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SUMMARY

A communication channel is said to be Run-Length-Limited (RLL), if it im-

poses constraints on runs of consecutive input symbols. RLL channels are found in

digital recording systems like the Hard Disk Drive (HDD), Compact Disc (CD), and

Digital Versatile Disc (DVD). For a binary recording medium, a typical run-length

constraint requires that successive ones in the stored bit sequence be separated by at

least d, and at most k consecutive zeros, for non-negative integers d and k. The d

constraint is used to regulate inter-symbol interference and the k constraint is impor-

tant for timing recovery. Such a constrained binary sequence is referred to as a (d, k)

sequence. A (d, k) code is defined as an invertible mapping between unconstrained

binary sequences and (d, k) sequences. A (d, k) code can use either fixed-rate or

variable-rate encoding.

Assuming a noise-free channel, it is known that the encoding rate of any (d, k)

code can only be as high as the Shannon capacity. Codes that achieve this limit are

said to be optimal. In the first half of this thesis, we discuss the design of two variable-

rate codes that are optimal for certain classes of (d, k) constraints. We introduce the

symbol sliding algorithm, which achieves capacity for (d, 2d + 1), (d,∞), (d, d + 1),

and (2, 4) constraints, and comes very close to capacity for all other values of d and

k. Symbol sliding is based on the bit stuff algorithm [6], which generates simple and

efficient codes for a wide range of constraints. Then, we construct a second class of

optimal codes using interleaving. This method is applicable for all (d, k) constraints

with k − d + 1 not prime. Of particular interest are (d, d + 2m − 1) constraints,

2 ≤ m < ∞, where the interleaving is especially simple. We conclude the discussion

on variable-rate codes by presenting extensions to other RLL constraints.

xv



In the second half of this thesis, we focus on fixed-rate constrained codes. Al-

though variable-rate encoding can generate optimal and near-optimal RLL codes,

practical designs require fixed-rate encoding. Several fixed-rate algorithms have been

proposed over the years ([17] provides a comprehensive review). However, the design

of high-rate codes with simple implementation continues to pose a challenge. From

a practical standpoint, even small (1-2%) increases in code rate with simpler encod-

ing/decoding can significantly impact the cost and performance of a digital recording

system. Hence, despite the long history of (d, k) codes, there continues to be a need

for low-complexity, fixed-rate encoding algorithms that achieve near-capacity rates.

In this work, we propose the fixed-rate bit stuff (FRB) algorithm: a fixed-rate version

of the variable-rate bit stuff algorithm, for the special class of (0, k) constraints. The

key to achieving high encoding rates with the FRB algorithm lies in a novel, iterative

pre-processing of the fixed-length input sequence prior to bit stuffing. The encoder

then inserts bits to produce a fixed-length output sequence. We provide detailed

rate analysis for the proposed FRB algorithm, and derive upper and lower bounds

on the asymptotic (in input block length) encoding rate. Our results suggest that

near-capacity rates can be achieved by encoding in long, fixed-length, input and out-

put blocks using the FRB algorithm. Then, we proceed to address several system

issues, such as encoding complexity, encoding latency, effect of finite block-lengths,

DC suppression and error propagation of the proposed FRB codes. We present a

performance comparison with existing encoding schemes, and tabulate the FRB code

parameters required to design rate 100/101 and rate 200/201, (0, k) codes. We also

extend the proposed fixed-rate encoding to (0, G/I) constraints.
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CHAPTER I

INTRODUCTION

A communication channel is said to be run-length-limited (RLL) if it imposes con-

straints on runs of consecutive input symbols. RLL channels have a long history

dating back to Shannon’s seminal work [46]. Over the years, they have gained in

practical importance with the emergence of digital recording systems, namely Hard

Disk Drives (HDDs), Compact Discs (CDs), and Digital Versatile Discs (DVDs). A

typical run-length constraint used in these systems requires that successive ones in

the stored bit sequence be separated by a run of consecutive zeros of length at least d

bits, and at most k bits, for non-negative integers d and k. The d constraint is used

to regulate inter-symbol interference and the k constraint is important for timing

recovery. Such a constrained binary sequence is referred to as a (d, k) sequence.

An encoding algorithm provides an invertible mapping between unconstrained bi-

nary sequences and (d, k) sequences. The resulting (d, k) codes can either be variable-

rate or fixed-rate. Variable-rate encoding refers to the fact that for a given, finite input

block-length, the generated output block-length can vary depending on the actual in-

put bits. For a fixed-rate code, all possible inputs of a given, finite length generate

fixed-length outputs. Some variable-rate encoding algorithms for (d, k) constraints

are given in [3],[6],[27],[31],[41]. A comprehensive review of fixed-rate codes can be

found in [17].

With the assumption of a noise-free channel, the encoding rate, R(d, k), of any

(d, k) code is bounded above by the Shannon capacity, C(d, k), given by [46]

C(d, k) = log2 λd,k, (1)

1



where λd,k is the largest, real root of the characteristic equation Hd,k(z) = 1, and

Hd,k(z) is the characteristic polynomial of the (d, k) constraint, given by

Hd,k(z) =











∑k+1
j=d+1 z

−j when k <∞

z−1 + z−(d+1) when k = ∞.
(2)

The encoding efficiency, E(d, k) =
R(d, k)
C(d, k)

, measures how close the code is to capacity.

A (d, k) code is said to be optimal, if it is 100% efficient. It can be shown that C(d, k)

is irrational, except in the trivial case of (d, k)=(0,∞). Thus, any (d, k) code which

has an encoding rate of the form m/n, m and n being finite integers, is strictly sub-

optimal. This includes all fixed-rate codes with finite input and output block lengths.

Two existing near-optimal, fixed-rate encoding techniques are based on enumerative

coding [10],[19],[43] and arithmetic coding [31],[58]. Some capacity-achieving variable-

rate codes are outlined in [3],[6],[27].

Although variable-rate (d, k) codes have the potential to approach capacity, their

very nature makes them unsuitable for use in most practical systems. For example,

in magnetic and optical disk recording systems, data is written onto fixed-length

track sectors, and hence fixed-rate codes are desired. Indeed, variable-rate codes do

have some practical use, e.g., frame synchronization with variable-length payloads in

certain communication protocols [7], but they are few and far between. Thus, it is

fair to say that as of this date, variable-rate codes are mainly of theoretical interest

and fixed-rate codes find greater practical use. In this research, we pursue the design

of both variable-rate and fixed-rate constrained codes that are based on very simple

ideas. The proposed codes are said to be capacity-approaching, in the sense that the

encoding rates are either equal to the constraint capacity or come very close to it.

First, we present two new capacity-achieving, variable-rate code constructions for

(d, k) constraints. We introduce the symbol sliding algorithm (Chapter 4), which
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achieves capacity for (d, 2d+ 1), (d,∞), (d, d+ 1), and (2, 4) constraints, and comes

very close to capacity in other cases. It is based on bit stuffing [6],[7], a simple

technique that generates efficient codes for a wide range of constraints. Then, we

construct a second class of optimal codes based on interleaving (Chapter 5). The

interleaving implementation is derived from a certain factorization of characteristic

polynomials. This method is applicable for all (d, k) constraints with k − d + 1 not

prime. Of particular interest are (d, d + 2m − 1) constructions, 2 ≤ m < ∞, where

the interleaving is especially simple. Each of the variable-rate constructions: symbol

sliding and interleaving, can be viewed as generalizations of existing algorithms: the

bit flipping algorithm [3], and the bit stuff algorithm [6], respectively.

The second half of this research deals with fixed-rate constrained codes. There

is a long history of fixed-rate (d, k) codes and they are part of virtually all magnetic

and optical disk recording systems today. Several fixed-rate encoding algorithms

have been proposed over the years (see [17] for a comprehensive review), with the

design goal being two-fold: high encoding rate and simple implementation. However,

the nonlinear nature of (d, k) sequences (they do not constitute a linear vector sub-

space) makes the design of near-optimal, fixed-rate (d, k) codes rather complex. This

has meant that practical encoding algorithms have to strike a balance between the

conflicting attributes of high encoding rate and simple implementation. Thus, there

continues to be a need for low-complexity, fixed-rate encoding algorithms that achieve

near-capacity rates.

These factors have motivated us to pursue the design of a fixed-rate version of the

simple, variable-rate bit stuff algorithm [6]. We discuss in detail, the fixed-rate bit

stuff (FRB) algorithm (Chapter 7), which is applicable for the special class of (0, k)

constraints. High encoding efficiency is achieved by iterative pre-processing of the

fixed-length input sequence prior to bit stuffing. This has the effect of conforming

the input sequence to subsequent bit insertions. The encoder then inserts bits to
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produce a fixed-length output sequence. We present a detailed rate analysis for the

FRB algorithm, and derive upper and lower bounds on the asymptotic (in input block

length) encoding rate. These bounds are found to be very close to the average rate of

the variable-rate bit stuff code. Hence, very high-rate (0, k) codes can be constructed

using the FRB algorithm by encoding in long, fixed-length input and output blocks.

The FRB algorithm compares favorably with enumerative [15],[[17],Chap.6],[19],

and combinatorial [20],[60] encoding: two important existing methods to generate

(0, k) sequences. Specifically, the FRB encoding/decoding is simpler than enumera-

tion, while achieving (asymptotically) similarly high encoding rates. The FRB encod-

ing rates are also far greater than that of the combinatorial construction of Immink

and Wijngaarden [20], at the cost of slightly higher encoding/decoding complexity.

In theory, the FRB algorithm thus provides an effective means to generate very

high-rate (0, k) sequences. However, integrating the FRB codes into a practical

recording system raises several other questions. We address these system issues

(Chapter 8), namely the encoding complexity, encoding latency, effect of finite block-

lengths, DC suppression and error propagation. In particular, we discuss two possible

implementations of the iterative pre-processing, with related tradeoffs between the

number of computations and encoding latency. We also provide a detailed analysis

of the effect of partial pre-processing (Chapter 7.4), which utilizes only a subset of

the iterative pre-processing. While partial pre-processing allows simpler implementa-

tion and reduces encoding latency, it incurs a penalty on the encoding rate. Hence,

quantifying this tradeoff becomes important in system design. Further rate penalties

are also incurred while encoding in finite block-lengths. In theory, the asymptotic

encoding rates of the FRB algorithm are very close to the (0, k) capacity, but prac-

tical systems cannot encode in infinitely long blocks. We study the associated rate

penalties, and it is seen that block lengths of a few thousand bits are required to

design high-rate (0, k) codes.
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Another important issue with the long block codes of the FRB algorithm, is that

of error propagation. The FRB algorithm does not code for possible errors caused

by the recording channel. However, channel bit errors are inevitable. In fact, in the

worst case, it is possible that the entire decoded sequence is in error due to a single

channel bit error. Hence, it becomes important to study the effect of channel bit

errors on code performance. One existing technique to combat error-propagation is

the use of a reverse concatenation configuration [8],[13],[[17],Chap.6], where the error

correction code follows the constrained code. We show performance results of FRB

codes under both standard and reverse concatenation configurations (Chapter 8.2.1).

This serves to illustrate the potential gains of using very high-rate FRB codes in

conjunction with reverse concatenation.

However, it is possible to overcome the error-propagation drawback of FRB codes

even without using reverse concatenation. The average error-propagation can be sig-

nificantly reduced by a more careful pre-processing, and eliminating the bit insertions

altogether. We call the resultant codes iterative pre-processed (IPP) codes (Chapter

8.2.2). For a given value of k, the IPP codes have lower encoding rates than the FRB

codes, but they have reduced error-propagation.

Throughout this research, the reader will note that the presented rate improve-

ments are only slightly (1-2%) higher than those of existing algorithms. One may

wonder if such seemingly insignificant improvements are interesting at all. Of course,

with variable-rate codes, there is the purely academic interest of achieving the ca-

pacity limit. However, even with fixed-rate codes, such small rate improvements can

have profound effects on the cost and performance of a manufactured hard disk drive.

This is because a 1-2% increase in the coding rate allows the designer to decrease the

system bandwidth (or equivalently increase the size of the recorded patterns) by an

equivalent amount, which is usually enough to have a large effect on manufacturing
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tolerances and system margins. As a concrete example of this, current industry-

standard (0, k) codes are rate 8/9 with k = 3, rate 16/17 with k = 6 and rate 64/65

with k = 7; and there is considerable effort being expended to design a rate 200/201

code, which is only a 1% increase in rate and density, but can substantially increase

the robustness of the drive. In Chapter 8.1, we present a tabulation of the FRB code

parameters required for the design of rate 100/101 and rate 200/201 (0, k) codes.

Although the focus in this thesis is on (d, k) constraints, the presented encoding

ideas, both variable-rate and fixed-rate, may be applied to several other RLL con-

straints. Specifically, we discuss extensions of the variable-rate code constructions to

(0, G/I) constraints, asymmetrical run-length constraints and multiple-spacing (d, k)

constraints (Chapter 6); and an extension of the fixed-rate encoding to (0, G/I) con-

straints (Chapter 7.6).

The remainder of this thesis is organized as follows. A brief overview of the digital

recording system is presented in Chapter 2. The bit stuffing technique is reviewed

in Chapter 3, and an alternate interpretation is provided for its optimality. This

helps motivate our variable-rate symbol sliding and interleaving code constructions

presented in Chapters 4 and 5, respectively. The variable-rate encoding ideas are

extended to a few other RLL constraints in Chapter 6. We then move on to discuss

fixed-rate constrained codes. In Chapter 7, we propose the FRB algorithm for (0, k)

constraints, and compute upper and lower bounds on the encoding rate. We also

extend the fixed-rate encoding to (0, G/I) constraints. Then in Chapter 8, we address

the system issues related to FRB codes. Finally, concluding remarks and future

research areas are highlighted in Chapter 9.
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CHAPTER II

DIGITAL RECORDING SYSTEM

The main application for RLL codes is in digital recording. In this section, we present

an overview of a digital recording system, and explain how binary data is stored on

the recording medium. The system model described here is by no means an exact

representation of an actual recording system, which has numerous components. Our

aim is to keep the discussion simple, and extract only the necessary components in

order to understand the role of RLL codes in a digital recording system.

2.1 System Block Diagram

Figure 1 shows a simplified block diagram of a typical digital recording system. The

source bits (or input data bits) are assumed to be unconstrained, i.e., independent,

identically distributed (i.i.d), and unbiased (Pr{0} = Pr{1} = 1/2). The cascade of

the error correction code (ECC) encoder and constrained encoder converts the source

bits into what are called the channel bits (or stored bits). The channel bits are then

written onto the recording surface by a physical write process. The read-out process

comprises of a detector that reads the stored bits, followed by the constrained decoder

and ECC decoder.

Constrained

Encoder
Write

Channel bits

Read

Constrained

Decoder

Recording

Channel

ECC

DecoderEncoder

ECC bits
DecodedSource

bits

Figure 1: Block diagram of a digital recording system. Our focus is on the
design of the shaded blocks, namely the constrained encoder and decoder.

The focus of this research is on the design of simple and efficient constrained
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encoders and decoders for the system shown in Fig. 1. We wish to point out that

while designing the constrained encoder, we do not code for possible channel bit

errors. This is the domain of the ECC encoder and decoder. Hence, for theoretical

purposes of optimal and near-optimal constrained code design, we assume that the

recording channel is noiseless. Indeed, any practical system is prone to channel bit

errors, and we provide a detailed discussion of the error propagation characteristics

of our proposed codes in Chapter 8.2.

The first step in constrained encoder/decoder design is to identify a suitable RLL

constraint for the recording system. This depends on several factors, including the

recording channel model and read-out process. One RLL constraint that has found

extensive use is the (d, k) constraint, which is the main subject of this research. There

is a long history of the use of (d, k) codes and they are part of virtually all magnetic

and optical disk recording systems today. The CD and DVD use (d = 2, k = 10)

encoding to increase the storage density by about 50% above that possible with

unconstrained coding. Next generation optical recording systems like Blu-ray use

the (1, 7) constraint. The (1, 3), (1, 7), and more recently, (0, k) with 5 ≤ k ≤ 15,

including additional constraints on subsequences and transition-runs find numerous

applications in magnetic and optical data storage [17]. These are all examples of

recording systems, where the design of simple constrained encoders that generate

near-capacity (d, k) sequences is of great interest. Hence, throughout this thesis,

our approach will be to first provide detailed discussions on (d, k) constraints, and

then present extensions to other RLL constraints. Before proceeding to discuss (d, k)

codes however, we briefly describe the write process in a digital recording system, and

explain the reason for imposing the (d, k) constraint.
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2.2 Writing on a Recording Surface: Relation to

(d, k) Sequences

Information is generally stored on a binary recording medium by physically writing

into one of two allowable states. For magnetic recording media (e.g. HDDs), the two

states are visualized as positive and negative magnetizations, while for their optical

counterparts (e.g. CDs,DVDs), they are referred to as marks and nonmarks. In

our discussion, we use the terms “marks” and “nonmarks” in a rather generic sense,

without alluding to any specific recording medium.

The physics of the write process, along with considerations on inter symbol inter-

ference (ISI), prevent the written marks and nonmarks from being arbitrarily small.

In other words, there is a certain minimum mark/nonmark size that can be made

on the recording surface. On the other hand, written marks and nonmarks cannot

be arbitrarily long. This is because the timing information for the read-out clock is

derived from the stored data itself, i.e., the stored data must be self-clocking. The

timing information resides in state transitions: from marks to nonmarks and vice

versa. This in turn means that only those data patterns which have frequent state

transitions, can be stored on the recording medium. Hence, we have an upper and

lower limit on the physical mark/nonmark sizes in a digital recording system.

To understand this better, let us take a look at how the stored bits are mapped

to the physical marks/nonmarks. For convenience, let us assume that the electronic

clock scans through the recording surface at a constant speed of one stored bit per

unit time. With this reference, let the minimum and maximum mark sizes be d′ and

k′ units, respectively. It must be appreciated that d′ can be greater than one, i.e.,

the electronic clock can run faster than the physical granularity.

Information is stored as a sequence of alternating marks and nonmarks, each of

size at least d′, and at most k′. Figure 2 shows an example of written data on a

recording medium. A naive mapping of the stored bits to physical marks would
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be to assign a “1” bit to the minimum mark/nonmark size, and a “0” bit to the

next lowest mark/nonmark size. Usually k′ > d′ + 1, and such a scheme is clearly

wasteful as it does not utilize the entire range of available mark lengths from d′

through to k′. Instead, consider the following assignment. Represent the sequence

of alternating marks and nonmarks by a sequence of alternating strings of “1”s and

“−1”s of appropriate lengths. For example, the written sequence in Fig. 2: a mark of

length 3, followed by a nonmark of length 2, a mark of length 4, a nonmark of length

3 and a mark of length 2, is represented as 1 1 1 − 1 − 1 1 1 1 1 − 1 − 1 − 1 1 1.

The stored bits are now obtained by mapping 1i to 0i−11, and (−1)i also to 0i−11,

i = d′, d′ + 1, . . . , k′. The example stored bit sequence is hence 00101000100101.

It is left to the reader to now verify that the stored bit sequence is indeed (d, k)-

constrained, where d = d′ − 1 and k = k′ − 1. The mapping described above is

followed in practice and can be shown to be better than the naive bit assignment

described earlier (see [17], pp. 58-60 for details).

0 0 0 10 10 0 0 0 11

d′

0 1

Mark

Electronic

clock periodNonmark

k′d′

Figure 2: Alternating marks and nonmarks written on a recording surface.
Marks/nonmarks can be of length greater than d′, but less than k′. In this
example, d′ = 2 and k′ = 4. Thus, the electronic clock period is half the
minimum mark/nonmark size. The corresponding stored data bits are also
shown.

From the preceding discussion, it appears that the (d, k)-constrained stored bit

sequence is first translated into an intermediate sequence of runs of 1s and −1s,

before being written onto the recording surface. Indeed, the intermediate sequence is

run-length-limited (an RLL sequence), and is referred to as the write sequence. The
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above-described differential mapping between the RLL 1/− 1 write sequence and the

(d, k)-constrained stored bit sequence, is called the NRZI mapping.

It is now clear that the k constraint arises out of the self-clocking requirement,

while the d constraint is used to regulate the space between successive state transi-

tions, and hence the ISI. For several years, recording systems used a peak-detection

method (see [[18],Section II-C] for a description) to read-out the stored data. In

peak-detection-based systems, the d constraint had a direct impact on performance

by regulating the ISI and minimizing detection errors. The conflicting attributes of

storage density and timing window (see [[17], pp. 58-60] for a full discussion) meant

that typical choices were d = 1 and d = 2.

2.3 Other RLL Codes in Recording Systems

With the emergence of partial-response equalization with maximum-likelihood se-

quence detection (PRML) techniques [57],[9],[18], there was a significant change in

the read-out methodology. Rather than regulate ISI using a d constraint as in peak

detection, PRML detection actually embraced the ISI, and used signal processing

techniques to yield dramatic improvements in system performance. With the ISI no

longer being a limiting factor, PRML-based magnetic recording systems moved to-

wards higher-rate d = 0 codes. With maximum-likelihood sequence detection, the

system error-rate mainly depends on the minimum-distance at the detector input.

Hence, additional constraints on the stored bit sequence were imposed to increase the

minimum-distance, e.g. (0, G/I) constraint, d = 1 constraint, maximum-transition-

run (MTR) constraints. Some other constraints were imposed to match the code spec-

trum to the channel-response spectrum, according to the theory of matched spectral-

nulls codes [24] e.g. DC/Nyquist nulls constraints [12]. The advent of perpendicular

magnetic recording [28] has brought with it several new problems and possibly dif-

ferent input constraints. Optical recording systems continue to use d = 1 codes with
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significantly different channel models compared to magnetic recording, and increas-

ing storage density has given rise to asymmetrical run-length constraints in these

recording media.

All these examples serve to illustrate that the type of input constraint is highly

system-dependent. There can be no single RLL constraint that works best for all

systems. However, the need for simple, high-rate constrained codes is common to all

these examples. As seen earlier in Chapter 1, even a 1-2% increase in code rate with

simpler encoding/decoding can impact the cost and performance of a digital recording

system. Hence, despite the long history of constrained codes, there continues to be

an effort to improve the encoding rates. Our aim in this research is to develop simple

methodologies for the design of optimal and near-optimal constrained codes, with a

focus on (d, k) constraints, and subsequent extensions to other relevant constraints.

In the next chapter, we review a variable-rate encoding technique called bit stuffing,

which forms the basis for the encoding algorithms proposed in the rest of this thesis.
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CHAPTER III

REVIEW: VARIABLE-RATE ENCODING AND

THE BIT STUFF ALGORITHM

Variable-rate encoding refers to the fact that for a given finite input block length, the

output length of the constrained sequence can vary depending on the actual input

bits. In other words, different inputs of the same length can give rise to outputs of

fluctuating lengths.

In previous work [27],[31], optimal (d, k) codes have been studied from a source

coding perspective. This can be understood as follows. For given non-negative in-

tegers d and k, 0 ≤ d < k, let Xd,k =
{

0k1, 0k−11, . . . , 0d+11, 0d1
}

if k < ∞, and let

Xd,∞ =
{

0, 0d1
}

, where 0t1 represents t consecutive “0”s followed by a “1”. The ele-

ments of the finite set Xd,k are referred to as (d, k) phrases, and any (d, k)-constrained

sequence can be described as the concatenation of phrases from Xd,k. Furthermore, it

is known that a (d, k) code achieves capacity if and only if it generates (d, k) phrases

maxentropically, which means that the phrase of length l occurs with probability λ−l
d,k,

independently of others [61]. Thus, maxentropic (d, k)-constrained sequences can be

viewed as the output of a memoryless source which emits phrases from the finite

alphabet Xd,k, with the phrase 0t1 occurring with probability λ
−(t+1)
d,k .

An ideal, lossless source code removes the redundancy from such a source to form

unconstrained and Bernoulli(1/2)-distributed (Pr{0} = Pr{1} = 1/2) output. Thus,

the ideal, lossless source code acts as a distribution transformer (DT), which trans-

forms maxentropically distributed (d, k)-constrained sequences into independent and

identically distributed (i.i.d) Bernoulli(1/2) sequences. We say that the encoder of
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the ideal source code is a (Λd,k, b(1/2))-DT, where Λd,k denotes the maxentropic (d, k)

phrase distribution, and b(1/2) denotes the Bernoulli(1/2) distribution. The decoder

of the ideal source code is thus a (b(1/2),Λd,k)-DT, and can be used to generate opti-

mal (d, k) codes. However, most source codes in practice are not ideal, and only gen-

erate nearly-b(1/2) output sequences. Nevertheless, the decoder of a suitable source

code can be used to encode unconstrained b(1/2) input into near-maxentropic (d, k)-

constrained output. Several authors have examined (d, k) codes from this perspective.

Specifically, Kerpez [27] investigated four types of such source encoder-decoder pairs

based on the Huffman code [11], enumerative code [55],[10],[29],[19], variable-length-

to-block code [21], and a combined source-(d, k) code based on the arithmetic code

[31],[58]. Among these only the enumerative code is fixed-rate, while all others use

variable-rate encoding. In each case, the rate of the corresponding source decoder

was shown to converge to the (d, k) capacity with increasing block length.

In subsequent work by Lee, then Bender and Wolf, the bit stuff algorithm [6] was

proposed to construct optimal and near-optimal (d, k) codes using only a (b(1/2), b(p))-

DT, where b(p) denotes the Bernoulli(p) distribution with Pr{0} = p, p ∈ [0, 1].

Unlike the (b(1/2),Λd,k)-DT, where Λd,k is in general non-binary, the (b(1/2), b(p))-

DT has the property that the output distribution is binary. Hence, both the input

and the output of a (b(1/2), b(p))-DT are composed of independent and identically

distributed (i.i.d) bits, but the output now has a bias p. Bender and Wolf showed

that controlled insertion of additional bits into such an i.i.d biased, bit sequence,

could lead to optimal codes for the (d,∞) and (d, d+1) constraints and near-optimal

codes for other constraints. This is known as the bit stuff algorithm [6]. The general

concept of inserting additional bits so as to satisfy constraints is referred to as bit

stuffing [7].

More recently, the bit flipping algorithm [3] was shown to improve bit stuff encod-

ing rates for most (d, k) constraints and additionally achieve (2, 4) capacity. For all
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values of (d, k), k 6= d+ 1, k 6= ∞ and (d, k)6=(2, 4), both bit stuffing and bit flipping

are suboptimal. Our algorithms in Chapters 4 and 5 improve upon the bit stuff and

bit flipping algorithms, while still using only (b(1/2), b(p))-DTs.

To gain the necessary understanding and motivation behind our proposed con-

structions, we first review the bit stuff algorithm in detail, and discuss some relevant

properties. Along the way, we provide an alternate interpretation of the optimality

of bit stuffing for certain (d, k) constraints. This motivates the need for our proposed

algorithm in Chapter 4. Throughout our discussions in the rest of this thesis, we use

the short-hand notation DT(p) to imply the (b(1/2), b(p))-DT.

3.1 The Bit Stuff Algorithm

The bit stuff algorithm was proposed by Lee, and generalized by Bender and Wolf

[6] to produce optimal and near-optimal (d, k) sequences. The block diagram of the

bit stuff encoder is shown in Fig. 3. The encoding proceeds in two stages. First, the

distribution transformer DT(p) converts the i.i.d, unbiased (Pr{0} = Pr{1} = 1/2)

input bit sequence into an i.i.d, p-biased (Pr{0} = p) bit sequence. In the second

stage, the p-biased bit sequence undergoes bit stuffing according to the following two

operations

1. Scan the incoming bit sequence and insert a “1” after every run of k − d con-

secutive “0”s (skip this step if k = ∞)

2. Scan the output bit sequence of the first operation, and stuff d “0”s after every

“1”.

The first operation produces a (0, k − d)-constrained bit sequence, which then acts

as input for the second operation. Stuffing d zeros in the second operation translates

the (0, k−d) constraint into the required (d, k) constraint. Both these operations are

invertible. Hence, with a one-to-one implementation of the distribution transformer
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Bit Stuff
(d, k)-constrainedL0
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i.i.d., unbiased

DT(p)

i.i.d., p-biased

Figure 3: Block diagram of the bit stuff encoder. DT(p) denotes the
(b(1/2), b(p))-distribution transformer. Lin denotes the average length at
the bit stuff input, and L0

out denotes the average output length.

