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SUMMARY 
 

This study examines the relationship between environmental sustainability and green 

schools, seeking to highlight the benefits and determine the Net Present Value (NPV) installing 

vegetative roofs on all schools in the Atlanta Public Schools District. This study quantifies the 

costs and benefits of thin-layer, or extensive, green roof systems as they compare to typical flat 

roofs on Atlanta Public Schools. Quantifiable benefits are detailed and suggestions are made to 

create the means by which other social benefits may be quantified. The purpose of this thesis is 

to establish proof to the Atlanta Public Schools District that over a 40 year period there are more 

benefits associated with installing vegetative roofs on all of their flat roofs than there are costs. 

While some may argue that greens roof are more costly than traditional roof systems, this study 

provides evidence that the cumulative benefits over a 40 year life cycle associated with large 

scale green roof installations, such as on all Atlanta Public Schools, are greater than the initial 

costs incurred. Factors included in the analysis of benefits were reductions to energy/utility costs, 

reduced emissions, and avoided best management practices (BMPs). Other considerations 

include social benefits resulting from the mitigation of storm water runoff, reductions to the 

urban heat island, productivity level increases (students and teachers), and avoided regulatory 

fees. 

Following an extensive literature review, the study determined green roofs are an 

extremely viable topic of discussion for school systems as a beneficial technology to pursue in 

regards to future sustainability. The findings of the literature review, as summarized, were 

further explored by a case study that analyzed the potential benefits of installing an extensive 

green roof on all Atlanta public schools. With the findings concluding that APS represents an 

important control group within Atlanta’s Watershed community to study Best Management 
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Practices (BMPs) for storm water management as well as studying general sustainability 

practices for Atlanta, recommendations are made for further research seeking to quantify the 

many social benefits presented.  Overall, the study contributes to APS’s goal to establish itself as  

a national leader in sustainable development and to seek funding to accomplish this goal. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

APS began greening its schools in 2009 with Springdale Park Elementary. “The district’s 

first “green” school serves about 400 kindergarten through fourth-grade students from the Druid 

Hills, Midtown, Poncey Highlands and Virginia-Highland neighborhoods who were redistricted 

from Morningside and Mary Lin elementary schools (Atlanta Public Schools, 2011).” The 

Atlanta Public Schools district represents a unique control group for metro Atlanta in fact that 

the benefits associated with green development are far reaching. Not only will tangible benefits 

result from greening school facilities, but also the potential social benefits related to child 

development are great. By installing green roofs on a significant portion of its flat roofs APS will 

be able to take advantage of the many benefits gained from storm water management, building 

envelope efficiency, reductions to the urban heat island, as well as participate in farm to school 

program such as Schoolyard Sprouts which are aimed promoting health for children through 

statewide health initiatives. 

Schoolyard Sprouts originated in the fall of 2007 as the Little Sprouts Garden at the 

Morningside Kindergarten campus. Through community support from Murphy's Restaurant, 

Whole Foods Market Briarcliff, Farmer D Organics and Georgia State University, Schoolyard 

Sprouts helps to create farm to school programming at Morningside and Springdale Park 

Elementary. At Morningside Elementary gardening and farm to school became a school health 

and wellness initiative resulting in a Bronze Award from the Alliance for a Healthier Generation 

in 2009 (Blam 2011). Morningside was recently featured by Lt. Governor Casey Cagle in the 

announcement of a statewide school health initiative. Children at both schools participate by 

planting, caring for and harvesting the garden. Local chefs demonstrate how to prepare the food 
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we grow and the children taste what the chef has prepared.  

   The garden provides an experiential learning opportunity to further explore Georgia 

Performance Standards. It is a perfect setting to learn about making healthy eating choices, 

locally grown produce, and environmental stewardship. This year Schoolyard Sprouts is entering 

into exciting new areas. They include:  

• Student exposure across all grade levels to the garden with integrated curriculum and 
tastings 

• Parent teacher education 
• Improving the food server in the cafeteria 
• Educational and fundraising events throughout the year 
 
(Blam 2011) 
 

 Opportunities such as Schoolyard Sprouts bring further benefits into the green roof costs 

vs benefits equation by capitalizing on the opportunity to positively impact a unique 

demographic and humanities most precious resource, our children. Although difficult to quantify, 

metrics should be created that allow for legitimate quantification of production level increases 

resulting children’s exposure to gardening integrated with curriculum, and well as sustainable 

technologies such as green roofs. In the essence of simplicity, this study analyzes the direct costs 

and benefits associated with installing extensive vegetative roof systems on APS, however, it is 

assumed that a portion of APS flat roofs would be allotted for intensive vegetative roof systems 

where gardening would take place.   

 As APS continues to strive toward a community of schools with high performance 

standards and high performance facilities, the first topics for discussion relates to obtaining 

funding for projects with presumably high return value. This study aims to prove that the 

installation of green roofs on APS buildings represents a major project with a high return on 

investment (ROI), however, the venture has considerable costs. Inevitably, sourcing for these 
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types of major projects must be evaluated. The third chapter of this thesis is dedicated to laying 

the ground work for the reader regarding school facilities development and exploring funding 

opportunities available to APS. Prior to this, however, the research methodology is discussed in 

chapter 2. Chapter 4 consists of detailing the findings from literature review, while chapter 5 

specifically focuses on the costs and benefits of installing extensive green roofs on APS. Chapter 

6 is reserved for the overall results from the study along with recommendations for future 

studies. While some may argue that the costs associated with green roofs are much greater than 

that of conventional roof systems, the life-cycle costs analysis performed on installing green 

roofs on all of APS school facilities (chapter 5), provides proof that the benefits received from 

large scale green roof installations in urbanized locations are greater than the costs.    
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CHAPTER 2 

RESEARCH METHODOLGY 
 
 

2.1 Research Overview 
 

 This thesis began with the idea that the best way to increase sustainability in the built 

environment is to bridge the gap between our natural surroundings and man made structures. The 

natural environment has sustained itself for billions of years and “naturally” holds the key to 

successfully sustaining the built environment. Initially the thought was to bring the natural 

environment inside the walls of built environment through creative low maintenance 

technologies. One consideration to this end involves using hydroponic technology to create a 

semi-self sustaining plant environment inside the walls of a building. Just as a transformer feeds 

a building and electrical circuits are run from this transformer to feed power to the building, 

imagine this transformer was a large cistern with an automated controls unit which held a water 

and nutrient solution that fed circuits of plants throughout the building. This way multiple plants 

could be feed throughout the building, even those in areas not easily accessible, and the natural 

environment could more easily and with little maintenance be recreated with in the walls of 

buildings. Research on this topic is advisable and some literature exists, however, after a brief 

literature search and after consulting with Dr. Linda Thomas-Mobley the focus was redirected 

toward green schools and technologies that schools can realistically pursue today.  

The need for high-performance school buildings or green schools is quite interesting 

considering how special of place school buildings are. They are the locus of education, the places 

where children come together to learn about civics and develop basic skills to be productive 

members of society. Schools are also used for adult education classes, voting, community events, 

and other activities and may symbolize the community itself. The results of this study should be 
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of interest to a wide range of stakeholders, including school administrators, school district 

business managers, federal and state education officials, parents, and teachers, as well as 

architects, engineers and construction professionals specializing in school design, both green and 

conventional. In addition, research has shown that the quality of indoor environments can affect 

the health and development of children and adults. Furthermore, buildings, including schools, 

affect the natural environment, accounting for 40 percent of US energy use and 40 percent of 

atmospheric emissions, including greenhouse gases (National Research Council 2007). This 

study aims to draw correlations between green roof systems benefits and the goals of greens 

schools which are defined by the Committee to Review and Assess the Health and Productivity 

Benefits of Green Schools as “(1) to support the health and development (physical, social, 

intellectual) of students teachers and staff by providing a healthy, safe, comfortable, and 

functional physical environment; and (2) to have positive environmental and community 

attributes (National Research Council 2007).” 

 Green roof systems represent a technology that schools can realistically pursue today 

considering the amount of peer reviewed literature available and the potential benefits associated 

with them. Also known as “living roofs”, green roofs serve several purposes for a building, such 

as absorbing rainwater, providing insulation, creating a habitat for wildlife, and helping to lower 

urban air temperatures and combat the heat island effect (McDonough et al. 2003). The benefits 

of green roof systems will be discussed in further detail in chapter 4. There are two types of 

green roofs: intensive roofs, which are thicker and can support a wider variety of plants but are 

heavier and require more maintenance, and extensive roofs, which are covered in a light layer of 

vegetation and are lighter than an intensive green roof. Quantitative data for this thesis is 

provided in chapter 5 by a costs vs benefits analysis of installing an extensive roof on roughly all 
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of APS flat roofs. The costs and benefits of intensive green roofing are not specifically 

discussed, however it is suggested that APS review using a portion of school roofs for intensive 

growing that would allow students, teachers and parents the ability to grow vegetables and 

produce on the rooftop.  

 

2.2 Research Modeling 

In order to properly report on the topic of green roof technology use on green schools, 

this research consists of both a qualitative synthesizing of data and quantitative data in the form 

of a case study. A mixed-methods approach was sought, particularly, triangulation consisting of 

the use of both qualitative and quantitative research techniques. Triangulation is selected as “the 

model when a researcher use two different methods in an attempt to confirm, cross-validate, or 

corroborate findings with in a single study. This method generally uses separate quantitative and 

qualitative methods as a means to off set the weaknesses inherent within one method with the 

strengths of the other method (Creswell 2003).  

After deciding on the method of research, peer-reviewed sources of data were compiled. 

These data sources presented a wonderful anthology of tested results on the benefits associated 

with green roofs a correlation between these benefits and the goals of green schools. The case 

study of the Tanyard Branch watershed proved to be a viable source of quantitative data and was 

used as the basis to perform the BCA of extensive green roofs on APS.  

Early on a literature map (Figure 2.1) was created to help layout data sources and topics 

of interest. From this literature map a simplified organizational chart (Figure 2.3) was created 

and serves as the foundation for the study and building the proof that over a 40 year period, the 

benefits outweigh the costs of install green roofs on all of APS flat roofs.  
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Figure 2.2 Organizational chart for proving green roof benefits 
 
 
 After establishing a working thesis topic, data was sourced and organized according to 

purpose. Green roof technology is a relatively new and emerging field in the United States so it 

was important that current material be used. However, testing of technology included in this 

study must be conducted over time so it was also important to find data reflecting time tested 

results. Multiple sources of peer-reviewed literature were complied and the results within 

compared in order to establish a basis of proof. The literature provided solid qualitative 

information regarding green schools and green roofs, and suggests strong potential benefits for 

the initiation of a program aimed at installing green roofs on all of Atlanta Public Schools. Since 

limited quantitative data currently exists that would help promote such programs, it is advisable 

that future studies be conducted with the purpose of quantifying the benefits associated with 

installing green roofs on K-12 schools including impacts on urbanization, energy savings, and 

productivity level increases for students and teachers. 

 
 

Proving 
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Benefits 
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Various Sources 
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Recommendations 
Quantification of 
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CHAPTER 3 

K-12 FUNDING SOURCES 
 
 

3.1 Overview of the public schools’ need for facilities improvements 
 

 For many reasons, some quantifiable and some non quantifiable, K-12 schools represent a 

group of buildings within our built environment for which a focused sustainability effort may 

prove exponentially beneficial. In most cities K-12 schools account for a significant portion of 

the impervious structures within the city. Schools are also the place where our most precious 

resources; our future leaders, educators, and workforce spend the majority of their time. Many 

school facilities in the United States are old, out-of-date, poorly maintained, and lack specific 

design elements that are likely to enhance teaching, learning, behavior, and other desirable 

outcomes. One reason why previous research regarding the effects of the physical school 

environment on educational outcomes has had little impact on the quality of schools is because 

there is a lack of knowledge about these relationships. The average age of school facilities in the 

U.S. is forty-two years (Rowand 1999), many needing major renovations. At the turn of the 

millennium it was reported that approximately $127 billion was needed to bring schools up to 

good overall condition (Lewis et al. 2000). According to Lewis, when surveyed about 

satisfaction with environmental conditions, including lighting, heating, ventilation, indoor air 

quality, acoustics or noise control, and physical security of buildings, forty-three percent of the 

schools responding reported at least one environmental factor as being unsatisfactory. Increasing 

enrollment and a push for smaller class sizes are creating a greater need for school construction 

and renovation. In 2001, school districts spent a record $28.6 billion on school construction 

(Agron 2002), with approximately fifty-eight percent going toward additions and 

modernizations.�The following chart shows the most recent 4 years of capital outlay for school 
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construction, land and building acquisition of public school districts.�The types of projects 

included in school construction capital outlay are: new construction; building modernization; 

renewal of building systems; and major maintenance projects. 

 
Figure 3.1 Public School Capital Outlay for School Construction, Land and Building Acquisition 
200532008 (U.S. Census Bureau) 
 
 
The federal programs that offer some support for local districts and charter schools for school  
 
facility construction projects fall into four types. 
 
 

1) Dedicated federal grants for improving public school facilities; 

2) Allowable federal grants where school districts or public charter schools are eligible to 
apply, but where funds are not specifically targeted to public school facilities; 
 
3) Dedicated federal tax credits or loans for improving public school facilities; and 

4) Allowable federal tax credits or loans where school districts are eligible to apply, but 
where the tax credits or loans are not specifically targeted for public school facilities. 

 
 

3.2 Dedicated Federal Grant Programs for Public School Facilities 
 

The U.S. Department of Education contributes an average of about 8.2% annually toward 

PK312 public education operating costs (National Center for Education Statistics 2011). These 

annual recurring costs are for salaries and other program costs related to the U.S. Department of 

Education’s mission to promote student achievement and the preparation for global 
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competitiveness by fostering educational excellence and ensuring equal access. In contrast, as is 

shown in the charts below, U.S. Department of Education has extremely limited programs related 

to school facilities. Less than one tenth of a one percent of the total capital outlay for facilities is 

paid for with federal grant funds. For every one thousand dollars that states and local school 

districts spend on public school building improvements paid for through capital outlay, the 

federal government contributes about 86 cents (Filardo 2010). 

The charts below contrast the U.S. Department of Education contribution toward local school 

district operating budgets and local school district capital budgets. 

 
 

             
 
 
 

 
 

 
3.3 Allowable Federal Grant Programs for Public School Facility Use 

 
There are a number of ongoing federal programs that allow funding for school facilities, 

but the programs are not dedicated specifically to the improvement of public school facilities. 

There are two types of federal grant programs where spending for facility improvements are 

Figure 3.2b - Sources for PK-12 Capital Outlay    
Expenditures, 2008-2009 (Filardo 2010) 
 Expenditures, 2008-2009 (Filardo) 

Figure 3.2a - Sources for PK-12 
Operating Funds, 2008 (Filardo 2010)                
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permissible. One type is where program related funds are allowed to be used to improve facilities 

in order to support the program. The Head Start Program is one example of this. The Head Start 

Program includes grants that can be used for the purchase of a facility, renovation, and 

construction. The American Recovery and Reinvestment Act of 2009 (ARRA) appropriated an 

additional $2.1 billion and was expected to expand enrollment by 64,000 children and families. 

