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SUMMARY

The highly flexible HALE (High Altitude Long Endurance) aircraft analysis method-

ology is of interest because early studies indicated that HALE aircraft might have different

vibration and aeroelastic characteristics from those of conventional aircraft.

Recently the computer code Nonlinear Aeroelastic Trim And Stability of HALE Aircraft

(NATASHA) was developed under NASA sponsorship. NATASHA can predict the flight

dynamics and aeroelastic behavior for HALE aircraft with a flying wing configuration.

Further analysis improvements for NATASHA were required to extend its capability to the

ground vibration test (GVT) environment and to both GVT and aeroelastic behavior of

HALE aircraft with other configurations.

First, the analysis methodology, based on geometrically exact fully intrinsic beam theory,

was extended to treat other aircraft configurations. Conventional aircraft with flexible

fuselage and tail can now be modeled by treating the aircraft as an assembly of beam

elements. NATASHA is now applicable to any aircraft configuration that can be modeled

this way. The intrinsic beam formulation, which is a fundamental structural modeling

approach, is now capable of being applying to a structure consisting of multiple beams by

relating the virtual displacements and rotations at points where two or more beam elements

are connected to each other. Additional aspects are also considered in the analysis such as

auxiliary elevator input in the horizontal tail and fuselage aerodynamics.

Second, the modeling approach was extended to treat the GVT environment for HALE

aircraft, which have highly flexible wings. GVT has its main purpose to provide modal

characteristics for model validation. A bungee formulation was developed by the augmented

Lagrangian method and coupled to the intrinsic beam formulation for the GVT modeling.

After the coupling procedure, the whole formulation cannot be fully intrinsic because the

geometric constraint by bungee cords makes the system statically indeterminate. Displace-

ment and rotation variables need to be introduced, but only at points to which bungee cords

xv



are attached.

Third, because many HALE aircraft are propeller driven, the structural modeling was

extended to include an engine/nacelle/propeller system using a two-degree-of-freedom model

with pitch and yaw angles. This step was undertaken to predict a dynamic instability

called “whirl flutter,” which can be exhibited in such HALE aircraft. It can investigate how

the nacelle whirling and wing motions affect each other. For simplicity, two fundamental

assumptions are made regarding the propeller aerodynamics and inertia matrix of two-

bladed propeller system. The propeller airloads are evaluated by the constant approximation

which uses the averaged values for one revolution per blade. Periodic side forces and hub

moments are evaluated based on how they affect the trim condition determined by the

constant approximation. The next assumption is for certain HALE aircraft which can use a

two-bladed propeller system. The inertia matrix appears as periodic in time in the governing

equations. If the periodic inertia effect is negligible, then the inertia matrix can be replaced

by that of equivalent three-bladed propeller system so that the stability analysis can obviate

the need for Floquet theory.

These new development have been fully integrated into the current version of NATASHA.

Finally, a parametric study for representative HALE aircraft is presented to show how the

current methodology can be utilized as a unified preliminary analysis tool for the vibration

and aeroelastic analysis of highly flexible HALE aircraft.

xvi



CHAPTER I

INTRODUCTION

HALE (High-Altitude Long-Endurance) aircraft are typically highly flexible and are being

developed for environmental science research, telecommunication relay service and military

reconnaissance missions. Among such aircraft, the solar-powered “Helios” (manufactured by

Aerovironment, Inc.) flew at an altitude of 98,000 feet, thus achieving the world’s altitude

record for propeller-driven aircraft. Such aircraft are envisioned to become “atmospheric

satellites” engaging in missions with duration of several months or even years.

One big difference between such aircraft and conventional ones is that they operate with

large wing deflections. Therefore, structural nonlinearities must be taken into consideration,

because linear theory cannot correctly explain the aeroelastic behavior. It is known that

rigid-body modes couple with low elastic modes as the wing flexibility increases for highly

flexible aircraft [61, 64]. Aeroelastic analyses for flexible aircraft show that the phugoid

mode can be mildly unstable [61] and the flight dynamic modes can be affected by lowest

elastic modes [42].

This demands that further analysis should address possible improvements in the model-

ing and design of highly flexible HALE aircraft to predict its aeroelastic behavior accurately.

Besides, the configuration of such aircraft in a trimmed flight condition might be different

from the one of Ground Vibration Testing (GVT). Therefore, the GVT processes and re-

sults should be newly understood as to how the results apply to the aeroelastic behavior of

such aircraft.

For long-term missions, some highly flexible HALE type aircraft use electric fuel cells

as a source of power to run propellers, and solar panels are charged during daylight. As a

propeller driven aircraft, it may exhibit another type of dynamic instability called “whirl

flutter.” A rotating propeller motion can be affected by large deformation of the wing (and

vice versa).

1



To relate previous works to the current work and to give a vision for future work, which

can provide unified preliminary analysis for highly flexible HALE aircraft, the literature sur-

vey is given in several parts: nonlinear aeroelastic analysis, bungee system, ground vibration

test, and whirl-flutter instability.

1.1 Nonlinear Aeroelastic Analysis

While testing a human-powered aircraft with a high aspect ratio (≈ 40), Zerweckh et al.

[68] developed a fully flexible aeroelastic model using an assumed mode approach [61] to

analyze its aeroelastic behavior and to compare the test data to pre-test analysis. Their

results concluded that the phugoid mode was mildly unstable and further studies should

consider the structural flexibility and unsteady aerodynamics to analyze the aeroelastic

behavior accurately and correctly. The study also indicated that many elastic modes are

recommended to be included in a modal model of a HALE aircraft.

Prior to this work, the effects of structural nonlinearity on modal characteristics were

investigated by Waszak and Schmidt [64]. The nonlinear equations of motion for an elastic

airplane were formulated by the Lagrangian method using strip theory aerodynamics. The

frequency responses of residualized models of different orders were compared (eliminating

higher-order aeroelastic effects). It also showed that the frequency separation between rigid-

body modes and elastic modes becomes less obvious as flexibility increases because of the

aeroelastic effect. Then this work was extended to high-fidelity simulation of flexible aircraft

using a modal based model [50].

Various numerical simulations of HALE aircraft were developed to investigate the aeroelas-

tic analysis. Hodges and co-workers investigated the nonlinear aeroelasticity and flight dy-

namics taking into account the structural geometric nonlinearity and unsteady flow. Their

results indicated that the elastic modes in low frequencies affected the phugoid mode as well

as the short-period mode [42]. They expanded it to the nonlinear aeroelastic stability analy-

sis [43] and the design of the output feedback controller to suppress flutter and alleviate gust

loads [41]. Recently, Patil and Hodges developed the computer code Nonlinear Aeroelastic

Trim and Stability of HALE Aircraft (NATASHA) [44], based on previous theoretical work
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in which governing equations are the geometrically-exact equations of motion [22] writ-

ten in their intrinsic form augmented with intrinsic kinematical equations [23]. NATASHA

predicts correctly the unusual flight dynamics behavior of certain HALE configurations [44].

Meirovitch and Tuzcu developed a unified theory of maneuvering flexible aircraft [38] and

associated time simulation [37] focusing on dynamics and control. Their formulation was

extended from a previous development of hybrid equations of motion [36], which combines

rigid-body and flexible sub-systems for modeling a satellite with elastic appendages.

Moreover, a high-fidelity nonlinear fluid dynamic model was taken to investigate the

nonlinear aeroelastic analysis. Ref. [16] applied a CFD solver for Euler/Navier-Stokes com-

putational fluid dynamic analysis to a beam finite element model. Numerical results for

both unswept and swept wing cases, with linear and nonlinear structural represenation, are

compared and discussed for the tip stall characteristics. Ref. [56] studied the HALE joined-

wing aircraft as a NASTRAN Finite Element Model coupled with an Euler/Navier-Stokes

CFD solver.

1.2 Bungee System

The fundamental dynamic model for simulation of GVT with a bungee system is quite

similar to those of other areas such as modeling of cable-suspended robots (RoboCrane)

[1, 2], marine cable [62], mooring systems [14], and cable dorms [11]. Depending on its

research purpose, a dynamic model may be formulated differently. A point mass was taken

to focus on optimal force distribution for a given trajectory of the RoboCrane [51, 52].

Roberts et al. [48] examined inverse kinematics and statics of a rigid-body model only for

the fully constrained configurations, for which no cable is in the slack condition. In ocean

engineering, a rigid cylinder was taken to represent simple model for moored breakwaters

with six rigid-body degrees of freedom [35]. A more detailed nonlinear dynamic analysis

of the cable itself also was developed as a lumped parameter system [28] and as a finite

element model [17]; analytical and experimental studies are found in Ref. [18]. However, the

main focus of the current GVT simulation is not the nonlinear dynamic analysis of cables

or ropes themselves but of the dynamical systems to which they are attached. However, for
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future work more detailed modeling of these parts might be considered as means to obtain

an improved simulation.

For GVT, stiffnesses of the bungee cords should be chosen sufficiently low to minimize

coupling between GVT rigid-body modes and the lowest frequency elastic modes. (GVT

rigid-body modes are the modes in which the beam behaves like a rigid body, such as pitch-

ing, rolling, plunging, twisting and two swing modes. See the details about GVT rigid-body

modes in Appendix A.) However, low stiffness can lead to quite large elongations. Even

though the main modeling interest is not the GVT bungee system, the nonlinear dynamic

behavior needs to be described properly. Different strain-energy functions have been mod-

eled to describe the elastic behavior in large elongation by mathematical descriptions to

match its experiment data [31, 60] and infinite sum of strain invariants [4, 25, 39]. Ref. [31]

characterizes the stress-strain curve mathematically in three particular types depending on

material characteristics. Ref. [60] uses piecewise linear approximation on stress-strain curve

for application to mooring systems with a total stretch in the range from 2% to 250%. It is

known that the strain energy function can be expressed in terms of infinite series of strain

invariants by Mooney and Rivlin [25, 39]. Ref. [4] also expressed the final form of strain

energy function in terms of strain invariants with additional parameters such as chain den-

sity, Boltzmann’s constant, and temperature. Instead of expressing strain energy function

directly in terms of strain invariants, Ogden [39] proposed that a strain energy function is a

linear combination of strain invariants defined by three principal stretches and some para-

meters to match to experimental data. The current analysis is based on the Hencky strain

energy analysis [3, 10], which showed good accuracy for moderate deformation of several

real materials [3] and good agreements with experimental data for large axial elongation

[10].

When it is not possible to provide a sufficiently low bungee stiffness, especially for large

structures, a zero-spring-suspension system [30, 59, 65] is often used to allow relatively stiff

cable for GVT by providing negative stiffness. However, the estimated prestressed load in

the zero-spring-suspension might be sensitive to imperfections caused in actual GVT. It

might not provide exactly zero stiffness.
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The proposed bungee is modeled as an extensible cord. Due to the slack condition

of bungee cords, compression is not allowed. This means that unilateral behavior of the

cable in both taut and slack conditions should be considered properly. Modeling has been

explored for the unilateral behavior of a cable in both taut and slack conditions by several

means such as zero tension [6, 12], zero stiffness [63], and by use of two possible relations

between the acceleration of wire distance variable and zero tension [40]. This suggests a

mathematically rigorous way to model the slack condition by introducing an additional

slack variable and applying it as a constraint to the system.

1.3 Ground Vibration Test

With the advent of highly flexible HALE type aircraft, the results of GVT should be under-

stood afresh in light of how those results apply to the aeroelastic behavior of such aircraft,

because the shape of the vehicle in a trimmed flight condition might be very different than

the one of GVT which is suspended from bungee cords on the ground. Ref. [61] tried to

match the deformed shape of highly flexible aircraft in GVT as close as possible to the in-

flight shape by modifying the beam bending stiffness (EI). To determine the mode shapes,

the GVT setup was done so that each wing tip was attached to wires, and the beam was

loaded with steady aerodynamic loads. (In a usual GVT, a bungee cord or other supporting

system is attached close to center of mass. For highly flexible aircraft, this choice might

lead to the opposite wing deflection of the in-flight shape configuration.)

One of possible improvements in GVT is to consider the structural nonlinearity at an

early stage of GVT. This will reduce significantly the duration of a given GVT. (GVT flow

diagram and duration for large aircraft are described in Ref. [34].) Ref. [20] summarized

several ways of detecting, identifying and characterizing nonlinearities, such as Hilbert

transform [53], homogeneity check, inverse frequency response function approach (IFRF),

and Modified Restoring Force Surface (MRFS) approach [29]. Goge et al. [21] suggested

its application to aerospace structures, which were referred to as INTL (Identification of

Nonlinearities by Time-series based Linearity plots) test strategy.

From experimental GVT analysis, the analytical model can be updated by forming a
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residual in eigenvalues and mode shapes or eigenvalues and frequency responses by com-

putational model updating (CMU) method [19]. Blakely checked the correlation between

modeshapes from pre-test analysis and the one from GVT by calculating cross-orthogonality

[8]. Ref. [9] described a model refinement technique to match both frequency responses.

Yang and Brown developed a perturbed boundary condition (PBC) model updating tech-

nique [67] and another technique which adds damping in the finite element model [66].

1.4 Whirl Flutter Instability

Whirl-flutter is another type of dynamic instability for propeller-driven aircraft. The insta-

bility was recognized as “undamped propeller whirl mode” [58] and “unstable low-frequency

reverse-rotating precession” [49]. A simple analysis model in Ref. [32] demonstrates the char-

acteristics of whirl-flutter stability. However, such a phenomenon was not likely to happen

in that era. Ref. [24] attempted to understand whirl flutter by isolating related parameters

such as pitch and yaw stiffness of the nacelle, structural damping, and propeller angular

speed after turbopropeller aircraft and unusual VTOL configurations were of interests.

Bennett and Bland [5] first attempted to understand whirl-flutter instability of rigid

engine-propeller system with the effect of wing. The analytical model was based on four

modes: two relative degrees of freedom (pitch and yaw) of power plant to the wing and two

elastic beam bending and torsion modes. In the results, certain configurations showed that

the wing stabilized whirl flutter, and wing flutter was also stabilized by the large concen-

trated mass of propeller which was located ahead of the elastic axis. The study indicated

that the wing aerodynamics is quite important to investigate the whirl-flutter stability due

to a significant coupling of wing and propeller motion. This four-mode analysis showed im-

proved agreement to experimental results than previous two mode analysis without elastic

modes [47].

In the 60’s, a new concept of tiltrotor systems, originating from the developement of the

Bell XV-3 convertiplane, was proposed to take advantages of both fixed-wing aircraft and

helicopters. The tilt-rotor mechanism has angular degrees of freedom for pitch and yaw,

which can make it prone to whirl-flutter instability. Edenborough [15] demonstrated that
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some configuration of tilt-rotor VTOL aircraft could fly avoiding “rotor-pylon instability”

at high speed after investigating major parameters such as swashplate-pylon coupling, pylon

mounting stiffness, rotor pitch-flap coupling, and wing effect.

Johnson contributed to the development of analytical models to study tilting proprotors.

In Ref. [26], a nine-degree-of-freedom model including three flapping, three lead-lag and

three elastic wing motions was developed to deal with classical whirl flutter in high inflow

axial flight. In Ref. [27] several requirements for analytical modeling of tilting proprotors

were pointed out and discussed, such as the influence of coupled flap and lag blade bending

motions, autorotation vs. powered rotation cases, rotor aerodynamics in high inflow, and

the effect of nonaxial flow which leads periodic effect to dynamic analysis.

A comprehensive analysis model was also formulated. The original University of Mary-

land Advanced Rotorcraft Code (UMARC) formulation, for a helicopter configuration, was

modified to incorporate a tiltrotor configuration with full wingspan and twin rotors [57]. Its

predictions correlate well with the flight test data and with Bell Helicopter Textron’s C81

analysis. The continued work in Ref. [54] focused on whirl-flutter stability of two-bladed

proprotor/pylon systems, which equation of motion is different from that for systems with

three or more blades because of periodic coefficients. The analytical model predicted that

the two-bladed system experienced a new type of instability at 1/rev frequency similar to

the wing torsional divergence after comparing frequency and damping characteristics of

system with two and three blades at different speeds.

Some research has also focused on lowering the whirl-flutter speed. Ref. [46] presented a

possible structural coupling in the wing to see the influence on whirl-flutter instability. The

wing coupling introduced by the proposed wing tilt angle showed that a wing coupling can

improve the stability characteristics. Ref. [33] developed a generalized predictive control

for tiltrotor aircraft. Their works resulted in a predictive toolbox in MATLAB. Several

types of controllers were addressed to improve the whirl-flutter stability by means of a wing

trailing-edge flap (wing flaperon) and rotor swashplate [55].
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CHAPTER II

FOUNDATIONAL WORK

Aeroelastic modeling of a highly flexible aircraft undergoing large deformation requires

a geometrically nonlinear structural model coupled with a consistent large motion aero-

dynamic model. The previous work builds on the development of the computer code

NATASHA [44]. NATASHA takes into account the structural nonlinearities in a novel

manner and predicts correctly the unusual flight dynamics behavior of certain HALE con-

figurations. The governing equations are geometrically exact, but they are also quite simple.