DT(p), the bit stuff decoder is a simple inverse of the encoder.

3.2 Distribution Transformer Implementation

The distribution transformer DT(p) is nothing but the inverse of a lossless source

code that transforms i.i.d, p-biased (Pr{0} = p) bit sequences into i.i.d, unbiased

(Pr{0} = Pr{1} = 1/2) bit sequences. In other words, DT(p) is the decoder of the

lossless source code. The source code can be constructed using one of several meth-

ods available in the literature. Two examples are the Huffman code [11] and the

arithmetic code. The arithmetic codes was derived by Elias, and made useful by Ris-

sanen, Langdon, Jones and Pasco [23],[45]. They are a tree or nonblock-source code,

which makes them suitable for coding long sequences. Pasco and Jones [23] outlined

separately, the implementation of arithmetic codes using floating-point arithmetic.

Indeed, arithmetic coding can be used to directly build a (b(1/2),Λd,k)-DT, as shown

in [2],[40],[41]. Even fixed-rate arithmetic codes have been designed for (d, k) con-

straints in [31],[58]. However, in this thesis, we limit our attention to the design of

optimal and near-optimal constrained codes using the simple concept of bit stuffing.

3.3 Computing Rate

Since the bit stuff algorithm is variable-rate, we define the average rate as

R0(p, d, k) =
Average input length

Average output length
.
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Intuitively, the average rate is the ratio of the number of “bits in” to “bits out” for a

very long input sequence.

Recall that the bit stuff encoder has two components: the distribution transformer

DT(p), and the bit stuff block, as shown in Fig. 3. The distribution transformation

occurs at an average rate of h(p), where h(p) = −plog2p − (1 − p)log2(1 − p) is the

binary entropy function. Let us denote the average length at the bit stuff input by

Lin, and the average output length by L0
out, as indicated in Fig. 3. Then R0(p, d, k)

can be written as the product of the average rates of the two components,

R0(p, d, k) = h(p)
Lin

L0
out

. (3)

For given constraint parameters d and k, the maximum average rate of the bit stuff

algorithm is now defined as R∗
0(d, k) = maxp∈[0,1]R0(p, d, k). We note from (3) that

for any p 6= 1/2, h(p) is strictly less than unity, and hence there is a rate loss in the

first stage of bit stuff encoding. However, with a suitable choice of p, the biasing

can actually improve the overall rate, R0(p, d, k), by better fitting input data to the

constraint. Essentially, an appropriately biased bit sequence incurs lesser stuffed bits

in the second stage. Bender and Wolf [6] showed that the maximum average rate,

R∗
0(d, k), equals the (d, k) capacity for k = d + 1 and k = ∞, but is strictly less

than capacity for all other cases. In the following discussion, we provide an alternate

interpretation of their results. This is based on matching phrase probabilities, and

will help motivate the need for our proposed algorithm in Chapter 4.2.

Consider the finite state transition diagram (FSTD) of a (d, k) constraint, which

is shown in Fig. 4 for k < ∞. Walks on the FSTD can be used to generate all

possible (d, k) sequences by reading off the edge-labels. It is well known that there is

a maxentropic walk, where edges must be traversed according to a set of optimal state

transitions in order to achieve the highest possible rate. A code achieves capacity if
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and only if it produces a walk on the FSTD with the maxentropic state transition

probabilities shown in parentheses in Fig. 4.
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k−1d210

−k

−(d+1)

1− λ
−(d+1)

kd+1

λ

λ λ
−(k+1)

1− λ
−(d+1)

λ
−(d+2)

+
−k

λ λ
−(k+1)

λ
−(k+1)

Figure 4: FSTD of the (d, k) constraint, k <∞. Maxentropic state transi-
tion probabilities are shown in parentheses. The labels on directed edges
indicate the output bit.

Alternatively, one can describe a (d, k) sequence by the concatenation of phrases

from the finite set Xd,k =
{

0k1, 0k−11, . . . , 0d+11, 0d1
}

. Each (d, k) phrase, 0t1, t =

k, k− 1, . . . , d, corresponds to a cycle on the FSTD (see Fig. 4) that begins and ends

in state 0. Consequently, a code achieves capacity if and only if it generates (d, k)

phrases with the corresponding maxentropic probabilities. Note that if k = ∞, then

Xd,∞ =
{

0, 0d1
}

and the FSTD in Fig. 4 can be redrawn with exactly d+1 states, and

two cycles that begin and end in state 0. Once again, each (d,∞) phrase corresponds

uniquely, to a cycle in the FSTD and any (d,∞) code is capacity-achieving if and

only if it generates the two phrases maxentropically.

It is known from a result of Zehavi and Wolf [61] that the maxentropic probability

of the (d, k) phrase of length t is equal to λ−t
d,k. We can hence form a maxentropic

phrase probability vector for all (d, k), k <∞, as

Λd,k =
[

λ
−(k+1)
d,k λ

−(k)
d,k . . . λ

−(d+2)
d,k λ

−(d+1)
d,k

]

. (4)
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Next, we write down the corresponding vector of phrase probabilities generated by

the bit stuff algorithm

v0 =
[

v0
0 v

0
1 . . . v

0
k−d−1 v

0
k−d

]

, (5)

where v0
i denotes the probability of occurrence of the phrase of length k−i+1, namely

0k−i1. Table 1 specifies the mapping between the bit stuff input words and the output

(d, k) phrases, as induced by the bit stuff block shown in Fig. 3. Recall that the bit

stuff input is p-biased, thereby yielding the corresponding phrase probabilities v0
i as a

function of p. For the case when k = ∞, Λd,∞ =
[

λ−1
d,∞ λ

−(d+1)
d,∞

]

, and v0 = [p 1 − p].

Table 1: Bit stuff phrase probabilities, k <∞

Index Bit stuff (d, k) phrase Bit stuff phrase
(i) input word probability (v0

i )

0 0k−d 0k1 pk−d

1 0k−d−11 0k−11 pk−d−1(1 − p)
...

...
...

...

j 0k−d−j1 0k−j1 pk−d−j(1 − p)
...

...
...

...

k − d − 1 01 0d+11 p(1 − p)

k − d 1 0d1 1 − p

3.4 Interpretation of Optimality

With this initial discussion and setup, we now interpret the Bender-Wolf results [6]

as follows. The bit stuff algorithm achieves capacity if and only if v0 = Λd,k. It can

be verified that for (d, d + 1) and (d,∞) constraints, v0 exactly matches Λd,k with

p = λ
−(d+2)
d,d+1 and p = λ−1

d,∞, respectively. Hence, the bit stuff algorithm is optimal when

k = d+ 1 and k = ∞. However, for all other (d, k) constraints, bit stuffing is strictly
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suboptimal, no matter what value of bias p is chosen. The following proposition

restates a result from [6].

Proposition 3.1 For d ≥ 0, d+ 2 ≤ k <∞, v0 6= Λd,k for any p ∈ [0, 1].

Proposition 3.2 For 0 ≤ d < k < ∞, and a DT bias p, the average information

rate, R0(p, d, k), of the bit stuff algorithm is given by

R0(p, d, k) =











h(p)
1 − pk−d

1 − pk−d+1 + d(1 − p)
k <∞

1
1 + d(1 − p)

k = ∞
(6)

For the special case of p = 1/2, i.e., without the DT in Fig. 3, (6) reduces to

R0(d, k) =











2k−d+1 − 2
2k−d+1 − 1 + d2k−d k <∞

2
d+ 2

k = ∞
(7)

Proposition 3.1 implies that the maximum average bit stuffing rate, R∗
0(d, k), is strictly

less than capacity for all (d, k) constraints with d + 2 ≤ k < ∞. Our objective now

is to improve bit stuff encoding rates for d+ 2 ≤ k <∞, while maintaining a similar

implementation. To meet this objective, we restrict ourselves to the use of a single

distribution transformer as in bit stuffing, and show that a simple switching of bit

stuff phrase probabilities improves the encoding rates for several values of d and k.

As a first step, we show how this idea leads to the recently proposed bit flipping

algorithm [3], and then generalize to symbol sliding in Chapter 4.

3.5 The Bit Flipping Algorithm

For any given (d, k) constraint, k < ∞, consider a DT bias of p greater than 1/2 in

the bit stuff algorithm. This means that a “0” is more likely than a “1” at the bit stuff
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input (see Fig. 3). Our goal now, is to match the bit stuff phrase probability vector,

v0, to the maxentropic vector Λd,k. Looking at indices i = 0 and i = 1 in Table 1,

we note that v0
0 = pk−d > v0

1 = pk−d−1(1 − p), but the corresponding maxentropic

probabilities are related as λ
−(k+1)
d,k < λ

−(k)
d,k . This suggests that swapping the bit stuff

phrase probabilities v0
0 and v0

1, should result in a better match with Λd,k, thereby

improving bit stuff encoding rates. Hence, we would like to replace the the bit stuff

block in Fig. 3, by a constrained encoder that performs the following three operations

on the biased bit sequence

1. (i) If k = d+ 1, flip every incoming bit

(ii) If k /∈ {d + 1,∞}, track the run-length, ρ, of consecutive “0”s in the

incoming bit sequence. When ρ = k − d − 1, flip the next incoming bit,

then reset ρ and goto (ii)

2. Scan the output bit sequence of the first operation, and insert a “1” after every

run of k − d consecutive “0”s (skip this step if k = ∞)

3. Scan the output bit sequence of the second operation, and stuff d “0”s after

every “1”.

The first operation performs the bit flipping (change a “1” bit to a “0” bit and vice

versa), which is equivalent to swapping the phrase probabilities v0
0 and v0

1, and their

corresponding bit stuff input words in Table 1. The second and third operations

are identical to the bit stuff operations described in Chapter 3.1. Since the bit flip-

ping operation is invertible, the decoder once again is simply the encoder’s inverse

components arranged in the reverse order.

The algorithm described above is precisely the bit flipping algorithm proposed by

Aviran et al. [3]. Their main results are summarized in the following two propositions
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Proposition 3.3 For d ≥ 1, d + 2 ≤ k < ∞, the bit flipping algorithm achieves

greater maximum average rate than the bit stuff algorithm.

Proposition 3.4 For d ≥ 0, d+ 2 ≤ k < ∞, the bit flipping algorithm is optimal if

and only if d = 2 and k = 4.

Proposition 3.3 mainly depends on the following two facts

(i) Given k <∞, the average bit flipping rate is greater than the average bit stuff

encoding rate for all values of bias p such that 1/2 < p < 1.

(ii) The rate maximizing bit stuffing bias is greater than 1/2 when d = 1, 4 ≤ k <

∞, and for all d ≥ 2, d+ 2 ≤ k <∞.

Proposition 3.4 states that for 0 ≤ d ≤ k − 2 < ∞, the new phrase vector, say v1,

formed by swapping the phrase probabilities v0
0 and v0

1 in v0, exactly matches Λd,k

only for the (2, 4) constraint. As will be seen later in Chapter 4, this optimality of the

bit flipping algorithm is possible because of the capacity equality C(2, 4) = C(1, 2).

For the special case when k = d + 1, bit flipping with a bias p is equivalent to bit

stuffing with bias 1−p; and when k = ∞, bit flipping becomes identical to bit stuffing.

Hence, bit flipping continues to be optimal for (d,∞) and (d, d+ 1) constraints.
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CHAPTER IV

THE SYMBOL SLIDING ALGORITHM

In this chapter, we present the symbol sliding algorithm, which further improves

bit flipping rates while still using only a single DT. We prove the optimality of the

proposed algorithm for all (d, k) constraints with k = 2d+1, and show that bit stuffing

and bit flipping can be derived as special cases of symbol sliding. The following

discussion on the (1, 3) constraint brings out the principal ideas.

4.1 Motivating Example: The (1, 3) Constraint

Thus far, we have seen a phrase probability interpretation of bit stuffing, and how

switching two entries of the phrase probability vector v0, improved the encoding rates.

This prompts us to generalize the idea of switching phrase probabilities to better

match the maxentropic vector Λd,k. The following example of the (1, 3) constraint

motivates this idea.

Table 2: Phrase probabilities for the (1, 3) constraint

Index Bit stuff (1, 3) Maxentropic Bit stuff Bit flipping Symbol sliding
(i) Input phrase prob. prob. prob. prob. with

word (Λ1,3(i)) (v0
i ) (v1

i ) index 2 (v2
i )

0 02 031 λ−4
1,3 p2 p(1 − p) p(1 − p)

1 01 021 λ−3
1,3 p(1 − p) p2 1 − p

2 1 01 λ−2
1,3 1 − p 1 − p p2

Consider the phrase probabilities listed in Table 2. From Proposition 3.1, it follows

that the maximum average bit stuff encoding rate is strictly less than (1, 3) capacity.

Proposition 3.3 states that (1, 3) bit flipping rates are also suboptimal. Now consider
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the phrase probabilities v2
i as listed in the last column of Table 2. We call this symbol

sliding with index 2. This means that v0
0 (corresponding bit stuff input word 02) is

slid down to the index 2 position of v0
2 (input word 1), with v0

2 (input word 1) and v0
1

(input word 01) being pushed up an index each, thus yielding the phrase probability

vector v2 = [v2
0 v2

1 v2
2]. It can be shown that with a bias of p = λ−1

1,3, v2 exactly

matches Λ1,3, and the average rate is equal to the (1, 3) capacity. Hence, symbol

sliding with index 2 achieves capacity for the (1, 3) constraint where both bit stuffing

and bit flipping fall short. This prompts us to study symbol sliding in greater depth.

4.2 Encoding Procedure

The main idea behind symbol sliding is to switch the bit stuff phrase probabilities so

as to better match the maxentropic vector Λd,k. Symbol sliding is hence a function

of a sliding index j, 0 ≤ j ≤ k − d, for any given (d, k) constraint with k < ∞.

Symbol sliding with index j involves sliding down v0
0 from index i = 0 to i = j and

moving each of v0
1, v

0
2, . . . , v

0
j up an index each, to yield the phrase probability vector

vj = [vj
0 v

j
1 . . . vj

k−d]. Table 3 provides the full list of bit stuffing, bit flipping, symbol

sliding and maxentropic phrase probabilities. It can be seen that bit stuffing and bit

flipping are special cases of symbol sliding with indices j = 0 and j = 1, respectively.

The symbol sliding encoder is shown in Fig. 5. It has a similar set-up to the

bit stuff encoder shown in Fig. 3. The only difference is that the bit stuff block is

replaced by a constrained encoder that performs the following two operations on the

biased bit sequence

1. (i) If j = 0 and k 6= ∞, scan the incoming bit sequence and insert a “1” after

every run of k − d consecutive “0”s

(ii) If j = 1 and k = d+ 1

(a) Flip every incoming bit

(b) Scan the output bit sequence of (a) and insert a “1” after every “0”
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(iii) If j = 1 and k /∈ {d+ 1,∞}

(a) Track the run-length, ρ, of consecutive “0”s in the incoming bit se-

quence. When ρ = k − d− 1, flip the next incoming bit, then reset ρ

and goto (a)

(b) Scan the output bit sequence of (a) and insert a “1” after every run

of k − d consecutive “0”s

(iv) If 0 ≤ d ≤ k − 2 <∞ and 2 ≤ j ≤ k − d− 1

(a) Track the run-length, ρ, of consecutive “0”s in the incoming bit se-

quence. When ρ = k − d − j, insert a “0”. When ρ = k − d, replace

the run of k− d+1 consecutive “0”s (including the inserted “0” when

ρ was equal to k − d − j), with the phrase 0k−d−j1, then reset ρ and

goto (a)

(v) If 0 ≤ d ≤ k − 2 <∞ and j = k − d

(a) Insert a “0” after every string of k − d consecutive “0”s

(b) Scan the output bit sequence of (a) and insert a “0” after every “1”

(c) Track the run-length, ρ, of consecutive “0”s in the output bit sequence

of (b). When ρ = k − d + 1, replace the run of k − d + 1 consecutive

“0”s with a single “1” bit, then reset ρ and goto (c)

2. Scan the output bit sequence of the first operation and stuff d “0”s after every

“1”

The first operation produces a (0, k − d)-constrained sequence with the appropriate

phrase matching, and the second operation translates this to a (d, k) constraint by

inserting d zeros after each “1” bit. The first operation has been broken down into five

cases. The first three cases with j = 0 and j = 1 correspond to the bit stuffing and

bit flipping operations discussed earlier. The generalized symbol sliding operations

with 2 ≤ j ≤ k − d are specified in cases (iv) and (v).
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out
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DT(p)
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Figure 5: Block diagram of the symbol sliding encoder. Lin denotes the
average length at the input to the constrained encoder. Lj

out denotes the
average output length for sliding index j.

The constrained decoder is a simple inverse of the constrained encoder. It performs

the following three operations on the (d, k) sequence

1. Delete the d stuffed “0”s after every “1”

2. (i) If 0 ≤ d ≤ k − 2 <∞ and j = k − d

(a) After every “1” in the output bit sequence of the first operation, if the

next bit is “0”, delete the “0” bit. If the next bit is “1”, insert a string

of k − d consecutive “0”s before the “1” bit

(b) Scan the output bit sequence of (b), delete the “1” after every run of

k − d consecutive “0”s

(ii) If 0 ≤ d ≤ k − 2 <∞ and 2 ≤ j ≤ k − d− 1

(a) Track the run-length, ρ, of consecutive “0”s in the output bit sequence

of the first operation. When ρ = k − d − j and the next bit is “0”,

delete the “0” bit. When ρ = k−d− j and the next bit is “1”, replace

the phrase 0k−d−j1 with a string of k − d consecutive “0”s

(iii) If j = 1 and k /∈ {d+ 1,∞}

(a) Scan the output bit sequence of the first operation, and delete the

inserted “1” after every run of k − d consecutive “0”s

(b) Track the run-length, ρ, of consecutive “0”s in the output bit sequence

of (a). When ρ = k − d − 1, flip the next incoming bit, then reset ρ

and goto (b)
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(iv) If j = 1 and k = d+ 1

(a) Scan the output bit sequence of the first operation, and delete the

inserted “1” after every “0”

(b) Flip every bit in the output bit sequence of (a)

(v) If j = 0 and k 6= ∞, delete the “1” after every run of k − d consecutive

“0”s in the output bit sequence of the first operation

Having described the symbol sliding algorithm, we now proceed to analyze its

performance. Let us denote by SS(j), the symbol sliding algorithm with index j.

Then, the special cases SS(0) and SS(1) denote the bit stuffing and bit flipping algo-

rithms, respectively. Hence, we expect that symbol sliding continues to be optimal for

(d, d + 1), (d,∞) and (2, 4) constraints. In the following discussion, we derive some

important properties and prove the optimality of symbol sliding for an additional

class of (d, k) constraints.

4.3 Properties of Symbol Sliding

Lemma 4.1 Let 0 ≤ d < k < ∞. Then, the maximum average rate achieved by

SS(j) equals (d, k) capacity when k = 2d+ 1 and sliding index j = k − d = d+ 1.

Proof: We use the fact that a code achieves capacity if and only if the generated

phrases are maxentropic. We now show that SS(j) generates maxentropic (d, k)

phrases when k = 2d + 1 and j = d + 1. Let us start with a result of Ashley

and Siegel [1], which states that the capacity of the (d, 2d+ 1) constraint is identical

to that of the (d+ 1,∞) constraint. Hence λd,2d+1 is the positive, real root of each of

the following two characteristic equations

2d+2
∑

l=d+1

z−l = 1
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z−1 + z−(d+2) = 1. (8)

Now, let the sliding index j = k − d = d + 1. Consider a bias p = λ−1
d,2d+1. Then, we

have

vd+1
k−d = pk−d = pd+1 = λ

−(d+1)
d,2d+1 (9)

vd+1
k−d−1 = 1 − p = 1 − λ−1

d,2d+1 = λ
−(d+2)
d,2d+1 (10)

vd+1
k−d−i = pi−1(1 − p) = λ

−(d+i+1)
d,2d+1 , 2 ≤ i ≤ k − d, (11)

where (10) follows from (8). Hence, we have vd+1
i = λ

−(k−i+1)
d,2d+1 , for all 0 ≤ i ≤ k − d,

whereby vd+1 = Λd,k. This proves the lemma.

Lemma 4.1 proves the optimality of symbol sliding for an additional class of (d, k)

constraints, namely all (d, 2d + 1) constraints. Interestingly, the proof of optimality

depends on the capacity equality C(d, 2d + 1) = C(d + 1,∞). Recall that the bit

stuff algorithm is already capacity-achieving for all (d + 1,∞) constraints. Hence,

by a simple modification to bit stuffing, we have been able to extend the optimality

property to another class of (d, k) constraints, which have the same capacity as (d+

1,∞) constraints. The following theorem shows that (d, 2d + 1) constraints are the

only additional class of (d, k) constraints for which symbol sliding is optimal.

Theorem 4.2 For 0 ≤ d < k, the maximum average rate achieved by SS(j) equals

the (d, k) capacity only in the following cases

1. j = 0, k = d+ 1

2. j = 1, k = d+ 1
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3. j = 1, d = 2, k = 4

4. j = k − d, k = 2d+ 1

5. k = ∞.

For all other values of (d, k), the maximum average rate of SS(j) is strictly less than

capacity for each j, 0 ≤ j ≤ k − d.

Proof: We wish to find constraints (d, k) for which vj = Λd,k for some j,

0 ≤ j ≤ k − d. We first note that when there is no k constraint, i.e., k = ∞, then

the symbol sliding operations reduce to simply inserting d zeros after every one in

the biased bit sequence. This is identical to the corresponding bit stuffing operation,

which has been shown to achieve capacity for (d,∞) constraints [6]. Case 5) in the

theorem statement now follows. In the remainder of this proof, we focus only on

(d, k) constraints with k <∞.

Depending on the value of j, we have the following four cases.

Case 1: j = 0

This is identical to the bit stuff algorithm. Let us first consider k > d + 1. For

any such given (d, k) constraint, the following must hold (see Table 3) in order for v0

to exactly match Λd,k.

p = λ−1
d,k (12)

1 − p = λ
−(d+1)
d,k (13)

pk−d = λ
−(k+1)
d,k . (14)

(12) and (13) together imply that λ−1
d,k +λ

−(d+1)
d,k = 1. However, this means that λd,k is

a root of the characteristic (d,∞) equation, Hd,∞ = 1. Hence, (12) and (13) cannot
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be simultaneously satisfied for any finite k > d+ 1. This leads us to Proposition 3.1

which was stated without proof in Chapter 3.4.

Next, we look at k = d + 1. In this case, we only have two possible phrases

corresponding to indices i = 0, 1 in Table 3. It can be seen that a bias of p = λ
−(d+2)
d,d+1

is optimal. This yields Case 1) of the theorem statement.

Table 3: Maxentropic, bit stuff, bit flipping and symbol sliding phrase probabilities
for the (d, k) constraint, k <∞

Index Bit stuff (d, k) Maxentropic Bit stuff Bit flipping Symbol sliding
(i) input phrase probability probability probability probability

word (Λd,k(i)) (v0
i ) (v1

i ) with index j (vj
i )

0 0k−d 0k1 λ
−(k+1)
d,k pk−d pk−d−1(1 − p) pk−d−1(1 − p)

1 0k−d−11 0k−11 λ
−(k)
d,k pk−d−1(1 − p) pk−d pk−d−2(1 − p)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

j − 1 0k−d−j+11 0k−j+11 λ
−(k−j+2)
d,k pk−d−j+1(1 − p) pk−d−j+1(1 − p) pk−d−j(1 − p)

j 0k−d−j1 0k−j1 λ
−(k−j+1)
d,k pk−d−j(1 − p) pk−d−j(1 − p) pk−d

j + 1 0k−d−j−11 0k−j−11 λ
−(k−j)
d,k pk−d−j−1(1 − p) pk−d−j−1(1 − p) pk−d−j−1(1 − p)

.

..
.
..

.

..
.
..

.

..
.
..

.

..

k − d − 1 01 0d+11 λ
−(d+2)
d,k p(1 − p) p(1 − p) p(1 − p)

k − d 1 0d1 λ
−(d+1)
d,k 1 − p 1 − p 1 − p

Case 2: j = 1

This is identical to the bit flipping algorithm. We first consider k > d + 2. For

any such given (d, k) constraint, the following must hold (see Table 3) in order for v1

to exactly match Λd,k.

p = λ−1
d,k (15)

1 − p = λ
−(d+1)
d,k (16)

pk−d = λ−k
d,k (17)

pk−d−1(1 − p) = λ
−(k+1)
d,k . (18)
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(15) and (16) together imply that λ−1
d,k + λ

−(d+1)
d,k = 1. As in the previous case, this is

impossible unless k = ∞. Hence, SS(1) is strictly suboptimal for all (d, k) constraints

with d+ 2 < k <∞.

Next, let k = d + 2. As before, from Table 3, we obtain the following conditions

in order for v1 to exactly match Λd,k.

1 − p = λ
−(d+1)
d,d+2 (19)

p2 = λ
−(d+2)
d,d+2 (20)

p(1 − p) = λ
−(d+3)
d,d+2 . (21)

From (20) we have p = λ
−( d

2
+1)

d,d+2 . Using this and (19) in (21), we find that d
2
+1+d+1 =

d+ 3 or d = 2. This implies that SS(1) is optimal for the (2, 4) constraint, as stated

in Case 3) of the theorem.

Finally, let k = d + 1. This means that we only have indices i = 0, 1 in Table

3. The bit flipping algorithm in this case is exactly the bit stuff algorithm run on

the corresponding flipped (ones changed to zeros and vice versa) biased bit sequence.

Hence, for any bit stuffing bias p, a bit flipping bias of (1 − p) achieves the same

average rate. This means that a bias of 1− λ
−(d+2)
d,d+1 = λ

−(d+1)
d,d+1 is optimal for (d, d+ 1)

bit flipping, as stated in Case 2) of the theorem.

Case 3: 2 ≤ j ≤ k − d− 1

The above range of j implies that we are dealing only with constraints (d, k) for

which k ≥ d + 3. As in the previous two cases, we can derive the following set of

conditions for vj to exactly match Λd,k (see Table 3).

p = λ−1
d,k (22)
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1 − p = λ
−(d+1)
d,k (23)

pk−d = λ
−(k−j+1)
d,k . (24)

Once again, the above three conditions cannot be simultaneously satisfied unless

k = ∞. Hence, we conclude that SS(j), 2 ≤ j ≤ k − d − 1, cannot achieve capacity

for any (d, k), k <∞.

Case 4: j = k − d and j ≥ 2

It was shown in Lemma 4.1 that sliding index j = k − d is optimal for (d, 2d+ 1)

constraints. We now show that (d, 2d + 1) are the only set of constraints for which

SS(k − d) is capacity achieving. From Table 3, we note that the following conditions

need to be satisfied for SS(k−d) to be optimal for any given (d, k). Recall that j ≥ 2

and therefore k − d ≥ 2.

p = λ−1
d,k (25)

1 − p = λ
−(d+2)
d,k (26)

pk−d = λ
−(d+1)
d,k . (27)

From (27) and (25) above, we require that k − d = d+ 1 or k = 2d+ 1. It turns out

(see Lemma 4.1) that this value of k satisfies condition (26) by virtue of the capacity

equality C(d, 2d+ 1) = C(d+ 1,∞). Hence, we see that SS(k − d) is optimal for all

(d, 2d+ 1) constraints, and no others.

From our discussions in Cases 1 through 4, we have determined all values of d

and k for which SS(j) is optimal, and also established that for all constraints (d, k),

k 6= d+ 1, k 6= ∞, k 6= 2d+ 1 and (d, k)6= (2, 4), the maximum average rate of SS(j),

for each j, 0 ≤ j ≤ k − d, is strictly less than capacity. This completes the proof.
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In Theorem 4.2, we found that the symbol sliding algorithm is optimal for (d, d+1),

(d,∞), (d, 2d + 1) and (2, 4) constraints, and strictly suboptimal for all other (d, k)

constraints for all values of bias p ∈ [0, 1]. For the suboptimal cases, we now have

two degrees of freedom with j and p, that we can tune to improve the encoding rates.