Head Start and Early Head Start grants are awarded to local governments, Indian tribes, school 

districts, nonprofit organizations and for3profit organizations (Filardo 2010). Because of the 

necessity for specially designed spaces for very young children, the Head Start Program permits 

their recipients to use funds for�facilities. While nearly all of the funding is used to pay teachers 

and other operating costs related to providing early childhood education, it is legal to use some 

funds for facility improvements. The other type of eligible program is established to improve 

public facility infrastructure, but not specifically public school buildings or grounds. These 

programs permit school districts to apply for facility infrastructure funds along with other public 

sector entities. For example, school districts are eligible to apply for energy conservation grants 

as part of the State Energy Programs. 

 

3.4 Tax and Finance Benefit Programs 
 

Nearly all school districts finance the cost of new construction or major capital 

improvements to their school facilities and grounds, rather than paying for these costs with 

current year revenues. Federal tax credit or loan programs help school districts and public charter 

schools improve the facility conditions for teaching and learning. The American Reinvestment 

and Recovery Act of 2009 (ARRA) increased the tax credit programs and introduced new 

programs that could be utilized for school facilities. The U.S. Department of Treasury has 
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various tax3credit bond programs available to public school districts, public charter schools and 

Bureau of Indian Affairs funded schools to reduce the cost of borrowing. These tax credit 

programs are: 

 
Qualified Zone Academy Bonds 

 
Established in 1997 and administered by the Internal Revenue Service, the Qualified 

Zone Academy Bonds (QZABs) allow school districts serving low3income students (35% or 

more free and reduced lunch) to issue tax3credit bonds that save on interest costs for financing 

school renovations and repairs (Filardo 2010). These bonds cannot be used for new construction. 

A public school is eligible as long as it fits under the definition of a qualified zone academy. A 

state’s allocation is based on the state’s population under the poverty line. The state education 

agencies have their own application processes for local entities. 

 
Qualified School Construction Bonds 

 
Administered by the Internal Revenue Service, the Qualified School Construction Bonds 

can be used to finance the construction, rehabilitation or repair of a public school facility or for 

the acquisition of land where a school will be built. This tax3credit program was created by the 

American Recovery and Reinvestment Act of 2009 (ARRA). After receiving their federal 

allocation, states in turn allocated to Local Education Agencies based on applications. All states 

were eligible and received an allocated amount in 2009 and 2010. Also eligible were the 100 

largest low3income local educational agencies. As of September 2010, only 30% of the allocation 

was utilized (Filardo 2010). 
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Tax Credit Bonds for Bureau of Indian Affairs-Funded Schools, U.S. Department of Interior 
 

This tax credit bond program is for the construction, modernization, and repair of Bureau 

of Indian Affairs funded school facilities. These bonds are intended to reduce the cost of Tribal 

Governments completing much needed construction or repairs of school facilities. To be eligible 

for this tax3credit bond program the applicant must be an Indian Tribal government. 

 
3.5 Tax and Finance Benefit Programs with School Construction Eligibility 

 
Finally, there are tax and finance benefit programs that school districts or public charter 

schools are eligible to apply for, but which are not designed specifically for school districts or 

public charter schools. 

 
Build America Bonds 

 
Created in 2009 by the American Recovery and Reinvestment Act, the Build America 

Bond Program (BABs) is intended to expand the market for municipal bonds by attracting buyers 

that normally would not buy tax3exempt bonds. There are no volume caps for the tax credit and 

direct payment BABs; however there is a $10 billion volume cap limitation for the Recovery 

Zone Economic Development BABs (Filardo 2010). State and local governments are eligible to 

use BABs on capital projects such as schools, hospitals, transportation infrastructure, and water 

and sewer upgrades. Build America Bonds have been used throughout the nation by school 

districts for funding school facilities construction. As of September of 2010, school districts and 

state school facility authorities had used around $14 billion in Build America Bonds, 

approximately 11% of total BABs issued (Filardo 2010).  
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Clean Renewable Energy Bonds 
 

The Clean Renewable Energy Bonds can be used to obtain lower cost financing for clean 

energy projects and were available for school districts to use on school facilities. Allocation of 

bonds starts with the smallest dollar amount qualified application and continues until the volume 

cap for the category has been exhausted. Government agencies (including school districts), 

public power providers, and cooperative electric companies are eligible for these bonds. 

 
Qualified Energy Conservation Bonds 

 
QECBs can be used to finance a broad range of qualified conservation projects, including 

energy efficiency capital projects, research grants, green energy technology demonstration 

projects, and public energy efficiency education campaigns. Bond volumes are allocated to the 

states based on the state’s percentage of the U.S. population. The state must allocate bond 

volumes to large local governments (municipalities and counties with populations of 100,000 or 

more). Large local governments should contact their State Energy Office regarding this program. 

State, local and Tribal governments can utilize the Qualified Energy Conservation Bonds. 

 
New Market Tax Credit Program 

 
The program was created to help revitalize low3income communities within the United 

States. The program allows a bank or equity firm that lends to a Community Development Entity 

(CDE) to receive a 39% federal tax credit over seven years. A CDE is an organization that’s 

primary mission is serving or providing investment capital for low3income communities or 

persons. This program has been used by nonprofits building charter school facilities. CDEs can 

provide loans (or an equity investment) to charter schools for facilities in low3income 

neighborhoods. 
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Rural Community Facilities Program 

 
This program is designed to develop essential community facilities for public use in rural 

areas, including school facilities. The Rural Community Facilities Program uses three flexible 

financial tools: the Community Facilities Guaranteed Loan Program, the Community Facilities 

Direct Loan Program, and the Community Facilities Grant Program. The rural community 

facilities grants, direct and guaranteed loans are available to municipalities, counties, 

special3purpose districts, non3profit corporations, and tribal governments to be used in rural areas 

and towns of up to 20,000 in population. 

 
Conclusions for School District Financing 

 
Except for tax law that provides very favorable financing for school districts and public 

charter schools who generally borrow funds to pay for the upfront hard and soft costs of school 

facility improvement or new construction projects, the federal government has assumed no 

responsibility for the quality of public school facilities for teaching and learning. There is no 

staff dedicated to this issue at the U.S. Department of Education. There is more staff time 

focused on this at the Department of Energy and the Environmental Protection Agency than at 

the U.S. Department of Education. It is considered a local school district responsibility. 

Considering this, it is important that local school districts do everything in their power to take 

advantage at all tax incentives and funding opportunities available to them. The growing trend 

for more sustainable development provides opportunities for schools districts to earn tax 

incentives and find funding for energy and resources saving green technologies implemented into 

development. The most popular platform by which to base green development strategies for 

school districts is LEED for Schools which will be discussed in the following segment. A case 
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study on green roofs in Atlanta Public Schools will be explored in chapter 5 of this paper and 

presents one specific area by which school districts can focus green development in hopes of 

earning tax incentives and government funding. 

 

3.6 Leadership in Energy and Environmental Design (LEED) 

 The LEED rating system offers a platform for which school districts and other building 

owners alike can not only pursue tax incentives and funding opportunities, but also reduce 

operating costs while reducing the negative impact their facilities have on out environment. As 

the green building sector grows exponentially, more and more building professionals, owners, 

and operators are seeing the benefits of green building and LEED certification. As stated by the 

Unites States Green Building Council (USGBC)  “green design not only makes a positive impact 

on public health and the environment, it also reduces operating costs, enhances building and 

organizational marketability, potentially increases occupant productivity, and helps create a 

sustainable community.” LEED fits into this market by providing rating systems that are 

voluntary, consensus-based, market-driven, based on accepted energy and environmental 

principles, and they strike a balance between established practices and emerging concepts. 

 Specifically for the school districts the LEED for Schools Rating System recognizes the 

unique nature of the design and construction of K-12 schools. Based on LEED for New 

Construction, it addresses issues such as classroom acoustics, master planning, mold prevention, 

and environmental site assessment. By addressing the uniqueness of school spaces and children’s 

health issues, LEED for Schools provides a unique, comprehensive tool for schools that wish to 

build green, with measurable results. LEED for Schools is the recognized third-party standard for 
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high performance schools that provide healthy environments for students, are comfortable for 

teachers, and are cost effective. 

In 2007, LEED for Schools was released with 79 available points, a 10 point increase 

from the standard LEED NC rating system. This was due to added requirements and the 

availability of incremental points. In 2009, the total points available in the two systems was 

standardized at 100, with LEED NC being more heavily focused on Sustainable Sites, Energy, 

and Materials and Resources, while LEED for Schools featured additional points for Water 

Efficiency and Indoor Environmental Quality. 

   Many LEED for Schools strategies are based on the underlying realization that children 

are not little adults. Their bodies behave and respond differently to their surroundings, requiring 

extra attention to several key areas. For example, children have a higher respiration rate than 

adults, meaning that they are more susceptible to airborne contaminants. Accordingly, LEED for 

Schools places a stronger emphasis on Indoor Environmental Quality, including the addition of 

Low Emitting Materials categories for Furniture/Furnishings and Ceilings and Wall Systems, and 

the elimination of smoking in the building. A new credit, IEQc10, is meant to promote greater 

levels of mold prevention. With their reduced summer hours and traditional challenges with 

preventative maintenance, schools are especially susceptible to mold issues. 

Many school districts are taking bold steps in the effort to improve Indoor Environmental 

Quality. Cincinnati Public Schools is in the process of implementing a district-wide Indoor Air 

Quality Program that will allow individuals to report IAQ issues to a district committee, as well 

as encourage schools to develop individual school-based IAQ teams. 

"Many IAQ programs are created to address existing concerns; however, we're doing this as a 

proactive step. We feel implementation of an IAQ Program is a ‘best practice’ and helps to 
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maintain, and improve on, our existing healthy environment," said Cynthia Eghbalnia, 

Environmental Health and Safety Coordinator for the district. "We are a strong supporter of the 

idea that a healthy environment improves learning and academic performance. At the school 

level, the proactive support of an Indoor Air Quality program fits nicely with the existing 

directive of most school wellness committees." 

For districts looking to learn more about Indoor Air Quality, the U.S. Environmental 

Protection Agency provides "Tools for Schools," a program that offers a wealth of resources 

including case studies, the latest research, and an Action Kit that provides everything needed to 

begin improving IAQ in their buildings. 

Another key component of the LEED for Schools rating system is IEQp3, the Minimum 

Acoustic Performance prerequisite. Because teaching is primarily delivered in an oral setting, 

eliminating extraneous sounds in the classroom is crucial to helping students learn. In addition, 

developing effective verbal communication skills and language proficiency is the foundation of 

advanced cognitive skills. Providing an acoustically-sound environment can literally help 

students unlock their abilities in all areas of learning. 

Another credit, IEQc9, addresses Enhanced Acoustical Performance; however, architects 

and engineers must weigh the educational impact when pursuing this credit. IEQc9 typically 

drives classroom design into a configuration that is not conducive to many current methods of 

instruction. Many districts have chosen to forgo the enhanced acoustical performance in favor of 

a more flexible classroom design that better supports their curriculum and methods.  

At any rate this focus on acoustical performance and indoor air quality in LEED for 

Schools strengthens the argument for green roof installations on schools. Vegetative roofs are 

shown to increase acoustical performance in buildings. In addition, vegetative roofs act as 
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natural air filtration devices by eliminating many airborne contaminants with benefits including 

air quality improvements from the mitigation of nitrous oxides, volatile organic compounds by 

plants. The extent to which vegetative roof systems influence acoustical performance and air 

quality will be discussed in the literature review in chapter 4. Figure 3.3 shows the possible 

points available in LEED for Schools 2009.  
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Figure 3.3 LEED 2009 for Schools New Construction and Major Renovation Project Checklist (USGBC) 
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One portion of the LEED for Schools Rating system is so unique that is deserves special 

mention. IDc3 provides credit for the use of the School as a Teaching Tool. This credit 

encourages the use of the building's sustainable design features as an experiential example of 

traditional lessons. The goal is to educate a generation of students who view sustainability as part 

of their everyday lives and understand how they and their surroundings impact the overall 

environment. 

 This research primarily focuses on green roof technology and the many benefits 

associated with green roofs. There are few to no single projects that the owner of a school facility 

can pursue that are as far reaching as the installation of a green roof. Referencing the project 

checklist above (Figure 3.3), the installation of a green roof can be used to obtain LEED points 

in Sustainable Sites (Site Development, Storm Water Design, Heat Island), Water Efficiency 

(Water Efficient Landscaping), Energy and Atmosphere (Optimize Energy Performance), Indoor 

Environmental Quality (Thermal Comfort, Acoustical Performance), as well as Innovation in 

Design (The school as a teaching tool). Not only could a school district earn valuable LEED 

points for all of its schools by implementing a large scale project such as installing green roofs 

on all of its schools, but it could also make a major contribution to its adjacent watershed 

community by helping to make significant reductions to wet water flows (WWF) including 

combined sewer overflow (CSO), sanitary sewer overflow (SSO), and storm water discharges. In 

addition, such a project would make considerable reductions to the urban heat island effect 

caused by a growing number of impervious structures throughout the community. This reduction 

to the ambient temperatures surrounding the school district will have measureable benefits to the 

maintenance/replacement of adjacent infrastructure. A detailed analysis of these benefits is 
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performed in chapter 5 of this thesis in an effort to highlight the break even point and net present 

value (NPV) of green roof installations.  
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CHAPTER 4 

LITERATURE REVIEW 
 
 

4.1 Energy consumption, GHG emissions and Heat Island Effect 
 

In exchange for flourishing cities built upwards, urban communities have sacrificed 

permeable and moist surface areas for impervious surfaces (buildings, pavements) and as a 

result, cities experience warmer climates than surrounding rural areas. This phenomenon is 

referred to as the Urban Heat Island Effect. Both domestically and internationally, cities have 

utilized cool pavements, increased tree cover and vegetation, green and heat-deflecting roofs to 

counteract the heat island effect. According to Hashem Akbari, author of many peer-reviewed 

journal articles on the subject of energy impacts of heat island reduction, planting vegetated 

cover on the roofs of city buildings is the ideal method because it simultaneously mitigates the 

heat island effect, reduces energy bills, mitigates storm water runoff, and improves building 

aesthetics.  

The vegetation of rural areas has a direct role in reducing air temperatures through the 

process of evapotranspiration. The plants will absorb water through their roots and release it 

through their leaves into the air, through the act of transpiration and evaporation. This in turn 

helps disperse the ambient heat (Burba 2008). The impervious surfaces of urban areas, such as 

conventional roofs, parking lots, sidewalks and roads, replace vegetation, reduce the amount of 

water evaporated and the benefits of evapotranspiration are lost. During warm sunny summer 

days in rural areas, the moist or shaded surfaces will remain close to air temperature while the 

exposed dry surfaces in urban areas can be heated to temperatures as high as 90°F hotter than the 

air (Carter 2006). The difference in daytime surface temperatures between rural and urban areas 
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ranges between 18 and 20°F (EPA 2008). Surface urban heat islands are strongest when the sun 

is shining during the day; but can also be observed at night. 

Why should individuals be concerned about the urban heat island effect? The heat island 

effect negatively affects urban communities in various ways. Higher temperatures in the 

summertime lead to an increase in energy demand for cities, when compared with surrounding 

rural communities. Urban areas experience the burden of higher air conditioning costs in the 

summer and higher heating costs in the winter. One study found that the heat island effect was 

responsible for 5-10% of the peak electricity demand for the cooling of buildings in cities 

(Akbari 2005). Localized urban areas produce an augmented amount of greenhouse gas 

emissions and air pollution. The increase in energy demand produces greater greenhouse gas 

emissions from the power plants supplying the electricity (EPA 2008).    