Structurally the aircraft lifting surfaces are modeled as beams undergoing large displace-

ment and rotation. The governing equations are the geometrically-exact equations of motion

from Ref. [22] written in their intrinsic form. However, instead of being augmented by kine-

matical relations therein, they are augmented by intrinsic kinematical equations, derived

in Ref. [23] by eliminating the displacement and rotational variables from the kinematical

equations of Ref. [22]. The 2-D aerodynamics is taken to evaluate the aerodynamic forces

and moments on the high-aspect-ratio wing. The unsteady effect is also included in the

analysis by using the inflow theory of Peters et al. [45].

2.1 Structural Model

2.1.1 Intrinsic Beam Formulation

The geometrically exact, intrinsic governing equations for the dynamics of a general, non-

uniform, twisted, curved, anisotropic beam, are

F ′
B + K̃BFB + fB = ṖB + Ω̃BPB

M ′
B + K̃BMB + (ẽ1 + γ̃)FB + mB = ḢB + Ω̃BHB + ṼBPB

V ′
B + K̃BVB + (ẽ1 + γ̃)ΩB = γ̇

Ω′B + K̃BΩB = κ̇

(1)
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where FB and MB are the internal force and moment measures, PB and HB are the sectional

linear and angular momenta, VB and ΩB are the velocity and angular velocity measures, γ

and κ are the force and moment strain measures, KB = kb+κ is the curvature vector and kb

is the initial twist and curvature of the beam. fB and mB include all the external forces and

moments such as gravity, aerodynamic forces and moments, and control forces and moments.

The variables in Eq. (1) such as the generalized momenta (PB and HB) and strains

(γ and κ) are secondary variables. The constitutive equation and generalized momentum-

velocity relation are needed to relate them to the primary variables. For small strain, the

constitutive equations are 



γ

κ





=




R S

ST T








FB

MB





(2)

where R, S, and T are 3 × 3 submatrices of the cross-sectional flexibility matrix. The

generalized momentum-velocity relations are




PB

HB





=




µ∆ −µξ̃

µξ̃ I








VB

ΩB





(3)

where µ is the mass per unit length, ∆ is the identity matrix, ξ is the cross-sectional mass

centroid offset, and I is the inertia matrix per unit length. Moreover, the tilde operation

(˜) is defined for a column matrix (a = ba1 a2 a3cT )

ã =




0 −a3 a2

a3 0 −a1

−a2 a1 0




(4)

2.1.2 Finite-element Discretization

A space-time discretization scheme given in Ref. [23] satisfying both space-time conservation

laws is applied to the governing equation. For arbitrary variable X in the equation, X̂n
` and

X̂n
r are the nth nodal variables defined at left and right of the node so that the discretization

can express the discontinuity such as nodal mass, nodal inertia, nodal kink, etc. The first
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derivative in space is discretized as

X ′ =
X̂n+1

` − X̂n
r

d`
(5)

Any variable X defined in an element interior corresponds to the nth element variable (Xn)

is expressed in terms of adjacent nodal variables:

X
n =

X̂n+1
` + X̂n

r

2
(6)

The nth element equations which are discretized from the Eq. (1) are

F̂n+1
l − F̂n

r

dl
+ (κ̃n + k̃n)Fn + f

n − Ṗ
n − Ω̃n

P
n = 0

M̂n+1
l − M̂n

r

dl
+ (κ̃n + k̃n)Mn + (ẽ1 + γ̃n)Fn + mn − Ḣ

n − Ω̃n
H

n − Ṽ
n
P

n = 0

V̂ n+1
l − V̂ n

r

dl
+ (κ̃n + k̃n)V n + (ẽ1 + γ̃n)Ωn − γ̇n = 0

Ω̂n+1
l − Ω̂n

r

dl
+ (κ̃n + k̃n)Ωn − κ̇n = 0

(7)

where f
n and mn include any external forces and moments applied at nth element. The

element variables (Xn) are secondary variables. So they are related to the primary nodal

variables as follows:

F
n =

F̂n+1
l + F̂n

r

2

M
n =

M̂n+1
l + M̂n

r

2

V
n =

V̂ n+1
l + V̂ n

r

2

Ωn =
Ω̂n+1

l + Ω̂n
r

2

(8)

If the beam has any discontinuity such as nodal mass, nodal force, and slope, the nodal

variables (X̂n
` and X̂n

r ) are not simply equal to each other (X̂n
` = X̂n

r ). The nodal equations

need to include all the discontinuity, so that

F̂n
r − ĈnT

lr F̂n
l + f̂n − ˙̂

Pn
r − ˜̂Ωn

r P̂n
r = 0 (9)

M̂n
r − ĈnT

lr M̂n
l + m̂n − ˙̂

Hn
r − ˜̂Ωn

r Ĥn
r − ˜̂

V n
r P̂n

r = 0 (10)
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where Ĉlr reflects the slope discontinuity, f̂n and m̂n are external forces and moments

applied at nth node, and

V̂ n
l = Ĉn

lrV̂
n
r

Ω̂n
l = Ĉn

lrΩ̂
n
r

ĝn
l = Ĉn

lrĝ
n
r

(11)

2.1.3 Gravity loads

The external force and moments in Eq. (1) include any external loads applied to the beam,

which can include aerodynamic loads, gravity, control forces, etc.

fB = faero + fcontrol + fg + · · ·

mB = maero + mcontrol + mg + · · ·
(12)

where fg = µg and mg = µξ̃g. If the gravitational force is added, the formulation needs

additional equations. A unit gravity vector g is known in the inertial frame and has column

matrix b0 0 − 1cT when expressed in inertial basis. However, the governing equations are

described in the deformed beam cross-sectional reference frame. The column matrix of the

gravity vector measures expressed in this reference frame is in time and space,

g′ + (κ̃ + k̃)g =0

ġ + Ω̃g =0
(13)

The corresponding discretized forms are

ĝn+1
l − ĝn

r

dl
+ (κ̃n + k̃n)gn

r =0

˙̂g
n

r + ˜̂Ωn
r ĝn

r =0
(14)

If the column matrix for the gravity vector measures in the cross-sectional reference frame

is known at one node, then the column matrix at other nodes and in time can be obtained

from these relations. In addition, the unit gravity vector g also should satisfy the condition

|g| = 1 (15)

This unit vector condition replaces one of Eqs. (14) at the reference node providing a

boundary condition to determine a trim condition; see Eqs. (23) below.
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2.1.4 Final Structural equations

The final structural equation expressed in finite element discretization are now presented.

The nth nodal equations are

F̂n
r − ĈnT

lr F̂n
l + f̂n

T + µ̂nĝn
r + f̂n

aero − ˙̂
Pn

r − ˜̂Ωn
r P̂n

r = 0

M̂n
r − ĈnT

lr M̂n
l + m̂n

T + µ̂n˜̂
ξnĝn

r + m̂n
aero − ˙̂

Hn
r − ˜̂Ωn

r Ĥn
r − ˜̂

V n
r P̂n

r = 0
(16)

The nth element equations are

F̂n+1
l − F̂n

r

dl
+ (κ̃n + k̃n)Fn + f

n
aero + µngn − Ṗ

n − Ω̃n
P

n = 0

M̂n+1
l − M̂n

r

dl
+ (κ̃n + k̃n)Mn + (ẽ1 + γ̃n)Fn + mn

aero + µnξ̃ngn − Ḣ
n − Ω̃n

H
n − Ṽ

n
P

n = 0

(17)

The intrinsic kinematical equations for the nth element are now

Ĉn+1
lr V̂ n+1

r − V̂ n
r

dl
+ (κ̃n + k̃n)V n + (ẽ1 + γ̃n)Ωn − γ̇n = 0

Ĉn+1
lr Ω̂n+1

r − Ω̂n
r

dl
+ (κ̃n + k̃n)Ωn − κ̇n = 0

(18)

The equation for the gravity column matrix for the nth element is

Ĉn+1
lr ĝn+1

r − ĝn
r

dl
+ (κ̃n + k̃n)gn = 0 (19)

The following equations are the secondary equations needed to complete the formulation.

The constitutive equations in the nth element are




γn

κn





=




Rn Sn

SnT
Tn








F
n

M
n





(20)

The generalized momentum-velocity relations for both elements and nodes are




P
n

H
n





=




µn∆ −µnξ̃n

µnξ̃n In








V
n

Ωn









P̂n
r

Ĥn
r





=




µ̂n∆ −µ̂n˜̂
ξn

µ̂n˜̂
ξn În








V̂ n
r

Ω̂n
r





+





0

Ĥn
engine





(21)
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The relations between nodal variables and element variable are

F
n =

F̂n+1
l + F̂n

r

2

M
n =

M̂n+1
l + M̂n

r

2

V
n =

Ĉn+1
lr V̂ n+1

r + V̂ n
r

2

Ωn =
Ĉn+1

lr Ω̂n+1
r + Ω̂n

r

2

gn =
Ĉn+1

lr ĝn+1
r + ĝn

r

2

(22)

The following boundary conditions complete the problem.

F̂ 1
l = 0

M̂1
l = 0

F̂N+1
r = 0

M̂N+1
r = 0

(e1e
T
1 + e2e

T
2 ) ˙̂g

n

r + (e1e
T
1 + e2e

T
2 )˜̂Ωn

r ĝn
r + (e3e

T
3 )|ĝn

r | = 0

(23)

where |ĝn
r | =

√
gn2

1 + gn2

2 + gn2

3 . (gn
i is the ith component in the nth gravity vector measures.)

2.2 Aerodynamic Model

A 2-D aerodynamic model is used to evaluate airloads generated by lifting or control sur-

faces, such as wings, flaps, and elevators. The column matrix of velocity vector measures in

the aerodynamic frame at the mid-chord can be expressed in terms of element variables as

V
n
a = CnT

a V
n − ỹn

mcC
nT

a Ωn

Ωn
a = CnT

a Ωn
(24)

where yn
mc is the column matrix of position vector measures from the beam reference axis

to the control point and can be written in terms of the aerodynamic center (at the quarter

chord) location as yn
mc = b0 ȳn

ac − bn

2 0cT .
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The lift, drag and pitching moment at the quarter-chord are given by:

Ln
aero = ρbnV n2

T

(
Cn

l0 + Cn
lααn + Cn

lβ
βn

)
+ ρbnV n

T V n
a2

Cn
lααn

rot cosαn

Dn
aero = ρbnV n2

T

(
Cn

d0
+ Cn

dα2
αn2

+ Cn
dβ2

βn2
)

+ ρbnV n
T V n

a2
Cn

lααn
rot sinαn

Mn
aero = 2ρbn2

V n2

T

(
Cn

m0
+ Cn

mα
αn + Cn

mβ
βn

)
− ρbn2

V n
T V n

a2
Cn

lααn
rot/2− ρbn3

V n
a2

Ωn
a1

Cn
pitch

(25)

where

V n
T =

√
V n2

a2
+ V n2

a3
(26)

αn ≈ sinαn =
−V n

a3

V n
T

(27)

αn
rot =

Ωn
a1

bn/2
V n

T

(28)

and V n
a2

and V n
a3

are the corresponding column matrix component of V
n
a in the aerodynamic

frame. βn is the flap deflection of the nth element of the wing. For the horizontal tail,

the terms associated with βn are replaced by γn which is the elevator deflection of the nth

element of the horizontal tail.

The lift, drag and pitching moment of Eqs. (25) are now resolved into aerodynamic

frame into,

fn
a =





0

−Ln
aero

V n
a3

V n
T
−Dn

aero

V n
a2

V n
T

Ln
aero

V n
a2

V n
T
−Dn

aero

V n
a3

V n
T





= ρbn





0

−(Cn
l0

+ Cn
lβ

βn)V n
T V n

a3
+ Cn

lα
V n2

a3
− (Cn

d0
+ Cn

dβ2
βn2

)V n
T V n

a2
− Cn

dα2

V n2
a3

V n
a2

V n
T

(Cn
l0

+ Cn
lβ

βn)V n
T V n

a2
− Cn

lα
V n

a2
(V n

a3
− Ωn

a1
bn/2)− (Cn

d0
+ Cn

dβ2
βn2

)V n
T V n

a3
− Cn

dα2

V n3
a3

V n
T





(29)
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mn
a =





Mn
aero

0

0





= 2ρbn2





(Cn
m0

+ Cn
mβ

βn)V n2

T − Cn
mα

V n
T V n

a3
− b(Cn

lα
/8 + Cn

pitch/2)V n
a2

Ωn
a1

0

0





(30)

The column matrices of force and moment measures in the aerodynamic frame are trans-

formed into the beam reference frame to be added as aerodynamic loads in the element

equation, Eqs. (17). Thus,

f
n
aero = Cn

a fn
a (31)

mn
aero = Cn

a mn
a + Cn

a ỹn
acf

n
a (32)

For unsteady effects, the inflow and acceleration terms are also included in the previous

quasi-steady 2-D aerodynamics. The aerodynamic force and moment can be written as:

fn
a = ρbn





0

−(Cn
l0

+ Cn
lβ

βn)V n
T V n

a3
+ Cn

lα
(V n

a3
+ λn

0 )2 − Cn
d0

V n
T V n

a2

(Cn
l0

+ Cn
lβ

βn)V n
T V n

a2
− Cn

lα
V̇a3b/2− Cn

lα
V n

a2
(V n

a3
+ λn

0 − Ωn
a1

bn/2)− Cn
d0

V n
T V n

a3





(33)

mn
a = 2ρbn2





(Cn
m0

+ Cn
mβ

βn)V n2

T − Cn
mα

V n
T V n

a3
− bn(

Cn
lα
8 +

Cn
pitch

2 )V n
a2

Ωn
a1
− Cn

lα
( bn2

32 Ω̇n
a1
− bn

8 V̇ n
a3

)

0

0





(34)
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The inflow model of Peters et al. from Ref. [45] are

[Ainflow]{ ˙λn}+
(

V n
T

bn

)
{λn} =

(
−V̇ n

a3
+

bn

2
Ω̇n

a1

)
{cinflow}

λn
0 =

1
2
{binflow}T {λn}

(35)

where λn is a column matrix of inflow states for the nth element and [Ainflow], {binflow}, and

{cinflow} are constant matrices given as

[Ainflow] = [Dinflow + dinflowbT
inflow + cinflowdT

inflow +
1
2
cinflowbT

inflow]

binflown = (−1)n−1 (N + n)!
(N − n)!

1
(n!)2

cinflown =
2
n

dinflown =
1
2

(n 6= 1)

dinflown = 0 (n = 1)

Dinflownm =
1
2
n (n = m + 1)

Dinflownm = −1
2
n (n = m− 1)

Dinflownm = 0 (n 6= m± 1)

(36)

2.3 Post-processing

The governing equations are free of displacement and rotational variables. The following

equations relate the strains and curvature, and displacement and rotation matrix between

the undeformed and deformed configuration to recover the deformed configuration:

ri
′ = Cibe1

Cbi′ = −k̃Cbi

(ri + ui)′ = CiB(γ + e1)

CBi′ = −(κ̃ + k̃)CBi

(37)

where ri is the column matrix of position vector measures to the beam reference line from

origin, Cbi is the rotation matrix of beam reference frame in undeformed configuration, ui

is the column matrix of displacement vector, and CBi is the rotation matrix of the beam

cross-sectional reference frame in the deformed configuration.
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The 1st equation in Eqs. (37) is used to recover the beam reference line in the unde-

formed configuration. The 2nd equation relates the orientation of beam reference frame

along the beam reference line in the undeformed configuration. If the force and moment

strain measures (γ and κ) are known from the solution with given initial twist and curvature

(k), then the 3rd equation shows how the beam reference line is deformed and 4th equation

provides the beam reference frame in deformed configuration.

The discretized equations of Eqs. (37) are

rn+1
i = rn

i + C
ibn

e1dl

Ĉbin+1

=

(
∆
dl

+
k̃n

2

)−1 (
∆
dl
− k̃n

2

)
Ĉbin

rn+1
i + un+1

i = rn
i + un

i + C
iBn

(γn + e1)dl

ĈBin+1

=

(
∆
dl

+
κ̃

n
+ k̃n

2

)−1 (
∆
dl
− κ̃

n
+ k̃n

2

)
ĈBin

(38)
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CHAPTER III

ANALYSIS

3.1 Multiple Beam Formulation

3.1.1 Structural Analysis

Conventional aircraft can be modeled as a multiple beam structure. For a multiple beam

configuration, the intrinsic beam formulation needs to be extended to model fuselage, hor-

izontal and vertical tails, and other structures as additional beam elements of conventional

aircraft.

