6 cycles 
17: 7 RO<- RO+ RS ;increment loop count 2 cycles 
18: 8 (RO+ C) <- R4 ;store C(I) 
19: 9 R2 <- R2 +RS ;increment loop index 2 cycles 
110: 10 P ~ L1 : RO! ~ R7 ;cond. branch not equal 

Smith and Plezkun state that the RB's allocate operation 
is performed when an instruction is issued for execution to 
a functional unit. However, this will restrict the RB to 
support only out-of-order completion with in-order-issue. To 
also support out-of-order issue (full or partial), it is neces­
sary to allocate entry when an instruction is decoded. This 
guarantees that instructions are allocated RB entries in the 
original program order. For example, FIG. 3 shows the 
contents of the RB after the RB allocations of I6 and I7. 
When I7 is decoded, an entry is allocated at the tail of RB 
(then at entry number 5), following I6's entry. The allocated 
entry is initialized with "dest. reg."=0 and "program 
counter"= 7. The "valid" bit is also reset to indicate that the 
RO value is being computed. The tail pointer is then 
incremented, modulo RB size. FIG. 3 also shows the RSR 
contents after I7 is issued (a cycle after I6 is issued). An 
entry is entered at stage 2 to reserve the result bus, because 
an integer add takes 2 cycles to complete. The previously 
allocated RB entry number/tag (5) is written to the RSR 
entry. The valid bit is set to validate entry. 

In terms of meeting superscalar objectives, the register­
mapping table clearly supports register renaming and out- so 
of-order execution. However, speculative execution and 
precise interrupt are not supported because shelving (register 
mapping) is done only if there are multiple updates to the 
same register. A speculative or out-of-order update to a 
register without pending update is not buffered or remapped. SS 

With out-of-order execution, recovery from branch mispre­
dictions and exceptions would be impossible. In terms of 
performance, the register mapping table technique has a 
disadvantage. The access to the mapping table and the 
renaming process introduce at least one additional pipeline 60 

stage. In the case of the IBM RS/6000, two pipeline stages 
(PD and Remap) are actually dedicated to the register The RB's read operation is performed prior to instruction 

issue. Reading an operand directly from the RB (bypassing, 
without waiting for the RB to retire it to the RF) requires an 

6S associative search based on the operand's register number. 

renaming process. 

Reorder Buffer 

The reorder buffer (RB) is a content-addressable, circular 
buffer with head and tail pointers. Entries are pushed in 

As an example, suppose I7 is about to be issued. I7's 
operand register numbers (0 and 5) are presented to both RB 
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and RF. The comparators/bypass network compares 0 and 5 
to the "dest. reg." field of all RB entries between head and 
tail pointers. If there is no match then the RF has the latest 
value. RO (RS) from the RF is gated to the left_opr_bus 
(right_opr_bus). If there is a match in RB with "valid"=l, 5 

then the "result" field is gated to the left or right operand bus. 
If the "valid" bit is not set (meaning the operand has not been 
produced), then I7 is not issued and must wait. 

12 
because results are written directly to the RF. Any out-of­
order issue between two instructions with an identical des­
tination register will cause a wrong register value to be 
written/read (violate output and anti dependencies). The 
future file provides a very limited, single-level result shelv­
ing and still requires an RB to recover from a branch 
misprediction or exception. The future file is actually a 
second RF that is used to store a processor's architectural 
state, in addition to the first, in-order state RF. Only a single Multi-entry matching can occur in the RB because reg­

ister number is not a unique associative-search key. Smith 
and Plezkun refer to this as the "multiple-bypass check" 
problem, which is also referred to as the "prioritized asso­
ciative lookup" problem (see Johnson, 1991). obviously, 
only the "latest" entry should generate a bypass path to the 
operand bus. For in-order instruction issue, the "latest" entry 

10 pending update to a register is allowed. Johnson studied 
these two hardware schemes in supporting speculative 
execution for superscalar processors (see Johnson, 1991). 
The history buffer requires excessive cycles to recover and 
restart from a branch misprediction. The future file also adds 

15 delay penalties to mispredicted branches, because the 
in-order state prior to the branch must be restored to the first 
RF. 

is simply the last allocated entry among the matched entries. 
For out-of-order instruction issue, the "latest" entry is the 
last allocated entry among the matched entries prior to the 
instruction's RB entry. This becomes the greatest implemen­
tation disadvantage for the RB. A significant amount of logic 20 

circuitry is required because matched entries can appear in 
any entry combinations. The RB's write operation is per­
formed when an instruction completes execution. The result 
value from the result bus is written to the instruction's RB 
entry ("result" field). The "tag" field in the RSR (stage 1) is 25 

used to guide the instruction to the correct RB entry. The 
exception conditions are written to the RB entry's "excep­
tions" field. To indicate that the result value has been 
generated, the "valid" bit is set. 

Summary of Comparisons 

Table 1 summarizes result shelving techniques, their 
features and shortcomings. Review of the literature suggests 
that the reorder buffer (RB) is the most complete result 
shelving technique (see Table 1). The closest contender to 
the RB is the register-mapping table, (also called "rename 
buffer", implemented as a multi-ported lookup table array), 
which is used in IBM POWERPCs, MIPS RlOOOO 
(Trademark of MIPS Technologies, Inc.), and HP PA-8000 
(Trademark of Hewlett-Packard, Inc.). The register-mapping 

The RB' s retire operation is performed to retire completed 
result values to the RF (in-order state). Every cycle, the entry 

30 table technique has four disadvantages compared to the RB. 
First, to read a register operand, it has to access the mapping 
table, using the logical register number, to get the corre­
sponding physical register number in the register file. This 
additional delay could potentially lengthen the processor's 

at the head of the RB is monitored for retiring. If the result 
value has already been generated ("valid"=l) and there is no 
exception ("exceptions"=O), then the head RB entry is 
retired to the RF. The result value in the "result" field is 
written based on its register number in "dest. reg.". The head 
pointer is then incremented, modulo RB size. 

35 cycle time or introduce another pipeline stage. The third 
pipeline stage in the MIPS RlOOOO is dedicated solely to 
read operand registers. 

Second, the mapping table is not a small circuit. For 
instance, the MIPS RlOOOO requires two 32x6 mapping 

40 tables, one with 12 read ports and 4 write ports for the 
integer register map, and another with 16 read ports and 4 
write ports for the floating-point register map. 

In terms of meeting superscalar objectives, it is obvious 
that the RB supports precise interrupts and out-of-order 
execution. Results are updated to the in-order state (RF) in 
the original, sequential program order, after checking their 
exception conditions. The RB also supports register renam­
ing by creating a new instance/entry for every register 
assignment. Speculative execution is not readily supported. 

45 
To support it, requires a mechanism to flush certain RB 
entries at a variable reset point (branch point). Johnson 
suggested allocating an entry in the RB for every conditional 
branch instruction, even though no result value is produced 
(see Johnson, 1991). When a conditional branch is 

50 
mispredicted, the processor searches the corresponding 
"branch" entry in the RB. This entry becomes the reset point; 
all entries subsequent to it are flushed (tail pointer="branch" 
entry number). Or alternatively, we can let the "branch" 
entry reach the bottom (head) of the RB. However, this adds 

55 
delay to the recovery and restart from a branch mispredic­
tion. 

Smith and Plezkun presented two other methods for 
supporting precise interrupts: history buffer and future file. 
The history buffer does not fit in the result shelving category 

Third, precise interrupts are not supported. To overcome 
this problem, an additional component, called the "active 
list" in the MIPS RlOOOO, is needed to track every active 
instruction and maintain the old physical register number 
prior to the new mapping/renaming (if the instruction 
updates a register) in the decode stage. If the instruction 
completes out of order and there is an exception at a 
preceding instruction, the mapping must be unmapped by 
writing back the old physical register number from the 
active list to the mapping table. 

Fourth, speculative execution is not supported. To over­
come it, the processor must save the whole mapping table in 
a storage area (called "shadow registers" in the MIPS 
RlOOOO) for every speculated branch. When a branch is 
mispredicted, the processor yanks the old mapping table. 
The storage area increases as more levels of speculative 
execution are added. 
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TABLE 1 

Comparisons of Result Shelving Techniques 

Checkpoint 
Register Score- Register-Mapping Repair (not 
board Table discussed) Reorder Buffer 

Super- ~Out-of-order ~Out-of-order ~Out-of-order ~Out-of-order 
scalar execution execution execution execution 
Features Register ~Register ~Register 
Supported renaming ~enaming renaming 

nSpeculative ~Precise 
execution ~nterrupts 
~Precise nSpeculative 
interrupts execution (with 

branch entry 

~Simple ~No associative ~No associative 
lpcation) 

Notable nThe most 
Features alternative to lookup, direct lookup. complete result 

register renaming. renaming of shelving tech-
register numbers. I]-ique. 

nFastest branch 
misprediction 
recovery and 
restart 

Shortcomi ~Multiple pending ~Introduces new ~Requires ~Requires associ-
ngs updates stall l?ipeline stages. substantial stor- ative lookup cir-

instruction nDoes not age for the logi- ~uitry. 
decoding. support ~al spaces. nRequires 
nDoes not support speculative nNeeds complex significant amount 
speculative execution nor logic to route of comparators and 
execution nor precise result to the logic circuitry to 
precise inter- interrupts. appropriate overcome the pri-
rupts. lpgical spaces. oritized associ-

nSlow branch alive lookup 
misprediction problem. 
recovery due to a 
wait to get the 
in-order logical 
space to the 
Current Space 
position. 

Instruction Shelving Techniques at the top and issued from the bottom. After a set of 

Instruction shelving is a technique to temporarily shelve 
decoded instructions until they can be issued and executed 
at the appropriate functional unit. Thus, an instruction shelf 
(also called instruction window) is a wait station between 
decode and execution. Instructions in the instruction win­
dow can be dynamically scheduled to achieve multi­
instruction issue, decoupled datafiow scheduling, and out­
of-order execution. It is also possible to combine result 
shelving in the instruction window (called the integrated 
shelving technique) to support other superscalar features; 
register renaming, speculative execution, and precise inter­
rupts. An instruction in an instruction window is issued (or 
ready to be issued) if all of its operand(s) are available, and 
all resources required (functional unit, operand buses, result 
bus) are granted. 

There are two types of instruction windows: central 
window and distributed window. In the following sections 
we will discuss three central window techniques (the dis­
patch stack, register update unit, DRIS) and one distributed 
window technique (reservation stations). 

Dispatch Stack 

The dispatch stack (DS) is a central instruction window 
that performs dynamic code scheduling on the dynamic 
instruction stream of multiple functional unit processors. It 
allows out-of-order, multi-instruction issue. The instruction 
window behaves like a stack where instructions are allocated 

40 instructions is issued, the gaps (freed entries) are filled with 
unissued instructions above it (compression). Then, the next 
set of instructions can be pushed in. This is important to 
determine instruction order during dependency checks. A 
DS entry consists of an instruction tag, opcode, source and 

4
s destination register identifiers, dependence fields, and issue 

index. To explain how the DS works, consider the program 
example shown below (see R. D. Acosta, J. Kjelstrup, and H. 
C. Torng, "An Instruction Issuing Approach to Enhancing 
Performance in Multiple Functional Unit Processors," IEEE 
Transactions on Computers, Vol. C-35, pp. 815-828, 1986), so 
which adds floating-point numbers in RO through R7 and 
leaves the sum in RO. 

SS Program Example with Tight Data Dependencies 

IO: fadd RO,Rl,RO ;RO<- Rl +RO 
11: fadd R2,R3,R2 ;R2 <- R3 + R2 
12: fadd RO,R2,RO ;RO<- R2 +RO 
13: fadd R4,RS,R4 ;R4 <-RS+ R4 

60 14: fadd R6,R7,R6 ;R6 <- R7 + R6 
IS: fadd R4,R6,R4 ;R4 <- R6 + R4 
16: fadd RO,R4,RO ;RO<- R4 +RO 

FIG. 4 shows the DS contents after the above sequence of 
6S instructions is decoded and allocated into the window. Since 

there is no register renaming mechanism in this case, the a 
and ~ dependence fields must include not only data 
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dependencies, but also artificial (anti and output) dependen­
cies. The a(Sl) and ~(S2) count the number of data depen­
dencies (among its preceding instructions in the window). 
The a(D) counts the number of output dependencies, and 
~(D) counts the number of anti dependencies. An instruction 5 

is ready to issue if its issue index (I2
) is zero (meaning no 

dependencies). In FIG. 4(a), four instructions (IO, 11, I3, and 
I4) are issued, assuming there are adequate functional units 
and data paths to transmit operands and results. At the 
completion of each issued instruction, the destination reg- 10 

ister identifier (D) is forwarded to the DS, which is com­
pared to the Sl, S2, and D fields of all unissued instructions. 
Wherever there is a match, the appropriate a or ~ is 
decremented by 1. FIG. 4(b) shows the updated dependence 
fields, assuming IO, 11, I3, and I4 complete at the same time. 15 

Also note that the window has been compressed. In the next 
two issues, instructions I2 and I5 are issued simultaneously, 
followed by I6. 

The hardware implementation of a DS is very complex. 
Each entry requires five counters for the dependence fields 20 

and issue index. When an instruction is decoded and allo-

16 
decoupled dataflow scheduling, out-of-order execution, reg­
ister renaming, speculative execution, and precise interrupts. 

To allow multiple instances of a register (register 
renaming), each register in the register file is associated with 
two counters (NI and LI). The NI counter represents the 
number of instances of a register in the RUU, while the LI 
counter represents the latest instance number. When an 
instruction with destination register Ri is decoded and 
allocated to the RUU, Ri's NI and LI counters are incre-
mented. Wrap around in the LI counter is allowed (modulo 
counter). However, when the NI counter reaches its maxi­
mum value, the instruction decoding is stalled. When an 
instruction is retired from the RUU and updates the desti­
nation register, the NI counter is decremented. With these 
counters, tag allocations and deallocations become simple. A 
register tag now simply consists of the register number 
appended to the LI counter. 

In each clock cycle, the RUU performs four operations 
simultaneously: (a) dispatch/allocate one instruction from 
the decoder, (b) issue one instruction nearest to the head 
pointer with ready operands, (c) writeback any result value 
to the instruction's RUU entry, and forward this result to any 
matching operand(s), and (d) retire one completed instruc­
tion at the head entry and update its result value to the 
register file. To describe these operations, consider the 

cated to the DS, these counters must be set by comparing the 
instruction's register identifier with every instruction in the 
window, requiring (5xnumber of instructions decoded per 
cyclex(number of DS entries -1)) comparators. The alloca­
tion process also requires each entry to be able to receive an 
instruction from any decoder position. Since instructions can 
be issued from any position, every functional unit must be 
able to receive an instruction from any DS entry. When an 
issued instruction completes, its destination register identi­
fier must be compared to the register identifiers of all 
instructions in the DS, requiring another set of ( 5xnumber of 
instructions completed per cyclexnumber of DS entries) 
comparators. And, what could be the most complex circuitry, 
compressing the window requires each entry to be able to 
receive from any entry above it. Dwyer and Torng estimated 
that the issue, compression, and allocation circuitry for a 
mere 8-entry dispatch stack would consume 30,000 gates 
and 150,000 transistors (see H. Dwyer and H. C. Torng, A 
Fast Instruction Dispatch Unit for Multiple and Out-of­
Sequence Issuances, School of Electrical Engineering Tech­
nical Report EE-CEG-87-15, Cornell University, Ithaca, 
N.Y., 1987 and Johnson, 1991). This complexity makes the 
dispatch stack unattractive. 

25 previous program listing. FIG. 5(a) shows the instruction 
timing when each instruction is allocated, issued, written 
back, and retired. It is assumed that each floating-point add 
takes six cycles to complete. FIG. 5(b) shows the snapshot 
of the RUU contents at cycle 7. Instruction I6 (fadd RO,R4, 

Register Update Unit 

30 RO) has just been allocated at the tail of the R UU. Its 
program counter, functional unit source, operands, and des­
tination register tag are written. The destination register tag 
(0,3) is simply the register number (0) appended with the 
current LI counter value for RO (3). The "executed" flag is 

35 reset to indicate entry 6 as unissued. Operands are read 
directly from the register file. If an operand is available, its 
value is copied to the allocated entry and the "ready" flag is 
set. However, if an operand has not been produced, then its 
register tag is copied to the allocated entry and the "ready" 

40 flag is reset. Later when the operand value is produced, the 
RUU forwards it. By copying operands and forwarding 
results to the instruction window, anti and output dependen­
cies are effectively eliminated (see Johnson, 1991). 

The issue operation is carried out by first checking 
45 "ready" flags of source operand 1 and 2. Any unissued 

instruction with both operands' "ready" flags set is consid­
ered ready. Since only one instruction can be issued per 
cycle, priority is given to the one nearest to the head pointer. 
This instruction can issue if all accesses to the functional 

Sohi and Vajapeyam proposed a simpler central window 
than the dispatch stack, called the register update unit (R UU) 
(see G. S. Sohi and S. Vajapeyam, "Instruction Issue Logic 
for High-Performance Interruptable Pipelined Processors," 
Proceedings of the 14th Annual Symposium on Computer 
Architecture, pp. 27-34, 1987). It avoids window compres­
sion by keeping issued instructions until they reach the 
bottom of the R UU, then retire if completed. It has a simpler 
allocation and issue logic, mainly because it was designed 55 

for scalar (single-instruction issue) processors with multiple 
functional units and long pipeline stages (CRAY-1 
category). The RUU resolves data dependencies 
dynamically, avoids artificial dependencies, and supports 
out-of-order issue. What is interesting about the RUU design 60 

is that it combines the principles of Tomasulo's reservation 
stations (see R. M. Tomasulo, "An Efficient Algorithm for 
Exploiting Multiple Arithmetic Units," IBM Journal of 
Research and Development, Vol. 11, No. 1, pp. 25-33, 1967) 
and Smith and Plezkun's reorder buffer. Thus, an RUU is an 65 

instruction window as well as a result buffer (an integrated 
shelving technique). It supports five superscalar features; 

50 unit, operand buses, and result bus have been resolved. The 
issue may be out of order, as shown by the example in FIG. 
5(b ). Instructions are issued in the following order: IO, 11, I3, 
I4, I2, I5, and I6. 

When an instruction completes execution, its result value 
is written back to the instruction's RUU entry at the desti­
nation's "content" field (writeback operation). The 
"executed" flag is set. To free locked instruction(s) that wait 
on this result, the destination's "tag" is compared to any 
source operand's "tag". A match triggers the forwarding of 
the result value to the operand's "content" field. The "ready" 
flag is then set. FIG. 5(c) shows the contents ofRUU at cycle 
9 where RUU performs a writeback operation due to the 
completion of 11. Because the 11's destination register tag 
(2,1) matches with I2's second operand, 11's result value is 
forwarded to I2's source operand 2 "content" and the 
"ready" flag is set. Now both of I2's operands are available 
and I2 is ready for issue. 
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The retire operation is performed on the instruction at the 
bottom entry of the RUU. If its "executed" flag=l, the result 
value (destination's "content") is retired to the register file 
and the head pointer is incremented, modulo RUU size (see 
IO in FIG. 5(c)). Retiring from the bottom entry ensures that 
the register file is updated in the original program order. If 
the instruction does not complete successfully due to excep­
tion or branch misprediction, then a recovery action is 
initiated by flushing the entire contents of R UU. The register 
file automatically contains the correct in-order state at the 
branch point or precise-repair point. The NI and LI counters 
are reset to zero since the only instance of a register is in the 
register file (register instances in RUU are completely 
flushed). 

Although the RUU meets many of the superscalar 
objectives, it is not directly applicable to superscalar pro­
cessors. The RUU has serious performance bottlenecks (see 
Johnson, 1991): 

18 
size), if the DRIS index goes back to zero, the color-bit 
register is toggled. In determining the order of two instruc­
tions X and Y, we compare their IDs. If index(X)>index(Y) 
and color(X)=color(Y), then instruction Xis "younger" (was 

5 allocated later) than instruction Y. If their color bits are 
opposite then the relationship is reversed. 

There are four stages/operations in the Metaflow archi­
tecture involving the DRIS: dispatch/allocate, issue, 
writeback, and retire. (To be consistent with the terms used 

10 in this document, the Metaflow' s terms of "issue", 
"schedule", and "update" have been changed to the similar 
terms dispatch/allocate, issue, and writeback, respectively.) 
To describe these operations, consider the previous program 
example. FIG. 7(a) shows the instruction timing when each 

15 instruction is allocated, issued, written back, and retired. It 
is assumed that there are four allocate ports, four retire ports, 
and two floating-point adders with 3-cycle latency. FIGS. 
7(b) and 7(c) show the DRIS contents at different time 
points. 

The instruction issue rate is limited to one instruction per 
cycle (because it was designed for scalar, instead of 20 

superscalar processors). 

The allocate operation is performed when a set of decoded 
instructions arrives at the DRIS. For each instruction, the 
allocated DRIS entry is written with the program counter, 
opcode, functional unit class number, register numbers of 
source and destination operand(s), register tags of source 

The window entries of issued instructions are not imme­
diately deallocated. Since only one entry (bottom entry) 
is freed at a time, a small window size results in 
frequent stalls at the decoder when the RUU is full. For 
the R UU to be effective, the window size must be 
relatively large. Simulation results reported by Sohi 
and Vajapeyam on Lawrence Livermore loop bench­
mark programs, show that a relative speedup 
(compared to the scalar CRAY-1 simulator) greater 
than 1.8 requires at least 50 entries (see Sohi and 
Vajapeyam). 

An instruction with branch misprediction or exception is 
detected very late, after it reaches the bottom of the 
RUU. This is a substantial delay that causes many 
instructions beyond the branch or exception instruction 
to be fetched, decoded, and executed unnecessarily, 
wasting the processor's time with decreased perfor­
mance. 

DRIS 

The DRIS (deferred-scheduling, register-renaming 
instruction shelf) is an improved version of Sohi and Vajap­
eyam's RUU that is more suitable for superscalar proces­
sors. The DRIS is the integrated shelving technique of the 
Metaf low architecture (see V. Popescu, M. Schultz, J. 
Spracklen, G. Gibson, B. Lightner, and D. Isaman (Metaflow 
technologies, Inc.), "The Metaflow Architecture," IEEE 
Micro, pp. 10--13 and 63-73, 1991), shown in FIG. 6. The 
DRIS supports all six superscalar features; multi-instruction 
issue, decoupled dataflow scheduling, out-of-order 
execution, register renaming, speculative execution, and 
precise interrupts. The first implementation of DRIS, named 
DCAF (dataflow content-addressable FIFO), appears in the 
Metaflow LIGHTNING(fHUNDER SPARC microproces­
sor (Trademark of Metaflow Technologies, Inc.). 