 Impervious surfaces in cities result in a higher percentage of runoff and lower percentage 

of evapotranspiration than areas with natural ground cover. The hot impervious surfaces can 

transfer their stored heat to storm water, which will eventually make its way through storm 

drains and eventually to rivers, streams and lakes where the water temperatures of these bodies 

are also raised. The fluctuation in water temperature can adversely affect the ecosystem (EPA 

2009). Higher heat can also lead to the quicker degradation and rutting of pavements (Mallickm 

2009). There are also increased risks of heat-related illnesses (cramps, exhaustion, heat-stroke 

and respiratory difficulties) and even heat-related mortality (Changnon 1996).   

Different studies using thermal remote sensing have measured the daytime surface 

temperatures in urban areas. The following maps were created by Robert Simmon using data 

from the NASA Landsat Program, in order to assess New York City’s heat in the summer during 

daytime hours. The data was captured on August 14, 2002 at 10:30 AM (Scott 2006). The map 
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labeled Figure 4.1a illustrates temperatures, with cooler temperatures in blue and hotter 

temperatures in yellow. The map labeled Figure 4.1b illustrates the location of vegetation 

throughout the city, with light green indicating a sparse amount of vegetation and dark green 

representing dense vegetation.  

                  

Figure 4.1a: Temperature Map (Scott 2006)             Figure 4.1b: Vegetation Map (Scott 2006)  

 
These maps illustrate a correlation between areas with dense vegetation and cooler temperatures, 

suggesting the existence of the urban heat island effect. 

 

4.2 Green Roof Basics 

 Flat roofs represent a significant percentage of the impervious structures in urban areas. 

In addition, roof tops are remain relative undisturbed places. That is that they are not used like 

other impervious surfaces such as roads and parking lots, thus they symbolize an ideal area that 

can be used to replace vital vegetation that has been destroyed by development. Modern-day 

green roofs mainly evolved in Europe, where government incentives have led to a burgeoning 
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green roof market. Until 1970, green roofs were regarded as luxurious home amenities when 

Professor Hans Luz, a German Landscape Architect, proposed the use of green roofs as a means 

of improving the quality of the urban environment (McDonough et al. 2003).  Figure 4.2 is an 

excellent visual representation of the cross-section of typical green roof systems. 

 

 

Figure 4.2 Cross Section of Common Green Roof Systems (Coffman 2004) 

4.3 Green Roof Costs 

Because of the greater amount of layers and intricacy, intensive roofs require a higher 

capital investment ($25-40+/sq ft) and have higher long-term maintenance costs. Extensive green 
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roofs are the lighter weight and simpler designed roofs that typically cost $5-$25/sq ft or $54-

$269/sqm (EPA 2008). There are various factors driving costs which lead to the wide range of 

cost estimates. The design and specifications of a project, the type of existing roof, roof 

accessibility and the type of new roof system required in re-roofing with a roof-root-repelling 

membrane, green roof system (the type and depth of growing medium, square footage of the 

green roof), the types of plants and season of installation, installation and labor and maintenance 

costs (typically only for the first two years) are all factored in to the extensive green roof cost 

range. These factors are cost drivers for intensive roofs, with the addition of an irrigation cost 

component and higher and long-term maintenance costs (Peck 2010).    

 A green roof recently installed atop a Duke University Hospital building with a roof area 

equal to ~6000 square feet, cost $17 to $20/sq ft in roofing assembly installation, which includes 

the price for the greening component, $8 to $10/sq ft (Pennigar 2011). Xero Flor America’s pre-

vegetated mats were used in the green roof because they have a synthetic fiber in them, which 

makes it easy and inexpensive if a portion of the green roof needs to be replaced. The design of 

intensive roofs do not allow for such simplified and cheap installations and replacement options. 

The goal of an extensive green roof is to design a roof that requires little to no maintenance and 

added structural support. Extensive green roofs are less expensive and the preferred type when 

retrofitting an older building. 

 

4.4 Green Roof Benefits 

There are many documented benefits of green roofs. They supply an otherwise dry region 

with thermal mass and evaporative cooling. Soil and plants also provide a natural insulation for 
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the building structure, which aids in reducing energy use and minimizing utilities costs for 

businesses. Soil and plants used on the edifice absorb water, thus reducing storm water runoff. 

Green roofs also help reduce costs and the production of landfill-bound garbage by eliminating 

the use of petroleum-based shingles. Green roofs have numerous incentives for business owners 

as well. For example, many hotels have utilized green roofs to help with storm-water 

management, growing fresh produce for in-house use in restaurants, and for cutting costs 

because self-sustaining roofs require little to no maintenance (Cannarsa 2008). Aside from the 

environmental and economic benefits, green roofs are aesthetically pleasing, can help in 

promoting sustainable community gardens and in some instances can serve as additional city 

green spaces, as demonstrated by New York’s High Line, a park built on an out of use railway in 

Manhattan (Friends of the High Line 2009).   

 

Green Roofs and Energy 

Buildings in the United States represent 38.9% of primary energy use and 72% of 

national electricity consumption, according to the Environmental Information Administration 

(2008). Buildings also account for 38% of all CO2 emissions in the US (USGBC 2008). 

According to the American School and University’s Annual Maintenance and Operation Study, 

the average total energy/utilities cost per student in the US rose from $232.55 in 2007 to $400 in 

2009. This represents a 72% increase in energy costs in only two years. As energy consumption 

and subsequent costs increase, so do the CO2 emissions from power plants. If Universities are to 

reduce their carbon footprint, changes need to be made to older buildings in order to reduce their 

impact on the environment.  
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Researchers have determined that vegetated roofs are able to reduce the heat-island effect 

(Akbari 2009) as well as significantly reduce energy consumption and costs (Hui 2002). A 

Canadian study determined that installing a 32,000 square foot green roof on a commercial 

building in Toronto would reduce the building’s total cooling by 6% and the heating energy 

usage by 10% for a complete energy usage reduction of 21,000 kWh (Bass 2001). A similar 

study published in Building and Environment found that green roofs reduced building 

temperatures and increased the thermal comfort outdoors (Alexandri 2008). 

 Green Roofs for Storm Water Management 

Urban development has led to large areas of impervious surfaces such as parking lots and 

building roofs. Runoff from these areas is causing problems for many urban and suburban 

communities. Not only is total volume of wet weather flow (WWF) increased, but peak flow 

rates are also increased.  Implementation of traditional storm water best management practices 

(BMPs) in urban areas may not be practical in all circumstances due to limited available surface 

area and other concerns. Green roofs have been suggested as a means to reduce the storm water 

of development because they have been shown to both detain and retain storm water. Extensive 

green roof systems are proven to be major contributors to runoff reductions. According to a 2008 

study by Timothy Carter, a 3.5 - 4 in. (8 -10 cm) deep green roof can retain 50% or more of the 

annual precipitation. Even when rainfall leads to saturated conditions, green roofs significantly 

increased the time to peak prior to producing runoff and are a prime storm water mitigation tool. 

Significant water quality and quantity issues are caused by storm water runoff from 

developed areas in North America. For the five years from 1997 to 2001, the rate of urban 

development averaged 890,000 ha/year (2,400 ha/day) (NRCS 2003). Development results in 

water quality impairment and quantity management issues throughout the affected watersheds. 
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For example, nutrient loading (a widespread result of agricultural runoff) may be replaced as the 

critical impairment issue for a watershed by increased peak flows, flooding, and urban pollutant 

loads as runoff is collected from impervious pavement and roof surfaces (Hanley 2007). Wet 

weather flow (WWF) including combined sewer overflow (CSO), sanitary sewer overflow 

(SSO), and storm water discharges is one of the leading causes of water quality impairment in 

the United States and improvement of controls is one of two priority water focus areas cited by 

the EPA's Office of Water in its National Agenda for the Future (Perciasepe 2004). Pollution 

problems stemming from these WWFs are extensive throughout the country. Problem 

constituents in WWF include visible matter, pathogens, biochemical oxygen demand (BOD), 

suspended solids (SS), nutrients, and toxicants (e.g., heavy metals, pesticides, and petroleum 

hydrocarbons). National estimates have projected costs for WWF pollution abatement in the tens 

of billions of dollars (APWA 2002). Therefore, municipalities need alternatives to control the 

high costs of WWF treatment prior to release. This report presents data showing that green roofs 

are effective BMPs for mitigation of the environmental impacts to receiving waters associated 

with urban runoff. Greening of rooftops, by incorporating plants into the design of roofing 

systems, has been suggested as a method to reduce the impacts of storm water runoff by reducing 

the impervious surface within a developed zone (Scholz-Barth 2001). The benefits of green roofs 

for storm water control include direct retention of a portion of the rainfall, and delaying and 

decreasing the peak rate of runoff from the site (PACD 1998). Media depth and porosity play an 

important role in storm water retention and plant growth. Plant size and selection depend on the 

depth of the roof overburden (growing media) and local climate, but almost always consists of 

winter-hardy, drought tolerant, perennial plants, e.g., sedums which are a type of succulent, 

cactus-like plant. 
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4.5 Major Green Roof Findings 

The use of green roofs in Germany is widespread and has been promoted in many cities 

through financial incentives (Pederson 2001). Economies of scale, contractor experience, and 

specialized equipment have reduced the cost of installing a green roof in Germany and 

throughout Europe. In contrast, installing a green roof in the United States can be very 

expensive, adding from at least $6/sqft ($65/sqm), to more than $30-$40/sqft ($320-$430/sqm), 

to the cost of the roof (Bick 2011). Other barriers also limit widespread use of green roofs in the 

US. Engineers, architects, developers, and policy makers are unsure of the actual quantifiable 

benefits of a green roof. In the U.S., Peck (2007) observed as recently as 2006, only 70 acres of 

green roofs had been planted, as compared to Germany where in 1996 alone, 2,500 acres of 

green roofs were installed (Peck et al., 1999); however, the 2006 totals represent a 24% increase 

over the previous year, and only account for reported projects. Annual reductions of runoff of 38 

-54% and 38 -45% have been reported for 3 in. (8 cm) deep media (Miller 1998). A media depth 

of 2.5 in. (6.5 cm) can retain 40% of the rain for an individual 2-in. storm (Scholz-Barth 2001). 

The City of Portland, Oregon, has developed guidelines for green roofs that state that some 

jurisdictions may reduce water and sewer charges or may provide financial incentives to 

developers who retain storm water on site, and that green roofs can help reduce the size of storm 

water management ponds. Much of the existing published information on green roof 

performance in North America has been collected from pilot-scale or sometimes commercial-

scale green roofs without replication. For example, recently Van Woert et al. (2005) performed 

studies of three simulated roof platforms with dimensions of 2.44 x 2.44 m (8 x 8 ft), divided 

into three sections, to quantify the effects of various treatments on storm water retention. The 

mean precipitation retention ranged from 48.7% for gravel test beds to 82.8% for vegetated test 
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beds. Roof slope and green roof media depth also impacted storm water retention with the 

combination of reduced slope and deeper media reducing the runoff the most. They also 

observed moderation of peak flows. Little scientifically based replicated data have been collected 

in North America at the building scale. The EPA is emphasizing the use of BMPs to capture and 

treat runoff from small storms, especially the use of onsite BMPs, often termed low-impact 

development (LID), such as bio-retention, swales, or rain gardens. Green roofs offer a practical 

alternative for new construction and for retrofitting existing structures. Implementation of green 

roofs in European countries like Germany is a regulatory driven technology in the municipalities 

that have adopted mandates for green roofs on new buildings. With more municipalities in the 

United States looking for flexible ways to control storm water, including the use of storm water 

credits or watershed-based trading, developing new storm water controls such as green roofs is a 

vital initiative for the EPA. Green roofs appear to be a suitable technology for urban areas, as 

there is limited space to implement traditional storm water controls. Land values are too high to 

devote much surface area to storm water control devices. In addition, surface-based storm water 

control devices can be vandalized and may pose public access and safety issues. Green roofs can 

slow the runoff from roofs during larger storms and during smaller storms are capable of 

absorbing a majority if not all of the rainfall. In essence, the impervious area is decreased when 

planted roofs are installed on, or retrofitted to, buildings. The plants also act as a bio-filter in 

reducing the pollutant content of the rainfall. This technology reduces the heat island effect of 

standard roofs by replacing the low albedo surface, as well as by increasing evapo-transpiration, 

which helps cool the air by several degrees. Furthermore, because of reduced air temperature, 

less energy is needed for air conditioning (Osmundson 1999). 
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Van Woert et al. performed a study of water retention capabilities of green roofs installed 

on three facilities in Chicago. Storm water runoff was monitored and analyzed from January, 

2005 through November, 2005. Replicated data were collected for 72 precipitation events from 

three green roofs and two flat asphalt roofs. Un-replicated data were collected from an unplanted, 

media-only roof section and rooftop detention section. Events included high-intensity, short 

duration (1 in. (25 mm) in 30 min) events and high total precipitation steady rate (2.65 in. (67.3 

mm) over 8 hr) events. Unique data were also collected from winter precipitation events, 

including snow and ice. Green roofs retained over 50% of total precipitation during the study 

period. During the summer months, nearly 95% of the precipitation was retained. During winter, 

retention was smaller (<20%) and not significant. Peak flows were delayed by green roofs and in 

many cases peak flow rates were also reduced. Green roofs were most effective at delaying and 

reducing peak flows when they were not fully saturated. Rapid peak flows, i.e. high-intensity, 

short duration rainfalls were attenuated more than lower intensity, high-total volume longer 

period flows. 

These data and data from other studies at this site confirm that under ambient conditions, 

a 3.5 -4 in. (8 -10 cm) deep green roof can retain 50% or more of the annual precipitation. The 

replicated data from this study provide the only available estimate of expected differences in 

performance from identical green roofs. Green roof runoff was quite consistent during the warm 

summer months (almost no runoff), but was more variable during winter months when runoff 

from buildings varied during some storm events from 80% for one building to 100% for others. 

Flow rates were reduced in runoff from green roofs until systems were saturated, at which point 

runoff flow roughly equaled the rate of precipitation input; however, peak flows were reduced 

and time-to-peak increased.  
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 Monitoring Runoff Water Quality from Green Roofs 

Storm water runoff samples were collected from green and flat asphalt roofs and 

analyzed for water quality parameters. Twenty-one precipitation events were evaluated for pH, 

EC, color, turbidity, and nitrate. Additionally, discrete samples were collected using manual 

techniques and brought back to Penn State’s analytical laboratory for further analysis. A limited 

data set of five sampling events was analyzed for nutrients, hardness, and other ions. Analysis of 

the 21 precipitation events revealed that green roof runoff was colored yellow and had higher pH 

and EC (Van Woert et al. 2005). The increased pH was a benefit in an area of such acid 

precipitation. The smaller data set of five samples indicated that green roof runoff generally had 

equal or greater concentrations of nutrients (phosphorous and potassium) and hardness (calcium 

and magnesium) measured in solution than flat asphalt roof runoff. The concentration of green 

roof phosphorous release was comparable to that of known residential landscape values. 

Loadings of nutrients (to sustain plants) and hardness (a property of the clay based media) were 

significantly greater for the green roofs, approximately 300% for phosphorous and potassium, 

and as much as 1000% for magnesium (Van Woert et al. 2005). Analysis for other ions did not 

statistically discern whether the loadings were greater or lesser from green roofs. Partly, this is 

due to the small sampling size, but also indicates that beyond proper management of the planting 

media to reduce excess nutrient release, loadings from green roofs are not significant. Results 

based on this smaller, limited water quality monitoring data set (five samples) should be used 

cautiously. 