Here’s a brief description on how it extends to multiple beam configurations. If two

beams are connected to each other as shown in Figure 1, they will share a node. This yields

following relation on the the virtual displacement and rotational variables in both beams:

δubeam 1 = CB1B2δubeam 2

δψbeam 1 = CB1B2δψbeam 2

(39)

where CB1B2 is the rotation matrix from B2 (reference frame of beam 2) to B1 (reference

frame of beam 1).

The nodal equations associated with the virtual displacement and rotations at the com-

mon node will be summed up as one set of nodal equations. As separate beams, the nodal

beam 1

beam 2

C
B1B2

Figure 1: Schematic of two beam configuration
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equations in beam 1 are

F̂n
r − ĈnT

lr F̂n
l + µ̂nĝn

r + f̂n
aero − ˙̂

Pn
r − ˜̂Ωn

r P̂n
r = 0

M̂n
r − ĈnT

lr M̂n
l + m̂n

T + µ̂n˜̂
ξnĝn

r + m̂n
aero − ˙̂

Hn
r − ˜̂Ωn

r Ĥn
r − ˜̂

V n
r P̂n

r = 0
(40)

For beam 2, they are

F̂m
b − ĈmT

fb F̂m
f + µ̂mĝm

b + f̂m
aero − ˙̂

Pm
b − ˜̂Ωm

b P̂m
b = 0

M̂m
b − ĈmT

fb M̂m
f + m̂m

T + µ̂m ˜̂
ξmĝm

b + m̂m
aero − ˙̂

Hm
b − ˜̂Ωm

b Ĥm
b − ˜̂

V m
b P̂m

b = 0
(41)

If two beams are connected to each other, this will reduce the separate nodal equation

as follows

F̂n
r − ĈnT

lr F̂n
l + µ̂nĝr + f̂n

aero − ˙̂
Pn

r − ˜̂Ωn
r P̂n

r + CB1B2(F̂m
b − ĈmT

fb F̂m
f ) = 0

M̂n
r − ĈnT

lr M̂n
l + µ̂n˜̂

ξnĝr + m̂n
aero − ˙̂

Hn
r − ˜̂Ωn

r Ĥn
r − ˜̂

V n
r P̂n

r + CB1B2(M̂m
b − ĈmT

fb M̂m
f ) = 0

(42)

Several terms such as µ̂mĝm
b , f̂m

aero, P̂m
b , m̂m

T , µ̂m ˜̂
ξmĝm

b , m̂m
aero, Ĥm

b in beam 2 are dropped

from the separate nodal equation because those are redundantly evaluated at the common

node by taking the beam 1 as main one. (The beam 2 is a subordinate beam.) So it

counts as only one set of governing equations (losing six nodal equations). But the lost six

equations are compensated by the continuity conditions

V̂beam 1 = CB1B2 V̂beam 2

Ω̂beam 1 = CB1B2Ω̂beam 2

(43)

Additionally, the boundary condition for the gravity vector in the previous beam formulation

at the reference node for beam2 is substituted by

ĝbeam 1 = CB1B2 ĝbeam 2 (44)

.

3.1.2 Fuselage Aerodynamics

If the multiple beam formulation is applied to the analysis of conventional aircraft, it needs

an additional aerodynamic model for the fuselage. The aerodynamic models follows the
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evaluation of Ref. [13], so that

fn
lift = ρV

n
⊥ |V n

//| 2πR
dR

ds

fn
drag =

1
2
ρ |V n| V

n2Rcdf +
1
2
ρ |V n

⊥| V
n
⊥2Rcdp

(45)

where s is the unit vector along the fuselage reference line, V
n
// = (V nT

s)s is the column

matrix of velocity vector along s, V
n
⊥ = V

n − (V nT

// s)s is the column matrix of velocity

vector perpendicular to s, and R is the fuselage radius. The cdf is comparable to the skin

friction coefficient cf and cdp is the drag coefficient of a circular cylinder. Eqs. (17) for an

element of the fuselage will now include the fuselage aerodynamic loads instead of wing

aerodynamic loads.

3.2 Modeling of Ground Vibration Testing

A GVT modeling procedure for highly flexible aircraft is developed to study the vibration

characteristics. The modeling procedure uses the intrinsic beam formulation [22, 23] because

such a flexible aircraft undergoing large deflection requires a geometrically-nonlinear struc-

tural model. A newly developed bungee formulation for modeling of GVT is incorporated

into the analysis and ultimately into NATASHA.

The GVT analysis provides a variety of helpful information before performing any ex-

perimental GVT. First, it indicates how GVT rigid-body modes are coupled to the lowest

elastic modes. Second, it can help in choosing GVT parameters (such as the stiffness and

location of bungees, shaker location, and boundary conditions due to bungees) so that the

GVT rigid-body modes are separated enough not to affect the lowest elastic mode, so that

GVT leads to a better estimate of modal characteristics (eigenmode, natural frequency

and structural damping). Otherwise, the GVT rigid-body modes will affect and disturb

the modal frequencies dominated by structural deformation for free-free boundary condi-

tions. Finally, the analysis will enable tailoring of the shape of the aircraft in the GVT

configuration so that it closely mimics that of the actual flying aircraft.
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B1

B2

B3

B

B*

Pk

Qk

n3 n2

n1O

Figure 2: Schematic of bungee connection to a node

3.2.1 Bungee Formulation

The bungee formulation is developed as a separate procedure from the intrinsic beam for-

mulation. For a simple model, a rigid body restrained by bungee cords is taken for the

formulation. Consider a node attached to a support Qk by a bungee cord modeled here as a

light, either nonlinear spring modeled from Hencky (i.e. logarithmic) strain energy analysis

[3, 10] or linear spring; compression is not allowed, so only the condition of a taut cord is

modeled. Figure 2 shows the schematic of a bungee cord connected to a node. The point

O is the origin of the inertial frame and ni is an inertial frame basis unit vector. The point

B∗ is the center of mass of the rigid body, and the point B is the origin of the reference

frame with the unit basis vector Bi.

The point Pk is taken to be the kth point in a rigid body attached to a bungee cord, and

the position vector from Qk to Pk is written as

PQkPk
= (`k + σk − ε2k)τk (46)

where `k is the natural length of the bungee cord and τ k is a unit vector along the taut

cord. The deflection in the kth spring is σk and k is the index for each bungee support; εk

is the slack variable.
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3.2.1.1 Static Formulation

The governing equations to determine the static equilibrium of a rigid body attached by N

number of bungee cords will be derived by the augmented Lagrangian method. In a static

formulation, a total potential energy is composed of three parts: elastic deformation in the

bungee cords, gravity, and the geometric constraints:

P =
N∑

k=1

1
2
Kk

[
ln(1 +

σk

`k
)
]2

+ mgn3 ·POB∗ −
N∑

k=1

FkCk1 +
N∑

k=1

µkCk2 (47)

where the logarithmic term is the Hencky strain energy analysis [3, 10].

Ck1 =`k + σk − ε2k + τ k · (POQk
−POB −PBPk

)

Ck2 =τ k · τ k − 1
(48)

where Kk is a stiffness of each bungee cord, m is the mass of the rigid body, and g is the

universal constant of gravity. Fk and µk are Lagrange multipliers. Ck1 is the geometric con-

straint and Ck2 is the constraint to enforce a unit vector. The +/− sign for the augmented

potential is chosen arbitrarily. For a linear spring, the potential energy can be modeled as
∑N

k=1
1
2Kkσ

2
k instead of

∑N
k=1

1
2Kk

[
ln(1 + σk

`k
)
]2

in the logarithmic description of Hencky

strain energy analysis.

In matrix notation, it can be written as

P =
N∑

k=1

1
2
Kk

[
ln(1 +

σk

`k
)
]2

+ mgnT
3 pOB∗ −

N∑

k=1

FkCk1 +
N∑

k=1

µkCk2

=
N∑

k=1

1
2
Kk

[
ln(1 +

σk

`k
)
]2

+ mgnT
3 (pOB − CT ξB)−

N∑

k=1

FkCk1 +
N∑

k=1

µkCk2

(49)

where pOB∗i = POB∗ · ni, τkni
= τ k · ni, pOQki

= POQk
· ni, pB∗Pki

= PB∗Pk
·Bi, pOBi =

POB · ni, pBPki
= PBPk

·Bi, ξBi = PB∗B ·Bi, and n3 = b0 0 1cT .

Taking variations of the total potential P with respect to each variable (pOB, C, σk,
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τkn , εk, Fk, µk), one obtains

δP =
N∑

k=1

Kk

ln(1 + σk
`k

)

1 + σk
`k

δσk + mgnT
3

[
δpOB − δ(CT )ξB

]

−
N∑

k=1

δFk

[
`k + σk − ε2k + τT

kn
(pOQk

− pOB − CT pBPk
)
]

−
N∑

k=1

Fk

[
δσk − 2εkδεk + δτT

kn
(pOQk

− pOB − CT pBPk
) + τT

kn
(−δpOB − δ(CT )pBPk

)
]

+
N∑

k=1

δµk(τT
kn

τkn − 1) +
N∑

k=1

µk(2τT
kn

δτkn)

=δq
T
B(

N∑

k=1

FkτkB
+ mgCn3) + δψ

T
B

[
−p̃BPk

(FkτkB
) + ξ̃BmgCn3

]
+

N∑

k=1

δσk

[
Kk

ln(1 + σk
`k

)

1 + σk
`k

− Fk

]

+
N∑

k=1

δτT
kn

[−Fk(pOQk
− pOB − CT pB∗Pk

) + 2µkτkn

]
+ δεk(Fkεk)

+
N∑

k=1

δFk

[
`k + σk − ε2k + τT

kn
(pOQk

− pOB − CT pBPk
)
]
+

N∑

k=1

δµk(τT
kn

τkn − 1)

(50)

where τkBi
= τ k · Bi, τkni

= τ k · ni, and n3 = b0 0 1cT . The detailed manipulations of

virtual displacement and rotation are as follows:

τT
kn

(δpOB) =τT
kn

(CT δqB) = (Cτkn)T δqB = τT
kB

δqB

τT
kn

δ(CT )pBPk
=τT

kn
CT C(δC)T pBPk

= τT
kn

(δCCT )T pBPk
= τT

kB
(−δ̃ψB)T pBPk

=τT
kB

δ̃ψBpBPk
= −δψB

T (p̃BPk
τkB

)

(51)

In Eq. (50), the terms in parenthesis which are associated with each virtual variation

should be zero. So one obtains the following for the force and moment equilibrium:

N∑

k=1

FkτkB
+ mgCn3 = 0

N∑

k=1

p̃BPk
(FkτkB

)− ξ̃BmgCn3 = 0

(52)

where pBPki
= PBPk

· Bi, τkB
= τ k · Bi. Additionally, six conditions from CT C = ∆

are required to determine the orientation of the rigid body because no parametrization of

rotation is introduced and C has three degree-of-freedom.
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The bungee formulation is, for k = 1, 2, . . . , N

Kk

ln(1 + σk
`k

)

1 + σk
`k

− Fk = 0

−Fk(pOQk
− pOB∗ − CT pB∗Pk

) + 2µkτkn = 0

εkFk = 0

`k + σk − ε2k + τT
kn

(pOQk
− pOB∗ − CT pB∗Pk

) = 0

τT
kn

τkn − 1 = 0

σk − ζ2
k = 0

(53)

In Eq. (53), the 3rd 4th and 6th equations are related to the slack conditions. The 6th

equation is additional equation for the slack condition of bungee cords. When a simple

spring model is needed, the 3rd and 6th equations and slack variable (εk) can be eliminated

from the bungee formulation. Comparing with the resulting governing equations in previous

works [35, 51], the one derived in the present analysis section has a much simpler compact

matrix form to avoid unnecessarily long algebraic geometric relations and thereby easing

numerical computations.

The static equilibrium is determined by Newton-Raphson method. The Jacobian matrix

in Newton-Rhapson method becomes singular if given parameters make any of the bungee

cords slack, for example, when the natural length of a bungee cord is much longer than

the elongation of other bungee cords. This can be solved by eliminating the corresponding

slack bungee cord from the whole system while checking whether the solution satisfies all

the given set of equations. Moreover, the converged solution can be simply justified by

comparing the solution with the one for the system without the slack bungee cord.

3.2.1.2 Dynamic Formulation

For the dynamic formulation, kinetic energy is added to the previous static formulation.

Kinetic energy of the system can be written as

K =
1
2
mvB∗I · vB∗I −mΩ · (vB∗I × ξ) +

1
2
Ω · I ·Ω (54)

where vB∗I is the inertial velocity of the B∗ (center of mass), I is the inertia dyadic of the

rigid body, Ω is the inertial angular velocity of the rigid body, and ξ is the position vector
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of center of mass relative to the beam reference line in the B basis. In matrix notation

K =
1
2
mVB

T VB −mΩT
BṼBξB +

1
2
ΩT

BIBΩB (55)

where VBi = vB∗I ·Bi and ΩBi = Ω ·Bi.

As in the static formulation, the potential energy can be expressed as

P =
N∑

k=1

1
2
Kk

[
ln(1 +

σk

`k
)
]2

+ mgn3 ·POB∗ (56)

So the total potential energy with augmented potentials of the constraints is

P ∗ = P −
N∑

k=1

FkCk1 +
N∑

k=1

µkCk2 (57)

with

Ck1 =`k + σk − ε2k + τT
kn

(pOQk
− pOB − CT pBPk

)

Ck2 =τT
kn

τkn − 1
(58)

Hamilton’s extended principle is

∫ tf

ti

(
δK − δP ∗ + δW

)
dt = δA (59)

where δW is the virtual work of applied load and δA is the virtual action at end of the time

interval. For simplicity, δA can be discarded for applications of Hamilton’s principle (Ref.

[22] describes the details for handling δW and δA). Thus,

∫ tf

ti

(δK − δP ∗) dt = 0 (60)

First,
∫ tf

ti

δKdt =
∫ tf

ti

[
δV T

B (mVB) + δΩT
B(IBΩB)

]
dt

=
∫ tf

ti

[
(δ̇qB + Ω̃BδqB + ṼBδψ)T (PB) + ( ˙δψB + Ω̃Bδψ)T (HB)

]
dt

=
∫ tf

ti

{
δqB

T
[
−ṖB − Ω̃BPB

]
+ δψB

T (−ḢB − Ω̃BHB − ṼBPB)
}

dt

(61)

where PB = m(VB − ξ̃BΩB) is a column matrix of linear momentum and HB = IBΩB +

mξ̃BVB is a column matrix of angular momentum, so that

∫ tf

ti

δP ∗dt =
∫ tf

ti

[
δP −

N∑

k=1

(δFkCk1 + FkδCk1) +
N∑

k=1

(δµkCk2 + µkδCk2)

]
dt (62)
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The Euler-Lagrange equations in matrix notation are

ṖB + Ω̃BPB +
N∑

k=1

FkτkB
+ mgn3B = 0

ḢB + Ω̃BHB + ṼBPB +
N∑

k=1

p̃BPk
(FkτkB

)− ξ̃BmgCn3 = 0

(63)

Additional kinematic relations are

VB = ṗOB + Ω̃BpOB (64)

and

Ω̃B = −ĊCT (65)

The bungee formulation for k = 1, 2, . . . , N is the same as the one derived for the static

case, namely

Kk

ln(1 + σk
`k

)

1 + σk
`k

− Fk = 0

−Fk(pOQk
− pOB − CT pBPk

) + 2µkτkn = 0

εkFk = 0

`k + σk − ε2k + τT
kn

(pOQk
− pOB − CT pBPk

) = 0

τT
kn

τkn − 1 = 0

σk − ζ2
k = 0

(66)

3.2.1.3 Linearization for Eigenanalysis

For eigenanalysis, the set of governing equations derived in the previous section is linearized

about a static equilibrium

X = X + X̂(t) (67)

where X is each state, X is a value of each state at a static equilibrium, and X̂ is a small

perturbation on each state.
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So a small perturbation on each variable can be expressed as

pOB∗ = pOB∗ + û

VB = V B + V̂B = V̂B

C = C + Ĉ = (∆− ˜̂
θ)C

Ω = Ω + Ω̂ = Ω̂

Fk = F k + F̂k

τkn = τkn + τ̂kn

σk = σk + σ̂k

µk = µk + µ̂k

εk = εk + ε̂k

ζk = ζk + ζ̂k

(68)