The key process to do register renaming, dependency 
checking, and result forwarding is the tagging of register 
results. The DRIS uses a different register tagging scheme 
than RUU. Each register in DRIS is tagged with the iden­
tifier (ID) of the producer instruction. The ID of a newly 
allocated instruction consists of the current "color" bit 
appended with its DRIS index (entry number). The color bit 
is used to distinguish the age or order of instructions when 
the valid entry area (from head pointer to tail pointer) wraps 
around. When incrementing the tail pointer (modulo DRIS 

25 operand(s), and some control information. FIG. 7(b) shows 
a snapshot of the DRIS at cycle 2 when I4, I5, and I6 have 
just been allocated. The "dispatched" and "executed" bits 
are initially reset. There are three associative searches 
involved for each entry allocation; during the setting of 

30 "latest" bit in the destination section and during the setting 
of "locked" bit and "ID" fields in both source operand 
sections (dependency checking). Consider next the alloca­
tion of I6. To determine the "latest" bit, the DRIS allocate 
logic searches and compares all other entries (including the 

35 ones currently being allocated) with the same destination 
register number as I6 (0). If no match, the "latest" bit is 
automatically set. In this case, there are two matched entries 
(IO and I2). The ID (color, index) comparisons of IO, I2, and 
I6 show that I6's entry is the youngest. This means I6 is the 

40 last instruction in the DRIS that updates RO. So, I6's "latest" 
bit is set and I2's and IO's "latest" bits are reset. To 
determine the "locked" bit and "ID" fields of I6's second 
operand (R4), register number 4 is associatively searched 
among the destination registers of other older entries. If no 

45 match is found, no instructions in the DRIS updates R4 and 
R4 must be retrieved from the register file. The "locked" bit 
is cleared and the "ID" field is set to a default value (e.g. the 
instruction's own ID) to indicate that the operand is in the 
register file. However, in this case, two matches are found 

50 (13 and I5), but I5's entry contains the latest R4. Therefore, 
its index (5) plus the current color bit (0) becomes the ID 
(0,5) of I6's second operand. The "locked" bit and "ID" 
fields of I6's first operand are determined similarly. 

The issue operation is performed by checking the 
55 "locked" bits of unissued instructions ("dispatched"=O). The 

oldest instruction with both operands unlocked ("locked"=O) 
is given priority for issue, provided the requisite functional 
unit is available. The DRIS issue logic strives to find as 
many instructions to issue as possible. FIG. 7(b) shows a 

60 case where the DRIS finds two instructions (IO and 11) to 
issue. The DRIS issue logic checks the ID field of each 
source operand to determine the operand location (either in 
the register file or the DRIS). Since IO's and Il's source 
operand IDs are the instruction's own ID (default value for 

65 register file location), the operand values are fetched from 
the register file. In the case that an operand is in the DRIS, 
the operand ID's index part locates the DRIS entry, where 
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the "content" field of the destination section is then routed 
20 

are not immediately deallocated. DRIS entries are freed only 
when instructions are retired, which proceeds in order, from 
the bottom of the DRIS. This could result in frequent stalls 
at the decoder as the DRIS gets full, which may occur due 

as the operand value. In any case, the DRIS issue logic 
passes the opcode, operand values, and ID of each issued 
instruction to the corresponding functional unit. The "dis­
patched" bit of the issued entry is then set. 

The write back operation is performed when an instruction 
completes execution. The instruction's DRIS entry is found 
by the result ID's index part. The result value is then written 
to the "content" field of the destination section. The result ID 

5 to a small window size or relatively long waits due to many 
data dependencies or unresolved conditional branches. For 
the DRIS to be effective, the window size must be suffi­
ciently large, which increases hardware cost. Another poten-

is broadcast and compared to the operand IDs of other valid 
10 

DRIS entries. A match clears the corresponding "locked" bit. 
Thus, the result forwarding unlocks any locked operands 
that are dependent on the result value. FIG. 7(c) shows how 
13's and I4's results unlock both operands of IS. 

The retire operation is performed in order, starting from 
15 

the oldest instruction in the DRIS (bottom entry). Multiple 
instructions may be retired simultaneously depending on the 
number of retired ports and the eligibility of instructions. An 
instruction is eligible to retire if (see Popescu, et al.): (a) it 
has completed successfully ("executed"=l and no exception 

20 
error), (b) all older instructions have been retired or are 
being retired in this clock cycle, and ( c) there is an available 
retire port to write the register "content" to the register file. 
FIG. 7(c) shows two instructions (IO and 11) are eligible to 
retire. 

25 
The DRIS handles memory-reference instructions (loads 

and stores) by forcing them to go through the dispatch/ 
allocate, issue, execute, and writeback operations twice: first 
to compute the load/store address, and second to load/store 
the memory data. Load bypassing is allowed. 30 

The DRIS supports multi-level speculative execution by 
shelving multiple instances of condition code. The condition 
code value is written to the DRIS entry of a condition 
code-setting instruction (at the "content" field of the desti­
nation section). When a branch instruction is decoded and 35 
allocated a DRIS entry, the branch's operand "ID" field is 
written with the ID of the youngest condition code-setting 
instruction (associatively searched). When this instruction 
completes execution, the writeback operation causes the 
branch operand to be unlocked. As the oldest branch entry 40 
is issued, the predicted branch direction (part of the 
"opcode" field) is compared to the branch operand, i.e., the 
condition code fetched from DRIS. If the branch was 
correctly predicted, then the "executed" bit is set and opera­
tion continues as usual (the speculative execution is sue- 45 
cessful so far). However, if a branch misprediction is 
detected, then a branch repair action is invoked. To flush all 
entries following the mispredicted branch, the DRIS tail 
pointer is set to the branch ID's index. 

Compared to the register update unit, the DRIS improves 50 

three areas (see Popescu, et al.): (a) register renaming, (b) 
operand storage and routing, and (c) branch misprediction 
delay. First, the implementation of register renaming is 
improved by a more efficient register tagging (ID). Costly 
counters per register are avoided. The LI and NI counters 55 

also limit the number of instances of a register, which could 
result in more stalling. Second, the storage per entry in the 
DRIS is less than the RUU because operand values are not 
copied to DRIS entries. Rather, the operand values are read 
directly from the DRIS destination section (or the register 60 

file) at issue time. This strategy also saves expensive data 
routing during result forwarding, eliminating paths from 
result values to operand fields. Third, branch misprediction 
is repaired as soon as it is issued and executed, not when it 
is retired at the bottom of the window. 

Despite these improvements, the DRIS still carries one 
RUU disadvantage: window entries of issued instructions 

65 

tial disadvantage of DRIS is long load and store delays. 
Many cycles could be saved if the load/store address com­
putation is implemented as a separate instruction and sched-
uled as early as possible. 

Reservation Stations 

Tomasulo introduced reservation stations in the floating­
point section of the IBM 360/91 to exploit the multiple 
execution units. The main objective was to permit simulta­
neous execution of independent instructions while preserv­
ing the precedence (data dependency) constraints in the 
instruction stream. Reservation stations are essentially an 
implementation of distributed instruction windows with 
some result shelving. The result shelving, done by copying 
operands and result forwarding to reservation stations, are 
necessary to support register renaming. FIG. 8 shows the 
hardware implementation of Tomasulo's algorithm. (To 
focus the discussion on the reservation stations, two hard­
ware units (floating point buffers and store data buffers) are 
intentionally omitted from the original diagram.) 

There are four key components in Tomasulo's concept: 
busy bit, tag, reservation station, and common data bus. A 
busy bit is associated with each floating-point register or 
operand as a dependency mechanism. If set (busy bit=l) 
then it means the register is not available, currently being 
generated. A tag is associated with each register instance, 
which is used in place of the register number/identifier. This 
reintroduces the distinction between register and value, the 
essence of register renaming. In Tomasulo' algorithm, a tag 
corresponds directly (1-to-lto a reservation station. For 
example, in the IBM 360/91, tag numbers 10 through 12 
correspond to the three reservation stations of the adder unit. 
However, Weiss and Smith suggested a more flexible way of 
assigning tags (S. Weiss and J. E. Smith, "Instruction Issue 
Logic in Pipelined Supercomputers," IEEE Transactions on 
Computers, Vol. C-33, No. 11, pp. 1013-1022, 1984). When 
an instruction is decoded, a new tag is assigned for its 
destination register from a "tag pool" that consists of some 
finite set of tags. When the instruction completes, the tag is 
returned to the pool for reuse. 

The reservation station is a wait station for an instruction 
that is about to be executed. Each execution unit has its own 
set of reservation stations. Each reservation station consists 
of four fields: sink tag, sink value (first operand), source tag, 
source value (second operand), and control. The control field 
contains opcode and destination register number informa­
tion. It also contains information defining whether the res-
ervation station is ready to issue or not. Two busy bits for the 
sink and source can be used. If both clear then both operands 
are available and the reservation station is ready to issue. 
Note that the IBM 360/91 has two-operand instructions. A 
sink register is a destination register as well as a source 
operand. A three-operand processor would have a different 
reservation station format: source 1' s busy bit, tag, value, 
source 2's busy bit, tag, value, dest tag, and control. 

The actions taken during instruction decode are as fol­
lows. The decoder decodes one instruction from the top of 
the floating point operation stack (FLOS). A reservation 
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station is allocated at the appropriate execution unit. Instruc­
tion operands (sink and source) are copied from FLR to the 
reservation stations. If the busy bit of an operand register in 
FLR is clear (indicating the register value is valid), then the 
register content, tag, and busy bit are copied to the reser­
vation station (at sink or source fields). Anew tag is updated 
to the destination register in FLR, and the busy bit is set. 
This new tag is the reservation station's assigned number. 
However, if the busy bit of the operand register in FLR is 
already set (indicating another instruction is currently gen­
erating the register value), then only the register tag and 
busy bit are copied to the reservation station. 

The actions taken during instruction issue are as follows. 

22 
fetched, decoded, and executed speculatively, then the FLR 
only contains the architectural state. Only the most recent 
updates of registers are maintained, regardless of whether 
they are speculative updates or not. For speculative execu-

5 tion to work properly, there must be a mechanism to recover 
certain old values and restart at the in-order state prior to the 
speculative branching. To support speculative execution, the 
register file can be accompanied by a reorder buffer. The 
original Tomasulo's algorithm also lacks multi-instruction 
fetch and decode. A single-instruction decoder really 

10 underutilizes the potential machine parallelism. It is not 
difficult however, to expand Tomasulo's reservation stations 
to handle multi-instruction decode and become a superscalar 
distributed window (see Johnson, 1991). 

For each execution unit, one waiting instruction from its 
reservation station set is selected for issue/execution. This 15 

instruction must satisfy the following requirements: (a) all of 

Summary of Comparisons 

Table 2 is a summary of instruction shelving techniques. 
The features which support superscalar design are defined 
and the good and poor features of each technique are also 
noted. Review of the literature suggests that the reservation 
station (RS) is the best instruction shelving technique to give 

its operands are available, (b) it has priority over other 
waiting instructions that are also ready, and ( c) its request for 
the result bus (common data bus), at the clock period when 
the result will be generated, has been granted. The reserva- 20 

tion station number of the issued instruction becomes the 
destination register tag ( dest_tag). The issued instruction 
then releases the reservation station for others to use. 

maximum machine parallelism (see Table 2). The closest 
contender to the RS is the DRIS (Deferred-scheduling, 
Register-renaming Instruction Shelf), a central window 
technique used in the Metaflow Thunder SPARC. The DRIS 
central window technique has five disadvantages compared 
to the RS distributed window. First, the DRIS has long load When the instruction completes execution, the result 

value, destination register number ( dest_reg) and tag ( dest_ 
tag) are placed at the common data bus (CDB). This result 
is updated to the FLR based on dest_reg and dest_tag. The 
FLR compares the dest_tag to the last tag of the dest_reg 
to ensure that only the most recent instruction changes the 
register. The result is also forwarded to the reservation 
stations. Each active reservation station compares its sink 
and source tags to the dest_tag. If they match, the result is 
written to the sink and/or source fields. This may free some 
waiting instruction(s). 

Implementing instruction shelving by Tomasulo's reser­
vation stations accomplishes the following superscalar 
objectives: 

Achieves multi-instruction issue by allowing each func­
tional unit to independently issue an instruction from its 
reservation station set, 

Achieves decoupled dataflow scheduling by shelving all 
decoded instructions and not stalling instructions at the 
decoder, 

Permits out-of-order execution while preserving data 
dependency constraints, and 

Achieves register renaming (enforces data dependencies, 
eliminates anti and output dependencies) by tagging 
registers, copying operands and result forwarding to 
reservation stations. 

Anti dependencies (write-after-read hazards) are avoided 
by copying operands to reservation stations. Once 
operands are read from the FLR and copied to the 
reservation stations (at decode stage), they cannot be 
overwritten by writes/updates from subsequent instruc­
tions. If an operand value is not available from the FLR 
at the decode stage, its register tag is copied instead to 
the reservation station. When the operand value is 
finally generated by one of the execution units, it will 
be delivered to the reservation station. Thus, result 
forwarding enforces data dependencies (read-after­
write hazards). Output dependencies (write-after-write 
hazards) are avoided by comparing tags at the FLR on 
every register write, to ensure that only the most recent 
instruction changes the register. 

Tomasulo's algorithm lacks a mechanism to handle 
speculative execution. If instructions are allowed to be 

25 and store delays because it forces all memory-reference 
instructions to go through the dispatch, issue, execute, and 
writeback pipeline stages twice; first to compute the load/ 
store address, and second to load/store the memory data. 

Second, inherently, the DRIS has less parallel issue capa-
30 bility (machine parallelism) than the RS. In the RS 

technique, by distributing the windows to each execution 
unit, the number of instructions that can be issued in parallel 
is as many as the total number of execution units, because 
each execution unit's window can issue an instruction. On 
the contrary, the maximum number of parallel issues in the 

35 DRIS central window is limited to the number of issue ports. 
Third, the hardware to support multiple out-of-order 

issues is very complex because the issue logic has to deal 
with greater numbers of instructions and resource allocation 
conflicts relative to the RS technique, which deals with 

40 fewer instructions locally and only needs to issue one 
instruction. 

Fourth, the instruction routing in the DRIS central win­
dow with out-of-order issue requires that there is an issue 
path from any window entry to any functional unit. The 
requirement in the reservation-station distributed window is 

45 simpler, one issue path from any window entry to one 
functional unit. Moreover, since the RS window has con­
siderably fewer entries than the DRIS window, the instruc­
tion routing complexity becomes even simpler. 

Fifth, in DRIS, window entries of issued instructions are 
50 not immediately retired/freed, resulting in inefficient use of 

the window especially if there are long chains of data 
dependencies or long, unresolved conditional branches. This 
inefficiency could result in frequent decode stalls and reduce 
performance. As a result, the DRIS window size must be 

55 
made relatively large, which increases hardware cost con­
sidering each DRIS entry contains many comparators, reg­
ister bits, and logic to update different kinds of flags (locked, 
latest, dispatched, executed). The other penalty is the need 
for DRIS to retire/deallocate multiple entries per cycle. In 
contrast, the RS only issues one instruction at a time, in 

60 which the issued-entry is deallocated immediately. 
The proof of DRIS hardware complexity is seen in the 

Metaflow Thunder SPARC which requires a three-chip set 
implementation even using IBM's advanced 0.5-micron 
CMOS process (see R. Wilson, "RISC Face-Off Coming to 

65 Hot Chips," Electronic Engineering Times, pp. 1-68, 1994). 
In general, a central window technique is more complex to 
implement than a distributed window technique. 
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TABLE 2 

Comparisons of Instruction Shelving Techniques 

Register Update 
Dispatch Stack Unit ORIS 

Type Central window Central window Central window 

Supersca- ~Multi-ins true- ~Decoupled data- ~Multi-instruc-
lar tion issue flow scheduling tion issue 
Features ~Decoupled data- nOut-of-order ~Decoupled data-
Supported flow scheduling execution flow scheduling 

nOut-of-order ~Register rena- nOut-of-order 
execution :tping execution 

nSpeculative ex- ~Register rena-
ecution :tping 
~Precise inter- nSpeculative 
rupts execution 

~Precise inter-

~Immediately ~Integrated 
i;ipts 

Notable nintegrated 
Features frees issued shelving (instruc- shel-ving 

entries for tion +result), (instruction + 
reuse. combining the result), an im-

principles of re- proved version of 
ervation stations RUU 
and reorder buf- ~No need to copy 
fer. operands to ORIS 
~Simple tag entries, reduces 
allocation and de- storage require-
allocation using ment. 
the NI and LI nSupports multi-
counters. level speculative 

execution. 

Shortcom- ~rtificial ~Single-instruc- ~To be 
in gs dependencies tion issue. effective, the 

stall instruction ~To be effective, window size must 
issue. the window size be relatively 
~Requires very must be relatively large because is-
complex circuitry large because is- sued entries are 
especial! y for sued entries are not immediately 
window not immediately freed. 
~ompression). freed. ~Long load and 
nUses many coun- ~Late detection store delays be-
ters and compar- of branch mispre- cause they are 
tors. diction and excep- processed in ORIS 
~8-entry dis- tion. twice. 
patch stack al- ~Copying operands ~The hardware to 
ready consumes and to RUU increases support out-of-
30,000 gates storage/area. order is complex, 
150,000 transis- Result forwar- lengthens clock 
tors. ding to all window period, and adds 

entries increases ~ pipeline stage. 
global bus rou- nResult forwar-
ting. ding to all ORIS 

entries increases 
global bus 
routing. 

Commercial Superscalar Microprocessors 

Reservation 
Stations 

Distributed win­
dows 
~Multi-instruc­
tion issue 
~Decoupled data­
flow scheduling 
~Out-of-order 
execution 
~Register rena­
ming 

~Integrated 
shel-ving 
instruction + 
result). 
~The result 
shel-ving 
supports register 
renaming. 
~More parallel 
issue capability 
than a central 
window; each 
func-tional unit 
has a window to 
issue 
instruction. 
~Result shelving 
at reservation 
stations does not 
support specula­
tive execution, 
unless the regi­
ster file is ac­
companied by a 
reorder buffer. 
~Copying oper­
ands to reserva­
tion stations in­
creases storage 
and global bus 
routing. 
~Result forwar­
ding to all 
reser-vation 
stations 
increases global 
bus routing. 
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Computer Design, pp. 134--137, 1989). Many other super­
scalar microprocessors followed later. 

The following sections describe six commercial super­
scalar microprocessor architectures: the IBM RS/6000, 
Metafiow LIGHTNING(fHUNDER SPARC, TI SUPER­
SPARC (Trademark of Texas Instruments, Inc.), DECchip 
21064 (ALPHAAXP), HP PA-7100 (Trademark of Hewlett-

The first commercial superscalar microprocessor was the 55 

Intel i960 CA, which was introduced in 1989. The super­
scalar features supported were limited, excluding specula­
tive execution and register renaming. The i960 CA decodes 
four instructions at once, issues up to three of them per 
cycle, and can sustain a maximum execution rate of two 
instructions per cycle. The Intel i960 CA was followed by 
many other versions (CF, MM, etc.). A more complete 
superscalar processor that supports (single-level) specula­
tive execution and register renaming, the IBM RS/6000, was 
also introduced in1989 (see R. D. Groves and R. R, Oehler, 
"An IBM Second Generation RISC Processor Architecture," 
Proceedings of the 1989 IEEE International Conference on 

60 Packard, Inc.), and Intel PENTIUM. The discussions focus 
on the superscalar aspects of the processors. A summary of 
upcoming superscalar microprocessors that have been 
recently announced to reach their sampling status in 1995 or 
1996 is also given at the end. These include the DEC 

65 ALPHA 21164, Sun Microsystems ULTRA-SPARC 
(Trademark of Sun Microsystems Computer Corporation), 
IBM POWERPC 620 (Trademark of IBM, Inc.), MIPS 
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RlOOOO, HP PA-8000, and AMD KS. All of these new 
microprocessors adopt some kind of superscalar techniques 

26 
The BU has four special purpose registers (see R. R. 

Oehler and R. D. Groves, "The IBM RISC/6000 Processor 
Architecture," IBM Journal of Research and Development, 
Vol. 34, No. 1, pp. 23-36, 1990); the machine-state register 

5 (to control system states), the link register (for subroutine 
return address), the count register (to control loop iteration), 
and the condition register (to support multiple condition 
codes for conditional branches). Zero-delay branch for loops 

to support out-of-order and speculative execution. Other 
trends are the migration to true 64-bit architectures, larger 
bandwidths, multimedia hardware support, and glueless 
two- or four-way symmetric multiprocessing. Among all 
existing microprocessors to date, the DEC Alpha 21164, the 
follow-on to Alpha 21064, currently has the highest perfor­
mance. Its single-chip architecture is a combination of 
superpipelined and superscalar architectures. Volume-wise, 

10 
the Intel PENTIUM is currently the superscalar micropro­
cessor sold in the largest quantities, used in PCs and 
low-priced workstations, mainly due to its large x86 
software-base. 

with a known iteration count is achieved with the branch­
and-count instruction that uses the count register. The con­
dition register contains eight condition fields, two of which 
are reserved to contain the condition code results of arith­
metic computations in the FXU and FPU. The remaining six 
can be explicitly set by other fixed- or floating-point com-

IBM RS/6000 

The IBM RS/6000 is a multi-chip superscalar processor 
with a RISC instruction set (derivation of the 801 instruction 
set), capable of executing up to four instructions per cycle. 
FIG. 9 shows the architecture of the IBM RS/6000. There 
are three functional units-the branch unit (BU), fixed-point 
unit (FXU), and floating-point unit (FPU)-that are capable 
of executing instructions in parallel. The BU can issue up to 
two instructions per cycle, a branch and a condition-register 
instruction. The FXU issues one instruction per cycle, which 
can be a fixed-point arithmetic, a fixed-point load/store, or a 
floating-point load/store. The FPU issues one floating-point 
arithmetic instruction per cycle including a multiply-add 
instruction. Each functional unit has instruction buffers 
(I-buffers) to shelve instructions. These I-buffers are orga­
nized as a FIFO instruction window with in-order issue. The 
BU's I-buffers are a central window that contain all fetched 
instructions (not decoded yet). The FXU's and FPU's 
I-buffers are distributed windows. Both receive the same 
fixed- and floating-point instructions (not decoded at this 
point). 