Green roofs appeared to be beneficial for the removal of atmospheric nitrate. In the 

summer when green roofs retained nearly 100% of the precipitation almost no nitrate ran off the 

green roofs. Water quality impacts of a green roof are thus seasonal plant-related mechanisms 
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and depend on both the input concentration and the precipitation and runoff rates. The data 

collected suggest that the best use of a green roof is probably in conjunction with other storm 

water BMPs such as bio-infiltration and rain gardens, where possible. Runoff discharged to 

storm water collection systems that have water quality BMPs, is preferred; however, the time 

delay and volume reduction provided by green roofs still offer receiving water quality benefits 

for storm water systems that discharge without treatment. For this reason, discharge of green roof 

runoff to a combined sewer system is appropriate and desirable, due to the significant reduction 

of volume discharge and extension of time to peak, regardless of discharge concentration. Green 

roofs are an important storm water technology for urban areas with limited space for retrofitting 

BMPs into the existing conveyance system.  

 

Evaluating Evaporation and Evapotranspiration Rates of Green Roofs 

Other findings from this study performed by Van Woert et al highlight the 

evapotranspiration (ET) capabilities of green roofs. Eight 0.5 m2 (6.1 ft2) weighing lysimeters 

planted with a mixture of delosperma nubigenum and sedum album were compared to unplanted 

media. These lysimeters were monitored during 21-day dry-down cycles during warm actively 

growing periods and cool dormant periods. Drying cycles lasted 21 days. Green roof plants 

rapidly lose water following irrigation after which water loss rates decline. This was a new 

finding. Initial ET from green roofs was similar to other measured systems and could be 

described using normal ET prediction equations such as Pennman-Monteith. Unplanted media 

lost water at a similar rate initially, but after several days, water loss rates declined below that of 

the green roofs. Thus plants are essential to the system, while the unplanted media are limited to 

evaporating water from the surface, the plants continue to remove water from down in the media, 
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resulting in quick recharge of the storm water runoff reduction potential. These data demonstrate 

the superiority of a planted roof over an equivalent ballast roof for retention of storm water 

during the summer months. Rapid initial loss of water from these plants followed by drought 

adaptation is a new finding that provides an important component of any model or design tool to 

predict the effectiveness of a green roof as a storm water tool. 

 
Factors Affecting Green Roof Establishment and Maintenance 

Media type, depth, and early drought were evaluated as factors affecting establishment 

and early management of a green roof. A test procedure for evaluating long-term pH buffering of 

the roof was developed and evaluated. Early drought is very detrimental to the survival and 

establishment of green roof plants particularly with shallow media depths. Sedum species may 

survive but other green roof plants may not survive. The results suggest that 3 -4 in. (80 -100 

mm) of irrigation with the potential for supplemental irrigation during establishment will result 

in better plant survival rates. Tests of the pH buffering capacity of the planting media suggest 

that the green roof media can buffer acid precipitation for approximately 10 years, after which it 

may be necessary to amend the media with lime to maintain the pH buffering capacity (Kumar 

2005). 

Green roofs can attain an annual 50% reduction in roof runoff. From a practical 

standpoint, this potentially translates into a reduction in area and volume control needed for the 

typical suite of water quality BMPs. In terms of practice, the storm water volume and increased 

time to peak control offered by green roofs could result in more building space, additional 

parking spaces or additional and usable open space. However, this concept would need to be 

field tested at a larger scale and the actual percent reduction in storm water BMPs would need to 

be evaluated, e.g., potential BMP reduction may be between 5 and 20%, not a full 50% annual 
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capture, particularly in areas with dormant (winter) seasons. Clay-based media may be better in 

areas affected by drought due to water retaining capacity of the media. Shale-based 

media may be better for areas subject to more frequent precipitation, particularly acid 

precipitation. 

In this project, several constituents of concern from the green roof were studied. Results 

demonstrated that green roofs may reduce certain pollutants, e.g., acid precipitation and nitrate, 

but that it may increase loadings directly related to these planted systems, e.g., phosphorous, 

potassium, calcium, and magnesium (Van Woert et al. 2005). Due to the variability in results, 

continued sample collection and analysis to minimize the variability may be warranted. Further 

testing of materials used for green roof construction and planting should be conducted to 

determine loadings coming from roofs. Also, other constituents from atmospheric deposition and 

building materials for standard roofing should be tested under controlled systems. According to 

Todd C. Rasmussen, Ph.D. Professor of Hydrology & Water Resources, Warnell School of 

Forestry and Natural Resources at The University of Georgia, the nitrate results should not be 

viewed as a surrogate for all nitrogen and future studies should look at total nitrogen, and 

potentially ammonia and total Kjeldahl Sampling for some of the water quality parameters was 

only represented by five storms; additional sampling is warranted due to the small size of this 

data set. In addition, only analyzing five paired events for green and flat asphalt roof runoff may 

have biased results toward lower loadings from the flat asphalt roofs as not as much rain was 

required to produce runoff, i.e., diluted flat asphalt runoff was compared to higher concentration, 

lower volume green roof runoff. If further comparison tests are performed to standard roofing 

materials and systems, paired analysis of loadings should include storm results from other 

roofing systems and should include a full range of precipitation events, from when green roofs 
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are not producing runoff to events with large amounts of runoff. The greatest benefit green roofs 

can provide is the reduction in runoff, which is also a water quality benefit not adequately 

represented by the five paired data points. The field site provided statistically valid results for 

runoff volumes and much of the concentration data; however, the calculated loadings are based 

on relatively small experimental rooftops, when compared to an urban watershed. Due 

to the variability observed in this study, modeling loadings for green roofs for watershed 

management may require additional monitoring with full-scale roofs or multiple roofs in an 

urban setting. The size and time interval limited analysis of peak flows from the green roofs. Van 

Woert suggests that additional hydrology monitoring may be warranted on larger roofs to better 

determine potential peak flow values from green roofs. The half-media and half-detention roofs, 

while providing insight to the experiment, were of limited value for individual storms because of 

the absence of replicates. Splitting the roof into two media sections or two detention sections 

would have provided additional replicates. Another rain gauge or triangulation of rain gauges 

around the buildings would have provided more insight to rainfall totals. The laboratory studies 

indicate that ET can be modeled using standard equations; however, further testing should be 

conducted. Data suggest there may be a need to develop unique water loss model factors to 

account for water loss patterns in sedum carpet roofs to accurately predict rate of recharge for 

water detention capacity. The drought studies indicated some potential limitations without the 

use of irrigation. Van Woert et al. also determined that green roofs need to be tested in other 

climates so that further design specifications on plant mixtures, media depth and amendments, 

and potential irrigation requirements can be determined. Other climatic conditions should also 

include year-to-year or long-term studies, as it seems very likely that in dry years the green roof 

runoff would be far less than in wet years. 
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The effects of green roof runoff discharge on receiving waters or the potential for 

additional treatment of green roof discharge were not addressed. For suburban or agricultural 

areas, green roof runoff treatment may be as simple as directing the downspouts to grassed areas 

(vegetated filter strips or swales) or collecting green roof runoff in rain barrels to be used for 

irrigation, but this may not be practical for urban areas where there is limited room for storm 

water controls. For urban areas that have combined sewers, green roofs should be viewed as a 

benefit due to the volume reduction to the combined system and the delay in time to peak. The 

same can be said for storm water conveyance systems that drain to storm water BMPs. The 

effects of mixing and the delay in time to peak may be sufficient to allow discharge to storm 

water conveyance systems that discharge to a receiving water even without treatment; however, 

further studies or modeling exercises may be warranted. Directly discharging green roof runoff 

to a receiving water is not recommended. Additional lysimeter studies should be conducted to 

identify more plant species suitable for green roofs, especially varieties that are drought resistant 

and require minimal nutrient supplements. 
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CHAPTER 5 
 

CASE STUDY 
 
 

5.1 BCA of Green Roof Systems – Atlanta Public Schools 

The results of Van Woert et al studies provide great insights into the beneficial nature of 

green roofs. Their findings were based off of relatively small scale modeling, but give foresight 

to large scale applications at the urban water shed level. The built environment has been a 

significant cause of environmental degradation in the previously undeveloped landscape. As 

public and private interest in restoring the environmental integrity of urban areas continues to 

increase, new construction practices are being developed that explicitly value beneficial 

environmental characteristics. The use of vegetation on a rooftop, as an alternative to traditional 

roofing materials is an increasingly utilized example of such practices. The vegetation and 

growing media perform a number of functions that improve environmental performance, 

including: absorption of rainfall, reduction of roof temperatures, improvement in ambient air 

quality, and provision of urban habitat. A better accounting of the green roof’s total costs and 

benefits to society and to the private sector will aid in the design of policy instruments and 

educational materials that affect individual decisions about green roof construction. This study 

uses Atlanta Public Schools as an experimental green roof plot to develop a benefit cost analysis 

(BCA) for the life cycle of extensive (thin layer) green roof systems. The results from this 

analysis are compared with a traditional roofing scenario. The net present value (NPV) of this 

type of green roof currently ranges from 10% to 14% more expensive than its conventional 

counterpart (Carter 2006). A reduction of 20% in green roof construction cost would make the 

social NPV of the practice less than traditional roof NPV. Considering the positive social 
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benefits and relatively novel nature of the practice, incentives encouraging the use of this 

practice in highly urbanized watersheds are strongly recommended.  

The relationship between the built and natural environment has traditionally been one of 

complete opposition. Both terrestrial and aquatic ecosystems are drastically, and 

often times irrevocably, altered during the process of urbanization (Pickett 2001; Paul and Meyer 

2001). Water regulation and supply, erosion control and sediment retention, nutrient cycling, 

climate regulation, and waste treatment changes are all ecosystem services either 

eliminated or significantly degraded in highly developed landscapes (Costanza 1997). The 

construction of man-made structures and impervious surfaces that are a defining feature of 

highly developed areas are an important causal element behind environmental decline in urban 

areas (Arnold and Gibbons 1996).  

One reason why construction practices lead to environmental problems is that the costs of 

environmental degradation are not fully realized by the party who caused the damage. Thus, 

when evaluating construction costs, developers have historically viewed environmental damage 

as exogenous to the development process. Federal and state environmental laws have altered this 

situation to some extent in the last several decades. Developers have been limited by laws and 

regulations concerning erosion and sedimentation control, post-construction storm water control 

and urban tree preservation. Nonetheless, developers still make land use decisions without 

considering the full cost of the environmental damage that their activities create.  

Positive incentives have been developed for more ecologically sensitive development, 

particularly for buildings. A rating system called leadership in energy and environmental design 

(LEED) has been created by the United States Green Building Council for certification of 

commercial buildings that have a reduced environmental impact. Many municipalities require 
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buildings built with public funds to receive LEED certification. An adaption of this policy 

appears to be transforming construction practices for schools as LEED for Schools 2009 

(discussed in chapter 3) is being utilized by school systems such as APS.  

Specific building construction practices are being refined to create structures which have 

a much smaller impact on the surrounding landscape than previously thought possible. At the 

broadest scale, sites are selected for their proximity to public transportation, their ability to 

maximize open space and protect habitat, effectively manage storm water runoff, address the 

heat island effect found in urban areas, and reduce light pollution (www.usgbc.org). Sustainable 

water use for a building may involve xeriscaping, graywater reuse for irrigation, and the use of 

low-flow or composting toilets and non-water urinals, which are becoming increasingly cost 

effective (Gleick 2003). A building’s energy use is also an extremely important component of 

sustainable design. From simply designing smaller structures to installing active solar panels or 

other on-site sources of self-supplied energy, there are a wide range of practices available to 

reduce a building’s reliance upon fossil fuel energy sources.  

Increasingly, building materials contain recycled material content in new construction 

and attempt to reuse as much of the existing structure in renovations as possible (Appendix E - 

Mays HS Renovation). Indoor environmental quality is also an important feature of green 

buildings. Paints and adhesives designated ‘‘Low-VOC’’ or ‘‘No VOC’’ (volatile organic 

compounds) reduces the low level toxic emissions found in older materials and improves indoor 

air quality for building occupants. Day-lighting larger portions of the structure improve the 

working environment in school buildings as well as reducing energy costs when high 

performance windows are used. 
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5.2 Designing Rooftops for Sustainability 

Of these many ways that buildings can be designed and constructed in a more sustainable 

manner, the roof surface can easily be overlooked as space that can be designed into an 

environmental amenity for the building, not simply contributing to environmental problems. The 

rooftop is typically the same size as the building’s footprint and is the structure’s prime barrier 

against precipitation and solar radiation. To the extent that the roof surface can be transformed 

into useful space, the building becomes economically and functionally more efficient and can 

have a more benign effect on the surrounding landscape.  

Published research has focused largely on the energy savings associated with different 

types of roofing systems. Akbari (2001) found that changing a roof from one with low albedo to 

high albedo in Sacramento, CA would decrease cooling energy use by 80%. Other studies have 

documented the affect of insulation on the heat flux at the roof surface, how to incorporate active 

and passive solar designs into rooftop systems, and the energy benefits associated with ventilated 

roof systems. These alternatives to traditional roofing systems are beginning to gain more of a 

market share and EPA has established an Energy Star rating system for roofing products, 

primarily identifying roofing membranes which have high albedos and the potential to 

significantly reduce building energy costs (www.energystar.gov).  

While energy savings are an important function of alternative roof systems, other benefits 

may also be realized. In a traditional roofing system, rainfall hits the rooftop and is quickly 

channeled into the nearest gutter or storm sewer system with the goal being to have the roof shed 

water as quickly as possible. As discussed in chapter 4, regulations have mandated storm water 

management plans for municipalities and rooftop runoff control has become an important 

management practice for minimizing degradation of aquatic ecosystems. One solution is to 
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create rainwater storage tanks which can capture rainfall from the roof surface and store it for a 

time before it is reused or slowly discharged. A more effective means, however, and one that 

also provides additional benefits relates to replacing the vegetation destroyed during 

development with rooftop vegetation. 

 

 Green roofs: multifunctional roof surfaces 

The application of vegetation and growing media to the roof surface is an increasingly 

popular practice which produces improvements in both energy conservation and storm water 

management. These green roofs are multifunctional in that they provide numerous environmental 

benefits simultaneously. These benefits include: decreasing the surface temperature of the roof 

membrane and energy use in the building, retaining storm water for small storm events, 

increasing biodiversity and habitat in urban areas largely devoid of such space, and improving 

ambient air quality (Clark 2005). While these benefits are inherent in all green roof systems to 

some degree, depending on the design of the roof there is potential for other amenities as well. 

Accessibility and esthetic appeal for the building occupants, sound insulation and the potential 

for urban agriculture are all realistic benefits provided by green roof applications (Peck 

1999).  

As described in chapter 4, there are two general types of modern green roof systems: 

intensive and extensive. Intensive systems are characterized by deep (>6 in) growing media, 

opportunities for a diverse plant palate on the rooftop and high cost and maintenance 

requirements. Extensive systems are designed to be lightweight and easily retrofitted on existing 

roof surfaces. They contain thin growing media depths (2–6 in) and can support a limited number 

of drought tolerant plants that thrive in the limited water and nutrient conditions. Over 80% of 
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green roofs in Germany are extensive systems and these types of green roofs are expected to 

offer the most cost-effective approach for roof greening (Harzmann 2002). 