Each linearized equation is

˙̂
PB+

N∑

k=1

(F kτ̂k + τkF̂k)−mg
˜̂
θCn3 = 0

˙̂
HB+

N∑

k=1

p̃B∗Pk
(F kτ̂k + τkF̂k) = 0

V̂B = ˙̂u + ˜̂ΩpOB

˜̂ΩB =
˜̇̂
θ

(69)

For each bungee support (k = 1, 2, . . . , N),

Kk

1− ln(1 + σk
`k

)

(1 + σk
`k

)2
σ̂k − F̂k = 0

−F̂k

[
CpOQk

− pOB∗ − pB∗Pk

]
+ F k

[
û + ˜̂

θCpOQk

]
+ 2(µkτ̂kB

+ τkB
µ̂k) = 0

εkF̂k + F k ε̂k = 0

σ̂k − 2εk ε̂k − τT
kB

[
û + ˜̂

θCpOQk

]
+

[
CpOQk

− pOB∗ − pB∗Pk

]T
τ̂kB

= 0

τT
kB

τ̂kB
= 0

σ̂k − 2ζkζ̂k = 0

(70)
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These linearized equation of motion can be expressed in matrix form as A
˙̂
X = BX̂, which

is a system of first-order equations:




∆ 0 0 0 0 0 0 0 0 0

0 m∆ 0 0 0 0 0 0 0 0

0 0 ∆ 0 0 0 0 0 0 0

0 0 0 IB 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0




(12+4N)×(12+4N)





˙̂u
˙̂

VB

˙̂
θ

˙̂ΩB

˙̂
Fk

˙τ̂kB

˙̂σk

˙̂µk

˙̂εk

˙̂
ζk





=




0 ∆ 0 p̃OB 0 0 0 0 0 0

0 0 −mgC̃n3 0 −τkB
−F k∆ 0 0 0 0

0 0 0 ∆ 0 0 0 0 0 0

0 0 0 0 −p̃B∗Pk
τkB

−p̃B∗Pk
F k 0 0 0 0

0 0 0 0 −1 0 K∗
k 0 0 0

F k∆ 0 −F kp̃OQkB
0 −r 2µk∆ 0 2τkB

0 0

0 0 0 0 εk 0 0 0 F k 0

−τT
kB

0 τT
kB

p̃OQkB
0 0 r 1 0 −2εk 0

0 0 0 0 0 τT
kB

0 0 0 0

0 0 0 0 0 0 1 0 0 −2ζk








û

V̂B

θ̂

Ω̂B

F̂k

τ̂kB

σ̂k

µ̂k

ε̂k

ζ̂k





(71)

where r = CpOQk
− pOB∗ − pB∗Pk

, pOQkB
= CpOQk

, K∗
k = 1−ln(1+σk/`k)

(1+σk/`k)2
for k=1,2, . . .N),

∆ is the identity matrix and

BX̂ = AλX̂

1
λ

X̂ = B−1AX̂

A∗X̂ = λ∗X̂

(72)

Thus, the system is easily be cast as a generalized eigenvalue problem, as in the first
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Figure 3: Schematic of incorporation bungee formulation to intrinsic beam formulation

equation, or as a standard eigenvalue problem when B−1 exists, as in the third.

3.2.2 Coupling of Bungee and Intrinsic Beam Formulations

The intrinsic beam and bungee formulations are developed separately. The coupling pro-

cedures follows. The schematic is shown in Figure 3. First, the Euler-Lagrange equation,

Eqs. (63), of the bungee formulation is equivalent to the nodal equation in the intrinsic

beam formulation after finite element discretization. The additional tension by the bungee

cords (F̂k) should be included in the corresponding nodal equation of the intrinsic beam

formulation if the bungee cord is attached to the node. These corrections are given in Eqs.

(74). The next procedure is about how to arrange the variables which are associated with

the rotation: gravity vector ĝr and rotation matrix C. At the nodes where bungee cords

are attached, one can be eliminated by the other as a dummy variable. Here, however, we

will keep both variables for the purpose of the computational implementation for arbitrary

configurations. By this choice, some additional equations Eqs. (77) are needed to relate the

rotational variables of each formulation.

However, in this incorporation procedure, the whole formulation cannot be fully intrin-

sic due to the geometric constraint by introducing bungee cords, which makes the system

statically indeterminant. So it is inevitable that some variables for displacement and ro-

tation are introduced at the nodes where bungee cords are attached to the beam. This

information appears in the form of the strain-displacement relation Eq. (76).
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3.2.2.1 Static Formulation

The element equations of the intrinsic beam formulation in finite element discretization are

F̂n+1
l − F̂n

r

dl
+ (κ̃n + k̃n)Fn = 0

M̂n+1
l − M̂n

r

dl
+ (κ̃n + k̃n)Mn + (ẽ1 + γ̃n)Fn = 0

ĝn+1
l − ĝn

r

dl
+ (κ̃n + k̃n)gn = 0

(73)

where n is the index for the element of the beam.

The nodal equations will substitute the force and moment equilibrium in the bungee

formulation with the correction term involving tension in the bungee cord (Fk), so that

F̂n
r − ĈnT

lr F̂n
l + µ̂nĝr−FkτkB

= 0

M̂n
r − ĈnT

lr M̂n
l + µ̂n˜̂

ξnĝr−p̃BPk
(FkτkB

) = 0
(74)

For each bungee support (k = 1,2,. . . )

Kk

ln(1 + σk
`k

)

1 + σk
`k

− Fk = 0

−Fk(pOQk
− pOBm − CT

mpBPk
) + 2µkτkn = 0

εkFk = 0

`k + σk − ε2k + τT
kn

(pOQk
− pOBm − CT

mpBPk
) = 0

τT
kn

τkn − 1 = 0

σk − ζ2
k = 0

(75)

To combine the two formulations, the strain-displacement relation between two nodes

attached by bungee cords is needed. Thus,

CT
m+1

(
pOB∗m+1 − ae1

)
= CT

m (pOB∗m + ae1) +
J∑

j=1

C
iBj (

γj + e1

)
(76)

where m is the index for the nodes attached to bungee cords, J is the total number of

elements between two nodes attached to bungee cords, j is the index for the element between

two nodes attached to bungee cords and a is the length of a virtual rigid bungee mount

along e1. (The virtual rigid bungee mount is a rigid body that locates at arbitrary node

where the bungee cords are attached. a can be zero.)
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Additional equations to connect the two orientation variables (ĝn
r , Cm) in each scheme

are as follows:

ĝm
r = Cmb0 0 − 1cT

ĈBin+1

Cm+1
T = ∆

(77)

Eqs. (76) and (77) contain C
iBj

and ĈBim+1
. So a secondary equation is necessary, so

that

C
iBj

=
1
2

[
ĈiBj

+ ĈiBj+1
]

ĈBin+1

=

(
∆
dl

+
κ̃

n
+ k̃n

2

)−1 (
∆
dl
− κ̃

n
+ k̃n

2

)
ĈBin

(78)

To combine the orientation variables (ĝn
r , Cm) of each formulation, the detailed procedure

follows. Let’s stipulate that the 1st and 10th nodes are attached to bungee cords. (For the

general case, bungees can be applied to arbitrary nodes.) By taking the 1st node as the

reference node (m = 1), the gravity vector (ĝr) is related by the 1st equation in Eq. (77).

Moreover ĈBin = Cm by definition at 1st node (m = n = 1). The 10th node (n = 9, m = 2),

ĈBin+1
can be expressed as Cm explicitly by virtue of the Eq. (78) for a straight beam

without nodal kinks. In the 2nd equation of Eqs. (77) are actually six conditions. So only

three more conditions are selected to relate the orientation at the 10th node to Cm+1. Some

of these selections can make the Jacobian singular. For example, one of the possible choices

is A11 = 1, A12 = 0, and A23 = 0 where ĈBim+1
Cm+1

T = Aij . Generally if any other

nodes are attached by a bungee cord, six equations will be added in the formulation; three

equations from the strain-displacement relation, Eq. (76), and another three choices from

the 2nd equation in Eq. (77) to relate the orientation of additional virtual rigid bungee

mount. Finally the incorporation of procedures for the static formulation is completed with

12 boundary conditions, which are F̂ 1
l = F̂N+1

r = M̂1
l = M̂N+1

r = 0.

3.2.2.2 Dynamic Formulation

The procedure for the dynamic formulation is same as the static formulation except that it

includes the rate of change in the linear and angular momenta in the governing equation.
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The element equations of the intrinsic beam formulation are

F̂n+1
l − F̂n

r

dl
+ (κ̃n + k̃n)Fn + µngn − Ṗ

n − Ω̃n
P

n =0

M̂n+1
l − M̂n

r

dl
+ (κ̃n + k̃n)Mn + (ẽ1 + γ̃n)Fn + µnξ̃ngn − Ḣ

n − Ω̃n
H

n − Ṽ
n
P

n =0

V̂ n+1
l − V̂ n

r

dl
+ (κ̃n + k̃n)V n + (ẽ1 + γ̃n)Ωn − γ̇n =0

Ω̂n+1
l − Ω̂n

r

dl
+ (κ̃n + k̃n)Ωn − κ̇n =0

ĝn+1
l − ĝn

r

dl
+ (κ̃n + k̃n)gn =0

(79)

The equations for nodes to which bungee cords are attached are corrected as follows

F̂n
r − ĈnT

lr F̂n
l + µ̂nĝn

r − ˙̂
Pn

r − ˜̂Ωn
r P̂n

r −FkτkB
=0

M̂n
r − ĈnT

lr M̂n
l + µ̂n˜̂

ξnĝr − ˙̂
Hn

r − ˜̂Ωn
r Ĥn

r − ˜̂
V n

r P̂n
r −p̃BPk

(FkτkB
)− (̃ae1)F̂n

r − (̃ae1)F̂n
l =0

(80)

The variables V̂r and Ω̂r of the beam formulation are related to the position of the rigid

body mount at a node by kinematical relations

VB =ṗOB + Ω̃BpOB = V̂ (m)
r

Ω̃B =− ĊmCT
m = ˜̂Ω

(m)

r

(81)

Likewise the static formulation, the strain-displacement relation is

CT
m+1

(
pOB∗m+1 − ae1

)
= CT

m (pOB∗m + ae1) +
J∑

j=1

C
iBj (

γj + e1

)
dlj (82)

and the relations to connect the orientation are expressed as

ĝm
r = Cmb0 0 − 1cT

ĈBin+1

Cm+1
T = ∆

(83)
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For each bungee cord (k = 1,2,. . . )

Kk

ln(1 + σk
`k

)

1 + σk
`k

− Fk = 0

−Fk(pOQk
− pOB − CT pBPk

) + 2µkτkn = 0

εkFk = 0

`k + σk − ε2k + τT
kn

(pOQk
− pOB − CT pBPk

) = 0

τT
kn

τkn − 1 = 0

σk − ζ2
k = 0

(84)

The 12 boundary conditions complete the dynamic formulation.

3.2.2.3 Linearization for Eigenanalysis

Next, procedures for eigenanalysis involving linearization of the dynamic formulation about

a static equilibrium are considered. First,

X = Xeq + X∗(t) (85)

where X is a state, Xeq is a value of the state at a static equilibrium, and X∗ is small

perturbation on the state.

The linearized element equation from the intrinsic beam formulation are

F̂ ∗n+1
l − F̂ ∗n

r

dl
+ (κ̃n

eq + k̃n)F ∗n + κ̃∗nF
n
eq + µng∗n = Ṗ

∗n

M̂∗n+1
l − M̂∗n

r

dl
+ (κ̃n

eq + k̃n)M∗n + κ̃∗nM
n
eq + (ẽ1 + γ̃n

eq)F
∗n + γ̃∗nF

n
eq + µnξ̃ng∗n = Ḣ

∗n

V̂ ∗n+1
l − V̂ ∗n

r

dl
+ (κ̃n

eq + k̃n)V ∗n + (ẽ1 + γ̃n
eq)Ω

∗n = γ̇
∗n

Ω̂∗n+1
l − Ω̂∗nr

dl
+ (κ̃n

eq + k̃n)Ω∗n = ˙κ∗n

ĝ∗n+1
l − ĝ∗nr

dl
+ (κ̃n

eq + k̃n)g∗n + κ̃∗ngn
eq = 0

(86)

The equations for the nodes to which bungee cords are attached will be corrected as

follows:

F̂ ∗n
r − ĈnT

lr F̂ ∗n
l + µ̂nĝ∗nr − ˙̂

P ∗n
r −Fkeqτ

∗
kB
− F ∗

k τkBeq
= 0

M̂∗n
r − ĈnT

lr M̂∗n
l + µ̂n˜̂

ξnĝ∗nr − ˙
Ĥ∗n

r − p̃BPk
(Fkeqτ

∗
kB

+ F ∗
k τkBeq

)− (̃ae1)
(
F̂ ∗n

r + F̂ ∗n
l

)
= 0
(87)
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The linearized kinematical relations at the nodes to which bungee cords are attached

are

V̂ ∗m
r = u̇∗ + Ω̃∗mr pm

OBeq (88)

and

Ω̃∗mr = ˜̇
θ∗

m

(89)

One difficulty arises in the linearization of the additional equations for GVT modeling:

strain-displacement and rotational relation. It is infeasible to get an analytic expression for

the linearized equation of Eq. (82), and the three choices A11 = 1, A12 = 0, A23 = 0 in 2nd

equation of Eq. (83). So the one from the numerical perturbation on these equations with

respect to each state is substituted for the analytic counterpart, viz.,

B(82)−(83) ≈ Bnum(82)−(83) =
F(82)−(83)(Xeq + q)− F(82)−(83)(Xeq − q)

2q
(90)

where q is a numerical perturbation and

F(82)−(83) =





CT
m+1

(
pOB∗m+1 − ae1

)− CT
m (pOB∗m + ae1)−

∑J
j=1 C

iBj (
γj + e1

)
dlj

A11 − 1

A12

A23





6×1

(91)

ĝ∗mr = −θ̃∗Cm
eqb0 0 − 1cT (92)

For each bungee cord (k = 1,2,. . . ),

Kk

1− ln(1 + σk
`k

)

(1 + σk
`k

)2
σ̂k − F̂k = 0

−F̂k

[
CpOQk

− pOB∗ − pB∗Pk

]
+ F k

[
û + ˜̂

θCpOQk

]
+ 2(µkτ̂kB

+ τkB
µ̂k) = 0

εkF̂k + F k ε̂k = 0

σ̂k − 2εk ε̂k − τT
kB

[
û + ˜̂

θCpOQk

]
+

[
CpOQk

− pOB∗ − pB∗Pk

]T
τ̂kB

= 0

τT
kB

τ̂kB
= 0

σ̂k − 2ζkζ̂k = 0

(93)
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where here X̂ is perturbed state and X is equilibrium state. The 12 boundary conditions

complete the system of linearized equations.

3.2.3 GVT in Multiple Beam Configuration

The GVT modeling for conventional aircrafts can also be developed by incorporating the

multiple beam formulation into the GVT modeling. For example, let’s take a conventional

aircraft. Right and left wing tips, and the fuselage tip are attached to bungee cords for

GVT analysis. For static equilibrium, Eqs. (42) and (44) are used to connect the fuselage

to the wing, dropping all the dynamic terms such as Ω̂n
r , V̂ n

r ,
˙̂
P

n

r ,
˙̂
H

n

r . However, Eqs. (42) –

(44) will involve the eigenanalysis after linearization. Additionally, the strain-displacement

relation is used to relate the bungee cords attached to fuselage tip. One of the three bungee

cords is chosen as a reference to apply the strain-displacement relation. If the bungee cord

attached to left wing tip is taken as the reference one, two sets of strain-displacement are

required: one from the reference one to right wing tip and another from the reference to

fuselage tip.
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3.3 Engine/Propeller Modeling

Previously NATASHA has constant thrust vectors located at arbitrary nodes to provide

thrust. The main purpose of the Engine/Propeller modeling is to extend the analysis

methodology to HALE aircraft which are typically propeller-driven aircrafts by incorporat-

ing an Engine/Propeller model into NATASHA adding two new two degrees of freedom,

pitch and yaw angles.

Several assumptions are made for the methodology.

• The blades are rigid.

• The twist angle of the blade (Θtw) in Eq. (111) is set linear values from root to tip

of the blade before the computation. Then Θtw(r) is adjusted so that the angle of

attack at both root and tip are proper values which lie between −20◦ and 20◦ after

the solution converges.

• The reverse flow region that can occur close to the root is ignored.

→ After the procedure converges to a trim solution, it is necessary to check how much

of the region is under going reverse flow.

• The constant approximation of the propeller airloads is assumed by taking an average

over one revolution divided by the number of blades.

→ The effect of periodic side forces and moments is investigated in the result section.

