
STATISTICAL ESTIMATION AND CHANGEPOINT DETECTION 

METHODS IN PUBLIC HEALTH SURVEILLANCE 

 

 

 

 

 

 

 

 

 

 

A Thesis 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Sue Bath Reynolds 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

H. Milton Stewart School of Industrial and Systems Engineering 

 

 

 

 

 

 

Georgia Institute of Technology 

May 2015 

 

 

Copyright © 2015 by Sue Bath Reynolds  

  



STATISTICAL ESTIMATION AND CHANGEPOINT DETECTION 

METHODS IN PUBLIC HEALTH SURVEILLANCE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

   

Dr. David Goldsman, Co-Advisor 

School of Industrial and Systems 

Engineering 

Georgia Institute of Technology 

 Dr. Xiaoming Huo 

School of Industrial and Systems 

Engineering  

Georgia Institute of Technology 

   

Dr. Kwok-Leung Tsui, Co-Advisor 

Department of Systems Engineering and 

Engineering Management 

City University of Hong Kong 

 Dr. Brani Vidakovic 

School of Industrial and Systems 

Engineering 

Georgia Institute of Technology 

   

Dr. Christos Alexopoulos 

School of Industrial and Systems 

Engineering 

Georgia Institute of Technology 

 Dr. David Shay 

Influenza Division, NCIRD 

Centers for Disease Control and 

Prevention 

   

  Date Approved:  April 1, 2015 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my family: 

Jackson, Jim, and Mom 

  

 

 

 

 

 



 

iv 

ACKNOWLEDGEMENTS 

 

I would first like to thank all my advisors and committee members:  Dr. Christos 

Alexopoulos, Dr. David Goldsman, Dr. Xiaoming Huo, Dr. David Shay, Dr. Kwok-

Leung Tsui, and Dr. Brani Vidakovic.  I appreciate all their suggestions and advice 

throughout this process.  

In particular, I would like to thank Dr. Goldsman and Dr. Shay.  I could not have 

completed this thesis without leaning heavily on their guidance, support, encouragement, 

and wealth of knowledge.  I am truly grateful to them both.   

I would also like to thank Dr. Tsui for helping me hone in on a thesis topic, and 

for his guidance and encouragement during a very difficult period.  I truly appreciate his 

patience with me during those long intervals of little contact or progress.   

A big thank you also to Dr. Vidakovic for his insight and suggestions on 

improving my Bayesian modeling methods; to Dr. Huo for suggesting a generalized cross 

validation method to improve my model fitting with smoothing splines; and to Dr. 

Alexopoulos for his suggestions on extending the change detection component to 

incorporate correlated observations.  Thank you also to Ms. Pam Morrison for her 

kindness and encouragement all these years, and to the H. Milton School of Industrial and 

Systems Engineering for tolerating my highly unusual (and lengthy) student status.   

 

I would also like to thank my family for their unwavering support and encouragement.  I 

am forever indebted to my mother for her constant and unconditional support and 

kindness.  A big thank you to my husband Jim for his support, and for helping me keep 

things in perspective.  And last but not least, a big hug and thank you to my 11-year-old 

son Jackson, who also has a big graduation coming up soon.  Thanks Jack for being the 

phenomenal person that you are, and for the endless supply of knock-knock jokes.      



 v

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS iv 

LIST OF TABLES x 

LIST OF FIGURES xi 

SUMMARY xiv 

CHAPTER 

1 INTRODUCTION 1 

1.1  Statistical Estimation of Influenza-associated Mortality Rates 1 

1.2  Modeling Influenza-associated Mortality: Research Questions  

  and Contributions 2 

1.3  Statistical Process Control Methods for Disease Outbreak  

  Detection 3 

1.4  Monitoring Disease Outcomes: Research Question and  

  Contributions 4 

2 MODELING INFLUENZA-ASSOCIATED MORTALITY:   

 A LITERATURE REVIEW 5 

2.1  Mathematical Models 6 

 2.1.1  Generalized Linear Models 6 

 2.1.2  Generalized Additive Models 6 

2.2  Modeling Influenza-associated Mortality 7 

 2.2.1  Modeling Correlated Data 7 

 2.2.2  Defining Error Structure 10 

 2.2.3  Adjustment for Unmeasured Seasonal Covariates 12 

      2.2.3.1  Parametric Cubic Splines 12 

      2.2.3.2  Nonparametric Smoothing Splines 13 



 vi

      2.2.3.3  Accounting for Background Seasonality 14 

 2.2.4  Multicollinearity 14 

2.3  Summary 15 

3 POOLING INFLUENZA-ASSOCIATED MORTALITY RISKS  

 ACROSS LOCATIONS AND QUANTIFYING SPATIAL  

 HETEROGENEITY 17 

3.1  Mortality and Influenza Surveillance Data 18 

3.2  Two-stage Hierarchical Bayesian Model 19 

 3.2.1  Stage 1: Local-level Semi-parametric Regression 20 

 3.2.2  Generalized Additive Models 21 

 3.2.3  Stage 2: Pooling Log-Relative Risks 23 

      3.2.3.1  Spatial Independence Model 23 

      3.2.3.2  Spatial Correlation Model 26 

 3.2.4  Conventional Modeling Approach for Comparison 27 

3.3  Pooled Relative Risk Results 28 

3.4  Conclusions 30 

4 MODELING INFLUENZA-ASSOCIATED MORTALITY  

 WITH MEASURED AND UNMEASURED BACKGROUND  

 SEASONALITY 40 

                  4.1  Statistical Models and Seasonality 41 

 4.1.1  Model 1: Poisson GLM with Sinusoidal Seasonality 42 

 4.1.2  Model 2: Negative Binomial GLM with Cubic Splines 43 

     4.1.2.1  Natural Cubic Splines 43 

     4.1.2.2  Details of Model 2 46 

 4.1.3  Model 3: Negative Binomial GAM with Smoothing Splines 47 

                  4.2  Comparing Influenza-associated Death Estimates 48 

                  4.3  Conclusions and Modeling Recommendations 50 



 vii

                  4.4  Limitations 53 

5 MODELING THE NONLINEAR ASSOCIATION BETWEEN  

 INFLUENZA AND MORTALITY WITH LOCAL-LEVEL  

 ADJUSTMENT FOR SEASONAL CONFOUNDING 63 

                  5.1  Surveillance Data and Study Population 64 

                  5.2  Modeling the Nonlinearity of Influenza-Mortality Association 65 

 5.2.1  Modeling with Parametric Splines: A Short Review 67 

 5.2.2  Model 1: Sinusoidal Seasonality and Linear Viral Terms 68 

 5.2.3  Model 2: Temperature Splines and Linear Viral Terms 69 

 5.2.4  Model 3: Temperature and Viral Splines 70 

                  5.3  Results: Linear versus Nonlinear Model Fit 70 

                  5.4  Results: Deaths Attributable to Influenza 72 

 5.4.1  Attributable Deaths by Influenza Type/Subtype 72 

 5.4.2  Deaths Attributable to RSV 73 

 5.4.3  Deaths Attributable to Influenza Modeled as a Single  

           Covariate 74 

                  5.5  Conclusions 74 

 5.5.1  Local-level Influenza-associated Death Rates 74 

 5.5.2  Modeling Influenza-attributable Mortality 75 

 5.5.3  Modeling RSV-attributable Mortality 76 

                  5.6  Limitations 76 

6 LITERATURE REVIEW: STATISTICAL PROCESS CONTROL  

 CHARTS FOR OUTBREAK DETECTION IN SYNDROMIC 

SURVEILLANCE 87 

                  6.1  Statistical Process Control Charts 87 

                  6.2  Cumulative Sum Charts in Public Health Surveillance 89 

                  6.3  Exponentially Weighted Moving Average Charts in Public  

        Health Surveillance 90 



 viii

                  6.4  Residual Charts in Public Health Surveillance 92 

 6.4.1  Preconditioning Data with Regression Models 94 

 6.4.2  Preconditioning Data with ARIMA Methods 94 

 6.4.3  Preconditioning Data using Exponential Smoothing  

      Methods 95 

                  6.5  Summary 95 

7 COMPARISON OF CUSUM AND EWMA CHARTS FOR  

 DETECTION OF INCREASES IN NEGATIVE BINOMIAL COUNTS 97 

7.1  Negative Binomial Distribution 98 

7.2  Detection Methods 99 

 7.2.1  Negative Binomial Cumulative Sum Chart 99 

 7.2.2  Exponentially Weighted Moving Average Chart 101 

7.3  Simulation Study 101 

 7.3.1  Study Design and Parameter Selection 101 

 7.3.2  Conditional Expected Delay 103 

 7.3.3  ���(�, ��) results under fixed size of shift (��) and  

           varying time of shift (�) 103 

 7.3.4  ���(�, ��) results under fixed time of shift (�) and  

           varying size of shift (��) 104 

7.4  Conclusions 105 

8 CONCLUSIONS AND FUTURE WORK 110 

8.1  Summary of Results and Conclusions 110 

  8.1.1  Pooling Influenza-associated Mortality Risks Across  

            Locations 110 

  8.1.2  Modeling Measured and Unmeasured Background  

            Seasonality 111 

  8.1.3  The Nonlinear Association Between Influenza and  

            Mortality 111 

 



 ix

  8.1.4  Comparison of CuSum and EWMA Charts for Outbreak 

            Detection 112 

8.2  Future Research 113 

REFERENCES 115 



 x

LIST OF TABLES 

Page 

Table 3.1: Relative risk of deaths among persons 65+ years of age and percent- 

  positive influenza circulation during the 10-year period 1991−2000,  

  by type/subtype and modeling approach. 39 

 

Table 4.1: Viral parameter estimates based on 11 models with varying  

  representations of background seaonality: New York City. 58 

Table 4.2: Viral parameter estimates based on 11 models with varying  

  representations of background seaonality: Chicago. 58 

Table 4.3: Viral parameter estimates based on 11 models with varying  

  representations of background seaonality: Los Angeles. 59 

Table 4.4: Viral parameter estimates based on 11 models with varying  

  representations of background seaonality: Miami. 59 

Table 4.5: Number of deaths attributable to influenza type/subtype, by city and  

     model, 1991-2000.              62 

Table 5.1: Temperature statistics and average population aged 65 or older for  

                 10 U.S. cities, 01/01/1991 – 12/31/2000. 78 

Table 5.2: Estimated influenza and RSV associated death counts by city, viral  

                  type, and model, 1991−2000 cumulative total. Degrees of freedom  

                  for each viral spline in Model 3 are also given. 79 

Table 5.3: Estimated influenza and RSV associated death counts by city and  

                 model, 1991−2000 cumulative total. Degrees of freedom for each  

                 viral spline in Model 3 are also given. 80 

 

Table 5.4: Estimated average annual rates* of influenza and RSV attributable  

                 deaths by city, viral type, and model, 1991−2000. 81 

Table 5.5: Estimated average annual rates* of influenza and RSV attributable  

                 deaths by city and model, 1991−2000. 82 

Table 7.1: Negative binomial parameter values for the simulation study  

     assessing the performance of the CuSum and EWMA monitoring  

     methods, �� = 1.4.           107 

 

Table 7.2: CuSum thresholds (h) determined via simulation (target ARL0 = 1,500)     107 

Table 7.3: EWMA thresholds (h) determined via simulation (target ARL0= 1,500). 107 



 xi

LIST OF FIGURES 

Page 

Figure 3.1: Map of 88 cities included in hierarchical analyses. 34 

Figure 3.2: Daily mortality counts, mean temperature, mean dew point  

   temperature, and regional RSV activity by city, 1991 ̶ 2000. 35 

Figure 3.3: Daily mortality counts and regional influenza (AH3N2, AH1N1, B)  

   activity by city, 1991 ̶ 2000. 36 

Figure 3.4: Observed and fitted mortality data for 4 U.S. cities.  Results from  

   the generalized additive models implemented in this study are  

   represented by the blue, fitted lines. 37 

Figure 3.5: Log-relative risks of death among persons 65+ years of age and  

   percent-positive A(H3N2) influenza activity during the 10-year  

   period, 1991−2000, by city. 38 

Figure 3.6: Log-relative risks of death among persons 65+ years of age and  

   percent-positive A(H1N1) influenza activity during the 10-year  

   period, 1991−2000, by city. 38 

Figure 3.7: Log-relative risks of death among persons 65+ years of age and  

   percent-positive type B influenza activity during the 10-year  

   period, 1991−2000, by city. 39 

 

Figure 4.1: Plots of viral parameter estimates (A-H3N2, A-H1N1, B, RSV)  

       by degrees of freedom for natural cubic splines in GLM models  

  (black), and by effective degrees of freedom for smoothing splines  

  from GAM models (red), New York City.            54 

 

Figure 4.2: Plots of viral parameter estimates (A-H3N2, A-H1N1, B, RSV)  

       by degrees of freedom for natural cubic splines in GLM models  

  (black), and by effective degrees of freedom for smoothing splines  

  from GAM models (red), Chicago.             55 

 

Figure 4.3: Plots of viral parameter estimates (A-H3N2, A-H1N1, B, RSV)  

       by degrees of freedom for natural cubic splines in GLM models  

  (black), and by effective degrees of freedom for smoothing splines  

  from GAM models (red), Los Angeles.            56 

 

Figure 4.4: Plots of viral parameter estimates (A-H3N2, A-H1N1, B, RSV)  

       by degrees of freedom for natural cubic splines in GLM models  

  (black), and by effective degrees of freedom for smoothing splines  



 xii

  from GAM models (red), Miami.              57 

 

Figure 4.5: New York City − Observed daily mortality counts for population  

   65+ years of age, and fitted mortality derived from Model 1: GLM- 

   Poisson with Fourier terms for background seasonality (yellow);  

   Model 2: GLM-NB with natural cubic spline for background  

   seasonality (red); and Model 3: GAM-NB with smoothing spline  

   for background seasonality (blue). 60 

 

Figure 4.6: Chicago − Observed daily mortality counts for population  

   65+ years of age, and fitted mortality derived from Model 1: GLM- 

   Poisson with Fourier terms for background seasonality (yellow);  

   Model 2: GLM-NB with natural cubic spline for background  

   seasonality (red); and Model 3: GAM-NB with smoothing spline  

   for background seasonality (blue). 60 

Figure 4.7: Los Angeles − Observed daily mortality counts for population  

   65+ years of age, and fitted mortality derived from Model 1: GLM- 

   Poisson with Fourier terms for background seasonality (yellow);  

   Model 2: GLM-NB with natural cubic spline for background  

   seasonality (red); and Model 3: GAM-NB with smoothing spline  

   for background seasonality (blue). 61 

Figure 4.8: Miami − Observed daily mortality counts for population  

   65+ years of age, and fitted mortality derived from Model 1: GLM- 

   Poisson with Fourier terms for background seasonality (yellow);  

   Model 2: GLM-NB with natural cubic spline for background  

   seasonality (red); and Model 3: GAM-NB with smoothing spline  

   for background seasonality (blue). 61 

Figure 5.1: Association between daily mortality count for persons age 65+ years  

   and percent-positive viral type, New York City, combined years       

   1991−2000.  Association modeled using spline function (red) and  

   linear function (green). 83 

Figure 5.2: Association between daily mortality count for persons age 65+ years  

   and percent-positive viral type, Chicago, combined years       

   1991−2000.  Association modeled using spline function (red) and  

   linear function (green). 84 

Figure 5.3: Association between daily mortality count for persons age 65+ years  

   and percent-positive viral type, Los Angeles, combined years       

   1991−2000.  Association modeled using spline function (red) and  

   linear function (green). 85 

Figure 5.4: Association between daily mortality count for persons age 65+ years  

   and percent-positive viral type, Miami, combined years       



 xiii

   1991−2000.  Association modeled using spline function (red) and  

   linear function (green). 86 

Figure 7.1: Conditional Expected Delay (CED) comparisons of CuSum (triangles)  

   and EWMA (squares) by time of true shift (v).  Figures a,c,e have  

   true shift �� 	= 	1.75 and target shift  ��∗ 	= 	1.75.  Figures b,d,f have  

   true shift �� 	= 	2.45 and target shift  ��∗ 	= 	2.45.  Detection methods  

   are compared across three simulated negative binomial time series  

   with parameters �� 	= 	1.4 and variances σ2 = 1.5 (Figures a,b);  

   σ2 = 4.2 (Figures c,d); and σ2 = 14 (Figures e,f). 108 

 

Figure 7.2: CED comparisons of CuSum (grey triangles) and EWMA  

   (black squares) detection methods across different true mean shift  

   sizes (��) at fixed time of shift (v = 50).  Figures a,c,e have target  

   shift ��∗ 	= 	1.75.  Figures b,d,f have target shift ��∗ 	= 	2.45.   