The following result establishes a necessary and sufficient condition on the bias p, so

that SS(j) achieves a higher average rate than SS(j − 1).

Theorem 4.3 Let 0 ≤ d < k < ∞. Then for 0 < j ≤ k − d, the average rate of

SS(j) is greater than the average rate of SS(j − 1) if and only if p > λ−1
j−1,∞.

Proof: Let us denote by Rj(p, d, k) the average rate of SS(j) for a given con-

straint (d, k) and bias p. We then have

Rj(p, d, k) = h(p)
Lin

Lj
out

, (28)

where Lin and Lj
out represent the average lengths at the input and output to the

SS(j) constrained encoder, respectively (see Fig. 5). It can be seen that Lin does not

depend on the sliding index and is identical for all j, 0 ≤ j ≤ k−d. Hence, for a given

bias p, Lj
out is the important factor in comparing the rates of SS(j) and SS(j − 1). It

is given by

Lj
out =

k−d
∑

i=0

vj
i l

j
i , (29)

where lji is the length of the (d, k) phrase corresponding to the phrase probability

vj
i listed in Table 3. For example, index i = j − 1 has vj

j−1 = pk−d−j(1 − p) and

ljj−1 = k − j + 2. Now, consider the difference of average output lengths Lj−1
out − Lj

out.

This is computed from (29) to be
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Lj−1
out − Lj

out = pk−d − pk−d−j(1 − p). (30)

From (28) and (30), we can derive the condition, Rj(p, d, k) > Rj−1(p, d, k) if and

only if pj + p > 1. The proof is now completed using the fact that the only positive,

real root of pj + p = 1 is λ−1
j−1,∞.

Theorem 4.3 specifies the range of bias under which it is appropriate to use symbol

sliding with a higher sliding index. Let us define the maximum average rate of SS(j)

as R∗
j (d, k) = maxp∈[0,1]Rj(p, d, k). Further, let us denote by p∗j , the value of bias that

maximizes Rj(p, d, k). The following result is an immediate consequence of Theorem

4.3.

Corollary 4.4 For any given (d, k) constraint, k <∞, and sliding index j, 0 < j ≤

k − d, if p∗j−1 > λ−1
j−1,∞, then R∗

j (d, k) > R∗
j−1(d, k). Conversely, if p∗j < λ−1

j−1,∞, then

R∗
j (d, k) < R∗

j−1(d, k).

Corollary 4.4 makes an important connection between the bias and sliding index.

If the rate maximizing bias for SS(j − 1), namely p∗j−1, is greater than λ−1
j−1,∞, it

follows from Theorem 4.3 that the average rate of SS(j) with a bias p∗j−1 is greater

than R∗
j−1(d, k), and hence R∗

j (d, k) = maxp∈[0,1]Rj(p, d, k) > R∗
j−1(d, k). For similar

reasons, we have the converse that R∗
j (d, k) < R∗

j−1(d, k) if p∗j < λ−1
j−1,∞. On the

other hand, if p∗j−1 < λ−1
j−1,∞, the authors have been unable to obtain any general

relationship between R∗
j (d, k) and R∗

j−1(d, k).

Thus far, we have proved the optimality of symbol sliding for certain classes of

(d, k) constraints, and derived a relationship between the bias p and sliding index j.

Our aim now is to jointly optimize the values of p and j, so as to achieve the high-

est possible symbol sliding rates for the remaining suboptimal cases. The following

theorem gives an expression for the average rate, Rj(p, d, k), as a function of j and p.
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Theorem 4.5 The average rate of SS(j) is given by

Rj(p, d, k) = h(p)
1 − pk−d

1 − pk−d + (1 − p) (pk−d−j − jpk−d + d)
, when k <∞

Rj(p, d,∞) =
h(p)

1 + d(1 − p)
.

Proof: We first consider the case when k <∞, and start with (28) wherein

Rj(p, d, k) = h(p)
Lin

Lj
out

,

and write out the expressions for Lin and Lj
out. Lin is the average length into the

constrained encoder of Fig. 5. Since it is independent of the sliding index j, we can

set j = 0 without any loss in generality, and compute Lin from Table 1. It is given

by

Lin =
k−d
∑

i=0

v0
i li, (31)

where li is the length of the corresponding input listed in Table 1. For example, index

i = k − d− 1 has v0
i = p(1 − p) and li = 2. Writing this out, we obtain

Lin =
k−d
∑

i=0

v0
i li (32)

= 1 − p+ 2p(1 − p) + . . .+ (k − d)pk−d−1(1 − p) + (k − d)pk−d (33)

= 1 + p+ p2 + p3 + p4 + . . .+ pk−d−1 (34)

=
1 − pk−d

1 − p
, (35)
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where (34) is a direct simplification of (33).

Similarly, we now write out the expression for Lj
out, the average length at the

output of the constrained encoder. Clearly, this is dependent on the sliding index j.

We start with the expression in (29) and write out the individual terms.

Lj
out =

k−d
∑

i=0

vj
i l

j
i (36)

= (1 − p)(d+ 1) + p(1 − p)(d+ 2) + . . .+ pk−d−j−1(1 − p)(k − j) (37)

+pk−d(k − j + 1) + pk−d−j(1 − p)(k − j + 2) + . . .+ pk−d−1(1 − p)(k + 1).

Now let

S = L0
out (38)

= (1 − p)(d+ 1) + p(1 − p)(d+ 2) + . . .+ pk−d−1(1 − p)k + pk−d(k + 1)(39)

= d+ 1 + p+ p2 + p3 + . . .+ pk−d (40)

= d+
1 − pk−d+1

1 − p
, (41)

where (39) is nothing but the expression for the average output length of the bit stuff

algorithm. Using (37), (39) and (41), we get

Lj
out = (1 − p)(d+ 1) + p(1 − p)(d+ 2) + . . .+ pk−d−j−1(1 − p)(k − j) (42)

+pk−d(k − j + 1) + pk−d−j(1 − p)(k − j + 2) + . . .+ pk−d−1(1 − p)(k + 1)

= S − jpk−d + pk−d−j − pk−d (43)
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= d+
1 − pk−d+1

1 − p
− jpk−d + pk−d−j − pk−d (44)

=
1 − pk−d + (1 − p)

(

pk−d−j − jpk−d + d
)

1 − p
. (45)

Substituting (35) and (45) into (28), we obtain the rate expression when k <∞ as

Rj(p, d, k) = h(p)
1 − pk−d

1 − pk−d + (1 − p) (pk−d−j − jpk−d + d)
. (46)

For the k = ∞ case, the symbol sliding operations reduce to simply inserting d

zeros after every “1” bit in the biased bit sequence. A straightforward computation

yields

Rj(p, d,∞) =
h(p)

1 + d(1 − p)
(47)

Theorem 4.5 gives an expression for the average rate of SS(j) in terms of the bias p,

sliding index j and constraint parameters d, k. For a given (d, k) constraint, k < ∞,

we are now interested in determining the values of p and j that jointly maximize

Rj(p, d, k). However, the complexity of the rate expression in (46) makes further

analysis difficult. For this reason, optimization for both p and j is done numerically.

The simulation results shown in Table 4 indicate that symbol sliding can improve over

bit stuffing and bit flipping for several (d, k) constraints. Furthermore, the maximum

average symbol sliding rates are comparatively stable with increasing d. Both these

gains are a result of the extra degree of freedom which we have introduced, namely

the symbol sliding index j, which can now be tuned in conjunction with the bias p to
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achieve higher rates. Note that setting j = 0 in (46) yields precisely the expression

in (6), Chapter 3 for the average rate of the bit stuff algorithm.

Table 4: Simulation results of rate improvements for some constraints

d k Shannon Max. bit Max. bit Max. symbol Maximizing
capacity stuff flipping sliding sliding index
C(d, k) efficiency (%) efficiency (%) efficiency (%) j

1 3 0.5515 98.93 99.74 100 2

1 7 0.6793 99.42 99.79 99.79 1

2 5 0.4650 98.47 99.74 100 3

2 10 0.5418 99.39 99.70 99.87 2

3 6 0.3746 98.23 99.57 99.89 2

4 8 0.3432 98.02 99.16 99.91 4

5 9 0.2979 97.82 98.89 99.77 3
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CHAPTER V

OPTIMAL CODES USING INTERLEAVING

Thus far, in Chapters 3 and 4, we have studied the bit stuff algorithm, the bit flipping

algorithm, and proposed the symbol sliding algorithm to generate (d, k) sequences. All

three of these constructions used a single DT(p) to generate an appropriately biased,

i.i.d bit sequence, which was then encoded into constrained phrases. Recently, it was

observed in [3] that with the use of multiple such DTs, optimal bit stuff encoders

could be constructed for all values of d and k. The idea is to generate several distinct

i.i.d, biased bit streams, one each for a state in the FSTD that has two outgoing

branches (see Fig. 4). Since the number of such states is k − d for k < ∞, we need

precisely that many DTs to construct optimal codes in this fashion. We refer to this

scheme as the multiple DT construction.

In this chapter, we show that certain classes of (d, k) constraints allow optimal

encoding using fewer than k − d DTs. This is derived from the factorization of

characteristic polynomials, and can be implemented using interleaving. As in the

case of symbol sliding, the proposed interleaving code construction is also variable-

rate. We first describe such a construction for (d, d+2m−1) constraints, 2 ≤ m <∞,

and then generalize to all (d, k) constraints with k − d+ 1 not prime.

5.1 Optimal (d, d + 2m − 1) Codes, 2 ≤ m <∞

Consider the set of (d, d+2m−1) phrases, Xd,d+2m−1 =
{

0d+2m−11, 0d+2m−21, . . . , 0d+11, 0d1
}

.

The corresponding set of phrase-lengths is Ld,d+2m−1 = {d + 2m, d + 2m − 1, . . . , d +

2, d+ 1}. Consider a random variable X that takes on one of the 2m possible phrase-

lengths according to the maxentropic distribution, i.e., Pr{X = t} = λ−t
d,d+2m−1, for
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each t ∈ Ld,d+2m−1. Then the entropy H(X) is given by

H(X) =
d+2m
∑

t=d+1

λ−t
d,d+2m−1log2λ

t
d,d+2m−1. (48)

The following result is central to the interleaving code construction. In the rest of

this section, we simply use λ to denote λd,d+2m−1, unless otherwise indicated.

Lemma 5.1 The entropy of the random variable X is equal to the joint entropy

of m independent Bernoulli random variables Yi, with Pr{Yi = 0} = 1

1+λ−2i , i =

0, 1, . . . ,m− 1. That is,

H(X) =
m−1
∑

i=0

h

(

1

1 + λ−2i

)

,

where h(.) denotes the binary entropy function, and λ is used to denote λd,d+2m−1.

Proof: We start by rewriting (48) with t = d+ j to obtain

H(X) =
2m
∑

j=1

λ−(d+j)log2λ
d+j. (49)

To proceed further, we derive the following factorization of the characteristic polyno-

mial of the (d, d+ 2m − 1) constraint

Gd,d+2m−1(z) =
2m
∑

j=1

z−(d+j) (50)

= z−(d+1)

m−1
∏

i=0

(

1 + z−2i
)

. (51)
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Since λ is the positive, real root of the equation Gd,d+2m−1(z) = 1, we have from (51)

that

λ−(d+1)

m−1
∏

i=0

(

1 + λ−2i
)

= 1. (52)

Using (52), we make the following substitution in (49)

λ−(d+j) =
λ−(j−1)

∏m−1
i=0

(

1 + λ−2i
) , j = 1, 2, . . . , 2m. (53)

Simplifying the resulting expression leads us to

2m
∑

j=1

λ−(d+j)log2λ
d+j =

m−1
∑

i=0

log2

(

1 + λ−2i
)

+ log2λ

∑2m−1
j=1 jλ−j

∏m−1
i=0

(

1 + λ−2i
) (54)

=
m−1
∑

i=0

log2

(

1 + λ−2i
)

+ log2λ
m−1
∑

i=0

2iλ−2i

1 + λ−2i (55)

=
m−1
∑

i=0

1

1 + λ−2i log2

(

1 + λ−2i
)

+
m−1
∑

i=0

λ−2i

1 + λ−2i log2

(

1 + λ−2i

λ−2i

)

=
m−1
∑

i=0

h

(

1

1 + λ−2i

)

, (56)

where (55) is obtained from a partial fraction expansion of the second term in (54),

and (56) is a regrouping of the terms in (55). From (49) and (56), we conclude that

H(X) =
∑m−1

i=0 h
(

1

1+λ−2i

)

.

The result of Lemma 5.1 has the following implication. Since X is distributed

maxentropically over the set of phrase-lengths Ld,d+2m−1, optimal (d, d + 2m − 1)

codes can be generated using only m i.i.d, biased bit streams as opposed to the
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k − d = 2m − 1 i.i.d, biased bit streams required with the multiple DT construction.

The bias of the m bit streams are given by 1

1+λ−2i , i = 0, 1, . . . ,m− 1. What remains

now is to describe how the actual encoding is done. The following discussion on the

equivalence between factorization and interleaving provides some insight.

Recollect that the equality of Lemma 5.1 was obtained using a factorization of

the (d, d + 2m − 1) characteristic polynomial in (51). In general, the characteristic

polynomial of the (d, k) constraint, k <∞, is given by (2)

Gd,k(z) =
k+1
∑

j=d+1

z−j.

Gd,k(z) is indicative of the fact that a (d, k) sequence is a concatenation of phrases

from the finite set Xd,k =
{

0k1, 0k−11, . . . , 0d+11, 0d1
}

. Factorization of Gd,k(z) has

the interpretation of interleaving phrases corresponding to the individual factors. For

example, consider the characteristic polynomial of the (1, 4) constraint, G1,4(z) =

z−2 + z−3 + z−4 + z−5. This can be factored as G1,4(z) = (z−1 + z−2) (z−1 + z−3) =

G1,∞(z)G2,∞(z). The term (z−1 + z−2) represents phrases of length one or two bits

(corresponding to a (1,∞)-constrained sequence). Similarly, (z−1 + z−3) represents

phrases of length one or three bits (corresponding to a (2,∞)-constrained sequence).

Interleaving the phrases corresponding to these two terms yields phrases of length

two, three, four or five bits, which is in turn described by z−2 + z−3 + z−4 + z−5, the

characteristic (1, 4) polynomial. This gives the equivalence between interleaving and

factorization. Note that the interleaving is based on the length of individual phrases

and not their representations.

Now consider the characteristic polynomial of the (d, d + 2m − 1) constraint,

Gd,d+2m−1(z) =
∑d+2m

j=d+1 z
−j, which can be factored as

Gd,d+2m−1(z) = z−(d+1)

m−1
∏

i=0

(

1 + z−2i
)

(57)
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= z−(d−m+1)

m−1
∏

i=0

G2i,∞(z). (58)

Equation (58) shows that Gd,d+2m−1(z) can be written as the product of m charac-

teristic polynomials, each with k = ∞, and an additional “delay” term z−(d−m+1).

This means that we can generate the (d, d + 2m − 1) phrases by an interleaving of

the m (2i,∞) phrases, i = 0, 1, . . . ,m− 1. Each (2i,∞) phrase is in turn one of two

possibilities from the set X2i,∞ =
{

0, 02i
1
}

. Hence, in order to generate maxentropic

(d, d + 2m − 1) phrases, we need to generate the (2i,∞) phrases with appropriate,

non-maxentropic probabilities. From previous discussions in Chapter 3, we note that

by using a single DT with bias p, and then bit stuffing, we can generate the corre-

sponding (2i,∞) phrases with Pr{0} = p and Pr{02i
1} = 1 − p, for any p ∈ [0, 1].

In fact, setting p = λ−1
2i,∞

generates maxentropic (2i,∞) phrases, but for our purpose

we need to generate non-maxentropic phrases, which can again be done by suitably

setting p. It turns out that the required bias p to generate (2i,∞) phrases for our

code construction is given by 1

1+λ−2i , i = 0, 1, . . . ,m− 1.

Hence, we see that optimal (d, d+2m−1) codes can be constructed using exactly m

DTs, one each for factors G2i,∞(z), i = 0, 1, . . . ,m−1 in (58), and then bit stuffing and

interleaving. In our construction, we make a further modification. Rather than first

generate the (2i,∞) phrases, i = 0, 1, . . . ,m − 1 and then interleave the m phrases,

we directly interleave the m biased bit streams themselves, and then suitably encode

the interleaved bit stream. This removes the need for individually bit stuffing each of

the m biased bit streams. Our proposed code construction is shown in Fig. 6.

First, the input is split into m distinct streams using a serial-to-parallel (S/P)

converter. These m streams then act as inputs to the m DTs. As before, DT(p)

denotes a distribution transformer that outputs a binary i.i.d stream with bias p

(Pr{0} = p) in response to an unbiased, binary i.i.d input stream. The bias of the
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S/P

DT
(

1
1+λ−2

)

DT
(

1
1+λ−1

)

u2

u1

(d, d+ 2m − 1) constrained

streamum−1

um

DT
(

1

1+λ−2(m−2)

)

DT
(

1

1+λ−2(m−1)

)

Bit interleaver

EncoderBinary stream

i.i.d, unbiased

Figure 6: Block diagram of the (d, d + 2m − 1) code construction using
interleaving. λ denotes the positive real root of Gd,d+2m−1(z) = 1.

m DTs are chosen as 1

1+λ−2i , i = 0, 1, . . . ,m − 1 from Lemma 5.1, so as to generate

optimal (d, d+ 2m − 1) codes.

The m biased bit streams then act as inputs to the bit interleaver. The bit

interleaver produces binary sequences u = (u1u2 . . . um) ∈ {0, 1}m by interleaving the

m biased streams one bit at a time, in the specified order (u1 is the MSB and um

the LSB). The result of Lemma 5.1 implies that the interleaver generates the m-bit

sequences according to the maxentropic (d, d+2m−1) phrase distribution, i.e., the 2m

distinct interleaved sequences (u1u2 . . . um) are generated according to the 2m distinct

maxentropic phrase probabilities of the (d, d+2m−1) constraint. Finally, the encoder

performs the “phrase shaping”, whereby the binary sequence u of decimal value j is

mapped to the (d, d+ 2m − 1) phrase 0d+j1, j = 0, 1, 2, . . . , 2m − 1. Table 5 specifies

the encoder mapping for (d, d + 7) constraints. The size of this table is eight in the

example and k − d+ 1 = 2m in general.

The construction described above requires m DTs, one m-bit interleaver and one

fixed-length to variable-length encoder. Hence, the number of required DTs is log2(k−

d+1), as opposed to k− d with the multiple DT construction. The average encoding

rate of the interleaving construction is given by
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Table 5: Encoder mapping for the (d, d+ 7) constraint

Interleaved binary Corresponding (d, d + 7)
sequence u=(u1u2u3) constrained phrase

000 0d1
001 0d+11
010 0d+21
011 0d+31
100 0d+41
101 0d+51
110 0d+61
111 0d+71

R(d, d+ 2m − 1) =
m−1
∑

i=0

h
(

1

1+λ−2i

)

Lout

, (59)

where Lout =
∑2m

j=1(d + j)λ−(d+j) is the average phrase length at the output of the

encoder. The capacity of the (d, d+ 2m − 1) constraint can be expressed as [46]

C(d, d+ 2m − 1) = log2λ =
2m
∑

j=1

λ−(d+j)log2λ
d+j

Lout

. (60)

It immediately follows thatR(d, d+2m−1) = C(d, d+2m−1), since
∑2m

j=1 λ
−(d+j)log2λ

d+j =

∑m−1
i=0 h

(

1

1+λ−2i

)

from Lemma 5.1. Hence, the interleaving code construction is

capacity-achieving for all (d, d+ 2m − 1) constraints, 2 ≤ m <∞.

5.2 Generalization to Other (d, k) Constraints

We now extend the interleaving construction proposed in Chapter 5.1 to a wider class

of (d, k) constraints. As before, the idea is to derive an appropriate factorization of

characteristic polynomials. For constraint parameters d and k, 0 ≤ d < k < ∞, let

k − d+ 1 be written as the product of primes
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k − d+ 1 =
n
∏

i=1

Pi. (61)

Now define ηi =
∏i

j=1 Pj, i = 1, 2, . . . , n, with η0 = 1. Then, the characteristic

polynomial can be factored as

Gd,k(z) =
k+1
∑

j=d+1

z−j

= z−(d+1)

n
∏

i=1

F i
d,k(z) , (62)

where each factor F i
d,k(z), i = 1, 2, . . . , n, is of the form

F i
d,k(z) = 1 + z−ηi−1 + z−2ηi−1 + . . .+ z−(Pi−1)ηi−1 . (63)

Similar to the discussion in Chapter 5.1, let us now define X to be a random

variable that is maxentropically distributed over the set of phrase-lengths Ld,k =

{k+1, k, . . . , d+1}. Then Pr{X = t} = λ−t
d,k for each t ∈ Ld,k, and the entropy H(X)

is given by

H(X) =
k+1
∑

t=d+1

λ−t
d,klog2λ

t
d,k. (64)

Using the factorization in (62), we obtain the following result. The proof proceeds

along similar lines to Lemma 5.1, and is hence omitted.

Lemma 5.2 The entropy of the random variable X is equal to the joint entropy of

n independent random variables Yi with the following properties
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1. Yi is a Pi-ary random variable, i = 1, 2, . . . , n.

2. Let Yi ∈ Yi = {0, 1, . . . , Pi − 1}. Then Pr{Yi = j} =
λ
−jηi−1
d,k

F i
d,k(λd,k)

, j = 0, 1, . . . , Pi −

1.

According to Lemma 5.2, H(X) =
∑n

i=1H(Yi), and since X is maxentropic,

we can generate optimal (d, k) codes by interleaving the random variables Yi, i =

1, 2, . . . , n, and then suitably encoding. Now, each Pi-ary random variable Yi can be

realized using (Pi−1) DTs1. Hence, the total number of DTs required is
∑n

i=1 (Pi − 1).

As long as k − d + 1 is not prime, i.e., the number of factors n is greater than one,

this is strictly less than the k − d DTs required in the multiple DT construction. In

what follows, we describe how the interleaving is done using the
∑n

i=1 (Pi − 1) DTs.

Similar to the previous construction in Fig. 6, Chapter 5.1, we start with a S/P

converter that splits the input bit stream into
∑n

i=1 (Pi − 1) distinct streams, each

of which is then fed into a DT. Let the (Pi − 1) DTs corresponding to the random

variable Yi, be indexed as DTi
1, DTi

2,. . ., DTi
Pi−1. The bias of DTi

l is chosen as

1

1+λ
−ηi−1
d,k +...+λ

−(Pi−l)ηi−1
d,k

, for l = 1, 2, . . . , Pi − 1 and i = 1, 2, . . . , n. Let the output

bit stream of DTi
l be indexed as Bi

l . Then the interleaver functionality is described

by the finite state transition diagram (FSTD) shown in Fig. 7. The interleaver

starts in state S1
1, and takes a bit from stream Bi

l when in state Si
l. The labels on

edges going out of state Si
l in Fig. 7 denote the bits from stream Bi

l . Finally, the

code construction is completed using an encoder that suitably maps the interleaved

sequences to (d, k) phrases. As an example, we now describe the code construction

for the (0, 11) constraint.

The characteristic (0, 11) polynomial can be factored as

1It is as yet unknown to this author, if for any specific cases, the random variable Yi can be
implemented with even fewer than (Pi − 1) DTs.
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Figure 7: FSTD of the interleaver for (d, k) code construction, k−d+1 not
prime. The interleaver takes a bit from the biased bit stream Bi

l when in
state Si

l. The labels on edges going out of state Si
l denote the bits from

stream Bi
l .

G0,11(z) =
12
∑

j=1

z−j (65)

= z−1
(

1 + z−1
) (

1 + z−2
) (

1 + z−4 + z−8
)

. (66)

Fig. 8 shows the code construction that uses four DTs, one four-bit interleaver and

one variable-length encoder. The DTs with bias 1
1+λ−1

0,11

and 1
1+λ−2

0,11

correspond to

factors (1 + z−1) and (1 + z−2), respectively (or to the two binary random variables

Y1 and Y2). The remaining two DTs with bias 1
1+λ−4

0,11

and 1
1+λ−4

0,11+λ−8
0,11

both correspond

to the factor (1 + z−4 + z−8), and are effectively used to generate the ternary random

variable Y3.

The interleaver functionality can be determined from the FSTD in Fig. 7 by

setting P1 = P2 = 2 and P3 = 3. The interleaver starts with the biased bit stream

B1
1 and generates a binary sequence u = (u1u2u3u4) by interleaving the four biased
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streams one bit at a time in the specified order (u1 is the MSB and u4 the LSB),

if u3 = 1. If u3 = 0, the interleaver skips B3
2 (shown in dotted lines) and outputs

the binary sequence u = (u1u2u3). The encoder then maps the binary sequence u to

(0, 11)-constrained phrases as specified in Table 6. The size of this table is 12 for this

example and k − d + 1 in general. The code construction described above requires

four DTs, as opposed to 11 DTs required with the multiple DT construction.

S/P
EncoderBinary stream

Bit interleaver

i.i.d, unbiased

u2

u1

streamu3

u4

(0, 11)-constrained

DT
(

1
1+λ−4

0,11+λ−8

)

DT
(

1
1+λ−1

0,11

)

DT
(

1
1+λ−4

0,11

)

DT
(

1
1+λ−2

0,11

)

B1
1

B3
2

B3
1

B2
1

Figure 8: Block diagram of the (0, 11) code construction using interleaving.
λ0,11 denotes the positive real root of G0,11(z) = 1.

Table 6: Encoder mapping for the (0, 11) constraint

Interleaved binary Corresponding (0, 11)
sequence u constrained phrase

000 1
100 01
010 021
110 031
0010 041
1010 051
0110 061
1110 071
0011 081
1011 091
0111 0101
1111 0111
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CHAPTER VI

VARIABLE-RATE CODES: EXTENSION TO

OTHER RLL CONSTRAINTS

In Chapters 4 and 5, we described two variable-rate encoding algorithms that achieved

capacity for certain classes of (d, k) constraints. Both algorithms were inspired by

the simple concept of bit stuffing, whereby additional bits were inserted into the

data sequence so as to satisfy the d and k constraints. In this chapter, we show

that bit stuff encoding may be applied to other RLL constraints as well. First, we

present a simple and efficient bit stuff algorithm for (0, G/I) constraints. Then, we

consider asymmetrical run-length constraints and multiple-spacing (d, k) constraints,

and describe capacity-achieving interleaving codes in each case.

6.1 (0, G/I) Constraints

(0, G/I) sequences are constrained binary sequences that find applications in magnetic

recording [18],[30]. “G” refers to the global constraint, which limits the run-length of

consecutive “0”s that separate successive “1”s in the (0, G/I) sequence, to at most

G. This makes the stored data self-clocking. Thus, the “G” constraint plays exactly

the same role as the k constraint described in Chapter 2.2. “I” refers to a constraint

on the even and odd subsequences1, where the maximum run-length of consecutive

“0”s that separate successive “1”s in each of the subsequences is I. This is used to

limit the path memory of the Viterbi detector in partial response equalization with

maximum-likelihood sequence detection (PRML) based magnetic recording systems

1The subsequences are also called the interleaves, and hence the symbol I
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[9, 18] (Chapter 8.2.1 has more details on a PRML model). Finally, the “0” in (0, G/I)

indicates that there is no minimum run-length constraint.

An example of a (0, G/I) sequence with G = 2 and I = 2 is

110100100110100101111.

The even subsequence is

10010110011.

The odd subsequence is

1100100111.

Both the even and odd subsequences have at most I = 2 consecutive zeros, and the

global (0, G/I) sequence has at most G = 2 consecutive zeros.