• For simplicity, the induced velocity is ignored, which is a higher-order effect than

the perpendicular velocity component because the pylon is closely aligned to the

freestream direction. “The induced inflow will, in fact, be very small for typical

proprotor operation; this is due to the high inflow V ” [26].

• The blade element theory using 2-D aerodynamics is taken for propeller aerodynamics.

• Compressibility and tip loss are not considered.

• Pitch and yaw angle are small.
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Figure 4: Schematic of simple Engine/Propeller system

3.3.1 Structural Modeling

Figure 4 shows the schematic of simple Engine/Propeller system with rigid blades. A virtual

hinge is located at point O with pitch and yaw torsional springs attached to wing. The

point E is the center of mass of pylon and m1, h are total mass and length of pylon. The

point P is the hub center of propeller. The point B is arbitrary point of the propeller blade

with distance r from the hub center along the unit vector e3 and m2, d are total mass and

diameter of blade.

Let’s first define reference frames. i1, i2, i3 are unit basis vectors for reference frame

(Fi) in a beam cross section and a1,a2,a3 are the unit basis vectors of the reference frame

(Fa) rotated from Fi with α (pitch angle) of the pylon. Thus,




i1

i2

i3





=




1 0 0

0 cα −sα

0 sα cα








a1

a2

a3





= Cia





a1

a2

a3





(94)

b1,b2,b3 are the unit basis vectors of the reference frame (Fb) rotated from Fa with β

(yaw angle) of the pylon. Therefore,




a1

a2

a3





=




cβ −sβ 0

sβ cβ 0

0 0 1








b1

b2

b3





= Cab





b1

b2

b3





(95)
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Let e1, e2, e3 be the unit basis vectors for the reference frame (Fe) rotated from Fb with Ψ

(azimuth angle) of reference blade.





b1

b2

b3





=




cΨ 0 sΨ

0 1 0

−sΨ 0 cΨ








e1

e2

e3





= Cbe





e1

e2

e3





(96)

The analytic modeling of an Engine/Propeller system can be formulated by incorporat-

ing the additional kinetic and potential energies to current methodology. Several additional

terms will be added to the intrinsic governing equation Eq. (1). First, the kinetic and

potential energies of the Engine/Propeller system are

K =
1
2
(m1V

T
E VE + ΩT

EiEΩE) +
1
2
(m2V

T
P VP + ΩT

P iP ΩP )

P =
1
2
kαα2 +

1
2
kββ2

(97)

Here, the column matrix of the velocity vector of the pylon and propeller center of mass

(VE and VP ) and angular velocity of pylon and propeller (ΩE and ΩP ) can be expressed in

terms of the beam reference velocity variables (V, Ω) where the Engine/Propeller system

is attached.

VE = CabT
CiaT

V + Ω̃EξE

ΩE = Ω∗ + Ωαβ

(98)

where Ω∗ = CabT
CiaT Ω and Ωαβ = CabT (α̇a1) + β̇b3 which is a relative angular velocity of

the pylon with respect to the wing cross section.

With small angle assumption on α and β,

VE = (∆− Θ̃E)V +
(
Ω̃∆Θ + ˙̃ΘE

)
ξE

ΩE = (∆− Θ̃E)Ω + Θ̇E

VP = (∆− Θ̃E)V +
(
Ω̃∆Θ + ˙̃ΘE

)
ξP

ΩP = (∆− Θ̃E)Ω + Θ̇P

(99)

where ΘE = bα 0 βcT , ΘP = bα Ψ βcT , and Ω∆Θ = (∆− Θ̃E)Ω.
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Taking variations on the kinetic energy K and potential energy P to apply these to

Hamilton’s principle Eq. (60),
∫ t2

t1

δKdt

=
∫ t2

t1

(
δV T

E PE + δΩT
EHE + δV T

P PP + δΩT
P HP

)
dt

=
∫ t2

t1

[
δV T (∆ + Θ̃E)(PE + PP ) + δΩT (∆ + Θ̃E)(HE + HP + ξ̃EPE + ξ̃P PP )

]
dt

+
∫ t2

t1

−δΘE
T

[
(Ṽ + Ω̃ξ̃E)PE + Ω̃HE + (Ṽ + Ω̃ξ̃P )PP + Ω̃HP

]
dt

+
∫ t2

t1

[
δΘ̇T

E(ξ̃EPE + HE) + δΘ̇T
P (ξ̃P PP + HP )

]
dt

=
∫ t2

t1

(δ̇q
T − δq

T Ω̃− δψ
T
Ṽ )(∆ + Θ̃E)(PE + PP )dt

+
∫ t2

t1

( ˙δψ
T − δψ

T Ω̃)(∆ + Θ̃E)(HE + HP + ξ̃EPE + ξ̃P PP )dt

+
∫ t2

t1

−δΘE
T

[
(Ṽ + Ω̃ξ̃E)PE + Ω̃HE + (Ṽ + Ω̃ξ̃P )PP + Ω̃HP

]
dt

+
∫ t2

t1

[
δΘ̇T

E(ξ̃EPE + HE) + δΘ̇T
P (ξ̃P PP + HP )

]
dt

(100)

where PE = m1VE , PP = m2VP ,HE = iEΩE and HP = iP ΩP .

∫ t2

t1

δPdt =
∫ t2

t1

(kααδα + kββδβ)dt (101)

The detailed virtual variation on the variables are as follows:

δV T
E =

{
−δ̃ΘEV + (∆− Θ̃E)δV +

[
−˜̃δΘEΩ + δ̃Ω∆Θ + ˙̃

δΘE

]
ξE

}T

= −δΘE
T (Ṽ + Ω̃ξ̃E) + δV T (∆ + Θ̃E) + δΩT (∆ + Θ̃E)ξ̃E + ˙δΘE

T
ξ̃E

δΩT
E = −δΘE

T Ω̃ + δΩT (∆ + Θ̃E) + ˙δΘE
T

δV T
P = −δΘE

T (Ṽ + Ω̃ξ̃P ) + δV T (∆ + Θ̃E) + δΩT (∆ + Θ̃E)ξ̃P + ˙δΘE
T
ξ̃P

δΩT
P = −δΘE

T Ω̃ + δΩT (∆ + Θ̃E) + ˙δΘP
T

(102)

where δΩ∆Θ = (∆−Θ̃E)δΩ. The final result can be incorporated into the intrinsic governing

equation Eq. (1) with respect to δq and δψ. Moreover the result leads to three more

equations about the additional generalized coordinates (δα, δβ, and δΨ) in δΘE and δΘP

due to the Engine/Propeller system.
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If the Engine/Propeller system is located at the nth node, the nodal equation is modified

as

F̂n
r − ĈnT

lr F̂n
l + µ̂nĝn

r + f̂n
aero − ˙̂

Pn
r − ˜̂Ωn

r P̂n
r

+
[
−˜̂Ωn

r (∆ + Θ̃E) + ˙̃ΘE

]
(PE + PP )− (∆ + Θ̃E)(ṖE + ṖP ) = 0

(103)

M̂n
r − ĈnT

lr M̂n
l + µ̂n˜̂

ξnĝn
r + m̂n

aero − ˙̂
Hn

r − ˜̂Ωn
r Ĥn

r − ˜̂
V n

r P̂n
r

− ˜̂
V n

r (∆ + Θ̃E)(PE + PP ) +
[
−˜̂Ωn

r (∆ + Θ̃E) + ˙̃ΘE

]
(HE + HP + ξ̃EPE + ξ̃P PP )

− (∆ + Θ̃E)(ḢE + ḢP + ξ̃EṖE + ξ̃P ṖP ) = 0
(104)

ĝn
r − (∆ + Θ̃E)ĝαβ = 0 (105)

where ĝαβ is the column matrix of the components of the gravity vector in Engine/Propeller

basis. For δΘE and δΘP in terms of δα, δβ and δΨ,

(e1e
T
1 + e3e

T
3 )

[
( ˜̂
V

n

+ ˜̂Ω
n

ξ̃E)(PE + PP ) + ˜̂Ω
n

(HE + HP ) + ḢE + ξ̃EṖE + ḢP + ξ̃P ṖP

]

+





kαα

0

kββ





=





0

0

0





e2e
T
2 (ξ̃P ṖP + ḢP ) = 0

(106)

where e1 = b1 0 0cT , e2 = b0 1 0cT and e3 = b0 0 1cT . The previous final

equations are for the three-bladed case. For the two-bladed case, the inertia matrix is not

constant and becomes periodic in time if it is expressed in the hub-fixed reference frame to

be included in the nodal equation. Eq. (100) should then include a variation on the inertia

matrix such that
1
2
ΩT

p δ(ip)Ωp = δΨ
1
2
ΩT

p iΨΩp (107)
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where

ip = b · iP · b = CbeI[Fe]C
beT

=




cΨ 0 sΨ

0 1 0

−sΨ 0 cΨ







I∗1 0 0

0 I∗2 0

0 0 I∗3







cΨ 0 sΨ

0 1 0

−sΨ 0 cΨ




T

=




I∗1c2
Ψ 0 −I∗1cΨsΨ

0 I∗2 0

−I∗1cΨsΨ 0 I∗1s2
Ψ




δip = δΨ




−2I∗1cΨsΨ 0 I∗1 (c2
Ψ − s2

Ψ)

0 0 0

I∗1 (c2
Ψ − s2

Ψ) 0 2I∗1sΨcΨ




= δΨiΨ

(108)

if I∗3 ≈ 0. This difference only modifies the Eq. (106).

e2e
T
2 (ξ̃P ṖP + ḢP ) +

1
2
ΩT

p iΨΩp = 0 (109)

3.3.2 Propeller Aerodynamics

The propeller aerodynamic model is evaluated from the blade element theory using the 2-D

aerodynamics of Ref. [26].

The following descriptions on propeller aerodynamics are for the Engine/Propeller sys-

tem located at right wing with positive angular velocity. Let’s first evaluate the velocity

vector of point B on a blade, given by

VB =




cΨ 0 −sΨ

0 1 0

sΨ 0 cΨ




VP +





rωo

0

0





(110)

where VBi = VB · ei. The angle of attack can be defined as

αAOA = Θtw(r) + αwind (111)

where Θtw is the twist angle along the radius of the blade and αwind = tan−1
(
−VB2
VB1

)
.
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The average thrust (To) and side forces (Ho, Yo) can be written as

Yo = N
1
2π

∫ 2π

0

∫ d/2

0
qc (clααAOAsαwind

− cdcαwind
) cΨdrdΨ

To = N
1
2π

∫ 2π

0

∫ d/2

0
qc (clααAOAcαwind

+ cdsαwind
) drdΨ

Ho = −N
1
2π

∫ 2π

0

∫ d/2

0
qc (clααAOAsαwind

− cdcαwind
) sΨdrdΨ

(112)

where q = 1
2ρU2, U2 = VB1

2 + VB2
2, N is the number of blades, and c is the chord length.

The average torque (Qo) and hub moments (Mx,Mz) can be written as

Mx = −N
1
2π

∫ 2π

0

∫ d/2

0
qc (clααAOAcαwind

+ cdsαwind
) rcΨdrdΨ

Qo = N
1
2π

∫ 2π

0

∫ d/2

0
qc (clααAOAsαwind

− cdcαwind
) rdrdΨ

Mz = N
1
2π

∫ 2π

0

∫ d/2

0
qc (clααAOAcαwind

+ cdsαwind
) rsΨdrdΨ

(113)

Fprop · b =





Yo

To

Ho





, δrp · b = (∆− Θ̃E)δq +
[

˜(∆− Θ̃E)δψ + δ̃ΘE

]
ξp

Mprop · b =





Mx

Qo

Mz





, δψp · b = (∆− Θ̃E)δψ + δΘE

(114)

The virtual work by the propeller airloads and gravity force is

δW = (Fprop + Fg2) · δrp + Fg1 · δre + Mprop · δψp + QAδΨ

=
[
δq

T (∆ + Θ̃E) + δψ
T (∆ + Θ̃E)ξ̃P + δΘE

T ξ̃p

]









Yo

To

Ho





+ m2ĝαβ





+
[
δq

T (∆ + Θ̃E) + δψ
T (∆ + Θ̃E)ξ̃E + δΘE

T ξ̃E

]
m1ĝαβ

+
[
δψ

T (∆ + Θ̃E) + δΘE
T
]





Mx

Qo

Mz





+ QAδΨ

(115)
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where Fprop is the propeller force vector, Mprop is the propeller moment vector, Fg1 is the

gravity force vector of pylon, Fg2 is the gravity force vector of total blade, and QA is the

applied toque vector.

These generalized forces and moments are included in the previous equations Eq. (103)

– (106). For powered rotation, the last equation in Eq. (106) or (109) can be eliminated

from the formulation which are associated with the virtual variation on Ψ, but it should

be included when it is needed to calculate the applied torque (QA) required to maintain

constant propeller angular speed (ωo) or for free-rotation case.
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CHAPTER IV

PARAMETRIC STUDY

The following parametric studies illustrate some of the uses of the current HALE aircraft

analysis methodology by completing the proposed three modeling demands.

• 4.1: Payload Distribution

– The effect of payload distribution along a highly flexible flying wing aircraft on flight

dynamic characteristics is investigated.

• 4.2: Horizontal Tail’s Contribution

– The aerodynamic contribution of horizontal tail’s size and location on flight dynam-

ics characteristics is studied.

• 4.3: Modal Characteristics of Stiff and Flexible Beams in GVT

– The modal characteristics of stiff and flexible beams in GVT are shown to be possible

to couple GVT rigid-body modes and the lowest structural modes for highly flexible

beams.

• 4.4: Modal Characteristics of a Highly Flexible Beam for Different Bungee Cord

Locations

– Different bungee cord locations are considered to observe the difference in modal

characteristics of highly flexible beams.

• 4.5: Modal Characteristics of Flying Wing and Conventional Configuration in GVT

– This parametric study compares the modal characteristics between flying wing and

conventional aircraft configurations.

• 4.6: Time Simulation of NATASHAWF

– The nonlinear dynamic simulation with Engine/Propeller model shows three possible
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time histories such as decaying, divergent motions, and periodic oscillation especially

when certain propeller-driven HALE aircraft have an unstable mode.

• 4.7: Periodic Inertia Effect of Two-Bladed Engine/Propeller System

- A boundary for certain HALE aircraft configuration is determined about in which

condition the two-bladed Engine/Propeller system can be treated like an equivalent

three-bladed Engine/Propeller system so that Floquet theory is not required.

• 4.8 : Periodic Propeller Airloads

– The trim condition determined by the constant approximation on the propeller

airloads is verified whether the trim states are disturbed by the periodic side forces

and moments.

4.1 Payload Distribution

One big difference in highly flexible HALE aircraft is that they operate under large wing

deflection. The deformation of the highly flexible wing is affected by how the payload is

distributed along the span. Therefore, the effect of payload distribution along the highly

flexible flying wing aircraft on flight dynamic and aeroelastic characteristics is investigated.

If the given payload is evenly distributed, the deformation will be small. However, if it is

concentrated at mid-span, the wing deforms to a U shape with a much larger tip deflection.

The deformed shape of the highly flexible wing may lead to the changes in the flight dynamic

characteristics.

Two cases are compared to each other with same total payload: Case I with payloads

(35/13 ≈ 2.6923 kg) located at nodes from 3 to 15 and Case II with concentrated payload

(35 kg) at mid-span. (the corresponding node is 9th.)

Figures 5 and 6 show the deformed shape of Cases I and II in trim condition with para-

meters in Table 1. The large wing tip deflection is seen in Figure 6 due to the concentrated

payload 35 kg at mid-span. Case I shows relatively small wing deformation because the

payloads are evenly distributed from node 3 to 15. Intermediate cases are exercised to

observe how the eigenvalues change from Case I to Case II and one additional case is added
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which the payloads are evenly distributed from node 1 to 17 along the whole span.

Figure 7 shows the root locus of three lowest eigenvalues. The 1st eigenvalue is related

to the pitch attitude and 1st structural bending modes. (The partition of each mode on

the 1st eigenvalues depends on the payload distribution.) The 2nd eigenvalue is related

to the yaw attitude mode. As the payload gets distributed over a larger portion of the

wing span (from “?” to “◦” in Figure 7), the eigenvalues become more unstable. At some

configuration, the 1st and 2nd eigenvalues for the flight dynamics modes become unstable.