The instruction cache (I-cache) is a two-way set­
associative cache with 16-instruction cache lines. The 
I-cache can supply four instructions per cycle for each fetch 
address (PC) presented, regardless of whether the PC is 
quad-word aligned or not. Instruction aligning is achieved 
by implementing the I-cache with four independent I-cache 
arrays, each fetching one instruction per cycle. By adjusting 
the address and rerouting (aligning) the output of each 
I-cache array, four instructions can always be fetched, 
provided they reside in the same cache line. It is to be 
understood that memory or other storage units may be used 
instead of an I-cache array. 

15 pare instructions and special branch-unit instructions. The 
setting of each condition field is controlled by the record bit 
(Re) of arithmetic instructions. There are advantages to 
having multiple, setable condition fields. First, the compiler 
can schedule a compare instruction early, as far away as 

20 possible from the conditional branch instruction. Second, 
several compare instructions can be scheduled first (their 
results written into separate condition fields), which are then 
followed by a single conditional branch instruction. This is 
useful to implement a guarded statement/code section with 

25 multiple guard conditions, eliminating the typical structure 
of a series of single compares followed by a single branch. 

The FXU contains I-buffers, an arithmetic logic unit 
(ALU), a general-purpose fixed-point register file, and a 
single-entry store buffer. The I-buffers receive both fixed-

30 and floating-point instructions from the BU's dispatch unit, 
but issue only fixed-point instructions and floating-point 
load/store instructions to the ALU. Addresses of all loads/ 
stores are computed in the FXU. The ALU includes a 
multiply/divide unit with 3- to 5-cycle multiply and 19- to 

35 20-cycle divide latencies. The store buffer holds data and 
address of one fixed-point store instruction. The store buffer 
makes load bypassing possible. Address and data of 
floating-point store instructions are buffered in the FPU. The 
I-buffer is a strictly FIFO instruction window with in-order 

40 issue. Partial out-of-order issue is achieved among different 
functional units. Since there is only one ALU and no 
out-of-order issue in the FXU, the integer RF is not accom­
panied by a result buffer. Result values are written directly 
to the integer RF, except on speculative results which are 

45 held off in the pipeline until the branch condition is known. 

The BU receives four instructions per cycle from the 
I-cache arrays into the BU's 12-entry I-buffers and dispatch 
unit. The dispatch unit dispatches externally to the FXU 50 

and/or FPU any two-instruction combination of fixed- and 
floating-point instructions. If the remaining two instructions 
contain a branch and/or a condition-register instruction, they 
are dispatched and executed internally in the BU. When a 
conditional branch instruction is encountered, the BU 55 

fetches the branch-not-taken path instructions (default 
branch prediction direction) and dispatches them to the FXU 
and FPU. These instructions are executed speculatively and 
can be canceled if the branch is mispredicted (by postponing 
retirement to register files and flushing the pipelines). The 60 

branch-taken path instructions are also fetched from the 
I-cache arrays and placed at the BU's I-buffers, but their 
dispatching (or flushing) is held off until the branch outcome 

Further instruction issue/execution in the FXU must be 
stalled. This limits the speculative execution capability in 
the IBM RS/6000. 

The FPU contains I-buffers, a unified floating-point 
multiply-add-fused unit (MAF), a floating-point register file, 
a register-mapping table, and a store buffer. FPU's I-buffers 
receive the same instructions as FXU's I-buffers, but issue 
only floating-point arithmetic instructions to the MAF. The 
MAF can perform an indivisible multiply-accumulate opera-
tion (AxB)+C, which reduces the latency for chained 
multiply-add operations, rounding errors, chip busing, and 
the number of adders/normalizers. The latency of a floating­
point multiply-add instruction (FMA) is two cycles (see R. 
K. Montoye, et al., "Design of the IBM RISC System/6000 
Floating-Point Execution Unit," IBM Journal of Research 
and Development, Vol. 34, No. 1, pp. 59-70, 1990). The 
register-mapping table provides register renaming (8 renam­
ing registers) to allow independent, out-of-order executions 
of floating-point load/store and arithmetic instructions. The 
store buffer contains five entries for addresses and four 
entries for data. A floating-point store instruction is issued at 

is known. The worst-case penalty for a branch misprediction 
is three cycles. The penalty can be eliminated if there are 65 

enough independent instructions to separate the compare 
from the branch. the FXU where the store address is calculated and placed at 
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the store buffer. Once the FPU produces the store value, it is 
placed at the corresponding entry in the store buffer, ready 
to be committed to the data cache (it is to be understood that 
memory or other storage units may be used instead of a data 
cache). By buffering stores, the FXU can continue issuing s 
subsequent loads (load bypassing). 

28 
The IBM RS/6000 processor chipset consists of nine 

chips (including I-cache and D-cache arrays, bus controller, 
and 1/0 controller), which are implemented in a 1-µm, 
three-metal CMOS process. The total number of transistors 

The number of pipeline stages in the BU, FXU, and FPU 
are two, four, and six, respectively. To describe how instruc­
tions are executed in the RS/6000 pipeline stages, consider 
the following 2-D graphics transform program example 
shown below in RS/6000 pseudo-assembly code (see G. F. 
Grohoski, "Machine Organization of the IBM RISC System/ 
6000 Processor," IBM Journal of Research and 
Development, Vol. 34, No. 1, pp. 37-58, 1990). 

is 6.9 million. The benchmark performance figures on the 
top of the line system, the IBM RS/6000 POWERSTATION 
(Trademark of IBM Corporation) 580 (62.5 MHz), are 
SPECint92 61.7, SPECfp92 133.2 (see R. Myrvaagnes, 
"Beyond Workstations," Electronic Products, pp. 17-18, 
1993), and 38.1 MFLOPS on (double precision, N=lOO) 

10 UNPACK (Trademark of Digital Equipment Corporation­
see Digital Equipment Corporation, ALPHAAXP Worksta­
tion Family Performance Brief-Open VMS, 1992). 

11: FL 
12: FL 
13: FL 
14: FL 
IS: FL 

2-D Graphics Transform Program Example 

FRO,sin_theta ;load 
FRl,-sin_ theta ;rotation matrix 
FR2,cos_ theta ;constants 
FR3,xdis ;load x and y 
FR4,ydis ;displacements 

In general, the IBM RS/6000 supports all six superscalar 
features (multi-instruction issue, decoupled dataflow 

16: MTCTR ;load count register with loop count 
17: LOOP: UFL FRS,x(i) ;load x(i) 
18: FMA FR10,FR8,FR2,FR3 ;form x(i)*cos + xdis 
19: UFL FR9,y(i) ;load y(i) 
110: FMA FR11,FR9,FR2,FR4 ;form y(i)*cos + ydis 
111: FMA FR12,FR9 ,FRl ,FR10 ;form y(i)*sin + FR10 
112: FST FR12,x(i)' ;store x(i)' 
113: FMA FR13,FR8,FRO,FR11 ;form x(i)*sin + FR11 
114: FST FR13y(i)' ;store y(i)' 
115: BCT LOOP ;continue for all points 

FIG. 10 shows the cycle-by-cycle execution of the inner 
loop. The superscripts indicate the iteration numbers. During 35 

cycle 1, four instructions (17°, 18°, 19°, 110°) starting from_ 
LOOP label are fetched from the I-cache arrays and placed 
into BU's I-buffers. During cycle 2, the first load and 
multiply-add instructions (17°, 18°) are sent to the FXU and 
FPU, respectively. The next four instructions are fetched 40 

(111°, 112°, 113°, 114°)). During cycle 3, the FXU decodes 
the floating-point load (17°) and discards the floating-point 
multiply-add (18°). The FPU pre-decodes both instructions 
for register renaming. The loop-closing BCT instruction 
(115°) is fetched. During cycle 4, there is no valid instruction 45 

fetch because the branch target address is still being com­
puted. The FXU computes the address of the first load (17°), 
while decoding the second load (19°). The FPU renames the 
floating-point registers of 17° and 18°. The BU detects the 
BCT instruction and generates the branch target address. so 
During cycle 5, instructions from the next iteration (171

, 181
, 

191
, 1101

) are fetched. The D-cache is accessed for the first 
load (17°). The FXU computes the address of the second load 
(19°). The first FMAinstruction (18°) is decoded at the FPU. 
During cycle 6, the FPU executes the first FMA instruction ss 
while decoding the second FMA instruction (110°). The 
D-cache is read for the second load (19°). In summary, the 
first iteration outputs x(i)' and y(i)' are stored at cycle 10 and 
11, respectively. The iteration period of this loop is 4 cycles. 
In FIG. 10, there is no branch penalty (zero-cycle branch) in 60 

FXU's and FPU's pipelines. The execute pipeline stages 
(FXE, FPEl, FPE2) are always full, primarily because the 
instruction fetch rate is twice the instruction issue rate at the 
arithmetic units. However, a true branch penalty should be 
seen at the fetch stage (IF), which in this case shows a 65 

one-cycle branch delay due to the branch address calcula­
tion. 

scheduling, out-of-order execution, register renaming, 
speculative execution, and precise interrupts), some in a 
limited way. Although four instructions are fetched per 
cycle, only two (fixed- and floating-point) or three 
(including a branch) instructions are typically issued per 
cycle. Only single-level speculative execution is supported. 
Multiple unresolved conditional branches cause issue stalls 
because of the lack of a result buffer. Precise interrupts are 
not supported in the regular mode. They are only supported 
when the processor is put in the "synchronize" mode, which 
slows the processor significantly. 

Metaflow LIGHTNING/THUNDER SPARC 

The LIGHTNING SPARC microprocessor, from Metaf 
low Technologies, Inc., is the first implementation of the 
Metaf low architecture that executes the SPARC (v.8) RISC 
instruction set. The architecture is based on the DCAF 
(dataflow content-addressable FIFO), a DRIS implementa­
tion. Although the DRIS is conceptually a central window, 
it is implemented as three physical windows: (a) the central 
DCAF in DIU which shelves all instructions (complete 
DRIS), (b) the floating-point DCAF in FPU which shelves 
only floating-point instructions, and (c) the branch DCAF in 
nu which shelves only conditional branch instructions. The 
central DCAF is the central window that is responsible for 
retiring operations; while others are only a subset of the 
central DCAF. FIG. 11 shows the LIGHTNING SPARC 
module which consists of an external cache (up to 1 Mbyte) 
and four ASICs; the instruction issue unit (nU), the dataflow 
integer unit (DIU), the floating-point unit (FPU), and the 
cache controller/MMU/bus interface (CME). The external 
cache consists of the first-level cache for data and the 
second-level cache for instructions (the first-level is in the 
nu chip). 
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The nu fetches four instructions per cycle from the 
on-chip instruction cache (I-cache), assigns a unique ID to 
each instruction, and computes their PCs. Instruction align­
ing is achieved by the self-aligning I-cache with an 
8-instruction cache line. To guarantee supplying four 5 
instructions at all times, a branch to the last three instruc­
tions of a cache line causes a read and concatenation of two 
cache lines. of these four instructions, up to three of them are 
sent to both the DIU and FPU. If one of the four instructions 
is a control-transfer instruction (branch, call, return), the nu 10 

executes that instruction itself (at the branch unit). Thus for 
a typical cycle, all four instructions fetched are not taken/ 
processed. The nu also contains a one-entry shelf for the 
processor state registers. A second instruction attempting to 
write the same state register before the first has retired, is 
stalled. 15 

The nu's branch unit executes a conditional branch 
instruction speculatively, and shelves it at the branch DCAF 
for a later misprediction check. The branch DCAF is a 
specialized DRIS implementation that shelves conditional 
branch instructions that were speculatively executed. The ID 20 

of the oldest, unresolved conditional branch instruction is 
sent to the retire logic in the central DCAF, to prevent 
retiring speculative instructions. During the writeback stage, 
the IDs and results of up to three condition code-setting 
instructions (two from the integer ALUs in DIU and one 25 

from the floating-point adder in FPU) are updated to the 
branch DCAF. During the execute stage, all branch entries 
with unlocked operands compare their condition code result 
with the prediction. If not the same, then the conditional 
branch was misspeculated. Branch repair is initiated on the 30 
oldest mispredicted branch. Its ID is broadcast to all DCAFs. 
All entries with younger IDs are flushed by moving the tail 
pointers accordingly. 

The DIU contains the central DCAF, two integer ALUs, 
one memory-address ALU, and retire logic. Up to three 35 
instructions can be allocated into the central DCAF, includ­
ing floating-point instructions which are used for retirement 
purposes. The central DCAF invokes issue and writeback 
operations only on integer and memory-reference instruc­
tions. To allow proper retiring, each cycle the central DCAF 40 
is informed by the FPU on all IDs of successfully executed 
floating-point instructions. The retire logic can retire up to 
eight instructions per cycle in the central DCAF (see 
Popescu, et al.): three that update integer registers or con­
dition codes, two that update floating-point registers, one 45 
store instruction, and any two instructions of other types 
(control transfers, processor state updates). The FPU con­
tains the floating-point DCAF, a floating-point adder, and a 
floating-point multiplier. The floating-point DCAF invokes 
allocate, issue, and writeback only on floating-point instruc- 50 
tions. To deallocate entries, the floating-point DCAF is 
informed by the DIU on the IDs of retired floating-point 
instructions. 

30 
original foundry LSI Logic Corp. These shortcomings found 
during the first design implementation may have also con­
tributed to the failure: 

Low Clock Speed: The out-of-order issue hardware 
greatly affects control logic delays. Within each clock 
cycle, the scheduler must examine a large number of 
instructions in the DCAF, determine which instructions 
are ready to issue, and select based on priority rules 
(see Popescu, et al.). This lengthens the basic clock 
cycle when compared to conventional RISC proces­
sors. The estimated clock speed is relatively low, in the 
40-MHz range. The out-of-order issue in DCAF also 
adds a pipeline stage for scheduling. 

No Breakthrough in Performance: The performance on 
lOOxlOO Linpack is around 18 MFLOPS while its 
competitors (the IBM RS/6000, HP PA-7100, DEC 
ALPHA AXP) are in the 30-40 MFLOPS range. The 
performance on Dhrystone (Version 1.1) is estimated at 
116,000 D/s. The single-chip, 40-MHz SUPERSPARC 
(on the SPARCSTATION (Trademark of SPARC 
International, Inc.) 10/41 system) has a Dhrystone 
performance of 192,400 D/s. 

Expensive Implementation Cost: The design complexity 
of the DCAF requires substantial VLSI real estate and 
forces an implementation with four ASICs. Several 
other single-chip processors with simpler designs have 
better performance. The medium performance of the 
Lightning SPARC does not justify the expensive hard­
ware cost and complex design. 

In 1994, Metaflow Technologies Inc.'s new partnerships 
with VLSI Technology Inc. and IBM Microelectronics gave 
a new birth to the Lightning SPARC design as the Thunder 
SPARC (see Wilson). With IBM's 0.5-micron, four-metal 
CMOS implementation the Thunder SPARC chip set is 
expected to operate at 80 MHz and deliver performance 
close to 200 SPECint92 and 350 SPECfp92. 

TI SUPERSPARC 

The SUPERSPARC processor from Texas Instruments, 
Inc. is the first commercial superscalar implementation of 
the SPARC version 8 architecture (Sum Microsystems Com­
puter Corporation, The SUPERSPARC Microprocessor­
Technical White Paper, 1992). A virtually identical version 
from Ross Technology, Inc. and Cypress Semiconductor 
Corporation is called the HYPERSPARC (Trademark of 
Ross Technology, Inc. and Cypress Semiconductor 
Corporation). FIG. 12 shows the SUPERSPARC architec­
ture which primarily consists of three functional units: an 
instruction unit, integer unit, and floating-point unit. There 
are also a 20-Kbyte I-cache that fetches four instructions per 
cycle, and a 16-Kbyte D-cache that can handle one 64-bit 
load or store per cycle. These on-chip caches can interact 
with the MBus or a second-level cache controller that The simulation study shows that the Lightning SPARC 

can exploit instruction parallelism by mainly relying on its 
dynamic hardware scheduling. The processor is observed to 

55 supports up to 1-Mbyte of external cache. 
The instruction unit is responsible for instruction fetch, 

decode, issue, and branch execution. It fetches four instruc­
tions from the I-cache to either the 8-entry sequential 
instruction queue (for sequential or untaken branch path) or 
the 4-entry target instruction queue (for taken branch path) 
(see F. Abu-Nofal, et al., "A Three-Million-Transistor 
Microprocessor," Digest of Technical Papers of the 1992 
IEEE International Solid-State Circuits Conference, pp. 
108-109, 1992) The SUPERSPARC always predicts all 

be insensitive to the quality of the SPARC compiler's code 
generator, especially toward code scheduling and register 
allocation (see Popescu, et al.). Speculative execution also 
plays an important role. The processor always has to execute 60 

some instructions speculatively, with at least one unresolved 
conditional branch. The performance limitations observed 
are memory bandwidth, FPU bandwidth, branch prediction 
accuracy, branch address calculation latency, and instruction 
cache hit rate (see Popescu, et al.). 65 branches are taken (see Sun Microsystems Computer 

Corporation, 1992), and fetches instructions in the branch­
target path with one-cycle branch delay (to calculate the 

The Lightning SPARC never became a commercial prod­
uct due to the disintegration of the partnership with the 
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target address). The selected instruction queue is essentially 
32 

is resolved). If mispredicted, all instructions and results 
currently in processing pipelines are flushed. The multiple­
path fetching into the sequential and target queues helps 
reduce the branch misprediction penalty. The SUPER­
SPARC architecture is still somewhat limited in its super­
scalar capabilities: (1) The multi-instruction issue has a lot 
of restrictions/rules, and is limited to three instructions 
despite the four-instruction fetch. Output dependencies also 
stall instruction issue because register renaming is not 

a central instruction window with in-order issue. Three 
oldest/bottom instructions from the selected instruction 
queue are presented to the scheduling and grouping logic 
block, where: (a) opcodes are decoded, (b) instruction 5 

grouping is determined, ( c) intergroup data dependencies are 
checked, ( d) resources are allocated, and ( e) bypassing is 
controlled. Not all three candidate instructions can be issued. 
There are some grouping restrictions (a total of 23 rules) 
such as (G. Blanck ans S. Krueger, "The SUPERSPARC 
Microprocessor," Proceedings of the 31th COMPCON, pp. 
136-142, 1992): 

10 supported. 

Maximum of two integer results, 

Maximum of one shift instruction, 

Maximum of one floating-point arithmetic instruction, 

Maximum of one control transfer (branch) instruction, 

Certain "hard" instructions (e.g., subroutine save/restore, 
integer multiply/divide, control-register update) are 
issued as a single-instruction group exclusively. 

Instructions are never issued out of order. Thus if the third 
instruction is issued then so are the first and second instruc­
tions. Remaining instruction(s) that cannot issue are recir­
culated to the sequential instruction queue. 

The integer unit executes all integer arithmetic instruc­
tions (except integer multiply and divide) and load/store 
address calculations. A virtual address adder and two RF 
read ports are dedicated to load/store address calculations. 
Three ALUs are dedicated to arithmetic instructions. The 
shift instructions can only execute at the first-level ALU 
with shifter. The second-level ALU is provided for "cas­
caded" arithmetic operations, to allow back-to-back depen­
dent integer instructions within an instruction group. 

The floating-point unit provides a 4-entry floating-point 
instruction queue, 5-port floating-point register file, floating­
point adder, and floating-point multiplier. A floating-point 
instruction is issued from the bottom (oldest entry) of the 
instruction queue when the operands and resources are 
available. All floating-point instructions start in order and 
complete in order (see Sun Microsystems Computer 
Corporation, 1992). The floating-point adder performs 
addition, subtraction, format conversion, comparison, abso­
lute value, and negation. The floating-point multiplier per­
forms single- and double-precision multiplication, division, 
square root, and integer multiplication and division. Bypass­
ing capabilities from the result buses and load bus to 
arithmetic units are provided. The latency of most floating­
point operations is three cycles. 

(2) Only single-level speculative execution is supported 
because of the lack of a result buffer. 

(3) Only limited out-of-order execution is supported; no 
load bypassing, and strictly in-order issue with the possibil-

15 ity of out-of-order completion of floating-point instructions 
from the floating-point queue with respect b integer instruc­
tions. 

20 

25 

DEC ALPHA 21064 

The DEC ALPHA 21064 processor is the first implemen­
tation of Digital Equipment Corporation's 64-bit ALPHA 
AXP architecture (see E. McLellan (Digital Equipment 
Corporation), "The APLHA AXP Architecture and 21064 
Processor," IEEE Micro, pp. 36-47, 1993). It is currently the 
fastest single-chip microprocessor in the industry. The archi­
tecture is a combination of superpipelined and superscalar 
architectures. The integer and floating-point pipelines are 

30 
seven- and ten-stages deep, respectively. Since DEC has an 
existing, large customer base of software, it offers compat­
ibility with VAX and MIPS codes through binary translation. 
Executable program codes are converted to AXP code 
without recompilation (with some performance 

35 
degradation). FIG. 13 shows the DEC ALPHA 21064 
architecture, which has four functional units: an instruction 
unit (IBox), an integer unit (EBox), a floating-point unit 
(FBox), and an address unit (ABox). There are also 32 entry 
by 64-bit integer and floating-point register files (RFs), 

40 
8-Kbyte D-cache, and 8-Kbyte I-cache with a 2K by 1-bit 
branch history table. The branch history table is provided for 
dynamic prediction and achieves 80% accuracy on most 
programs. Static prediction is also supported based on the 
sign of the branch address displacement field as the default; 

45 
backward branches are predicted taken and forward 
branches are predicted not-taken. 