 

5.3 Economic Analysis of Green Roofs 

While green roof projects have recently generated significant interest in design fields 

such as landscape architecture, little research has been done to evaluate the costs and benefits of 

green roof systems for urban applications. Much of the peer-reviewed literature on the 

economics of green roofing systems is found in conference proceedings and evaluate the private 

benefits at a single roof scale. Lee (2004) compared green roof and traditional roof life-cycle 

costs over 60 years for a single roof in Oregon. They found the green roof to be 7% more 

expensive than the conventional roof over this time. This analysis included extended roof life, 

energy savings, and storm water fee reduction in the economic benefits that the green roof 

provided. Clark (2006) demonstrated a return on investment of 11 years on a single green roof in 

Michigan when low green roof installation costs and high environmental benefits were 

considered. Alternative metrics to monetary values such as Eco-indicator values and energy 

analysis have been used to compare green roofs to conventional roofs in a sustainability context. 

These studies find green roofs provide significant environmental benefit over a traditional roof 

relative to the life cycle and embodied energy of its materials (Alcazar and Bass 2006; Coffman 

and Martin 2004; Kosareo and Ries 2006). Other published reports typically focus on a single 

green roof benefit or qualitatively describe a series of benefits derived from different types of 

green roofs.  

Benefit cost analysis has been widely recognized as a useful framework for assessing the 

positive and negative aspects of prospective actions and policies, and for making the economic 
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implications alternatives an explicit part of the decision-making process (Arrow 1996). Benefit-

cost analysis compares alternatives over time as well as space, and uses discounting to 

summarize its findings into a measure of net present value (NPV). The test of NPV is a standard 

method for assessing present value of competing projects over time. In the case of this study, the 

roofing scenario with the lowest NPV is the preferred option as the low value indicates the least 

costly alternative.  

This study quantifies the costs and benefits of thin-layer, or extensive, green roof systems 

as they compare to typical flat roofs on Atlanta Public Schools. The results from a similar study 

performed for the Tanyard Branch urban watershed in Athens Georgia were used as a basis for 

calculation and theory. The authors of the study Tanyard Branch, combined the local 

construction costs for an established green roof test site with experimentally collected storm 

water retention data and building energy analysis data into a single metric using conventional 

cost-benefit analytical techniques applied over the life cycle of a typical green roof. In order to 

carry out this analysis, the participants, led by Timothy Carter, Ph. D. in Ecology at the 

University of Georgia, relied on published data from other green roof research and practice for 

estimating these effects. This may introduce some bias, and indicates that this work is subject to 

revision as increasing experience with green roofs produces more and better data. This 

information was used to evaluate all Atlanta Public Schools as a case study for application of 

widespread green roofs. As green roof popularity continues to grow, it is important for accurate 

life-cycle benefit–cost analyses (BCA) of green roof systems to be performed to inform both 

policy makers who may allocate public funds for projects with public benefits, and private 

building owners who may see a future financial incentive to invest in new and relatively 

unproven technology. The project examines the feasibility of replacing all the flat roofs of 
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Atlanta Public Schools with green roof systems. This network of schools is located within the 

highly urbanized heart of Atlanta, Ga. which is home to the 430 mile Chattahoochee River that 

makes up the largest part of the Apalachiacola-Chattahoochee-Flint River Basin draining into the 

Gulf of Mexico. 

The Tanyard Branch study used 2003 aerial photography, the impervious surfaces 

including rooftops were digitized into a geographic information system (GIS). About 53.8% of 

the land cover is impervious surface with rooftops accounting for 15.9% of the total land cover 

in the watershed (Figure 5.1). Flat roofs are the most viable candidates for greening as they often 

require no additional structural support and minimal design expertise for green roof installation 

(Banting 2005). Flat roofs constitute 176,234sqm or 7.4% of impervious surface for the Tanyard 

Branch watershed (Carter 2008).  Comparatively, APS rooftops comprise roughly 551,985sqm 

(Appendix B) within Atlanta’s watershed that has 26,088,720sqm of impervious surfaces which 

represents 2.1% of impervious surfaces for Atlanta’s watershed (Scenna and Morris 2011).  

For the Tanyard Branch project, a 42.64sqm green roof test plot was established in 

October 2002 on the campus of the University of Georgia (Fig. 5.2). The test plot was designed 

to be simple to build and easy to replicate using American Hydrotech’s extensive garden roof. 

American Hydrotech, Inc. is a single source supplier for the specialized green roofing materials. 

These materials included a WSF40 root protection sheet, an SSM 45 moisture retention mat, a 

Floradrain FD40 synthetic drainage panel, and a Systemfilter SF geotextile filter sheet 

(American Hydrotech, 2002). The growing media was a Lightweight Roof Garden mix provided 

by ItSaul Natural, LLC. This soil mix is a blend of 55% Stalite expanded slate, 30% USGA sand, 

and 15% organic matter composed primarily of worm castings. This mix was spread to a depth 

of 7.62 cm. Six drought-tolerant plant species were selected for their ability to survive low 
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nutrient conditions and extreme temperature fluctuations found at the roof surface. No irrigation 

or fertilization was applied except for the initial three days of planting (Carter 2006). 

 

 

 

 

 

Fig.5.1  Tanyard Branch watershed impervious cover and stream network (Carter 2006) 
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Fig.5.2 Green roof test plot and layer cross-section (Carter 2006) 

 

5.4 BCA Framework – Discounting of Benefit Cost Flows and Sensitivity 

Green roof BCA was performed according to an 8-stage framework found in Hanley and 

Spash (1993). The stages are: definition of project, identification of project impacts, 

identification of which impacts are economically relevant, physical quantification of relevant 
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impacts, discounting of cost and benefit flows, application of the NPV test, and sensitivity 

analysis. The period of analysis was one green roofing cycle, which was estimated to be 40 years 

based on the doubling of the roof life due to the vegetated cover. Private BCA for greening a 

single flat roof of 929sqm as well as a social BCA of greening all the flat roofs in the watershed 

was performed. All roof greening occurred at year zero. Traditional roofs were greened at year 

zero and also underwent one reroofing cycle at year 20. Avoided storm water costs were applied 

at year zero. Energy and air quality benefits were applied every year of the analysis. A discount 

rate of 4% was applied to the reroofing scenario as well as all the green roof benefits. 

The economically relevant impacts of widespread roof greening were established and 

physical quantification of these impacts were performed using the green roof test plot as a 

template for all new green roofs in APS. The benefits were divided into categories found in 

Table 5.1 with the conceptual framework outlined in Fig. 5.3. Analysis for the social BCA was 

performed at the APS school district scale while a private BCA was performed using a typical 

one-story 929sqm roof. Details of each category follow below and the results are summarized in 

Table 5.2.  

The first category deals with construction and maintenance expenses. The construction 

costs of a typical built-up bituminous roof system on a concrete roof deck were taken from 

personal interviews with three local roofing contractors and additional verification from the 

Means Construction Cost Data. The traditional roof was assumed to have a 20-year guarantee on 

the waterproofing membrane and thus an effective 20-year life before replacement. The 

construction costs of a conventional roof were estimated to be $83.78/sqm. The cost estimate on 

the green roof was obtained from the test site as well as personal interviews with three single 

source green roofing manufacturers (Saul Nurseries, LiveRoof, and GreenGrid). 
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Figure 5.3 Modeling assumptions for private and social BCA (Carter 2006) 

 

 

Table 5.1   

Benefits from extensive green roof systems 

Category  Quantified? 

Construction and maintenance Double the roof life  Yes 

Storm water management Sewer pipe size reduction Yes 

 Reduces need for alternative storm 

water BMPs  

Yes 

 Storm water utility fee reduction Yes 

Energy and insulation  Additional insulation Energy 

savings 

Yes 

Air quality Nitrogen oxide uptake Yes 

Habitat/greenspace Increase bird and insect habitat No 

Urban heat island Reduction in ambient air 

temperatures 

No 

Baseline scenario assumptions 
Building 
- all flat roofs are built-up roofs with gravel ballast 
- reroofing cycle of twenty years 
- reroofing occurs for all roofs at year zero and year twenty 
Society 
- need additional storm water retention 
- NOx market for emission reduction 
Private 
- existing storm water utility fee 
- insulation as required by local building codes 
 
 

Green roof scenario assumptions 
Building 
- all flat roofs are extensively greened with 7.62cmof 
growing media 
- reroofing cycle forty years 
- green roofing occurs for all roofs at year zero 
Society 
- green roof storm water storage of 4.27 cm 
- less electricity used from increased green roof 
insulation 
- air quality improvement from green roof installation 
Private 
- water quality storage credit for stormwater utility fee 
- energy savings frominsulation provided by green roofs 
- NOx tradable credits 
 

(Carter 2006) 
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Table 5.2    
Costs and benefits per square meter of roof   
  Year Unit values ($/sqm) 
Costs     
TR construction and maintenance 0.2 83.78  
GR construction and maintenance 0 155.41  
    
Social benefits    
Avoided storm water BMP cost 0 9.06  
Energy 1-40 0.37  
Air quality 1-40 0.11  
    
Private benefits    
Storm water utility fee credit 1-40 0.04  
Energy 1-40 0.37  
Air quality 1-40 0.11   

(Carter 2006)  

The average cost from these sources was compiled into a unit cost estimate of for initial 

construction of an extensive (7.62 cm of growing media) roof system. No additional 

waterproofing cost was added. While each installation would not have identical costs depending 

on accessibility, structural integrity, and design considerations, an estimate of $158.82/sqm was 

used based on average costs from the manufacturers and the local test plot. Maintenance on a 

thin-layer green roof is considered equivalent to the maintenance schedule of a traditional roof 

with visual inspections twice per year. Many industry groups claim green roofs can extend the 

life of the waterproofing membrane over 200% (Coffman 2004). This is due to the vegetation 

and growing media protecting the membrane from harmful ultra-violet radiation and physical 

damage. Since green roofs have only been used extensively in the United States in the past 

decade, there are few examples to verify this claim. However, engineered green roofs in Europe 

have been shown to function for over twice the life span of conventional roofing systems (Kohler 
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2001). For this study, green roofs are assumed to last for 40 years—twice the life span of 

conventional roofs.  

While the unit construction cost of $158.82/sqm is used for the base case analysis, this 

most likely is at the high end of what would be experienced for widespread green roof 

construction in APS. It is partially based on estimates of what would be required to build an 

initial demonstration roof, and thus ignores economies of scale in materials purchasing as well as  

innovations in construction techniques developed as local contractors gain experience. 

Second, in Germany where the industry has been established for over 30 years, construction 

costs may be as much as 50% lower for larger installations (www.greenroofs.com). It is therefore 

assumed that true construction costs will vary between 50% and 100% of this initial estimate 

when the sensitivity analysis is performed.  

 

 Economic relevance of storm water management 

Storm water management is a second economically relevant category. Under the US 

Environmental Protection Agency’s National Pollutant Discharge Elimination System 

(NPDES) Phases I and II storm water rules, jurisdictions with municipal separate storm sewer 

systems (MS4s) are required to develop a storm water management program relying upon storm 

water best management practices (BMPs) to control storm water discharges (EPA 2011).  

According to the EPA, the best way to mitigate storm water impacts from new developments is 

to use practices to treat, store, and infiltrate runoff onsite before it can affect water bodies 

downstream. Innovative site designs that reduce imperviousness and smaller-scale low impact 

development practices dispersed throughout a site are excellent ways to achieve the goals of 

reducing flows and improving water quality. Green roofs may potentially be one of the BMPs 
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used to accomplish the goals of this program. Green roofs have been shown to retain a 

significantly higher percentage of storm water when compared to a traditional roofing system. A 

study in Michigan documented how, during medium volume rain events, a thin-layer green roof 

system retained 48% more rainfall than a gravel ballast roof (VanWoert 2005). The local test 

roof for the Tanyard Branch study was monitored for its ability to retain storm water from 

November 2003–November 2004. The green roof retained, on average, more than 77% of the 

rainfall throughout the year with retention performance determined primarily by total storm 

rainfall volume. 

Using the storm water retention performance data and APS spatial information, total 

additional storm water storage from greening all flat roofs could be estimated for APS. The 

spatial analysis was formulated using data gathered from APS representatives and interpolated 

from data revealed from the Tanyard Branch study. Based on this data extensive greening will 

provide an additional 13.37 cm of storm water storage depth which results in total storage for 

APS of approximately 23,622 cubic meters. This retention data was then compared with 

published retention and cost data from other storm water BMPs for determining the cost for an 

equal amount of storage using other practices given the land cover in the watershed (EPA 1999). 

Since the experimental area is already highly urbanized, only BMPs which are typically used in 

an ultra-urban application were considered. These BMPs include sand filters, bio-retention areas, 

and porous pavement. Depending on the type of BMP used in the comparison, different cost 

savings may be realized (Table 5.3). The avoided cost of using alternative storm water BMPs is 

considered part of compliance with Phase II storm water rules in Atlanta and the benefits are 

included in the social BCA. Analysis was run by dividing the total storm water storage volume 
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provided by green roofs equally among the three alternative BMPs and calculating the total cost 

of this alternative scenario (Table 5.3).  

 

Table 5.3   

Avoided cost of urban BMPs (source: EPA, 1999)  

BMP Cost ($/m^3 

treatment) 

Total cost ($) using flat green roof storage in 

APS 

Bio-retention area 232.37 5,607,154 (232.37 x 23, 622)  

Porous pavement 141 3,330,702 (141 x 23,622) 

Sand filter 263.09 6,214,712 (263.09 x 23,622) 

Equal distribution of the three BMPs 212.15 5,011,407 (212.15 x 23,622) 

(Carter 2006) 

 

An additional private storm water benefit for green roofs may be realized in the 

regulatory arena. Increasingly, jurisdictions are creating storm water utilities, which charge fees 

to parcel owners based on their parcel’s storm water contribution to the system. These utilities 

generate income used exclusively for storm water management operations. Parcel owners are 

commonly given exemptions or credits if they can demonstrate that they are keeping their site 

from contributing runoff to the storm water system (Morris 2011). Atlanta has enacted a storm 

water utility and incorporated a system of credits for demonstrated on-site management. With the 

proper documentation, green roofs are assumed to accomplish the water quantity standards 

required for the storm water credit. In the case the roofs in Tanyard Branch, this results in a 

savings of approximately $0.04/sqm to $0.08/sqm based on building type (Table 5.4). This 

translates to savings of $0.04/sqm per year for APS school buildings or $22,079/year. 

Calculations were performed based on the spatial information of the schools in the APS. The 
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total value was applied to the private BCA. This is a transfer payment which does not increase 

social welfare and therefore is not included in the social BCA. 

 

Table 5.4   

Storm water utility benefits by 

building type   

Building type Benefit ($/m^/year) Total annual benefits in 

Tanyard Branch ($) 

Commercial 0.04 3,306.65 

Government 0.04 3,908.66 

Multi-family residential 0.04 1,003.02 

Single family residential 0.08 28.47 

Total   7,485.95 

(Carter 2006) 

Another aspect of storm water management is the drainage collection of pipes, inlets and 

junction boxes collectively termed the storm sewer system. Retention of storm water before it 

reaches the system may result in resizing of the pipes during maintenance and repair of the 

infrastructure. The City of Atlanta has and MS4 storm sewer drainage system with an area of 

approximately 133.2 square miles, which may include more than 60,000 structures covering 10 

storm water drainage basins, based on estimates provided in the City’s 2006 Storm water 

Management Program (SWMP) Annual Report. Spatial data for the storm sewer system was 

acquired for the watershed from the city of Atlanta.  