A (0, G/I) code is defined as an invertible mapping between unconstrained binary

sequences and (0, G/I) sequences. For our purpose, an unconstrained binary sequence

refers to a sequence of independent, identically distributed (i.i.d), and equally likely

(Pr{0}=Pr{1}=1/2) bits, as seen in Chapter 3 earlier. It is well known that the

maximum possible encoding rate of any (0, G/I) code is equal to the capacity CG/I ,

of the (0, G/I) constraint. A general method for calculating CG/I is presented in [56],

where the authors also provide a list of CG/I values for 0 < G ≤ 15 and 0 < I ≤ 10.

In the following section, we describe a variable-rate algorithm to generate near-

capacity (0, G/I) codes. As in all our previous constructions, we use the simple

concept of bit stuffing to guide our encoding.

6.1.1 A Variable-Rate Bit Stuff Algorithm

Bit stuffing [7] refers to a controlled addition of bits into the data sequence so as to

satisfy certain constraints. We presented a detailed review of the bit stuff algorithm

[6] for (d, k) constraints in Chapter 3. Along similar lines, we propose the following
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bit stuff algorithm for encoding (0, G/I) sequences, 0 < I < ∞, 0 < G ≤ 2I. We

wish to clarify that the proposed bit stuff encoder for (0, G/I) constraints does not

include any biasing, i.e., there is no DT in our set-up here, as opposed to that shown

in Fig. 3, Chapter 3.1 for (d, k) constraints.

Let us assume that the bit stuff encoder scans the data sequence at the rate of one

bit per unit time. Let b(n) ∈ {0, 1} denote the bit scanned at time n. The encoder

keeps track of the following three variables.

1. ic(n): number of trailing zeros in the current subsequence.

2. ic(n): number of trailing zeros in the alternate subsequence.

3. g(n): number of trailing zeros in the global sequence.

We use the term “trailing zeros” to imply the number of consecutive zeros since

the last “1”, and the term “current subsequence” to refer to the subsequence (even

or odd) that contains b(n). Hence, if the current subsequence happens to be the

even subsequence, then the alternate subsequence is the odd subsequence, and vice

versa. The three variables, ic(n), ic(n) and g(n) are initialized to zero, and recursively

computed as

ic(n) =











ic(n− 1) + 1 if b(n) = 0

0 if b(n) = 1,
(67)

ic(n) = ic(n− 1) (68)

g(n) =











g(n− 1) + 1 if b(n) = 0

0 if b(n) = 1,
(69)

g(n) may also be computed from ic(n) and ic(n) as follows
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g(n) =











2ic(n) + 1 when ic(n) > ic(n)

2ic(n) when ic(n) ≤ ic(n).
(70)

With knowledge of ic(n), ic(n) and g(n), the encoder then performs the following bit

insertion steps at each time instant n. For simplicity, we do not explicitly include the

time index in the rest of our discussions.

If ic = I

If ic < I and g = G

Insert ‘‘11’’ in the global sequence

Else

Insert ‘‘1’’ in the current subsequence

end

Elseif g = G

If ic < I

Insert ‘‘1’’ in the global sequence

end

end

The above algorithm is applicable for the entire range of G and I with 0 < I <∞,

0 < G ≤ 2I. Essentially, at each time instant, the encoder computes ic, ic and g,

then checks for impending violations of the I and G constraints, and inserts bits in

a controlled manner so as to prevent these violations. Decoding involves removal of

the inserted bits and is a simple inverse of the encoding.

The above-stated bit insertion rules can be further simplified by breaking down

the algorithm into four classes.

Class 1: G = 2I
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If ic = I

Insert ‘‘1’’ in the current subsequence

end

Class 2: G < 2I, G even

If ic = I

Insert ‘‘1’’ in the current subsequence

Elseif g = G

If ic < I

Insert ‘‘1’’ in the global sequence

end

end

Class 3: G < 2I − 1, G odd

If ic = I

If g = G

Insert ‘‘11’’ in the global sequence

Else

Insert ‘‘1’’ in the current subsequence

end

Elseif g = G

Insert ‘‘1’’ in the global sequence

end

Class 4: G = 2I − 1

If ic = I

If ic = I − 1
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Insert ‘‘11’’ in the global sequence

Else

Insert ‘‘1’’ in the current subsequence

end

end

As an example, let us encode the following 18-bit data sequence using the above-

described algorithm for G = 2 and I = 2.

100001010111001001

Clearly, the G = 2 constraint is violated in the data sequence as it contains runs of

four and three consecutive zeros. The I = 2 constraint is also violated by the even

subsequence. Using the bit stuff encoding algorithm for Class 2, the encoded sequence

is

10010011010111100110011

The inserted bits are shown in bold. The even subsequence after encoding is

100100110101.

The odd subsequence after encoding is

01011110101.

Both the G = 2 and I = 2 constraints are satisfied in the encoded sequence. Note

that there are 5 inserted bits in this case. It can be verified that for the all-zero data

sequence of length 18 bits, the corresponding number of bit insertions is 9. This is

an example of the variable-rate nature of the proposed algorithm.
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6.1.2 Rate Computation

Having described a bit stuff algorithm for (0, G/I) constraints, we now proceed to

compute its encoding rate. Since the encoding is variable-rate, we define the average

encoding rate as in Chapter 3.3

RG/I =
Average input length

Average output length
=

Lin

Lout

.

The special case of Class 1 is rather simple. We note that the algorithm for Class

1 inserts a “1” whenever the subsequence maximum run-length I is attained. This

in effect, ensures that the global constraint is also satisfied. Hence, with respect

to the individual subsequences, the Class 1 algorithm is identical to the bit stuff

algorithm for (0, k) constraints [6] with k = I. Since the global sequence is formed by

interleaving the subsequences, it follows that the average encoding rate for (0, 2I/I)

constraints is the same as the average encoding rate for (0, I) constraints, as derived

in [6]. Hence, we have

R2I/I =
2I+1 − 2

2I+1 − 1
. (71)

To compute the average encoding rate for Classes 2, 3 and 4, we use a Markov

chain interpretation of the bit stuff encoder. The states in the finite state transition

diagram (FSTD) of the Markov chain, all correspond to ic = 0, i.e., b = 1 from (67).

The state labels are σj, j = 0, 1, . . . , I − 1, which represent the possible values of

ic. Hence, the encoder is said to be in state σj when ic = j and ic = 0. A state

transition occurs when a certain input word from the input alphabet, is encoded into

the corresponding output word. The input alphabet for state σj is

Xj =
{

1, 01, . . . , 0J−11, 0J
}

, j = 0, 1, . . . , I − 1,
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where J = min{G, j}, and j = 2(I − j). The corresponding output words are class-

dependent and shown in Table 7 for Classes 2 and 3, and in Table 8 for Class 4. The

inserted bits are marked in bold. The corresponding next-states can also be computed

from the output words in Tables 7 and 8.

The individual input words of the alphabet Xj in state j, j = 0, 1, . . . , I − 1, are

denoted as

Xj(i) =











0i1 when i = 0, 1, . . . ,J − 1

0J when i = J .

Yj(i) and Zj(i) are used to denote the corresponding output word and next-state,

respectively. Assuming the data bits to be independent, identically distributed (i.i.d),

and equally likely (Pr{0}=Pr{1}=1/2), we can construct the transition probability

matrix Q, with elements

qjl = Transition probability from state j to state l (72)

=
∑

Xj(i):Zj(i)=l

Pr{Xj(i)} (73)

=
∑

Xj(i):Zj(i)=l











2−(i+1) when i = 0, 1, . . . ,J − 1

2−J when i = J ,
(74)

for 0 ≤ j, l ≤ I−1. The steady state probability distribution vector π = [π0 π1 . . . πI−1],

where πj is the steady-state probability of state j, can be found by simultaneously

solving the equations

πQ = π (75)
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Table 7: Input-output mapping for state transitions from state j in the FSTD:
Classes 2 and 3

Input word Output word Output word Output word Output word Output word
Class 2 Class 2 Class 3 Class 3 Class 3
j ≤ G j > G j − 1 = G j − 1 > G j − 1 < G

1 1 1 1 1 1
01 01 01 01 01 01
...

...
...

...
...

...
0J−21 0J−21 0J−21 0J−21 0J−21 0J−21
0J−11 0J−111 0J−11 0J−11 0J−11 0J−111

0J 0J 1 0J 1 0J 11 0J 1 0J 1

Table 8: Input-output mapping for state transitions from state j in the FSTD: Class
4

Input word Output word Output word
Class 4 Class 4
j = 0 j > 0

1 1 1

01 01 01
...

...
...

0J−21 0J−21 0J−21

0J−11 0J−11 0J−111

0J 0J 11 0J 1

I−1
∑

j=0

πj = 1. (76)

The average encoding rate can now be computed as RG/I = Lin
Lout

where

Lin =
I−1
∑

j=0

πjL
j
in, (77)

Lout =
I−1
∑

j=0

πjL
j
out, (78)
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where

Lj
in = 2(1 − 2−J ), j = 0, 1, . . . , I − 1, (79)

Lj
out = Lj

in + δj, j = 0, 1, . . . , I − 1, (80)

with δj being class-dependent as shown below.

δj =











































































2−(J−1) for Class 2, j ≤ G

2−J for Class 2, j > G

2−(J−1) for Class 3, j − 1 = G

2−J for Class 3, j − 1 > G

2−(J−1) for Class 3, j − 1 < G

2−(J−1) for Class 4, j = 0

2−(J−1) for Class 4, j > 0

(81)

Table 9: rG/I values for I ≤ 5 and G ≤ 10, where RG/I =
rG/I

rG/I+1

G ↓ /I → 1 2 3 4 5

1 1.0000 1.5000 1.7500 1.8750 1.9375

2 2.0000 4.2857 5.4783 5.8621 5.9650

3 5.0000 8.0000 10.4000 12.0000

4 6.0000 12.1370 19.1623 24.4714

5 13.0000 22.8000 34.0000

6 14.0000 28.0659 49.0581

7 29.0000 54.0000

8 30.0000 60.0322

9 61.0000

10 62.0000
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Table 10: rG/I values for 6 ≤ I ≤ 10 and G ≤ 15, where RG/I =
rG/I

rG/I+1

G ↓ /I → 6 7 8 9 10

1 1.9688 1.9844 1.9922 1.9961 1.9980

2 5.9912 5.9978 5.9995 5.9999 6.0000

3 12.9412 13.4545 13.7231 13.8605 13.9300

4 27.5068 28.9411 29.5630 29.8218 29.9277

5 44.1818 51.6842 56.4000 59.0746 60.5038

6 73.6496 95.0661 109.6340 117.9166 122.1513

7 90.3636 134.0000 175.7391 207.8462 228.6479

8 111.6845 188.3366 280.2618 365.7298 428.5850

9 117.5294 212.7368 353.4783 526.0000 694.8511

10 124.0159 238.8873 434.7865 725.9833 1081.0072

11 125.0000 245.2727 465.2000 837.3846 1391.7021

12 126.0000 252.0079 494.4559 940.8926 1700.0972

13 253.0000 501.1385 975.1940 1843.1831

14 254.0000 508.0039 1006.2311 1961.5864

15 509.0000 1013.0698 1998.1221

Table 11: Efficiency
(

RG/I

CG/I
(%)
)

of I = 6 codes

G RG/6 CG/6 Efficiency (%)

1 0.663158 0.693471 95.6288

2 0.856963 0.878850 97.5096

3 0.928270 0.944540 98.2775

4 0.964921 0.972930 99.1774

5 0.977867 0.984320 99.3444

6 0.986604 0.990114 99.6455

7 0.989055 0.992304 99.6726

8 0.991126 0.993509 99.7601

9 0.991563 0.993899 99.7650

10 0.992001 0.994119 99.7869

11 0.992063 0.994167 99.7883

12 0.992126 0.994192 99.7922

As an example, we show the FSTD of the (0, 3/2) bit stuff encoder in Fig. 9. This

belongs to Class 4 encoding. The input alphabets for the two states are X0 =

{1, 01, 001, 000} and X1 = {1, 01, 00}. The entries of the transition probability matrix

are q00 = 0.625, q01 = 0.375, q10 = 0.75 and q11 = 0.25. Steady-state probabilities are
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π0 = 2/3, π1 = 1/3, and R3/2 is computed to be 5/6.

σ0 σ1

00/001

1/1, 01/011

1/1, 000/00011
01/01, 001/001

Figure 9: FSTD of the (0, 3/2) bit stuff encoder. The transition labels are
specified as input/output. Inserted bits are shown in bold.

Let

RG/I =
rG/I

rG/I + 1
.

A full list of rG/I values is provided in Tables 9 and 10 for 1 ≤ I ≤ 10 and

G ≤ 15. The rG/I values for trivial constraints G > 2I, are not given because

they are equal to those when G = 2I. The familiar reader may also recollect that

C2I/I = C(0, I) = limG→∞CG/I = limG→∞CI/G, where C(0, I) is the capacity of the

(0, I) constraint, as introduced earlier in (1), Chapter 1 with d = 0 and k = I. It

is seen from Tables 9 and 10 that very high-rate (0, G/I) codes can be generated

using the proposed bit stuff algorithm. Table 11 shows the average rate, capacity

(taken from [56]), and the efficiency (average rate/capacity (%)) for I = 6 codes as

an example.

6.2 Asymmetrical Run-Length Constraints

Asymmetrical RLL constraints are found in high-density optical storage. With in-

creasing information density, the lengths of the nonmarks diminish, but the written

marks cannot be made arbitrarily small, due to limitations on the physical write

process. For example, significant asymmetry exists between marks and nonmarks in
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write-once and erasable optical recording [17]. There are also other instances where

asymmetrical RLL coding may be used purely to combat the effects of intersymbol

interference [24, 38, 39].

Asymmetrical RLL sequences are characterized by four parameters (d+, k+) and

(d−, k−), 0 ≤ d+ < k+, 0 ≤ d− < k−, which describe the constraints on alternate

run-lengths of “1”s and “-1”s in the 1/−1 RLL write sequence (see Chapter 2.2 for

details). Hence, an asymmetrical RLL sequence is composed of alternate strings of the

form 1i, i ∈ {d++1, d++2, . . . , k++1}, and (−1)i, i ∈ {d−+1, d−+2, . . . , k−+1}. In

Chapter 2.2, we had described symmetrical 1/-1 RLL sequences, where d+ = d− = d

and k+ = k− = k. An example of asymmetrical written data is shown in Fig. 10.

This must be compared with the symmetrical marks and nonmarks of Fig. 2, Chapter

2.2.

1 1

Electronic

clock periodMark

d+ + 1

1 1 1 1 1 -1 1 1-1 -1 -1 1

d− + 1k+ + 1

Nonmark

Figure 10: Asymmetrical marks and nonmarks written on a recording
surface. In this example, the marks can be of length greater than d++1 = 2,
but less than k+ + 1 = 4, similar to that in Fig. 2, Chapter 2.2. However,
the marks are now packed closer together, thus decreasing the minimum
nonmark size to d− + 1 = 1.

By now, the reader might have grasped that an asymmetrical RLL sequence can

be thought of as interleaved 1i and (−1)i “phrases”. The notion of phrases here is

similar to that of the (d, k) phrases in Chapter 3, and the interleaving corresponds

to a factorization of the characteristic polynomial, as seen in Chapter 5. Hence, the

characteristic equation of the asymmetrical RLL constraint is given by
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(

k++1
∑

i=d++1

z−i

)





k−+1
∑

j=d−+1

z−j



 = 1 (82)

We can now use similar ideas to the interleaving construction in Chapter 5.2.

According to the discussion therein, the term
∑k++1

i=d++1 z
−i can be realized using

D+ =
∑n+

i+=1 (Pi+ − 1) DTs, where n+ and Pi+ play a similar role to n and Pi in the

discussion in Chapter 5.2. As long as k+−d++1 is not prime, D+ is guaranteed to be

less than k+ − d+. We have a similar interpretation of the term
∑k−+1

i=d−+1 z
−i, where

D− =
∑n−

i−=1 (Pi− − 1) is the number of required DTs. Hence, maxentropic phrases

corresponding to the product of the two terms, i.e.,
(

∑k++1
i=d++1 z

−i
)(

∑k−+1
j=d−+1 z

−j
)

can be realized usingD++D− DTs. This is a method of generating capacity-achieving

asymmetrical RLL codes for any 0 ≤ d+ < k+ and 0 ≤ d− < k−.

6.3 Multiple-Spacing Run-Length Constraints

Multiple-spacing RLL constraints provide an extension of (d, k) constraints. They are

mentioned in [17], although no known practical application exists to date. Originally

due to Funk [16], multiple-spacing (d, k) constraints have an additional degree of

freedom, namely the spacing of the sequence s. The phrases for such a (d, k, s)

constrained system are of the form 0i1, with i = d+ js, j = 0, 1, 2, . . . , (k − d)/s. It

is required that k− d be a multiple of the spacing s. As usual, d and k represent the

minimum and maximum allowable run-length, respectively. The finite state transition

diagram for the (d, k, s)=(1, 15, 2) constraint in shown in Fig. 11.

The capacity C(d, k, s), of the multiple-spacing (d, k) constraint is given by

C(d, k, s) = log2 λ, (83)
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Table 12: Encoder mapping for the (d, d+ 14, 2) constraint

Interleaved binary Corresponding (d, d + 14, 2)
sequence u=(u1u2u3) constrained phrase

000 0d1
001 0d+21
010 0d+41
011 0d+61
100 0d+81
101 0d+101
110 0d+121
111 0d+141

0 0
2 3

0
4 5

1
1

1
1

0 0
14 15

0
0 1

0 0

Figure 11: Finite state transition diagram for the (d, k, s)=(1, 15, 2) con-
straint. Note the difference from Fig. 4, Chapter 3.3, in the branches
returning to state 0.

where λ is the largest, real root of the characteristic equation

(k−d)/s
∑

j=0

z−(d+js+1) = 1 (84)

The interleaving constructions of Chapter 5 are also applicable to multiple-spacing

constraints. The only difference arises in the encoder mappings between the biased,

interleaved words and the phrase-lengths, where we now incorporate the spacing s.

For example, the encoder mapping for the (d, d+14, 2) interleaving code construction

is shown in Table 12, whereas the encoder mapping for the (d, d + 7, 1) interleaving

code construction is exactly the same as that given in Table 5, Chapter 5.1. The

extension of the general interleaving constructions of Chapter 5.2 is also similarly

straightforward.
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CHAPTER VII

FIXED-RATE BIT STUFF (FRB) CODES

Thus far, we have developed two variable-rate code constructions based on symbol

sliding and interleaving. Both constructions were inspired by the bit stuff algorithm

[6], which employs the simple idea of inserting additional bits to satisfy the required

constraints. Although the bit stuff algorithm is simple, and can lead to efficient codes

for a wide range of constraints, the encoding is variable-rate, which is unacceptable in

most practical systems. For example, magnetic and optical disk recording systems are

designed to operate with fixed-length track-sectors, which means that any given fixed-

length input sequence must be translated into a fixed-length channel bit sequence.

As a consequence, bit stuffing, symbol sliding and interleaving-based codes discussed

thus far, are mainly of theoretical interest and of limited practical value in today’s

recording systems.

As an aside, we point out that variable-rate bit stuffing has indeed been used

in digital communication systems [7] for frame synchronization. Users in such a

communication system transmit and receive data in frames. The beginning of a frame

is identified by a reserved marker pattern, which must not occur elsewhere within the

data frame. Hence, the data is “constrained” to omit this marker pattern. Bit

stuffing eliminates any marker patterns by suitably inserting additional bits into the

data frame. Indeed, such a scheme is variable-rate, but several digital communication

protocols operate with variable-length frames, and hence variable-rate bit stuffing is

acceptable in these systems. On the other hand, recording systems are designed to

only operate with fixed-rate encoding and are intolerant to fluctuating-length channel

bit sequences.
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This part of our research is devoted to addressing the variable-rate problem of bit

stuffing. Unless otherwise stated, the remaining discussions in this thesis assume that

the bit stuff encoder does not include any biasing, i.e., there is no DT in our set-up

for fixed-rate encoding (see Fig. 3).

In this chapter, we introduce the fixed-rate bit stuff (FRB) algorithm for efficiently

encoding and decoding (0, k) sequences, which find applications in magnetic recording

systems. The FRB algorithm can be viewed as a fixed-rate version of the variable-

rate bit stuff algorithm proposed by Bender and Wolf [6]. High encoding efficiency

is achieved by iterative pre-processing of the fixed-length input data sequence, so as

to conform it to subsequent bit insertion. The encoder then inserts bits to produce

a fixed-length output word. Rate computations for the proposed encoding algorithm

suggest that encoding rates very close to the average rate of the variable-rate bit

stuff code are possible with long, fixed-length input and output blocks. Variable-rate

bit stuffing is in turn near-optimal for the special class of (0, k) constraints. Hence,

near-capacity (0, k) codes can be designed using the FRB algorithm by encoding in

long, fixed-length input and output blocks.

As explained earlier in Chapter 2, there is a long history of fixed-rate (d, k) codes

and they are part of virtually all magnetic and optical disk recording systems to-

day. Several encoding algorithms have been proposed over the years ([17] provides

a comprehensive review), with the design goal being two-fold: high encoding rate

and simple implementation. However, since (d, k) sequences are nonlinear (they do

not constitute a linear vector sub-space), the design of near-optimal, fixed-rate code

constructions is often restricted by their complexity, more so than their linear error

correcting counterparts [5]. Thus, there continues to be a need for low-complexity

algorithms that achieve high encoding rates.

Specifically, the design of very high-rate codes, e.g., rate 100/101 and rate 200/201
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(0, k) codes, is of considerable interest in current recording systems. In the past, low-

rate (0, k) codes were easily designed using look-up tables. Examples are the rate 4/5,

k = 2 code and the rate 8/9, k = 3 code [[17], Sec. 5.6]. However, current recording

systems are capable of working with higher values of k, in which case the above codes

are prohibitively low-rate. For typical values of k ≥ 5 used in practice, the capacity

C(0, k) is well-approximated by [17]

C(0, k) '
2k+2 ln 2 − 1

2k+2 ln 2
. (85)

Hence, the design of (0, k) codes with rate (n− 1)/n, for large integers n (preferably

close to 2k+2 ln 2), is of considerable interest. However, encoding using direct look-up

becomes impractical with increasing n.

Immink and van Wijngaarden proposed an elegant construction [20] to solve this

problem. They designed rate (n − 1)/n codes for any odd n, n ≥ 9, such that at

most eight bits from the source word need to be altered to obtain the constrained bit

sequence. The maximum run-length of their construction is k = 1 + bn/3c. Apart

from simple encoding and decoding, their code has the added virtue that a single

channel bit error propagates through to at most eight data bits. Details of a rate

16/17, k = 6 code based on this technique can be found in [[17], pp. 102-103]. Some

other combinatorial constructions for high-rate (0, k) codes are discussed in [60].

An alternative to combinatorial techniques is to use enumerative coding (see [[17],

Chap.6] for a summary,[10],[43],[19] for more details), which has been shown to achieve

very high encoding rates that approach capacity with increasing codeword length n.

However, the disadvantages of enumerative coding are bitwise encoding and decod-

ing; and additions and comparisons with pre-stored, n-bit weighting coefficients. A

detailed comparison of the FRB codes with the corresponding enumeration and com-

binatorial codes is presented in Chapter 8.5. For the moment, it suffices to say that
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the FRB encoding/decoding is simpler than that of enumeration, and it achieves

higher rates than that of the combinatorial construction of [20].

Before proceeding to describe the FRB algorithm, we revisit the variable-rate bit

stuff algorithm for the special case of (0, k) constraints. With the minimum run-length

d = 0, the bit stuff algorithm takes an especially simple form, and is surprisingly

efficient. The bit stuff algorithm, as presented in the early work of Lee, then Bender

and Wolf in [6], generates a (0, k) sequence from an arbitrary binary sequence by

simply inserting a “1” after every run of k consecutive “0”s. It is well known [61]

that (0, k) sequences can be described as a concatenation of phrases from the set

Xk =
{

1, 01, 021, . . . , 0k−11, 0k1
}

, where as usual, 0i denotes a run of i consecutive

zeros. Hence, the bit stuff algorithm induces a reversible mapping from input words

to the (0, k) phrases as shown in Table 13.

Table 13: Bit stuff mapping for (0, k) constraints

Input word (0, k) phrase

1 1

01 01
...

...

0j1 0j1
...

...

0k−11 0k−11

0k 0k1

The above mapping is said to be variable-rate because the ratio of the input

word length to the corresponding (0, k) phrase length is not the same for all the

(0, k) phrases. Hence, different input sequences of the same length can give rise to

(0, k)-constrained sequences of fluctuating lengths. For instance, with k = 3, input

sequences 091 and 190, each of length 10 bits, produce (0, k) bit stuff output sequences

0310310311 and 190, of lengths 13 bits and 10 bits, respectively. Such rate fluctuations

are unacceptable in recording systems. However, there are two useful properties of
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the bit stuff algorithm: stream encoding, and high average encoding rate. Stream

encoding means that the encoding process can proceed as the input streams along,

without the need for any look-up tables. This implies that encoding in long input

blocks is feasible. In this limit of long input blocks, the bit stuff algorithm can

yield rates very close to capacity. Assuming the input bits to be unconstrained, i.e.,

independent, identically distributed (i.i.d) and unbiased (Pr{0} = Pr{1} = 1/2), the

average rate of the bit stuff algorithm, R0(0, k), can be expressed as [6]

R0(0, k) =
2k+1 − 2

2k+1 − 1
(86)

This is exactly the same as equation (7) in Chapter 3.4 with p = 1/2 (absence of DT)

and d = 0. Comparing (86) and (85), we see that R0(0, k)/C(0, k) is very close to

unity for typical maximum-run-length parameters 5 ≤ k ≤ 15 used in practice.

One simple solution to generate fixed-rate bit stuff codes is to use additional

dummy bits to pad-up the variable-length bit stuff outputs to an appropriate, fixed

output length. These dummy bits can then be ignored during the constrained decod-

ing. We refer to such a simple, fixed-rate encoding as plain bit stuffing. This method

has been adopted for the design of weakly-constrained codes in [22], where constraint

violation is permitted with a small probability. However, the constraints considered

in this work are not weak (no constraint violations permitted), and in such cases

plain bit stuffing results in sizeable rate loss. Hence, for strict (0, k) constraints, we

are faced with the dual problem of remedying variable-rates and maintaining high

encoding rate at the same time. In what follows, we outline a systematic procedure

to build near-capacity, fixed-rate (0, k) codes based on the bit stuff algorithm. While

using dummy bits similar to [22], we introduce an additional iterative pre-processing

of the fixed-length input that is central to achieving high encoding rates. Essentially,

the role of pre-processing is to better conform the input data to bit insertion. As a
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result, the processed input incurs lesser stuffed bits, thus leading to higher encoding

rates. We now illustrate this idea using the simplest case of k = 1 codes, and then

generalize in Chapter 7.2.

7.1 Motivating Example: Fixed-Rate k = 1 Codes

The (0, 1) bit stuff mapping is specified in Table 14, with the individual rates given

in the rightmost column. With k = 1, the bit stuff algorithm inserts a “1” after every

“0” in the input data sequence, thus mapping an input “0” bit to the constrained

phrase “01”, and leaving the input “1” bits unchanged.

Table 14: Bit stuff mapping for the k = 1 constraint

Input word k = 1 constrained phrase Rate

1 1 1

0 01 1/2

Clearly, the rate of any k = 1 fixed input-length, fixed output-length, plain bit stuff

encoder is limited to 1/2, by the worst case “all zeros” input. This must be compared

to the average rate, R0(0, 1) = 2/3, of the corresponding variable-rate bit stuff code.

In what follows, we describe how to generate fixed-rate k = 1 codes with encoding

rates approaching 2/3.