The SUPERSPARC processor is implemented using a 0.8 
µm, three-metal BiCMOS process. It integrates 3.1 million 50 

transistors and currently runs at 50 MHz. The pipeline is 
implemented based on a two-phase, non-overlapping clock­
ing scheme. Instruction processing consists of eight pipeline 
stages/phases: two phases of instruction fetch (FO, Fl), three 
phases of decode (DO, Dl, D2), two phases of execution (EO, 55 

El), and a writeback phase (WB). The top benchmark 
performance figures are: SPECint92 68 and SPECfp92 85. 

The IBox fetches a pair of instructions from the on-chip 
I-Cache, decodes them, and issues up to two instructions that 
pass all register conflict checking. Branch instructions are 
also executed in this unit. The virtual branch target address 
is translated to its physical address, which is simply accessed 
from the I-TLB (instruction translation look-aside buffer). 
The DEC ALPHA 21064 restricts the instruction pairs that 
can be issued simultaneously, because of the limited RF 
ports and instruction issue buses. If an instruction pair 
cannot dual issue, either the pair is swapped with another 
pair capable of dual issue, or the pair is serialized, issuing 
one instruction at a time in order. Although it is not men­
tioned in McLellan, it is interpreted that pair swapping and 
serialization operations require some kind of shelving of 
fetched instructions into a pref etch buffer (central instruction 
window). Based on the rules shown below, the IBox deter­
mines which instruction pairs can dual issue. 

The SUPERSPARC processor supports five superscalar 
features; multi-instruction issue, decoupled dataflow 
scheduling, speculative execution, out-of-order execution, 60 

and precise interrupts. Speculative execution is handled by 
holding a speculative result at the end of the pipeline before 
being written to the register file (until the conditional branch 
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Dual Instruction Issue Rules in the DEC ALPHA 21064 (see McLellan) 

Valid Dual Issue: Instruction A Instruction B 

integer operate 
integer/floating-point load 
integer store 
floating-point store 
integer store 
floating-point store 
integer branch 
floating-point branch 

floating-point operate 
integer/floating-point operate/branch 
integer operate 
integer branch 
floating-point branch 
floating-point operate 
integer operate 
floating-point operate 

15 
Note that a branch instruction is formatted as an integer 

(floating-point) instruction if its condition code is in an 
integer (floating-point) register. The DEC ALPHA 21064 
avoids condition codes, special registers, or any other single 
copy of a resource which can potentially become a point of 20 
contention in a multi-instruction issue environment. Com­
pare instructions write directly to any general-purpose reg­
ister (integer or floating-point, depending on the compare 
operation type). 

The EBox contains dedicated integer multiplier, adder, 25 
shifter, and logic units. The multiplier unit is not pipelined 

FIG. 14(a) shows that all integer arithmetic and logic 
instructions (EBox), except shift instructions, have one­
cycle latency, through bypass paths. Shift instructions have 
two-cycle latency. All results in EBox are actually written 
back to the integer RF in stage 6. Without the bypass path, 
the latency would be three cycles. But with the bypass path, 
the latency is reduced to one or two cycles. This improves 
the probability that back-to-back dependent instructions 
execute at full pipeline speed. The DECchip 21064 dedicates 
45 different bypass paths. Conditional branch instructions 
(IBox) are resolved in stage 4. If a branch misprediction is 
detected, a branch repair is initiated. Instructions subsequent 
to the branch (in the wrong path) and their intermediate 
results are flushed from all pipeline stages. The alternate 
branch target address is computed as the new PC. The first 
instruction pair of the correct branch path is fetched at stage 
6. This branch misprediction causes a four-cycle delay. 
Primary, on-chip D-cache accesses of load and store instruc­
tions (ABox) complete in stage 6. So, the latency of loads 

to save silicon area. The adder and logic units have single­
cycle latency with bypass paths for register write data. The 
shifter takes two cycles to produce results, but is fully 
pipelined (one-cycle throughput). The FBox contains dedi- 30 
cated floating-point multiplier/adder and divider units. It 
supports both VAX- and IEEE-standard data types and 
rounding modes. The divider unit generates one bit of 
quotient per cycle. All other floating-point operate instruc­
tions have six-cycle latency and one-cycle throughput. 35 

and stores is three cycles. FIG. 14(b) shows that results of 
floating-point operations (from the multiplier/adder unit) are 
written back to the floating-point RF in stage 9, thus giving 
a 6-cycle latency. The ALPHAAXP architecture has several 
notable characteristics: 

The ABox performs all load and store instructions. It has 
a dedicated displacement adder to compute load/store 
addresses independently from the IBox. A 4-entryx32-byte 
store buffer is provided for load bypassing and merging of 
data from adjacent stores to increase effective bandwidth. A 40 

memory barrier instruction is provided to disable load 
bypassing when necessary. The ABox also contains a 
32-entry data TLB to translate the virtual load/store address 
to its physical address, and 3-entry load silo to buffer 
outstanding load misses. With a hit at the primary D-cache, 45 

the latency of a load is three cycles. 
FIG. 14 shows the pipeline stages of the DEC ALPHA 

21064 processor for integer and floating-point instructions. 
Up to two instructions can be processed in each stage. The 
first three stages (IF, SW, IO) can be stalled, while stages 50 

beyond IO advance every cycle (see D. W. Dobberpuhl, et 
al., "A 200-MHz 64-Bit Dual-Issue CMOS 
Microprocessor," Digital Technical Journal, Vol. 4, No. 4, 
Special Issue, pp. 35-50, 1992). In stage IF, a pair of 
instructions is fetched from the on-chip I-cache. In stage 55 

SW, a swap or serialization operation is performed based on 
the dual-issue rules. If there is a conditional branch 
instruction, the branch direction is predicted statically or 
dynamically (using the branch history table). In stage IO, 
instruction(s) are decoded and checked for dependencies 60 

between the two fetched instructions (if any). In stage 11, 
instructions) are issued to the appropriate functional unit, 
provided there is no register conflict. The source operands 
are read from the integer and/or floating-point RFs and sent 
to the EBox, IBox, ABox, and FBox. In stage 4, instruction 65 

executions start (stage Al for integer instructions, stage Fl 
for floating-point instructions). 

Design Simplicity: The architecture avoids direct hard­
ware support of features that are seldom used or prone 
to limit performance due to cycle-time restrictions. For 
example, it omits support for direct-byte load/store 
instructions and precise arithmetic exceptions. Some 
functionality sacrifices have to be made to get a very 
high processor clock frequency. Full functionality is 
achieved through software assistance. 

Privilege Architecture Library (PAL): The architecture 
supports multiple operating system (0/S) ports 
(currently OpenVMS, 64-bit Unix DEC OSF/1, 
Microsoft WINDOWS NT (Trademark of Microsoft 
Corporation)) using a set of privileged software 
subroutines, the PALcode. The PLACODE routines are 
written by the 0/S programmer and can be completely 
customized since they use a superset of the AXP 
instruction set. They can implement lowest-level 
hardware-related tasks unique to a particular 0/S, such 
as interrupts, exceptions, context switching, memory 
management, etc. The PALcode routines are invoked 
by hardware traps or explicit CALL_PAL instructions. 

Conditional Move Instructions: The AXP instruction set 
includes conditional move instructions for both integer 
and floating-point data. These instructions should help 
remove some conditional branches (see section below 
entitled Condition Move Transformation). 

Imprecise Interrupts: Precise exceptions are not sup­
ported. A user must use the trap barrier instruction 
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when precise interrupt behavior is necessary. In this 
case, the performance is sacrificed. 

The DEC ALPHA 21064 single-chip processor is imple­
mented using a 0.15 µm, three-metal CMOS process, with 
operating speeds up to 200 MHz. The extremely high clock 5 

frequency presents a difficult clocking situation. To avoid 
race conditions for latched data, the clock edge rate must be 
extremely fast (0.5 ns) and only very little clock skew can 
be tolerated. DEC's solution is to implement a very large, 
on-chip clock driver with a final stage containing 156 to 10 

172-mil-wide pMOS and 63 to 18-mil-wide nMOS devices 
(see McLellan). The clock driver occupies about 5% of the 
total chip area and draws a peak switching current of 43 A 
A0.13-µF on-chip decoupling capacitance must be added to 
overcome the supply voltage problem. The chip's power 15 

dissipation is 30 W at 200 MHz with a 3.3-V supply. 
Sophisticated packaging is used to cool the chip. These 
hardware cost and implementation problems are compen­
sated by top performance. The benchmark performance 
figures on the top-of-the-line system, the DEC 10000/610 20 

(200 MHz), are: SPECint92 116.5, SPECfp92 193.6, and 
40.5 MFLOPS on lOOxlOO Linpack (double precision). 

The DECchip 21064 processor supports three superscalar 
features; multi-instruction issue (dual issue), decoupled 
dataflow scheduling, and limited out-of-order execution (by 25 

load bypassing and pair swapping for dual issue). The load 
bypassing permits out-of-order execution between loads and 
stores. The pair swapping selects the two oldest instructions 
capable of dual issue, resulting in out-of-order issue. The 
DEC ALPHA 21064 does not push the superscalar design 30 

aggressively since the main goal is to achieve very high 
clock frequency. Some of the restrictions are: 

(1) Only two instructions are fetched per cycle, which are 
issued with some pairing restrictions. DEC has just 
tackled this problem by having a quad-issue on its next 35 

generationALPHA21164. 

36 
balanced performance across a wide range of applications. 
Typically, on-chip I-caches range from 8 to 20 Kbytes, and 
on-chip D-caches range from 8 to 16 Kbytes. The PA- 7100 
processor can have up to 1 Mbyte I-cache and 2 Mbyte 
D-cache. Unlike most processors with small on-chip caches, 
a secondary cache becomes unnecessary. Another advantage 
is the flexibility of cache size and speed to configure 
different systems, from low-end to high-end systems. 

The objective of pathlength reduction is to resolve the key 
disadvantage of RISC architectures, the code/pathlength 
expansion. There are two instruction types added to the 
RISC instruction set. First, two or three operations that 
frequently occur together are combined into a fixed-length, 
32-bit instruction. This results in multi-operation, VLIW-
like instructions (except they are contained within a short 
32-bit instruction), such as Shift&Add (perform integer 
multiplications with a small constant), Multiply&Add 
(floating-point), Compare&Branch, Add&Branch, Branch_ 
on_Bit, etc (see Lee, et al.). Other streamlined RISC 
architectures such as MIPS require multiple instructions to 
perform these tasks. Second, SIMD-like instructions are 
added to operate, in parallel, on multiple data units smaller 
than a 32-bit word. These instructions are particularly useful 
in parallel character and decimal operations. For example, in 
the C language, character manipulations frequently involve 
finding the null byte (zero) that marks the end of a variable-
length string of characters. PA-RISC's Unit_Exclusive_Or 
instruction speeds this process by testing a "no byte zero" in 
a word of four bytes in a single cycle (see Lee, et al.). The 
addition of the two instruction types is accommodated in the 
hardware without impacting the cycle time or the CPI. This 
gives the PA-RISC architecture some of the advantages of a 
very simple VLIW architecture (with short 32-bit 
instructions), without losing the advantages of a RISC 
architecture. 

FIG. 15 shows the PA-7100 architecture. The processor 
chip consists of six major blocks; the integer unit, floating­
point unit, cache control/interface, unified TLB, control unit, 
and system bus interface. The control unit is responsible for 

(2) Register renaming is not supported which inhibits 
implementation of full out-of-order execution. Anti and 
output dependencies will stall instruction issue. 

(3) No speculative execution is supported due to the lack 
of a result buffer. A conditional branch must be resolved 
at stage 4 before the predicted path can proceed further 
into the execution pipeline. An unresolved conditional 
branch will stall the decode and issue pipelines. 

40 fetching, decoding, and issuing of instructions. Two instruc­
tions are fetched from the off-chip I-cache per cycle, and 
buffered in a small prefetch buffer (central window). The 
control unit can issue up to two instructions per cycle, one 
to the integer unit and one to the floating-point unit. There 

(4) Precise interrupts are not supported in hardware. The 
software solution complicates debugging and slows 
down the processor significantly. 

HP PA-7100 

45 are no alignment or order constraints on the pair of instruc­
tions (see E. DeLano, et al., "A High Speed Superscalar 
PA-RISC Processor," Proceedings of the 31th COMPCON, 
pp. 116-121, 1992). However, no two integer or floating­
point instructions can be issued simultaneously. If a condi-

The HP PA-7100 processor is the seventh implementation 
50 tional branch instruction is encountered, a simple static 

branch prediction scheme is used to minimize branch pen­
alty. All forward conditional branches are untaken and 
backward conditional branches are taken. 

of Hewlett-Packard's PA-RISC (precision architecture, 
reduced instruction set computer-Trademark of Hewlett­
Packard, Inc.) architecture (T. Asprey, et al. (Hewlett­
Packard), "Performance Features of the PA-1100 55 

Microprocessor," IEEE Micro, pp. 22-35, 1993). It is the 
first superscalar PA-RISC design, which issues up to two 
instructions per cycle. Its design also has a VLIW flavor. 
There are two notable design approaches in the PA-RISC 
architecture; (a) the use of off-chip, rather than on-chip, 60 

primary caches (I-cache and D-cache), and (b) the reduction 
of instruction count in programs (pathlength reduction-see 
R. Lee, et al., Pathlength Reduction Features in the PA-RISC 
Architecture," Proceedings of the 31th COMPCON, pp. 
129-135, 1992) by adding VLIW-like and SIMD-like 65 

instructions. The motivation to use off-chip caches is the fact 
that on-chip caches are usually not large enough to achieve 

The integer unit contains an ALU, shift-merge unit 
(SMU), dedicated branch adder, and a 32x32-bit, general­
purpose, integer register file. Besides integer arithmetic 
instructions, the integer unit also executes branch 
instructions, loads and stores of integer and floating-point 
registers, and all VLIW-like and SIMD-like instructions, 
except the floating-point Multiply&Add and 
Multiply&Subtract. The VLIW-like instructions improve the 
utilization of the three hardware units. For example, the 
Add&Branch uses the ALU and the branch adder 
simultaneously, while the Branch_on_Bit uses the SMU 
and the branch adder (see Lee, et al.). The register bypass 
paths produce a one-cycle latency for integer arithmetic 
instructions. 
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The floating-point unit contains a floating-point ALU 
(FALU), multiplier (FMUL), divide/square root unit (FDIV/ 
SQR1), and a 32x64-bit floating-point register file. Although 
there are 32 physical registers, the first four registers (0-3) 

38 
scheduling, out-of-order execution, and precise interrupts. 
However, it does not support register renaming and specu­
lative execution. Note that static branch prediction is only 
used for speculative prefetch, not speculative execution. 

5 Instructions following an unresolved conditional branch are 
stalled and not executed. The HP PA-7100 designers rely on 
aggressive VLIW-like software scheduling and chose not to 
push the superscalar hardware too aggressively: 

are dedicated for status register and exception registers. The 
remaining 28 registers (4-31) are used as register operands 
for arithmetic operations. Each register can be access as a 
64-bit double word or as two 32-bit single words. The FALU 
performs single- and double-precision add/subtract, 
compare/complement, and format conversion instructions. 10 
The FMUL performs single- and double-precision 
multiplications, and also 32-bit unsigned integer multipli­
cations (64-bit result). The multiplier array is based on a 
radix-4 Booth encoding algorithm. The register bypass paths 
produce a two-cycle latency for all floating-point instruc- 15 
tions performed in the FALU and FMUL. The FDIV/SQRT 
performs floating-point divide and square-root operations 
based on a modified radix-4 SRT (Sweeney, Robertson, and 
Tocher-see Asprey, et al.) algorithm. The main modifica­
tion is running the radix-4 division hardware at twice the 20 
processor clock frequency to effectively achieve a radix-16 
performance. Four quotient bits are computed each clock 
cycle, giving a latency of 8 and 15 cycles for single- and 
double-precision divide/square root operations. The 
floating-point register file has five read ports and three write 25 
ports to allow concurrent execution of a floating-point 
multiply, a floating-point add, and a floating-point load or 
store. This occurs when a Multiply&Add or a 
Multiply&Subtract instruction is issued concurrently with a 
floating-point load/store instruction (categorized as an inte- 30 
ger instruction). 

The instruction execution pipeline for various types of 
instructions is shown in FIG. 16. The pipeline frequency is 
determined by the read cycle time of the off-chip cache 
RAMs (see Asprey, et al.). Each pipeline stage is divided 35 
into two equal phases (2-phase clocking scheme). The first 
three phases are dedicated for instruction fetching from the 
off-chip I-cache. Instruction decode and issue can be done in 
a mere single phase because a pre-decoded bit is dedicated 
in the instruction-field format to steer instructions to the 40 
integer and floating-point units. The phases for instruction 
execution depend on the instruction type, as depicted in FIG. 

(1) The multi-instruction issue is limited to dual issue of 
integer and floating-point instruction pairs. No two 
integer or floating-point instructions can be issued 
simultaneously. To increase machine parallelism, the 
VLIW-like and SIMD-like instructions are included, 
which increases the complexity of the compiler. 

(2) The decoupled dataflow scheduling is limited by a 
small central window (prefetch buffer) that only issues 
instructions in order. 

(3) The out-of-order execution is limited to in-order issue 
with the possibility of out-of-order completion. 

Intel PENTIUM 

The Intel PENTIUM microprocessor is the first supersca­
lar implementation that runs the widely-used x86 CISC 
instruction set. The x86 instructions use only two operands 
and permit combinations of register and memory operands. 
Thus, unlike all other commercial superscalar processors, 
the PENTIUM processor is not a typical register-to-register, 
three-address machine. Despite the complexity of CISC 
instructions, many of which require microcode sequencing, 
the PENTIUM processor manages to differentiate the 
"simple" (RISC-like) instructions and executes them in 
superscalar mode (dual-instruction issue). However, com­
plex instructions and almost all floating-point instructions 
must still run in scalar mode (single-instruction issue). The 
superscalar execution and architectural improvements in 
branch prediction, cache organization, and a fully-pipelined 
floating-point unit result in a substantial performance 
improvement over its predecessor, the i486 processor. When 
compared with an i486 processor with identical clock 
frequency, the PENTIUM processor is faster by factors of 
roughly two and five in integer and floating-point 
performance, respectively (D. Alpert and D. Avnon-Intel 
Corporation, "Architecture of the PENTIUM 

16. For a conditional branch instruction, instructions along 
the predicted path are fetched (static branch prediction) 
while the branch condition is evaluated. In the meantime the 
alternate link address (Laddr) is also calculated. If at the end 
of the execute stage the branch is found to be mispredicted, 
the previous speculative instruction fetch is flushed and new 
instructions along the correct path are fetched. If the delay 

45 Microprocessor," IEEE Micro, pp. 11-21, 1993). 

is viewed from the I-fetch to the Target I-fetch, the minimum 50 
branch delay of correctly and incorrectly predicted branches 
is one cycle and two cycles, respectively. The PA-7100 
processor has extensive register bypass capability to mini­
mize pipeline interlock penalties. As illustrated in FIG. 16, 
the penalty for integer ALU pipeline interlock is zero cycles. 55 
The penalty for load use, floating-point ALU, or floating­
point multiply pipeline interlocks is one cycle. 

FIG. 17 shows the PENTIUM architecture. The core 
execution units are two integer ALUs and a floating-point 
unit with dedicated adder, multiplier, and divider. The 
prefetch buffers fetch a cache line (256 bits) from the I-cache 
and performs instruction aligning. Because x86 instructions 
are of variable length, the prefetch buffers hold two cache 
lines; the line containing the instruction being decoded and 
the next consecutive line (see Alpert and Avnon). An instruc­
tion is decoded and issued to the appropriate functional unit 
(integer or floating-point) based on the instruction type. Two 
instructions can be decoded and issued simultaneously if 
they are "simple" instructions (superscalar execution). 
Because x86 instructions typically generate more data 
memory references than RISC instructions, the D-cache 
supports dual accesses to provide additional bandwidth and 
simplify compiler instruction scheduling algorithms (see 
Alpert and Avnon). 

The HP PA-7100 processor is implemented using a 0.8 
µm, three-metal CMOS process. It operates at 100 MHz and 
integrates about 850,000 transistors. The use of off-chip 60 

caches results in a large pin-count package, 504-pin PGA. 
The reported benchmark performance figures on the top-of­
the-line system, the HP9000/735 (99 MHz), are: SPECint92 
80.0, SPECfp92 150.6, and 40.8 MFLOPS on lOOxlOO 
Linpack (double precision). 

The integer unit consists of two integer pipelines, the U 
pipe and V pipe. Two consecutive integer instructions 11 and 

65 I2 can be issued simultaneously to U pipe and V pipe, 
respectively, if: (a) 11 and I2 are from the class of "simple" 
instructions, (b) 11 is not a jump instruction, ( c) destination 

The HP PA-7100 processor supports four superscalar 
features; multi-instruction issue, decoupled dataflow 
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of 11 "' source of I2 (no data dependency), and (d) destina­
tion of 11 "' destination of I2 (no output dependency). 
Otherwise, only 11 is issued to the U pipe. Note that an 
instruction issue is stalled on output dependency (artificial 
dependency) because the PENTIUM processor does not 5 
implement register renaming. However, the PENTIUM anti 
dependencies are of no concern since instructions are issued 
in order and operand reads occur in an earlier pipeline stage 
than result writes. The V pipe can execute ALU operation, 
memory reference, and jump instructions. The U pipe can 10 
execute an additional set that uses special hardware avail­
able only in the U pipe, such as the barrel shifter. The 
"simple" instruction class is limited to instructions that can 
be executed directly and do not require microcode sequenc­
ing. Intel's study shows that more than 90% of instructions 15 
executed in the integer SPEC benchmark suite (SPECint92) 
are "simple" (see Alpert and Avnon). 

The PENTIUM processor employs dynamic branch pre­
diction using a branch target buffer (BTB), which holds 
entries for 256 branches. When a conditional branch instruc- 20 
tion is decoded, the processor searches the BTB to find if 
there is a history (taken or untaken) on the branch instruc­
tion. If the branch has untaken history or no history at all, 
then the processor continues to fetch and decode instructions 
along the sequential path. If there is a taken history, then the 25 
processor uses the target address in the BTB entry to fetch 
and decode instructions along the target path. The condi­
tional branch is resolved early in the writeback stage. If the 
branch is mispredicted, the processor flushes the pipeline 
and resumes fetching along the correct path. The branch 30 
history in the BTB is updated. This speculative execution 
with the BTB allows the PENTIUM processor to execute 
correctly-predicted branches with no delay. Also, because a 
conditional branch is resolved after the execute stage, a 
conditional branch instruction in the V pipe can be paired 35 
with a compare instruction or other instruction in the U pipe 
that sets the condition flag. 