   Detection methods are compared across three simulated negative  

   binomial time series with parameters ��= 1.4 and variances σ2 = 1.5 

   (Figures a,b); σ2 = 4.2 (Figures c,d); and σ2 = 14 (Figures e,f). 109 

 

 

 

 

 

 

  



 xiv

SUMMARY 

 

This thesis focuses on assessing and improving statistical methods implemented in two 

areas of public health research.  The first topic involves estimation of national influenza-

associated mortality rates via mathematical modeling.  The second topic involves the 

timely detection of infectious disease outbreaks using statistical process control 

monitoring. 

 For over fifty years, the Centers for Disease Control and Prevention has been 

estimating annual rates of U.S. deaths attributable to influenza.  These estimates have 

been used to determine costs and benefits associated with influenza prevention and 

control strategies.  Quantifying the effect of influenza on mortality, however, can be 

challenging since influenza infections typically are not confirmed virologically nor 

specified on death certificates.  Consequently, a wide range of ecologically based, 

mathematical modeling approaches have been applied to specify the association between 

influenza and mortality.  To date, all influenza-associated death estimates have been 

based on mortality data first aggregated at the national level and then modeled.  

Unfortunately, there are a number of local-level seasonal factors that may confound the 

association between influenza and mortality − thus suggesting that data be modeled at 

the local level and then pooled to make national estimates of death.   

The first component of the thesis topic involving mortality estimation addresses 

this issue by introducing and implementing a two-stage hierarchical Bayesian modeling 

approach.  In the first stage, city-level data with varying trends in mortality and weather 

were modeled using semi-parametric, generalized additive models.  In the second stage, 

the log-relative risk estimates calculated for each city in stage 1 represented the 

“outcome” variable, and were modeled two ways: (1) assuming spatial independence 

across cities using a Bayesian generalized linear model, and (2) assuming correlation 
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among cities using a Bayesian spatial correlation model.  Results from these models were 

compared to those from a more-conventional approach.  

The second component of this topic examines the extent to which seasonal 

confounding and collinearity affect the relationship between influenza and mortality at 

the local (city) level.  Disentangling the effects of temperature, humidity, and other 

seasonal confounders on the association between influenza and mortality is challenging 

since these covariates are often temporally collinear with influenza activity.  Three 

modeling strategies with varying representations of background seasonality were 

compared.  Seasonal covariates entered into the model may have been measured (e.g., 

ambient temperature) or unmeasured (e.g., time-based smoothing splines or Fourier 

terms).  An advantage of modeling background seasonality via time splines is that the 

amount of seasonal curvature can be controlled by the number of degrees of freedom 

specified for the spline.  A comparison of the effects of influenza activity on mortality 

based on these varying representations of seasonal confounding is assessed.   

The third component of this topic explores the relationship between mortality 

rates and influenza activity using a flexible, natural cubic spline function to model the 

influenza term.  The conventional approach of fitting influenza-activity terms linearly in 

regression was found to be too constraining.  Results show that the association is best 

represented nonlinearly. 

The second area of focus in this thesis involves infectious disease outbreak 

detection.  A fundamental goal of public health surveillance, particularly syndromic 

surveillance, is the timely detection of increases in the rate of unusual events.  In 

syndromic surveillance, a significant increase in the incidence of monitored disease 

outcomes would trigger an alert, possibly prompting the implementation of an 

intervention strategy.  Public health surveillance generally monitors count data (e.g., 

counts of influenza-like illness, sales of over-the-counter remedies, and number of visits 

to outpatient clinics).  Statistical process control charts, designed for quality control 
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monitoring in industry, have been widely adapted for use in disease and syndromic 

surveillance.  The behavior of these detection methods on discrete distributions, however, 

has not been explored in detail.   

For this component of the thesis, a simulation study was conducted to compare 

the CuSum and EWMA methods for detection of increases in negative binomial rates 

with varying amounts of dispersion.  The goal of each method is to detect an increase in 

the mean number of cases as soon as possible after an upward rate shift has occurred.  

The performance of the CuSum and EWMA detection methods is evaluated using the 

conditional expected delay criterion, which is a measure of the detection delay, i.e., the 

time between the occurrence of a shift and when that shift is detected.  Detection 

capabilities were explored under varying shift sizes and times at which the shifts 

occurred. 
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CHAPTER 1 

INTRODUCTION 

 

The purpose of this chapter is to provide a brief overview of the two public health 

research areas covered in this thesis, and to outline the research questions addressed as 

well as the research contributions made in each chapter. 

1.1  Statistical Estimation of Influenza-associated Mortality Rates 

For over fifty years, the Centers for Disease Control and Prevention (CDC) has been 

estimating annual rates of U.S. deaths attributable to influenza [Serfling, 1963; Lui and 

Kendal, 1987; Simonsen et al., 2000; Thompson et al., 2003, 2009].  These estimates 

have been used to determine costs and benefits associated with influenza prevention and 

control strategies [Meltzer et al., 1999; Nichol, 2003; Bridges et al., 2003].  Quantifying 

the effect of influenza on mortality, however, can be challenging since influenza 

infections typically are not confirmed virologically nor specified on death certificates 

[Douglas, 1976; Bisno et al., 1971; Taubenberger and Morens, 2008; Collins & 

Lehmann, 1951].  Consequently, the CDC has applied a wide range of ecologically 

based, mathematical modeling approaches to specify the association between influenza 

and mortality.  Some of the more-popular methods include regression, autoregressive 

integrated moving averages, and rate-differencing [Lui and Kendal, 1987; Thompson et 

al., 2003; Thompson et al., 2009; Cheng et al., 2014 unpublished].  To date, U.S. 

influenza-associated death estimates have been based on mortality data first aggregated at 

the national level and then modeled.  Unfortunately, there are a number of local-level 

seasonal factors that may confound the association between influenza and mortality − 

thus suggesting that data be modeled at the local level and then pooled to make national 

estimates of death.   
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Several recent studies have shown that meteorological factors, e.g., temperature 

and humidity, may affect influenza-related mortality estimation [Warren-Gash et al., 

2011; Yang et al., 2011; Wong et al., 2012; Yang et al., 2012].  Other seasonal viruses 

with varying local-level circulation, such as respiratory syncytial virus (RSV), can also be 

influential [Thompson et al., 2003; Mangtani et al., 2006].  Seasonal factors for which 

daily or weekly measurements are not collected are potential regional/local confounders 

as well (e.g., differences in predominant influenza viruses, seasonal host health, 

population density, and age distribution) [Lofgren et al., 2007].   

1.2  Modeling Influenza-associated Mortality: Research Questions and 

       Contributions 

Chapters 2−5 of this thesis examine in detail the effects of local-level seasonal 

confounding on the association between influenza activity and mortality rates. 

 Chapter 2 is a literature review on modeling influenza-associated mortality.  The 

review focuses on the two most-common approaches, generalized linear models (GLMs) 

and generalized additive models (GAMs), both of which are able to incorporate 

exogenous information into models and estimates.  The review discusses remedial 

measures used by researchers to address the analytic limitations of modeling seasonal 

data via GLMs and GAMs such as multicollinearity, serial correlation, and temporal 

confounding.   

 Chapter 3 addresses the issue of local-level seasonal confounding in modeling 

influenza-associated mortality by introducing and implementing a two-stage hierarchical 

modeling approach.  In the first stage, city-level data with varying trends in mortality and 

weather are modeled using semi-parametric, generalized additive models.  In the second 

stage, the log-relative risk estimates calculated for each city in stage 1 represent the 

“outcome” variable, and are modeled two ways: (1) assuming spatial independence 

across cities using a Bayesian generalized linear model, and (2) assuming correlation 
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among cities using a Bayesian spatial correlation model.  Results from these models are 

compared to those from a more-conventional approach.  

Chapter 4 examines the extent to which seasonal confounding and collinearity 

affect the relationship between influenza and mortality at the local (city) level.  

Disentangling the effects of temperature, humidity, and other seasonal confounders on 

the association between influenza and mortality is challenging since these covariates are 

often temporally collinear with influenza activity.  Three modeling strategies with 

varying representations of background seasonality are compared.  Seasonal covariates 

entered into the model may have been measured (e.g., ambient temperature) or 

unmeasured (e.g., time-based smoothing splines or Fourier terms).  An advantage of 

modeling background seasonality via time splines is that the amount of seasonal 

curvature can be controlled by the number of degrees of freedom specified for the spline.  

A comparison of the effects of influenza activity on mortality based on these varying 

representations of seasonal confounding is assessed.   

Chapter 5 explores the relationship between mortality rates and influenza activity 

using a flexible, natural cubic spline function to model the influenza term.  The 

conventional approach of fitting influenza-activity terms linearly in regression is found to 

be too constraining.  Results show that the association is best represented nonlinearly. 

1.3  Statistical Process Control Methods for Disease Outbreak Detection  

A fundamental goal of public health surveillance, particularly syndromic surveillance, is 

the timely detection of increases in the rate of unusual events.  In syndromic surveillance, 

a significant increase in the incidence of monitored disease outcomes would trigger an 

alert, possibly prompting the implementation of an intervention strategy.  Public health 

surveillance generally monitors count data (e.g., counts of influenza-like illness, sales of 

over-the-counter remedies, and number of visits to outpatient clinics).   
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Statistical process control (SPC) charts, designed for quality control monitoring in 

industry, have been widely adapted for use in disease and syndromic surveillance [Tsui et 

al., 2008].  Adaptations of the Cumulative Sum (CuSum) and Exponentially Weighted 

Moving Average (EWMA) charts have been used to monitor counts of nosocomial 

infections [Benneyan, 1998; Brown et al., 2002], hospital emergency department visits 

[Burkom, 2003; Yuan et al., 2004; Ivanov et al., 2003], visits to medical facilities 

[Burkom, 2003; Yuan et al., 2004; Ivanov et al., 2003; Bradley et al., 2005], prescription 

drug sales [Chen et al., 2005], and sales of over-the-counter health care products 

[Burkom, 2003; Hogan et al., 2003; Marx et al., 2006].  When used in syndromic 

surveillance, a statistically significant increase in observed data demonstrated by a SPC 

chart might be considered evidence of an emerging outbreak.   

1.4  Monitoring Disease Outcomes: Research Question and Contributions 

Chapter 6 reviews the current literature on three SPC charts (CuSum, EWMA, and 

Shewart residual charts) used for detection of rate or count increases in public health 

surveillance.  The behavior of these detection methods on discrete distributions, however, 

has not been explored in detail.  Chapter 7 details a simulation study conducted to 

compare the CuSum and EWMA methods for detection of increases in negative binomial 

rates with varying amounts of dispersion.  The goal of each method is to detect an 

increase in the mean number of cases as soon as possible after an upward rate shift 

occurs.  Performance of the CuSum and EWMA detection methods is evaluated using the 

conditional expected delay criterion which is a measure of the detection delay, i.e., the 

time between the occurrence of a shift and when that shift is detected.  Detection 

capabilities are explored under varying shift sizes and times at which the shifts occur. 
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CHAPTER 2 

MODELING INFLUENZA-ASSOCIATED MORTALITY: 

A LITERATURE REVIEW 

 

Estimating deaths associated with influenza using indirect statistical methods dates back 

to the mid-nineteenth century [Farr, 1847].  Deriving such estimates from ecologic, time-

series data continues to be a popular approach, though it also remains challenging for a 

number of reasons.  Since information is collected at the population rather than individual 

level, results are prone to analytic errors involving temporal ambiguity and 

misclassification within groups.  Because data are collected over time, neighboring 

observations are often correlated, e.g., exhibiting seasonal or long-term patterns.  

Validation of estimates is also difficult given that influenza can vary dramatically in 

timing and magnitude each season.  Moreover, any given influenza time series may not 

contain enough data over time to justify reaching a conclusion or generalizing the results.   

To address these and other methodological issues, a wide range of advanced 

mathematical modeling approaches have been implemented to describe statistically the 

association between influenza and mortality.  Two commonly used approaches are 

generalized linear models (GLMs) and generalized additive models (GAMs).  The main 

advantage these have over more-traditional time series methods, such as autoregressive 

integrated moving average (ARIMA) or exponential smoothing (ES) methods, is their 

capacity to incorporate exogenous information into models.  GLMs and GAMs, however, 

have a number of potential limitations in this context including multicollinearity, issues 

due to serial correlation, temporal confounding, and incorrect error assumptions.  The 

objective of this paper is to review and discuss approaches used in the literature to 

address these analytical limitations.  This review only compares regression methods that 
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incorporate external information; therefore, Serfling [1963], ES, and ARIMA modeling 

methods are not included.   

2.1  Mathematical Models  

The two modeling methods reviewed in this paper, GLMs and GAMs, are described 

below. 

2.1.1  Generalized Linear Models 

GLMs [Neter et al., 1996], commonly used in infectious disease modeling, are nonlinear 

regression models following the form: �� = �(XXXX�, �) + �� 
where �� (� = 1, … , �) are � independent responses that follow a probability density 

function belonging to the exponential class of distributions.  The term �(XXXX�, �) is a 

nonlinear response function where XXXX�	(� = 1, … , �) is the covariate vector, and � is a 

vector of parameters.  The error terms ��	(� = 1,… , �) are generally assumed to be 

uncorrelated with expectation E(��) = 0 and constant variance V(��) = "#.  GLMs, more 

specifically, have nonlinear response functions that can be linearized by a transformation.  

In this case, $(��) = $(E(��)) = 	$%�(XXXX�, �)& = (XXXX'∗)′) = *� + *�+�,� + *#+#,� +⋯+ *-+-,�	
where �� = �(��), XXXX'∗ = ./' XXXX'0, and the conventional parameter notation is used, ) 

where ) = �.  The quantity (XXXX'∗)′) is the linear predictor based on the independent 

variables +�,�, … , +-,�, and $ is the link function relating the linear predictor to the mean 

response �(XXXX�, �).  
2.1.2  Generalized Additive Models 

GAMs [Hastie et al., 2001; Wood, 2006; Hastie and Tibshirani, 1990] are a class of 

regression models that drop the assumption of linearity, thus making them more-flexible 
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modeling tools compared to GLMs.  This additional flexibility allows for better modeling 

of complex nonlinearity.  Additivity across effects is still assumed allowing for 

interpretation of results similar to that of GLMs.  GAMs are defined as: 

$(��) = 1 + ��%+�,�& + �#%+#,�& + ⋯+ �-%+-,�&, 
where �� = �(��) is a nonlinear response function, �� (� = 1, … , �) are � independent 

responses that follow a probability density function belonging to the exponential class of 

distributions, 1 is a constant, and the nonparametric �2 functions are generally estimated 

using scatterplot smoothers, such as smoothing splines (see Section 3.3.2).  As with 

GLMs, the link function $ relates the response function to an additive function of the 

predictors.  

 Semiparametric models incorporate both the linearity of GLMs and flexibility of 

GAMs, and are of the form: 

$(��) = (XXXX'∗)3) + ��(4��) + �#(4#�) + … +	�5%45�& 

where XXXX∗ is a vector of predictors to be modeled linearly, and the effects of predictors ZZZZ 

are modeled nonparametrically. 

2.2  Modeling Influenza-associated Mortality 

This section describes several limitations of GLMs and GAMs in modeling influenza-

associated mortality, and reviews how these limitations are accounted for in the literature. 

2.2.1  Modeling Correlated Data 

Time series mortality data tend to exhibit both long-term trends and seasonal fluctuations.  

A critical assumption of both GLMs and GAMs, however, is the independence of 

response variables ��, � = 1,… , �.  When error terms in regression models are positively 

correlated, standard errors may significantly underestimate the true standard deviation 

[Zeger et al., 2006].     
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One approach for removing autocorrelation is by adding predictor variables to the 

model that have time-ordered effects on the response.  In modeling influenza-related 

mortality with GLMs, Fourier terms are often included to account for seasonality, and 

linear or quadratic time terms included for long-term trends [Thompson et al., 2009; Yu 

et al., 2013; Charu et al., 2013; Nielsen et al., 2011; Newall et al., 2008].  Recently, cubic 

spline functions, also known as regression splines or parametric splines, have been used 

in GLMs to better account for seasonality, thus reducing residual correlation [Goldstein 

et al., 2012].  With the additional flexibility of smoothing splines, GAMs can model 

nonlinear associations more easily and with fewer parametric constraints than GLMs with 

regression splines.  Muscatello et al. [2013] use a smoothing spline of time to account for 

seasonal and time-varying patterns in non-influenza associated mortality.  Yang et al. 

[2009, 2011] chose the effective degrees of freedom (edf) of smoothing splines by 

assessing the partial autocorrelation function plots of the residuals.  The edf were chosen 

when the residuals fell within +/- 0.1 variability around zero with no discernible pattern.   

Using time splines to account for non-influenza related seasonality in regression 

models, however, can be challenging since influenza terms and seasonal terms tend to be 

correlated temporally.  For instance, several recent studies have shown that 

meteorological factors, e.g., temperature and humidity, may affect influenza-related 

mortality estimation [Warren-Gash et al., 2011; Yang et al., 2011; Wong et al., 2012; 

Yang et al., 2012].  Other seasonal viruses with varying local-level circulation, such as 

respiratory syncytial virus (RSV), may also affect estimates [Thompson et al., 2003; 

Mangtani et al., 2006].  Additional city-specific factors that may be influential include 

population density, age distributions, and differences in predominant influenza viruses 

[Lofgren et al., 2007].  When regression splines are used to model these confounding 

terms, the appropriate number of degrees of freedom (df) can be difficult to determine.  