The block diagram of our proposed construction is shown in Fig. 12. The input

to the fixed-rate encoder is a binary sequence x of length m bits, i.e., x ∈ Z
m
2 , where

Z2 = {0, 1}. The output is a constrained sequence of length n bits. The encoding

proceeds in three steps. The input sequence first undergoes pre-processing, followed

by variable-rate bit stuff encoding, and finally dummy-bit padding to the fixed output

length n. The pre-processing operation involves scanning the input sequence x, and

counting the number of “0”s, denoted by w0(x). If the number of “0”s in x is greater

than the number of “1”s, then the pre-processing output sequence v is formed by
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flipping every bit of x and appending a “0” bit as index. Else, the sequence v is

formed by appending a “1” bit as index to the input sequence x. Here, the flipping

operation refers to a “0” bit being changed to a “1” bit and vice versa. In Fig. 12, x

denotes the flipped input, and x ‖ 0 indicates the concatenation of sequence x with

the index bit “0”. The index bits are used to identify the two encoding branches to

ensure unique decoding. The above-described pre-processing can also be implemented

in two parallel branches, as discussed later in Chapter 7.

N

Y

?

x

x
w0(x) > bm

2 c
m bits n bits

Pad n− n′

dummy bits

y′ yv

Pre-processing

Append

1

Append

0

x ‖ 1

x ‖ 0
Flip

bitsn′
Bit Stuff

Figure 12: Block diagram of the k = 1 fixed-rate encoder. It accepts an
m-bit input and generates an n-bit constrained output. Depending on its
weight, the input is either flipped or retained as shown in the upper and
lower branches, respectively. The effect of such pre-processing is to better
conform the input sequence x to bit stuff encoding. This is responsible for
rate improvements from 1/2 up towards 2/3.

The pre-processing output sequence v is hence of a fixed length m+1 bits, and has

the property that the number of “0”s is at most dm/2e. This is the key to improving

rates beyond plain bit stuffing, where the encoding rate is constricted when all input

bits are “0”s. However, a simple pre-processing has eliminated this, and several other

undesirable input sequences. Essentially, the pre-processing has converted the input

sequence x of length m into a sequence v of length m + 1, that is better conformed

to bit stuffing. This leads to fewer bit insertions, and hence greater encoding rates.

The sequence v is then bit stuff encoded according to the variable-rate bit insertion

rule in Table 14, to produce an output sequence B(v) = y′. Here, we use B(.) to
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denote the variable-rate bit stuff operation. Hence, the bit stuff output sequence y′

is now of a variable length l(y′) = n′. Finally, the fixed-length constrained output,

y, is generated by padding sequence y′ with n− n′ dummy bits, where

n = max
x∈Z

m
2

{n′}

= max
x∈Z

m
2

{min{l(B(x ‖ 1)), l(B(x ‖ 0))}}

= max
x∈Z

m
2

{min{m+ w0(x) + 1, 2m− w0(x) + 2}}, (87)

and w0(x) denotes the number of “0”s in x.

The inserted n− n′ dummy bits can be ignored during decoding. Several assign-

ments are possible for this purpose. One possibility is to choose all the dummy bits

as “1”s. Let us assume that the string of n − n′ “1”s is appended at the end of

the sequence y′ to form the length-n sequence y during encoding. Furthermore, let

the recording channel be noise-free, or indeed if there are channel bit errors, then we

assume that they are all corrected by a powerful error correction code (ECC) (see

Fig. 1, Chapter 2). Thus, the stored bit sequence y is read-out error-free and fed

into the constrained decoder input. The first decoding step is to remove the stuffed

“1” bits that follow strings of k consecutive “0”s. This leaves a sequence of length

m+ 1 + n− n′ bits, the first m+ 1 of which correspond to the pre-processing output

v. Since the decoder has prior knowledge of the value of m, the last n − n′ bits can

be correctly ignored as dummy-bits. The sequence x can then be recovered from v,

by reading the index bit, and then using a simple inverse of the pre-processing.

The encoding rate of the above-described construction for the (0, 1) constraint,

with an input block length m, is simply given by R(0, 1,m) = m/n, where n is

obtained from (87). A little thought leads us to the following rate expression
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R(0, 1,m) =











2m
3m+ 2 when m even

2m
3m+ 3 when m odd.

(88)

It follows that limm→∞R(0, 1,m) = 2/3. Hence, we see that the asymptotic (in input

block length) encoding rate of the proposed fixed-rate construction is equal to the

average rate of the variable-rate bit stuff code. Moreover, by encoding in input block

lengths m ≥ 4 bits, we can obtain encoding rates greater than the plain bit stuffing

rate, which is limited to 1/2.

In the following section, we generalize the fixed-rate encoding to all values of

k < ∞. As with k = 1 codes, the main idea is to include a suitable pre-processing

component to maintain high encoding efficiency. However, unlike the simple k = 1

codes, the required pre-processing for values of k ≥ 2 is more complex, and iterative

in nature. The reason for this disparity lies in the nature of the bit stuff algorithm,

which maps bits to variable-length phrases for the k = 1 constraint, but variable

length input words to variable length phrases for all other values of k <∞ (see Table

13).

7.2 The Fixed-Rate Bit Stuff (FRB) Algorithm

The algorithm accepts an unconstrained binary input sequence, x = (x0x1 . . . , xm−1),

of fixed-length m bits and outputs a (0, k) binary sequence, y = (y0y1 . . . , yn−1), of

fixed-length n bits. The objective is to design a fixed-rate encoder for all possible

m-bit inputs, such that the rate m/n, is close to the average rate R0(0, k) = (2k+1 −

2)/(2k+1 − 1), of the variable-rate bit stuff code.

Similar to the discussion in Chapter 7.1, the proposed encoding consists of three

stages. This is illustrated in the block diagram in Fig. 13. The input sequence x

first undergoes iterative pre-processing, followed by bit stuff encoding, and finally
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dummy-bit padding to a fixed output length n. The pre-processing operations now

involve k iterations, and are key to building efficient fixed-rate codes. The main idea

here is to repeatedly scan and parse the input to identify certain undesirable (from

bit stuffing point of view) patterns. They are subsequently eliminated/curtailed by

a reversible, selective inversion. Essentially, the pre-processing transforms the input

sequence x into a sequence xk, which is of the same length m, but is better conformed

to bit stuffing. There is an inherent penalty for such a pre-processing in the form

of additional index bits that need to be conveyed to the decoder for suitable post-

processing. The entire sequence of these index bits is referred to as the index sequence,

denoted by αx. The pre-processing output v shown in Fig. 13, is composed of the

pre-processed sequence xk, appended with the index sequence αx. Thus, sequence v

is longer than m bits, and there is a rate penalty in pre-processing. However, this rate

penalty does not grow with input block length m. Hence, for large m, the cascade of

pre-processing and bit stuffing can result in rate improvements over plain bit stuffing.

Bit Stuff
v yy′

dummy bits

Pad n− n′

n bits

Pre-processing

k iterationsm bits

x

n′ bits

Figure 13: Block diagram of the fixed-rate bit stuff (FRB) encoder. It
accepts an m-bit input and generates an n-bit constrained output. The
key to achieving high encoding rates lies in the iterative pre-processing,
which has k iterations. The effect of such a pre-processing is to better
conform the input sequence to subsequent bit insertions. One can say
that the pre-processing output v is “better prepared” for bit stuffing, as
compared to the input sequence x.

Note that plain bit stuffing of the input sequence x, followed by dummy-bit

padding would yield n = m + bm/kc for the worst-case “all-zeros” input. This

pushes the rate toward k
k+1

for large m, still a fair distance away from the aver-

age rate R0(0, k) of the variable-rate bit stuff code. The proposed FRB algorithm

thus provides a means of bridging this gap between fixed-rate, plain bit stuffing and
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variable-rate bit stuffing. Before describing the algorithm, we introduce the following

notations and definitions.

Notations and Definitions:

• Let

ui = 0i1, i = 0, 1, . . . , k − 1 (89)

u∗
i = 0i+1, i = 0, 1, . . . , k − 1. (90)

• The weight of a binary sequence s with respect to the input word u∗
i , denoted

by wu∗

i
(s), is the number of distinct occurrences of u∗

i in sequence s, with s

being scanned as a concatenation of words from the set {u0,u1, . . . ,ui,u
∗
i },

i = 0, 1, . . . , k − 1. For example, if s = 100001010001, k ≥ 2 and i = 1,

wu∗

1
(s) = 3.

• The weight of a binary sequence s with respect to the input word ui, denoted

by wui
(s), is the number of distinct occurrences of ui in sequence s, with s

being scanned as a concatenation of words from the set {u0,u1, . . . ,ui,u
∗
i },

i = 0, 1, . . . , k − 1. For example, if s = 100001010001, k ≥ 2 and i = 1,

wu1(s) = 2.

• Denote by s(i), the sequence formed by converting all ui words to u∗
i words,

and all u∗
i words to ui words in s, with s being scanned as a concatenation

of words from the set {u0,u1, . . . ,ui,u
∗
i }, i = 0, 1, . . . , k − 1. The operation

s(i) is equivalent to flipping those bit positions in s that follow a string of i

consecutive zeros, i = 0, 1, . . . , k − 1. The flipping operation refers to a “0” bit

being changed to a “1” bit and vice versa. The special case of i = 0 means

that every bit in s is flipped. For example, if s = 100001010001, and k ≥ 2,

s(1) = 101011000100. Note that s(i) is an invertible operation.
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• Denote by s1 ‖ s2, the concatenation of two sequences s1 and s2.

• Denote by αx = [α1 α2 . . . αk], the index sequence corresponding to input se-

quence x, and by δt a string of t dummy bits. The index bits are used to convey

to the decoder whether or not the flipping operation is performed in each of the

k iterations. The dummy bits are used to pad the output up to length n bits,

and can be ignored during decoding (refer to the discussion in Chapter 7.1).

• Denote by B(s), the bit stuff encoding of a sequence s.

• Denote by l(s), the length in bits of a binary sequence s.

The encoding algorithm is described next.

The FRB Encoding Algorithm:

Input x

Set x0 = x

For j = 1 to k

Input xj−1

Scan xj−1 as a concatenation of words from the set
{

u0,u1, . . . ,uj−1,u
∗
j−1

}

If wuj−1
(xj−1) < wu∗

j−1
(xj−1)

xj = xj−1(j − 1)

αj = 1

Else

xj = xj−1

αj = 0

end

end

n′ = l(B(xk ‖ αx))

Output y = B (xk ‖ αx)) ‖ δ
n−n′

.
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The “for” loop in the encoding algorithm performs the k pre-processing iterations,

while the bit stuffing and dummy-bit padding operations are carried out in the last

step. Since each of the encoding operations is reversible, the decoder functionality is

a simple inverse of the encoding.

In the rest of this thesis, we use the following short-hand notation to denote the

k pre-processing iterations.

1)1 ≥ 0

2)01 ≥ 00

...

k)0k−11 ≥ 0k

The short-hand notation emphasizes that at the end of each iteration j, j = 1, 2, . . . , k,

the sequence xj satisfies wuj−1
(xj) ≥ wu∗

j−1
(xj), i.e., xj has at least as many 0j−11

words as 0j words, with xj being scanned as a concatenation of words from the set
{

u0,u1, . . . ,uj−1,u
∗
j−1

}

.

7.2.1 An Encoding Example

We track the iterative fixed-rate encoding for k = 9. Consider the 50-bit input

sequence

x = 0210913011101301019.

Since the number of “1”s in x0 = x is greater than the number of “0”s, we have

wu0(x0) > wu∗

0
(x0), and hence x1 = x0 after the first pre-processing iteration, i.e.,

j = 1. Next, when j = 2, we scan x1 as a concatenation of words from the set

{u0 = 1,u1 = 01,u∗
1 = 00}, to find that wu1(x1) = 3 < 10 = wu∗

1
(x1). Hence, x2 =

x1(1) = 012(01)40012001100012(01)519. It so happens in this example that x2 only

has runs of consecutive zeros of length at most 2. Hence, we find at the end of k = 9

iterations that x9 = x2.
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In this example, we have performed the flipping operation, i.e., xj = xj−1(j − 1),

only in iteration 2, and retained the sequence, i.e., xj = xj−1, in iteration 1 and

iterations 3 through 9. For our index assignment, let us use a “0” bit to indicate

flipping and a “1” bit otherwise. The index sequence αx is then a concatenation of

index bits for the 9 iterations1. Hence, for the input sequence in our example, we

have, αx = 101111111. Bit stuff encoding of xk ‖ αx does not incur any additional

bits. Assuming that the output block length n is 65 bits2, we can compute that 6

dummy bits will be used for padding. Hence, the output y of the algorithm can now

be given as y = x9 ‖ αx ‖ δ6. Another encoding example can be found in [51].

7.3 Rate Computation

Having described the FRB algorithm, we now proceed to compute its rate. The

encoding rate, R(0, k,m), for d = 0, maximum-run-length parameter k, and input

block length m, is R(0, k,m) = m/n, where the output block length n is given by

n = max
x∈Z

m
2

l(B(xk)) + k + 1. (91)

Note that k+1 is the maximum length of the portion of the codeword corresponding

to the index sequence αx. Recall that the index bits are used to convey to the

post-processor, whether or not the flipping operation is performed in each of the k

iterations, i.e., whether xi = xi−1(i− 1) or xi = xi−1, for i = 1, 2, . . . , k. Hence, the

index sequence αx is of length k bits, and can be involved in at most one additional

bit insertion. Thus, the output block length n, as computed in (91) is in fact an upper

bound on the maximum possible output length for any input sequence of length m

1Alternatively, any other suitable index assignment may be chosen.
2The choice of numbers m and n in this example is purely for illustration purposes. Typically,

we expect m and n to be a few thousand bits each.
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bits. Indeed, it can be verified that

n = max
x∈Z

m
2

l(B(xk)) + k + 1

≥ max
x∈Z

m
2

l(B(xk ‖ αx)) (92)

We now proceed to compute the term maxx∈Z
m
2
l(B(xk)) in (91). This is nothing

but the maximum length of the bit stuff encoding of sequence xk, which in turn is

derived from iterative pre-processing of the input x. As seen earlier in Table 13, the

bit stuff algorithm inserts a “1” after every string of k consecutive “0”s in xk. Hence,

we have

max
x∈Z

m
2

l(B(xk)) = m+ max
x∈Z

m
2

wu∗

k−1
(xk). (93)

Using (93) and (91), we find that the encoding rate R(0, k,m) is given by

R(0, k,m) =
m

m+ maxx∈Z
m
2
wu∗

k−1
(xk) + k + 1

. (94)

Our main interest in this section will be to evaluate R(0, k,m) for very long input

blocks, i.e., as m→ ∞. Rate computation for finite input blocks is discussed later in

Chapter 8.1.

Let us now define

β(k,m) = max
x∈Z

m
2

wu∗

k−1
(xk). (95)
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For any given k <∞, the function β(k,m) has the following properties (see Appendix

A)

1. β(k,m) is non-decreasing in m.

2. β(k,m) is unbounded, that is β(k,m) → ∞ as m→ ∞.

Let m0 be the smallest positive integer such that β(k,m) > 0. Equation (94) can

now be re-written for all m ≥ m0 as

R(0, k,m) =
1

1 + β(k,m)
m

+ k+1
m

. (96)

The term k+1
m

vanishes asm→ ∞. Thus, the asymptotics ofR(0, k,m) are determined

by the asymptotics of β(k,m)
m

. This relationship is quite intuitive, since β(k,m)
m

is nothing

but the maximum number of bit insertions per input bit in the FRB algorithm, for a

given input block length m.

To facilitate further analysis, we define the following function

θ(k,m) =
m

β(k,m)
(97)

Note that θ(k,m) =
(

β(k,m)
m

)−1

. A direct analysis of θ(k,m) involves searching over

the entire set of 2m input sequences, x ∈ Z
m
2 (see equation (95)). Clearly, such an

analysis is intractable for large m. This prompts us to take the following, alternative

approach.

We make the assumption that θ(k,m) converges as m → ∞. This assumption is

supported by a discussion on the properties of θ(k,m) in Appendix A, which leads

us to the following result

80



lim
m→∞

θ(k,m) = inf
w

u
∗

k−1
(xk)∈Z+

l(x)

wu∗

k−1
(xk)

, (98)

where Z
+ denotes the set of all positive integers, and l(x) denotes the length of input

sequence x (not fixed at m anymore). Using (98) in (96), we find that

lim
m→∞

R(0, k,m) =
η(k)

η(k) + 1
,

where

η(k) = inf
w

u
∗

k−1
(xk)∈Z+

l(x)

wu∗

k−1
(xk)

. (99)

Hence, the problem of computing the asymptotic rate has now been reduced to find-

ing the infimum of the ratio l(x)/wu∗

k−1
(xk), over all non-zero values of the weight

wu∗

k−1
(xk).

The result in (98) is fairly intuitive, with both expressions formulating the min-

imum number of input bits per bit insertion, i.e., per 0k word in the pre-processed

sequence xk. However, there is a significant difference in the search spaces of (95) and

(98). Rather than search over the potentially intractable space of all input sequences

x ∈ Z
m
2 in (95), our search-space in (98) is the set of all non-zero values of the weight

wu∗

k−1
(xk). Noticeably in (98), we now search by starting with the pre-processed

vectors xk (rather than the input sequence x) and backtrack through the iterative

pre-processing to determine the input length l(x). This means that we now start

at the output of the pre-processing block of Fig. 13, and work our way backwards

through the k pre-processing iterations, ending up at the input. Such a backtracking
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over the pre-processing iterations, i.e., moving from xk towards x, is more conducive

to analysis, and is an important theme in the rest of our discussions.

This point is further illustrated with the help of the binary search-tree in Fig.

14. Here the root node denotes the input sequence x and the 2k leaf nodes represent

the pre-processed sequences xk, each corresponding to a possible path through the

iterative pre-processing. The result of every iteration, i = 1, 2, . . . , k, is denoted on

the branches by either F or F, to indicate xi = xi−1(i− 1) or xi = xi−1, respectively.

Indeed, for a given input sequence x, only one of these 2k paths is traversed by the

iterative pre-processing.

However, for our search of η(k) as in (99), we need to determine infw
u
∗

k−1
(xk)∈Z+

l(x)
w

u
∗

k−1
(xk)

by backtracking through the binary search-tree along each of the 2k paths. In other

words, we work backwards starting from a leaf node up towards the root, and de-

termine the infimum amongst all inputs that traverse the corresponding path from

the root to the leaf node; and repeat this process for all 2k leaf nodes to determine

the global infimum. Such an approach eliminates the exhaustive search over all pos-

sible input sequences as required in (95). However, it could still be prohibitively

complex for large k. This is because we need to backtrack over 2k paths, and this

number grows exponentially with k. Thus, we have been unable to proceed with the

exact computation of η(k), except for a few select cases of small k, k = 1, 2, 3, 4 (see

Appendix A). In what follows, we derive upper and lower bounds on η(k).

7.3.1 Upper Bound on Asymptotic Encoding Rate

If we limit our search for infw
u
∗

k−1
(xk)∈Z+

l(x)
w

u
∗

k−1
(xk)

to a single path in the binary search-

tree rather than all the 2k paths, then we obtain an upper bound on η(k) in (99), and

hence an upper bound on the asymptotic encoding rate.

The path we have chosen3 for our analysis here is the path marked P in Fig. 14.

3In fact, any tractable subset of the 2k paths may be chosen to derive the upper bound. We have
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Iteration 2
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. . .

F
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F

Figure 14: Binary search-tree to determine infw
u
∗

k−1
(xk)∈Z+

l(x)
w

u
∗

k−1
(xk)

. The path

P marked in bold is the one traversed to determine an upper bound on
the asymptotic rate.

This corresponds to retaining the input sequence at each iteration (equivalently, the

result of each iteration is F), whereby xk = x.

Thus, in order to determine the upper bound, we start with the rightmost leaf-

node in Fig. 14 (which represents xk for path P) and work our way upward along

path P towards the root (which represents x). Essentially, for each wu∗

k−1
(xk) ∈ Z

+,

we now need to backtrack along path P to determine the minimum corresponding

l(x), according to (98). While backtracking from the leaf-node to the root, the inter-

mediate nodes represent sequences xk−1,xk−2, . . . ,x2,x1, in that order. The following

definition connects properties of the sequence x1 to sequence xk. Unless otherwise

stated, all subsequent discussions on the upper bound are with respect to the path P

in Fig. 14.

Definition 7.1 For given k <∞ and path P shown in Fig. 14, the effective weight,

ak
i , of the word 0i1, i ∈ Z

+, is the minimum number of zeros in x1 resulting from the

presence of a single 0i1 word in the pre-processed sequence xk, with xk being scanned

chosen path P here, as it leads to simpler computations and reasonably tight bounds.
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as a concatenation of words 0t−11, t ∈ Z
+.

The effective weight is a measure of the reverse cascading, from xk through to

x1 in the iterative pre-processing. As we will see shortly, it relates to the minimum

number of bits, l(x) = 2ak
i , necessary at the input to produce a single 0i1 word in

the sequence xk. Clearly, ak
1 = 1 for all k. By working backwards through the binary

search-tree along path P , we obtain the following result.

Lemma 7.2 The effective weights, ak
i , i ≥ 2, are related by the recursion

ak
i =

(

k−1
∑

j=1

[

wu∗

j
(0i1) − wuj

(0i1)
]

ak
j

)

+ wu∗

0
(0i1)

=

(

k−1
∑

j=1

q(i, j)ak
j

)

+ i, (100)

where the function q(i, j) for i, j ≥ 1 is given by

q(i, j) =











max
{

0, i+1
j+1

− 2
}

when i+1
j+1

∈ Z
+

b i+1
j+1

c when i+1
j+1

/∈ Z
+.

(101)

Proof: We backtrack through the binary search-tree along path P shown in

Fig. 14. We start at the rightmost leaf-node and move up towards the root, one

iteration at a time. Let us assume that the pre-processed sequence xk is scanned

as a concatenation of words 0t−11, t ∈ Z
+. Let this yield a 0i1 word, i ≥ 2. By

virtue of the pre-processing iterations, we deduce that any 0i1 word, i ≥ 2 cannot

“stand alone” in xk, and must be accompanied by other words. This follows from

the fact that at the end of each iteration j, j = 1, 2, . . . , k, the sequence xj satisfies
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wuj−1
(xj) ≥ wu∗

j−1
(xj), i.e., xj has at least as many 0j−11 words as 0j words, with xj

being scanned as a concatenation of words from the set
{

u0,u1, . . . ,uj−1,u
∗
j−1

}

. For

instance, if k = 2, then a 021 word cannot stand alone in x2, and must be accompanied

by at least one 01 word; similarly, a 041 word in x2 must be accompanied by at least

two 01 words. On the other hand, a 1 or a 01 word can stand alone in x2.

Our aim now is to track the minimum number of such accompanied words for a

given 0i1 word, i ≥ 2, in xk. This will eventually help us determine ak
i , the minimum

number of zeros in x1. Thus, we backtrack along path P in the binary search-tree:

starting from the rightmost leaf-node xk, moving one pre-processing iteration at a

time, until we reach x1. It is important to note here that we are able to track the

minimum number of accompanying words all the way up to x1 only because of the

favorable nature of the chosen path P , which ensures that

xk = xk−1 = xk−2 = . . . = x2 = x1.

Consider a 0i1 word, i ≥ 2 in xk. Iteration k ensures that wuk−1
(xk) ≥ wu∗

k−1
(xk),

i.e., xk has at least as many 0k−11 words as 0k words, with xk being scanned as

a concatenation of words from the set
{

u0,u1, . . . ,uk−1,u
∗
k−1

}

. Hence, the min-

imum number of accompanying 0k−11 words present in sequence xk is given by
[

wu∗

k−1
(0i1) − wuk−1

(0i1)
]

. Furthermore, by virtue of path P , we have that xk−1 = xk.

Thus, we infer that the sequence xk−1 contains at least
[

wu∗

k−1
(0i1) − wuk−1

(0i1)
]

0k−11 words in addition to the 0i1 word.

By definition, each of the
[

wu∗

k−1
(0i1) − wuk−1

(0i1)
]

0k−11 words in xk−1 results

in at least ak−1
k−1 zeros in sequence x1. Note that the subscript k− 1, in ak−1

k−1 indicates

the length of the string of zeros in the word 0k−11, while the superscript k− 1, points

to the number of remaining iterations to backtrack. From the definition of q(i, j) in

(101), we see that at
t = ak

t for all t ≤ k. Hence, we can re-write ak−1
k−1 as ak

k−1 for
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convenience.

We are now left with the 0i1 word in xk−1. We repeat the above arguments for

iterations k − 1 through to 2. This yields the minimum number of zeros in x1 as the

sum
∑k−1

j=1

([

wu∗

j
(0i1) − wuj

(0i1)
]

ak
j

)

+ wu∗

0
(0i1), where the second term is simply

the contribution of i zeros from the 0i1 word. Thus, the effective weight ak
i is given

by
∑k−1

j=1

([

wu∗

j
(0i1) − wuj

(0i1)
]

ak
j

)

+ i.

We now return to the computation of the upper bound. Definition 7.1 makes a

connection between properties of the pre-processed sequence xk and the number of

zeros in the sequence x1. From pre-processing iteration 1, we have that wu0(x1) ≥

wu∗

0
(x1), i.e., the number of ones in x1 is at least equal to the number of zeros in x1.

Thus, we find that the input length l(x) must be at least 2ak
i bits in order to produce

a single 0i1 word in xk.

From (99) and Definition 7.1, we now have

η(k) = inf
w

u
∗

k−1
(xk)∈Z+

l(x)

wu∗

k−1
(xk)

≤ inf
i≥k

2ak
i

b i
k
c

(102)

The inequality in (102) arises from the premise for the upper bound: there might

be paths other than P in Fig. 14, that could yield a lower value of l(x)
w

u
∗

k−1
(xk)

. The

denominator in (102) follows from the simple relation wu∗

k−1
(0i1) = b i

k
c. This rela-

tion also points out that we only need to consider the search space i ≥ k, so that

wu∗

k−1
(xk) ∈ Z

+, as required in (99).

For further analysis, we will find it convenient to denote fi(k) =
2ak

i

b i
k
c
. Our goal

now is to compute for a given k, the infimum of fi(k) over all i ≥ k. However, because

of the nature of the expression for fi(k), we have been unable to obtain a closed form

solution. Instead, we use the following result to limit our search space.

Theorem 7.3 For any given k, 1 ≤ k <∞,
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inf
i≥k

fi(k) = min
k≤i≤k+b(k)−1

fi(k), (103)

where b(k) denotes the LCM of positive integers upto and including k, i.e., b(k) =

LCM(1, 2, . . . , k).

Proof: Theorem 7.3 states that the required infimum of fi(k) over all positive

integers i ≥ k, can be obtained by searching over b(k) values of i that lie within

[k, k + b(k) − 1]. The proof proceeds by exploring certain monotonicity properties of

fi(k).

Consider the sequence {fi(k)}i≥k. Clearly, this sequence by itself is not monotonic

in i (see (101) and (100)). However, {fi(k)}i≥k can be broken up into subsequences

{fk+tb(k)(k)}t≥0, {fk+1+tb(k)(k)}t≥0, {fk+2+tb(k)(k)}t≥0, . . . , {fk+(b(k)−1)+tb(k)(k)}t≥0,

each of which is either monotonic in t, or is constant. This can be proved as follows.

Consider any subsequence {fc+tb(k)(k)}t≥0, k ≤ c ≤ k + b(k) − 1. fc+tb(k)(k) can

be expanded out as

fc+tb(k)(k) =
2ak

c+tb(k)

tbk(k) + b c
k
c
, (104)

where bk(k) = b(k)
k

. Now, consider the sequence,
{

Den(fc+tb(k)(k))
}

t≥0
=
{

tbk(k) + b c
k
c
}

t≥0
,

of the denominators of fc+tb(k)(k) in (104). Clearly,
{

Den(fc+tb(k)(k))
}

t≥0
is an arith-

metic progression with initial term b c
k
c and common difference bk(k).
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The corresponding numerator sequence is
{

Num(fc+tb(k)(k))
}

t≥0
=
{

2ak
c+tb(k)

}

t≥0
.