If the payloads are evenly distributed from node 1 to 17 along the whole span, the wing is

deflected to downward which is an inverted U shape (corresponding “◦” in Figure 7). The

U shape of highly flexible aircraft provides much stable flight dynamic characteristics than

the less deformed shapes or inverted U shape. As the beam flexibility increase there would

be more U shape for more stable flight dynamic characteristic. On the other hand, as the

wing becomes more flexible, it would be more prone to wing flutter. Figure 8 shows that

4th eigenvalue associated with 1st structural bending mode becomes unstable after certain

flexibility. The vertical bending stiffness (EI2) decreases from 2.0×104 Nm2 (corresponding

to “◦” in Figure 8) to 1.0 × 104 Nm2 (corresponding “?” in Figure 8) and the payload at

mid-span is a fixed value of 21 kg.

Table 1: Parameters in “Payload Distribution”
parameters values units

m (mass per unit length) 0.75 kg/m
` (length of flying wing) 16 m

UU (magnitude of aircraft forward velocity) 20 m/sec
phi (flight path angle) 0 rad
GJ (Torsional stiffness) 1.0× 104 Nm2

EI2 (Vertical Bending stiffness) 2.0× 104 Nm2

EI3 (Chordwise Bending stiffness) 4.0× 106 Nm2

Table 2: Three lowest eigenvalues of each case in “Payload Distribution”
Case 1st eigenvalue 2nd eigenvalue 3rd eigenvalues

node 9 (Case I, “?”) −0.0621± 0.4060 i −0.0003± 0.5691 i −3.5334± 1.7659 i

node 3 to 15 (Case II) −0.0120± 0.2361 i 0.0195± 0.6269 i −1.9983± 1.0742 i

node 1 to 17 (“◦”) 0.1233± 0.0000 i 0.0266± 0.6391 i −1.7072± 0.6366 i
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Figure 5: Trim configuration of Case I of “Payload Distribution”
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Figure 6: Trim configuration of Case II of “Payload Distribution”
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Figure 7: Root locus of three lowest eigenvalues of “Payload Distribution” (lower figure
is zoomed in for 1st and 2nd eigenvalues)
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4.2 Horizontal Tail’s Contribution

Some highly flexible flying wings have a mildly unstable phugoid mode. Now with the con-

tribution of the present work the structural modeling can include the fuselage and horizontal

tail. Thus, the possible aerodynamic contribution of horizontal tail’s size and location on

the mildly unstable phugoid mode can be studied.

It is assumed that the horizontal tail’s mass is neglected along with the fuselage aero-

dynamics and mass so as to see only the aerodynamic contribution of horizontal tail. The

fuselage stiffnesses are GJ = 106, EI2 = 2× 106, EI3 = 4× 108 Nm2. The horizontal tail is

located at 2 m from the wing reference line and its aerodynamic contribution is set by the

ratio of horizontal tail’s chord to the wing’s. Additionally, the elevator angle (δe) in hori-

zontal tail is set as default value 0◦ for all the cases. In Figure 9, the flight dynamics modes

move to the left half plane as the aerodynamic contribution of horizontal tail increases from

the case without horizontal tail to 67% chord size.

Next, like the previous study the horizontal tail with 10% chord size and 0◦ elevator

deflection is located at 2 m from the wing reference line. The location of the tail is defined

by the length of the fuselage from the wing reference line. In Figure 10, the flight dynamics

modes move to the left half plane as the horizontal tail is located farther from the wing

reference line. So if a horizontal tail can provide enough aerodynamic force and moment,

it would improve the stability of the flight dynamic characteristic of a highly flexible flying

wing aircraft.
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Figure 9: Root locus of three lowest eigenvalues of “Contribution of Horizontal Tail’s
Aerodynamics: size”
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Figure 10: Root locus of three lowest eigenvalues of “Contribution of Horizontal Tail’s
Aerodynamics: location”
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Table 3: Eigenvalues of “Contribution of Horizontal Tail’s Aerodynamics: size”
Case Eigenvalues
size 1st eigenvalue 2nd eigenvalue

w/o tail −0.0124± 0.3111 i 0.0063± 0.6017 i

10% −0.0141± 0.3055 i 0.0057± 0.6035 i

25% −0.0172± 0.2979 i 0.0048± 0.6037 i

50% −0.0230± 0.2752 i 0.0030± 0.6002 i

67% −0.0262± 0.2478 i 0.0011± 0.5969 i

Table 4: Eigenvalues of “Contribution of Horizontal Tail’s Aerodynamics: location”
Case Eigenvalues

location 1st eigenvalue 2nd eigenvalue
2 m −0.0141± 0.3055 i 0.0057± 0.6035 i

4 m −0.0174± 0.3053 i 0.0009± 0.5795 i

6 m −0.0217± 0.3044 i −0.0056± 0.5476 i
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4.3 Modal Characteristics of Stiff and Flexible Beams

By comparing the modal characteristics between stiff and flexible beams in GVT, the pos-

sible coupling of GVT rigid-body modes and the lowest frequency structural modes for a

highly flexible beam is shown.

The GVT static equilibria of both stiff and flexible beams with attached bungee cords

are computed numerically. 3D and 2D plots are given in Figures 11 and 12. ( x, y, and z

correspond to the inertial basis n1, n2 and n3 in the figures.) The beams are loaded only

by their own weight. The beam is attached one bungee cord at each end. The properties of

stiff and flexible beams are given in Table 5. The stiffness (k) of bungee cords are 2000 N/m

and natural length (`) is 1 m. Table 6 shows the converged solutions of static equilibrium.

Table 5: Stiff and flexible beams beam properties: GJ (torsional stiffness: Nm2), EI2, EI3

(bending stiffness: Nm2), N (number of elements), ` (length of the beam: m), and m (mass
per unit length: kg/m)

GJ EI2 EI3 N ` m

Stiff Beam 106 108 108 10 10 10
Flexible Beam 104 2× 104 2× 104 10 10 10

Table 6: Static equilibrium solution of stiff and flexible beam (upper and lower tables for
stiff and flexible beams respectively)

pOB∗1n
[m] pOB∗2n

[m] C1,2 σk[m] τkn



0.0000
0.0000
8.4852









10.0000
0.0000
8.4852








1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000


 0.4147





0.0000
0.0000

−1.0000









0.0460
0.0000
8.4881









9.9539
0.0000
8.4881








0.9812 0.0000 ±0.1928
0.0000 1.0000 0.0000
∓0.1928 0.0000 0.9812


 0.4152




±0.0461

0.0000
−0.9989





Tables 7 and 8 show the ten lowest eigenvalues about the static equilibrium with each

description on the associated mode. In these tables, the six lowest eigenvalues are associated

with the GVT rigid-body modes (See the details about GVT rigid-body modes in Appendix

A.) The rest are associated with structural modes. (For displaying a structural mode shape,

only one reference line is magnified enough to be observed.) The corresponding eigenmodes

are given in Figures 13 – 17.

In eigenanalysis for the stiff beam, the GVT rigid-body modes are clearly separated
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Figure 11: 3D plot of the GVT static equilibria of stiff and flexible beams
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Figure 12: 2D plot of the static equilibria of stiff and flexible beams
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from the structural modes as the eigenvalues are shown in Table 7. However, with regard

to the highly flexible beam, the 1st symmetric elastic bending modes with respect to n2

(flapwise) and n3 (chordwise) drops significantly and becomes quite close to the pitching

modes and those might not be separated enough to the GVT rigid-body modes. The

four lowest eigenvalues of a free-free beam simulated by NATASHA are shown in Table 9.

It confirms the possible coupling between the GVT rigid-body modes and low structural

modes, leading about 16 – 24% relative difference for the 1st symmetric bending modes and

2.1 – 3.4% for 1st anti-symmetric bending modes. It indicates that the lowest structural

frequencies are significantly overestimated by the presence of bungee cords.

Table 7: Six GVT rigid-body and four lowest GVT structural modes and corresponding
eigenvalues of stiff beam

Eigenvalues Description
0 ± 2.5389 i swing mode w.r.t n1 + plunging mode
0 ± 2.6329 i swing mode w.r.t n2

0 ± 3.6123 i plunging mode
0 ± 4.5838 i twisting mode
0 ± 6.2987 i rolling mode
0 ± 10.272 i pitching mode
0 ± 733.81 i 1st symm. structural bending mode w.r.t n3

0 ± 733.83 i 1st symm. structural bending mode w.r.t n2

0 ± 1001.8 i 1st structural torsional mode
0 ± 2055.0 i 2nd symm. structural bending mode w.r.t n2

Table 8: Ten lowest GVT modes and corresponding eigenvalues of flexible beam
Eigen values Description
0 ± 2.2625 i swing mode w.r.t n1 + plunging mode
0 ± 2.6317 i swing mode w.r.t n2

0 ± 2.9491 i plunging mode
0 ± 4.4934 i twisting mode
0 ± 6.0759 i rolling mode
0 ± 9.7848 i pitching mode
0 ± 12.114 i 1st symm. structural bending mode w.r.t n3

0 ± 12.907 i 1st symm. structural bending mode w.r.t n2

0 ± 31.346 i 1st anti-symm. structural bending mode w.r.t n3

0 ± 31.760 i 1st anti-symm. structural bending mode w.r.t.n2
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Figure 13: 1st and 2nd GVT rigid-body modeshapes of stiff beam

57



−3−2−10123
7.5

8

8.5

9

9.5

10

y

z

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

x

y

Figure 14: 3rd and 4th GVT rigid-body modeshapes of stiff beam

58



0 2 4 6 8 10
−2

0
2

7.5

8

8.5

9

9.5

10

x

z

y

−3−2−10123
7.5

8

8.5

9

9.5

10

y

z

Figure 15: 5th and 6th GVT rigid-body modeshapes of stiff beam
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Figure 16: 1st and 2nd GVT structural modeshapes of stiff beam
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Figure 17: 3rd and 4th GVT structural modeshapes of stiff beam
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Figure 18: 1st and 2nd GVT rigid-body modeshapes of flexible beam
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Figure 19: 3rd and 4th GVT rigid-body modeshapes of flexible beam
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Figure 20: 5th and 6th GVT rigid-body modeshapes of flexible beam
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Figure 21: 1st and 2nd GVT structural modeshapes of flexible beam
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Figure 22: 3rd and 4th GVT structural modeshapes of flexible beam
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Table 9: Four lowest GVT structural modes of the free-free flexible beam simulated by
NATASHA

Eigenvalues Description
0 ± 10.377 i 1st symm. structural bending mode w.r.t n3

0 ± 10.377 i 1st symm. structural bending mode w.r.t n2

0 ± 30.689 i 1st anti-symm. structural bending mode w.r.t n3

0 ± 30.689 i 1st anti-symm. structural bending mode w.r.t.n2
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4.4 Modal Characteristics of a Highly Flexible Beam for
Different Bungee Cord Locations

This parametric study is motivated by the fact that the shape of highly flexible flying wing

in GVT will be quite different according to the locations of points to which bungee cords

are connected. The study looks at different bungee cord locations to observe any differences

in modal characteristics.

Case 1 is the case in which bungee cords are attached to each tip of the beam and

Case 5 is the case in which bungee cords are attached close to mid-span. Cases 2 – 4 are

intermediate cases between Cases 1 and 5. The static equilibrium of each case is shown

in Figure 23. Depending on the locations of bungee cords, the deformed shapes of highly

flexible beam in GVT are very different.

Table 11 shows the ten lowest eigenvalues of Cases 1 – 5 of flexible beams. Values for

the four lowest eigenvalues of stiff beams are added for comparison. The relative difference

of four lowest elastic modes for cases 1 – 5 with respect to those of the free-free flexible

beam simulated by NATASHA are shown in Figure 24. The horizontal axis corresponds to

the case numbers (x = 1 indicates Case 1). Figure 25 is an equivalent graph for stiff beam.

This result shows that the shape of the flexible beam determined by the location to which

bungee cords are attached in GVT affects the modal characteristics. The modal frequencies

of the U shape and inverted U shape deviate from the least deformed case (Case 3). Some

of the structural modes such as 1st symmetric bending and 1st torsional modes are more

affected by either the deformed shape or a boundary condition due to bungee cords than are

other modes. To determine that, the model with linear spring (k = 20 N/m) is simulated

especially for Cases 1, 3, and 5. The results are given in Table 12. The eigenvalue for 1st

symmetric bending mode in Case 1 changes from ±12.582 i to ±10.409 i from lowering the

bungee stiffness (k = 20 N/m), which indicates that if bungee cords are located at the point

where the most displacement occurs, 1st symmetric bending mode will be different from the

solution for the free-free beam (±10.096 i). The relative difference of 1st symmetric bending

mode for Case 1 is still the largest among them. However, even in the model with the

linear spring, 1st torsional mode in Cases 1 and 3 doesn’t change much, from ±90.817 i to
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±90.419 i and ±97.895 i to ±97.880 i, respectively. The one for Case 3 also doesn’t change

much, from ±100.23 i to ±100.19 i, and is the closest to the analytical solution (±99.551 i).

It indicates that the U and inverted U shape tend to lower the 1st torsional frequency. For

a stiff beam, the difference among the four lowest structural modes for each case is not very

noticeable in Figure 25.

Table 10: Beam and bungee cord properties for “Different Bungee Cord Locations”
parameters values units

m (mass per unit length) 10 kg/m
` (span of wing) 10 m
k (bungee stiffness) 2000 N/m

flexible stiff
GJ (Torsional stiffness) 1.0× 104 1.0× 106 Nm2

EI2 (Vertical Bending stiffness) 2.0× 104 2.0× 106 Nm2

EI3 (Chordwise Bending stiffness) 4.0× 106 1.0× 108 Nm2

Table 11: Eigenvalues of Cases 1 – 5 with four lowest eigenvalues of flexible and stiff beams
< Flexible beam >

Eigenmode Case 1 Case 2 Case 3 Case 4 Case 5
Swing (n1) ±2.2574 i ±2.4468 i ±2.5309 i ±1.8278 i ±0.9163 i

Swing (n2) ±2.6316 i ±2.6313 i ±2.6312 i ±2.4791 i ±1.3353 i

Plunging ±2.9358 i ±3.3532 i ±2.7378 i ±2.5110 i ±2.4492 i

Twisting ±4.5561 i ±3.6493 i ±3.5888 i ±2.6593 i ±2.6425 i

Rolling ±6.0353 i ±5.0162 i ±3.7530 i ±3.5289 i ±3.3556 i

Pitching ±12.082 i ±10.823 i ±10.161 i ±10.339 i ±10.807 i

1st sym. bending (n2) ±12.582 i ±10.951 i ±10.583 i ±10.553 i ±10.860 i

1st anti-sym. bending (n2) ±29.326 i ±28.392 i ±28.480 i ±28.725 i ±28.526 i

2nd sym. bending (n2) ±57.444 i ±56.919 i ±57.115 i ±57.003 i ±56.944 i

1st torsional ±90.817 i ±98.260 i ±100.23 i ±98.872 i ±97.895 i
< Stiff beam >

1st sym. bending (n2) ±101.23 i ±101.04 i ±100.97 i ±100.99 i ±101.04 i

1st anti-sym. bending (n2) ±283.17 i ±283.07 i ±283.08 i ±283.11 i ±283.09 i

2nd sym. bending (n2) ±569.20 i ±569.15 i ±569.16 i ±569.16 i ±569.15 i

1st sym. bending (n3) ±714.06 i ±713.96 i ±713.92 i ±713.93 i ±713.96 i
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Figure 23: Static equilibria of Cases 1 – 5 (from top to bottom, from left to right, the
case number increases as the bungee cord location moves to the mid-span)
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Table 12: Eigenvalues of cases 1, 3, and 5 with linear spring, and of the free-free flexible
beam simulated by NATASHA

Eigenmode Case 1 Case 3 Case 5 free-free beam
1st sym. bending (n2) ±10.409 i ±10.195 i ±10.120 i ±10.096 i

1st anti-sym. bending (n2) ±28.382 i ±28.327 i ±28.309 i ±28.307 i

2nd sym. Bending (n2) ±56.942 i ±56.912 i ±56.893 i ±56.915 i

1st torsional ±90.419 i ±100.19 i ±97.880 i ±99.551 i
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4.5 Modal Characteristics of Flying Wing and Conventional
Configurations

For the purpose of comparing their features, a flying wing and conventional aircraft con-

figurations are considered. For the flying wing, the payload is located at mid-span which

corresponds to the total mass of fuselage for the conventional aircraft configuration. The

static equilibrium of each case is shown in Figure 26. For simplicity the horizontal tail of

the conventional aircraft is replaced by a concentrated mass at the tail end of the fuselage.

The properties of wing, fuselage, and bungees are given in Table 13. (Bungee 1 and 2

are attached to each wing tip, and bungee 3 is attached to fuselage tip for conventional

configuration.)