With increasing df, splines may inadvertently dampen influenza-associated effects by 

overfitting data.   
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Even with careful adjustment of covariates, there may remain some amount of 

temporal residual correlation.  Yet very few studies mention an assessment of residuals.  

Yang et al. [2009] assessed autocorrelation plots of residuals for serial patterns.  Nielson 

et al. [2011] noted checking correlograms of the residuals and finding no autocorrelation.  

Muscatello et al. [2013] checked the normality of residuals using quantile-quantile plots.  

If residual correlation remains, certain remedial measures may be applicable.  Goldstein 

et al. [2012] found residual correlation after fitting linear models.  They first determined 

the underlying stochastic structure of the residuals which was found to be first-order 

autoregressive, AR(1).  A bootstrapped estimate of the AR(1) autoregressive parameter 

was then used to obtain a sample of regression parameters from which confidence 

intervals (CIs) were obtained.   

Nonparametric bootstrapping is another popular approach for estimating precision 

given complex or unknown error structure (Hastie et al., 2001).  Yang et al. [2011] 

derived 95% CI estimates by bootstrapping the scaled Pearson residuals, 789,� =	 :;<=>?(�@A<<) 
where 78< , � = 1,… , � is the Pearson residual (raw residual divided by the square root of 

the variance), BC is an estimate of the dispersion parameter, and ℎ�� denotes the �EA 

diagonal of the hat matrix.  Wu et al. [2012] also used a bootstrapping approach to 

calculate 95% CIs, though details of the bootstrapping method were not given. 

Some studies have implemented regression models with autoregressive error 

structures when modeling mortality time series.  Theoretically, such models should be 

able to simultaneously account for both external information and the underlying 

autocorrelative structure within the series.  Warren-Gash et al. [2011] examined partial 

autocorrelation functions for correlation within the residuals.  Autocorrelation was found 

at a lag of one week; thus, the authors fit models with a term for residuals lagged by 1 

week.  Yang et al. [2011] added autoregressive terms to remove significant 

autocorrelation of residuals in the first four weeks. 
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Estimation from regression models containing a lagged dependent variable, 

however, presents challenges because FE@� is not strictly exogenous [Cryer, 1986].  

Lagging the model one period means that FE@� = G + B�FE@# + H�IE + JE@�, so FE@� is 

clearly correlated with JE@�. Further, if the error structure JE@� is not white noise, then it 

may be the case that KL�(JE, JE@�) ≠ 0 and FE@� and JE are also correlated.  In this case, 

the lagged dependent variable is not even weakly exogenous and the ordinary least 

squares estimator becomes biased and inconsistent.  

For large sample sizes a transformed response variable may help eliminate the 

autocorrelation.  If a first-order autoregressive model can be assumed, the transformation 

��3 = �E − N�E@� may be applicable [Goldstein et al., 2012].  Several methods may be 

utilized to estimate N including the Cochrane-Orcutt, Hildreth-Lu, and first-differencing 

procedures [Wooldridge, 2003].   

2.2.2  Defining Error Structure 

Mortality data are discrete and non-negative, and like many other types of count data, 

tend to be right-skewed and heteroskedastic.  Extremely high weekly (or daily) death 

counts are uncommon occurrences, and variability tends to increase as the mean number 

of deaths increases (e.g., during winter months).  Because of these characteristics, 

mortality counts are often assumed to follow a Poisson distribution [Yang et al., 2009, 

2011a, 2011b, 2012; Thompson et al., 2003; Lemaitre et al., 2012; Wong et al., 2004, 

2012; Newall et al., 2010].  The Poisson model, however, requires equality of mean and 

variance.  Since overdispersion with respect to the Poisson is often observed, the negative 

binomial distribution is instead assumed [Yu et al., 2013; Feng et al., 2012].  Though the 

mean and variance of the negative binomial distribution are not completely independent, 

the distribution’s two parameters offer greater modeling flexibility than the Poisson.  In 

other studies, a quasi-likelihood method (e.g., quasi-Poisson) is used to model mortality 
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[Charu et al., 2013; Warren-Gash et al., 2011].  This approach does not require an explicit 

specification of the underlying distribution (or log-likelihood function).  Instead, 

parameter estimates are based entirely on the sample mean and variance of the model 

observations.  For overdispersed Poisson data, the quasi-likelihood method scales the 

variance using a constant multiplier. 

Parameter estimates from the negative binomial and quasi-Poisson models are 

often very close [Ver Hoef & Boveng, 2007].  Differences may arise with smaller sample 

sizes.  The variance of a quasi-Poisson model is a linear function of the mean, while that 

of a negative binomial model is a quadratic function of the mean.  These variance 

relationships affect the weights in the iteratively weighted least-squares algorithm which 

is used to find the maximum likelihood estimates in GLMs.  Because the variance is a 

function of the mean, large and small counts are weighted differently.  The negative 

binomial gives smaller sample means more weight relative to the quasi-Poisson; thus, 

smaller sample means have a greater effect on maximum likelihood parameter estimates 

in negative binomial regression.   

In some instances, a normal distribution is assumed for modeling mortality counts 

[Nielsen et al., 2011; Newall et al., 2008; Goldstein et al., 2012; Muscatello et al., 2013; 

Wu et al., 2012].  While both the Poisson and negative binomial distributions converge 

asymptotically to a normal distribution, the mean value at which the normality 

approximation holds will vary depending on the spread of the data.  With smaller counts 

of data, the assumption may not be appropriate.  Linear regression also assumes 

homoskedastic errors and continuous data, neither of which describe the mortality data 

modeled in this context.  Diagnostics should be performed, particularly for 

heteroskedasticity and serial correlation.   
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2.2.3  Adjustment for Unmeasured Seasonal Covariates 

In modeling influenza-associated mortality, careful adjustment of seasonal covariates 

exhibiting temporal patterns similar to influenza is necessary to avoid misrepresentation 

of the influenza effect.  Underrepresenting background seasonality tends to inflate 

influenza parameter estimates, while overrepresenting background seasonality leads to 

dampened or erratic influenza parameter estimates.  Seasonal covariates entered into 

regression models may be measured or unmeasured.  Measured seasonal covariates might 

include temperature, humidity, and proxies for other circulating viruses (e.g., respiratory 

syncytial virus, or RSV).  Unmeasured seasonal covariates are generally represented via 

mathematical functions.  Three approaches often used to account for unmeasured 

seasonality over time include: (1) Fourier terms; (2) parametric cubic splines; and (3) 

nonparametric smoothing splines.  A brief review of parametric and nonparametric 

splines is given next. 

2.2.3.1  Parametric Cubic Splines 

Splines are piecewise polynomials used to model complex curvature [Hastie et al., 2001].  

They serve as an alternative to sinusoidal terms or global polynomial terms, both of 

which can lead to a more-constrained fit of the data.  For a particular covariate, +, the 

range of + is partitioned into k+1 intervals by k points, OI�, … , IPQ, referred to as knots.  

A separate cubic polynomial is fitted to each interval of data.   

Cubic splines are defined as follows: Given a set of knots, I� < I# < ⋯ < IP, 

contained within interval (a, b), a cubic spline is a continuous function � such that (i) � is 

a cubic polynomial over (I�, I#), (I#, IR), … , (IP@�, IP) and (ii) � has continuous first 

and second derivatives at all knots.  In general, an Mth-order spline is a piecewise S–1	degree polynomial with S–2 continuous derivatives at the knots.  Once the number 
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and location of knots is decided, splines are entered directly into the covariate matrix via 

their basis functions. 

Cubic splines (S = 4) are the lowest-order splines for which the discontinuity at 

the knots is not noticeable.  Continuous first and second derivatives ensure smoothness 

across intervals.  As such, cubic splines are one of the most-commonly used splines in 

practice.  More-flexible curves are obtained by increasing the degree of the spline and/or 

by adding more knots.  But there is a tradeoff.  Too few knots or lower order may result 

in a function that is too restrictive (low bias, high variance).  Too many knots or higher-

order polynomials may overfit the data (high bias, low variance). 

2.2.3.2  Nonparametric Smoothing Splines 

Smoothing splines control the complexity of fit by regularization [Hastie et al., 2001; 

Wood, 2006].  Among all twice differentiable functions �, a smoothing spline is one that 

minimizes the penalized residual sum of squares: 

UVWW(�, X) = YOF� − �(I�)Q#Z
�[� + 	X\ O�33(I)Q#]max

]min cI, 
where X is a fixed smoothing parameter.  The first term is the residual sum of squares, 

while the second term is a roughness penalty that penalizes curvature.  Note that when �(I) is a linear function, the penalty term is 0.  The parameter X controls the trade-off 

between fitting the data and penalizing curvature.  Thus, X controls the amount of 

smoothness in the fitted function.  When X = 0, there is no smoothing and the solution is 

the interpolation function.  When X → ∞, UVWW(�, X) is minimized only when 

fO�"(I)Q#cI = 0.  In this case, � converges to the linear regression estimator.   

It has been shown that the function �h(I) that minimizes UVWW(�, X) is a natural 

cubic spline with knots at all distinct observed values of I. While it might seem as if the 

function �h may be overparameterized given that the natural cubic spline introduces up to 
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Imax df (since there are up to Imax knots), the smoothing parameter imposes constraints 

on �h that translate to a penalty on the spline parameters –- shrinking them toward a linear 

fit (i.e., effectively decreasing the df). 

2.2.3.3  Accounting for Background Seasonality 

Although simple and easy to implement, generalized linear models tend to model poorly 

effects characterized by complex nonlinearity.  Global polynomials may account for 

curvature well in one area of the range, but often at the expense of another area [Hastie et 

al., 2001].  Fourier terms, while able to capture regular seasonality, assume a constant 

baseline across seasons.  Regression splines address these issues by modeling lower-order 

polynomials piecewise over the full range of the variable.  Goldstein et al. [2012] use 

parametric, periodic cubic splines in GLMs to account for unmeasured seasonality in 

mortality time series.  Depending on the number of knots, parametric splines can 

significantly increase dimensionality of the covariate matrix.  Collinearity is also a 

potential problem if certain basis sets are used (e.g., a truncated power basis).   

A number of studies use smoothing splines in GAMs to account for unmeasured 

seasonality [Muscatello et al., 2013; Yang et al., 2009; Yang, Chen, He et al., 2011].  

Unlike regression splines, smoothing splines are nonparametric and thus do not add terms 

to the covariate matrix.  This helps reduce the amount of correlation across temporally 

similar terms.  An advantage of modeling background seasonality via time splines is that 

complex curvature can be easily controlled by the number of df or edf specified for the 

spline.  Because of this, however, under- or overfitting background seasonality poses a 

potential problem since either can lead to a biased influenza-associated mortality effect.  

2.2.4  Multicollinearity 

High temporal correlation among covariate terms is a major limitation in modeling 

mortality via regression.  Temperature, humidity, influenza, and RSV are all seasonal 
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factors associated with mortality and, in the U.S., all tend to have temporally consistent 

peaks.  Multicollinearity, i.e., redundancy in covariate information, has two negative 

effects:  (1) the parameter estimates are unstable due to inflated standard errors resulting 

from near-singularity in the variance-covariance matrix, and (2) interpreting parameter 

estimates becomes difficult since the effects of highly correlated covariates cannot be 

disentangled.  Thus, an assessment of collinearity among covariates should be conducted.  

Most studies did not note checking for multicollinearity, though some mention excluding 

certain covariates to avoid collinearity [Yang et al., 2011b]. 

A common approach used to diagnose collinearity is by assessing the covariate 

correlation matrix [Neter et al., 1996].  High correlations between predictor variables 

suggest collinearity.  This method, however, can only detect pairwise correlation.  There 

is also no standard cut-off criterion for indicating collinearity.  A second method for 

detecting multicollinearity uses Variance Inflation Factors (VIFs) [Neter et al., 1996]. 

VIFs are obtained by regressing each predictor on all the other predictors, and then 

estimating an R-square value for each.  A third approach examines all the predictor 

variables together using a principle components analysis [Jolliffe, 2002].  Once all 

orthogonal components are determined, conditional indices are computed as ratios of the 

variables between two components.  Conditional indices greater than 30 suggest 

multicollinearity.   

An advantage of GAM smoothing splines is that they are a type of regularization 

method designed to control multicollinearity.  On the other hand, regression splines may 

introduce correlated basis functions to the covariate matrix depending on which basis sets 

are utilized. 

2.3  Summary 

GLMs and GAMs are popular regression methods used to model influenza-associated 

mortality.  Unlike traditional time series methods such as ARIMA or exponential 
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smoothing, both have the advantage of incorporating exogenous variables into the model.  

Because both are regression methods, they also have a number of shared limitations.  

GLMs and GAMs have difficulty addressing serial correlation and multicollinearity.  

Both approaches can be made more flexible via the use of spline functions.  The 

increased flexibility in modeling complex curvature helps remove residual 

autocorrelation while better adjusting for unmeasured seasonal covariates.  GAMs have 

the added advantage of offering nonparametric adjustment of covariates which should 

help reduce multicollinearity.     
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CHAPTER 3 

POOLING INFLUENZA-ASSOCIATED MORTALITY RISKS 

ACROSS LOCATIONS AND QUANTIFYING SPATIAL 

HETEROGENEITY  

 

For over fifty years, the Centers for Disease Control and Prevention (CDC) has been 

estimating annual rates of U.S. deaths attributable to influenza [Serfling, 1963; Lui and 

Kendal, 1987; Simonsen et al., 2000; Thompson et al., 2003, 2009].  These estimates 

have been used to determine costs and benefits associated with influenza prevention and 

control strategies [Meltzer et al., 1999; Nichol, 2003; Bridges et al., 2003].  Quantifying 

the effect of influenza on mortality, however, can be challenging since influenza 

infections typically are not confirmed virologically nor specified on death certificates 

[Douglas, 1976; Bisno et al., 1971; Taubenberger and Morens, 2008; Collins & 

Lehmann, 1951].  The CDC has applied a wide range of mathematical modeling 

approaches to specify the association between influenza and mortality [Lui and Kendal, 

1987; Thompson et al., 2003; Thompson et al., 2009; Cheng et al., 2014 unpublished].  

U.S. influenza-associated death estimates have been based usually on mortality data first 

aggregated at the national level and then modeled.  Unfortunately, there are a number of 

local-level seasonal factors that may confound the association between influenza and 

mortality − thus suggesting that data be modeled at the local level and then pooled to 

make national estimates of death.   

Several recent studies have shown that meteorological factors, e.g., temperature 

and humidity, may affect influenza-related mortality estimation [Warren-Gash et al., 

2011; Yang et al., 2011; Wong et al., 2012; Yang et al., 2012].  Other seasonal viruses 

with varying local-level circulation, such as respiratory syncytial virus (RSV), can also be 

influential [Thompson et al., 2003; Mangtani et al., 2006].  Seasonal factors for which 

daily or weekly measurements are not collected are potential regional/local confounders 
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as well (e.g., differences in predominant influenza viruses, seasonal host health, 

population density, and age distribution) [Lofgren et al., 2007].   

The current study has two objectives: 1) to determine the extent to which the 

association between influenza activity and mortality varies by city when accounting for 

local-level seasonal covariates, and 2) to pool relative risk estimates across cities and 

compare this pooled estimate to one obtained using a more-traditional approach where 

data are first pooled nationally and then modeled.   

The chapter is organized as follows: Section 3.1 describes the data used for all 

analyses.  Section 3.2 explains the modeling approaches including the two-stage 

hierarchical Bayesian modeling method and the more-traditional GLM method.  It also 

details the generalized additive modeling method used for Level 1 of the hierarchical 

approach.  Section 3.3 gives city-level results from the hierarchical method for the 

association between influenza activity and mortality.  It also compares results of the 

pooled relative risk estimates from each modeling method.  Section 3.4 discusses the 

differences in these results, their implications in interpretation, and several limitations in 

the methodology.  

3.1  Mortality and Influenza Surveillance Data 

The data used in this study were downloaded from the National Morbidity, Mortality, and 

Air Pollution Study (NMMAPS) website 

http://www.ihapss.jhsph.edu/data/NMMAPS/R/.  These data were chosen for our 

analyses because they contain temporal information on mortality counts and covariates of 

interest (e.g., temperature, pollution, etc.) from 105 U.S. cities.  Details on data collection 

and processing methods can be found at the Internet-based Health and Air Pollution 

Surveillance System (iHAPSS) website http://www.ihapss.jhsph.edu.  Data modeled in 

this study spanned a 10-year period from January 1, 1991 to December 31, 2000 because 

of widespread circulation of influenza A(H3N2), the influenza subtype associated with 
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the highest mortality rates.  Daily counts of mortality, and daily measures of mean 

temperature and mean dew point temperature were obtained for each of 88 U.S. cities 

with the largest populations of persons aged 65 or older as of the year 2000.  Mortality 

data include daily counts of respiratory and circulatory deaths among persons aged 65 or 

older.      