We now show that this forms an arithmetic progression as well. Consider the differ-

ence ak
c+(t+1)b(k) − ak

c+tb(k), for any t ≥ 0. From (100), we have

ak
c+(t+1)b(k) − ak

c+tb(k) =

(

k−1
∑

j=1

q(c+ (t+ 1)b(k), j)ak
j

)

−

(

k−1
∑

j=1

q(c+ tb(k), j)ak
j

)

+ b(k) (105)

(106)

=

(

k−1
∑

j=1

bj+1(k)a
k
j

)

+ b(k), (107)

where bj+1(k) = b(k)
j+1

, and (107) follows from (101). From (107), we note that

ak
c+(t+1)b(k) − ak

c+tb(k) is independent of both c and t. Hence, we infer that the nu-

merator sequence {2ak
c+tb(k)}t≥0 is an arithmetic progression with initial term 2ak

c and

common difference 2
((

∑k−1
j=1 bj+1(k)a

k
j

)

+ b(k)
)

.

The subsequence {fc+tb(k)(k)}t≥0 is then the term-by-term ratio of two arithmetic

progressions, each of which has initial term and common difference as positive inte-

gers. As a consequence, we have that {fc+tb(k)(k)}t≥0 is monotonically increasing if

ak
c

b c
k
c
<

(
∑k−1

j=1 bj+1(k)ak
j )+b(k)

bk(k)
, monotonically decreasing if ak

c

b c
k
c
>

(
∑k−1

j=1 bj+1(k)ak
j )+b(k)

bk(k)
and

a constant if ak
c

b c
k
c

=
(
∑k−1

j=1 bj+1(k)ak
j )+b(k)

bk(k)
.

Thus far, we have shown that every subsequence {fc+tb(k)(k)}t≥0, k ≤ c ≤ k +

b(k)−1, is either monotonic or a constant. Since we are interested in the determining

the minimum of fi(k), we now consider the minimum term in each of the subsequences.

Those subsequences that are monotonically increasing (constant) have their minimum

(constant term) equal to fc(k), which occurs at t = 0. Since k ≤ c ≤ k + b(k) − 1,

these are already included in the search space in (103). Hence, we are left with the

monotonically decreasing subsequences. The minimum term in this case is given by
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limt→∞ fc+tb(k)(k), which can be evaluated as 2
(
∑k−1

j=1 bj+1(k)ak
j )+b(k)

bk(k)
. Note that this

expression is independent of c. To complete the proof, we now show that fk(k) ≤

limt→∞ fc+tb(k)(k). We have

fk(k)

2
= ak

k (108)

=

(

k−1
∑

j=1

q(k, j)ak
j

)

+ k (109)

=

(

∑k−1
j=1 bk(k)q(k, j)a

k
j

)

+ b(k)

bk(k)
(110)

≤

(

∑k−1
j=1 bj+1(k)a

k
j

)

+ b(k)

bk(k)
(111)

=
1

2
lim
t→∞

fc+tb(k)(k), (112)

where (108) and (109) follow directly from definition, (110) is obtained by multiplying

and dividing (109) by bk(k), and (111) results from the following fact

bk(k)q(k, j) ≤











b(k)
k

(

k+1
j+1

− 2
)

when k+1
j+1

∈ Z
+

b(k)
j+1

when k+1
j+1

/∈ Z
+

To summarize, we have shown that the subsequences {fc+tb(k)(k)}t≥0, k ≤ c ≤

k+ b(k)− 1 are all either monotonic or constant, and further that the monotonically

decreasing subsequences are lower bounded by fk(k). These together imply that the

search space i ∈ [k, k+ b(k)− 1] is sufficient to locate the minimum fi(k). Hence, we

conclude that inf i≥k{fi(k)} = mink≤i≤k+b(k)−1{fi(k)}.

Theorem 7.3 reduces our search space from the set of all positive integers i ≥ k to

the finite set of integers k ≤ i ≤ k+b(k)−1. Let us denote f(k) = mink≤i≤k+b(k)−1 fi(k)

and ik = arg mink≤i≤k+b(k)−1 fi(k), i.e., ik is the corresponding minimizing value of
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integer i. Note that there is no condition on ik being unique. In cases where several

values of i all yield f(k), we pick ik to be the smallest of all such arguments.

By means of computer search within [k, k+b(k)−1], we have determined f(k) and

ik, for values of k up to 15. They are listed in Table 15 along with the corresponding

asymptotic rate upper bound values, Ru(0, k), which can be computed from (99) as

Ru(0, k) =
f(k)

f(k) + 1
≥ lim

m→∞
R(0, k,m) =

η(k)

η(k) + 1
. (113)

It is seen that Ru(0, k) values are only slightly lesser than corresponding average bit

stuff rates, R0(0, k).

7.3.2 Lower bound on Asymptotic Encoding Rate

Next, we compute a lower bound on η(k) = infw
u
∗

k−1
(xk)∈Z+

l(x)
w

u
∗

k−1
(xk)

as in (99). For

small values of k, k = 1, 2, 3, 4, the computed lower bounds are seen to be equal to the

upper bounds obtained in Chapter 7.3.1. Thus, we are able to determine the exact

asymptotic rate of the FRB algorithm for these values of k. In the special cases of

k = 1, 2, these bounds are also seen to be equal to the average rate of the variable-rate

bit stuff algorithm.

First, let us consider the case when k = 1. It can be verified that infwu1 (x1)∈Z+
l(x)

wu1 (x1)
=

2. This follows from the pre-processing, which ensures that every “0” bit in x1 has

at least one corresponding “1” bit in x1. Hence, η(1) = 2, and the exact asymptotic

rate R(0, 1) = limm→∞R(0, 1,m) = 2
3
, as seen earlier in Chapter 7.1.

Next, with k = 2, we have two pre-processing iterations and hence 2k = 4 leaf

nodes in Fig. 14. The upper bound obtained in Chapter 7.3.1 traverses path P ,

thereby leaving us with three more paths to trace. Backtracking on each of these

three other paths, we find that the sequence x1 in each case contains at least three
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Table 15: Summary of rate computations for the FRB algorithm

k f(k) ik Upper bound Lower bound Bit stuff average Rl(k)
R0(k)

Rl(k)
C(k)

Ru(0, k) Rl(0, k) rate R0(0, k) (%) (%)

1 2 1 2/3 2/3 2/3 100 96.02

2 6 2 6/7 6/7 6/7 100 97.49

3 12 3 12/13 12/13 14/15 98.90 97.49

4 24 5 24/25 24/25 30/31 99.20 98.43

5 54 5 54/55 48/49 62/63 99.54 99.13

6 114 7 114/115 96/97 126/127 99.75 99.54

7 240 7 240/241 192/193 254/255 99.87 99.76

8 480 11 480/481 384/385 510/511 99.93 99.88

9 984 11 984/985 768/769 1022/1023 99.96 99.94

10 1974 11 1974/1975 1536/1537 2046/2047 99.98 99.97

11 4020 11 4020/4021 3072/3073 4094/4095 99.99 99.98

12 8052 17 8052/8053 6144/6145 8190/8191 99.99 99.99

13 16242 17 16242/16243 12288/12289 16382/16383 99.99 99.99

14 32496 17 32496/32497 24576/24577 32766/32767 99.99 99.99

15 65226 17 65226/65227 49152/49153 65534/65535 99.99 99.99

“0” bits for every 02 word in x2 (with x2 being scanned as a concatenation of words

{1, 01, 02}). From the previous argument on k = 1, we infer that there are also at

least three “1” bits in x1, and hence infwu2 (x2)∈Z+
l(x)

wu2 (x2)
= 6. This means that the

exact asymptotic rate R(0, 2) = limm→∞R(2,m) = 6
7
.

With k = 3, such a computation involves backtracking along 8 possible paths

and becomes rather tedious. Instead, let us look at iteration 3 alone. There are

two possibilities: either x3 = x2(2) or x3 = x2, denoted by the branches F and

F, respectively, in Fig. 14. Regardless of which branch we take in iteration 3, the

resulting sequence x2 contains at least two 02 words (with x2 being scanned as a

concatenation of words {1, 01, 02}) for every 03 word in x3 (with x3 being scanned as

a concatenation of words {1, 01, 021, 03}). Thus, using our earlier result for k = 2,

we conclude that infwu3 (x3)∈Z+
l(x)

wu3 (x3)
≥ 12, and a lower bound on the asymptotic

encoding rate for k = 3 is Rl(0, 3) = 12
13

. This turns out to be exactly equal to

the upper bound Ru(0, 3), and hence Rl(0, 3) = Ru(0, 3) = 12
13

= R(0, 3), thereby
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yielding the exact asymptotic rate of the FRB algorithm for k = 3. This is a welcome

coincedence since we did not backtrack through all the 2k = 8 paths. Proceeding

similarly with k = 4, it can be shown that Rl(0, 4) = Ru(0, 4) = 24
25

= R(0, 4).

Next, with k = 5, we have from iteration 5 that the sequence x4 contains at least

two 04 words (with x4 being scanned as a concatenation of words {1, 01, 021, 031, 04})

for every 05 word in x5 (with x5 being scanned as a concatenation of words {1, 01, 021, 031, 041, 05}).

Now, since we have infwu4 (x4)∈Z+
l(x)

wu4 (x4)
= 24, this implies that infwu5 (x5)∈Z+

l(x)
wu5 (x5)

≥

48. Hence, Rl(0, 5) = 48
49

. This is less than the upper bound Ru(5) = 54
55

determined

in Chapter 7.3.1. Thus, there is a gap between the upper and lower bounds in this

case.

Proceeding in a similar fashion, we obtain the general result that infw
u
∗

k−1
(xk)∈Z+

l(x)
w

u
∗

k−1
(xk)

≥

2k+1 − 2k−1 for all k ≥ 2. This yields the following lower bound, Rl(0, k), on the

asymptotic encoding rate. Our results are summarized in Table 15.

Rl(0, k) =











2
3 when k = 1

2k+1 − 2k−1

2k+1 − 2k−1 + 1
when k ≥ 2.

(114)

From Table 15, it is seen that the asymptotic rate lower bounds for the FRB algorithm

are very close to the corresponding upper bounds, and also to the average rate of the

variable-rate bit stuff algorithm. We have already seen in earlier discussions (refer to

equations (86) and (85)) that the variable-rate bit stuff algorithm is near-optimal for

(0, k) constraints. Thus, we conclude that the asymptotic encoding rate of the FRB

algorithm gets very close to the (0, k) capacity.

7.4 Asymptotic Partial Rates

Thus far, we have introduced the FRB algorithm for (0, k) constraints, and com-

puted bounds on its asymptotic encoding rate. High encoding rates were achieved
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by iterative pre-processing of the input sequence to better conform it to bit inser-

tion. For k ≥ 2, the described pre-processing consisted of k iterations. The resulting

asymptotic encoding rates were found to get close to the average rate, R0(0, k), of the

variable-rate bit stuff algorithm. In this section, we investigate the effect of reducing

the number of pre-processing iterations.

This is a practical consideration as we move to higher values of k. Recall that each

of the k pre-processing iterations involves scanning, parsing and selective inversion of

a potentially long input data block. In view of the related computations and latency,

we can associate an implementation cost with each iteration. For a detailed analysis

of the expected computations and latency of the FRB algorithm, the reader is directed

to Chapter 8.4.

The combined implementation cost of k iterations could become significant as

we move towards higher values of k. Hence, we would like to study the effect of

partial pre-processing with r < k iterations for k ≥ 2. We consider k− 1 possibilities

for partial pre-processing, which consist of the first r iterations, r = 1, 2, . . . , k − 1,

respectively. We derive upper and lower bounds on the asymptotic encoding rate for

each r. Smaller values of r allow for very low-cost encoders and decoders, but the

resulting codes are relatively inefficient. By adding more pre-processing iterations

(increasing r), one can increase the encoding rate towards R0(0, k), thus making way

for possible trade-offs between high encoding rate and implementation cost.

For a given maximum-run-length parameter k, let us denote by Rr(0, k), the

asymptotic rth partial rate, i.e., the asymptotic encoding rate with the first r pre-

processing iterations, r < k. Hence, the pre-processing in short-hand notation now

becomes

1)1 ≥ 0

2)01 ≥ 00

...
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r)0r−11 ≥ 0r

The rate computation proceeds in a similar vein to the earlier discussions in Chapter

7.3. An upper bound, Rr
u(0, k), on the asymptotic rth partial rate is now given by

Rr
u(0, k) = gr(k)

gr(k)+1
where

gr(k) = inf
i≥k

gr
i (k) = inf

i≥k

2ar
i

b i
k
c
, (115)

where

ar
i =

(

r−1
∑

j=1

q(i, j)ar
j

)

+ i, (116)

and the function q(i, j) is as specified in (101). The expression for gr(k) in (115) is

similar to (102), with ak
i replaced by ar

i . We now use a result similar to Theorem 7.3

to limit our search space for gr(k).

Theorem 7.4 For any given k, 2 ≤ k <∞, and any r < k,

inf
i≥k

gr
i (k) = min

k≤i≤k+b(k)−1
gr

i (k), (117)

where b(k) denotes the LCM of positive integers up to and including k, i.e., b(k) =

LCM(1, 2, . . . , k).

The proof proceeds along similar lines to the proof of Theorem 7.3, and is hence

omitted.
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Theorem 7.4 reduces our search space for the positive integer i ≥ k that minimizes

gr
i (k), to k ≤ i ≤ k + b(k) − 1. By means of computer search within this range, one

can determine gr(k), and hence the upper bound Rr
u(0, k) for any 2 ≤ k < ∞ and

1 ≤ r < k. As examples, we list these values for k = 9 and k = 10 in Tables 16 and

17, respectively.

A simple lower bound, Rr
l (0, k), on the asymptotic rth partial rate is given by

Rr
l (0, k) =

hr(k)

hr(k) + 1
, (118)

where

hr(k) =
⌊k

r

⌋

(

Rl(0, r)

1 −Rl(0, r)

)

, (119)

and Rl(0, r) is the lower bound on the asymptotic rate of the r constraint, as deter-

mined earlier in (114). Equation (119) follows from the simple fact that a 0k word is

composed of at least bk
r
c 0r words. We leave the determination of tighter lower bounds

as an open problem. In what follows, we summarize some important properties and

observed trends in the asymptotic partial rates

1. The asymptotic 1st partial rate, R2(0, k), is equal to 2k
2k+1

. The asymptotic 2nd

partial rate, R2(0, k), for any k ≥ 3, is equal to 3k−3
3k−2

for odd k, and 3k
3k+1

for

even k.

2. Rr
u(k) is non-decreasing with increasing r. This follows directly from the fact

that ar
i is a non-decreasing function of r for any given i ∈ Z

+.

3. For given k, the increase in Rr
u(0, k) can be quite irregular. However the lower
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Table 16: Summary of partial-rate computations for k = 9

r gr(9) Upper bound on Lower bound on
asymptotic rth asymptotic rth

partial rate Rr
u(0, 9) partial rate Rr

l (0, 9)

1 18 18/19 18/19

2 24 24/25 24/25

3 42 42/43 36/37

4 54 54/55 48/49

5 66 66/67 48/49

6 114 114/115 96/97

7 240 240/241 192/193

8 480 480/481 384/385

9 984 984/985 768/769

Table 17: Summary of partial-rate computations for k = 10

r gr(10) Upper bound on Lower bound on
asymptotic rth asymptotic rth

partial rate Rr
u(0, 10) partial rate Rr

l (0, 10)

1 20 20/21 20/21

2 30 30/31 30/31

3 42 42/43 36/37

4 54 54/55 48/49

5 114 114/115 96/97

6 114 114/115 96/97

7 240 240/241 192/193

8 480 480/481 384/385

9 984 984/985 768/769

10 1974 1974/1975 1536/1537

bound, Rr
l (0, k), shows a pattern in the increase, with the function hr(k) dou-

bling with each increasing r, starting from r = b k
2
c + 1.

4. Smaller values of r imply low-cost encoding and decoding. For any given r, using

a maximum-run-length parameter k = vr, v ∈ Z
+, yields hr(k) = hr(vr) =

v
(

Rl(0,r)
1−Rl(0,r)

)

, which guarantees a certain minimum code rate.

5. Suppose one wishes to design a code with asymptotic rate ∼ ρ
ρ+1

(we use the
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notation x ∼ y to imply x “close to” y), there could be several possibilities

trading off the number of pre-processing iterations, r, for the maximum-run-

length parameter k, such that hr(k) ∼ ρ. Suitable values for ρ = 100 are

r = 3, 4, 5, 6 and k = 24, 16, 10, 6, respectively; and for ρ = 200 are r = 5, 6, 7

and k = 20, 12, 7, respectively.

7.5 Asymptotic Excess Rates

In contrast to partial pre-processing, one can also extend the pre-processing to be-

yond k iterations for any given k < ∞. This gives us the notion of sth excess rate,

which refers to the encoding rate with s > k pre-processing iterations. In short-hand

notation, the pre-processing now becomes

1)1 > 0

2)01 > 00

...

k)0k−11 > 0k

k + 1)0k1 > 0k+1

...

s)0s−11 > 0s

The main result in this section is that only very small gains, if any, are possible by

increasing the number of pre-processing iterations beyond k. The following discussion

provides the details.

As before, we denote the output of the ith iteration by xi, i = 1, 2, . . . , s. First, we

find an upper bound, Rs
u(0, k), on the asymptotic sth excess rate for the k-constraint.

Similar to the discussion in Section 7.3.1, the upper bound is found by traversing a

specific path on the binary search-tree shown in Fig. 15. The search-tree in this case

consists of 2s leaf nodes and the chosen path P is again the one that corresponds to

retaining the input sequence at each iteration. The following definitions and results
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Figure 15: Binary search-tree to determine infw
u
∗

k−1
(xs)∈Z+

l(x)
w

u
∗

k−1
(xs)

. The path

P marked in bold is the one traversed to determine an upper bound on
the asymptotic excess rate.

concerning the upper bound are all with respect to path P .

Definition 7.5 For given s, k ∈ Z
+, s > k, and path P shown in Fig. 14, the

effective count, βs
i (k), of the word 0i1, i ∈ Z

+, is the minimum number of 0k words

in xk resulting from the presence of a single 0i1 word in xs, with xs being scanned as

a concatenation of words 0t−11, t ∈ Z
+, and xk being scanned as a concatenation of

words from the set
{

u0,u1, . . . ,uk−1,u
∗
k−1

}

.

We now backtrack through the binary search-tree in a similar fashion to the dis-

cussions in Chapter 7.3. By working backward from iteration s through to iteration

k, we derive the following expression for βs
i (k). The details of this derivation are

similar to those of Lemma 7.2, and are hence omitted.

Proposition 7.6 For any s, k, i ∈ Z
+, s > k, i ≥ k, the effective count, βs

i (k) is

given by
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βs
i (k) =

(

s−1
∑

j=k

q(i, j)βj
j (k)

)

+

⌊

i

k

⌋

, (120)

where the function q(i, j) is as specified earlier in (101). We rewrite the expression

here for convenience.

q(i, j) =











max
{

0, i+1
j+1

− 2
}

when i+1
j+1

∈ Z
+

b i+1
j+1

c when i+1
j+1

/∈ Z
+.

The effective count is essentially a measure of the number of 0k words that ulti-

mately lead to the effective weight (see Definition 7.1, Section 7.3.1) number of zeros

in x1. Hence, it is a means of connecting properties of xs to an upper bound on

the asymptotic rate, via the properties of xk. This is formalized in the following

definition.

Definition 7.7 For given s, k ∈ Z
+, s > k, the function gs

i (k) is defined as two times

the ratio of the effective weight to the effective count, of the word 0i1, i ∈ Z
+, in xs,

with xs being scanned as a concatenation of words 0t−11, t ∈ Z
+. Mathematically,

gs
i (k) =

2as
i

βs
i (k)

.

Hence, rather convolutely, gs
i (k) represents the minimum number of input bits per

0k word in xk, resulting from a single 0i1 word in xs. The reader may note that the

number of 0k words in xk gives us exactly, the number of 0k words in xs because of

our choice of path P . Recall that in the path P , the input is retained as it is at each

iteration, i.e.,
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xs = xs−1 = xs−2 = . . . = x2 = x1 = x.

Thus, in order to determine the number of 0k words in xs, we had to work backward

starting from iteration s up toward iteration k.

The infimum of gs
i (k) over all i ≥ k will give us the necessary minimum input

block length l(x). Hence, an upper bound on the asymptotic sth excess rate is given

by

Rs
u(0, k) =

gs(k)

gs(k) + 1
, s > k, (121)

where gs(k) = inf i≥k g
s
i (k). If for a given k and some s > k, this infimum is greater

than f(k), then it implies that there are upper bound improvements in the asymptotic

rate by increasing the number of pre-processing iterations to s. Our aim now is to

determine the range of values of s for which such an improvement is possible. We

start with the following proposition.

Proposition 7.8 For any s, k, i ∈ Z
+, s > k, the effective weights, ak

i and as
i , satisfy

ak
i = as

i = ai
i when i ≤ k (122)

ak
i < as

i = ai
i when k < i ≤ s (123)

ak
i < as

i when i > s. (124)

The above relations follow directly from Lemma 7.2, and are useful in proving the

following result.
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Lemma 7.9 For any s, k, j ∈ Z
+, s > k, k ≤ j ≤ s − 1, the following relationship

holds

as
j

βj
j (k)

≥
f(k)

2
, (125)

where f(k) = mink≤i≤k+b(k)−1
2ak

i

b i
k
c

from Section 7.3.1.

Proof: We provide a proof by induction. When j = k, we have from Proposition

7.8 that as
j = ak

j = ak
k, and βk

k (k) = 1. Hence,
as

j

βj
j (k)

= ak
k ≥ f(k)

2
as required. Let

us now assume that the induction hypothesis is true, that is
as

j

βj
j (k)

≥ f(k)
2

, for each

j = k, k + 1, . . . , t − 1, where t < s. Our task is to show that
as

j

βj
j (k)

≥ f(k)
2

, for j = t.

This can be done using the following steps

as
t

βt
t(k)

=
at

t

βt
t(k)

(126)

=
ak

t +
(
∑t−1

l=k q(t, l)a
t
l

)

⌊

t
k

⌋

+
(
∑t−1

l=k q(t, l)β
l
l(k)

) , (127)

where (127) is obtained using (100) and (120). Now since t > l, we have from

Proposition 7.8 that at
l = al

l, for each l = k, k + 1, . . . , t − 1. Further from the

hypothesis assumption, we have that
al

l

βl
l(k)

≥ f(k)
2

, for each l = k, k + 1, . . . , t− 1. We

also know from the definition of f(k) that
ak

t

b t
kc

≥ f(k)
2

. Hence, we conclude from (127)

that
as

t

βt
t(k)

≥ f(k)
2

.

The inequality of Lemma 7.9 is useful in proving the following result, which implies

that the asymptotic excess-rate upper bound, for any s > k, is not less than the

asymptotic rate upper bound with k iterations.
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Theorem 7.10 For any s, k ∈ Z
+, s > k, let gs(k) = inf i≥k g

s
i (k). Then the follow-

ing is true

gs(k) ≥ f(k), (128)

where f(k) = inf i≥k fi(k) as specified earlier in Section 7.3.1.

Proof: Let us start with

gs(k)

2
= inf

i≥k

as
i

βs
i (k)

(129)

= inf
i≥k

(

∑s−1
j=1 q(i, j)a

s
j

)

+ i
(

∑s−1
j=k q(i, j)β

j
j (k)

)

+
⌊

i
k

⌋

, (130)

where (130) follows from (100) and (120). The numerator of (130) can be rewritten

to get

gs(k)

2
= inf

i≥k

(

∑k−1
j=1 q(i, j)a

k
j

)

+ i+
(

∑s−1
j=k q(i, j)a

s
j

)

⌊

i
k

⌋

+
(

∑s−1
j=k q(i, j)β

j
j (k)

) . (131)

Part of the numerator,
(

∑k−1
j=1 q(i, j)a

k
j

)

+i, is nothing but the expression for ak
i (refer

to equation (100)). Further, we know that for any i ≥ k

ak
i

⌊

i
k

⌋ =
fi(k)

2
≥
f(k)

2
. (132)

Hence, in order to prove the inequality of (128), it remains to be shown that
as

j

βj
j (k)

≥

f(k)
2

, for each j = k, k + 1, . . . , s − 1. However, this is exactly the result of Lemma

7.9, thus completing the proof.
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The following important corollaries can now be drawn.

Corollary 7.11 Let ik = arg mink≤i≤k+b(k)−1 fi(k) as defined in Chapter 7.3.1. If

ik = k, then Rs
u(0, k) = Ru(0, k) for all s > k.

Corollary 7.12 Rs
u(k) > Ru(k) if and only if ik > k.

The above Corollaries can be proved as follows. The upper bound on the asymp-

totic sth excess rate is given by (121). Theorem 7.10 states that gs(k) ≥ f(k),

which implies that Rs
u(0, k) ≥ Ru(0, k) for each s > k. However, for the special

case when ik = k, we see from (131) and Proposition 7.8 that gs
k(k) = fk(k), and

hence Rs
u(0, k) = Ru(0, k) as in Corollary 7.11. This leads to the important fact

that increasing the number of pre-processing iterations yields no improvements in the

asymptotic rate upper bound if ik = k. In other words, improved upper bounds may

be possible only if ik > k, as stated in the forward part of Corollary 7.12. To prove

the reverse part of Corollary 7.12, consider equation (131). We have already seen in

the proof of Theorem 7.10 that
(
∑k−1

j=1 q(i,j)ak
j )+i

b i
kc

=
ak

i

b i
kc

≥ f(k)
2

for any i ≥ k. Further

from Lemma 7.9, we have that
as

j

βj
j (k)

≥ f(k)
2

, for each j = k, k+1, . . . , s−1. Hence, for

ik > k, we not only have gs(k) ≥ f(k) as in Theorem 7.8, but also that gs(k) = f(k)

if and only if the following two conditions are simultaneously satisfied for some i ≥ k

1.
ak

i

b i
kc

= f(k)
2

2. Either q(i, j) = 0 or
as

j

βj
j (k)

= f(k)
2

, for each j = k, k + 1, . . . , s− 1,

Let the first condition be satisfied for some i = i∗. Since ik is defined to be the

minimum of all arg mink≤i≤k+b(k)−1 fi(k), we have that i∗ ≥ ik. Let us assume that

i∗ 6= 2k+1. Since ik > k, we have that q(i∗, j) (refer to (101)) is non-zero for at least

one value of j, namely j = k. For the same reason, we have that
as

j

βj
j (k)

> f(k)
2

for j = k.
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For the case when i∗ = 2k + 1, we have that q(i∗, k) = 0, but then q(i∗, k + 1) 6= 0,

and
as

j

βj
j (k)

> f(k)
2

for j = k + 1. Hence, we conclude that the above two conditions

cannot be jointly satisfied for any i ≥ k. This implies that gs(k) is strictly greater

than f(k) when ik > k, thus completing the sufficiency argument.

We now derive a result similar to Theorem 7.10, but one that is much stronger.

Theorem 7.13 implies that increasing the number of pre-processing iterations can

only, if at all, increase gs(k).

Theorem 7.13 For any given s, k ∈ Z
+, s > k, we have gs(k) ≤ gs+1(k).

Proof: Starting with (131), we can write down

gs+1(k) = inf
i≥k

ak
i +

(

∑s
j=k q(i, j)a

s+1
j

)

⌊

i
k

⌋

+
(

∑s
j=k q(i, j)β

j
j (k)

) (133)

= inf
i≥k

ak
i +

(

∑s−1
j=k q(i, j)a

s
j

)

+ q(i, s)as
s

⌊

i
k

⌋

+
(

∑s−1
j=k q(i, j)β

j
j (k)

)

+ q(i, s)βs
s(k)

. (134)

Similarly, we have that

gs(k) = inf
i≥k

as
i

βs
i (k)

(135)

= inf
i≥k

ak
i +

(

∑s−1
j=k q(i, j)a

s
j

)

⌊

i
k

⌋

+
(

∑s−1
j=k q(i, j)β

j
j (k)

) . (136)

Comparing (134) and (136), we see that proving gs(k) ≤ gs+1(k) reduces to proving

as
s

βs
s(k)

≥ gs(k). However, this follows directly from (135).