The floating-point unit consists of six functional blocks: 
the floating-point interface, register file, and control (FIRC), 
the floating-point exponent (FEXP), the floating-point mul- 40 

tiplier (FMUL), the floating-point adder (FADD), the 
floating-point divider (FDIV), and the floating-point rounder 
(FRND). The FIRC contains a floating-point register file, 
interface logic, and centralized control logic. The x86 
floating-point instructions treat the register file as a stack of 45 

eight registers, with the top of the stack (TOS) acting as the 
accumulator. They typically use one source operand in 
memory and the TOS register as the other source operand as 
well as the destination register. In the case of 64-bit memory 
operands, both ports of the D-cache are used. To swap the 50 

content of the TOS register with another register, the FXCH 
instruction (non-arithmetic floating-point instruction) is 
used. The FIRC also issues floating-point arithmetic instruc­
tions to the appropriate arithmetic blocks. Non arithmetic 
floating-point instructions are executed within the FIRC 55 

itself. Floating-point instructions cannot be paired with any 
other integer or floating-point instructions, except FXCH 
instructions. 

The FEXP calculates the exponent and sign results of all 
floating-point arithmetic instructions. The FADD executes 60 

floating-point add, subtract, compare, BCD (binary coded 
decimal), and format conversion instructions. The FMUL 
executes single-, double-, extended-precision ( 64-bit 
mantissa) floating-point multiplication and integer multipli­
cation instructions. The FDIV executes floating-point 65 

divide, remainder, and square-root instructions. And, the 
FRND performs the rounding operation of results from 

40 
FADD and FDIV. The floating-point unit also supports eight 
transcendental instructions such as sine (FSIN), cosine 
(FCOS), tangent (FPTAN), etc. through microcode 
sequences. These instructions primarily involve the FADD 
arithmetic block and sometimes other arithmetic blocks. 

The PENTIUM processor is implemented using a 0.8 µm 
BiCMOS process. It integrates 3.1 million transistors and 
currently runs at 66 MHz. The integer pipeline consists of 
five stages: prefetch (PF), first decode (Dl), second decode 
(D2), execute (E), and writeback (WB). The floating-point 
pipeline consists of eight stages, where the first three stages 
(FP, Dl, and D2) are processed with the resources in the 
integer pipeline. The other floating-point stages are: operand 
fetch (E), first execute (Xl ), second execute (X2), write float 
(WF), and error reporting (ER). The reported benchmark 
performance figures of the PENTIUM processor are: SPE­
Cint92 64.5 and SPECfp92 56.9. 

The PENTIUM processor supports five superscalar fea­
tures; multi-instruction issue, decoupled dataflow 
scheduling, speculative execution, out-of-order execution, 
and precise interrupts (using the safe instruction recognition 
mechanism (see Alpert and Avnon). However, most of these 
features still have serious limitations which are supposed to 
be improved in the P6 and P7 designs: 

(1) The multi-instruction issue is generally limited to two 
"simple" integer instructions with certain restrictions. 
Output dependencies (artificial dependencies) stall 
instruction issue because register renaming is not sup­
ported Floating-point instructions also cannot be paired 
with any other instructions, except occasionally with 
FXCH instructions (but FXCH may be considered as a 
useless or unnecessary instruction in true register-to­
register architectures). The multiple floating-point 
arithmetic blocks (FADD, FMUL, FDIV) are underuti­
lized by the limitation of one floating-point instruction 
per cycle. 

(2) The decoupled dataflow scheduling becomes extra 
difficult and inefficient by the variable length of x86 
instructions. Some allocated bits of entries in the 
instruction window (prefetch buffers) are seldom used 
and wasted. 

(3) Only single-level speculative execution is supported 
because of the lack of a result buffer. An unresolved 
conditional branch instruction at the WB stage will stall 
the processor and inhibits further speculative execu­
tion. Adding a result buffer is not easy because an x86 
instruction can have a memory source operand and 
destination. Memory-to-register, memory-to-memory, 
register-to-memory, and immediate-to-memory 
instructions are permitted. Unlike register identifiers, 
memory identifiers (addresses) are relatively long. The 
result buffer will require extra storage and wide com­
parators for long identifier bits. 

( 4) The out-of-order execution is limited to in-order issue 
with the possibility of out-of-order completion between 
instructions in the integer and floating-point pipelines. 
Load bypassing is also not supported. 

Summary of Comparisons 

Table 3 is a summary of existing commercial superscalar 
microprocessors (except the Thunder SPARC) discussed in 
previous sections. The integration, clock speed, SPEC 
benchmark performance, superscalar features supported, 
instruction and result shelving type, execution unit 
composition, instruction decoder size, instruction issue 
capability, branch prediction type, and notable characteris-
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tics of each microprocessor are described. "All six" super­
scalar features means multi-instruction issue, decoupled­
dataflow scheduling, out-of-order execution, register 
renaming, speculative execution, and precise interrupts. 

Table 4 is a summary of upcoming commercial supersca­
lar microprocessors in 1995/1996. DEC continues to lead 
the pack with its new ALPHA 21164 design. The major 
architectural improvements from its ALPHA 21064 prede­
cessor are quad-issue, additional integer and floating-point 
execution units (total 2 each), and the inclusion of a sec­
ondary cache on chip (see L. Gwennap, "Digital Leads the 
Pack with 21164," Microprocessor Report, Vol. 8, No. 12, 
pp. 1 and 6-10, Sep. 12, 1994). The last feature is the first 

42 
decoupled dataflow scheduling) with a set of three central 
windows (16-entry queues) for memory, integer, and 
floating-point instructions (see L. Gwennap, MIPS RlOOOO 
Uses Decoupled Architecture," Microprocessor Report, Vol. 

5 8, No. 14, pp. 17-22, Oct. 24, 1994). The RlOOOO uses a 
register-mapping table (also called rename buffer) to support 
register renaming. Both integer and floating-point units have 
64, 64-bit physical registers that are mapped to 32 logical 
registers. To handle multi-level speculative execution (up to 

10 4 conditional branches), the RlOOOO saves the mapping table 
in shadow registers when encountering a conditional branch. 
The HP PA-8000 is the first 64-bit PA-RISC architecture 
implementation (see L. Gwennap, "PA-8000 Combines 

in the history of microprocessors and makes the ALPHA 
21164 the densest with 9.3 million transistors. Sun Micro- 15 

Complexity and Speed," Microprocessor Report, Vol. 8, No. 
15, pp. 1 and 6-9, Nov. 14, 1994). Like its predecessors 
(PA-7100, PA-7200), the PA-8000 will not have on-chip systems' ULTRASPARC (Trademark of Sun Microsystems 

Computer Corporation) incorporates nine independent 
execution units, including dedicated graphics add and mul­
tiply units. The ULTRASPARC is the first implementation 
of the new 64-bit SPARC version 9 instruction-set 
architecture, which supports conditional move instructions. 
It also supports MPEG-2 graphics instructions in hardware 
to boost multimedia application performance. The IBM 
POWERPC 620 is the latest and currently fastest among 
other PowerPC models (601, 603, 604, 615). It uses reser­
vation stations to shelve instructions at six execution units 
(see L. Gwennap, "620 Fills Out POWERPC Product Line," 
Microprocessor Report, Vol. 8, No. 14, pp. 12-17, Oct. 24, 
1994). IBM put two entries for each execution unit with the 
exception at load/store unit (3 entries) and branch unit ( 4 
entries). The MIPS Technologies' RlOOOO, also known as 
TS, uses "decoupled architecture" (another term for 

cache. PA-RISC is the only advanced, general-purpose 
microprocessor architecture that uses off-chip Ll cache. The 
AMD KS is currently the fastest x86 processor, claimed to 

IBM 
RS/6000 

Integra- Multi-chip 
tion 
Clock 62.5 MHz 
Speed 
SPECint92 61.7 
SPECfp92 133.2 
Supersca- All six 
lar Fea-
tu res 

Instruction FIFO I-buf-
Shelving fers (cen-

tral, dist. 
in FXU and 
FPU) 

Result Reg.-map-
Shelving ping table 

in FPU 
Indepen 1 branch 
dent unit, 
Execution 1 FX unit, 
Units 1 FP unit 

(MAF) 

20 be at least 30% faster than the Intel PENTIUM at the same 
clock rate (on integer code-see M. Slater, "AMD's KS 
Designed to Outrun PENTIUM," Microprocessor Report, 
Vol. 8, No. 14, pp. 1 and 6-11, 1994). Despite the CISC x86 
instruction set, the architecture internally runs RISC 

25 instructions, called ROPs (RISC operations). To achieve 
this, x86 instructions are predecoded as they are fetched 
from memory to the I-cache. The predecoder adds five bits 
to each byte, causing an increase of about 50% at the I-cache 
array. The KS applies all the superscalar techniques that 

30 Johnson believed to be the best, the reservation station for 
instruction shelving and the reorder buffer for result shelving 
(see Johnson, 1991). 

TABLE 3 

Comparisons of Commercial Superscalar Microprocessors 

Metaflow 
THUNDER TI DEC HP Intel 
SPARC SUPERSPARC ALPHA21064 PA-7100 PENTIUM 

Multi-chip Single-chip Single-chip Multi-chip Single-chip 

80 MHz 50 MHz 200 MHz 99 MHz 66 MHz 
(est) 
200 (est) 68 116.5 80.0 64.5 
350 (est) 85 193.6 150.6 56.9 
All six All six, Multi-inst. All six, All six, 

except re- issue, except re- except re-
gister decoupled gister re- gister re-
renaming dataflow naming and naming 

sched., speculative 
out-of-or- execution. 
der exec. 

DCAFs Central Central Central Central 
(ORIS) win-dow and window window window 
(central, dist. win- (pre-fetch (prefetch (pre fetch 
branch, dow (for FP buf-fers) buffers) buffers) 
floating- inst.) 
point) 
DCAFs None None None None 

1 branch 1 branch 1 branch 1 integer 2ALUs, 
unit, unit, unit, unit (ALU, 1 FP unit 
3 ALUs, 3 ALUs, 1 address shift, add, mult, 
1 FP add, 1 address unit, branch div) 
1 FP mult add, 1 integer add), 

1 FP unit unit, 1 FP unit 
(add, mult) 1 FP unit (mult, 

(add, mult, div/sqrt) 
div) 
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TABLE 3-continued 

Com12arisons of Commercial Su12erscalar Micro12rocessors 

Metaflow 
IBM THUNDER TI DEC HP Intel 
RS/6000 SPARC SUPERSPARC ALPHA21064 PA-7100 PENTIUM 

Decode 4 instruc- 4 instruc- 4 instruc- 2 instruc- 2 instruc- 2 instruc-
Size tions tions tions tions tions tions 
Max Issue lFXorFP 1 branch Triple Dual issue Dual issue Dual issue 

load/store inst., issue with of certain of integer of simple 
inst., 2 integer certain integer/ and floa- ins true-
1 FP arith. inst., restriction floating- ing-point tions. 
inst., 1 load/ s. point ins true-
1 branch store inst, operate, tions. 
inst., 1 FP add/ branch, and 
1 condi- sub, load/store. 
tion-regi- 1 FP 
ster inst. multiply 

Branch Static Dynamic Static (al- Static and Static Dynamic 
Prediction (con-slant ways taken) dynamic (BTFN) 

pre-dieted-
i;ot-taken) 

~Has the ~Multiple- ~Hybrid of ~Uses off-Notes nFP mult- nSupports 
add in 2 most com- path fetch- superpipe- chip, pri- the wide-
~ycles. plete dyna- ing into lined and mary caches ly-used x86 
nThis mic hard- se-quential supersca- for size inst. set. 
RS/6000 de- ware sche- and target lar. and speed ~The only 
sign is the duler with inst. ~True 64- flexi- superscalar 
foundation full out- queues bit archi- bility processor 
of of-order helps lecture. nSupports that is not 
follow-on issue. reduce ~Supports VLIW-like a register-
single-chip ~Low clock branch cond. move and SIMD- to-regi-
versions speed due mispredic- inst. like inst. ster, 3-ad-

(Power PC to complex tion ~Supports for path- dress ma-
601, 603, out-of-or- penalty. multiple length chine. 
604, 620) der issue. 0/S using reduction. n 
~Precise ~Thunder PALcode. Inefficient 
interrupts SPARC was a ~Imprecise inst. 
only in reborn of interrupts. window due 

synchroniz the to vari-
mode. unsuccessfu able-length 

1 Lightning x86 inst. 
SPARC. 

TABLE 4 

Com12arisons of U12coming Comercial Su12erscalar Micro12rocessors 

MIPS 
Sun Technolo-
Micro- IBM gies 

DEC ALPHA systems POWERPC RlOOOO HP AMO 
21164 ULTRASPAR 620 (TS) PA-8000 KS 

Integra- Single-chip Single-chip Single-chip Single-chip Mult-chip Single-chip 
tion 
Clock 300 MHz 167 MHz 133 MHz 200 MHz n/a n/a 
Speed 
SPECint92 330 275 (est) 225 (est) 300 (est) n/a n/a 
SPECfp92 500 305 (est) 300 (est) 600 (est) n/a n/a 
Supersca- Multi-inst All six, All six All six All six All six 
lar . issue, except re-
Features de-coupled gister 

da-taflow renaming 
sched., 
out-of-or-
der exec. 

Instruc- Central Central Reservatio Central/ Central Reserva-
tion window window and ~Stations dist. win- window tion Sta-
Shelving pre-fetch dist. win- dow (mem- (56 tions 

buffers) dow (for ory, inte- entries) 
FP inst.) ger, FP 

queues) 
Result None None Rename Register- Rename Reorder 
Shelving buf-fers mapping buf-fer buffer 

(reg. map table 
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TABLE 4-continued 

Com12arisons of U12coming Comercial Su12erscalar Micro12rocessors 

MIPS 
Sun Technolo-
Micro- IBM gies 

DEC ALPHA systems POWERPC RlOOOO HP AMO 
21164 ULTRASPAR 620 (TS) PA-8000 KS 

table) 
Indepen- 1 branch 1 branch 1 branch 1 branch 1 branch 1 branch 
dent unit, unit, unit, unit, unit, unit, 
Execution 1 address 1 address 1 address 1 address 2 address 2ALUs, 
Units unit unit, unit, unit, units, 2 load/ 

(load/ 2ALUs, 2ALUs, 2ALUs, 2ALUs, store, 
store), 1 FP add, 1 complex 1 FP add, 2 FPUs 1 FPU 
2 integer 1 FP mult, integer 1 FP multi (MAC 
units, 1 FP div/ unit, div/sqrt /div/sqrt) 
2 FP add/ sqrt, 1 FP unit 
div, 1 graphics 
1 FP mult add, 

1 graphics 
mult 

Decode 4 instruc- 4 instruc- 4 instruc- 4 instruc- 4 instruc- 4 instruc-
Size tions tions tions tions ti on tions 
Max Issue Quad issue Quad issue 6 (w/ 6 instruc- 4 instruc- 6 ROP in-

of 2 dist. tions (1 tions (2 structions 
integer windows, instructio to address (1 inst 
and 2 each exec. ~from unit, 2 to from each 
floating- unit can each ALUs/ execution 
point in- issue an execution FPUs) unit) 
structions. inst. unit) 

Branch Static and Dynamic Dynamic Dynamic Dynamic Dynamic 
Predic- dynamic 
tion 
Notes •Towering • Include •Based on •Has a •First •Claimed 

manufactur a special SPECint92, "resume" 64-bit PA- to deliver 
-ing cost purpose the 620 cache to RISC at least 
($430) graphics design hold se- archi- 30% faster 
leads to unit that does not quential tecture than PEN-
an supports improve alternate- im- TIUM at 
expensive MPEG-2 in- much from path in- plementa- the same 
initial structions 604, par- structions ti on clock rate 
price of •First ticularly in case of • Like its (on 
$2,937 (9/ 64-bit V9 if the 604 branch predeces- integer 
12/94) instructio reaches mis- sors, no code). 
•Most n-set 133 MHz prediction on-chip •On the 
dense mi- archi- also. Key •Handles cache, average 
croproces- tecture advan-tage 4-level off- 16-bit x86 
sor to im- of 620 is speculativ setting code 
date at plementa- its higher penalty by produces 
9.3M ti on mem-ory execution having 1.9 ROPs/ 
transistor band- large off- inst., 32-

width. chip L1 bit x86 
cache code pro-

duces 1.3 
ROPs/inst. 

55 

Motivation for the Invention Assume the processor has eight execution units: a branch 
unit, two fixed-point AL Us, a floating-point ALU, a fioating­
point multiply /divide/square-root unit, two load/store units, 
and a fixed/floating-point move unit. The processor begins 

60 by fetching at least one instruction or multiple instructions 
(Na instructions in this case, which is the decoder size) from 
the I-cache. It is to be understood that one or more memories 
or other storage units may be employed instead of the 

The primary objective of the invention is to find a better 
design alternative to the reorder buffer (considered the most 
complete, known result shelving technique) and the reser­
vation station (considered the best known instruction shelv­
ing technique to give maximum machine parallelism) tech­
niques. Before pointing out to the drawbacks in the two best, 
existing techniques in result and instruction shelving, let us 
understand fully how the two operate in a superscalar 
processor. FIG. 18 illustrates how the RB and the RS 65 

techniques can be combined to fully support all six super­
scalar features. 

I-cache for performing the same function as the I-cache. 
These instructions are decoded in parallel and dispatched to 
their respective execution unit's reservation station. For 
each decoded instruction, an entry is allocated at the RB to 



6,112,019 
47 48 

shelve its result. To read its operand(s), each operand's 
register number is presented to the RB and register file, in 
which three situations can occur. First, if there is a matched 
entry in the RB and the register operand value has been 
calculated, then the operand value is routed/copied to the 5 

instruction's reservation station. Second, if there is a match 
entry in the RB but the value has not finished calculation, 
then the operand tag is copied instead to the reservation 
station. Third, if there is no match entry in the RB then the 
value from RF is the most recent one and copied to the 10 

tical because reads from and writes to the RB are very 
difficult and incur more propagation delay due to changing 
FIFO entry positions in a processor cycle. At the end the 
processor cycle time will just get longer. Second is to 
implement the FIFO as a barrel-shift register array with a 
variable number of shifts from 1 to Nret' as shown in FIG. 
19. Now each entry at position i must be able to mux in from 
any entry above it at positions i+l, i+2, ... , i+Nret or the 
last FIFO array index. This barrel-shift register array imple-
mentation requires a substantial number of multiplexers. 

Besides the prioritized associative lookup problem, the 
RB has two other drawbacks, the need to allocate dummy 
branch entries (entries without a result/register value) and 
the substantial use of shared global buses. To support 

reservation station. 
During the issue/execute stage, one ready instruction (i.e., 

all of its operand values are available) is issued and executed 
immediately, even if it is out of order, and independent of 
other execution units' issues. If there are multiple ready 
instructions, one is chosen based on the arbitration protocol 
(aging, random, pseudo-random, small index, etc.). 

During the writeback stage, the execution result is written 
to the RB (not RF) and also forwarded to any reservation 
station waiting for this result value. In every cycle, each 
valid reservation station with unavailable operand(s) com­
pares its operand tag(s) with all result tags to determine 
when to grab certain result value(s). Note that if each 
execution unit's output port does not have a dedicated result 
bus (Nres<fixed-point output ports, or Nresfp<fioating-point 
output ports), then arbitration logic must be provided to 
resolve who can use the shared result buses at a given time. 

During the retire stage, the bottom entry at the RB FIFO 
is checked to see if the value can retire to the RF or not. An 
instruction's RB entry can only retire if: (a) the instruction 
completed execution without an exception error, (b) all 
preceding instructions also completed without exception, 
and ( c) the instruction is not speculative (beyond an unre­
solved conditional branch). To keep up with the input rate at 
the fetch/decode stage, multiple entries (Nret) must be 
retired, in order, from RB to RF. 

Drawbacks in the Reorder Buffer Technique 

The major implementation drawback in the RB technique 
is the slow and expensive prioritized associative lookup. 
During operand read in the decode stage, a register number 
is presented to the RB to find the most recent entry that 
matches the register number. However, the register number 
is not a unique associative key. Often there are multiple 
entries in the RB with the same register number, due to 
register re-uses (multiple updates to the same register of 
different instructions). In such a case, the associative lookup 
must be prioritized so that the most recent entry (of the most 
recent assignment) is selected from the RB and also from 
preceding instructions in the decode group that are currently 
in RB allocation ports (about to be written). If the RB is 
implemented as a circularly addressed register array, then 
the prioritizing circuit is complicated by the constant change 

15 multi-level speculative execution, a typical RB allocates a 
dummy RB entry for every decoded conditional branch 
instruction. This increases the usage of RB entries unnec­
essarily. The RB technique also requires that operand values 
to be distributed to all participating functional units, result-

20 ing in a large amount of global (chip-wide) wire traces that 
are heavily loaded. The result buses that carry result values 
to be written back to the RB also require shared-global wires 
that are heavily loaded with multiple driving sources, which 
are prone to transmission line noise problem. With the 

25 continuing shrinkage of transistor sizes, global wires are 
becoming more dominant in terms of silicon area 
consumption, propagation delay, and signal noise. 

The complexity of RB circuit implementation is a proven 
fact. AMD found out in their superscalar 29K processor (see 

30 B. Case, "AMD Unveils First Superscalar 29K Core," 
Microprocessor Report, Vol. 8, No. 14, pp. 23-26, 1994), an 
"intellectual predecessor" to the KS, that a mere 10-entry RB 
plus its operand and result buses consumed a significant chip 
area, about the same as a 4-Kbyte cache, with the chip 

35 fabricated in an advanced 0.5-micron CMOS technology! 

Drawbacks in the Reservation Station Technique 

There are two major drawbacks in the RS concept; (1) 
operand value copying and (2) result forwarding. Both result 

40 
in tremendous amounts of shared (heavy-loading), global 
(chip-wide) wires. With increasingly smaller transistor sizes, 
the dominant factors in determining silicon area and propa­
gation delays is not the transistor, but metal wire, especially 
the ones that run across or all over the chip. Therefore, we 

45 
should view the global wire as a precious item in designing 
a circuit, in particular if it is a shared line with many fanouts 
or loadings. 