Weekly numbers of total respiratory specimens tested for influenza and positive-

influenza isolates by virus type and subtype {A(H1N1), A(H3N2), and B} were obtained 

from surveillance data collected from 50 to 75 World Health Organization (WHO) 

collaborating laboratories in the U.S.  Weekly numbers of total respiratory specimens 

tested for respiratory syncytial virus (RSV) and positive-RSV isolates were obtained 

from the National Respiratory and Enteric Virus Surveillance System.  We used regional 

(North East, Midwest, South, West) proportions of respiratory specimens testing positive 

for influenza or RSV, referred to as ‘percent-positive’ viral activity, as proxies for true 

viral activity.  Local or state data were too sparse to use directly in models.  Daily 

percent-positive data for each influenza subtype and RSV were imputed linearly from 

weekly percent-positive data.   

U.S. population estimates by year, age group (65+ years), and city were obtained 

from the U.S. Census Bureau.  Daily city-level population estimates were imputed via a 

step function (i.e., the annual estimate was used for each day of that calendar year). 

3.2  Two-stage Hierarchical Bayesian Model 

We used a two-stage hierarchical, Bayesian modeling approach to compute an overall 

national relative risk estimate of the association between influenza activity and mortality 

rates.  At the first stage, 88 U.S. cities with varying trends in mortality and weather were 

modeled using semi-parametric regression.  At the second stage, the log-relative risk 

estimates calculated for each city in stage 1 represented the “outcome” variable, and were 

modeled two ways: (1) assuming spatial independence across cities using a Bayesian 



20 

 

generalized linear model, and (2) assuming correlation among cities using a Bayesian 

spatial correlation model. 

3.2.1  Stage 1: Local-level Semi-parametric Regression 

Eighty-eight U.S. cities with varying trends in mortality and weather were modeled using 

generalized additive models (GAMs), a semi-parametric regression method described in 

detail in Section 3.2.2.  Each city was modeled separately.  The outcome variable for all 

models was daily mortality due to underlying respiratory or circulatory (R&C) causes 

among persons aged 65 or older.  Annual city-level population estimates of persons aged 

>65 years were used as the offset term to account for changes in population size over 

time.  The percent-positive influenza subtypes (i.e., A(H1N1), A(H3N2), and B) were 

entered into all models as linear terms.  A long-term trend was accounted for in each of 

the models by a natural cubic spline.  A day-of-week effect was also accounted for using 

six indicator variables (Sunday was the referent group).   

Local-level seasonal covariates included in this study were daily mean 

temperature, daily mean dew point temperature, and daily percent-positive RSV activity.  

Percent-positive RSV was entered into all models linearly.  Daily ambient temperature 

and dew point temperature (a proxy for humidity) were entered into models as either 

current or lagged (backshifted a specified number of days) terms.  These two covariates 

were entered into the models via smoothing splines.  Estimates for smoothing parameters 

were calculated using the generalized cross validation (gcv) metric in the ‘mgcv’ package 

for R software.  The Akaike information criterion was used for model comparisons and 

selection.  Ambient temperature was assumed to be a proxy for other unknown seasonal 

covariates.   
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3.2.2  Generalized Additive Models  

GAMs are a class of regression models which drop the assumption of linearity, thus 

making them more-flexible modeling tools compared to GLMs [Hastie et al., 2001; 

Hastie and Tibshirani, 1990; Wood, 2006].  This additional flexibility allows for better 

modeling of complex nonlinearity.  Additivity across effects is still assumed allowing for 

interpretation of results similar to that of GLMs.  GAMs are defined as: 

 $(��) = 1 + ��%+�,�& + �#%+#,�& + ⋯+ �-%+-,�& ( 1 ) 

where �� = �(��) is a nonlinear response function, �� (� = 1, … , �) are � independent 

responses that follow a probability density function belonging to the exponential class of 

distributions, 1 is a constant, the link function $ relates the response function to an 

additive function of the predictors, and the nonparametric �2 functions are estimated using 

smoothing splines which are a type of scatterplot smoother that control the complexity of 

fit by regularization.  Among all twice-differentiable functions �, a smoothing spline is 

one that minimizes the penalized residual sum of squares: 

 UVWW(�, X) = ∑ OF� − �(I�)Q#Z�[� + 	X f O�33(I)Q#]max]min cI ( 2 ) 

where X is a fixed smoothing parameter.  The first term is the residual sum of squares, 

while the second term is a roughness penalty that penalizes curvature.  Note that when �(I) is a linear function, the penalty term is 0.  The parameter X controls the trade-off 

between fitting the data and penalizing curvature.  Thus, X controls the amount of 

smoothness in the fitted function.  When X = 0, there is no smoothing and the solution is 

the interpolation function.  When X → ∞, UVWW(�, X) is minimized only when fO�33(I)Q#cI = 0.  In this case, � converges to the linear regression estimator.  It has 

been shown that the function �h(I) that minimizes UVWW(�, X) is a natural cubic spline 

with knots at all distinct observed values of I [Hastie et al., 2001]. The smoothing 
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parameter imposes constraints on �h that translate to a penalty on the spline parameters –- 

shrinking them toward a linear fit (i.e., effectively decreasing the df).  The smoothing 

parameter X is often selected by minimizing prediction error estimates from a cross-

validation method.  In this study, the generalized cross-validation method defined in the 

‘mgcv’ R package [Wood, 2006] was used to automate selection of the parameter.   

 Additive models are fit using a backfitting algorithm.  The following criterion is 

iteratively solved [Hastie et al., 2001]: 

      UVWW%1, ��, �#, … , �-& = ∑ jF − 1 − ∑ �2%I�2&-2[� k# + ∑ X2 fj�233%I2&k#cI2-2[�Z�[�  ( 3 )  

where the X2 ≥ 0 are smoothing parameters.  First, 1m = �Z∑ F�Z�[�  is fixed.  Then, a cubic 

smoothing spline WP is applied to the terms jF� − 1m − ∑ �h2(I�2)Pn2 k�[�Z
 as a function of 

I�P, thereby giving a new estimate for �hP.  This procedure is repeated for each predictor 

+2 in turn, using the most-current estimates of all other functions �h2 , until all functions �h2 
have stabilized.  The iterative algorithm is summarized as follows [Hastie et al., 2001]: 

 (1)   Initialize: 1m = �Z∑ F� ,			�h2Z�[� ≡ 0, 			∀�, q 
 (2)   Cycle:   q = 1,2, … , r, 1,2, … , r, …  

  �h2 		 ⟵ 			W2 tjF� − 1m − ∑ �hP(I�P)Pn2 k�[�Z u , 
  �h2 		 ⟵ �h2 − �Z∑ �h2(I�2)Z�[�  

until the functions �h2 change less than a prespecified threshold.  For GAMs, the 

appropriate criterion is a penalized log-likelihood which is maximized using a backfitting 

procedure with a likelihood maximizer. 

We implemented the following semi-parametric GAM model: 

 log	(��) = log(1) + *� + ∑ *2yz�2{	|2[� + *}.A(H1N1)�0 + *�.A(H3N2)�0 ( 4 ) 

           +	*�.B�0 + *��.RSV�0 + ��(��) +	�(Temp��), 
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where �� 	~	Negative	Binomial (NB) represents the number of deaths on day �; 1 is the 

offset term equal to the annual population size; *� represents the model intercept; *� 

through *| are coefficients for day-of-week indicators, z�2 (Sunday = referent); 

*}	through	*�� are coefficients for percent-positive viral terms; ��(��) is a parametric, 

natural cubic spline representing a long-term time trend; and �(Temp��) is a 

nonparametric smoothing spline representing a temperature effect lagged � days, � ∈O2,3, … ,6Q. 
3.2.3  Stage 2: Pooling Log-Relative Risks 

In the first stage, a semi-parametric, negative binomial GAM was used to model each of 

the 88 cities.  The influenza parameter estimates in equation (4), (*h}, *h�,	and	*h�), are the 

log-relative risks associated with percent-positive influenza activity and deaths among 

persons 65+ years.  The coefficients for all adjustment variables, including the splines in 

the semi-parametric model, are considered nuisance parameters.   

 In the second stage, the log-relative risks estimated for each influenza 

type/subtype are pooled across all cities, and become the outcome variables modeled in 

two ways: (1) assuming spatial independence across city estimates, and (2) assuming 

spatial correlation among city estimates.   

3.2.3.1  Spatial Independence Model 

In the spatial independence model, linear regression is used to model the city-level, log-

relative risk estimates relating to each influenza virus type/subtype.  Explanatory 

variables compiled at the city level are included to characterize geographic location, and 

to explain some of the geographical heterogeneity of the log-relative risk parameter 

estimates.  More formally, 

 *�|��, ��, … , �-, �#~�(�� + ∑ �2�2�-2[� , �#), ( 5 ) 
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where *� is the log-relative risk of death among persons aged 65+ years associated with 

the percent-positive influenza type/subtype activity (either A(H1N1), A(H3N2), or B) in 

city c, the �2� are the r city-level explanatory variables, and �# represents the ‘between-

cities’ variance. 

 A hierarchical Bayesian modeling approach can be used to pool these estimates 

across cities [Dominici, 2000].  With this approach, the joint posterior distribution of all 

parameters included in the model (influenza and nuisance parameters) is simulated, and 

then integrated over all nuisance parameters to obtain the marginal posterior distributions 

of interest (i.e., the marginal posteriors for log-relative rates by type/subtype).  In this 

context −	with a high-dimensional parameter space, large city-level sample sizes, and a 

large number of cities included in the first stage of analysis − the computational expense 

for a full Bayesian approach becomes time-consuming and impractical. 

 Le Cam and Yang [1990] showed that with large sample sizes, a good 

approximation of the posterior distribution can be obtained by using a normal 

approximation of the likelihood.  Daniels and Kass [1998] have shown that a hierarchical 

modeling approach based on the normal approximation of the likelihood leads to a two-

stage model that well approximates the exact Bayesian model with more-efficient 

simulation from the posterior.  If the likelihood function of the influenza parameters and 

the nuisance parameters can be approximated by a multivariate normal distribution with 

mean equal to the maximum likelihood estimates )?� and variance-covariance matrix VVVV?, 

then by definition, the marginal likelihood of any component of )?� has a normal 

distribution with mean *h� and variance �m#.  With this assumption, the first stage of the 

model was replaced with the MLE-based normal approximation to the likelihood function 

with means and variances equal to the maximum likelihood estimates obtained by fitting 

the GAM models described above.  Thus, the first-stage computation was simplified by 

assuming    
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 *h�	|	*�	~	�(*� , (�m#)�)   ( 6 )	
where *h� and 	(�m#)� are the MLEs of *� and its variance obtained by fitting the GAMs as 

described in stage 1.  

 City-level predictor variables included at the second stage were geographic 

region, city latitude, city longitude, percentage of residents living in poverty, percentage 

of residents age 65 or older, and percentage of homeowners age 65 or older.  When these 

predictor variables are centered at their means, a simple pooled estimate of the effect of 

influenza activity on mortality can be obtained by setting all covariates to 0.  In this 

scenario, the intercept �� can be interpreted as the average log-relative risk of the 

association between percent-positive influenza activity and mortality outcome given 

mean-centered, adjustment of location-specific predictors.  In other words, the intercept 

parameter �� represents the pooled, overall average of the true log-relative risks.  The 

independent regression parameters �2 measure the change in true log-relative risk of 

mortality associated with a unit change in the corresponding location-specific variable �2�.   

 Sources of variation in the estimation of �� are specified in the two stages of the 

hierarchical model.  The variation of *h� around *� describes the within-location variance (�#)�, while the variation of *� around �� describes the between-location variance �#.  

The within-location variance depends on the predictive power of the Stage 1 regression 

models, while the between-location variance measures the heterogeneity across 

geographical locations that is unexplained by the covariates �2� in Stage 2. 

 The Bayesian hierarchical model was completed by specifying vague prior 

distributions for the parameters of the stage 2 model.  A priori, the joint prior distribution 

was assumed to be the product of the marginals for � and �#.  The following prior 

distributions were assumed: for the intercept ��~�(0,100); for all explanatory variable 

parameters  ¡~�(0,100); and for the variance �@#~Γ(0.001,0.001).  Sensitivity 
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analyses were conducted by varying the prior distributions.  To compute the marginal 

posterior distributions of all second-stage parameters, a computational algorithm 

developed by Everson and Morris [2000] utilizing Markov chain Monte Carlo methods 

was implemented. 

3.2.3.2  Spatial Correlation Model 

In the spatial independence hierarchical model described above, we assume that, for any 

two locations (K, K3) regardless of geographical distance, the log-relative risks *� and *�£ 
are independent.  Though geographical region is accounted for and is a significant 

covariate in the spatial independence model, cities classified in the same geographic 

region, but far apart in terms of geographical distance, are considered “more similar” than 

two closer locations belonging to separate geographical categories.  To overcome this 

limitation, the assumption of independence can be relaxed to allow for possible spatial 

correlation among the *�.  In the spatial correlation model, it is assumed that each city-

specific relative risk is shrunk towards the average relative risk in neighboring cities 

which are defined as such based on geographical distance [Peng and Dominici, 2008].   

The degree of similarity of the log-relative rates in locations K	and	K′ can be 

defined as a function of the Euclidean distance, notated c(K, K3), between the cities.  

Euclidean distance was defined in terms of longitude and latitude coordinates.  More 

specifically, it is assumed that cL77%*� , *�£& = ¤IrO−Bc(K, K3)Q.  In words, the 

correlation between *� and *�£ decays as the distance between the two cities K	and	K3 
increases.  The parameter B, represents the rate of decay to zero.  

The spatial correlation model is specified by assigning prior distributions to the 

Stage 2 parameters.  For � and �# we choose the same priors specified for the 

hierarchical model assuming independence across cities.  For the parameter B, a uniform 

distribution in the range [Bmin, Bmax] was chosen [Peng and Dominici, 2008].  The values Bmin and Bmax were selected so that, when B = Bmin, the correlation between the two 
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relative risks was within the range 0.01 (maximum distance apart) to 0.8 (minimum 

distance apart).  When B = Bmax, the correlation between the two relative risks ranged 

from 0 (maximum distance) to 0.5 (minimum distance).   

The correlation function specified above was used to define the spatial structure, 

and the model was fit using the ‘spatialgibbs’ function in the ‘tsModel’ package for R 

software [Peng and Dominici, 2008].  The hierarchical Bayesian spatial correlation model 

was fit using different values of B to control for the strength of spatial correlation 

between cities.  Weak, moderate, and strong spatial correlation can be represented by 

values of B equal to 1, 0.1, and 0.01, respectively.  When B = 1, the Stage 2 model is 

close to the spatial independence model, and when B = 0.01, even distant cities maintain 

some spatial correlation.  For example, when using B = 0.01, the two cities furthest apart 

in this dataset have a correlation of approximately 0.5. 

3.2.4  Conventional Modeling Approach for Comparison 

We compared the hierarchical modeling approach to a widely used regression method for 

estimating influenza-associated mortality.  First, mortality data was compiled by day 

across all 88 cities.  Then, a negative binomial generalized linear model with sinusoidal 

terms representing unmeasured seasonal confounders was used to model influenza-

associated morbidity and mortality [Thompson et al., 2003; Thompson et al., 2009; 

Warren-Gash et al., 2011; Liao et al., 2009; Newall et al., 2010].  The full model is 

described as follows: 

            log(��) = log(1�) + *� +Y *2yz�2{	|
2[� + *}�� + *���# 

+	*�.sin(2¦�� 365.25⁄ )0 + *��.cos(2¦�� 365.25⁄ )0 
              +	*��.A(H1N1)�0 + *�#.A(H3N2)�0 + *�R.B�0 +	*�©.RSV�0 

 

 

 

( 7 ) 

where ��~NegBin, represents the number of deaths on day �; 1� is the offset term equal to 

the annual population size; *� is the model intercept; *� through *| are coefficients for 
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day-of-week indicators, z�2 (Sunday = referent); *}	and	*� are coefficients for the long-

term, non-linear time trend; *�	and	*�� are coefficients for the seasonal trend; and 

*��	through	*�© are coefficients for the percent-positive viral terms. 