Cost savings to storm water infrastructure were developed in the Tanyard Branch study. 

Storm water pipes in Athens-Clarke County are a minimum of 38.1 cm (15 in) and most are 

designed for the 25-year storm event, which in Athens is 15.85 cm. Pipe costs were estimated 
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according to Means (2005) with unlisted pipe dimensions priced using the power function 

derived from Means (2005): 

C ¼ 0:6318 , 

where C is the cost of pipe ($/lf) and D the diameter of the pipe (in). Reductions in the storm 

flow volumes from the watershed outfall were calculated for a variety of storm events using 

StormNet Builder, a comprehensive storm water modeling package (Boss International 2005). 

This study is detailed in Carter (2006). The cost savings from a reduction in pipe size was then 

calculated and converted to a cost per linear meter of pipe. This cost saving showed a 4.6% 

reduction in size for the 25-year event and a 4.4% reduction for the 100-year event. These 

reductions are not significant enough to result in changes in pipe sizing due to green roof 

implementation; therefore no economic benefit from pipe resizing was used in the analysis. 

However, with a watershed community the size of Atlanta it is suggested that further studies 

account for these benefits. Other relevant features of storm water management affected by 

widespread green roof implementation were not a part of this study including the effect of green 

roof storm water retention on the reduction of combined sewer overflows (CSOs), a phenomenon 

having large environmental impacts resulting from the storm water systems found in many larger 

cities. It was estimated in the city of Toronto, for example, that avoiding CSOs using green roofs 

would save the city $46.6 million in infrastructure savings (Banting 2005).  

 

Economic relevance of energy and insulation 

The third economically relevant category is energy and insulation. Green roofs act to 

reduce the rooftop surface temperatures through leaf shading direct solar radiation, evaporation 

of moisture at the surface and transpiration of the plants which cool the ambient air above the 
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roof. Thin layer green roof systems have consistently been shown to reduce the temperature 

fluctuations at the roof surface (Onmura 2001). Whether this translates into significant energy 

savings is not clear from the literature as in one study, energy use was evaluated for small 

experimental sheds containing green roofs and the vegetated treatments had little effect on total 

energy use in each structure (DeNard 2003). Other research, however, suggests that considerable 

energy cost savings can be realized when green roofs are used; enough for the lifecycle cost of a 

green roof to be less than a traditional roof when energy savings were included in the analysis 

(Wong 2003). Assuming that more energy costs savings can be realized on buildings where the 

ratio of the foot print of the building to the volume of the building is greater, schools are 

excellent candidates for realizing great energy savings. Many schools average no more than two 

stories and have expansive flat roofs. Benjamin E Mays High School, found in Appendix E, 

represents typical APS school construction. The benefits from energy savings are much greater 

with this type of structure in comparison to a high rise building where the majority of energy 

savings from a green roof would be realized only on the upper floors.  

For the energy-related benefits in the Tanyard Branch study, local data were used. 

Adjacent to the storm water green roof test plot, a second experimental roof was constructed and 

an analysis of the thermal conductivity of growing media as well as energy load modeling was 

performed. Automated measurement of in situ micrometeorological parameters such as humidity, 

air temperature, wind speed, radiation, and soil temperature were combined with laboratory 

analysis of the engineered growing medium providing local data for simulation modeling. The 

simulation programs used were eQuest and HYDRUS-1D, a building energy model and a 

combined heat and moisture simulation, respectively. The modeled buildings used were 929sqm 

with both square and rectangular orientations. Modeling was performed at three different 
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heights: 1, 3, and 8 stories. Additional details from this study can be found in Hilten (2005). Cost 

savings from the additional insulation provided by the green roof as well as the reductions in the 

heating and cooling loads were found for the building and converted into unit savings to be 

applied across APS. The green roof’s insulating value was equivalent to R-2.8, which is similar 

to 2.54 cm of fiberboard, fiberglass, or perlite. These types of insulation average to $3.98/sqm 

and this value may be considered an avoided cost in the green roofing analysis. If this avoided 

cost is used, however, the building owner will not realize any energy savings as there is no net 

increase in insulation.  

A more likely scenario is that the green roof will be added and provide additional 

insulation, not used as replacement for traditional insulation. This additional insulation value 

creates energy savings for the building owner. The authors of the Tanyard Branch study used the 

building energy savings modeled from a single-story 929sqm  building (Hilten 2005). This type 

of building was selected because it represents the majority of flat-roofed buildings in the 

watershed they studied. The energy load reduction from the green roof system was modeled at 

4222.56kWh/year. This is an energy savings of 3.3% which is less than half of the 8% used in 

the Wong et al. (2003) study. Residential rate surveys for the 2005 year were acquired from the 

Georgia Public Service Commission and the 2005 average rate of $0.082/kWh was applied to the 

energy savings modeled in the building. This current price is used for the conservative base case 

BCA, but assuming electricity prices will remain constant in real terms over the next 40 years is 

extremely optimistic. Policies to limit air pollution and climate change are likely to bring about 

significant increases in this price. For the sensitivity analysis, it is assumed that the actual rate of 

increase in energy prices will vary on a uniform distribution between 0% (the base case 

assumption) and 8% (a pessimistic but plausible assumption under significant future 
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environmental regulation). All buildings in APS were estimated to have the same energy savings, 

although savings may vary based on the number of stories and orientation of each structure. The 

unit energy savings for current energy rates was $0.37/sqm/year (Table 5.5). 

 

Table 5.5   

Energy benefits associated with green roofs   

Benefit     

Building energy savings (kWh/year)  4,222.56 

Energy cost ($/kWh)  0.08 

Building energy savings ($/m^2/year)  0.37 

Total annual savings for APS ($)   204,234 

(Carter 2006) 
Building energy savings ($/m^2/year) = (4222.56 x .08) / 929 
Total annual savings for APS ($) = 551985 x .37 

 

Economic relevance of air quality 

A fourth economically relevant category is air quality. While the potential may be great 

for green roofs to improve air quality in densely developed areas, the type of vegetation found on 

the rooftop largely determines the amount of air-quality improvement. Trees, grasses, and 

shrubs both filter pollutants and transpire moisture much differently than the Sedum plant 

species commonly found on modern green roof applications. Cross-applying air quality 

improvements from one type of green roof application to another can be very misleading. For 

example, air-quality benefits have been modeled for grass roofs in Toronto with the authors-

finding significant economic benefits to air quality under grass roofing scenarios (Currie and 

Bass 2005). The Georgia test plot, however, was designed to be simple and easily replicable 
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using Sedum plants. These plants do not have the same leaf area index, photosynthetic activity, 

or growth pattern as grasses thus making this particular air-quality benefit unsuitable for this 

study.  

Other researchers evaluated nitrogen oxide uptake made by the Crassulaceae plant family 

of which Sedum is a member (Sayed 2001). While this CO2 uptake is well documented, the air-

quality improvements provided by the function are less certain, but basic estimates for economic 

quantification of these improvements are possible by including Sedum green roofs as part of a 

cap-and trade emissions credit system. Using 2005 market value for NOx emission credits of 

$3375/ton, Clark (2005) estimated the credit for a Sedum green roof to be $0.11/sqm. 

This value was applied to the current analysis as the air quality benefit since it was deemed more 

appropriate for the roof system used in this study. Both the private and public sectors benefit 

from this technology as green roofs reduce the pollutant loads in the ambient air of the city, and 

improve social welfare while allowing the private building owner to receive economic 

compensation from providing a service for industries looking to offset their polluting activities. 

 

Unquantifiable categories 

Other categories may be economically relevant in particular green roof applications, but 

were not included in this analysis either because of a lack of reliable data or incompatibility of 

the benefit with the type of green roof used in this study. Urban green space and habitat is clearly 

a benefit provided by green roofs and rooftop greening has been incorporated into plans to 

maintain urban habitat networks (Kim 2004). Valuation of urban green space is typically done 

through hedonic analysis relating house prices to green space type and location (Morancho 

2003). While accessible rooftops provide the building owner or tenant with additional space for 
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recreation or growing vegetables, the roof designed in this study does not perform these 

functions. However, it is suggested that portions of APS roofs receive intensive green roofs that 

allow for the growing of vegetables. In addition, these roofs should be used as physical learning 

environments for students and the community alike. Further studies should attempt to quantify 

the social benefits of these efforts. Without these suggested studies, the green space value must 

be derived strictly by the habitat value for biotic communities on the roofs themselves which is 

difficult to quantify and outside the scope of this project.  

As discussed in chapter 4, urban centers have air temperatures higher than surrounding 

rural areas, a phenomenon commonly known as the urban heat island. In theory, since green 

roofs reduce the surface temperature of the rooftop, the ambient air temperature is lowered thus 

reducing the heat flow into the building and concomitant energy use needed to maintain 

comfortable interior building temperatures. Energy models demonstrate that widespread roof 

greening could lower temperatures city-wide by 0.1 – 0.8 degrees Celsius, a negligible amount 

considering the uncertainty in the models (Bass et al. 2003). Until more robust studies 

demonstrate otherwise, the energy cost savings from reducing the urban heat island due to 

widespread roof greening will be considered speculative and not included in this analysis.  

 

5.5 Results – Application of NPV Test and Sensitivity Analysis 

Green roof benefits were estimated for both private and social institutions. Results from 

these runs are shown in Tables 5.6 and 5.7. The benefits are considered conservative estimates 

where current pricing conditions are assumed and values based on the campus test plot are used.  
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Table 5.6   

Conservative green roof social benefits ($) at the APS scale   

Green roof benefit Unit benefit ($/m^2) ($) 

Avoided BMP costs (one time costs) 9.08 

5,011,407           

(212.15 x 23,622) 

Energy 0.37 204,234 / year 

Air quality 0.11 60,718 / year 

Total social benefits over 40 years  15,609,487 

(Carter 2006) (benefits used in NPV calculation in Appendix A ) 

 

Table 5.7   

Conservative green roof private benefits for a 929 m^2 roof   

Green roof benefit Unit benefit ($/m^2) ($) 

Storm water utility credit 0.04 780.80 

Energy 0.37 6,870.53 

Air quality 0.11 1,983.06 

Total private benefits 0.52 9,634.38 

(Carter 2006) 

Compiling all the discounted costs and benefits associated with these two roofing systems allows 

for an NPV test to be performed. The total costs of installing thin-layer green roof systems on 

APS flat roofs are $87,213,630. The total costs of installing traditional built-up roofing systems 

on APS flat roofs are $45,814,755. If an equal distribution of all three storm water BMPs across 

APS is assumed, social benefits equal $15,609,487 and a social NPV of $76,958,088 which is 

15% more than traditional roofing (Table 5.8). 

The private analysis performed on an individual roof shows NPV of green roofs to be 

relatively more costly for the building owner when compared with the social BCA. Private costs 
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differ in that they include a storm water utility fee credit rather than avoided storm water BMP 

costs. This results in a total construction cost of $144,478 for green roofs and 113,353 for 

conventional roofs at a 4% discount rate on a 929sqm building. Total private benefits from green 

roofing for the private building totaled $9634. This is 18.87% more than typical roofing.  

The NPV test was recalculated with changes to various key parameters for sensitivity 

analysis. Sensitivity analysis helps determine on which parameters the NPV outcomes depend 

the most (Hanley and Spash 1993). The parameters were allowed to vary randomly between 

ranges of expected values over 10,000 trials. An average value from these trials was then 

calculated and compared with values found for the green roof NPV base case (Table 5.8). 

Sensitivity analysis was run for both the private and public green roofing scenarios.  

The first parameter was the discount rate. Discount rates were modeled around the initial 

4%, between the rates of 2% and 6%. Another key parameter was roof construction costs. As the 

industry continues to mature in North America it is likely that initial construction costs will 

decrease. Analysis was run with the cost of the green roofing system ranging from the existing 

cost to a 50% reduction in green roof construction costs. Finally, volatility in energy prices was 

considered with energy prices ranging from existing prices to a yearly increase of 8%. 
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Table 5.8      

Comparison of green and conventional roof NPV        

  Private roof ($)    APS Flat Roofs ($) – 4% dis. 

  Conservative Average   Conservative Average (35%) 

Green roof costs 144,378.20 108,474.13  87,213,630 77,417,900 

Green roof benefits 9634.38 19,040.24  15,609,487 20,551,650 

Green roof NPV 134,743.80 89,433.89  76,958,088 50,176,806 

Conventional roof NPV 113,352.95 113,352.95  66,724,011 66,724,011 

Green/black roof cost ratio 1.19 0.79   1.15 0.75 

(Carter 2006) (NPVs listed are derived from NPV calculations in Appendix A) 

 

This sensitivity analysis is asymmetric, that is while discount rates vary around the central 

estimate, both green roof construction costs and energy costs vary only in the direction that is 

more sympathetic to the economics of using green roofs relative to conventional roofs. This is 

done because the current point estimates are in fact at the extremes. Green roofs are not going to 

be more expensive than our demonstration roof under conditions of dramatically increased 

construction, and electricity prices are not going to be lower than current prices given the 

expected course of environmental regulation and energy supply and demand. The assumptions 

used in this sensitivity analysis give a better picture of what the real economics of green roof 

construction are likely to be, while the base case estimate is a conservative or almost-worst case 

scenario. 

The results from the sensitivity analysis demonstrated that given realistic assumptions 

about the changes in the costs and benefits of implementing green roof systems, the average 

NPV of green roofs is less than the current NPV of black roofs meaning that over the roof’s life 

cycle it is cheaper to install green roofs than their traditional counterpart. The most important 
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parameter was the construction cost estimate, which averaged $115/sqm, down from $158/sqm. 

Change in green roof benefits due to increased energy prices translated into significantly more 

energy benefits over the life cycle of the roof, up to $37.23/sqm from $28.28/sqm. Comparing 

the cost ratio between green and traditional roofing for the conservative NPV estimate and the 

average estimate generated by the sensitivity analysis show green roofs drop $0.40 on every 

dollar down to $0.79 from $1.19 for the private scenario and down to $0.75 from $1.15 when 

social accounting is performed (Table 5.8). 

 

NOTE: SEE APPENDIX A FOR DETAILED SUMMARY OF ATLANTA PUBLIC 

SCHOOLS GREEN ROOF AND CONVENTIONAL ROOF NPV CALCULATIONS 
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CHAPTER 6 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
 

6.1 Conclusions 
 

BCA of widespread extensive roof greening of Atlanta Public Schools reveals a number 

of important considerations for both the private and public sectors when considering green roof 

installation. The most significant economic benefits are the increase in roof life, storm water 

BMP cost avoidance, and energy savings. The main construction benefit and best overall benefit 

in economic terms, of the extensive green roof is that it extends the life of the waterproofing 

membrane and eliminates the need for frequent reroofing. Without this benefit, green roofs 

would cost over 85% more than their traditional counterpart. One problem in realizing this 

benefit is that many waterproofing companies will still only guarantee their premium membranes 

for 25 years, which may reduce the incentive for a building owner to invest in a green roof 

during initial construction (Bick 2011). As long-term green roof projects are built and monitored, 

more experience and ultimately green roof life warrantees may help institutionalize this benefit. 