The wide operand buses required for operand value 
copying waste a lot of precious data bandwidth in the 

50 processor chip. Most of the time only a few of the total 
operand buses (2*2*Na*64 global wires for a 64-bit 
architecture) are used. The DLX simulation results show a 
low bandwidth usage of less than 7% for the operand buses! 
The waste is due to several factors: 

of the head and tail pointer positions with the possibility of 55 

a wrap around. The extra delay incurred by the prioritizing 
logic will slow down operand reads. 

Many decoded instructions have only one register oper­
and (arithmetic instructions with immediate value 
operand, loads, conditional branches, floating-point 
convert instructions), or worse, no register operands at 
all Gumps, traps). 

The prioritizing circuit complexity can be reduced by 
constructing the RB as a true FIFO array. However, the FIFO 
array implementation has a penalty in supporting multi-entry 60 

retire. A FIFO typically shifts out one entry at time. With 
multiple-instruction fetch and decode, multiple RB entries in 
the FIFO must be deallocated/freed to keep up with the 
allocation rate and reduce decode stalls due to RB being full. 
To shift multiple entries at a time, two things can be done. 65 

First is to clock the shift-register array using a frequency that 
is Nret times the processor clock frequency. This is imprac-

When there is a branch-taken instruction (either 
predicted-taken conditional branch or unconditional 
jump) in the decode group, the subsequent instructions 
are invalidated, resulting in zero operand bus usage. 

When a register operand value is not available at the RB 
(still being calculated), the operand bus only carries a 
small number of operand tag bits (e.g., a 6-bit tag in a 
64-bit data bus uses only 9% of that bus bandwidth). 
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When the decode stage stalls, zero operand buses are 
used. 

Besides the expensive global wire cost, result forwarding 
also requires complex circuitry. Each reservation station 
must have comparators to associatively match any tag in 5 
result buses, and wide multiplexers (64-bit, [2*Na+Nres]:l 
muxes) to receive operand values not only from operand 
buses, but also result buses. 

Result value forwarding also requires a set of additional 
comparators (exactly 2*Na*Nres+2*Na*Nresf comparators) 

10 
to avoid potential pipeline hazards in the forwarding logic 
(see Weiss and Smith, and Johnson, 1991). The hazard arises 
when a decoded instruction's operand tag matches with the 
result tag of a result value that will be forwarded at the same 
time the decoded instruction is dispatched to a reservation 
station. Had this hazard not been detected, the instruction 15 

will miss the forwarded result and stall in the RS for a long 
time until the tag has wrapped around, causing an incorrect 
operation. FIG. 20 illustrates what happens if this result­
forwarding hazard is not detected. The example shows that 
instruction Ix is decoded at cycle t, executed on the first half 20 

of cycle t+ 1, and its result is forwarded or appears at a result 
bus on the second half of cycle t+l. In the meantime, 
instruction IY, which has a data dependency with Ix on result 
R3, is decoded on the first half of cycle t+l and dispatched 
to a RS with R3's tag on the second half of cycle t+l, not 25 
knowing that the R3 value is being forwarded at this time. 
At cycle t+2, IY tries to execute but its R3 operands are 
unavailable, hopelessly waiting for the missed R3 value to 
appear at one of the result buses. To overcome this result­
forwarding hazard problem, we can simply stall the decode 

30 stage with some performance penalty, or provide a set of 
wide-bus multiplexers to allow operand value bypassing 
from the result buses. Under normal condition, a RS receives 
operand values from the register unit. When a result­
forwarding hazard is detected, then the RS can receive the 
correct operand value directly from the corresponding result 35 

bus. 

Proposed Solution to Drawbacks in the Reorder 
Buffer and Reservation Station Techniques 

The invention involves a design alternative that will solve 40 

the drawbacks in the reorder buffer and reservation station 
techniques. 

The invention presents new or improved result shelving 
and instruction shelving techniques that maintain the good 
characteristics of reservation station and reorder buffer 45 

50 
Then the MRB circuit structure is explained. To support 
multi-level speculative execution without the need to enter 
dummy branch entries in the RB, a new small circuit, the 
Flush Address Queue (FAQ) is added and described. 

Rationale for the MRB 

The reorder buffer was originally proposed by Smith and 
Plezkun to handle precise interrupts in pipelined, scalar 
processors with out-of-order completion. Conceptually, the 
RB is a content-addressable, circular buffer with head and 
tail pointers. To use Smith and Plezkun's RB "as is" in 
superscalar processors will produce unreasonable hardware 
cost and seriously limit performance because of the 
"multiple-bypass check" (prioritized associative lookup) 
problem (see Smith and Pleszkun), the limited access ports 
(only 1 allocate port, 2 read ports, 1 write port, and 1 retire 
port) that impedes machine parallelism, and the inability to 
support speculative execution. This RB paper design was 
modified by Johnson to make it more suitable for superscalar 
processors (see Johnson, 1991), and later realized in the 
superscalar 29K and AMD K5 processors (see Slater, Case). 
The modifications include: (a) providing multiple ports for 
allocate (Na ports), read (2*Na ports), write (Nres ports) and 
retire (Nret ports), (b) allocating a dummy entry for every 
conditional branch instruction to support speculative 
execution, and ( c) eliminating the unnecessary "result shift 
register" to reserve a result bus, since the reservation stations 
already contain an arbitration mechanism for result buses. 

Although Johnson's RB is probably considered the most 
complete result shelving technique, it still has one major 
implementation drawback, the prioritized associative lookup 
This problem originates from a flaw in the RB concept, the 
use of a non-unique associative key (register number) during 
RB's associative read. This non-unique associative key 
forces the RB to prioritize the associative lookup, which 
results in a slow and complex hardware. Therefore it is 
logical that we need to replace this register number with a 
unique associative key. 

Ideally we want to use the same result register tag, which 
is used during the result write operation, as the unique 
associative key for read operation. This tag is written to the 
RB entry during allocation. Smith and Plezkun use the RB 
identifier or array index as the result tag. But this tag is not 
unique with the presence of a second RB (e.g., for a 
floating-point register file). Moreover, the tag will keep 
changing as the FIFO queue is advanced during multi-entry 
retire. Tracking many different register tags plus conditional 
branch tags can be a nightmare. Weiss and Smith suggested 

designs, but eliminate or reduce their major implementation 
disadvantages. By maintaining/improving the good charac­
teristics in the new design, we can reasonably target a 
performance that is on par or better on a cycle-by-cycle basis 
(cycle count). By eliminating or reducing the implementa­
tion drawbacks we ensure that the hardware cost decreases 
(smaller circuit/die area) and the actual speed or perfor­
mance of the processor increases (faster circuit leading to 
reduced cycle time or more operations done per cycle). 
However, care must taken not to propose a hardware sim­
plification which could result in some penalty on the cycle 
count. Intelligent choices must be made to minimize the 
cycle count penalty such that it can be easily recovered 
through faster and more efficient circuit implementation. 

50 a more flexible way of assigning unique result tags, which 
was originally proposed to be used in reservation stations 
(see above section entitled Reservation Stations). When an 
instruction is decoded, a new tag or identifier (inst_ID) is 
assigned from a "tag pool" that consists of some finite set of 

The following sections describe the invention, the Modi­
fied Reorder Buffer (MRB) and the Distributed Instruction 
Queue (DIQ.An example of how the MRB and DIQ are used 
together in a superscalar processor is given below. 

Modified Reorder Buffer (MRB) 

Before the MRB technique is presented, the thinking 
process that led to the proposed MRB solution is described. 

55 tags. Each destination register is then tagged with the 
inst_ID of the producer instruction. When the instruction 
completes, the inst_ID is returned to the pool for reuse. This 
tag pool, called the Instruction ID Unit (IIU), can be 
implemented as a circular instruction array (IA). The inst_ 

60 ID is composed of (color_bit, IA_index-these are dis­
cussed in more detail below), the current "color" bit 
appended with its IA index (entry address), the same scheme 
used in the DRIS technique (see above section entitled 
DRIS). The color bit is used to distinguish the age or order 

65 of instructions when the valid entry area wraps around. 
Now the question is, how do we get the source operand 

tag to be used as the unique associative key when reading the 
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field 191 of the previously allocated MRB entry cell 195. 
This MRB entry cell 195 can be found because every result 
is accompanied by its unique producer inst_ID (reg_tag= 
result tag). If the instruction completes with an exception, 

RB, without reading the RB first? Remember that each 
decoded instruction with register operands needs operand 
tags (or operand values in the case of a reservation station 
technique) before being dispatched to an instruction win­
dow. To accommodate these operand tags at the decode 
stage, a Register Tag Unit (RTU) is added in the fetch and 
decode unit. Each decoded instruction presents its source 
register numbers to the RTU to get the corresponding 
register tags. The RTU can be viewed as a small register file 
that maintains the most recent tag (not value) of every 
register. The most recent tag of a register is the inst_ID of 
a producer instruction that updates the register last. When an 
instruction is assigned an inst_ID by the IIU, the destination 
register entry in the RTU is written with the inst_ID. 

5 the excp bit is set. However, the processor (may be processor 
500 in FIG. 31) is not interrupted immediately but delayed 
until the retire stage. This ensures precise interrupts and 
prevents the processor from servicing false exceptions 
caused by: (a) a speculative instruction in a mispredicted 

10 path, or (b) an out-of-order instruction that completed early 
with an exception, but is then followed by a second excep­
tion of an older instruction (2nd exception's inst_ID<lst 
exception's inst_ID). This MRB entry cell 195 with a false 
exception will eventually be flushed before reaching the 

15 bottom of MRB 100, due to branch misprediction's flush or 
another exception's flush. 

With minimal hardware support in the fetch and decode 
unit (IIU and RTU), we can now construct the modified 
reorder buffer (MRB) that uses a unique associative key for 
read, write, and retire operations. With this unique associa­
tive key we can implement the MRB as a simpler, circularly 
addressed register array instead of the more expensive true 
FIFO array, because we do not have to prioritize the asso­
ciative read/lookup anymore! Moreover, with circular array 
implementation, multiple-entry retire is simply done by 
moving the head pointer several locations up. Therefore, we 
have eliminated one implementation drawback in a typical 25 

RB. 

During the retire stage, Nret entries at the bottom of MRB 
100 are checked to see if some or all can retire to the 
corresponding RF 515R or 515F. When the retire operation 

20 occurs, the reg_ value 191 field values are retired from MRB 
entry cells 195 to the corresponding RF 515R or 515F (see 
FIG. 31). The conditions for the field 191 value in an MRB 
entry cell 195 to retire are: 

MRB Structure 

(1) the producer instruction has completed without an 
exception (excp=O) and the result value has been writ­
ten (valid=l), 

(2) instructions preceding the producer instruction also 
completed without an exception (reg_tag<in_order_ 
point), and 

(3) the producer instruction is non-speculative (reg_ 
tag <branch_point ). 

FIG. 21 shows the MRB 100 structure with Nxrb entry 
cells 195, Nd allocate ports 110, Nrd read ports 130, Nwr 30 
write ports 120, and Nret retire ports 140. An MRB entry 
consists of six fields 185: not empty flag 186 (1 bit), valid 
flag 187(1 bit), exception error flag 188 (1 bit), register 
number 189 (log2 Nxrf bits, Nxrf is fixed-point RF size), 
register tag 190 (N,ag bits, N,ag=l+log2 N;m N;a=tag pool/ 
array size), and register value 191 (Ndatabits) Each MRB 
entry cell 195 consists ofD flip-flops (DFFs) or RS flip-flops 
(RSFFs)105 to hold the MRB entry fields 185 and logic 
circuits for allocate 145, read 125, write 115, and retire 
operations 135. 

The in_order_point (generated by fetch and decode unit 
520) is the inst_ID of the "oldest" instruction that has not 
completed or completed with an exception. Thus, any 

35 instruction with inst_ID<in_order_point, has completed 
successfully without an exception. The branch_point 
(generated by the branch unit-not shown) is the inst_ID of 
the "oldest" unresolved conditional branch. Therefore, all 
instructions prior to the conditional branch (inst_ 

40 ID>branch_point) are non-speculative. During the decode stage, an entry is allocated to MRB 100 
for each register assignment (R_alloc_en (i)=l). The set­
ting of a new MRB 100 entry is: n_empty=l, valid=O, 
excp=O, reg_num=destination register number, and reg_ 
tag=inst_ID assigned to the instruction. There can be up to 
Nd entries allocated in a cycle. To prevent overlapping/ 
overflowing during allocation, the n_empty flag must be 0 
(indicating the MRB cell 195 is empty) before an allocation 
is made. overlapping must be prevented because of the 
circular buffer nature. If MRB 100 overflows, a fetch and 50 
decode unit 520 is notified immediately so that the fetch and 
decode stages are stalled until there is room in MRB 100. 

The head pointer logic unit or block (head_RB)l 70 
generates retire locations and adjusts the head pointer 180 
positions for the next cycle. Since all Nret entries at the 
bottom of MRB 100 are simultaneously evaluated to retire, 

45 head_RB(i)=(head_RB(O)+i) mod Nxrb is generated for 
each i E [O,NrlJ. Each valid retirement (valid_ret(i)=l) 
moves the head pointers 180 "up" by one position. So, the 
next cycle head pointer 181 is, 

During the issue stage, operand tags are presented to 
MRB 100 from read ports 130 to read their register values 
from register value field 191. If a matched entry is found 55 

(reg_tag=operand tag), the register value has been calcu­
lated (valid=l), and the producer instruction completes 
without exception ( excp=O), then the reg_ value is passed to 

( 

N,"-1 ) 
(next) head_RB = head_RB+ ~ valid_ret(k) mod Nxrb· 

(2) 

The tail pointer logic unit or block (tail_RB)150 deter­
mines the correct tail pointer 160 position of every alloca­
tion port 110: 

tail_RB (i) = (rail_RB(O) + ~ R_alloc_en(k)) mod Nxrb. 
(3) an execution unit (505, 506, 560, 570, 580, 590, 595, or 

596-see FIG. 31). If the MRB entry at MRB 100 is found 60 

but the register value is not valid (valid=O or excp=l), then 
the issue is put on hold or stalled. If no entry is found at 
MRB 100, then the register value is in RF 515R or 515F. 
This means RF 515R or 515F contains the most up-to-date 
value of the operand. 

where i E [1,Nr 1]. The increment from the base tail pointer 
160 is determined based on the number of allocations (how 

65 many R_alloc_en(k)=l for k<i) in the previous allocate 
ports 110. The next cycle's tail_RB(O) is set to (tail_RB 
(Nrl)+R_alloc_en(Na-1) mod Nxrb' provided no branch 

During the writeback stage, as the instruction completes 
its execution, the result value is written to the reg_ value 
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misprediction is detected (mispred_flag=O). If mispred_ 
flag=l, then the next cycle tail_RB(O) is set to the 
RB_flush_tail from the RB Flush Address Queue (RBFAQ) 
165. 

FIG. 22 shows a circuit implementation of MRB 100, 
with the cell circuitry shown in FIG. 23 and the support logic 
(tail pointer logic 150, head pointer logic 170, and flags logic 
155) shown in FIG. 24. As shown in FIG. 22, each MRB cell 
195 comprises RSFFs or DFFs 105, write logic 115, read 
logic 125, retire logic 135, allocate logic 145, and mispre­
diction logic 175. In FIG. 23 Retire logic 135 has compari­
son unit 152 which may be a comparator or other device 
capable of comparing inputs as is well-known to those of 
ordinary skill in the art for checking to see if it is safe to 
retire and misprediction logic 175 has comparison unit 151 
which may also be a comparator or other device capable of 
comparing inputs as is well-known to those of ordinary skill 
in the art for flushing misspeculative MRB 100 entries. 
Throughout all schematics, a thick line indicates a multi-bit 
bus (multiple wires), while a thin line indicates a single-bit 
wire. For notational consistency, the following signal name 
conventions are made. A signal named "X(i)" indicates that 
the signal is the i'h bus in a group of buses named X. A signal 
named "Y[k ]" indicates that the signal is the k'h bit of bus 

54 
starting flush tail/address of each unresolved conditional 
branch. RBFAQ 165 can be implemented as a true FIFO, or 
better, a circular array. Each RBFAQ 165 entry in entry cells 
295 consists of only log2Nxrb-bits of MRB tail pointer 160 

5 (flush_addr). When a conditional branch instruction is 
decoded (e.g., at decode slot i), an entry is allocated at the 
tail of RBFAQ 165, with the entry's flush_addr set to the 
current tail_RB position, tail_RB(i). Up to Na entries can 
be allocated per cycle. When the "oldest" conditional branch 

10 instruction completes at the branch unit, the misprediction 
flag (mispred_flag) is checked. If mispred_flag=O (no 
misprediction), then the corresponding entry in RBFAQ 165, 
which is obviously at the bottom entry cell 295, is simply 

15 discarded/popped. If mispred_flag=l (misprediction), all 
speculative entries in MRB 100 are flushed by simply setting 
tail_RB(O) to the old tail position when the conditional 
branch was decoded (RB_flush_tail=entry's flush_addr). 
RBFAQ 165 is then reset (completely flushed) because all 

20 subsequent entries belong to branches in the mispredicted 
path. The number of entries in RBFAQ 165 (Nfaq) defines 
the maximum levels of speculative execution (total unre­
solved conditional branches) supported. 

Y. A signal named "Z(i)_z[k]" means that the signal is the 25 

k'h bit of bus Z_z, which is the i'h bus in the group bus Z. 

The FAQ tail pointer determined by tail pointer logic 250 
(FIG. 25) for an allocation at decode slot i (FAQ_alloc_ 
en(i)=l if there is a valid conditional branch instruction) is 
calculated as follows: 

A signal name "X[k ]" can also denote a register output name 
(at position k) if it is part of a register array. 

The following section describes how multi-level specu­
lative execution can be supported efficiently with the addi- 30 

tion of RBFAQ 165. 

Flush Address Queue (FAQ) 

To support speculative execution, a mechanism to recover 
and restart must exist so that correct results can still be 35 

tail_FAQ(i) = (rail_FAQ(O) + ~ FAQ_alloc_en(k)) mod Nfaq• 

(4) 

where i E [1,Na-lJ. The increment from the b base tail 
pointer is determined based on the number of allocations in 
the previous ports. The next cycle tail_FAQ(O) is set to 
(tail_FAQ(Na-l)+FAQ_alloc_en (Na-1)) mod Nfaq· 
However, if a branch misprediction is detected, the tail_ 

produced in the event of branch misprediction. Recovery 
cancels the effect of instructions under false predictions, and 
restart re-establishes the correct instruction sequence. When 
a branch misprediction is detected, speculative RB entries 
(that turn out to be mis-speculated) must be flushed to nullify 
the effect of wrong updates. The main difficulty is to quickly 
locate the starting speculative entry (reset point) for 

40 FAQ(O) is set back to zero. There is only one head pointer 
determined by head pointer logic 270 which is updated as 
follows: 

0, if branch completes w / mispred_jlag = 1 (5) 

{ 
(head_FAQ+ !)mod Nfaq. if branch completes w /mispred_jlag = 0 

head_FAQ= 
head_FAQ, otherwise (unchanged) 

50 
An example of the RB flush address queue (RBFAQ)165 

circuit implementation, comprising DFFs 205 or other 
equivalent devices, is shown in FIG. 25, with supporting 
logic in FIG. 26. Supporting logic for RBFAQ 165 also 
includes flags logic 255 for d determining the state of 

flushing, so that recovery and restart can be done with 
minimum delay. Johnson suggests allocating a "dummy" 
branch entry in the RB for every conditional branch instruc­
tion decoded (see Johnson, 1991). The branch entry is 
dummy because there will be no register update or result 
value produced. When the conditional branch is detected to 
be mispredicted, processor searches the corresponding 
branch entry in the RB. This entry becomes the reset point; 

55 RBFAQ 165. 

all entries subsequent to it are flushed by setting the tail 
pointer to the branch entry number. Or alternatively, we can 
let the "branch" entry reach the bottom (head) of the RB. 60 
However, this adds delay to the recovery and restart from a 
branch misprediction. The main disadvantage with the 
dummy-branch-entry method is the increase in RB usage. 
There can easily be multiple unresolved branch entries in the 
RB that increases the number of decode stalls due to RB 
full/overflow, or forces more entries in the RB. 65 

As a solution to this problem, a small RB Flush Address 
Queue (RBFAQ)165 is added to MRB 100 to hold the 

Distributed Instruction Queue (DIQ) 

The DIQ is a new distributed instruction shelving tech­
nique that offers a solution to drawbacks in the reservation 
station (RS) technique. First, a rationale that led to the DIQ 
solution is described. Then, the in-order DIQ 300 circuit 
structure is explained. Finally, an enhancement to the DIQ, 
the out-of-order DIQ 400 that will allow full out-of-order 
issue is described. 

Rationale for the DIQ 

First, based on comparisons of the DRIS central window 
and RS distributed window, it was decided early that the 
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proposed instruction shelving should be a distributed win­
dow technique. A distributed window implementation has 
advantages over a central window implementation because 
of its: 

maximum machine parallelism (all execution units can 
issue an instruction simultaneously), 

simpler, independent issue logic (issue only one instruc­
tion locally from a relatively small group of 
instructions, independent of other windows' issues), 

simpler instruction issue routing (many-to-one instead of 
many-to-many routing paths), 

simpler deallocation logic (free only one window entry at 
a time), and 

more efficient use of the window (deallocate issued entry 
immediately). 

To compensate for the implementation complexity of a 
central window, most commercial processors with a central 
window method have to split the large central window into 
smaller sub-central windows (see Table 4 and 5). This 
half-way solution still has most of the central window 
drawbacks. 