3.3  Pooled Relative Risk Results 

Figure 2.1 is a map of the 88 cities modeled in this study.  The five cities with the largest 

year 2000 populations aged 65 or older were Los Angeles, New York, Chicago, 

Dallas/Fort Worth, and Houston.  The five smallest cities were Jackson, Lexington, 

Huntsville, Corpus Christi, and Fort Wayne.  Figure 3.2 shows daily time series of 

respiratory and circulatory deaths, mean temperature, mean dew point temperature, and 

regional RSV activity for four U.S. cities, one in each of four regions (Northeast: New 

York; South: Miami; Midwest: Chicago; West: Los Angeles).  Because temperature and 

dew point temperature were found to be highly collinear in all 88 cities, the two terms 

were not modeled together.  The temperature term tended to be more-highly associated 

with mortality; therefore, dew point temperature was dropped from all models.  An 

adjusted mean dew point temperature was also modeled by first regressing mean dew 

point temperature on mean temperature, and then modeling the residuals.  This term, 

however, did not substantially affect any of the virus parameter estimates and therefore 

was dropped from all models.  Figure 3.3 shows daily time series of respiratory and 

circulatory deaths and regional circulation of the three influenza subtypes [A(H3N2), 

A(H1N1), and B] for the four U.S. cities.  Note that A(H3N2) was the dominant 

influenza strain during this 10-year period.  The A(H1N1) subtype shows very little 

activity during this period. 

 Figure 3.4 shows the daily mortality counts plotted with fitted values for the four 

cities.  Correlograms of residuals from all 88 city-level models (not shown) revealed a 

mild level of autocorrelation (N < 0.25), up to 14 lags, for 3 cities:  Los Angeles, New 

York, and Chicago.  For the remaining cities, N < 0.08 at all lags.  These results suggest 
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that the GAM method removed a significant amount of serial dependence from city-level 

series. 

 Figures 3.5−3.7 show the log-relative risk estimates for all 88 U.S. cities during 

the 10-year study period by influenza sub/type.  A(H3N2) displayed wide variability 

across cities ranging from *h = 0.3 in Colorado Springs, CO to *h = 1.3 in Jacksonville, 

FL.  A significant association between A(H3N2) activity and mortality was observed for 

all but one city (Colorado Springs, CO).  A(H1N1) influenza activity showed significant 

positive association with mortality in only 16 of the 88 cities.  Log-relative risk estimates 

for type B influenza were found to be the least variable across cities.  While most cities 

trended towards a positive association between mortality and type B influenza activity, 

48 of 88 estimates were not statistically significant.   

 Table 3.1 summarizes results of the pooled analyses from the three models: the 

independent-observations hierarchical model; the spatial-correlation hierarchical model; 

and the traditional GLM model.  Means and confidence intervals were obtained from the 

marginal posterior distributions of the overall effect (1�,¬), � ∈OA(H1N1),	A(H3N2),	BQ.  Results from the independent-observations hierarchical model 

show that with a 10% increase in percent-positive A(H3N2) influenza activity (from 

baseline, or no measured activity), the risk of respiratory or circulatory deaths among 

persons 65+ years was increased by 8% (95% CI: 8−9).  At 20% and 30% levels of 

percent-positive A(H3N2) activity, the risk of death among persons 65+ years increases 

to 17% (95% CI: 16−18) and 27% (95% CI: 26−29) above baseline, respectively.  The 

spatial-correlation hierarchical model yielded results similar to the independent-

observations hierarchical model.  Given the traditional GLM model, a 10% increase in 

A(H3N2) influenza activity is associated with a 9% (95% CI: 9−10) increase in risk of 

death among persons aged 65+ years.  At 20% and 30% increases in A(H3N2) activity, 

the risk of death for this age group increases to 19% (95% CI: 18−19) and 30% (95% CI: 

29−31), respectively.  
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 At 10% and 20% increases in A(H1N1) activity, both the independent-

observations hierarchical model and the spatial-correlations hierarchical model yielded 

no significant increase in deaths among persons 65+ years, likely due to low A(H1N1) 

activity during the observed period.  The traditional GLM model, however, showed a 4% 

(95% CI: 3−4) increase in deaths with a 10% increase in A(H1N1) activity, and a 7% 

(95% CI: 6−9) increase in deaths at 20% increase in A(H1N1) activity compared to 

baseline.  Measured percent-positive activity of A(H1N1) during the observed study 

period did not reach 30%; therefore, a relative risk for this level of estimated circulation 

was not calculated. 

 All three methods calculated similar results for deaths associated with type B 

influenza circulation.  At 10% circulation, deaths among 65+ was 4% (95% CI: 3−4), 5% 

(95% CI: 4−6), and 3% (95% CI: 3−4) higher than baseline based on the independent-

observations hierarchical, spatial-correlation hierarchical, and traditional GLM models, 

respectively.  At 20% circulation, deaths increased to 7% (95% CI: 6−8), 9% (95% CI: 

8−11), and 6% (95% CI: 6−7) relative to baseline levels, respectively.  Measured 

circulation of type B influenza during the observed study period did not reach 30% in all 

regions; therefore, a relative risk for this level of circulation was not calculated. 

3.4  Conclusions 

Results from this study show considerable variability at the local level with respect to the 

association between influenza activity and mortality for subtypes A(H1N1) and 

A(H3N2); the corresponding heterogeneity metrics are z# = 0.62 and z# = 0.75 

respectively. These findings suggest that ambient temperature and other local-level 

seasonal factors significantly affect the relationship between influenza and deaths among 

persons aged 65 or older.  To better account for these city-level, time-dependent 

confounders, hierarchical modeling methods should be considered. 
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Results from two hierarchical models (modeled at the city-level, then pooled) were 

compared to those from a traditional modeling approach (pooled at the national level, 

then modeled).  Assuming a 30% increase in A(H3N2) influenza activity from baseline, 

the traditional GLM method estimated the risk of death to be approximately 3% higher 

than the other two methods, a statistically significant difference.  This difference may be 

attributable to the greater influence of counts from large cities when modeled via the 

traditional method.  Based on U.S. Census Bureau year 2000 population counts, the age 

65+ years population in three cities (New York, Los Angeles, and Chicago) accounted for 

approximately 25% of the entire study population of persons age 65 and older.  The 

hierarchical approaches essentially average all city-level parameter estimates taking into 

account estimated city-level variance, while the traditional method places more weight on 

outcomes of larger cities by pooling all data before modeling. 

Results from the A(H1N1) influenza-associated mortality show the hierarchical and 

traditional approaches leading to very different conclusions (Table 3.1).  With A(H1N1), 

the relative risk is null from both hierarchical models, which is not surprising given the 

very low activity of A(H1N1) during the study period.  The traditional GLM model, 

however, showed a significant increase in deaths with 10% and 20% increases in 

A(H1N1) activity.  Again, this may be attributed to the high log-RR values of a few large 

cities.   

Applying the traditional method to obtain an overall relative risk of deaths associated 

with influenza may bias the estimate toward the city-level outcomes of a few large cities.  

Another possible explanation for the upward shift in relative risk via the traditional 

approach may be due to the ‘pooling’ of seasonal covariates across cities.  By pooling 

death counts across cities, the assumption is that background seasonal factors are also 

combined at the national level.  Non-influenza seasonal factors, however, vary greatly by 

city.  For instance, generally the magnitude and timing of peak cold temperatures in 

southern cities are less pronounced and occur later in the year relative to northern cities.  
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When background seasonal covariates from all cities are pooled, the result is a national-

level seasonal covariate with a tempered, less-pronounced signal that does not clearly 

represent seasonality from any particular region.  Modeling a tempered seasonal 

background factor along with a strong seasonal influenza component may inadvertently 

attribute some percentage of non-influenza-associated deaths to influenza.   

For type B influenza activity, the three modeling approaches yielded similar results, 

suggesting that viral activity did not vary much geographically and/or other seasonal 

factors were not temporally collinear with type B influenza.  In this case, any of the three 

modeling approaches may be suitable for modeling. 

There are several limitations to this study.  First, hierarchical modeling is a novel 

approach to modeling influenza-associated deaths.  It requires further in-depth 

investigation.  For instance, the assumption of a multivariate normal approximation for 

the likelihood function of each city-level model needs further examination, and an 

appropriate estimate for the correlation parameter in the spatial-correlation hierarchical 

model should be determined.  Second, residuals from the hierarchical models still show 

slight serial dependence in the larger cities.  The city-level models are not able to capture 

the high winter-time mortality peaks of the largest cities, leaving this correlation in the 

residuals.  The amount of correlation in the hierarchical models is, however, less than that 

observed using the traditional GLM modeling approach.  Other modeling approaches at 

the city-level should be considered to better account for this residual correlation, e.g., 

incorporating additional confounders in GAMs, using ARIMAX models which include 

exogenous information, or even modeling traditional GLMs at local rather than national 

levels.  Third, validation of results is difficult for any time series modeling approach.  

This is particularly difficult when modeling influenza-associated deaths with regression 

methods since there are a number of temporally collinear variates.  Proper simulation 

studies which adequately represent mortality series with non-regression derived 
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components of influenza-associated and non-influenza-associated deaths are needed to 

properly compare regression modeling methods.   
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Figure 3.1:  Map of 88 cities included in hierarchical analyses.
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Figure 3.2:  Daily mortality counts, mean temperature, mean dew point temperature, and regional 

RSV activity by city, 1991  ̶2000. 
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Figure 3.3:  Daily mortality counts and regional influenza (AH3N2, AH1N1, B) activity by city, 

1991 ̶ 2000.    
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Figure 3.4:  Observed and fitted mortality data for 4 U.S. cities.  Results from the generalized 

additive models implemented in this study are represented by the blue, fitted lines. 
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Figure 3.5:  Log-relative risks of death among persons 65+ years of age and percent-positive 

A(H3N2) influenza activity during the 10-year period, 1991−2000, by city. 

 

 
 

 
Figure 3.6:  Log-relative risks of death among persons 65+ years of age and percent-positive 

A(H1N1) influenza activity during the 10-year period, 1991−2000, by city. 

 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
K

R
A

LB
U

A
T

LA
A

U
S

T
B

A
K

E
B

A
LT

B
A

T
R

B
IR

M
B

O
S

T
B

U
F

F
C

H
A

R
C

H
IC

C
IN

C
C

LE
V

C
LM

O
C

O
LO

C
O

R
P

D
A

Y
T

D
C

D
E

N
V

D
E

S
M

D
E

T
D

LF
T

E
LP

A
F

R
E

S
F

T
W

A
G

D
R

P
G

R
N

B
H

O
U

S
H

U
N

T
IN

D
I

JC
K

S
JC

K
V

JE
R

S
K

A
N

K
N

O
X

LA
LA

S
V

LE
X

LI
N

C
LO

U
I

LT
R

K
LU

B
B

M
A

D
I

M
E

M
P

M
IA

M
M

IL
W

M
IN

N
M

O
B

I
M

O
D

E
N

A
S

H
N

O
N

W
K

N
Y

O
A

K
L

O
K

LA
O

M
A

O
R

LA
P

H
IL

P
H

O
E

P
IT

T
P

O
R

T
P

R
O

V
R

A
L

R
IV

E
R

O
C

H
S

A
C

R
S

A
LT

S
A

N
A

S
A

N
B

S
A

N
D

S
A

N
F

S
A

N
J

S
E

A
T

S
H

R
S

P
O

K
S

T
A

A
S

T
LO

S
T

O
C

S
T

P
E

S
Y

R
A

T
A

C
O

T
A

M
P

T
O

LE
T

U
C

S
T

U
LS

W
IC

H
W

O
R

-3

-2

-1

0

1

2

3

A
K

R
A

LB
U

A
T

LA
A

U
S

T
B

A
K

E
B

A
LT

B
A

T
R

B
IR

M
B

O
S

T
B

U
F

F
C

H
A

R
C

H
IC

C
IN

C
C

LE
V

C
LM

O
C

O
LO

C
O

R
P

D
A

Y
T

D
C

D
E

N
V

D
E

S
M

D
E

T
D

LF
T

E
LP

A
F

R
E

S
F

T
W

A
G

D
R

P
G

R
N

B
H

O
U

S
H

U
N

T
IN

D
I

JC
K

S
JC

K
V

JE
R

S
K

A
N

K
N

O
X

LA
LA

S
V

LE
X

LI
N

C
LO

U
I

LT
R

K
LU

B
B

M
A

D
I

M
E

M
P

M
IA

M
M

IL
W

M
IN

N
M

O
B

I
M

O
D

E
N

A
S

H
N

O
N

W
K

N
Y

O
A

K
L

O
K

LA
O

M
A

O
R

LA
P

H
IL

P
H

O
E

P
IT

T
P

O
R

T
P

R
O

V
R

A
L

R
IV

E
R

O
C

H
S

A
C

R
S

A
LT

S
A

N
A

S
A

N
B

S
A

N
D

S
A

N
F

S
A

N
J

S
E

A
T

S
H

R
S

P
O

K
S

T
A

A
S

T
LO

S
T

O
C

S
T

P
E

S
Y

R
A

T
A

C
O

T
A

M
P

T
O

LE
T

U
C

S
T

U
LS

W
IC

H
W

O
R



39 

 

 
Figure 3.7:  Log-relative risks of death among persons 65+ years of age and percent-positive type 

B influenza activity during the 10-year period, 1991−2000, by city. 

 

 

 

 

 

 
Table 3.1: Relative risk of deaths among persons 65+ years of age and percent-positive influenza 

circulation during the 10-year period 1991−2000, by type/subtype and modeling approach. 

 Virus 

 Percent 

increase 

in viral 

activity 

Independent-

Observations 

Hierarchical Model 

Spatial- 

Correlation  

Hierarchical Model 

Traditional 

GLM Model 

A(H3N2) 10% 1.083 (1.079, 1.088) 1.082 (1.078, 1.086) 1.092 (1.089, 1.095) 

  20% 1.174 (1.163, 1.184) 1.171 (1.162, 1.180) 1.192 (1.186, 1.199) 

  30% 1.271 (1.255, 1.288) 1.267 (1.253, 1.282) 1.302 (1.292, 1.312) 

A(H1N1) 10% 1.010 (1.000, 1.020) 1.004 (0.968, 1.041) 1.035 (1.027, 1.042) 

  20% 1.020 (1.000, 1.041) 1.008 (0.938, 1.084) 1.070 (1.055, 1.086) 

B 10% 1.036 (1.030, 1.041) 1.046 (1.037, 1.055) 1.031 (1.027, 1.036) 

  20% 1.073 (1.061, 1.084) 1.094 (1.075, 1.113) 1.064 (1.055, 1.073) 
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CHAPTER 4 

MODELING INFLUENZA-ASSOCIATED MORTALITY WITH 

MEASURED AND UNMEASURED BACKGROUND SEASONALITY 

 

Time-series regression is a common modeling approach used for estimating influenza-

associated mortality.  Deaths associated with a particular virus are estimated as the 

difference between the sum of predicted values from a fitted model containing all viral 

terms and the sum of predicted values from the same model excluding viral activity for a 

particular virus [Thompson et al., 2009].  Because this approach relies on unbiased 

parameter estimates of the viral terms in estimating attributable deaths, any confounding 

or collinearity among model terms should be understood and addressed.  Collinearity 

among seasonal covariates can lead to unstable influenza-associated death estimates and 

inflated standard errors.  

This chapter examines the effects of varying measures of seasonality on the 

association between influenza and mortality using regression-based modeling.  Data from 

four U.S. cities with varying trends in mortality and weather were modeled (New York, 

Chicago, Miami, and Los Angeles).  These data were described in detail in Chapter 3.  In 

this study, background seasonality refers to the set of seasonal covariates included in a 

model that measurably affect the influenza-mortality relationship.  These covariates 

include data-driven as well as mathematically modeled proxies for seasonality.   

Section 4.1 describes in detail the three statistical models used to compare death 

estimates based on various representations of background seasonality.  This section also 

includes a review of natural cubic spline functions.  Results comparing influenza-

associated death estimates across the three modeling methods are given in Section 4.2.  

Conclusions are given in Section 4.3 along with suggestions for improvements on 

modeling background seasonality in this context. 
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4.1  Statistical Models and Seasonality 

To assess the impact of influential seasonal confounders, we compared parameter 

estimates of the viral terms using three modeling approaches which vary in their 

representations of background seasonality.  Robust or stable parameter estimates across 

models would suggest minimal collinearity, while estimates that fluctuate with the 

inclusion of different seasonal covariates might suggest that the viral and seasonal effects 

are highly correlated and cannot be separated or assessed independently.   

The three regression-based models that were implemented to quantify the 

association between influenza and mortality while accounting for background seasonality 

were: (i) GLM with negative binomial error structure and sinusoidal terms representing 

background seasonality, (ii) GLM with negative binomial error structure and natural 

cubic splines representing background seasonality, and (iii) GAMs with negative 

binomial error structure and smoothing splines representing background seasonality.   

Four U.S. cities with varying trends in mortality and weather (New York, 

Chicago, Miami, and Los Angeles) were modeled.  Each city was modeled separately.  

The outcome variable for all models was daily mortality due to underlying respiratory or 

circulatory (R&C) causes among persons aged 65 or older.  Annual city-level population 

estimates of persons aged >65 years were used as the offset term to account for changes 

in population size over time.  The percent-positive influenza subtypes {i.e., A(H1N1), 

A(H3N2), and B} were entered into all models as linear terms.  A long-term trend was 

accounted for in each of the models by including linear and quadratic time terms.  A day-

of-week effect was also accounted for using six indicator variables (Sunday was the 

referent group).   