Avoiding the cost of other more expensive storm water BMPs is an important green roof 

benefit. Since green roofs do not consume valuable urban land, there is no opportunity cost 

associated with them as there may be with other storm water BMPs such as bio-retention areas. 

Additionally, green roofs are independent of watershed soil type. They can be implemented 

anywhere there is a building as opposed to porous pavements, for example, which must have 

adequate soil permeability before installation is possible (Ferguson 2005). This analysis 

demonstrates that green roofs are most practically implemented in densely developed urban 

centers where other practices are impossible or cost-prohibitive. This storm water benefit is also 

public, accomplishing water quality and quantity goals for the jurisdiction, and therefore 
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justifies the use of public funds to encourage building owners to use green roofs for storm water 

mitigation. 

Annual energy savings for APS total over $200,000. While not as significant as extended 

roof life, this benefit will be continuously realized each year and help offset some of the initial 

upfront cost for the building owner. If the building is rented, as many commercial structures are, 

the tenant will receive this savings. This benefit may function as a marketing tool for the 

building owner to attract new tenants when leases are renewed. Given uncertainties about energy 

prices due to the possibility of increased regulation due to air quality and climate change 

concerns, it is possible that the conservative case has significantly underestimated these benefits. 

Sensitivity analysis shows that increasing energy prices would result in over $3,000,000 savings 

over the life cycle of the roof. 

The benefit to the existing storm sewer system in Atlanta’s watershed is relatively small 

in economic terms. This is primarily due to the nature of the stream system and the type of 

sewerage found in the watershed. The highly impacted urban stream shows little potential for 

economically quantifiable improvement strictly with green roof implementation. Much of the 

stream is piped and culverted with no change in the sizing of these facilities when green roofs are 

implemented. This is because extensive green roofs are highly effective at retaining storm water 

for small storm events with recurrence intervals of 1–2 years, but are less effective at retaining 

significant portions of runoff from the larger 25–100-year storms. Storm water systems are 

typically designed for these larger storm flows.  

Additionally, the flood mitigation benefit is minimal. There may potentially be marginal 

improvement in the stream ecosystem with reduction of sediment transport capacity and reduced 

volume and frequency of runoff from small storm events. Site-specific conditions are important 
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qualifiers that may not be true when evaluating green roof benefits in other watersheds. In 

addition, caution should be used in making inferences based on these results because 

construction and maintenance techniques, as well as estimates of their energy saving, storm 

water-retention, and air-quality improvement benefits, may change as greater experience brings 

both innovation and better information. 

Sensitivity analysis demonstrates that application of green roofs under varying market 

conditions can significantly influence whether or not green roofs pass the NPV test when 

compared to traditional roofs. The base green roofing case used in this analysis is more of a 

‘‘worst case scenario’’ than a realistic picture of future green roof installations. The average 

costs represented in the sensitivity analysis may be a more realistic picture of the pricing that 

future green roof installers will face. Since construction costs are the most likely of the 

parameters to decrease as well as the most influential in the NPV performed in this analysis, the 

conditions appear favorable for thin layer green roof systems to become more profitable than 

built-up asphalt roofs with further cost reductions among firms in the industry. Direct production 

and specialization in Germany has led to low unit costs of green roofing materials relative to the 

United States. A reason for this is that many of the single-source green roof suppliers in the 

United States simply are dealers of green roof products imported from German green roof 

companies, which increases the total cost of these materials. Further maturation of the industry in 

the United States should expand opportunities for more efficiency and price reductions across the 

spectrum of green roof products and services. 

Expansion of urban areas and the built environment, combined with greater public 

interest in maintaining the integrity of ecological systems in these areas, has caused the 

construction industry to begin developing practices that have less environmental impact. 
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Innovative new materials and techniques will be largely governed by economic returns on this 

investment. Since many of the environmental goods affected by development are public in nature 

and rarely internalized by private firms, it is important to comprehensively evaluate each new 

practice so that there is a clear accounting of the costs and benefits to society as well as to private 

building owners. 

This study evaluated one such innovative practice: the extensive green roof system. 

Applying a life-cycle BCA to this practice demonstrates that under current conditions, the NPV 

of traditional roofs is quite comparable to that of green roofs for APS. This valuation does not 

consider the many unquantifiable benefits associated with green roofs for APS. Changing 

reasonable assumptions about this analysis shows that green roofs may be more cost effective 

than traditional roofs given changes in green roof construction costs, higher energy prices, or 

possibly inclusion of other watershed-specific benefits. If energy costs rise or storm water 

protection becomes more of a public priority, both highly plausible possibilities, then green roofs 

become more economically attractive. While some may argue that green roofs are more costly 

than traditional roof systems, this study provides evidence that the cumulative benefits over a 40 

year life cycle associated with large scale green roof installations, such as on all Atlanta Public 

Schools, are greater than the initial costs incurred.     

Green roofs can provide both private and public benefits and should be included as a 

potential tool in watershed management manuals for use in highly developed areas. K-12 school 

buildings represent a unique group of buildings to target for further research given the far 

reaching potential benefits associated with them. Collaboration between multiple parties is 

extremely important in conducting successful research. School officials, architects, storm water 

professionals and watershed planners can only benefit from having more options to alleviate the 
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environmental impacts of urbanization. An assortment of techniques allows for interested parties 

to use the practices most effective given their particular location, goals, and resource constraints. 

As areas continue to become more highly urbanized, reconciling development interests and 

environmental concerns is essential. The greater the number of practices available to accomplish 

this goal, the easier it will be to reconcile this future conflict between the built and natural 

environment.  

 

6.2 Recommendations for Further Research 

 
Implementation of a program to install green roofs on all of APS facilities presents a 

considerable costs hurdle. This thesis did not intend to detail the sources of funding for such a 

project, but was simply to address the beneficial opportunities available.  The study aimed to 

draw correlations between green roof systems benefits and the goals of greens schools which are 

defined by the Committee to Review and Assess the Health and Productivity Benefits of Green 

Schools as “(1) to support the health and development (physical, social, intellectual) of students 

teachers and staff by providing a healthy, safe, comfortable, and functional physical 

environment; and (2) to have positive environmental and community attributes (National 

Research Council 2007).” This was accomplished by reporting on a plethora of peer-reviewed 

data that outlines green roof benefits as well as through the cost analysis which revealed 

compelling data supporting this thesis. 

 In designing research studies to evaluate the unbiased effects of green schools on student 

learning or student and teacher health, several issues must be addressed. These includes defining 

green schools for the purpose of scientific inquiry, defining performance and productivity 

outcomes plausibly related to green schools, and fully developing a theory explaining the links 
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between green school design and health and learning effects. The hypotheses from these theories 

should be tested in ways that reduce systematic biases and provide compelling evidence about 

these linkages. 

Implementation of green roofs in European countries like Germany is a regulatory driven 

technology in the municipalities that have adopted mandates for green roofs on new buildings. 

With more municipalities in the United States looking for flexible ways to control storm water, 

including the use of storm water credits or watershed-based trading, developing new storm water 

controls such as green roofs is a vital initiative for the EPA. Green roofs appear to be a suitable 

technology for urban areas, as there is limited space to implement traditional storm water 

controls. Land values are too high to devote much surface area to storm water control devices. In 

addition, surface-based storm water control devices can be vandalized and may pose public 

access and safety issues. Green roofs can slow the runoff from roofs during larger storms and 

during smaller storms are capable of absorbing a majority if not all of the rainfall. In essence, the 

impervious area is decreased when planted roofs are installed on, or retrofitted to, buildings. The 

plants also act as a bio-filter in reducing the pollutant content of the rainfall. This technology 

reduces the heat island effect of standard roofs by replacing the low albedo surface, as well as by 

increasing evapo-transpiration, which helps cool the air by several degrees. Furthermore, because 

of reduced air temperature, less energy is needed for air conditioning (Osmundson 1999). 

The current state of national and state budgets may not warrant funding the installment of 

green roofs on an entire school district such as APS, at one time, but if studies of the cumulative 

benefits provide proof of a significantly lower NPV for greens roofs over a 40 year period, 

national and state funding institutions may be compelled to provide funding for such projects 

over time.  
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Further research into the emerging funding opportunities due to new energy policies is 

recommended for APS and other school districts. A study of the evolution of green roof 

technology and policy in Germany is recommended in order to gain insight on how to realize the 

same lower costs results (economies of scale / energy incentives) in the United States. Pilot 

studies should be created that monitor the impact of introducing of students green roofs and 

growing vegetables and metrics to quantify productivity level increases in students and teachers 

created. Test scores and productivity monitoring is recommended at current green schools and 

where green roofs are on green schools. In addition, more studies on widespread green roof 

usage (urbanized areas) instead of single roof applications are recommended with focus on 

combining green roof technology and other storm water management systems. Experiments with 

different types of substrates, plant materials, and green roof techniques based on the unique 

climatic conditions of the region being studied are also recommended. Additionally, 

consideration into the benefits provided through risk aversion such as avoided regulatory fees or 

the cost of not greening facilities is advisable. The costs burden to building owners who do not 

implement green practices such as green roofs could be higher than the costs of installing them.    
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APPENDIX A: Atlanta Public Schools NPV Calculations  
 



Basis of APS NPV Calculations
Costs APS Roof Area Total Costs ($)

Green roof costs range: $85/sqm to $215/sqm
Cost used in Calculations: $158/sqm 551985 sqm (87,213,630)          

Conventional roof costs range: $54/sqm to $109/sqm
Cost used in Calculations: $83/sqm 551985 sqm (45,814,755)          

Quantifiable benefits (verified): Savings APS Roof Area / Volume Total Savings ($)
Avoided BMPs (Water treatment) $212.15/cubic meter 23,622 cubic meters 5,011,407
Energy/Utility Reduction $0.37/sqm/year 551985 sqm 204,234/year
Emissions (Air quality credit) $0.11/sqm/year 551985 sqm 60,718/year

Soft Social Benefits:
Mitigation of storm water runoff see sum below
Reductions to the urban heat island see sum below
Productivity level increases see sum below
Avoided regulatory fees see sum below

Conservative sum of soft social benefits (unverified): $0.40/sqm/year 551985 sqm 220,794/year

Interest rate: 4%
40yr 

Results:
NPV

Conventional Roof $66,724,011
Green Roof - Conservative $76,958,088
Green Roof  - Conservative with sum of soft social benefits $72,413,466
Green Roof  - Averaged $50,176,806

These results suggests that green roof NPV values are comparable to that of conventional roofs even from a conservative  
perspective. The biggest contributor to lowered green roof NPV was found to be installation costs. The costs of 
green roofs are subject to decrease considering the novelty of the technology in the US and the potential economies of scale. 

*Averaged NPV calculation for green roofs based off sensitivity 
analysis and estimated increases in global energy costs  
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Net Present Value - Conventional Roofs

Value

$45,814,755

$45,814,755

4%

Term in 

years
 costs

Money saved 

by project
Cash flow

Cumulative 

cash flow

0 $45,814,755 $45,814,755 $45,814,755

1 0 $0 0 45,814,755

2 0 $0 0 45,814,755

3 0 $0 0 45,814,755

4 0 $0 0 45,814,755

5 0 $0 0 45,814,755

6 0 $0 0 45,814,755

7 0 $0 0 45,814,755

8 0 $0 0 45,814,755

9 0 $0 0 45,814,755

10 0 $0 0 45,814,755

11 0 $0 0 45,814,755

12 0 $0 0 45,814,755

13 0 $0 0 45,814,755

14 0 $0 0 45,814,755

15 0 $0 0 45,814,755

16 0 $0 0 45,814,755

17 0 $0 0 45,814,755

18 0 $0 0 45,814,755

19 0 $0 0 45,814,755

20 45,814,755 $0 45,814,755 91,629,510

21 0 $0 0 91,629,510

22 0 $0 0 91,629,510

23 0 $0 0 91,629,510

24 0 $0 0 91,629,510

25 0 $0 0 91,629,510

26 0 $0 0 91,629,510

27 0 $0 0 91,629,510

28 0 $0 0 91,629,510

29 0 $0 0 91,629,510

30 0 $0 0 91,629,510

31 0 $0 0 91,629,510

32 0 $0 0 91,629,510

33 0 $0 0 91,629,510

34 0 $0 0 91,629,510

35 0 $0 0 91,629,510

36 0 $0 0 91,629,510

37 0 $0 0 91,629,510

38 0 $0 0 91,629,510

39 0 $0 0 91,629,510

40 0 $0 0 91,629,510

91,629,510

NPV= $66,724,011

Operational Costs

Cost 

Interest rate

Cost in year 20

Expenses Income
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Net Present Value - Conservative Green Roofs

Value

$87,213,630

$5,011,407

$204,234

60,718

4%

Term in 

years

Costs Money saved Cash flow
Cumulative 

cash flow

0 $82,202,223 $82,202,223 $82,202,223

1 0 $264,952 264,952 81,937,271

2 0 $264,952 264,952 81,672,319

3 0 $264,952 264,952 81,407,367

4 0 $264,952 264,952 81,142,415

5 0 $264,952 264,952 80,877,463

6 0 $264,952 264,952 80,612,511

7 0 $264,952 264,952 80,347,559

8 0 $264,952 264,952 80,082,607

9 0 $264,952 264,952 79,817,655

10 0 $264,952 264,952 79,552,703

11 0 $264,952 264,952 79,287,751

12 0 $264,952 264,952 79,022,799

13 0 $264,952 264,952 78,757,847

14 0 $264,952 264,952 78,492,895

15 0 $264,952 264,952 78,227,943

16 0 $264,952 264,952 77,962,991

17 0 $264,952 264,952 77,698,039

18 0 $264,952 264,952 77,433,087

19 0 $264,952 264,952 77,168,135

20 0 $264,952 264,952 76,903,183

21 0 $264,952 264,952 76,638,231

22 0 $264,952 264,952 76,373,279

23 0 $264,952 264,952 76,108,327

24 0 $264,952 264,952 75,843,375

25 0 $264,952 264,952 75,578,423

26 0 $264,952 264,952 75,313,471

27 0 $264,952 264,952 75,048,519

28 0 $264,952 264,952 74,783,567

29 0 $264,952 264,952 74,518,615

30 0 $264,952 264,952 74,253,663

31 0 $264,952 264,952 73,988,711

32 0 $264,952 264,952 73,723,759

33 0 $264,952 264,952 73,458,807

34 0 $264,952 264,952 73,193,855

35 0 $264,952 264,952 72,928,903

36 0 $264,952 264,952 72,663,951

37 0 $264,952 264,952 72,398,999

38 0 $264,952 264,952 72,134,047

39 0 $264,952 264,952 71,869,095

40 0 $264,952 264,952 71,604,143

71,604,143

NPV = $76,958,088

Interest rate

Expenses Income

Benefit - Enegry

Benefit - Air

Operational Costs

Cost 

Avoided BMPs 
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Net Present Value - Green Roofs (Sum of Social Soft Benefits included)