The reservation station (RS) technique, currently consid­
ered the best technique, was originally introduced by Toma­
sulo in 1967 in the floating-point section of the IBM 360/91 
(see Tomasulo). The main objective was to permit simulta­
neous execution of independent instructions while preserv­
ing the precedence (data dependency) constraints in the 
instruction stream. Tomasulo's RS technique was essentially 
ahead of its time. It actually accomplishes several supersca­
lar objectives; multi-instruction issue, decoupled dataflow 
scheduling, out-of-order execution, and register renaming 
(eliminating anti and output dependencies). Anti dependen­
cies (write-after-read hazards) are avoided by tagging 
registers, copying operands to reservation stations, and 
forwarding results directly to reservation stations. Output 
dependencies (write-after-write hazards) are avoided by 
comparing tags at the FLR (floating-point register unit in the 
IBM 360/91) on every register write, to ensure that only the 
most recent instruction changes the register. However, 
Tomasulo's algorithm lacks a mechanism to handle specu­
lative execution. Only the most recent updates of registers 
are maintained, regardless of whether they are speculative 
updates or not. To support multi-level speculative execution, 
the register file can be accompanied by a reorder buffer (RB) 
as seen in the AMD superscalar 29K (see Case) and KS (see 
Slater), or multiple copies of register-mapping tables (RMT) 
as seen in IBM POWERPCs and MIPS RlOOOO (see 
Gwennap, Oct. 24, 1994). 

56 
Ready instructions can be issued from the DIQ in different 

fashions. First, the simplest way, is to allow only in-order 
issue within a functional unit. Out-of-order executions can 
still be achieved amongst execution units (partial out-of-

5 order issue with out-of-order completion). Second is to 
allow some form of limited out-of-order issue such as 
checking the next entry if the bottom entry has waited for 
some time (could be as short as one cycle), or to read 
operands of the bottom two entries simultaneously. Third is 

10 to allow full out-of-order issue by keeping track of the ready 
operand tags. The selection of the issue logic protocol can 
vary from one functional unit to another. For example, the 
branch unit's DIQ which stores all pending conditional 
branch instructions may be better off to use in-order issue 

15 logic. But the fixed-pointALU's DIQ could benefit from the 
out-of-order issue logic. Extensive simulations must be 
performed across a good set of benchmark programs that 
represent the intended applications. The quality of the com­
piler and its optimization options will significantly influence 

20 the simulation results. 
In general, the in-order issue (simplest way) may be good 

enough due to several reasons. First, the performance loss 
could be recovered through faster circuit implementation by 
the simplicity of in-order versus out-of-order issue logic. 

25 Second, this problem could be easily solved in software by 
reordering instructions using list scheduling, control depen­
dence analysis, software pipelining, etc. If instructions were 
ordered or entered properly in the distributed instruction 
window, issuing instructions out of order within an execu-

30 tion unit does not increase performance significantly. Third, 
even without software scheduling, Johnson's extensive 
trace-driven simulations show that the performance loss of 
in-order issue versus out-of-order issue reservation stations 
is negligible in most cases. Across the entire range of 

35 reservation-station sizes, the biggest loss in average perfor­
mance is 0.6% for a two-instruction decoder (Na=2) and 2% 
for a four-instruction decoder (Na=4) (see Johnson, 1991). 
(The real-application benchmark programs used were 
ccom---{)ptimizing C compler), irsim---delay simulator for 

40 VLSI layouts, troff-text formatter for typesetting device, 
and yacc---compiles a context-free grammar into LR(l) 
parser tables. These programs were compiled into MIPS 
instructions.) The analogy is that, when a dependency stalls 
instruction issue at a particular execution unit, it is more 

45 important to issue instructions at other execution units 
(which will free the stall) than to issue a newer instruction 
at the stalled execution unit (see Johnson, 1991). 

With DIQs, we can efficiently construct distributed 
instruction windows that gives maximum machine 

50 parallelism, but eliminates completely both implementation 
drawbacks in the RS concept, operand value copying and 
result value forwarding. The DIQ technique reduces the 
number of shared-global wires, comparators, and multiplex­
ers significantly. 

As we can see above, there is an overlap of task since both 
the RS and RB/RMT support register renaming. And we 
know that RS's efforts to support register renaming by 
operand value copying and result value forwarding actually 
penalize the RS implementation, due to excessive shared­
global wires, comparators, and multiplexers. Therefore, if 
we already have RB or RMT or MRB result shelving, it 55 

seems logical to eliminate the expensive operand value 
copying and result value forwarding concept. The key 
concept is that no register values are stored in the DIQ, only 
their register tags. This eliminates large amount of global 
buses and wide-bus multiplexers or tristate buffers for data 60 

routing. Operand values are read directly during the issue/ 
execute stage from the reorder buffer or register file, when 
they are available. Unlike the RS technique which reads 
operand values during decode stage, the DIQ technique does 
not have the result forwarding hazard problem. Therefore, 65 

we save a substantial number of comparators and wide-bus 
multiplexers (no operand value bypassing). 

In-Order Issue DIQ Structure 

FIG. 27 shows in-order issue DIQ 300 structure with Na;q 
entry cells 395 and Na allocate ports 310, implemented as a 
circularly addressed register array. It has multiple allocate 
ports 310 and a single issue port 340. The DIQ 300 entry 
fields 385 vary from one execution unit to another with the 
first two fields, 386 and 387 (inst_ID and opcode) always 
present. The example shown is of a floating-point ALU 
which consists of: instruction tag 386 (N,ag bits), opcode 387 
(Nope bits), source 1 register number 388 (log2 N1rf bits, N1rf 
is floating-point RF size), source 1 register tag 389 (N,ag 
bits), source 2 register number 390 (log2 N1rf bits), and 
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pointer logic 350, and head pointer logic 370) shown in FIG. 
29. The DIQFAQ 365 circuit is identical to the RBFAQ 165, 
except the role of tail_RB is replaced by tail_DIQ. Note 
that in FIG. 29 tail pointer logic 350 comprises comparison 

source 2 register tag 391 (N,ag bits). Note that in contrast to 
MRB 100 which only retires field values in field 191 of 
appropriate cells 195 in the retire operation, DI Q 300 issues 
all field values of fields 386, 387, 388, 389, 390, and 391 of 
a single cell 395 in order during the issue operation to 
instruction issue register 516 (see FIG. 33). Each DIQ entry 
cell 395 consists of D flip-flops (DFFs) or other storage units 
305 (FIG. 28) to hold these DIQ entry fields and logic for the 
allocate operation as determined by allocate logic in DIQ 
cell 395. 

5 unit 351 which may be a comparator or equivalents thereof 
as would be understood by those of ordinary skill in the art. 
Comparison unit 351 is used for flushing misspeculative 
DIQ entries. 

At the end of the decode stage, the fetch and decode unit 
10 

(may be 520-see FIG. 31) dispatches the decoded instruc­
tions to all execution units (may be 560, 570, 580, 590, 595, 
596, 505, or 506 in FIG. 31). Each execution unit monitors 
the FU_num field (execution/functional unit number) in all 
dispatch buses (may be 550 in FIG. 31). If the FU_num 15 

matches with the execution unit's assigned FU_num, it 
allocates a DIQ entry for that decoded instruction. The 
allocate logic 345 generates the control signal to enable the 
DIQ 300 allocation, 

Out-of-order Issue DIQ Structure 

FIG. 30 shows an enhanced DIQ 400 structure of the same 
floating-point ALU's DIQ 300 example in FIG. 27 to allow 
full out-of-order issue, although a DIQ for any functional 
unit could be used. Note, as shown in FIG. 30 (and FIG. 27), 
some of fields 485 (385 in FIG. 27) vary with the type of 
functional unit. The enhancements in the DIQ 400 comprise 
the additions of: (l)"issued" 486, "RSl_rdy" 491, and 
"RS2_rdy" 494 flags or fields in each entry (fields 487, 488, 
489, 490, 492, and 493 are identical to fields 386, 387, 388, 

{ 

1, if FU_num(J) =execution unit's FU_num 
DIQ_alloc_en(i) = . 

0, otherwise 

(6) 

20 389, 390, and 391, respectively, of FIG. 27), (2) comparators 
(not shown) to match a result tag with all operand tags 
(RSl_tag and RS2_tag) to update their ready flags (RSl_ 
rdy and RS2_rdy), and (3) an issue logic 475 circuitry to 
determine which instruction entry should be issued next. 

25 where i E [O,Na-lJ. Up to Na entries can be simultaneously 
allocated to DIQ (300). If DIQ 300 overflows, the fetch and 
decode unit is notified immediately so that the fetch and 
decode stage are stalled until there is room in DIQ 300. The 
tail pointer logic unit or block (tail_DIQ)350 determines the 
correct tail pointer 360 position of every allocation port 310: 30 

tail_DIQ(J) = (rail_DIQ(O) + ~ DIQ_alloc_en(k)) mod Nd;q, 

(7) 

In the out-of-order issue DIQ 400 structure, an entry is 
still allocated from the tail side. Multiple tail pointers 460 
are provided to handle multiple entry allocations in entry 
cells 495 per cycle. A newly allocated entry has its RSl_rdy 
491 and RS2_rdy 493 fields initially set based on the 
operand value availability at decode time. These flags are 
updated during the writeback stage, by forwarding result 
tags 420 (NOT the result values as in the RS technique) to 
the appropriate functional units (for example, tags of 

35 
floating-point results go only to selected functional units that 
use floating-point operands). These result tags 420 are 
compared to each entry's operand tags. A match will set the 
corresponding ready flag (RSl_rdy 491orRS2_rdy493) to 
TRUE. 

where i E [1,Na-1]. The increment from the base tail pointer 
360 is determined based on the number of allocations in the 
previous ports. The next cycle tail_DIQ(0)361 is set to 
(tail_DIQ(Na-l)+DIQ_alloc_en(Na-1)) mod Ndiq' pro­
vided no branch misprediction is detected (mispred_flag= 40 

0). If mispred_flag=l, then the next cycle tail_DIQ(0)361 
is set to the DIQ_flush_tail from the DIQ Flush Address 
Queue (DIQFAQ)365. This essentially flushes instructions 
in the mispredicted branch path (if any). DIQFAQ 365 is 
identical to the one used MRB 100, providing multi-level 45 

speculative execution. Instructions are issued in order from 
the bottom of DIQ 300, pointed by issue pointer 380 as 
determined by head (issue) pointer logic 370. Issue pointer 
380 is equivalent to a head pointer (issue_DIQ=head_DIQ) 
and therefore may also be designated as head pointer 380. If 50 

there is an instruction (DIQ_empty=O), its register operands 
are read from the result shelf or directly from the register 
file. If both reads are successful (valid_read(L)=l and 
valid_read(R)=l) then the instruction is issued for 
execution, and DIQ 300 is popped. The DIQ head pointer 55 

380 is then advanced by one position, 

head_DIQ = 

Issue logic 475 selects an unissued instruction entry with 
both operands ready (RSl_rdy 491=RS2_rdy 493=TRUE). 
If there are multiple ready entries than the oldest one (the 
one closest to head pointer 480) is selected. The entry's 
issued flag is then set to TRUE. This entry will be popped 
from DIQ 400 when it reaches the bottom of DIQ 400. This 
simplification is necessary to reduce the complexity of issue 
logic 475 and allocate logic (not shown, but can be the same 
as allocate logic 345 in FIG. 29). If an issued entry is 
immediately freed then, a new entry can potentially be 
allocated in the middle of DIQ 400's "queue". 
Consequently, the age or order of instructions inside DIQ 
400 is no longer easily determined by issue logic 475. 
Multiple entry allocations from allocation ports 410 also 
become more complicated since they are not sequentially 
pushed at the tail side, but rather at random locations with 
possible contentions to resolve. Note that in contrast to DIQ 
300 which issues all field values of fields 385 of a single cell 
395 in-order during the issue operation to instruction issue 
register 516 (see FIG. 33), DIQ 400 issues all field 485 

{ 

(head_DIQ + 1) mod Nd;q, 

head_DIQ, 

if (! DIQ_empty & 

valid_read(L) & valid_read(R) 

otherwise (wait, no issue) 

60 values during the issue operation (field values for fields 487, 
488, 489, 490, 492, and 493 of a single cell 495) out-of-order 
to instruction issue register 516, except newly added field 
values 486, 491, and 494, which are discarded. 

FIG. 28 shows an example of a DIQ 300 circuit imple- 65 

mentation according to the preferred embodiment, with the 
supporting logic (allocate logic 345, flags logic 355, tail 

Combining MRB and DIQ 

FIG. 31 shows superscalar processor 500 that utilizes DIQ 
300 or 400 instruction shelving and MRB lOOR or lOOF 
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(both have identical structure to MRB 100, but MRB lOOR 
buffers fixed-point register values, while MRB lOOF buffers 
floating-point register values) result shelving techniques. 
Processor 500 has execution units 560, 570, 580, 590, 595, 
596, 505, and 506 analogous to the execution units shown in 5 
FIG. 18. Superscalar processor 500 as shown in FIG. 31 
clearly reveals a significant reduction in global buses and 
multiplexers compared to the processor of FIG. 18. By 
eliminating operand value copying and result value 
forwarding, shared-global operand buses and both shared- 10 
global result buses and wide-bus multiplexers are avoided, 
replaced by private-local (module-to-module) read buses 
and write buses 525, respectively. The only shared-global 
buses left are the required instruction dispatch buses 550 to 
deliver decoded instructions to every execution unit's DIQ 15 
300 or 400. In the case of out-of-order issue DIQs 400 a 
small number of global wires to carry result tags are added 
(not shown in FIG. 31). 

In processor 500, separate register units 530 and 540 are 
provided for fixed-point and floating-point register results. 20 
(It is also possible to combine both types of register results 
in a single register unit.) With two register units, the pro­
cessor 500 core area is basically segmented by Fixed-Point 
Register Unit (FXRU)530 to hold general-purpose "R" 
registers, and the Floating-Point Register Unit (FPRU)540 25 
to hold floating-point "F" registers. Special purpose registers 
for condition codes can use any of the "R" registers, 
following the "no-single copy of any resource" philosophy 
of the DEC ALPHA architecture. A single-copy of any 
resource can become a point of resource contention. The "R" 30 
and "F" registers (which may be contained in either register 
units 530 and 540 in 515R and 515F or in MRB lOOR and 
MRB lOOF) are also used to hold fixed- and floating-point 
exception conditions and status/control information, respec­
tively. 35 

Each of register units 530 and 540 contain register files 
515R and 515F accompanied by MRBs lOOR and lOOF, 
respectively, to support register renaming, out-of-order 
execution, multi-level speculative execution, and precise 
interrupts. FIG. 32 shows the organization of a FXRU 530 40 

(FPRU 540 is similar). RF 515R contains the in-order state, 
while MRB lOOR contains the look-ahead state. An MRB 
lOOR entry is retired to RF 515R only if it is safe. To read 

60 
FXRU 530 and FPRU 540, as well as within FXRU 530/ 
FPRU 540 itself. CIMU 596 can also be dedicated to handle 
conditional move instructions as seen in the SPARC-64 
(version 9) instruction set. Load & Store Units (LSU 0 and 
LSU 1)590 and 595 perform all load and store operations 
and include store queues (SQ)591 and 594, respectively, to 
queue the store instructions until they can be committed/ 
executed safely, with load bypassing and two simultaneous 
data accesses to D-cache 511 allowed. It is to be understood 
that one or more memories or other storage units may be 
employed instead of a cache for D-cache 511 for performing 
an equivalent function as D-cache 511. Branch instructions 
and PC address calculations are executed in the Instruction 
Address Unit (IAU)560. A BTB (branch target buffer), 
which is a combination of a branch-target address cache (or 
other memory or storage unit) and branch history table, is 
provided in IAU 560 to help eliminate some branch delays 
and predict branch direction dynamically. During processor 
500 implementation, it is best to physically layout circuit 
modules/blocks such that execution units 560, 570, 580, 
590, 595, 596, 505, and 506 surround their corresponding 
register unit 530 or 540. Execution units that access both 
register units 530 and 540, such as LSUs 590 and 595 and 
CIMU 596, can be placed between the two. In this way, local 
bus 525 wiring is more direct and shorter. 

DIQ 300 or 400 resides in each execution unit (560, 570, 
580, 590, 595, 596, 505, and 506). FIG. 33 shows FALU 506 
organization, which gives an example how DIQ 300 or 400 
is connected. An instruction issue register can be added to 
reduce the operation delays in the issue/execute pipeline. To 
allow immediate instruction execution following an instruc-
tion allocation to an empty DIQ 300 or 400, a bypass route 
from the instruction dispatch buses 550 to instruction issue 
register 516 is provided through multiplexer 517. 

During normal operations, arithmetic and load/store 
instructions proceed through five processing steps/stages; 
fetch, decode, issue/execute, writeback, and retire. (Note 
that a stage does not necessarily represent a single hardware 
pipeline stage that can be performed in one clock cycle.) At 
the fetch stage, multiple instructions (Na) are fetched 
through fetch buffer 521 simultaneously from I-cache arrays 
(or other memory or storage unit)510 (see FIG. 34). With 
instruction aligning done in I-cache arrays (or other memory 
or storage unit)510 (as in the IBM RS/6000 processor-see an operand, the register tag (reg_tag, a unique associative 

search key) is presented to MRB lOOR and the register 
number (reg_num) is presented to RF 515R, thus perform­
ing the read on both RF 515R and MRB lOOR. If a match 
entry is found in MRB lOOR (read_found=l), then the 
register content in RF 515R is considered old and ignored. 
However, if the register is not found in MRB lOOR then the 
RF 515R's read gives the correct register value. Note that 
finding a matched entry in MRB lOOR does not guarantee 
that the register value has been found. The register value 
may still be computed in one of the execution units (560, 
570, 580, 590, 595, 596, or 506) and has not been written to 
MRB lOOR. MRB lOOR includes allocate ports HOR, write 
ports 120R, read ports 130R, and retire ports 140R similar 

45 Grohoski), Na instructions can be fetched each cycle, with­
out wasted slots, as long as they reside in the same cache (or 
other memory or storage unit)510 line. At the decode stage, 
multiple fetched instructions are decoded by instruction 
decoder 524 simultaneously. Each valid instruction is 

to MRB 100. 
Fixed-point arithmetic instructions are executed in the 

Fixed-Point Units (FXU 0 and FXU 1)570 and 580. 
Floating-point arithmetic instructions are executed in the 
Floating-Point Arithmetic Logic Unit (FALU)506 and 
Floating-Point Multiply/Divide/Square-Root Unit (FMDS) 
505. Note that FALU 506 also performs floating-point 
compare/set instructions and writes its condition code 
directly to FXRU 530. Conditional/Immediate Move Unit 
(CIMU)596 performs register move instructions between 

50 assigned a tag by IIU (Instruction ID Unit)522, which is also 
used to tag the destination register of the instructions. An 
entry is allocated at the "R" (lOOR) or "F" (lOOF) MRB for 
each new register assignment. Register tags of an instruc­
tion's operands are acquired from the RTU (Register Tag 

55 Unit)523. Finally, at least one valid decoded instruction or 
all (or multiple) valid decoded instructions are dispatched to 
the appropriate execution unit's (560, 570, 580, 590, 595, 
596, 505, or 506) DIQ 300 or 400. Decoded instructions are 
shelved by DIQs 300 or 400 to allow more time to resolve 

60 data dependencies. Each DIQ 300 or 400 includes depen­
dency check logic that automatically issues an instruction at 
the bottom of DIQ 300 or 400 as soon as its operands 
become available, independent of other DIQs 300 or 400. 
Unlike typical von Neumann processors, no centralized 

65 control unit is required to explicitly and rigidly sequence 
every instruction, deciding when it can execute. This is the 
essence of dynamic, dataflow scheduling. At burst 
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major reductions in the use of comparators, multiplexers, 
and global wires with respect to the reservation station 
technique. The expensive shared-global wires are mostly 
replaced by private-local wires 525 that are easier to route, 

situations, all execution units 560, 570, 580, 590, 595, 596, 
505, and 506 simultaneously issue an instruction, achieving 
maximum machine parallelism. Results are not directly 
written back to their register file 515R or 515F, but shelved 
first at MRB lOOR or lOOF. Retiring of an instruction's result 
from MRB lOOR or lOOF to register file 515R or 515F is 
done when safe, i.e., (a) there is no exception in the 
execution of the instruction and instructions preceding it, 
and (b) there is no prior conditional branch instruction that 
is outstanding or unresolved. This ensures correct execution 

5 have less propagation delay, and occupy much smaller 
silicon area. DIQ 300's or 400's number of global wires 
remain the same as the number of DIQ 300 or 400 entries 
and data size increase. DIQ 300's or 400's cost complexity/ 
growth for comparators is O(nlog2 n) or O(n2

) compared to 
O(n3

) for RS. For multiplexers, DIQ 300 cost grows as 
10 2 of a program, giving the same results as if the program was 

run sequentially. Retiring of a store instruction, which 
involves a permanent write to D-cache (or memory, 1/0 
device, or other storage unit)511, follows the same proce­
dure. A summary of the flow of operations involved in each 
processing stage is depicted in a flowchart shown in FIGS. 15 

35 and 36. 

O(log2 n) while the RS cost grows as O(n ). Also, DIQ 300's 
or 400's number of comparators is not affected by increases 
in entry size or data size. This makes the DIQ 300 or 400 
technique more adaptable to future 64-bit superscalar archi-
tectures. 

On the performance side, the good characteristics of the 
RS technique in achieving maximum machine parallelism 
have been maintained in the DIQ 300 or 400 technique. The 
only sacrifice made in DIQ 300 technique is the use of 
in-order issue with an instruction window. This may penal-

A unique retire process, using the branch_point and 
in_order_point, has been introduced. The branch_point 
(generated by IAU 560) is the inst_ID of the "oldest" 
unresolved conditional branch (inst_ID of IAU 560's bot­
tom DIQ 300 or 400 entry). Therefore, all instructions prior 
to the conditional branch (inst_ID<branch_point) are non­
speculative. The in_order_point (generated by nu 522) is 
the inst_ID of the "oldest" instruction that has not com­
pleted or completed with an exception. Thus, if an instruc­
tion has inst_ID<in_order_point, then its preceding 
instructions completed without an exception. Unlike 
Johnson's RB and the Metaflow THUNDER SPARC's cen­
tral DCAF, this retire process using the branch_point and 
in_order_point eliminates the need for allocating "dummy 
entries" to the result shelf for branches, stores, or any other 
instructions that do not write to a register file. It also eases 
synchronization in multiple result shelves and store buffers. 