To represent local-level patterns of background seasonality, several approaches 

were taken.  Measured covariates such as city-level temperature were included directly 

into models.  Functions of calendar time (e.g., splines) were used as proxies for time-
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dependent, unmeasured covariates such as local patterns of non-influenza virus 

circulation.  Measured seasonal covariates included in this study were temperature, dew 

point temperature, and percent-positive RSV.  Percent-positive RSV was entered into all 

models linearly.  Temperature and dew point temperature, a proxy for humidity, were 

entered into models as either current or lagged (backshifted a specified number of days) 

terms.  These two covariates were entered into the models either linearly, via natural 

cubic splines, or as smoothing splines.   

Unmeasured background seasonality was modeled by including time in days 

represented through natural cubic splines, smoothing splines, or Fourier functions.  One 

advantage of modeling background seasonality via time splines is that the amount of 

seasonal curvature can be controlled by the number of df specified for the spline.  This 

technique allows for an assessment of the change in influenza parameter estimates by 

degree of control for background seasonality.  Fewer df translates to very little 

adjustment for background seasonality and vice versa.  A review of natural cubic splines 

is given in Section 4.1.2, and a review of smoothing splines is given in Section 3.2.2.   

4.1.1  Model 1:  Poisson GLM with Sinusoidal Seasonality 

Poisson generalized linear models with sinusoidal terms representing unmeasured 

seasonal confounders are widely used to model influenza-associated morbidity and 

mortality [Thompson et al., 2003; Thompson et al., 2009; Warren-Gash et al., 2011; Liao 

et al., 2009; Newall et al., 2010].  Because this modeling strategy is considered a fairly 

conventional approach, we use it as our referent model for comparison.  The full model is 

described as follows: 

log	(��) = log(1�) + *� +Y *2yz�2{	|
2[� + *}�� + *���# 

                              +	*�.sin(2¦�� 365.25⁄ )0 + *��.cos(2¦�� 365.25⁄ )0 
                                            +	*��.A(H1N1)�0 + *�#.A(H3N2)�0 + *�R.B�0 + *�©.RSV�0	 
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where ��~Poisson, represents number of deaths on day �; α is the offset term equal to the 

annual population size; *� is the model intercept; *�through *| are coefficients for day-

of-week indicators, z�2 (Sunday = referent); *}	and	*� are coefficients for the long-term, 

nonlinear time trend; *�	and	*�� are coefficients for the seasonal trend; and 

*��	through	*�© are coefficients for the percent positive viral terms. 

4.1.2  Model 2: Negative Binomial GLM with Cubic Splines 

Before specifying the generalized linear model with negative binomial error structure 

(GLM-NB), a review of natural cubic splines follows.   

4.1.2.1  Natural Cubic Splines 

Often in regression modeling, global polynomial functions are used to model curvature 

found in the association between the outcome and a particular predictor variable.  Such 

functions, however, tend to fit data poorly near the boundaries of the outcome.  

Increasing the order of the polynomial to better fit a particular region often leads to 

erratic fit in another region.  Splines serve as an alternative to sinusoidal terms or global 

polynomial terms, offering greater flexibility in curve-fitting.  Splines are piecewise 

polynomials used to model complex curvature [Hastie et al., 2001].  For a particular 

covariate, +, the range of + is partitioned into ® + 1 intervals by ® points, OI�,…, IPQ, 
referred to as knots.  A separate cubic polynomial is fitted to each interval of data.  Cubic 

splines are defined as follows: 

Given a set of knots, I� < I# < ⋯ < IP, contained within interval .1, ¯0, a cubic spline is 

a function f such that (�) f is a cubic polynomial over each of (I�, I#), (I#, IR), … , (IP@�, IP) and (��) f has continuous first and second derivatives at 

all knots.  In general, an Sth-order spline is a piecewise S	– 	1 degree polynomial with S	– 	2 continuous derivatives at the knots.  
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Cubic splines (S = 4) are the lowest-order spline for which the discontinuity at 

the knots is not noticeable.  Continuous first and second derivatives ensure smoothness 

across intervals.  As such, cubic splines are one of the most-commonly used splines in 

practice.  More-flexible curves are obtained by increasing the degree of the spline and/or 

by adding more knots.  There is, however, a tradeoff.  Too few knots or lower-order 

polynomials may result in a function that is too restrictive (high bias, low variance).  Too 

many knots or higher-order polynomials may overfit the data (low bias, high variance).   

Cubic splines, as defined above, tend to poorly fit the boundary intervals, .1, I�0 
and .IP , ¯0, since no conditions are placed on the boundary points.  Natural cubic splines 

address this problem by adding an additional constraint to cubic splines, that is, the cubic 

spline must be linear beyond the boundaries of the data.  Though this constraint 

introduces some bias near the boundaries, the trade-off is preferable to a spurious 

outcome.  A natural cubic spline can be defined as follows: 

Let 1 = I� < I# < ⋯ < IP°� = ¯ be a partition of .1, ¯0.  Note here that, unlike the 

cubic splines definition above, boundary points are defined as knots.  On each subinterval .I� , I�°�0, � = 1,… , ®, we fit a cubic polynomial  ��(I) = 1� + ¯�(I − I�) + K�(I − I�)# + c�(I − I�)R. 

The natural cubic spline ± has the following properties: 

   (1) ±(I) = ��(I), 					I ∈ .I� , I�°�0  for � = 1,… , ® 

   (2) ��(I�°�) = ��°�(I�°�), 				           for � = 1,… , ® − 1 

   (3) ��3(I�°�) = ��°�3 (I�°�), 				          for � = 1,… , ® − 1 

   (4) ��33(I�°�) = ��°�33 (I�°�), 				         for � = 1,… , ® − 1 

   (5) ±33(I�) = ±33(IP°�) = 0.     

To calculate the number of df for a natural cubic spline, i.e., the number of basis 

functions added to the covariate matrix, note that ± introduces 4® parameters to the 
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covariate matrix.  Equations (2)−(4) impose 3 × (® − 1) constraints on the internal 

knots.  Equation (5) imposes 1 constraint on each boundary knot.  Thus,  df = 4® − (3® − 3) − 2 = ® + 1. 
For natural cubic splines, the number of basis functions equals the total number of knots 

defining the spline. 

 A basis is defined as a set of orthogonal functions spanning a particular vector or 

function space.  In other words, a linear combination of a set of basis functions can define 

any vector or function within the spanned space.  Many sets of basis functions exist for a 

particular function space, and many can be used to define natural cubic splines.  The B-

spline basis is generally used to define natural cubic splines.  The B-spline basis is 

defined as follows: 

Let 1 = I� < I# < ⋯ < IP°� = ¯ be a partition of .1, ¯0.  A new knot sequence �	is 

defined such that 

    �� ≤ �# ≤ ⋯ ≤ �µ ≤ I�, 

    �2°µ = I2 , q = 1,… , ®, 

    IP°� ≤ �P°µ°� ≤ �P°µ°# ≤ ⋯ ≤ �P°#µ. 

The values of the knots augmenting the original set are arbitrary.  Typically, these new 

knots are set to equal I� for all lower-valued knots and IP°� for all higher-valued knots.  

Denoting ¶�,·(I) as the ��ℎ basis function of order ¸ for the sequence � where ¸ =1,… ,S, the B-spline basis functions are then defined recursively as: 

    ¶�,�(I) = ¹1							if	�� ≤ I ≤ ��°�0							otherwise											       for � = 1,… , ® + 2S − 1, 
    ¶�,·(I) = ]@º<º<»¼½¾@º<¶�,·@�(I) + º<»¼@]º<»¼@º<»¾¶�°�,·@�(I)   for � = 1,… , ® + 2S −¸. 

Since the basis functions j¶�,·k for natural cubic splines are fixed and orthogonal, they 

are entered and fitted in linear or generalized linear models via ordinary least squares or 

maximum likelihood, respectively, along with all other covariates in the model.   
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4.1.2.2  Details of Model 2 

Negative binomial regression models are often used to account for potential Poisson 

under- or over-dispersion [Hilbe, 2008].  The distribution can be formulated in terms of 

the mean and a dispersion parameter, therefore offering greater flexibility than the 

Poisson distribution in model fitting [Hilbe, 2008].  The general model can be described 

as follows:  

log	(��) = log(1�) + *� + ∑ *2yz�2{	|2[� + *}.A(H3N2)�0 + *�.A(H1N1)�0 
                              +	*�.B�0 + *��.RSV�0 + ∑ *P.�(��P)0·P[��  

                           +	∑ *-y�(Temp�-�){	:-[·°� , 

where �� 	~ Negative Binomial, represents the number of deaths on day �; α is the offset 

term equal to annual population size; *� represents the model intercept; *�through *| are 

coefficients for day-of-week indicators, z�2 (Sunday = referent); *}through	*�� are 

coefficients for percent positive viral terms; *��	through	*· are coefficients for basis 

functions of a natural cubic spline representing either long-term or seasonal time trends; 

and *·°�	through	*: are coefficients for basis functions of a natural cubic spline 

representing a temperature effect lagged � days. 

All natural cubic splines are entered into the model linearly through their basis 

functions.  The number of basis functions depends on the df (or knots) defining the 

spline.  To represent long-term trends, knots were placed every 2 to 5 years (determined 

by lowest Akaike Information Criterion value).  Note that if time splines were used to 

represent seasonality, then no long-term trend covariate was included in the model since 

this trend would have been automatically incorporated into the seasonal time spline.   

To represent seasonality, knots placed every 3 to 6 months would have been an 

intuitive choice based on a priori knowledge of general influenza circulation in the U.S.  

We modeled time splines one knot at a time (up to 60 knots) to assess the effect of low 

vs. high representations of background seasonality on the influenza parameter estimates.  



47 

 

Underrepresenting background seasonality (too few knots) should inflate influenza 

parameter estimates and result in some amount of autocorrelation in the residuals.  

Overrepresenting background seasonality (too many knots) should lead to deflated or 

erratic influenza parameter estimates, and uncorrelated residuals.  In other words, 

underestimating background seasonality should lead to an overestimation of influenza-

related mortality, and vice versa.  The goal is to find an optimal number of knots to 

represent background seasonality so that the influenza signal is not amplified – or lost – 

in modeling.   

4.1.3  Model 3: Negative Binomial GAM with Smoothing Splines 

Although simple and easy to implement, GLMs tend to poorly model effects 

characterized by complex nonlinearity.  Natural cubic splines address this issue by 

modeling lower-order polynomials piecewise over the full range of the variable.  GAMs 

are another class of regression models which drop the assumption of linearity, thus 

making them more-flexible modeling tools compared to GLMs [Hastie, 1990; Hastie, 

2001; Wood, 2006].  With this additional flexibility, nonlinear associations may be better 

modeled or revealed using GAMs.  Additivity across effects is still assumed allowing for 

interpretation of results similar to that of GLMs.  GAMs are defined as: 

$.�(+)0 = 1 + ��(+�) + �#(+#) + ⋯+ �-%+-& + �, 

where the error term has mean 0, and the nonparametric �� functions are estimated using a 

scatterplot smoother such as a smoothing spline.  GAMs and smoothing splines are 

described in detail in Chapter 2.  In this study, we are using smoothing splines to 

approximate the effects of background seasonality on the influenza-mortality association.  

We do not use a formal method of selecting the smoothing parameter in order to observe 

how the effective degrees of freedom (edf) − ranging from 1 to 60 − of the time-splines 

affects the influenza parameters.   

 The following semi-parametric GAM model was implemented: 
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log	(��) = log(1) + *� + ∑ *2yz�2{	|2[� + *}.A(H3N2)�0 + *�.A(H1N1)�0 
           +	*�.B�0 + *��.RSV�0 + �(��) +	�(Temp��), 
where �� 	~	NegBin, represents the number of deaths on day �; α is the offset term equal to 

annual population size; *� represents the model intercept; *�	through *| are coefficients 

for day-of-week indicators, z�2 (Sunday = referent); *}	through	*�� are coefficients for 

percent positive viral terms; �(��) is a smoothing spline representing either long-term or 

seasonal time trends; and �(Temp��) is a smoothing spline representing a temperature 

effect lagged � days. 

4.2  Comparing Influenza-associated Death Estimates   

Figure 3.2 from Chapter 3 shows daily time series of respiratory and circulatory deaths, 

temperature, dew point temperature, and regional RSV circulation by city.  Across all 

cities, temperature and dew point temperature were found to be highly collinear 

(correlation coefficient ranging from r = 0.61 in Los Angeles to r = 0.95 in New York).  

As such, the two terms could not be modeled together.  The temperature term tended to 

be more-highly associated with mortality; therefore, dew point temperature was dropped 

from all models.  We also tried modeling an adjusted dew point temperature by first 

regressing dew point temperature on temperature, and then modeling the residuals.  This 

term, however, did not substantially influence any of the virus parameter estimates and 

therefore was dropped from all models.  Figure 3.3 shows daily time series of respiratory 

and circulatory deaths and regional percent-positive viral activity of the three influenza 

types/subtypes (A(H1N1), A(H3N2), and B) by city.  Note that A(H3N2) was the 

dominant influenza strain during this 10-year period.  The A(H1N1) subtype shows very 

little activity during this period. 

Figure 4.1 contains four plots for New York City.  The y-axis on all plots is the 

parameter estimate for the specified viral terms: A(H1N1), A(H3N2), B, or RSV.   The x-
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axis shows the df used to represent each spline.  For smoothing splines, this value 

represents the edf determined by the amount of penalization due to the smoothing 

parameter.  Results from two models are plotted: GLM-NB with natural cubic splines 

(black) and GAM-NB with smoothing splines (red).  Figures 4.2, 4.3, and 4.4 show the 

same plots for Chicago, Los Angeles, and Miami, respectively.  For all plots, df = edf = 

10 translates to 1 knot per year, while df = edf = 20 describes 1 knot every 6 months, and 

df = edf = 40 describes 1 knot every 3 months. 

Using the GLM-NB model, the A(H3N2) parameter estimate was stable up to 20 

knots in all four cities.  At 20 knots, there is a slight drop in A(H3N2) parameter 

estimates.  Beyond 20 knots, the parameter estimates erratically decline.  Based on the 

GAM results, the parameter estimates exhibit a smooth but similar pattern up to edf = 20, 

after which the estimates smoothly decline. 

For RSV, a pattern similar to A(H3N2) estimates is observed. The dip in 

parameter estimates at 20 df is more substantial for the colder cities, New York and 

Chicago.  There is a minimal drop at df = 20 for Los Angeles and a minimal increase in 

estimates for Miami.  It was discovered when modeling the RSV term with seasonal 

covariates, particularly the ambient temperature and the Fourier terms, that the terms are 

very highly correlated (e.g., 7 = 0.95 for RSV with the cosine term in the NYC mortality 

model, and 7 = 0.83 for RSV modeled with temperature).   

Because there was so little circulation of A(H1N1) during this 10-year period, the 

confidence intervals are much wider for this term across all four cities relative to the 

other viral terms.  Given the GLM-NB model, New York and Chicago have erratic 

parameter estimates even with <20 df.  Los Angeles and Miami are more stable up to 20 

knots using either method. 

For influenza type B, there is a decline in parameter estimates with increasing 

spline df or edf for all 4 cities.  There appears to be slight stability in the B estimates, up 

to 10 df (or edf) for New York, Chicago, and Miami, but a steady drop beyond that 
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measure.  This downward trend is not as pronounced in Los Angeles.  At 10 df, the 

GLM-NB estimates increase slightly and remain fairly stable up to 20 df. 

Tables 4.1−4.4 list results from 10 plausible models for each of the 4 cities.  

Shown are viral parameter estimates, and covariate terms included in the model to 

represent long-term or seasonal trends.  Of note, terms modeled with temperature data 

yielded nearly identical results whether the temperature term was included linearly or via 

splines.  In all cities, lagging the temperature series by a few days led to better fits than 

entering the current day’s temperature (based on AIC results).  Lagging temperature, 

however, led to decreased estimates for the influenza terms.  A(H3N2) yielded the most-

stable estimates across models and various representations of background seasonality.  

RSV terms were found to be highly correlated with the cosine function (r = 0.7 to r = 

0.95), and to a lesser but still significant degree, with the temperature series. 

Figures 4.5 through 4.8 show the fitted functions of 3 models on each of the 4 

cities’ mortality data.  Table 4.5 is a summary of influenza-related death estimates by city 

and model.  Estimated deaths attributable to the A(H3N2) subtype tend to be highest 

using the GAM models and lowest using the GLM-Poisson model.  Across all models, 

the fewest deaths were attributed to A(H1N1) in New York and Chicago, while no or 

very few deaths were attributed to A(H1N1) in Los Angeles or Miami.  Deaths associated 

with subtype B were the most-variable across all models for Los Angeles.  For RSV, the 

GAM model attributed the highest number of deaths to influenza, while the GLM-

Poisson model attributed the fewest. 