Next, we obtain the following result to help us evaluate Rs
u(0, k).
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Theorem 7.14 For any given s, k ∈ Z
+,

inf
i≥k

gs
i (k) = min

k≤i≤k+b(s)−1
gs

i (k), (137)

where b(s) denotes the LCM of positive integers upto and including s, i.e., b(s) =

LCM(1, 2, . . . , s).

Proof: The proof uses ideas similar to that of Theorem 7.2, and is hence omitted.

The following corollaries are direct consequences of Theorems 7.13 and 7.14

Corollary 7.15 If for some s > k, the minimizing index is = arg mini≥k g
s
i (k) is

not greater than s, then for each s′ > s > k, we have Rs′

u (0, k) = Rs
u(0, k) with

corresponding is′ = s.

Corollary 7.16 Rs+1
u (0, k) > Rs

u(0, k) if and only if is > s.

Corollary 7.17 For any given k, the largest asymptotic excess rate upper bound is

obtained by setting s = s∗, where is∗ ≤ s∗ and is > s for each s < s∗.

As examples, consider k = 1, 2, 3, 5, 7, 11. We note from Table 15 that ik = k in

each of these cases. Hence, increasing the number of pre-processing iterations cannot

improve upon Ru(k) values for these k. On the other hand, for a value of k = 4,

we find that i4 = 5 > k, and hence, there is scope for upper bound improvements.

Rs
u(0, k) values for k = 4 and k = 6 are listed in Table 18 and Table 19, respectively.

For corresponding lower bounds, we use Rs
l (k) = Rl(k). Improving upon the lower

bound is once again left open.
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Figure 16: The figure shows the behavior of the entire range of partial
and excess pre-processing upper bounds for values of k = 4 through 9. It
plots y ∈ {f(k), gr(k), gs(k)} as a function of the number of pre-processing
iterations. Recall that f(k) = Ru(k)/(1 − Ru(k)), g

r(k) = Rr
u(k)/(1 − Rr

u(k))
and gs(k) = Rs

u(k)/(1 −Rs
u(k)). It is seen that y tapers off after k iterations,

which confirms that very small gains, if any, are possible from excess pre-
processing.

Table 18: Summary of asymptotic excess rate computations for k = 4

s is Rs
u(0, 4)

5 5 27/28

6 5 27/28

7 5 27/28

The preceding study suggests that only marginal rate improvements, if any, are

possible with the addition of pre-processing iterations beyond k. This is confirmed

in Fig. 16, which shows y ∈ {f(k), gr(k), gs(k)} as a function of the number of pre-

processing iterations, for values of k = 4 through 9. This gives us an idea of the
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Table 19: Summary of asymptotic excess rate computations for k = 6

s is Rs
u(0, 4)

7 7 120/121

8 7 120/121

corresponding asymptotic-rate upper bound, which is nothing but y/(y+1). There is

a steep increase in y until k iterations, after which it only shows very slight increase, if

any. Hence, only very small gains are possible from excess pre-processing. Considering

the increase in pre-processing and post-processing complexity, this is probably not an

encouraging option. One would rather work with a greater maximum-run-length

parameter k, and use k iterations to get significantly more gains.

This concludes our discussion on the asymptotic (in input block length) perfor-

mance of the FRB algorithm for (0, k) constraints. We have carried out a detailed

rate analysis and computed upper and lower bounds on the asymptotic encoding

rates. We have also computed similar performance bounds for the special cases when

fewer/additional pre-processing iterations are used. In our analysis thus far, we have

allowed the input blocks to be infinitely long. Needless to say, this is impossible in

any practical system. Several practical issues including FRB encoding with finite

input-blocks are considered in Chapter 8.

Before proceeding to discuss the system issues however, we present an extension

of the fixed-rate bit stuff encoding ideas to the class of (0, G/I) constraints. Once

again, the key to generating efficient fixed-rate codes is to use iterative pre-processing

prior to bit stuffing.
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7.6 Fixed-Rate Codes: Extension to (0, G/I) Con-

straints

In Chapter 6.1, we presented a variable-rate bit stuff algorithm for (0, G/I) con-

straints, and outlined a procedure to compute its average encoding rate. It was seen

that the proposed encoding generates near-capacity codes for a wide range of values

of G and I. In what follows, we describe a fixed-rate bit stuff algorithm for (0, G/I)

constraints that is based on the variable-rate algorithm of Chapter 6.1. We restrict

ourselves to Classes 1 and 2, i.e. G even, 0 ≤ G ≤ 2I for the fixed-rate codes.

To design high-rate codes, we use iterative pre-processing similar to the (0, k) FRB

codes in Chapter 7.2. However, the pre-processing in this case applies to each of the

even and odd subsequences rather than the global sequence. The block diagram of the

fixed-rate encoder for (0, G/I) constraints, 0 < I <∞, 0 < G ≤ 2I, G even, is shown

in Fig. 17. It accepts an unconstrained binary sequence, x = (x0x1 . . . , x2m−1),

of fixed-length 2m bits and outputs a (0, G/I) sequence, y = (y0y1 . . . , yn−1), of

a fixed-length n bits. The encoding proceeds in five stages. First, the even and

odd subsequences, xe = (x0x2 . . . , x2m−2) and xo = (x1x3 . . . , x2m−1), are extracted

(DEMUX) from the input x. Each of the subsequences xe and xo, then undergoes

I iterations of pre-processing, which is shown as PP (I) in Fig. 17. The individual

pre-processing outputs ve and vo, are then interleaved bit-by-bit (MUX) to yield the

sequence v. In the fourth stage, v undergoes variable-rate bit stuffing, as discussed

in Section 6.1.1, thus producing variable-length sequences y′. Finally, the output

sequence y is formed by dummy-bit padding y′ to a fixed output-length n bits. These

dummy bits can be ignored during decoding as explained in Chapter 7.1.

The operation PP (I) is exactly the same as the iterative pre-processing in the

FRB algorithm of Chapter 7.2. The main idea once again is to repeatedly scan and

parse the input subsequence so as to identify undesirable bit stuff patterns. These

patterns then undergo a reversible, selective inversion. Once again, we use index
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Figure 17: Block diagram of the proposed fixed-rate encoder for (0, G/I)
constraints. The proposed encoding can be viewed in three stages. The
input x is first separated into even and odd subsequences, xe and xo,
each of which undergoes iterative pre-processing. The second stage is
the variable-rate bit stuff encoding as discussed in Section 6.1.1. This pro-
duces variable-length output sequences y′. Finally y′ is padded-up using
dummy-bits to a fixed output-length n bits. The pre-processing opera-
tions PP (I) involve I iterations, and are key to building efficient fixed-rate
codes.

sequences to convey the pre-processing information to the decoder. As before, these

index sequences are included in ve and vo (refer to the discussion in Chapter 7.2).

Essentially, the combination of demuxing, pre-processing and muxing in Fig. 17,

transforms the input sequence x into a sequence v, that is better conformed to bit

stuffing. This gain is possible only at the price of the index penalty. However, the

index penalty does not grow with m, thus enabling the construction of efficient fixed-

rate (0, G/I) codes.

We now formally describe the pre-processing PP (I) to make this discussion self-

contained. We remind the reader of the following notations and definitions.

Notations and Definitions

• Let

ui = 0i1, i = 0, 1, . . . , I − 1 (138)

u∗
i = 0i+1, i = 0, 1, . . . , I − 1. (139)

and u∗
i = 0i+1, i = 0, 1, . . . , I − 1. Hence, by definition, u∗

I−1 ≡ uI .
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• The weight of a binary sequence s with respect to the input word u∗
i , denoted

by wu∗

i
(s), is the number of distinct occurrences of u∗

i in s, with s being scanned

as a concatenation of words from the set {u0,u1, . . . ,ui,u
∗
i }, i = 0, 1, . . . , I− 1.

For example, if s = 100001010001, I ≥ 1 and i = 1, wu∗

1
(s) = 3.

• The weight of a binary sequence s with respect to the input word ui, denoted

by wui
(s), is the number of distinct occurrences of ui in s, with s being scanned

as a concatenation of words from the set {u0,u1, . . . ,ui,u
∗
i }, i = 0, 1, . . . , I− 1.

For example, if s = 100001010001, I ≥ 1 and i = 1, wu1(s) = 2.

• Denote by s(i), the sequence formed by converting all ui words to u∗
i words,

and all u∗
i words to ui words in s, with s being scanned as a concatenation

of words from the set {u0,u1, . . . ,ui,u
∗
i }, i = 0, 1, . . . , I − 1. For example,

if s = 100001010001, and I ≥ 1, s(1) = 101011000100. Note that s(i) is an

invertible operation.

• Denote by s1 ‖ s2, the concatenation of two sequences s1 and s2.

• Denote by αs = [α1 α2 . . . αI ] the index sequence corresponding to input

sequence s. The index bits are used to convey to the decoder whether or not

the flipping operation is performed in each of the I iterations.

Table 20: Lower bound on the asymptotic rate of fixed-rate (0, G/I) codes

G I Lower bound on RG/I

12 6 96/97

8 6 32/33

14 7 192/193

10 7 64/65

16 8 384/385

12 8 128/129

10 8 768/778
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The iterative pre-processing PP (I) is defined as follows. The input is xe/o: either

the even subsequence xe or the odd subsequence xo as appropriate.

Input xe/o

Set x0 = xe/o

For j = 1 to I

Input xj−1

Scan xj−1 as a concatenation of words from the set
{

u0,u1, . . . ,uj−1,u
∗
j−1

}

If wuj−1
(xj−1) < wu∗

j−1
(xj−1)

xj = xj−1(j − 1)

αj = 1

Else

xj = xj−1

αj = 0

end

end

ve/o = xI ‖ αxe/o

The encoding rate of the fixed-rate algorithm is given by RG/I(m) = 2m
n

. Let

us denote the asymptotic encoding rate by RG/I = limm→∞
2m
n

. The computation

of RG/I proceeds along similar lines to the discussion on fixed-rate (0, k) codes in

Chapter 7.3. Lower bounds on RG/I for some selected values of G and I are given in

Table 20.
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CHAPTER VIII

FRB CODES: INTEGRATION INTO A

DIGITAL RECORDING SYSTEM

In the previous chapter, we introduced the fixed-rate bit stuff (FRB) algorithm to

generate very high-rate (0, k) codes. We presented a detailed rate analysis, and showed

that the asymptotic (in input block length) encoding rate was very close to the average

rate of the variable-rate bit stuff code, which in turn approached capacity for values

of k ≥ 5. Thus, in theory, the FRB algorithm provides an effective means to generate

near-capacity (0, k) sequences. However, integrating the FRB codes into a practical

recording system raises several other questions. These system issues, namely the

effect of finite block-lengths, error propagation, DC suppression and implementation

complexity, are the subject of our discussions in this chapter.

8.1 Encoding Rates for Finite Block Lengths

Thus far, our primary interest has been to analyze the asymptotic encoding rate

of the FRB algorithm. Very conveniently, the effect of additional index bits could

be neglected in all asymptotic rate computations. However, such an index overhead

shows up for any finite input block length. In this section, we incorporate the rate loss

due to pre-processing index overhead, and compute the input block lengths required

to design codes with rate close to 100/101 and 200/201.

We start over from the expression in (94) for the encoding rate, R(0, k,m). For

finite m, the term β(k,m) = maxx∈Z
m
2
wu∗

k−1
(xk) is related to the asymptotic rate

lower bound, Rl(0, k), as
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Table 21: Lower bound on encoding rates for finite input block lengths with k = 9

m Lower bound on R(0, 9, m)

100 10/11

500 50/51

1000 90/91

2000 166/167

3000 230/231

4000 266/267

∞ 768/769

Table 22: Possible r,k,m values that achieve encoding rates close to 100/101

r k m

4 20 3000

5 15 2000

6 12 1500

7 14 1100

8 16 1000

Table 23: Possible r,k,m values that achieve encoding rates close to 200/201

r k m

6 18 4600

7 14 3400

8 16 2500

9 18 2300

9 9 2700

Table 24: Possible G,I,m that achieve encoding rates close to 100/101

G I m

14 7 1670

16 8 1220

12 8 4350

18 9 1150

14 9 1730

12 9 3010
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Table 25: Possible G,I,m that achieve encoding rates close to 200/201

G I m

16 8 3760

18 9 2710

16 10 3780

18 11 3110

β(k,m) ≤
⌊m(1 −Rl(0, k))

Rl(0, k)

⌋

, (140)

where Rl(0, k) is as specified in (114). For k = 1, 2, 3, 4, (140) is satisfied with equality

(see Appendix A), and we have an exact expression for R(0, k,m) in these cases. For

k ≥ 5, we obtain the following lower bound using (140), (114) and (94).

R(0, k,m) ≥
m

m+ b m
2k+1−2k−1 c + (k + 1)

(141)

Once again, we extend our computations to include partial rates, Rr(0, k,m), using

(119).

Rr(0, k,m) ≥
m

m+
⌊

m

b k
r
c
(

Rl(0,r)

1−Rl(0,r)

)

⌋

+ (r + 1)
(142)

Comparing (114), (141) and (142), one can estimate the loss in encoding rate caused

by the index overhead for finite values of m. Table 21 lists the lower bounds on

R(0, k,m) for k = 9. For comparison purposes, they are truncated to the form y
y+1

,

y ∈ Z
+. In Tables 22 and 23, we specify some possible r, k,m values that can be
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used to design fixed-rate codes with encoding rate ∼ ρ
ρ+1

for ρ = 100 and ρ = 200,

respectively. We point out that current state-of-the-art codes: rate 8/9, k = 3; rate

16/17, k = 6; and rate 64/65, k = 7, can be designed using the fixed-rate algorithm

with input block lengths m = 96 bits; m = 128 bits; and m = 704 bits, respectively.

It is straightforward to extend the above computations to the fixed-rate algorithm

for (0, G/I) constraints, which was discussed in Chapter 7.6. Tables 24 and 25 show

a set of possible G, I, m values which can be used to design fixed-rate (0, G/I) codes

with rate close to 100/101 and 200/201, respectively.

8.2 Error Propagation

The FRB algorithm generates near-capacity (0, k) codes when the encoding is per-

formed in long, input and output blocks. In Chapter 8.1, we saw that input block

lengths of a few thousand bits are required to design rate 100/101 and rate 200/201

codes for practical recording systems. However, the use of such long block codes

opens a new set of problems: that of error propagation.

Constrained

Encoder
Write

Channel bits

Read

Constrained

Decoder

Recording

Channel

ECC

DecoderEncoder

ECC bits
DecodedSource

bits

Figure 18: Block diagram of a digital recording system.

EPR4

BER1

+

AWGN

MLSD
(1 −D)(1 +D)2

(5, 15, 2040, 2064) (5, 15, 2040, 2064)
Decoder

Constrained

(255, 239)

RS encode RS decode

(255, 239)

BER2 PERsc

Constrained
Encoder

Figure 19: System model for standard concatenation using the (0, k) fixed-
rate bit stuff codes.

Let us go back to our model of the digital recording system in Fig. 1, Chapter 2.

This is redrawn in Fig. 18 for convenience. Our aim was to design the constrained
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(255, 239)

PERrc
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RS encode

(5, 15, 1888, 1912) (5, 15, 1888, 1912)

Constrained
Decoder

k = 15 short code

Encode

k = 15 short code

Decode

Constrained
Encoder

Figure 20: System model for Bliss’s reverse-concatenation using the (0, k)
fixed-rate bit stuff codes.

encoder and decoder blocks. This has been the subject of our discussions in Chapters

4, 5, 6 and 7. While coding for constraints, we have implicitly assumed that the data

written onto the recording surface can be correctly read back. In other words, for

theoretical purposes, we have made the assumption of a noise-free recording channel,

or that in the case of noisy channels, all channel bit errors are rectified by a powerful

error control code (ECC). This assumption is hardly valid in any practical communi-

cation system, and more so, in magnetic and optical storage systems that are prone

to severe intersymbol interference (ISI) and noise [28]. Thus, it is inevitable that one

or more of the channel bits will be read-out in error. The term error propagation

refers to the fact that a single channel bit error can lead to multiple bit-errors in

the decoded sequence. This effect is typical of variable-rate constrained codes, and

fixed-rate constrained codes that operate with very long blocks. Indeed, in the worst

case it is possible that a large portion of the decoded sequence is in error due to

a single channel bit error. Hence, it is important to evaluate the error propagation

performance of any constrained code design.

8.2.1 Performance under Reverse Concatenation

The configuration shown in Fig. 18 is commonly referred to as the standard concate-

nation configuration. In standard concatenation, the constrained encoder follows the
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ECC encoder. One possible solution to the error propagation problem of large block-

length constrained codes is to reverse this configuration. This is referred to as the

reverse concatenation configuration, wherein the ECC encoder now follows the con-

strained encoder. In this subsection, we study the performance of a rate ∼ 100/101

(0, k) FRB code in a magnetic recording system with reverse concatenation, and

compare the performance to that with standard concatenation.

The reverse-concatenation scheme we use is the one proposed by Bliss, and ana-

lyzed in detail by Fan and Calderbank [13]. Figs. 19 and 20 show the standard con-

catenation and reverse-concatenation configurations, respectively, that are used in our

simulations. In order to analyze the error propagation performance of the FRB codes,

we need to incorporate a model for the detection process during read-out (marked

“Read” in Fig. 18). Historically, magnetic recording systems used a peak detection

scheme [18], but current high-density recording systems use a technique referred to

as PRML [57],[9],[18], short for partial-response (PR) equalization with maximum-

likelihood (ML) sequence detection. For our purposes, the extended partial-response

Class-4 (EPR4) model, with a discrete-time transfer function of 1 + D − D2 − D3,

is used to model the ISI in the magnetic recording channel. This is appropriate for

a density ratio in the range 1.6 to 2.2 [57],[28], which represents a medium-to-high

recording density. Furthermore, we restrict ourselves to an additive white gaussian

noise (AWGN) model.

Forney [14] proved the general result that the maximum-likelihood sequence de-

tector (MLSD) for any uncoded, linear intersymbol interference channel with AWGN

comprises a whitened matched filter, whose output is sampled at the symbol rate,

followed by a Viterbi detector whose trellis structure reflects the memory of the ISI

channel. For the discrete-time EPR4 channel model, the corresponding Viterbi detec-

tor has an 8-state trellis. For more details on Viterbi detection, the reader is referred

to [44], [5].

117



1 1.5 2 2.5 3 3.5 4
10−6

10−5

10−4

10−3

10−2

10−1

100

−log
10

 (Channel BER)

P
ac

ke
t E

rr
or

 R
at

e

Standard concatenation

Reverse concatenation

Figure 21: Comparison of packet error rates between standard concate-
nation (PERsc) and reverse concatenation (PERrc). A packet is declared
to be in error if one/more bits in the packet are in error. The packet
sizes are 1912 bits for standard concatenation, and 1888 bits for reverse
concatenation. At very high channel BER (high noise), there are far too
many errors for the RS code to make any difference between PERsc and
PERrc. Reverse concatenation gains are seen from channel BER ∼ 10−2

onwards.

For the ECC, a byte-oriented RS code with bounded-distance decoding [59] capa-

ble of correcting at most 8 byte errors, is used in both the standard and reverse con-

catenation schemes. The constrained encoder is specified by parameters (r, k,m, n),

where r denotes the number of pre-processing iterations, m is the fixed input-length

in bits and n is the fixed output-length in bits. The parameter values shown in Figs.

19 and 20 generate FRB (0, k) codes with rate close to 100/101. Note that the FRB

(0, k) code construction allows flexible parameter choices that can be used to trade
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Figure 22: Channel bit error rate (BER1) vs. bit error rate at constrained
decoder output (BER2), under standard concatenation. This captures the
average effect of error propagation, as can be observed from BER2>BER1.
Since the long constrained code is based on bit stuffing with iterative
pre-processing, a single channel bit error can cause multiple constrained-
decoding errors. Indeed, in the worst scenario, an entire decoded block
can be in error due to a single channel bit error.

off encoding/decoding latency for the maximum run-length, and also to choose in-

put/output lengths that better match the byte oriented RS code - all at the cost of

very slight variations in rate (details in Chapters 7.4 and 8.1). The k = 15 short code

shown in Fig. 20 is used only for the RS parity bits, and can be constructed using

the combinatorial technique of [20], where error propagation is limited to at most one

byte. This code will be of a low rate 42/43 for k = 15. The overall encoding rates

in our simulations are 0.9264 with standard concatenation, and 0.9241 with reverse

concatenation.

The results of our simulation are shown in Figs. 21, 22 and 23. The performance
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Figure 23: Channel bit error rate (BER3) vs. RS decoder bit error rate
(BER4) with reverse-concatenation. The RS decoder corrects some of
the channel errors, and hence provides the constrained decoder with a
cleaner input, as compared with standard concatenation. Thus the chance
of constrained decoder error propagation is reduced by decreasing the
error-rate at the constrained decoder input.

improvement with reverse concatenation. is obvious from Fig. 21. It compares the

output packet error rates (marked PERsc and PERrc in Figs. 19 and 20, respectively)

of the standard and reverse concatenation configurations. The abscissa of Fig. 21

represents decreasing channel bit error rate (BER) values to the right, on a log scale.

The channel BERs are the bit error rates at the output of the MLSD. They are

marked as BER1 in Fig. 19 for standard concatenation, and BER3 in Fig. 20 for

reverse concatenation. For our model the channel BER is independent of the input,

and we have that BER1 = BER3.

It is seen from Fig. 21 that PERrc shows a steady improvement over PERsc with

decreasing channel BER. The reverse-concatenation gains are significant at channel

120



BERs around 10−3, which are typical of real systems. The main reason for improved

PER performance with reverse concatenation is the reduced BER at the constrained

decoder input. From Fig. 19, we see that the input BER into the constrained decoder

for standard concatenation is the channel BER, namely BER1. However, with reverse

concatenation, the BER at the constrained decoder input is BER4, the BER at the

output of the RS decoder. The k = 15 short code has limited error propagation, and

hence limits the bit error rate at the RS decoder input. Thus, the RS code can now

correct some of the channel errors before constrained decoding.

When the noise power is very high, there is little difference between BER4 and

BER3 (which equals BER1), as the error rate is beyond the correction capability of the

(255, 239) RS code. Thus, there are practically no gains at channel BERs higher than

10−2 in Fig. 21. However, at lower channel BERs, the RS code corrects some of the

channel bit errors, and BER4<BER3, as seen in Fig. 23. This means that there are

now fewer erroneous bits at the constrained decoder input with reverse concatenation,

i.e., BER4<BER1, and hence there is lesser chance of error propagation with the FRB

code. With standard concatenation, the error propagation effects of the FRB code

can be seen in Fig. 22.

8.2.2 High-Rate (0, k) Codes with Reduced Error-Propagation

In this section, we describe the design of (0, k) codes that have reduced error-propagation

under the standard concatenation configuration, as compared to that of the FRB

codes. The principal ideas behind the new codes, referred to as iterative pre-processed

(IPP) codes, are as follows

• Insertion/deletion of bits can lead to large propagation of errors, and hence the

IPP codes do not use bit stuffing. Only the iterative pre-processing of FRB
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codes is retained. Thus, we do not use any variable-rate encoding or dummy-

bit padding in the design of IPP codes. As seen in Chapter 7, iterative pre-

processing is essential for generating high-rate codes. However, there is a price

to pay for the elimination of bit stuffing. There is now a limit on the maximum

allowable input block length for each maximum run-length parameter k, and

hence, for any given k, the achievable rates are lower than that of the FRB

codes. However, the IPP codes have significantly lesser error propagation.

• Iterative pre-processing is also a source of propagating errors. Hence, we pro-

cess the input data sequence only when necessary. On the other hand, the

FRB encoder performs the iterative pre-processing on every incoming data se-

quence, regardless of the fact that the input sequence may not violate the (0, k)

constraint in the first place.

The following discussion provides the code-construction details for a k = 17, rate

> 100/101 code with reduced error-propagation. In general, the IPP codes have

encoding rate close to
2k

k
2k

k
+1

for a given maximum run-length parameter k.

Let us define m(r, k) to be the maximum input block length, for which the output

of the iterative pre-processing with r iterations, has no strings of consecutive “0”s of

length greater than or equal to k+ 1. A lower bound on m(k, k− 1) can be obtained

from (114), Chapter 7.3.2, since m(k, k − 1) is related to the asymptotic rate lower

bound Rl(k) as m(k, k − 1) = Rl(k)
1−Rl(k)

− 1. Thus, we have

m(k, k − 1) ≥











1 when k = 1

2k+1 − 2k−1 − 1 when k ≥ 2.
(143)

A lower bound on m(r, k) now follows from (119), Chapter 7.4
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m(r, k) ≥

(

⌊k + 1

r

⌋

(m(r, r − 1) + 1)

)

− 1, r < k + 1 (144)

Let us consider k = 17 with r = 9 pre-processing iterations. Using (144), we

obtain m(9, 17) = 1535. Hence, we encode in input blocks of length 1535 bits. Using

9 pre-processing iterations on 1535 bits guarantees that there will be no strings of “0”s

of length greater than or equal to 18 in the pre-processed sequence. We append a “1”

bit at the end of the pre-processed sequence for merging with neighboring sequences.

With 9 pre-processing iterations, the number of index bits is r = 9. Once again, we

append a “1” bit at the end of each index sequence for merging purposes. Hence, the

rate of this code is 1535
1536+10

∼ 139/140.
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Figure 24: IPP-A1 algorithm

We have thus accomplished our first step: to design a rate> 100/101 code without

the bit insertions/deletions of bit stuffing. In doing so, we only used the iterative pre-

processing stage of the FRB codes. Next, we formally write down the IPP encoding

algorithm, and then proceed to study its error-propagation characteristics.
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Figure 25: IPP-A2 algorithm

Encoding Algorithm IPP-A1:

Input x

Set x0 = x

For j = 1 to r

Input xj−1

Scan xj−1 as a concatenation of words from the set
{

u0,u1, . . . ,uj−1,u
∗
j−1

}

If wuj−1
(xj−1) < wu∗

j−1
(xj−1)

xj = xj−1(j − 1)

αj = 1

Else

xj = xj−1

αj = 0

end

end

Pre-processed sequence is xr ‖ 1
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Index sequence is αx = (α1 α2 . . . αr 1)

Encoded sequence is xr ‖ 1 ‖ αx.

Let us now evaluate the error-propagation characteristics of the IPP-A1 codes.

We plot the error distribution histogram1 that shows the distribution of the number

of data bit errors due a single channel bit error. A good histogram has a heavy

concentration of single data bit errors.
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Figure 26: Error distribution due to a certain input sequence with algo-
rithm IPP-A2.

As seen from Fig. 24, the error propagation of IPP-A1 codes is rather high, even

though it does not have the insertion/deletion errors of the FRB codes. Hence, we

define the following improved algorithm, IPP-A2.

Encoding Algorithm IPP-A2:

Input x;

If x does not violate the (0, k) constraint

xr = x

1The author is grateful to Alexander V. Kuznetsov for his suggestions in this regard.
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Figure 27: The same sequence as in Fig. 26 has reduced error propagation
with algorithm IPP-A3.

α = (0 0 . . . 0 1)

Else

Set x0 = x

For j = 1 to r

Input xj−1

Scan xj−1 as a concatenation of words from the set
{

u0,u1, . . . ,uj−1,u
∗
j−1

}

If wuj−1
(xj−1) < wu∗

j−1
(xj−1)

xj = xj−1(j − 1)

αj = 1

Else

xj = xj−1

αj = 0

end

end

Pre-processed sequence is xr ‖ 1
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Index sequence is αx = (α1 α2 . . . αr 1)

Encoded sequence is xr ‖ 1 ‖ αx.

Essentially, the IPP-A2 algorithm improves over the IPP-A1 algorithm by pro-

cessing the incoming data block only if it violates the (0, k) constraint. In the more

probable event that the incoming data already satisfies the (0, k) constraint, the data

block is transmitted as is, along with the appropriate index sequence (r zeros ap-

pended by a “1” merge bit). The probability, P (V ), that input data block violates

the k constraint can be upper bounded using a simple union bound.