20 ize performance slightly on the cycle count, which can be 
easily recovered through faster and simpler circuit imple­
mentation. In the end, the actual speed or performance of the 
processor is faster due to reduced cycle time or more 
operations executed per cycle. (The out-of-order issue DIQ 

25 400 technique is at par with the RS technique in terms of 
cycle-count performance, but higher in terms of overall 
performance if the improved clock frequency is factored in.) 
The performance analysis confirms that a good performance 
speedup, on the cycle count basis, is still achieved. Based on 

Cost and Performance Analysis 

30 the benchmark set used, a speedup between 2.6x to 3.3x was 
realized in a 4-way superscalar model over its scalar coun­
terpart. Moreover, the performance saturates at a relatively 
low number of 4 DIQ 300 or 400 entries. These results can 
be compared to 4-way superscalar processors which typi-

In Sections 5 and 6, respectively, of Chamdani 35 

dissertation, the subject of which is incorporated herein by 
reference, cost and performance analyses are addressed for 
MRB 100 and DIQ 300. The cost DIQ 400 is slightly higher 
in number of comparators and global wires, however per­
formance is also increased slightly. For MRB 100, the cost 40 

analysis suggests a major reduction in the MRB lOO's usage 
of multiplexers and global wires, relative to the RB's usage. 
MRB lOO's cost complexity/growth for multiplexers is 
O(n2

) while the RB's is O(n3
) where 0 is interpreted to 

mean the order-of-magnitude of what is contained between 45 

parentheses and n is the number of individual units of the 
particular item being referred to. The complexity of existing 
RB techniques (Unlike the RB, the number of global wires 
used via the MRB 100 is unaffected by the data size Naata.) 
is a proven fact. AMD found out in their superscalar 29K 50 
processor (see Case), an "intellectual predecessor" to the 
KS, that a mere 10-entry RB plus its operand and result 
buses consumed a significant chip area, about the same as 
4-Kbyte cache! And this is with the chip fabricated in an 
advanced 0.5-micron CMOS technology. 

55 
The performance analysis confirms that the MRB 100 

technique does work, and retains all of RB's good perfor­
mance characteristics. Based on the benchmarking done on 

cally gain less than 2.0x over scalar designs on the SPE­
Cint92 benchmarks (see L. Gwennap, "Architects Debate 
VLIW, Single Chip MP," Microprocessor Report, Vol. 8, No. 
16, pp. 20-21, Dec. 5, 1994). 

The following sections give a more detailed description of 
the nu 522 and RTU 523 blocks in Fetch & Decode Unit 
(FDU)520 shown in FIG. 31. 

Inst_ID Unit (nU) 

Inst_ID Unit (nU)522 has several responsibilities; (a) 
assign inst_ID to every decoded instruction, (b) record the 
PC address of every decoded instruction, (c) give the PC 
address of an exception instruction, and ( d) determine the 
oldest instruction that has not completed or completed with 
an exception (its inst_ID is called in_order_point). The 
main component of nu 522 is an Instruction Array (IA), 
which stores the PC address and status of every active 
instruction currently in a processor (for example, processor 
500). The IA is implemented as a circular FIFO buffer with 
head and tail pointers (head_IA and tail_IA). During nor­
mal instruction run, the next tail_IA is incremented based 
on the number of valid instructions in the decode group. 
However, when a branch misprediction is detected, the 
tail_IA must be adjusted. All IA 522 entries following the 
mispredicted branch entry are flushed. Thus, next tail_IA is 
set to the IA 522 address of the mispredicted branch entry, 
which is the branch_point less its color_bit. Note that the 
branch_point (generated by IAU 522) is the inst_ID of the 
current "oldest" unresolved conditional branch. 

a 4-way superscalar model, the performance was observed to 
saturate at a relatively low number of 12 to 16 MRB 100 
entries. With dummy branch entry allocation in the RB for 60 

conditional branches, the RB's performance is expected to 
saturate at a higher number. Or, if the number of entries in 
the RB is set based on MRB lOO's saturation number, then 
the RB's performance could be lower due to the additional 
decode stalls from RB full. 

A tag or active instruction identifier, inst_ID, is com­
posed of (color_bit, IA_addr), where IA_addr is the 
address/index of an entry in the IA (color_bit is defined 

65 below). It provides the "age/order" information during 
instruction-order comparisons. An instruction with a smaller 
inst_ID indicates that the instruction is "older", because it 

For DIQ 300 or 400, the cost analysis suggests an 
improvement in almost every hardware component, with 
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operands RSl(O .. Na-1) and RS2(0. Na-1) are read from 
both RTF 600 and RTRB lOORT (see left side of FIG. 37). 
If a match is found in RTRB, then it contains the most 
updated register tag, and the tag in RTF is considered old. 

appeared earlier in the decode sequence. NULL inst_IDS 
with IA_addr=O, (0,0) and (1,0), are reserved to indicate 
non-existence or no-value. This is important to indicate no 
pending conditional branch instruction, branch_point=(O,O) 
or (1,0). It can also mean no register operand (e.g., replaced 
by immediate value, does not have second operand, default 
zero register value in RO, etc.) when register tag is (0,0) or 
(1,0). 

The color_bit (as used in the Metaflow architecture-see 
Popescu, et al.) is a single binary bit that is appended to 
distinguish instruction order when the IA address starts to 
wrap around. It is toggled at each wrap around. For example, 
consider an inst_ID with 7-bit IA_addr (array size of 128). 
If an instruction has inst_ID of (0,127), its next decoded 
instruction has inst_ID of (1,1). When the two inst_IDs are 
compared, (0,127) <(1,1). In the next wrap around (now the 
color_bit is toggled from 1 to 0), (1,127)<(0,1). The rule for 
comparing two inst_IDs (inst_IDA and inst_IDs) is: 

5 
Tags in RTRB lOORT are updated to RTF 600 as quickly as 
possible, provided that all previous conditional branches 
have been resolved. Thus, RTRB lOORT will mostly contain 
"speculative" register tags. These tags are flushed when the 
conditional branch is found to be mispredicted. To keep up 
with the instruction fetch rates up to Nd entries at the bottom 

10 of RTRB lOORT can be simultaneously retired to RTF 600. 
FIG. 38 shows the structure of RTF 600. RTF cells 695 
which include DFFs 605 (or equivalents thereof) are shown 
in FIG. 38. Also shown in cell 695 is comparison unit 652 
(may be an equivalent device to perform the same function 
as would be understood to those of ordinary skill in the art) 

15 for clearing the stale/old register tag. Note that Since there 
can be multiple updates to the same register location among 
Nd retirees, a priority selector is accommodated to make sure 

if (color_bitA" color_bit8 ) then 
/* reverse compare result *I 
compare(inst_IDA,inst_ID8)~NOT compare(IA_addrA,IA_addr8 ) 

else 
/* same color bit */ 
compare(inst_ID A,inst_ID8 ) ~ compare(IA_addrA,IA_addr8 ). 

only the last update is written. Also note that a difference Thus the sense of comparison is reversed when the color 
bits are different. 30 between RTRB lOORT and RTF 600 with regard to specu­

lative tags is that RTRB lOORT holds speculative register 
tags while RTF 600 holds nonspeculative tags of active 
instructions (not stale). 

Another responsibility of nu 522 is to determine the 
in_order_point, the inst_ID of oldest instruction that has 
not completed or completed with an exception. The 
in_order_point will be used during instruction retirings. 
The in_order_point less its color_bit is actually the IA 

35 
address of oldest IA entry with "complete" bit=O (the one 
closest to head_IA). The ideal way of computing 
in_order_point is to check the "complete" bits of all IA 
entries between head_IA and tail_IA. However, this is not 
efficient for hardware implementation. Instead, the checking 
can be limited to within a window of N;w entries. This 40 

"in_order_point" window starts from the IA address of 
current in_order_point (called iop_IA_addr) to (iop_ 
IA_addr+N;w) mod N;a· This simplification will not alter 
program correctness. The only potential penalty is a post­
ponement in instruction retiring, if the in_order_point 45 

moves "up" (toward tail_IA) too slow. This should be 
infrequent if the size of "in_order_point" window (N;w) is 
not too small. 

Register Tag Unit 
50 

RTRB lOORT is implemented as a multi-ported, content­
addressable, circular FIFO buffer with the register number 
(reg_num 730-see below) used as the associative search 
key during read operations. The circular FIFO control is 
implemented by a set of head and tail pointers (head_RTRB 
and tail_RTRB) which are not shown, but are analogous to 
head pointers 180 and tail pointers 160 of FIG. 21. The 
content of an RTRB entry 700 for RTRB lOORT is shown in 
FIG. 39 with fields n_empty 710, "last" 720, reg_num 730, 
and reg_tag 740. To avoid prioritized associative lookup, 
"last" bit 720 is provided for each RTRB entry 700. Thus, 
the most recent tag (740) of a register number (730) is read 
from the matched RTRB entry 700 with "last" bit 720=1. 
"Last" bit 720 is set during entry allocation if its register 
number 730 is the most recent one within the decode group. 
Each entry's "last" bit 720 is reset when a more recent entry 
allocation "overwrites" its register number 730. 

The structure of RTRB lOORT is shown in FIG. 40. Each 
RTRB cell 895 consists of D flip-flops (DFFs) or RS 
flip-flops (or other storage devices)805 to hold RTRB entry 
700, and logic circuits for allocate 845, read 825, and retire 
835 operations. RTRB lOORT is a simplified reorder buffer 

55 with the following modifications; (1) buffer only register 
tags 740, no register values or program counters, (2) no write 
port, (3) multiple allocate and retire ports, and ( 4) allow read 
bypassing from allocate ports. 

FIG. 37 shows the organization of Register Tag Unit 
(RTU) 523. RTU 523 maintains the most recent tag of every 
"R" and "F" register (which may be in 515R and 515F or in 
MRBs lOOR and lOOF). The most recent tag of a register is 
the inst_ID of producer instruction that updates the register 
last. To store tags of all "R" and "F" registers (may be in 
515R and 515F or in MRB lOOR and lOOF), Register Tag 
File (RTF)600 is used. RTF 600 has the structure of a 
register file, except the register content is not a value, but 
rather a tag. To support speculative execution, Register Tag 
Reorder Buffer (RTRB) lOORT accompanies RTF 600. RTF 60 

600 are similar to 515R or 515F except that it holds to 
register values, only register tags, and it was in_order_ 
point to clear the stale/old register tag. (Note that RTRB is 
not similar to MRB 100.) RTRB lOORT has RTU allocate 
ports 810, both RTRB lOORT and RTF 600 share read ports 65 

830, and tags are updated from RTRB lOORT to RTF 600 
through RTRB retire ports 840. Register tags of source 

The fourth modification, read bypassing, is necessary 
because the most recent tag 740 of a register may still be in 
allocate ports 810, not yet written to RTRB lOORT. Consider 
the following example where ((x-y)2 +z)2 computation is 
about to take place. Assume all calculations are performed 
in single-precision floating point arithmetics; variables x, y, 
z were already loaded into register Fl, F2, F3, respectively; 
and the result is written to register F4. Suppose the current 
decode group is as follows: (Nd=4) 
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inst_ID(i) opcode(i) RD(i) RSl(i) RSl_tag(i) RS2(i) RS2_tag(i) Operation 

0 (0,126) sub.s F4 Fl n/a F2 n/a F4 <-Fl - F2 
(0,127) mul.s F4 F4 (0,126) F4 (0,126) F4 <- F4 * F4 

2 (1,0) add.s F4 F4 (0,127) F3 n/a F4 <- F4 + F3 
3 (1,1) mul.s F4 F4 (1,0) F4 (1,0) F4 <- F4 * F4 

Consider the register tag reading of the third instruction 
(i=2) in the decode group. When RS1(2) is presented to 
RTRB cells 895, it is also checked for possible bypassing at 
the RSl Bypass Logic unit or block 875 (see FIG. 40). 
Because allocations and reads occur in the same cycle, 
RTRB lOORT does not have the current decode group's 
register tags available for reading. The register tag read must 
be satisfied directly from one of allocate ports 810. In 

10 
where i E [1,Nr 1]. The increment from the base tail pointer 
is determined based on the number of allocations in the 
previous ports. Note that the next cycle tail_RTRB is simply 
(tail_RTRB(Nrl)+RTRB_alloc_en(Na-1)) mod Nrtrb· 

15 The Tail Pointer Logic 850 also activates the RTRB_full 
flag if an allocation is about to overwrite the head entry. 
Thus, 

(11) 

1, if (head_RTRB ttailRs) n LJ (head_RTRB =? tail_RTRB(k))) ! (Nrl 

RTRBJull = k~I 

0, otherwise 

25 

If RTRB_full=l, the fetch and decode stage are stalled 
until there is room in RTRB lOORT. 

general, bypassing at RSl read ports 830 are enabled with 
the following condition: 

The Last Update Logic block 855 determines whether a 
register assignment is the last update within the decode 

(9) 

{ 

1, if \J (RSl(i) =? RD(k)) 
RS I _bypass_en(i) = k~o 

0, otherwise 

30 group, so that the "last" bit can be set properly during 
allocation. For a register assignment to be the last update, 
there must be no subsequent assignment to the same register 
within the decode group. Thus, in general, 

where i E [1,Nrll In this case, RSl_bypass_en(2)=1 
35 

because RS1(2)=RD(l) and/or RS1(2)=RD(O). Despite two 
{ 

Nd-! 

. 1, if LJ (RD(i) =? RD(k)) 
last_update(J) = k~;+1 

(12) 

0, otherwise 

40 
where i E [O,Nr2J. Obviously, last_update(Na-1) is always 
1 because the last instruction (of the decode group) updates 
the last. 

match ups, the RSl_bypass(2) must come from the second 
allocate port (inst_ID (1)) of allocate ports 810 with inst_ 
ID=(0,127) because it updates F4 last. With RSl_bypass 
en(2)=1, the RSl_tag(2) is satisfied from RSl_bypass(2) 
and not from RTRB lOORT. Read bypassing at RS2 ports (of 
read ports 830) follows the same analogy using RS2 Bypass 
Logic unit or block 865. obviously, RSl bypass_en(O) and 
RS2_bypass_en(O) are always 0 because the register tags 

45 of the first instruction's source operands would have been 

Finally, register tags 740 in the bottom RTRB cells/entries 
895 are retired to RTF 600 if all its previous conditional 
branch instructions have been resolved. No "speculative" 
register tag may be updated to RTF 600. Thus, a retiree at 
retire_port(i) is green-lighted (valid_ret(i)=l) if its reg_ 
tag(i)<branch_point. The branch_point (generated by IAU 
560) is the inst_ID of the current "oldest" unresolved 
conditional branch. Since all Na entries at the bottom 

updated to RTU 523 in the previous cycle(s). 

The entry allocation at the tail (determined by tail pointer 
logic 850) of RTRB lOORT involves setting n_empty 710= 
1, last 720=1 (if the register assignment is the last update­
controlled by last update logic 855-among instructions in 
the decode group), reg_num 730=RD, and reg_tag 740= 
inst_ID. There can be up to Na RTRB lOORT entries 
allocated in a cycle. An allocation of an RTRB lOORT entry 

50 (cells/entries 895) are simultaneously evaluated to retire, 
head_RB(i)=(head_RB+i) mod Nrtrb is generated for 
i=O ... Nrl. Each valid retirement moves the head pointer 
"up" by one position as determined by head pointer logic 
unit or block 870. So, the next cycle head pointer is, 

is enabled (RTRB_alloc_en(i)=l) if the fetched instruction 55 

at position i is not following a branch-taken instruction and 
writes to an "R" or "F" register (R_alloc_en(i) or ( 

Nd-! ) 

(next) head_RTRB= head_RTRB+ ~ valid_ret(i) mod Nnrb· 

(13) 

F _alloc_en(i) is set), which may be in 515R and 515F, or 
in MRB lOOR and MRB lOOF. The Tail Pointer Logic unit 
or block 850 determines the correct tail pointer position for 60 

every allocation port 810: 
Retiring is done as quickly as possible by providing Na 

retire ports 840. Only "non-speculative" entries (reg_ 
tag<branch_point) can be retired from RTRB lOORT to RTF 
600. When a branch misprediction is detected, any "non­
speculative" entries left in RTRB lOORT are retired tail_RTRB(i) = (rail_RTRB+ ~ RTRB_alloc_en(k)) mod N,.,,b, 

(10) 

65 immediately, if any usually within a cycle. Then, RTRB 
lOORT is simply reset to repair from any misprediction side 
effects. 
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instruction queue and no result values are received by said 
distributed instruction queue. 

Another condition that causes flushing is when an excep­
tion error is detected. In this case, both RTRB lOORT and 
RTF 600 are flushed. No register tags are needed when 
resuming from an exception, because all register values in 
FXRU 530's MRB lOOR and FPRU 540's MRB lOOF 
would have been retired to RFs 515R and 515F, respectively, 
before going to the exception handler. To read register 
operands from RFs 515R and 515F, register number is used 
instead of register tag. 

6. The distributed instruction queue as claimed in claim 1, 
wherein said distributed instruction queue is operated inde-

5 pendently of any other distributed instruction queue. 
7. The distributed instruction queue as claimed in claim 1, 

wherein said decoded instructions are issued in-order. 
8. The distributed instruction queue as claimed in claim 1, 

wherein said decoded instructions are issued out-of-order. 
9. The distributed instruction queue as claimed in claim 1, 

wherein said decoded instructions are issued in some form 
of limited out-of-order issue. 

Finally, stale register tags in RTF 600 must also be 10 

cleared/reset to 0. The condition to reset is reg_tag <in_ 
order_point, which means that the reg_tag has been deal­
located from nu 522. 10. The distributed instruction queue as claimed in claim 

15 1, wherein the distributed instruction queue issues the 
decoded instructions to a functional unit for execution, the 
functional unit being external to the distributed instruction 

Numerous and additional modifications and variations of 
the present invention are possible in light of the above 
teachings. It is therefore to be understood that within the 
scope of the appended claims, the invention may be prac­
ticed otherwise than as specifically claimed. 

queue. 

What is claimed is: 
1. A distributed instruction queue comprising: 

11. The distributed instruction queue as claimed in claim 
20 1, wherein the distributed instruction queue shelves said 

at least two entry cells, each of said at least two entry cells 
being capable of holding a decoded instruction corre­
sponding to at least one source operand, said at least 
one source operand for each decoded instruction being 25 

stored in storage means external to said distributed 
instruction queue, said at least one source operand not 
being copied into said distributed instruction queue; 

an allocate port connected to said at least two entry cells 
30 

for allocation of decoded instructions to said entry cells 
without reading the at least one source operand corre­
sponding to each of the decoded instructions; and 

an issue port connected to said at least two entry cells for 
issuance of decoded instructions under logic control in 35 

any order from said entry cells to a functional unit 
external to said distributed instruction queue after such 
time as all of the source operands corresponding to the 
decoded instruction to be issued are available in the 
external storage means, the source operands being read 40 

from the external storage means at such time as the 
decoded instruction is issued, and wherein no result 
value is forwarded from the functional unit to said 
distributed instruction queue. 

2. The distributed instruction queue as claimed in claim 1, 
further comprising a tail pointer logic unit to adjust a tail 
pointer to point to the one of said at least two entry cells into 
which the next decoded instruction should be allocated from 
said allocate port. 

3. The distributed instruction queue as claimed in claim 1, 
further comprising: 

45 

50 

means for determining the one of said at least two entry 
cells in which the decoded instruction that was earliest 55 
allocated is held; and 

a head pointer logic unit to adjust a head pointer to point 
to the one of said at least two entry cells in which the 
decoded instruction that was earliest allocated is held. 

4. The distributed instruction queue as claimed in claim 1, 60 

further comprising an issue pointer logic unit to adjust an 
issue pointer to point to the one of said at least two entry 
cells from which the next decoded instruction is to be issued 
through said issue port. 65 

5. The distributed instruction queue as claimed in claim 1, 
wherein no operand values are copied into said distributed 

decoded instructions. 
12. The distributed instruction queue as claimed in claim 

1, wherein said distributed instruction queue is a circular 
array. 

13. The distributed instruction queue as claimed in claim 
1, further comprising additional allocate ports connected to 
said at least two entry cells for allocation of decoded 
instructions to said at least two entry cells. 

14. A distributed instruction queue comprising: 

means for receiving at least two decoded instructions, 
each of the at least two decoded instructions corre­
sponding to at least one source operand, said at least 
one source operand for each decoded instruction being 
stored in storage means external to said distributed 
instruction queue, said at least one source operand not 
being copied into said distributed instruction queue; 

means for determining when all of the source operands for 
each of the decoded instructions are present in the 
external storage means without reading the source 
operands; and 

means for issuing each of the decoded instructions in any 
order to a functional unit external to said distributed 
instruction queue after determination by said determin­
ing means that all of the operands for the decoded 
instruction to be issued are available in the external 
storage means, the source operands being read from the 
external storage means at such time as the decoded 
instruction is issued, and wherein no result value is 
forwarded from the functional unit to said distributed 
instruction queue. 

15. A method for issuing instructions in a superscalar 
processor, comprising the steps of: 

allocating at least two decoded instructions, each of the at 
least two decoded instructions corresponding to at least 
one source operand; 

determining when all of the source operands for each of 
the decoded instructions are available without reading 
the source operands and without copying the source 
operands; 

issuing each of the decoded instructions in any order after 
all of the source operands for the decoded instruction to 
be issued are available; and 
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reading the source operands for the decoded instruction 
issued in said issuing step at such time as the decoded 
instruction is issued. 

16. The method of claim 15 wherein said issuing step 
further comprises issuing each of said decoded instructions 
in-order. 

17. The method of claim 15 wherein said issuing step 
further comprises issuing each of said decoded instructions 
out-of-order. 

18. The method of claim 15 wherein said issuing step 
further comprises issuing each of said decoded instructions 
in some form of limited out-of-order issue. 

19. The method of claim 15 wherein said allocating step 
further comprises allocating the decoded instructions with-

70 
out allocating the source operands corresponding to the 
decoded instructions. 

20. The method of claim 15 wherein said issuing step 
further comprises issuing the decoded instructions without 

s issuing the source operands corresponding to the decoded 
instructions. 

21. The method of claim 15 wherein said issuing step 
further comprises issuing each of said decoded instructions 
to a functional unit. 

10 22. The method of claim 15, further comprising a step of 
shelving said decoded instructions, said shelving step being 
performed after said allocating step and before said deter­
mining step. 

* * * * * 
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