Value

$87,213,630

$5,011,407

$204,234

60,718

$220,794

4%

Term in 

years
Costs Money saved Cash flow

Cumulative 

cash flow

0 $82,202,223 $82,202,223 $82,202,223

1 0 $485,746 485,746 81,716,477

2 0 $485,746 485,746 81,230,731

3 0 $485,746 485,746 80,744,985

4 0 $485,746 485,746 80,259,239

5 0 $485,746 485,746 79,773,493

6 0 $485,746 706,540 79,066,953

7 0 $485,746 485,746 78,581,207

8 0 $485,746 485,746 78,095,461

9 0 $485,746 485,746 77,609,715

10 0 $485,746 485,746 77,123,969

11 0 $485,746 485,746 76,638,223

12 0 $485,746 485,746 76,152,477

13 0 $485,746 485,746 75,666,731

14 0 $485,746 485,746 75,180,985

15 0 $485,746 485,746 74,695,239

16 0 $485,746 485,746 74,209,493

17 0 $485,746 485,746 73,723,747

18 0 $485,746 485,746 73,238,001

19 0 $485,746 485,746 72,752,255

20 0 $485,746 485,746 72,266,509

21 0 $485,746 485,746 71,780,763

22 0 $485,746 485,746 71,295,017

23 0 $485,746 485,746 70,809,271

24 0 $485,746 485,746 70,323,525

25 0 $485,746 485,746 69,837,779

26 0 $485,746 485,746 69,352,033

27 0 $485,746 485,746 68,866,287

28 0 $485,746 485,746 68,380,541

29 0 $485,746 485,746 67,894,795

30 0 $485,746 485,746 67,409,049

31 0 $485,746 485,746 66,923,303

32 0 $485,746 485,746 66,437,557

33 0 $485,746 485,746 65,951,811

34 0 $485,746 485,746 65,466,065

35 0 $485,746 485,746 64,980,319

36 0 $485,746 485,746 64,494,573

37 0 $485,746 485,746 64,008,827

38 0 $485,746 485,746 63,523,081

39 0 $485,746 485,746 63,037,335

40 0 $485,746 485,746 62,551,589

62,551,589

NPV = $72,413,466

Expenses Income

Operational Costs

Cost 

Avoided BMPs 

Social Soft Benefits

Interest rate

Benefit - Enegry

Benefit - Air
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Net Present Value - Averaged Green Roofs

Value

$63,478,275

$6,200,000

$275,993

82,798

4%

Term in 

years
 costs

Money saved 

by project
Cash flow

Cumulative 

cash flow

0 $57,278,275 $57,278,275 $57,278,275

1 0 $358,791 358,791 56,919,484

2 0 $358,791 358,791 56,560,693

3 0 $358,791 358,791 56,201,902

4 0 $358,791 358,791 55,843,111

5 0 $358,791 358,791 55,484,320

6 0 $358,791 358,791 55,125,529

7 0 $358,791 358,791 54,766,738

8 0 $358,791 358,791 54,407,947

9 0 $358,791 358,791 54,049,156

10 0 $358,791 358,791 53,690,365

11 0 $358,791 358,791 53,331,574

12 0 $358,791 358,791 52,972,783

13 0 $358,791 358,791 52,613,992

14 0 $358,791 358,791 52,255,201

15 0 $358,791 358,791 51,896,410

16 0 $358,791 358,791 51,537,619

17 0 $358,791 358,791 51,178,828

18 0 $358,791 358,791 50,820,037

19 0 $358,791 358,791 50,461,246

20 0 $358,791 358,791 50,102,455

21 0 $358,791 358,791 49,743,664

22 0 $358,791 358,791 49,384,873

23 0 $358,791 358,791 49,026,082

24 0 $358,791 358,791 48,667,291

25 0 $358,791 358,791 48,308,500

26 0 $358,791 358,791 47,949,709

27 0 $358,791 358,791 47,590,918

28 0 $358,791 358,791 47,232,127

29 0 $358,791 358,791 46,873,336

30 0 $358,791 358,791 46,514,545

31 0 $358,791 358,791 46,155,754

32 0 $358,791 358,791 45,796,963

33 0 $358,791 358,791 45,438,172

34 0 $358,791 358,791 45,079,381

35 0 $358,791 358,791 44,720,590

36 0 $358,791 358,791 44,361,799

37 0 $358,791 358,791 44,003,008

38 0 $358,791 358,791 43,644,217

39 0 $358,791 358,791 43,285,426

40 0 $358,791 358,791 42,926,635

42,926,635

NPV= $50,176,806

Expenses Income

Operational Costs

Cost 

Avoided BMPs 

Interest rate

Benefit - Enegry

Benefit - Air
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APPENDIX B: Area of Atlanta Public School Roofs and Atlanta Watershed Impervious Surfaces  
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Atlanta Public School Roof Square Footage 

Site Name Roof Square Footage 
ADAMSVILLE ELEMENTARY SCHOOL  69,387 
ARCHER HIGH SCHOOL  127,537 
B.E MAYS HIGH SCHOOL  150,738 
BEECHER HILLS ELEMENTARY SCHOOL  48,908 
BENTEEN ELEMENTARY SCHOOL  79,182 
BETHUNE ELEMENTARYSCHOOL 115,196 
BLALOCK ELEMENTARY SCHOOL  44,961 
BOLTON ACADEMY  54,027 
BRANDON ELEMENTARY SCHOOL  42,287 
BROWN MIDDLE SCHOOL  66,446 
BUNCHE ELEMENTARY SCHOOL  60,861 
BURGESS ELEMENTARY SCHOOL  59,892 
C.W. HILL ELEMENTARY SCHOOL  40,525 
CAPITOL VIEW ELEMENTARY SCHOOL  28,628 
CARSON MIDDLE SCHOOL  77,902 
CASCADE ELEMENTARY SCHOOL  65,861 
CENTENNIAL PLACE ELEMENTARY  58,333 
CLEVELAND ELEMENTARY SCHOOL  85,454 
CLEVELAND ELEMENTARY SCHOOL (OLD 
ANNEX)  32,560 
COAN MIDDLE SCHOOL  101,255 
COMMUNITY EDUCATION PARTNERS 65,146 
CONNALLY ELEMENTARY SCHOOL  55,392 
CONTINENTAL COLONY ELEMENTARY SCHOOL  73,778 
CRIM HIGH SCHOOL  113,458 
D.H STANTON ELEMENTARY SCHOOL  42,235 
DEERWOOD ACADEMY  94,524 
DOBBS ELEMENTARY SCHOOL  86,195 
DOUGLASS HIGH SCHOOL  128,962 
EASTLAKE HIGH SCHOOL  39,341 
F.L. STANTON ELEMENTARY SCHOOL  37,402 
FAIN ELEMENTARY SCHOOL  40,807 
FICKETT ELEMENTARY SCHOOL  47,263 
FINCH ELEMENTARY SCHOOL  55,111 
GARDEN HILLS ELEMENTARY SCHOOL  52,873 
GIDEONS ELEMENTARY SCHOOL  57,951 
GRADY HIGH SCHOOL  122,242 
GROVE PARK ELEMENTARY SCHOOL  54,310 
HARPER-ARCHER MIDDLE SCHOOL  127,916 
HERDON ELEMENTARY SCHOOL  72,075 
HOPE ELEMENTARY SCHOOL  49,780 
HUMPHRIES ELEMENTARY SCHOOL  38,899 
INMAN MIDDLE SCHOOL  61,871 
JACKSON ELEMENTARY SCHOOL  70,592 
JOHN F KENNEDY MIDDLE SCHOOL  88,092 
KIMBERLY ELEMENTARY SCHOOL  60,744 
KING MIDDLE SCHOOL  101,825 
KIPP ACHIEVE ACADEMY  56,439 
KIPP WAYS ACADEMY  21,359 
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LONG MIDDLE SCHOOL  83,375 
LONG MIDDLE SCHOOL / MARSHALL MIDDLE  42,262 
M.A. JONES ELEMENTARY SCHOOL  61,117 
MARY LIN ELEMENTARY SCHOOL  43,706 
MILES ELEMENTARY SCHOOL  85,414 
NORTH ATLANTA HIGH SCHOOL  145,194 
OGLETHORPE ELEMENTARY SCHOOL  55,820 
PARKS MIDDLE SCHOOL  48,628 
PARKSIDE ELEMENTARY SCHOOL  83,510 
PERKERSON ELEMENTARY SCHOOL  75,878 
PEYTON FORREST ELEMENTARY SCHOOL  72,134 
PRICE MIDDLE SCHOOL  74,441 
RIVERS ELEMENTARY SCHOOL  60,121 
SCOTT ELEMENTARY SCHOOL 55,963 
SLATER ELEMENTARY SCHOOL  48,291 
SMITH ELEMENTARY SCHOOL  63,627 
SOUTH ATLANTA HIGH SCHOOL  127,674 
SUTTON MIDDLE SCHOOL  60,929 
SUTTON MIDDLE SCHOOL (TEMO LOCATION)  22,383 
SYLVAN ELEMENTARY SCHOOL  53,547 
TECH HIGH SCHOOL  25,973 
THE NEW SCHOOLS AT CARVER  165,475 
THERRELL HIGH SCHOOL  113,497 
THOMASVILLE HEIGHTS ELEMENTARY SCHOOL  56,866 
TOOMER ELEMENTARY SCHOOL  53,179 
TOWNS ELEMENTARY SCHOOL  73,312 
TURNER MIDDLE SCHOOL  64,183 
USHER ELEMENTARY SCHOOL  69,331 
VENETIAN HILLS ELEMENTARY SCHOOL  45,623 
WALDEN MIDDLE SCHOOL  40,910 
WASHINGTON HIGH SCHOOL  110,151 
WATERS ELEMENTARY SCHOOL  84,259 
WEST MANOR ELEMENTARY SCHOOL  38,216 
WHITE ELEMENTARY SCHOOL  50,372 
WHITEFOORD ELEMENTARY SCHOOL  40,306 
WILLIAM M BOYD ELEMENTARY SCHOOL  49,196 
WILLIAM ELEMENTARY SCHOOL  52,691 
WOODSON ELEMENTARY SCHOOL  47,291 
YOUNG MIDDLE SCHOOL  70,150 
Grand Total 5,941,517sf or  551,985  
(Scenna 2011) 
 
The square footage of impervious surfaces in Atlanta’s Watershed is roughly 280,816,643 
Square Feet or 26,088,720 m^2 (Morris 2011) 
 
551,985 / 26,088,720 = 2.1%�
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APPENDIX C: Map of Atlanta Public Schools  
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APPENDIX D: Map of Atlanta’s Watershed  
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COORDINATE SYSTEM:

MAP UNITS:
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APPENDIX E: Benjamin E Mays High School – LEED for Schools 2009 (Silver) Major 
Renovation 

 



LEED 2009 for Schools New Construction and Major Renovation Benjamin E.Mays High School

 Project Checklist 08.31.10

12 2 10 Possible Points:  24
Y N ? Y N ?

Y Prereq 1 2 Credit 3 1 to 2
Y Prereq 1 Environmental Site Assessment 2 Credit 4 1 to 2

1 Credit 1 1 2 Credit 5 1 to 2
4 Credit 2 4 1 Credit 6 Rapidly Renewable Materials 1

1 Credit 3 Brownfield Redevelopment 1 1 Credit 7 1
2 2 Credit 4.1 4
1 Credit 4.2 1 11 1 7 Possible Points:  19
2 Credit 4.3 Alternative Transportation—Low-Emitting and Fuel-Efficient Vehicles 2
2 Credit 4.4 2 Y Prereq 1 

1 Credit 5.1 Site Development—Protect or Restore Habitat 1 Y Prereq 2 

1 Credit 5.2 Site Development—Maximize Open Space 1 Y Prereq 3 Minimum Acoustical Performance
1 Credit 6.1 Stormwater Design—Quantity Control 1 1 Credit 1 1
1 Credit 6.2 Stormwater Design—Quality Control 1 1 Credit 2 1

1 Credit 7.1 Heat Island Effect—Non-roof 1 1 Credit 3.1 1
1 Credit 7.2 1 1 Credit 3.2 1
1 Credit 8 Light Pollution Reduction 1 4 Credit 4 1 to 4
1 Credit 9 Site Master Plan 1 1 Credit 5 1

1 Credit 10 Joint Use of Facilities 1 1 Credit 6.1 Controllability of Systems—Lighting 1
1 Credit 6.2 1

5 4 2 Possible Points:  11 1 Credit 7.1 1
1 Credit 7 2 Thermal Comfort Verification 1

Controllability of Systems—Thermal Comfort

Recycled Content
Regional Materials

Materials and Resources, Continued

Indoor Chemical and Pollutant Source Control

Thermal Comfort—Design

Indoor Environmental Quality

Minimum Indoor Air Quality Performance
Environmental Tobacco Smoke (ETS) Control

Low-Emitting Materials

Construction IAQ Management Plan—During Construction

Outdoor Air Delivery Monitoring

Alternative Transportation—Bicycle Storage and Changing Rooms

Increased Ventilation

Sustainable Sites

Alternative Transportation—Public Transportation Access

Site Selection
Development Density and Community Connectivity

Construction Activity Pollution Prevention Materials Reuse

Certified Wood

Water Efficiency

Alternative Transportation—Parking Capacity

Heat Island Effect—Roof Construction IAQ Management Plan—Before Occupancy

1 Credit 7.2 Thermal Comfort—Verification 1
Y Prereq 1 3 Credit 8.1 1 to 3

4 Credit 1 Water Efficient Landscaping 2 to 4 1 Credit 8.2 1
2 Credit 2 Innovative Wastewater Technologies 2 1 Credit 9 Enhanced Acoustical Performance 1
2 2 Credit 3 2 to 4 1 Credit 10 Mold Prevention 1
1 Credit 3 Process Water Use Reduction 1

4 2 Possible Points:  6
11 7 15 Possible Points:  33

1 Credit 1.1 1
Y Prereq 1 1 Credit 1.2 1
Y Prereq 2 1 Credit 1.3 1
Y Prereq 3 1 Credit 1.4 1
6 13 Credit 1 1 to 19 1 Credit 2 1

7 Credit 2 1 to 7 1 Credit 3 1
2 Credit 3 2
1 Credit 4 1 2 2 Possible Points: 4
2 Credit 5 2

2 Credit 6 2 1 Credit 1.1 1
1 Credit 1.2 1

9 4 1 Possible Points:  13 1 Credit 1.3 1
1 Credit 1.4 1

Y Prereq 1 

2 Credit 1.1 1 to 2 54 18 39 Possible Points: 110
2 Credit 1.2 Building Reuse—Maintain 50% of Interior Non-Structural Elements 1

2 Credit 2 1 to 2

Total

Materials and Resources

Storage and Collection of Recyclables
Building Reuse—Maintain Existing Walls, Floors, and Roof

Fundamental Refrigerant Management

Regional Priority: Specific Credit
Green Power Regional Priority: Specific Credit

Construction Waste Management
Certified 40 to 49 points     Silver 50 to 59 points     Gold 60 to 79 points     Platinum 80 to 110 

Regional Priority: Specific Credit
Regional Priority: Specific Credit

Water Use Reduction—20% Reduction

Water Use Reduction

Minimum Energy Performance

LEED Accredited Professional

Innovation in Design: Specific Title
Innovation in Design: Specific Title
Innovation in Design: Specific Title

Daylight and Views—Daylight

Measurement and Verification

Fundamental Commissioning of Building Energy Systems

Enhanced Commissioning
On-Site Renewable Energy

Enhanced Refrigerant Management

Optimize Energy Performance

Energy and Atmosphere

Innovation in Design: Specific Title

The School as a Teaching Tool

Regional Priority Credits

Innovation and Design Process

Daylight and Views—Views
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