P (V ) ≤ (m− k)(1/2)k+1 (145)

For m = 1535 and k = 17, the union bound evaluates to 5.791 × 10−3. Thus,

at most one in 172 input sequences undergoes the iterative pre-processing on an

average. Hence, although the worst case error-propagation is unaltered, the average

error propagation is substantially improved, as shown in Fig. 25.

A further improvement to algorithm IPP-A2 is possible. One can also check if the

flipped data block, x, satisfies the (0, k) constraint. If it does, then the sequence x is

transmitted along with the appropriate index sequence (r− 1 zeros followed by a “1”

and then appended by a “1” merge bit). Clearly, a single bit error in x is recoverable

as a single data bit error. Hence, IPP-A3 further improves the performance of IPP-

A2. This is illustrated in Figs. 26 and 27, where a certain input sequence undergoes

pre-processing with algorithm IPP-A2 (which leads to some propagation of errors),

but since x satisfies the (0, 17) constraint, it does not have to go through the rest of

the pre-processing in IPP-A3, thereby reducing error propagation.

In fact, it can be shown that in the maximum number of data bit errors due to a

single channel bit error in the encoded sequence with r pre-processing iterations for
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a maximum run-length parameter k, is given by2

E(r, k) ≤ max
x∈{2,3,...,r}

2x+ (x+ 1)
⌊ m(r, k)

bx+1
x
cm(x, x− 1)

⌋

+ 1, (146)

where m(r, k) is as specified in (144). The proof of inequality (146) is beyond our

present scope. We are more concerned with a union bound on the probability, P (E),

that the input sequence undergoes multiple pre-processing iterations with IPP-A3,

and hence, in the worst case, is liable to the worst-case error propagation as in (146).

This is given by

P (E) ≤ (m− k)(m− 2k − 1)(1/2)2k+2. (147)

For m = 1535 and k = 17, the union bound evaluates to 3.313 × 10−5. Thus, on the

average, at most one in 30179 input sequences is susceptible to the worst-case error

propagation of E(9, 17) data bits due to a single channel bit error.

The average error propagation for the IPP-A3 algorithm is shown in Fig. 28

on the left. Note the small increase in the percentage of single data bit errors, as

compared to Fig. 25. Finally, we compare the error distribution histogram of the rate

139/140, k = 17, IPP-A3 code with that of the corresponding k = 17 combinatorial

code [20] of rate 48/49, as shown in Fig. 28.

Encoding Algorithm IPP-A3:

Input x;

If x does not violate the (0, k) constraint

2It is assumed that the index bits are coded to correct single errors, as mentioned at the end of
this subsection. Indeed, if the index bits were left uncoded, then the worst case error propagation
would lead to all data bits being erroneous as a result of a single index bit error.
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Figure 28: Comparison of error propagation characteristics of algorithm
IPP-A3 and the combinatorial construction of Immink and Wijngaarden.

xr = x

α = (0 0 . . . 0 1)

Elseif

If x does not violate the (0, k) constraint

xr = x

α = (0 0 . . . 1 1)

Else

Set x0 = x

For j = 1 to r

Input xj−1

Scan xj−1 as a concatenation of words from the set
{

u0,u1, . . . ,uj−1,u
∗
j−1

}

If wuj−1
(xj−1) < wu∗

j−1
(xj−1)

xj = xj−1(j − 1)

αj = 1

Else

xj = xj−1
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αj = 0

end

end

Pre-processed sequence is xr ‖ 1

Index sequence is αx = (α1 α2 . . . αr 1)

Encoded sequence is xr ‖ 1 ‖ αx.

Further improvements over IPP-A3 may be possible by continually checking for

violations with each pre-processing iteration so that the next iteration is carried out

only if necessary. However, we found that such improvements are too small to be

interesting.
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Figure 29: Error propagation due to a single index-bit error. It is possible
that the entire data block (of length 1535 bits) is in error.

One issue we have not addressed in our discussion thus far, is that of error prop-

agation due to index-bit errors. As shown in Fig. 29, a single index-bit error can

propagate through to several data bits. From the IPP-A3 histogram in Fig. 28, the

percentage of the index-bit errors is rather small (< 0.5%), but the large number of
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resulting errors could alter performance. In such a case, we propose to additionally

encode the index bits alone, so as to correct single errors. Since we have r = 9 index

bits, by using a (13, 9) shortened Hamming/BCH code, we can correct a single index-

bit error. Once again, merge bits can be used appropriately to prevent violation of

the (0, 17) constraint. This reduces the code rate from 139/140 to 102/103.

8.3 DC Suppression
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Figure 30: PSD of the (0, 9) code-
words generated by the FRB algo-
rithm, as compared to that of the
maxentropic sequence. The two are
very similar.
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Figure 31: DC suppression of (0, 9) FRB
codes using a rate 23/24 adapted polar-
ity bit scheme.

DC suppression refers to the reduction in low-frequency code spectrum content.

Figure 8.3 shows the power spectral density (PSD) of the FRB (0, 9) codewords

as compared to the maxentropic PSD. Since the FRB algorithm generates near-

maxentropic (0, k) sequences, we see that their PSDs are similar. Specifically, there is

high DC content, which can lead to write-signal distortion in magnetic-tape systems

that use rotary-type recording heads. Another example is in optical recording, where

DC-free codes that have zero DC content are desired since servo information is stored

at the low frequencies. The use of DC-free codes also enables filtering of low-frequency
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noise arising from the wear and tear of the disk surface. Hence, DC-free codes have

been the subject of much attention in recording literature, a summary of which can

be found in [[17],Chap.10] and [18].
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Figure 32: DC suppression of (0, 9) FRB
codes using a rate 16/17 adapted polar-
ity bit scheme.
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Figure 33: DC suppression of (0, 9) FRB
codes using a rate 8/9 adapted polarity
bit scheme.

However, the design of near-capacity DC-free RLL codes: codes that satisfy both

the RLL constraints and the running digital sum (RDS) constraints is severely ham-

pered by the large number of states in the underlying finite state transition diagram

(FSTD). Here, we use a simple ad-hoc method to obtain suppression of DC content.

Figure 31 shows the DC-suppression obtained with a simple polarity bit scheme of

rate 23/24, over and above the (0, 9) FRB code. The polarity bit scheme used was

adapted from the one proposed by Bowers and Carter (see [[17],Chap.10] for a de-

scription) to incorporate the maximum run-length constraint. Specifically, we use

a window size of 46 bits and two supplementary bits: one to indicate the polarity,

and the other to limit the maximum run-length. The rate of the adapted polarity

bit scheme is hence 46/48 = 23/24. The adapted scheme increases the maximum

run-length from k to k + 1. Hence, by using an m = 2000, k = 9 FRB code in

conjunction with the polarity bit scheme, we can obtain a rate ∼ 20/21, k = 10 code
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with ∼ 6dB DC-suppression. Better low-frequency suppression can be obtained at a

reduced rate, as shown in Figs. 32 and 33. Here, the adapted polarity bit scheme is

used with reduced window sizes of 32 and 16 bits, respectively. This limits the RDS

to lower values thereby improving low-frequency suppression. A comparison of the

RDS of the FRB codes to that of a rate 16/17 DC-suppressed FRB codes is shown

in Fig. 34.
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Figure 34: Comparison of the running digital sum (RDS) of the (0, 9) FRB
codewords and the rate 16/17 DC-suppressed FRB codewords.

8.4 Implementation Complexity of the FRB al-

gorithm

The FRB algorithm generates high-rate (0, k) codes by using iterative pre-processing

followed by bit stuffing. As seen in Chapter 7, the bit stuff operations are very simple,

and only involve scanning of the pre-processed sequence, counting the run-length of

consecutive “0”s, and then inserting bits if there is an impending constraint violation.

Let us assume that the number of bit-level computations required for the counting and

bit insertion, each grows linearly with the input block length m. Then, we say that

bit stuffing requires ∼ 2m computations on the whole. This must be compared with

look-up table based encoding which requires ∼ 2m computations. In what follows, we
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discuss the implementation complexity of the iterative pre-processing, and show that

the required number of computations, once again grows only linearly in m.

xj−1

xj

N

Y

xj−1(j − 1)

xj−1

Flip

wu∗

j−1
(xj−1)wuj−1

(xj−1) <

Figure 35: Serial implementation of pre-processing iteration j. Here, the
input xj−1 is first scanned to determine if wuj−1

(xj−1) < wu∗

j−1
(xj−1), and then

the appropriate branch is taken.

xjxj−1

xj−1(j − 1)

xj−1

≤
>

wu∗

j−1
(xj−1) wu∗

j−1
(xj−1(j − 1))

xj−1

xj−1(j − 1)
Flip

Figure 36: Parallel implementation of pre-processing iteration j. Here
the decision is made after the input is processed in the upper and lower
branches.

Recall from Chapter 7 that the pre-processing involves k iterations of scanning,

parsing and selective inversion. Two possible implementations of a pre-processing

iteration are shown in Fig. 35 and 36. The block diagrams depict iteration j, with

the “Flip” block performing the selective inversion.

Fig. 35 shows a serial implementation similar to that of Fig. 12, Chapter 7.1.

Here, the input xj−1 is first scanned to determine if wuj−1
(xj−1) < wu∗

j−1
(xj−1), and

then either the upper or the lower branch is taken depending on the outcome. Let us
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compute the average number of computations and latency with such an implemen-

tation. In order to determine if wuj−1
(xj−1) < wu∗

j−1
(xj−1), the required parsing and

counting each take ∼ m computations. If the upper branch is taken, further parsing

and selective inversion, each require ∼ m computations. Thus, if the probability of

taking the upper branch is q, the average number of required computations with the

serial implementation is ∼ 2m(1 + p), still linear in m. The average latency for the

serial implementation can be similarly computed as ∼ m(1 + p), assuming that most

of the delay is incurred in scanning.

In contrast, the number of computations and latency for the parallel implementa-

tion shown in Fig. 36, are ∼ 3m and ∼ m, respectively. The difference arises because

the parallel implementation first duplicates the input, and performs the inversion op-

eration, xj−1(j−1), in the upper branch. This involves 2m computations. The lower

branch allows xj−1 to pass through as is. The decision box then picks exactly one of

xj−1(j−1) or xj−1, depending on which sequence has the least number of u∗
j−1 words.

However, the counting operations to determine if wu∗

j−1
(xj−1) > wu∗

j−1
(xj−1(j − 1))

can be done simultaneously on the upper branch, rather than scan the entire sequence

again. Hence the total number of required computations is ∼ 3m. Because of the

parallel structure, scanning is performed only once and hence the latency is lesser

than the average latency of the serial implementation.

Thus, we see that each iteration can be implemented in either serial or parallel

fashion. While the parallel implementation has lower latency, the serial implemen-

tation performs fewer computations on the average if p < 0.5. Indeed, in our sim-

ulations, we have found that p ∈ (0.3, 0.4), and hence there is a trade-off between

the latency and computations required in the serial and parallel implementations.

The entire set of k iterations can be implemented by serially cascading the individ-

ual iteration blocks. Thus, the total number of required computations (including bit

insertions) for FRB encoding is ∼ 2mk(1 + p) + 2m with serial implementation, and
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∼ 3mk + 2m with the parallel implementation. Very recently, we have devised a

completely parallel implementation of the entire set of k pre-processing iterations,

which requires ∼ 2k+1m(k + 1) computations.

8.5 Comparison with Existing Schemes

Recall that for (0, k) constraints, k ≥ 5, the capacity C(0, k) is well-approximated by

C(0, k) '
2k+2 ln 2 − 1

2k+2 ln 2
. (148)

Hence, the design of (0, k) codes with rate (n− 1)/n, for large integers n (preferably

close to 2k+2 ln 2), is of considerable theoretical interest. From a practical view-point,

the design of high-rate, fixed-rate (0, k) codes is interesting if the encoding/decoding

is simple. This motivated us to pursue the design of a fixed-rate version of the

simple, variable-rate bit stuff algorithm in Chapter 7. The resultant fixed-rate bit

stuff (FRB) codes were shown to be asymptotically very efficient, and the required

code parameters for the design of rate 100/101 and rate 200/201 (0, k) codes were

tabulated in Chapter 8.1. In the following discussion, we present a comparitive study

of the FRB algorithm with two other existing methods of designing high-rate (0, k)

codes: enumerative coding [15],[[17],Chap.6],[19], and combinatorial coding [20].

Table 26: Performance comparison: FRB vs. Enumeration vs. Combinatorial

Fixed-rate Bit Stuff Enumeration Combinatorial [20]

Encoding Rate Near-capacity Near-capacity n−1
n , n ∼ 3k

Storage − O(m2) −

Computation O(m) O(m2) O(1)

Error Propagation Yes Yes No

A summary of the performance comparison is given in Table 26. Let us first look

at the encoding rates, which are shown in greater detail in Fig. 37. The ordinate
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Figure 37: Encoding rates of enumerative, FRB and combinatorial (0, k)
codes for 4 ≤ k ≤ 8. The ordinate shows the value of x, where the encoding

rate is given by x− 1
x . Note that x may or may not be equal to the output

block length n, depending on the choice of encoding scheme.

shows the values of x, where the encoding rate is given by x−1
x

. In the case of the

combinatorial code [20], x is equal to the output block length n, which only grows

linearly with k. Indeed, for any given n, n odd, the maximum run-length of the

combinatorial code is k = 1 + bn/3c. In contrast, the maximum possible value of x

grows exponentially with k, as seen from equation (148). Figure 37 shows that the

best possible enumeration codes (taken from Table 6.4, [17]) get quite close to this

exponential scaling. The asymptotic upper and lower bounds with the FRB algorithm

are poorer than the best enumeration codes, but are in close agreement with weight

truncation based enumerative coding (taken from Table 6.5, [17]). However, both

FRB and enumerative coding achieve significantly higher encoding rates compared to

combinatorial (0, k) codes. A more detailed comparison of the FRB partial rates to
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on the partial encoding rates are shown, along with the partial encoding
rates for several finite block lengths m. Clearly, higher encoding rates are
achievable using the FRB algorithm.

that of the combinatorial code is shown in Fig. 38.

One advantage that the combinatorial code does have over the others, is that of

simpler implementation. At most eight bits need to be altered during the encoding,

regardless of the input block length. Moreover, a single channel bit error propagates

through to at most one data byte during decoding. In contrast, FRB and enumeration

codes are prone to error propagation effects, whereby several data bits can be in error

due to a single channel bit error. One possible solution is offered by the IPP codes,

which were discussed in Chapter 8.2. The IPP codes have lower encoding rates
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compared to the the FRB codes, but they have reduced error propagation.

Finally, we compare the implementation complexities of enumerative coding and

the FRB algorithm. Enumeration is based on computations using pre-stored weight-

ing coefficients, and hence there is a storage cost involved. For a desired input block

length m, a fixed-point representation of the weights requires storage of O(m2). This

can be reduced to O(m logm) using a floating-point representation. In the case of

FRB codes, there are no such pre-computational storage requirements. Furthermore,

we have already seen in Chapter 8.4 that the number of computations required to ex-

ecute the FRB algorithm is O(m), i.e., grows only linearly with input block length m.

On the other hand, enumerative coding using fixed-point arithmetic requires O(m2)

computations, which can be prohibitive for large m required in the design of very

high-rate codes.

139



CHAPTER IX

CONCLUSIONS AND FUTURE RESEARCH

9.1 Conclusions

Despite its long history, the design of near-capacity run-length-limited (RLL) codes

continues to merit significant attention. Even small improvements (1-2%) in the

encoding rate are much sought after in today’s digital recording systems. Rather

than directly increase the storage density, such small rate increments are beneficial

in improving manufacturing tolerances and system margins. As an example of this,

current industry-standard (0, k) codes used in magnetic recording systems are of rate

8/9, 16/17 and 64/65; and there is considerable effort being expended to design rate

100/101 and rate 200/201 codes, which is only a 1% increase in rate and density,

but can substantially impact the cost and performance of a manufactured disk drive.

Thus, there continues to be a need for low-complexity algorithms that achieve higher

encoding rates. Furthermore, there is the purely theoretical interest of achieving the

constraint capacity.

These factors motivated us to pursue the design of new capacity-approaching

coding methods in this research. The proposed algorithms are based on a very simple

technique called bit stuffing. Building on the existing bit stuff [6] and bit flipping

[3] algorithms for (d, k) constraints, we introduced the symbol sliding algorithm in

Chapter 4. Symbol sliding is a variable-rate encoding algorithm that achieves capacity

for (d, 2d+1), (d,∞), (d, d+1), and (2, 4) constraints, and comes very close to capacity

for all other values of d and k. In Chapter 5, we introduced another variable-rate

code construction based on interleaving, which was capacity-achieving for all (d, k)

constraints with k−d+1 not prime. We also discussed a new, near-capacity bit stuff
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algorithm for (0, G/I) constraints, and presented capacity-achieving, variable-rate

encoding algorithms for asymmetrical run-length constraints and multiple-spacing

(d, k) constraints in Chapter 6.

While the aforementioned variable-rate codes are capacity-approaching, they are

of limited practical use in current digital recording systems, which require fixed-rate

encoding. In Chapter 7, we derived a fixed-rate version of the variable-rate bit stuff

algorithm for the special class of (0, k) constraints. To the best of our knowledge, this

is the first attempt at creating a fixed-rate code using bit stuffing. To achieve high

encoding rates, the proposed fixed-rate bit stuff (FRB) algorithm used k iterations

of pre-processing prior to bit stuffing. The iterative pre-processing ideas were also

extended to build fixed-rate (0, G/I) codes in Chapter 7.6.

We presented a detailed rate analysis of the FRB algorithm in Chapter 7.3, and

computed upper and lower bounds on the asymptotic (in input block length) encoding

rate. Our results suggest that near-capacity (0, k) codes can be constructed using

the FRB algorithm, by encoding in very long, fixed-length input and output blocks.

In Chapter 8.1, we listed the FRB code parameters required for the design of rate

100/101 and rate 200/201 (0, k) codes.

Two important existing methods to generate (0, k) sequences use enumerative

[[17],Chap.6],[19], and combinatorial [20],[60] encoding. The FRB encoding/decoding

is simpler than enumeration, while achieving (asymptotically) similarly high encoding

rates. The FRB encoding rates are also far greater than that of the combinatorial

construction of Immink and Wijngaarden [20], at the cost of slightly higher encod-

ing/decoding complexity.

Thus, in theory, the FRB algorithm provides an effective means to generate very

high-rate (0, k) sequences. However, there are several practical issues to be addressed

while incorporating the FRB codes into a recording system. For large values of k,
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running k pre-processing iterations could lead to excessive encoding delay. This mo-

tivated us to study the encoding rates with partial pre-processing in Chapter 7.4.

Encoding in very long input and output blocks also raises the possibility of error

propagation. With this in mind, we studied the performance of FRB codes under

reverse concatenation using a simple magnetic recording channel model. We also

described in Chapter 8.2, the construction of a rate 102/103, (0, 17) iterative pre-

processed (IPP) code, which trades off encoding rate for reduced error propagation.

In general, the IPP codes have lower encoding rates (∼
2k

k
2k

k
+1

) as compared to the FRB

codes (asymptotically ∼ 2k

2k+1
), but they have reduced error propagation. Finally, in

Chapters 8.4 and 8.5, we discussed the implementation complexity of the FRB algo-

rithm, and presented performance comparisons with enumerative and combinatorial

encoding.

9.2 Future Research

The symbol sliding and interleaving algorithms, presented in Chapters 4 and 5, both

rely on a phrase interpretation of (d, k) sequences. A similar phrase interpretation

applies to several other RLL constraints, in which case we can find extensions of

the proposed algorithms. Specifically, we presented extensions of the interleaving

construction to asymmetrical run-length constraints and multiple-spacing (d, k) con-

straints in Chapter 6. Another example of a constraint that admits a phrase inter-

pretation is the M -ary (d, k) or (M,d, k) constraint [33],[34],[35],[36],[32], M > 2.

It would be interesting to explore the applicability of symbol sliding and interleav-

ing algorithms for (M,d, k) constraints. Since symbol sliding derives its optimality

property from a capacity equality, determining (M,d, k) capacity equivalences [48]

becomes an important sub-problem.

We also note that the optimality of the symbol sliding and interleaving algorithms

have different origins. Symbol sliding is optimal for (d, 2d+1) constraints only because
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of the binary capacity equality C(d, 2d+1) = C(d+1,∞), and the fact that bit stuffing

on a biased bit stream achieves (d + 1,∞) capacity. With interleaving, the proof of

optimality lies in the factorization of characteristic (d, k) polynomials. Hence, with

the two different origins of optimality, we believe that further improvements might be

possible with a combination of symbol sliding and interleaving. Interestingly, a very

recent work by Aviran et al. [4] has already built upon symbol sliding, by considering

other input word-parsing assignments rather than just the bit stuff word-parsing.

Bit stuffing, symbol sliding and interleaving code constructions, all rely on a dis-

tribution transformer (DT) to generate the biased bit sequence. In prior work, arith-

metic coding has been considered as a means of implementing such a distribution

conversion [23],[45],[31],[58],[2],[41]. However, in the context of bit stuffing, precise

implementation algorithms for finite block length DTs, along with computation of

the resulting encoding rates could be quite insightful. The design and analysis of

fixed-rate DTs is also potentially valuable.

The fixed-rate bit stuff (FRB) algorithm, presented in Chapter 7 enables the

construction of very high-rate (0, k) codes by using a cascade of pre-processing and bit

stuffing. The pre-processing involves k iterations, which were assumed to be executed

serially. An equivalent parallel structure conducive to hardware implementation could

be of considerable interest.

A potential weak link in the performance of the FRB codes lies in error prop-

agation. Thus, further analysis on the error propagation of iterative pre-processed

(IPP) codes is important. More significantly, we had used a rather simple model of

the magnetic recording channel in our simulations in Chapter 8.2. For high-density

recording, more accurate channel models incorporate a signal-dependent media noise

component [28]. The performance of FRB and IPP codes under these models remains

to be studied.

The design of very high-rate constrained codes that admit iterative, soft-decision
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decoding [5],[44] could be quite valuable. Thus, the design of combined error control

and constrained codes is of considerable interest.

Finally, we mention that the iterative pre-processing technique could be extended

to other RLL constraints. Specifically, for (0, G/I) constraints, we showed in Chapter

7.6 that using iterative pre-processing on each of the even and odd subsequences can

lead to very high-rate codes. Further research needs to be carried out to determine the

appropriate pre-processing structure for other important constraints like maximum-

transition-run (MTR) constraints, (1, k), (2, k) constraints and in general, constraints

that prohibit specific difference sequences [37].
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APPENDIX A

PROPERTIES OF θ(k,m)

For a given maximum-run-length parameter k <∞, the function θ(k,m) is given by

θ(k,m) =
m

β(k,m)
, m ≥ m0 (149)

where β(k,m) = maxx∈Z
m
2

{

wu∗

k−1
(xk)

}

, and m0 is the smallest positive integer such

that β(k,m) > 0, for all m ≥ m0.

First, we note that β(k,m) is a non-decreasing function of m. Let us define

x′ = arg maxx∈Z
m
2
wu∗

k−1
(xk). While x′ may not be unique, it can be seen there exists

at least one x′ such that wu∗

k−1
(1 ‖ x′) = β(k,m) for any given k and m. Here, the

sequence 1 ‖ x′ is of length m+ 1 bits. Thus, β(k,m+ 1) = maxx∈Z
m+1
2

wu∗

k−1
(xk) ≥

β(k,m), which proves the monotonicity of β(k,m). Furthermore, β(k,m) is un-

bounded, that is, β(k,m) → ∞ as m→ ∞.

Although β(k,m) is monotonic, the function θ(k,m) = m/β(k,m) need not be

monotonic in general. To see this, consider the sequence {θ(k,m)}∞m=m0
. Let us define

Sj = {m : β(k,m) = j + 1} and mj = min{Sj}, for all non-negative integers j. This

is illustrated in Fig. 39. Essentially, we are partitioning the entire range of values of

block length m ≥ m0, into several bins, each bin corresponding to a unique value of

the function β(.).

The size of bin j + 1 is |Sj|, which gives us the increase in block length that is

necessary for a corresponding increment in β(.) from j + 1 to j + 2. For each j, the

bin-size |Sj| is finite, and can be bounded as k ≤ |Sj| ≤ 2k+1 − 2. The lower bound
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Figure 39: Since the function β(k,m) is non-decreasing, we can partition
the entire range of input block lengths m, into bins as shown above. Each
bin is associated with a unique value of β(.).

is obtained from plain bit stuffing. Since every u∗
k−1 word is of length k bits, we

have that |Sj| ≥ k. The upper bound follows from variable-rate bit stuffing, which

represents the best one can do with the fixed-rate code. From (86) we have that

|Sj| ≤ 2k+1 − 2.

Fig. 39 helps us understand the properties of the function θ(k,m) = m
β(k,m)

.

θ(k,m) attains local minimum values at m = mj, and then follows a linear increase

from m = mj up until m = mj+1 − 1, which is a point of local maximum, before

dropping down again at m = mj+1. This gives θ(k,m) a resemblance to a saw-

toothed waveform. Since |Sj| is bounded above, the “saw-teeth” become flatter with

increasing j. Our aim now is to study the convergence of θ(k,m).

First consider the case when k = 1. By definition, mj is the smallest block length

m, such that β(1,m) = j + 1. This means that the sequence x1 has j + 1 “0”s. In

such a case, the iterative pre-processing ensures that there are also at least j+1 “1”s

in x1. Hence, mj = 2(j + 1), and |Sj| = 2. This implies that β(1,m) = bm
2
c, and

hence θ(1,m) = m
bm

2
c

converges as m→ ∞.

Next, we consider k = 2. By backtracking through pre-processing iteration 2, we
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find that the sequence x1 contains at least three “0” bits for every 02 word in x2 (with

x2 being scanned as a concatenation of words {1, 01, 02}). Further, from the previous

discussion on k = 1, we know that x1 has at least one “1” bit for every “0” bit.

Together, these imply that mj ≥ 6(j + 1). Now, consider the pre-processed sequence

x∗
2 = (021101)j+1, which is of length 6(j + 1) bits and contains (j + 1) 02 words (with

x∗
2 being scanned as a concatenation of words {1, 01, 02}). It can be verified that x∗

2

is indeed a valid sequence, i.e., it satisfies the required conditions in both iterations.

This proves that mj ≤ 6(j+1). Hence, we conclude that mj = 6(j+1), and |Sj| = 6.

It follows that β(2,m) = bm
6
c, and θ(2,m) = m

bm
6
c

converges as m→ ∞.

Similar arguments can be used for k = 3, with x∗
3 = (1303102101)j+1, and for k = 4

with x∗
4 = (17051031021(01)2)j+1. Hence, β(3,m) = bm

12
c, and β(4,m) = bm

24
c, thus

proving the convergence of both θ(3,m) and θ(4,m), as m→ ∞. Unfortunately, such

an analysis is hard to extend to higher values of k, as it relies on finding an appropriate

pre-processed sequence x∗
k. However, the above discussion gives us reason to believe

that θ(k,m) is in general well-behaved, and converges for all values of k.

Assuming that limm→∞ θ(k,m) exists, we now show that this limit is equal to

infw
u
∗

k−1
(xk)∈Z+

l(x)
w

u
∗

k−1
(xk)

, where Z
+ denotes the set of all positive integers and l(x) de-

notes the length of sequence x. Consider the subsequence, {ψ(k, j)}∞j=1, of {θ(k,m)}∞m=m0(k)

defined by the local minimum points as follows

ψ(k, j) = θ(k,mj−1).

Then, the following relation holds

ψ(k, j) = inf
t∈Tj

ψ(k, t), (150)
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where Tj = {t : j
t
∈ Z

+}. Essentially, (150) is a formulation of the fact that a sequence

xk with j u∗
k−1 words can be constructed by concatenating j/t shorter xk sequences

each with t u∗
k−1 words. The desired relation can now be obtained using the following

steps

lim
m→∞

θ(k,m) = lim
j→∞

ψ(k, j)

= lim
j→∞

inf
t∈Tj

ψ(k, t)

= inf
w

u
∗

k−1
(xk)∈Z+

l(x)

wu∗

k−1
(xk)

.
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