4.3  Conclusions and Modeling Recommendations 

Disentangling the effects of seasonal confounders on the association between influenza 

and mortality is challenging given the level of temporal confounding and collinearity 

among modeled covariates.  Representing background seasonality appropriately is critical 

in approximating the influenza-mortality association.  Overestimating background 
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seasonality will underestimate the impact of influenza on mortality.  Underestimating 

background seasonality, however, will attribute too many deaths to influenza. 

Based on results from this study, background seasonality affects estimates of 

influenza-associated deaths to varying degrees depending on viral subtype, city, and 

climate.  Estimates of A(H3N2) deaths are the most robust, with very little evidence of 

seasonal confounding across model types or cities in the data used.  During this 10-year 

period, there was not enough A(H1N1) activity for valid statistical estimation in Los 

Angeles and Miami.  For New York and Chicago, A(H1N1) parameter estimates decrease 

significantly at df = 20 suggesting that the A(H1N1) subtype may be highly correlated 

with seasonal covariates.  Influenza type B does not appear to be highly associated with 

mortality, showing stable estimates only up to 10 df (roughly 1 knot per year). 

The significance of df = 10 and df = 20 in this context should be noted.  Ten df 

roughly means that a single cubic function is used to model background seasonality for a 

full year of mortality data.  In the context of parametric cubic splines, one knot per year is 

not enough to appropriately model the distribution (‘rise’ and ‘fall’) over time of a 

seasonal covariate.  One knot per year, in this context, translates to a roughly linear or 

long-term adjustment rather than seasonal adjustment of background cofactors.  Since 

type B parameter estimates are only stable with splines containing 1 df per year, it 

suggests that the association between B and mortality is not strong when other seasonal 

factors are accounted for.  This is in stark contrast to A(H3N2) parameter estimates 

which show a strong association with mortality despite adjustment of other strong 

seasonal factors.  Twenty df translates to roughly 1 knot every six months.  In this 

context, this means that two cubic polynomials were used to model annual background 

seasonality; one for the period from January to June, and another for July to December 

(see Figures 3.5−3.8).  Generally, in the U.S., only one wintertime peak in mortality is 

observed annually.  Thus, findings from these analyses suggest that natural cubic splines 
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containing >20 knots overfit seasonal background, leading to erratic influenza parameter 

estimates.   

In our data, RSV was highly correlated with seasonality.  Its parameter estimates 

are unstable particularly in the two colder cities.  Based on results from this study, the 

RSV term should not be modeled with sinusoidal terms representing background 

seasonality.  RSV and the cosine function were found to be highly collinear (r = 0.91).  

The RSV series was, in fact, so closely associated with temperature and seasonal effects 

in New York and Chicago that RSV-associated death estimates from these cities were 

indeterminate.  It should be noted, however, that these highly unstable RSV estimates do 

not imply that RSV activity does not affect mortality.  One possible approach to break up 

this collinearity would be to employ an alternative proxy for the RSV term.  Rather than 

using percent-positive RSV activity, a proxy based on both viral circulation and 

influenza-like illness (ILI) activity may help reduce the near-perfect collinearity between 

the virus’ seasonal behavior and the cosine function.   

On modeling influenza mortality with parameter splines, the use of forty knots (1 

cubic polynomial modeled every 3 months) to model background seasonality clearly 

overfits the data, losing the influenza effect on mortality and leading to unstable 

parameter estimates.  For influenza type B and subtype A(H3N2), knots at roughly every 

six months lead to a slight drop in the influenza parameter estimates compared to the 

GAM influenza parameter estimates.  Because natural cubic splines are entered into the 

covariate matrix with influenza terms and other seasonal confounders, including such 

splines with too many knots suggests that collinearity may be introduced.  With the GAM 

models, however, this drop does not occur. Regression splines are sensitive to the number 

of knots and their placement.  Smoothing splines appear to be less sensitive to 

collinearity likely because they are not included directly in the covariate matrix.  They 

are instead calculated via a regularization method which helps reduce collinearity in 

seasonal parameter estimates.   
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Based on results from this study, temperature may serve as a reasonable proxy for 

seasonality.  Influenza parameter estimates based on temperature as a proxy for 

background seasonality were very similar to those from splines with df = 20 or edf = 20.  

Further, temperature data cannot be inadvertently overmodeled via spline functions in the 

way mathematical proxies for seasonality often are. 

Finally, there seems to be no one-size-fits-all model.  A number of plausible 

models should be assessed to determine appropriate and reasonable parameter estimates.  

Season-specific influenza virus data could be used to estimate the length in weeks of each 

influenza season.  This information would further help in determining reasonable ways to 

account for non-influenza seasonality.  Simulation models with “known” influenza 

effects are also needed to help assess the validity of a variety of theoretically plausible 

model types.  

4.4  Limitations 

There are several limitations to this study.  First, the influenza proxy used here may be an 

inadequate representation of influenza activity.  Influenza proxies based on percent-

positive influenza activity and influenza-like illness data have been suggested as 

alternatives [Goldstein et al., 2012].  Second, for smaller cities, mortality counts at the 

city level may be too small to be properly modeled.  For these situations, a zero-inflated 

negative binomial model may be more appropriate for modeling.  Residuals from 

regression models still have slight periodicity in some models.  As such, confidence 

intervals may need to be bootstrapped rather than estimated parametrically. 
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Figure 4.5:  New York City − Observed daily mortality counts for population 65+ years 

of age, and fitted mortality derived from Model 1: GLM-Poisson with Fourier terms for 

background seasonality (yellow); Model 2: GLM-NB with natural cubic spline for 

background seasonality (red); and Model 3: GAM-NB with smoothing spline for 

background seasonality (blue). 

 

 

 

 
Figure 4.6:  Chicago − Observed daily mortality counts for population 65+ years of age, 

and fitted mortality derived from Model 1: GLM-Poisson with Fourier terms for 

background seasonality (yellow); Model 2: GLM-NB with natural cubic spline for 

background seasonality (red); and Model 3: GAM-NB with smoothing spline for 

background seasonality (blue).    
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Figure 4.7:  Los Angeles - Observed daily mortality counts for population 65+ years of 

age, and fitted mortality derived from Model 1: GLM-Poisson with Fourier terms for 

background seasonality (yellow); Model 2: GLM-NB with natural cubic spline for 

background seasonality (red); and Model 3: GAM-NB with smoothing spline for 

background seasonality (blue). 

 

 

 

 

 
Figure 4.8:  Miami - Observed daily mortality counts for population 65+ years of age, 

and fitted mortality derived from Model 1: GLM-Poisson with Fourier terms for 

background seasonality (yellow); Model 2: GLM-NB with natural cubic spline for 

background seasonality (red); and Model 3: GAM-NB with smoothing spline for 

background seasonality (blue). 
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Table 4.5:  Number of deaths attributable to influenza type/subtype, by city and model, 

1991-2000. 

 

  Influenza-associated Deaths 
City Model A-H3N2 A-H1N1 B RSV 
NY GLM - Pois 11361 512 2921 4541 

 GLM - Lag3Temp 12121 591 3064 9549 
 GLM - Lag3Temp (NS, df=20) 12087 543 3009 8352 
 GLM - Time (NS, df=20) 12910 158 2378 7286 
 GAM - Time (SS, df=20) 13483 619 2417 16778 
CHICAGO GLM - Pois 3239 287 463 0 
 GLM - Lag3Temp 3971 189 859 4172 

 GLM - Lag3Temp (NS, df=20) 3879 186 787 3692 
 GLM - Time (NS, df=20) 4232 264 603 6034 
 GAM - Time (SS, df=20) 5045 402 756 8794 
LA GLM - Pois 7336 0 162 9559 
 GLM - Lag3Temp 8319 0 871 20672 
 GLM - Lag3Temp (NS, df=20) 8093 0 478 19412 

 GLM - Time (NS, df=20) 7714 0 2553 19949 
 GAM - Time (SS, df=20) 9136 0 2653 23823 
MIAMI GLM - Pois 967 47 504 523 
 GLM - Lag3Temp 977 1 625 806 
 GLM - Lag3Temp (NS, df=20) 867 0 565 914 
 GLM - Time (NS, df=20) 1519 2 830 1600 

 GAM - Time (SS, df=20) 1447 43 665 2607 
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CHAPTER 5 

MODELING THE NONLINEAR ASSOCIATION BETWEEN 

INFLUENZA AND MORTALITY WITH LOCAL-LEVEL 

ADJUSTMENT FOR SEASONAL CONFOUNDING 

 

Quantifying the effects of influenza on mortality rates can be particularly challenging 

when estimates are derived from ecological studies.  Because data are collected at the 

population rather than individual level, such studies are prone to analytic errors involving 

misclassification within groups, temporal ambiguity, collinearity, and inadequate control 

of confounding [Morganstern, 1995].  To address these issues, a wide range of 

mathematical modeling approaches have been developed and implemented to statistically 

describe the association between influenza and mortality.  Some of these methods include 

time series regression, autoregressive integrated moving average modeling, and rate-

differencing [Lui and Kendal, 1985; Thompson et al., 2003; Thompson et al., 2005; 

Cheng et al. (in review)].   

 U.S. influenza-associated death rates estimated by the Centers for Disease Control 

and Prevention (CDC) have generally been based on ecological study designs where 

mortality data are first aggregated at the national level and then modeled.  There are, 

however, a number of seasonal factors that may confound the association between 

influenza and mortality at the local (e.g., city) level, thus suggesting that data be modeled 

locally first and then pooled to make national estimates of death.  Several recent studies 

have shown that meteorological factors, e.g., temperature and humidity, may affect 

influenza-related mortality estimation [Warren-Gash et al., 2011; Yang et al., 2011; 

Wong et al., 2012; Yang et al., 2012].  Other seasonal viruses with varying local-level 

circulation, such as respiratory syncytial virus (RSV), may also affect estimates 

[Thompson et al., 2003; Mangtani et al., 2006].  Additional city-specific factors that may 
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be influential include population density, age distributions, and differences in 

predominant influenza viruses [Lofgren et al., 2007].  

In addition to local seasonal confounding, the relationship between influenza and 

mortality may change over the course of a season.  In most time series regression 

analyses, a linear relationship between influenza and log-transformed mortality is 

assumed [Thompson et al., 2003; Thompson et al., 2005; Cheng et al. (in review)].  In 

these models, a unit increase in the influenza proxy leads to a multiplicative increase in 

mortality.  Some studies, however, have modeled influenza and mortality assuming an 

additive association [Goldstein et al., 2012].  In this chapter, we explore the relationship 

between influenza and mortality by using natural cubic spline functions on variates 

representing influenza circulation.  Natural cubic splines model lower-order polynomials 

piecewise over the full range of a variable.  As such, they offer greater flexibility in 

modeling curvature relative to global polynomials or sinusoidal terms.     

The objectives of this study are two-fold: (i) to assess and compare rates of 

influenza-associated mortality across 10 U.S. cities with varying climates and population 

demographics, and (ii) to determine if the relationship between influenza and mortality is 

better represented nonlinearly rather than linearly.  This chapter is structured as follows: 

Section 5.1 describes in detail the surveillance data and study population.  Section 5.2 

details the three modeling approaches used to estimate influenza-associated death rates.  

In Section 5.3, the nature of the influenza-mortality relationship is assessed.  Local-level 

death rate estimates attributable to influenza by city and modeling method are given in 

Section 5.4.  Conclusions based on this study are given in Section 5.5, and several 

limitations of the modeling approaches are given in Section 5.6. 

5.1  Surveillance Data and Study Population 

Data modeled in this study spanned a 10-year period from January 1, 1991 to December 

31, 2000.  Daily counts of mortality and daily measures of temperature and dew point 
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temperature were obtained for each of ten U.S. cities.  Mortality data include daily 

respiratory and circulatory deaths among persons aged 65 or older.  These data were 

downloaded from the National Morbidity, Mortality, and Air Pollution Study 

(NMMAPS) website http://www.ihapss.jhsph.edu/data/NMMAPS/R/.  Details on data 

collection and processing methods can be found at the Internet-based Health and Air 

Pollution Surveillance System (iHAPSS) website http://www.ihapss.jhsph.edu.     

Weekly numbers of total respiratory specimens tested for influenza and positive-

influenza isolates by virus type and subtype (A(H1N1), A(H3N2), and B) were obtained 

from surveillance data maintained by the Influenza Division of the CDC.  Weekly RSV 

data were obtained from the National Respiratory and Enteric Virus Surveillance System 

maintained by the CDC’s Division of Viral Diseases.  We used regional (Northeast, 

Midwest, South, West) proportions of respiratory specimens testing positive for influenza 

or RSV, referred to as ‘percent-positive’ viral activity, as proxies for viral activity.  Local 

or state data were too sparse to use directly in models.  Daily percent-positive data for 

each influenza subtype and RSV were imputed linearly from weekly percent-positive 

data.   

U.S. population estimates by year, age group (65+), and city were obtained from 

the U.S. Census Bureau.  Daily city-level population estimates were imputed via a step 

function (i.e., the annual estimate was used for each day of that calendar year). 

5.2  Modeling the Nonlinearity of Influenza-Mortality Association 

Three time series regression models (described below) were used to quantify and 

compare the association between influenza and mortality while accounting for seasonal 

confounding.  Each model assumed a negative binomial error structure which allowed for 

potential under- or over-dispersion of variance relative to a Poisson distribution [Hilbe, 

2008].  The negative binomial distribution was assumed to represent daily, city-level 

mortality because (�) local-level, daily mortality counts tended to be left-skewed (right-
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tailed) particularly among the smaller cities, and	(��)	the variance of daily mortality 

counts was not equal to the mean throughout all seasons (thus a Poisson distribution 

would have been inappropriate).  All analyses in this study were conducted using R 

version 3.1.2 (www.r-project.org).   

Ten U.S. cities with varying trends in mortality and weather were modeled.  Each 

city was modeled separately.  The outcome variable for all models was daily mortality 

due to underlying respiratory or circulatory (R&C) causes among persons aged 65 or 

older.  Annual city-level population estimates of persons aged > 65 years were used as 

the offset term to account for changes in population size over time.  Regional percent-

positive influenza subtypes (i.e., A(H1N1), A(H3N2), and B) and percent-positive RSV 

were used to represent local viral circulation.  A long-term trend in mortality was 

accounted for in each of the models using spline functions.  A day-of-week effect was 

also accounted for using six indicator variables (Sunday was the referent group).   

Deaths associated with a particular virus were estimated as the difference between 

the sum of predicted values from a fitted model containing all viral terms and the sum of 

predicted values from the same model excluding viral activity for that particular virus 

[Thompson et al., 2009].  Annual, city-level influenza-associated mortality rates were 

calculated by dividing the average annual number of deaths attributable to a particular 

virus by the average annual population aged 65 and older. 

Residual analyses were conducted to assess model fit using Q-Q plots, 

autocorrelation functions, and plotting residuals over time.  Confidence intervals were 

calculated for the expected value of total influenza-associated mortality counts from each 

model as follows by: 1) obtaining fitted values of daily mortality counts from the 

estimated model substituting in the upper and lower 95% limits of *-estimates for the 

influenza terms, 2) subtracting the upper and lower fitted values from the baseline 

estimates, and 3) summing all upper-limit terms, and summing all lower-limit terms. 
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5.2.1  Modeling with Parametric Splines: A Short Review 

All splines incorporated in the regression models (for time, temperature, and viral terms) 

are natural cubic splines.  A detailed review of natural cubic splines is given in Section 

4.1.2.  All natural cubic splines are entered into the model linearly through their basis 

functions.  The number of basis functions depends on the degrees of freedom (c�) 
defining the spline.  We use the ‘splines’ package for R to specify all spline functions.  

We use the following notation, taken from the ‘splines’ package, to represent all spline 

functions: ��(�17, ®), 
where �17 is the variate represented via a natural cubic spline and ® is the c�.  For 

example, ��(�¤¸r, 4) defines a natural cubic spline function with 4 c� (i.e., 3 knots) 

representing the ambient temperature variate.  Four basis functions (dimensions) for the 

temperature term would be included in the covariate matrix, i.e.,  ��(�¤¸r, 4) = 	∑ *���(�¤¸r)©�[� , 

where * is the regression parameter estimate and � is the associated spline basis function.  

 To represent long-term trends, knots were evenly spaced every 2 to 5 years.   The 

number of optimal knots by city was determined by the lowest Akaike Information 

Criterion (AIC) value.  Measured seasonal covariates included in this study were 

temperature and dew point temperature (a proxy for humidity).  Temperature was 

included in the models by first lagging the series by a certain number of days (the optimal 

lag by city was determined by the lowest AIC value) and then using a spline function 

with 3 to 5 evenly spaced knots to account for the nonlinear relationship between 

mortality and temperature.  Again the number of knots (or c�) was determined by the 

lowest AIC value.  Because dew point temperature was found to be highly collinear with 

ambient temperature, it was dropped from all models.  For comparison, a more-
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conventional approach using sinusoidal functions to model seasonal confounding was 

also implemented.       