The GVT rigid-body modes (in which the beam behaves almost like a rigid body) in

the flying wing configuration, such as plunging, twisting, pitching, rolling, and two swing

modes, are quite similar to Figures 18 – 20 in the previous parametric study “4.3 Modal

Characteristics of stiff and flexible beams.” Figures 27 – 28 show the four lowest structural

modes: 1st symmetric, 1st anti-symmetric bending, and two torsional modes. (Counter-

parts of the conventional ones are Figures 29 – 33.) The associated eigenvalues with mode

descriptions are given in Tables 14 and 15.

In the conventional aircraft configuration, some of the GVT rigid-body modes match

those of flying wing configuration, and the types of the four lowest elastic modes are same

in both cases. However the fuselage, tip mass, the additional bungee cord at the tip lead

to an unusual GVT rigid-body mode that can be described as “pitching about the tail”

The fuselage inertia and tail mass also lead to some differences in the structural modes.

The fuselage inertia and tail mass will tend to lower the wing torsional mode in same

phase between right and left tips. Due to the relatively short fuselage length, however, no

structural modes of the fuselage appear among lowest structural modes.

73



0
2

4
6

8
10

−4

−2

0

2

4

7.6

7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

xy

z

0
2

4
6

8
10

−4

−2

0

2

4

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

xy

z

Figure 26: 3D plot of GVT static equilibria of flying wing and conventional configuration
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Figure 27: 1st and 2nd GVT structural modeshapes of flying wing configuration

75



0 2 4 6 8 10
7.5

8

8.5

9

9.5

10

x

z

0 2 4 6 8 10−202

7.5

8

8.5

9

9.5

10

xy

z

Figure 28: 3rd and 4th GVT structural modeshapes of flying wing configuration
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Figure 29: 1st and 2nd GVT rigid-body modeshapes of conventional configuration
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Figure 30: 3rd and 4th GVT rigid-body modeshapes of conventional configuration
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Figure 31: 5th and 6th GVT rigid-body modeshapes of conventional configuration
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Figure 32: 1st and 2nd GVT structural modeshapes of conventional configuration
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Figure 33: 3rd and 4th GVT structural modeshapes of conventional configuration
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Table 13: Beam and bungee cord properties
property wing fuselage units

m (mass per unit length) 7 7 kg/m
` (span of beam) 10 4 m

GJ (Torsional stiffness) 1.0× 104 1.0× 104 Nm2

EI2 (Vertical Bending stiffness) 2.0× 104 2.0× 104 Nm2

EI3 (Chordwise Bending stiffness) 4.0× 106 4.0× 106 Nm2

bungees 1, 2 bungee 3
k (bungee stiffness) 2000 2850 N/m
`b (bungee natural length) 1 1.9 m

Table 14: Ten lowest GVT modes and corresponding eigenvalues of flying wing configura-
tion

Eigenvalues Description
0 ± 2.1465 i swing mode w.r.t n1 + plunging mode
0 ± 2.6319 i swing mode w.r.t n2

0 ± 2.7946 i plunging mode
0 ± 5.4670 i twisting mode
0 ± 7.1812 i pitching mode
0 ± 7.2576 i rolling mode
0 ± 13.425 i 1st symmetric bending mode w.r.t n2

0 ± 33.192 i torsional mode with 180◦ phase delay between right and left tips
0 ± 37.891 i 1st anti-symmetric vertical bending mode w.r.t n2

0 ± 49.040 i torsional mode with same phase between right and left tips

Table 15: Ten lowest GVT modes and corresponding eigenvalues of conventional aircraft
configuration

Eigenvalues Description
± 2.3710 i swing mode w.r.t n1

± 2.6261 i swing mode w.r.t n2

± 3.3024 i pitching about tail
± 5.1714 i twisting mode
± 7.4294 i rolling mode
± 11.896 i pitching mode
± 14.298 i 1st symmetric wing bending mode w.r.t n2

± 30.961 i wing torsional mode with same phase between right and left tips
± 32.925 i wing torsional mode with 180◦ phase delay between right and left tips
± 35.340 i 1st anti-symmetric wing vertical bending mode w.r.t n2
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Figure 34: Trim configuration of highly flexible flying wing aircraft with two En-
gine/Propeller systems

4.6 Time Simulation of NATASHAWF

NATASHAWF can simulate the dynamic behavior of propeller-driven HALE aircraft. It

can confirm the whirl flutter instability by its nonlinear dynamic simulation especially if the

eigenanalysis indicates that the given configuration has unstable modes. First, it determines

the trim condition of the HALE aircraft with a three-bladed Engine/Propeller system or an

equivalent three-bladed Engine/Propeller system for the two-bladed case. Then it performs

an eigenanalysis about the trim condition. In certain trim condition, it might have one or

more unstable eigenvalues. Three possible dynamic behaviors are simulated in finite time:

decaying, periodic oscillation, and divergent cases. The excitation level in time and the

perturbation of the initial condition are determined by the level of the periodic airloads

and associated eigenvectors from the eigenanalysis. Due to the computational demand, the

time history of each case is only shown in finite time. Note that the nonlinear dynamic

simulation might make an unstable mode appear to be stable for a finite time interval

unless it is simulated for a long period time. Thus, Floquet analysis is needed for stability

analysis.
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The parameters for the reference configuration are given in Table 16. A left En-

gine/Propeller system is clamped to the wing and it rotates about the negative y direction.

The right one is connected to the wing with pitch and yaw degree-of-freedoms with stiffness

(kα and kβ) and it is rotating opposite to the one on the left. Both pylons are aligned to

b2 (one of unit basis vectors of undeformed beam reference frame). One of the structural

modes is unstable, with eigenvalues of 0.0555± 5.3600 i.

Figure 35 and 36 show the nonlinear dynamic simulation of a decaying case. The

excitation force determined as half of periodic propeller airloads is applied to the right

propeller hub center for first 0.2 seconds with perturbation on the initial condition.

Figure 37 and 38 show the nonlinear dynamic simulation of a divergent case. The

excitation force determined as twice of periodic propeller airloads is applied to the right

propeller hub center for first 2 seconds. The angle of attack and the tip transverse position

are increasing in time in Figure 37. The pitch and yaw angles are also increasing in time in

Figure 38.

Figure 39 and 40 show the nonlinear dynamic simulation of periodic oscillation case

after increasing kα and kβ as 600 Nm/rad, and EI2 as 0.94 × 104 Nm2. (The real part of

the unstable eigenvalue becomes 0.002 .) The excitation force determined as half of periodic

propeller airloads is applied to the right propeller hub center for first 0.5 seconds with a

slight perturbation of the initial conditions. Wing and whirl motions reach a low frequency

periodic oscillation in low frequency after the high frequency oscillations decay.

Table 16: Parameters for the reference configuration
parameters values units

m (mass per unit length) 0.75 kg/m
µ̂ (payload at mid-span) 21 kg
` (length of the beam) 16 m

UU (magnitude of aircraft forward velocity) 20 m/sec
phi (flight path angle) 0 rad
GJ (Torsional stiffness) 1.0× 104 Nm2

EI2 (Vertical Bending stiffness) 0.9× 104 Nm2

EI3 (Chordwise Bending stiffness) 4.0× 106 Nm2

kα, kβ (pitch and yaw stiffness) 300 Nm/rad
d (diameter of propeller) 1 m

cblade (blade chord) 0.1 m
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Figure 35: Time history of decaying tip transverse position and angle of attack
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Figure 36: Time history of decaying pitch (α) and yaw angles (β)
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Figure 37: Time history of divergent tip transverse position and angle of attack
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Figure 38: Time history of divergent pitch and yaw angles
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Figure 39: Time history of tip transverse position and angle of attack in periodic oscillation
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Figure 40: Time history of pitch and yaw angles in periodic oscillation
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4.7 Periodic Inertia Effect

Before addressing other advanced analysis methodology, it needs to be investigated first

whether the periodic inertia effect is dominant or not and when it becomes ignorable. The

reason for this is that certain HALE aircraft use two-bladed propellers with a relatively

small diameter. Even though they may have two-bladed propellers, they can be treated as

an equivalent three-bladed case if the effect is ignorable.

Two- and three-bladed Engine/Propeller systems are considered to see the periodic

inertia effect of two-bladed case on dynamic characteristics. First, the equivalent three-

bladed case is run to determine the trim condition. Then a nonlinear dynamic simulation

of the two-bladed case is run with the initial conditions taken from the trim solution of

the three-bladed case. The preliminary Engine/Propeller analysis in Appendix B confirmed

that the critical parameter that can lead to large differences in both dynamic behaviors is

the length ratio R` (pylon length to propeller diameter).

The following assumptions are made for the simulation:

• Both cases have the same total blade mass.

• A powered rotation case is considered with constant propeller angular speed.

• The propeller airload is taken to be the same for both two- and three-bladed cases.

• Whether the dynamic behaviors of the two- and three-bladed cases are the same or

not is determined by whether the time simulation of the two-bladed case 1) stays

nearly periodic and 2) deviates from the trim states of three-bladed case.

Figure 41 shows the trace of the hub center of the two-bladed cases deviates from the

trim states of equivalent three-bladed case. The length ratio (R` = 2.5) is rather large

with respect to the given pitch and yaw stiffness (kα = kβ = 300 Nm/rad). Therefore, the

periodic inertia effect makes it diverge. (“∗” is the trim condition of three-bladed case and

“◦” is an end point of simulation.) Another case is simulated after reduce the length ratio

(R` = 2.2) and increasing the stiffness (kα = kβ = 600 Nm/rad). The whirling motion
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of the two-bladed Engine/Propeller system stay periodically around the trim solution of

equivalent three-bladed case in finite time shown in Figure 42.

Figure 43 shows one of the boundary of certain HALE aircraft configuration. (The

parameters are given in Table 17.) Inside the boundary, the periodic inertia effect is small,

so it doesn’t contribute much either the whirling or wing motion. However, beyond the

boundary, the periodic inertia effect of the given two-bladed Engine/Propeller configuration

should be considered to determine trim and stability characteristics because R` is relatively

large, the dynamic behavior is dominated by the blade inertia properties and the off diagonal

components in inertia matrix are not negligible. Floquet theory is thus needed. (The

boundary in Figure 43 is determined with respect to different length ratios, and same

pitch and yaw stiffnesses. The boundary will be changed if a configuration changes from

the simulated configuration. For example, different wing properties such as mass per unit

length and total length, and different flight condition such as aircraft forward speed and

altitude, and etc can affect the boundary.)

Table 17: Parameters in “Periodic Inertia Effect”
parameters values units

m (mass per unit length) 0.75 kg/m
` (length of the beam) 16 m

UU (magnitude of aircraft forward velocity) 20 m/sec
phi (flight path angle) 0 rad
µ̂ payload at midspan 25 kg

GJ (Torsional stiffness) 1.0× 104 Nm2

EI2 (Vertical Bending stiffness) 2.0× 104 Nm2

EI3 (Chordwise Bending stiffness) 4.0× 106 Nm2

m1 (pylon mass) 0.075 kg
m2 (total blade mass) 0.15 kg
h1 (pylon length) 0.6 m
d (diameter of blade) = h1 ×R` m
R` (length ratio) = d

h1

Two things should be indicated here. First, if the pitch and yaw stiffnesses are relatively

small, then the Engine/Propeller system is quite susceptible to the loads produced by

periodic inertia terms or periodic airloads. Even though the trim states of wing do not

change much from the periodic loads, the whirling motion can become divergent. Second, if
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Figure 41: α vs α̇ and β vs β̇ in phase plane in divergent case
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Figure 42: α vs α̇ and β vs β̇ in phase plane in periodic oscillation
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Figure 43: Boundary for whether two-bladed Engine/Propeller system can be approxi-
mated as equivalent three-bladed Engine/Propeller system

the pitch and yaw stiffness is relatively large, then the whirling motion oscillates very close

to the trim states, but the vehicle can be excited by the periodic loads. In time, the aircraft

can deviate from the trim condition. This fact motivates the next parametric study about

periodic propeller airloads to see if the trim condition changes or not.
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4.8 Periodic Propeller Airloads

In reality, the propeller side force and hub moments are periodic as a function of azimuth

angle shown in Figures 44 – 45. For three- and four-bladed propeller systems, the periodicity

is not quite noticeable. But for two-bladed case, the periodicity still exists. These figures

are from the simulation when the angle of a pylon is 7◦ to the freestream. (ωo = 36 rad/sec,

d = 1 m, cblade = 0.1 m) Generally the periodicity increases as the angle between the pylon

and the freestream increases due to the unsymmetry in propeller disk caused by the velocity

component parallel to the propeller disk. For simplicity, when the trim condition is deter-

mined, the propeller airloads are assumed to be constant. It should then be verified whether

or not the periodicity perturbs the trim condition determined by constant approximation

on the propeller airloads. A time simulation can easily verify that if one evaluates the pro-

peller airloads at each azimuth angle within a given time step and takes the trim condition

as an initial condition. If the pitch and yaw stiffnesses are low, then it is more likely to

be perturbed from the trim condition by the periodic side forces and moments. One of the

reference result is taken from the previous parametric study. The reference configuration in

two-bladed Engine/Propeller system is given in Table 18. The previous parametric study

confirmed that the equivalent three-bladed case can substitute the two-bladed counterpart

for this reference parameters.

Figures 46 and 47 show that the periodic propeller airloads do affect the trim condition,

but the trim condition determined by constant approximation of propeller airloads stay

periodic. Compared to the other wing airloads and gravity, the level of periodic propeller

airload effect is relatively low, because for propeller-driven HALE aircraft, the propeller

thrust level is mainly determined by the total drag of the wing, not by the total lift. It is

not enough to make the trim states deviate from the values from the constant approximation.

An additional case is investigated by reducing the payload at mid-span from 35 to 20 kg

in order to make the periodic airload effect more influential. Figures 48 and 49 shows that

the level of states in periodic oscillation increases. Roughly the pitch angle in periodic

oscillation increases from 0.4◦ to 1◦ and the angle of attack in periodic oscillation increases

from 0.02◦ to 0.8◦. For other configurations, it should be verified whether it stays inside
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the permissible range from the trim condition determined by the constant approximation if

it uses two- or three-bladed Prop/Eng system.

Table 18: Parameters in “Periodic Propeller Airloads”
parameters values units

m (mass per unit length) 0.75 kg/m
` (length of the beam) 16 m

UU (magnitude of aircraft forward velocity) 20 m/sec
phi (flight path angle) 0 rad
µ̂ payload at midspan 35 kg

GJ (Torsional stiffness) 1.0× 104 Nm2

EI2 (Vertical Bending stiffness) 2.0× 104 Nm2

EI3 (Chordwise Bending stiffness) 4.0× 106 Nm2

m1 (pylon mass) 0.075 kg
m2 (total blade mass) 0.15 kg
h1 (pylon length) 0.6 m
d (diameter of blade) 1 m
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Figure 44: Propeller side forces (Y,H) per number of blades
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95



0 0.5 1 1.5 2 2.5 3 3.5 4

0.385

0.39

0.395

time

T
ip

 T
ra

ns
ve

rs
e 

P
os

iti
on

 

0 0.5 1 1.5 2 2.5 3 3.5 4

14

14.05

14.1

14.15

14.2

14.25

A
ng

le
 o

f a
tta

ck
 [d

eg
re

e]

t [sec]

Figure 46: Time history of tip transverse position and angle of attack
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Figure 47: α vs α̇ and β vs β̇ in phase plane
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Figure 48: Time history of tip transverse position and angle of attack with less payload
at mid-span
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Figure 49: α vs α̇ and β vs β̇ in phase plane with less payload at mid-span
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4.9 Validations

4.9.1 Validations 1: Euler-Bernoulli Beam Theory

The analytic solution of beam attached to elastic spring at each end can be derived by the

Euler-Bernoulli beam theory as

U2 =
m1g`4

1

24Ic
33

(
η4 − 2η3 + η +

12Ic
33

k`3

)
(116)

where m1 is the mass per unit length of the beam, Ic
33 =

∫
Ω E2(x2 − x2c)2dΩ, E2 is the

Young’s modulus, xc is the centroid of the beam cross-section and 0 ≤ η ≤ 1 (η = x1/`1),

and `1 is the total length of the beam.

Figure 50 shows the bending moment distribution along the span. The solution of

NATASHAGV T is quite close to the analytic solution of Euler Bernoulli beam theory. The

norm of overall error in bending moment distribution (||r||2 = MGV T (xs) − MEB(xs)) is

calculated and shown in Figure 51 with respect to the number of elements on a log scale.

(MGV T and MEB are moment distribution of NATASHAGV T and Euler-Bernoulli Beam

theory. And 100 mid-points (xs) of two solutions are chosen by linear interpolation at

reference points.) The norm of overall error decreases monotonically as the number of

elements increases.

4.9.2 Validations 2: RCAS

The trim conditions of NATASHA and RCAS (Rotorcraft Comprehensive Analysis System)

[7] are compared to each other. Figure 52 shows the angle of attack in trim condition of

NATASHA and RCAS with respect to various payloads at mid-span. Two results agree fairly

well with each other. Note that modeling differences are inevitable due to the limitation on

incorporating the control system. For NATASHA, the flap deflection and propeller angular

speed are free variables to determine trim condition with given parameters. However, for

RCAS, (which was developed for rotorcraft analysis), the angular speed is not available as

free variable to determine trim condition. So the trim condition by RCAS is computed with

fixed angular speed of NATASHA and the flap control is divided into interior and exterior

one. Aerodynamic differences also exist. With respect to the flap deflection, NATASHA
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Figure 52: Angle of attack in trim condition by NATASHA and RCAS

uses the linear relation between the aerodynamic loads and flap defection in terms of C`β
and

Cmβ
. On the other hand, RCAS uses the Theordorsen airfoil/elevon theory which evaluates

the deficiency of lift and moment by elevon deflection. First, the deficiency coefficients in

RCAS is chosen arbitrary so that the angle of attack without payload case matches closely

to the result of NATASHA. Then, it is fixed for other payload cases to see if at least the

results are consistent through the whole simulation. One of the simulation with payload (9

kg) is taken to compare the nodal force and moment resultants along the span shown in

Figure 53.

Figure 54 shows propeller airloads from NATASHA and RCAS with respect to different

tilting angles. A simple model is taken to evaluate this comparison. For NATASHA, a hub

center of propeller is directly attached to inertial frame. For RCAS, a root of rigid bar is

attached to a hinge in inertia frame with high value of rotational spring and the tip of the

bar is attached to the hub center of propeller. Tip loss and inflow are included in the simple

RCAS model. The tilting angle of propeller is defined by the angle between the freestream

and the propeller disk. (0◦ tilting angle indicates that the propeller disk is perpendicular

to the freestream.) The two approaches agree well with each other in Figure 54.
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Figure 54: Comparison of the propeller airload evaluation between NATASHA and RCAS
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CHAPTER V

CONCLUSION

The previously developed computer code (NATASHA) was limited in its application to the

flight dynamics and aeroelastic analysis of HALE aircraft having a flying wing configuration.

By completing the proposed three analysis upgrades, the current development has extended

the HALE aircraft analysis methodology to treat other aircraft configurations and simulate

the GVT environment by virtue of the multiple beam formulation, the bungee formulation,

and Engine/Propeller modeling. The analysis methodology was coded to be applicable to

different configurations as representative applications so that

• It includes the flight dynamics and aeroelastic analysis of HALE aircraft for either a

flying wing or a conventional configuration. This was achieved by the multiple beam

formulation which was reformulated from the original intrinsic beam formulation. This

code is called NATASHAMB.

• It now provides preliminary information about the modal characteristics of HALE

aircraft from the GVT analysis. This was achieved by the multiple beam formulation

and GVT formulation. First, it indicates possible coupling of GVT rigid-body modes

with the lowest structural modes. This enables the GVT to be tailored so that struc-

tural modes are as close as possible to the free-free flight condition. When a modal

description of the structural model is needed, it can assist user to choose target modes

depending on its purpose. This code is called NATASHAGV T .

• It now includes an Engine/Propeller model for propeller-driven HALE aircraft. This

was achieved by the Engine/Propeller modeling. The whirling motion of Engine/Propeller

model can now be coupled to the wing motion in the analysis. This code is called

NATASHAWF
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The parametric study shows how NATASHA can be utilized for the vibration and

aeroelastic analysis of highly flexible HALE aircraft. The shape of the highly flexible wing

affects the flight dynamic characteristic, showing that the U shape provides stable flight

dynamics modes but it makes the system more prone to wing flutter as the wing becomes

more flexible. Possible design improvements, such as by incorporating a horizontal tail like

conventional configuration, can now be examined. Configurations with a horizontal tail can

provide more stable flight dynamics characteristics.

The GVT parametric study provides an information about the modal characteristics of

certain configurations. It also indicates that the GVT rigid-body modes of a highly flexible

wing can be coupled to the structural modes as the flexibility increases, and the deformed

shape of the wing may strongly affect modal characteristics. One specific modal description

might not be applicable if the deformed configuration of a highly flexible wing is different

from one flight condition to another. The changes in the modal characteristics need to be

included to understand the dynamic behavior correctly.

The parametric study with Engine/Propeller model provides the boundary of certain

HALE aircraft about when the periodic inertia effect of two blade Engine/Propeller model

can be ignored and when it cannot. The equivalent three-bladed Engine/Propeller model

can be used to obviate the need for Floquet theory, which is required for the stability analysis

of periodic coefficient systems. Moreover, the validity of the constant approximation on the

propeller aerodynamic loads is investigated. The trim condition determined by the constant

approximation is checked to see whether the periodic propeller airload makes the states

deviate from, or oscillate periodically around the original trim states.
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Future Work

Even though it addresses new HALE aircraft methodologies, the current methodology needs

further improvements in the following several aspects: other aircraft configurations, aero-

dynamics improvements, possible other experimental modeling of GVT analysis, GVT an-

alytic model update, Floquet theory for two-bladed Engine/Propeller system and stability

analysis, and control system design.

• Other aircraft configurations: The developed methodology has been applied to the

flying wing and conventional configuration. The structural modeling is also capable

of handling other aircraft configurations, such as joined-wing and flapping wing.

• Aerodynamic Improvements: Interference between propeller, wing, and fuselage has

not yet been considered. Propeller aerodynamics is presently evaluated by a rather

simple blade element theory using 2-D aerodynamics. More accurate aerodynamic

modeling should be developed and integrated into current methodology.

• Additional GVT modeling : The bungee system, one of the possible types of GVT

environment, is considered here. The zero-spring-suspension system is often used

for an experimental GVT of large structures. A current multiple beam and bungee

formulation can be extended to incorporate the zero-spring-suspension system into

the analysis.

• GVT analytic model update: One of the possible improvements on GVT analysis is

to compensate the analytic GVT analysis with the experimental counterpart. The

analytical model will provide useful information for GVT experiments. And several

methods using the experimental GVT data can be updated to the analytical model.

(The literature survey in Chapter I covers the developed methods.) The result will

be more credible information on the vibration characteristic of highly flexible HALE

aircrafts .

• Floquet Theory : Floquet theory is needed when an equivalent three-bladed Engine/Propeller

105



system cannot approximate the two-bladed Engine/Propeller system of certain HALE

aircraft. Moreover, the nonlinear dynamic simulation might makes the unstable mode

appear to be stable one for finite time interval unless it simulates for a long period

time when it determines the stability.

• Control System Design: More practical control systems such as linear state feedback,

robust, and generalized predictive controls can be studied and designed to stabilize

unusual flight dynamics modes, to suppress low frequency wing flutter and whirl flutter

instability in a highly flexible HALE aircraft.
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APPENDIX A

IDEAL MODELS

The natural frequencies of each mode for rigid body attached to bungee cords shown in

Figure 55 can be calculated after it is simplified as an ideal model. For an ideal simple

mass-spring system which is the 1st part of Figure 55, the plunging frequency is

ωp =

√
k

m
(117)

where k is a spring stiffness and m is the mass of rigid body.

For an ideal simple pendulum which is the 2nd part of Figure 55, the swing frequency is

ωs =
√

g

`total

=
√

g

`natural + δ + c/2
(118)

where δ is the spring deflection and c is the thickness of the rigid body.

For an ideal strut-supported wind tunnel model which is shown in the 3rd part of Fig-

ure 55, the self-oscillating frequency is

ωso =

√
2k(a/2)2

m
12(a2 + c2)

(119)

For a slightly twisted trapeze which is the 4th part of Figure 55, the twisting frequency

is

ωt =

√
Wa2

4`totalI33
(120)

where W is the total weight of rigid body and I33 is the moment of inertia with resect to

the twisting axis.

107



Plunging mode Twisting modePitching/rolling modeSwing mode

Mass-Spring system Slightly twisted trapezeStrut-supported 
wind tunnel modelSimple pendulum

Figure 55: Schematic of GVT rigid-body modes and its ideal models
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APPENDIX B

PRELIMINARY ENG/PROP MODELING

This preliminary analysis investigates two periodic effects which were already indicated by

previous research [27, 54]. These are the periodic inertia effect of two-bladed propeller

system and the periodic effect of side force and hub moment. The preliminary analysis is

done before incorporating 2 dof flexible engine/store mount into NATASHA so that the

analysis isolates dominant parameters in dynamic behavior by quantifying the periodic

effects.

B.1 Dynamic Modeling

Figure 56 shows the idealized engine/propeller system for preliminary analysis. The point

O is fixed in inertial frame. The point E is the center of mass of pylon, m1 its mass, and h

its length. The point P is the hub center of the propeller and the point B is an arbitrary

point of a blade with distance r from the hub center P along the unit vector e3.

B.1.1 Definition of Reference Frames

The unit vectors i1, i2, i3 are the base unit vectors of the inertial frame (Fi). And the

intermediate unit vectors a1,a2,a3 (Fa), b1,b2,b3 (Fb), and blade fixed reference frame

unit vectors e1, e2, e3 (Fe) are same in the ANALYSIS “3.3 Engine/Propeller Modeling”.

B.1.2 Evaluation of Potential and Kinetic Energies

The potential energy (P ) of the system is

P =
1
2
kαα2 +

1
2
kββ2 + m1g

h

2
i3 · b2 + m2ghi3 · b2 (121)

where kα and kβ are the pitch and yaw stiffness, m1 and m2 are the mass of pylon and total

blades, h and d are the length of pylon and diameter of blade, and g is the acceleration of

gravity.
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P

r
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Figure 56: Schematic of simple engine/propeller system

The kinetic energy (K) of the system is

K =
1
2
m1VE ·VE +

1
2
ωEI · IE · ωEI +

1
2
m2VP ·VP +

1
2
ωBI · IP · ωBI (122)

where VE and VP are the velocity vector of pylon center of mass and hub center of propeller,

ωEI and ωBI are the angular velocity vector of pylon and propeller, and IE and IB are the

inertia dyadic of pylon and total blades.

rE =
h

2
b2 =

h

2
(−sβi1 + cαcβi2 + sαcβi3)

VE =
h

2

[
−β̇cβi1 + (−α̇sαcβ − β̇cαsβ)i2 + (α̇cαcβ − β̇sαsβ)i3

] (123)

VE ·VE =
(

h

2

)2

(β̇2 + α̇2c2
β) (124)

VP ·VP = h2(β̇2 + α̇2c2
β) (125)

The angular velocity vector of the pylon is

ωEI = α̇a1 + β̇b3 = α̇cβb1 − α̇sβb2 + β̇b3 (126)

The angular velocity vector of the blade is

ωBI = ωEI + Ψ̇b2 = α̇cβb1 + (Ψ̇− α̇sβ)b2 + β̇b3 (127)
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I[Fe] = e · IP · e =




md2

12 0 0

0 md2

12 0

0 0 0




I[Fb] = b · IP · b = R2(Ψ)I[Fe]R2(Ψ)T

=




cΨ 0 sΨ

0 1 0

−sΨ 0 cΨ







m2d2

12 0 0

0 m2d2

12 0

0 0 0







cΨ 0 sΨ

0 1 0

−sΨ 0 cΨ




T

(128)

K =

[
1
2
m1

(
h

2

)2

+
1
2

m1h
2

12
+

1
2
m2h

2

]
(β̇2 + α̇2c2

β)

+
1
2

m2d
2

12

[
α̇2c2

Ψc2
β + (−α̇sβ + Ψ̇)2 − 2α̇β̇cΨsΨcβ + β̇2s2

Ψ

] (129)

B.2 Aerodynamic Model

This aerodynamic model is the same as 3.3.2 Propeller Aerodynamics in III ANALYSIS.

B.3 Governing Equation

Hamilton’s extended principle is

∫ tf

ti

(
δK − δP + δW

)
dt = δA (130)

δP = kααδα + kββδβ + gh(cαcβδα− sαsβδβ)
(m1

2
+ m2

)

δK =

[
m1

2

(
h

2

)2

+
1
2

m1h
2

12
+

1
2
m2h

2

]
[2β̇δβ̇ + 2α̇c2

βδα̇− 2α̇2cβsβδβ]

+
1
2

m2d
2

12
[ 2α̇c2

Ψc2
βδα̇− 2α̇2cΨsΨc2

βδΨ− 2α̇2c2
Ψcβsβδβ

+ 2(−α̇sβ + Ψ̇)(−sβδα̇− α̇cβδβ + δΨ̇)

− 2β̇cΨsΨcβδα̇− 2α̇cΨsΨcβδβ̇ + 2α̇β̇s2
ΨcβδΨ− 2α̇β̇c2

ΨcβδΨ + 2α̇β̇cΨsΨsβδβ

+ 2β̇s2
Ψδβ̇ + 2β̇2sΨcΨδΨ]

δW = −Yohcβδβ − Toh(sαcβδα + cαsβδβ) + Hoh(cαcβδα− sαsβδβ)

+ Mxcβδα−Qsβδα + Mzδβ

(131)
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For δα
[
m1

(
h

2

)2

+ m2h
2 +

m1h
2

12

]
(α̈cβ − 2α̇β̇cβsβ)

+
m2d

2

12
[α̈c2

Ψc2
β − 2α̇Ψ̇cΨsΨc2

β − 2α̇β̇c2
Ψcβsβ − (−α̈sβ − α̇β̇cβ + Ψ̈)sβ − (−α̇sβ + Ψ̇)β̇cβ

− β̈cΨsΨcβ + β̇Ψ̇s2
Ψcβ − β̇Ψ̇c2

Ψcβ + β̇2cΨsΨsβ]

+ kαα + ghcαcβ

(m1

2
+ m2

)

= −Tohsαcβ + Hohcαcβ + Mxcβ

(132)

For δβ

[
m1

(
h

2

)2

+ m2h
2 +

m1h
2

12

]
(β̈ + α̇2cβsβ)

+
m2d

2

12

[
−α̈cΨsΨcβ + α̇Ψ̇s2

Ψcβ − α̇Ψ̇c2
Ψcβ + α̇β̇cΨsΨsβ + β̈s2

Ψ + 2β̇Ψ̇sΨcΨ

]

− m2d
2

12

[
−α̇2c2

Ψcβsβ − (−α̇sβ + Ψ̇)α̇cβ + α̇β̇cΨsΨsβ

]

+ kββ − ghsαsβ

(m1

2
+ m2

)

= −Yohcβ − Tohcβsβ −Hohsαsβ + Mz

(133)

For δΨ

α̈sβ + α̇β̇cβ − Ψ̈− α̇2cΨsΨc2
β + α̇β̇s2

Ψcβ − α̇β̇c2
Ψcβ + β̇2sΨcΨ = Q + Qo (134)

where Q is the applied torque.

B.4 Nondimensionalization

Nondimensional quantities (Rm = m2
m1

, R` = d
h , k∗α = kα

m1h2Ω2
o
, g∗ = g

hΩ2
o
, and τ = Ωot) are

introduced. For δα
(

Rm +
1
3

)
(α′′cβ − 2α′β′cβsβ) +

RmR2
`

12
[α′′c2

Ψc2
β

− 2α′Ψ′cΨsΨc2
β − 2α′β′c2

Ψcβsβ − (−α′′sβ − α′β′cβ + Ψ′′)sβ − (−α′sβ + Ψ′)β′cβ

− β′′cΨsΨcβ + β′Ψ′s2
Ψcβ − β′Ψ′c2

Ψcβ + β′2cΨsΨsβ] + k∗αα + g∗cαcβ

(
1
2

+ Rm

)

= −H∗
osαcβ + Y ∗

o cαcβ + M∗
xcβ

(135)
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For δβ

(
RmR2

` +
1
3

)
(β′′ + α′2cβsβ)

+
RmR2

`

12
(−α′′cΨsΨcβ + α′Ψ′s2

Ψcβ − α′Ψ′c2
Ψcβ + α′β′cΨsΨsβ + β′′s2

Ψ + 2β′Ψ′sΨcΨ)

− m2d
2

12
[−α′2c2

Ψcβsβ − (−α′sβ + Ψ′)α′cβ + α′β′cΨsΨsβ

]
+ k∗ββ − g∗sαsβ

(
1
2

+ Rm

)

= −T ∗o cβ −H∗
o cβsβ − Y ∗

o sαsβ + M∗
z

(136)

For δΨ

α′′sβ + α′β′cβ −Ψ′′ − α′2cΨsΨc2
β + α′β′s2

Ψcβ − α′β′c2
Ψcβ + β′2sΨcΨ = Q∗ + Q∗

o
(137)
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