 All viral terms were included linearly in Models 1 and 2, and via splines in Model 

3 (models described below).  The boundary knots for all viral terms were the lowest and 

highest percent-positive values determined from the combined set of all ten seasons.  This 

approach was taken to avoid a singularity in the covariate matrix which occurred when 

the lower boundary point was set to zero.  Since no viral circulation was assumed during 

summer months, having a zero lower bound for viral splines led to at least one basis 

function containing all zero values, thus creating a singular matrix.  To avoid potential 

bias due to subjective judgement, knots were evenly spaced by quantiles within these 

defined boundaries.  To avoid overfitting, no more than 4 c� (i.e., 3 knots) were 

considered for each viral term.  Thus, three knots divided the viral terms into quartiles 

(again, excluding the zero values).   

The statistical significance of a particular viral spline was assessed via a 

likelihood ratio test comparing models with and without the associated viral spline basis 

functions.  If spline functions were not significant, the spline was remodeled with one 

less knot.  If a viral spline containing only 1 knot was not significant in the model, a 

linear function was used to represent the viral term.  If the linear function was not 

significant, the linear viral term remained in the model based on the a priori decision that 

all three influenza terms be modeled together for overall seasonal adjustment.  Death 

rates, however, were not calculated for any non-significant viral terms.       

5.2.2  Model 1: Sinusoidal Seasonality and Linear Viral Terms 

Generalized linear models with sinusoidal terms used to control for seasonal confounding 

are widely used to model influenza-associated morbidity and mortality [Thompson et al., 

2003; Thompson et al., 2009; Warren-Gash et al., 2011; Newall et al., 2010; Liao et al., 
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2009].  Since it is considered a conventional approach, we use this as our referent model 

for comparison.  The full model is described as follows: 

log	(��) = log(K�) + *� +Y *2yz�2{	|
2[� + ��(�, ®) 

                                            +	*}.A(H1N1)�0 + *�.A(H3N2)�0 + *�.B�0 +	*��.RSV�0 
                                    +	*��.sin(2¦�� 365.25⁄ )0 + *�#.cos(2¦�� 365.25⁄ )0 

where �� 	~	NegBin, represents the number of deaths on day �; K� is the offset term equal 

to the annual population size; *� is the model intercept; *� through *| are coefficients for 

day-of-week indicators, z�2 (Sunday = referent); ��(�, ®) is a natural cubic spline with 

c� = ® ∈ O2,3,4,5Q representing long-term time trends; *�	and	*�� are coefficients for 

the percent-positive viral terms; and *��	and	*�# are coefficients for the seasonal trend. 

5.2.3  Model 2: Temperature Splines and Linear Viral Terms 

Instead of using a mathematical proxy for seasonal confounding (e.g., a cosine function), 

Model 2 represents local seasonal confounding via ambient temperature, the assumption 

being that a measureable proxy for seasonal confounding may be more valid than an 

unmeasured, mathematical proxy.  Models 1 and 2 allow a direct comparison of these two 

approaches used for modeling confounding seasonality.  The general model can now be 

described as follows:  

log	(��) = log(K�) + *� +Y *2yz�2{	|
2[� + ��(�, ®) 

                                            +	*}.A(H1N1)�0 + *�.A(H3N2)�0 + *�.B�0 +	*��.RSV�0 
                                       + ��(Lag(Á¤¸r�, �), ®), 
where ��(Lag(Á¤¸r�, �), ®) is a natural cubic spline with c� = ®	 ∈ O3,4,5Q representing 

the average daily temperature lagged � ∈ O3,4, … ,9Q number of days.  All other terms in 

this model are defined in Model 1 (Section 5.2.2). 
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5.2.4  Model 3: Temperature and Viral Splines 

To determine if influenza has a nonlinear association with mortality, Model 3 enters all 

influenza terms, as well as the RSV term, into the model via natural cubic spline 

functions.  In every other regard, Model 3 is identical to Model 2.  This allows for a 

direct comparison of results by modeling viral terms linearly versus nonlinearly.  To 

avoid overfitting, only a few knots were used to specify viral splines (c�	 ∈ O2,3,4Q).  
Viral splines were optimized separately by city.  The following model was implemented:  

log	(��) = log(K�) + *� +Y *2yz�2{ + ��(�, ®) + ��(Lag(Á¤¸r�, �), ®)	|
2[�  

                   + ��(A(H1N1)�, ®) + ��(A(H3N2)�, ®)	+ ��(B�, ®) + ��(RSV�, ®), 
where ��(A(H1N1)�, ®)	is a spline with c� = ®	 ∈ O2,3,4Q for the percent-positive 

A(H1N1) term; ��(A(H3N2)�, ®)	is a spline with c� = ®	 ∈ O2,3,4Q for the percent-

positive A(H3N2) term; ��(B�, ®)	is a spline with c� = ®	 ∈ O2,3,4Q for the percent-

positive B term; and ��(RSV� , ®)	is a spline with c� = ®	 ∈ O2,3,4Q for the percent-

positive RSV term.  All other terms in this model are defined in Models 1 and 2 (Sections 

5.2.2 and 5.2.3). 

5.3  Results: Linear versus Nonlinear Model Fit 

Table 5.1 shows the ten U.S. cities modeled in this study along with their high, low, and 

average temperatures on January 1 and July 1 from the ten-year study period 

(1991−2000).  Also given for each city are regional grouping and average population 

during this period for persons aged 65 or older.  Region specifies which percent-positive 

regional viral series (Figure 2.3) was used to approximate each city’s viral activity.  The 

city with the highest population of persons 65+ years of age was New York, and that with 

the lowest population was Denver.  Measured on January 1, the city with the coldest 
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average temperature was Minneapolis and the warmest was Miami.  Measured on July 1, 

the hottest average temperature occurred in Phoenix, and the coolest in Seattle. 

Figure 3.2 displays daily time series of R&C deaths, temperature, dew point 

temperature, and regional A(H3N2) circulation for four U.S. cities.  Across all cities, 

temperature and dew point temperature were found to be highly collinear (correlation 

coefficient ranging from r = 0.61 in Los Angeles to r = 0.95 in New York).  Thus, the 

two terms were not modeled together.  The temperature term tended to be more-highly 

associated with mortality; therefore, dew point temperature was dropped from all models.  

We also modeled an adjusted dew point temperature by first regressing dew point 

temperature on temperature, and then modeling the residuals.  This term, however, did 

not substantially affect any of the viral parameter estimates and therefore was dropped 

from all models.   

Figure 3.3 shows daily time series of the percent-positive viral activity proxies for 

the three influenza subtypes (A(H1N1), A(H3N2), and B) and RSV for four regions.  

A(H3N2) was the predominant influenza strain during this ten-year period.  Very little 

A(H1N1) circulation was observed, and type B influenza was not as prevalent as 

A(H3N2).   

 Figures 5.1−5.4 depict the univariate association between mortality and each of 

the four viral proxies for four U.S. cities.  The green line is the fitted linear function of 

log-transformed mortality regressed on each viral term, while the red line is the fitted 

spline function.  To avoid overfitting, it was determined that all influenza and RSV 

splines should have no more than 2 c�, i.e., one or zero knots (0 knots collapses the 

spline to a linear function).  For all modeled cities, A(H3N2) influenza was found to have 

a nonlinear relationship with mortality.  Compared to the spline fit, the linear fit tended to 

underestimate the association during lower viral circulation (e.g., early outbreak) and 

overestimate during peak influenza season.  The influenza splines revealed a tapering-off 
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effect toward peak season.  RSV on the other hand tended to have a more clearly defined 

linear, or near-linear, relationship with mortality in all ten cities. 

5.4  Results: Deaths Attributable to Influenza 

Tables 5.2 and 5.3 show the estimated number of deaths attributable to influenza (by 

type/subtype and overall) and RSV during the ten-year study period by city and model.  

The c� used for each viral spline in Model 3 are also included.  Values in red are 

considered non-significant as they are based on model parameter estimates that were not 

found to be significant at the � = 0.05 level.  Values in black were based on significant 

parameter estimates (� < 0.05), and thus are considered statistically significant death 

estimates.  Tables 5.4 and 5.5 give respective population rates of death attributable by 

viral type/subtype for each city and model.  Rates are not estimated for attributable death 

counts not found to be statistically significant in Tables 5.2 and 5.3.   

5.4.1  Attributable Deaths by Influenza Type/Subtype 

For all ten cities, mortality was significantly associated with A(H3N2) (Table 5.2).  

Comparing Models 1 and 2, which varied only by seasonal proxies (Model 1 used 

sinusoidal terms; Model 2 used daily average temperature terms), more deaths were 

attributable to A(H3N2) with Model 2.  Comparing Models 2 and 3, which varied only by 

viral representation in models (linearly versus nonlinearly), five cities had higher death 

estimates based on Model 2, while the other five cities had higher death estimates based 

on Model 3.   

 Based on results from all three models, only three of the ten cities had statistically 

significant A(H1N1) attributable death estimates (New York, Chicago, 

Minneapolis/St.Paul).  Only two of these (New York and Chicago) revealed a nonlinear 

association between A(H1N1) and mortality.  For most cities, robust statistically 
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significant estimates for A(H1N1) attributable deaths could not be made − likely due to 

the fact that there was very little A(H1N1) influenza activity during the study period. 

 Type B influenza circulation during the study period was less prevalent compared 

to A(H3N2).  Fewer deaths were attributable to B relative to A(H3N2).  The two smallest 

cities (Denver and Minneapolis) did not have significant numbers of deaths attributable to 

type B, likely due to small daily mortality counts coupled with low percent-positive B 

activity in most seasons.  It should also be noted that for most cities, as expected [CDC, 

2008; CDC, 2013], the type B influenza peak occurred several weeks after the 65+ 

mortality peak for most seasons (Figure 3.3).  Of the eight cities with significant B 

deaths, seven revealed a significant nonlinear relationship between influenza and 

mortality.  Type B spline terms were not significant in Los Angeles; however, the type B 

term entered linearly was significant.   

 Rates of deaths attributable to influenza sub/types and RSV are given in Table 

5.4.  Only rates based on statistically significant counts from Table 5.2 are given.  For 

A(H3N2), rates varied greatly by city.  New York and Los Angeles, the two cities with 

the largest 65+ populations, had the highest rates of mortality attributable to A(H3N2).  

A(H3N2) rates of death tended to be highest in cities with large populations and colder 

January temperatures.  A(H1N1) was found significant, by all three models, in the three 

coldest cities (New York, Chicago, Minneapolis) regardless of population size.  Rates for 

B were not as widely spread by city compared to A(H3N2) rates.  They also did not 

appear to vary consistently by population size or average January temperature.   

5.4.2  Deaths Attributable to RSV 

Respiratory syncytial virus was included in all models as a confounder to avoid 

attributing RSV-associated deaths to influenza.  Though the focus of this study is on 

influenza and mortality, the high correlation between RSV and seasonal confounding 

bears mentioning.  Despite high RSV activity during the ten-year study period, only two 
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cities revealed statistically significant deaths attributable to RSV.  For eight of the ten 

cities, RSV estimates based on Model 1 were either non-significant or negative.  An 

assessment of the correlation between RSV and the sinusoidal terms found extremely 

high collinearity between RSV and the cosine function.  This correlation ranged from 7 =0.65 to 7 = 0.95.  Also noted was the high correlation between the temperature terms 

and RSV (ranging from 7 = 0.72 to 7 = 0.96).  For the cities in which the temperature 

terms were not as highly correlated with RSV, rates for attributable deaths were 

calculated (Table 5.4); and like A(H3N2), results revealed a wide range of attributable 

deaths by city.  Unlike A(H3N2), RSV was better modeled linearly than quadratically. 

5.4.3  Deaths Attributable to Influenza Modeled as a Singe Covariate 

A(H1N1)-associated deaths were not statistically significant for most cities and models, 

and deaths attributable to type B were only significant in three cities.  Because of this, all 

percent-positive influenza sub/types were collapsed into one variable containing all 

influenza.  Results from the ‘All Influenza’ model (Table 5.3) revealed influenza 

attributable death totals near those of the combined totals from the separate 

‘type/subtype’ models.  Rates of total influenza deaths again varied greatly by city (Table 

5.5).  A general trend revealed more influenza-attributable deaths in larger and colder 

cities. 

 Despite the more-parsimonious model, deaths attributable to RSV were still not 

found to be statistically significant in most cities.  This was not surprising given the high 

collinearity between RSV and the seasonal confounding terms, specifically, the cosine 

function and the lagged temperature terms.  RSV death rates varied greatly by city with 

no recognizable pattern (Table 5.5).          
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5.5  Conclusions 

5.5.1  Local-Level Influenza-Associated Death Rates 

We found that influenza-associated death rates vary significantly by city.  A(H3N2) death 

rates tended to be higher among larger and colder cities.  The same pattern was found 

with pooled influenza death rates.  These findings suggest that modeling influenza-

attributable deaths should be conducted at the local level.  Estimates by city could then be 

pooled for a national estimate that is less likely to be biased by confounding due to 

temporal misalignment. 

 Due to low A(H1N1) activity measured during the study period, death estimates 

attributable to A(H1N1) were not possible for most cities.  Type B influenza activity was 

also low, and when coupled with small population estimates, death rates were not 

significant.  There was no apparent pattern between B-attributable deaths and climate or 

population density.  

5.5.2  Modeling Influenza-attributable Mortality 

A significant finding from this study is the apparent nonlinear association between 

influenza and mortality.  Given log-transformed mortality, we expected to find a 

nonlinear association between influenza and mortality that increased multiplicatively.  

Results based on linear viral terms (green fitted lines from Figures 5.1−5.4) showed no 

multiplicative increase, and instead showed only a linear association (despite the logged 

mortality term).  The spline functions found that the association is indeed nonlinear; 

however, instead of mortality increasing multiplicatively with increasing influenza 

activity, it tends to taper off toward peak influenza season.  Figures 5.1−5.4 show that 

relative to the spline fit, the linear function consistently underestimated the association 

during off-peak periods and overestimated during peak periods.  Based on the observed 

shape of the association, either spline functions, quadratic terms, or logged viral terms 
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might offer a better fit for the influenza viral terms.  These modeling approaches should 

be further explored and compared to the conventional, linear representation of influenza.  

 Within each city, comparing results from the three models revealed that Model 1 

gave consistently lower attributable-death estimates.  The effect of aligning Fourier terms 

with the mortality peaks tended to dampen the association between A(H3N2) and 

mortality.  Using temperature as a proxy for seasonality may offer greater reliability since 

it is based on measured data rather than mathematical terms chosen for optimal fit.  

Although differences in death estimates between Models 1 and 2 appear relatively small 

at the city level, the cumulative estimate of attributable deaths summed across many 

cities may reveal a sizeable overall difference in rates between the two models. 

 5.5.3  Modeling RSV-attributable Mortality 

Two notable findings were obtained in modeling RSV and mortality.  First, RSV tended 

to be better modeled linearly.  Unlike the influenza terms, a tapering-off effect was not 

observed.  Second, the association between RSV and the seasonal background terms was 

found to be highly collinear.  When modeled with the cosine function in particular, the 

RSV signal was either lost or significantly dampened.  Lagging the temperature terms to 

better fit the mortality data inadvertently increased the correlation between RSV and 

temperature.  Because RSV was found to be so highly collinear with seasonal 

confounders, robust statistical estimates for RSV attributable deaths were incalculable by 

most models.  The association between RSV, mortality, and the variates used to control 

for seasonal confounding should be investigated further.  

5.6  Limitations 

First, as noted earlier, results from ecological studies should be interpreted cautiously 

since such studies are susceptible to design and modeling errors stemming from data 

collected and aggregated at population levels.  Second, residuals from regression models 
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still have slight periodicity in some models.  As such, confidence intervals may need to 

be bootstrapped rather than estimated parametrically.  Third, each of these models needs 

validating through simulation.  Plausible simulated data sets are needed to better compare 

and contrast tested models. 
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Table 5.1: Temperature statistics and average population aged 65 or older for 10 U.S. 

cities, 01/01/1991 – 12/31/2000 

City Region 

Temperature (F°) 
Average 

Population 

Age 65+ 

January 1 July 1 

Average High  Low Average High Low 

Chicago Midwest 14 42 28 66 81 73 642,233 

Minn / St. Paul Midwest -7 32 19 59 78 71 182,230 

Philadelphia Northeast 24 46 34 73 82 77 222,063 

New York Northeast 20 46 33 72 79 74 1,068,846 

Miami South 59 78 72 80 88 84 292,764 

Dallas / Ft. W South 33 63 47 77 92 85 303,250 

Denver West 18 50 35 58 80 71 125,458 

Seattle West 30 51 43 57 72 63 177,696 

Phoenix West 52 64 57 88 100 94 320,656 

Los Angeles West 52 64 58 66 75 70 925,910 
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Table 5.2:  Estimated influenza and RSV associated death counts by city, viral type, and 

model, 1991−2000 cumulative total.  Degrees of freedom for each viral spline in Model 

3 are also given. 

City Model A(H3N2) df A(H1N1) df B df RSV df 

Chicago                   

  1 3282   252   617   0   

  2 3740   250   739   2523   

  3 4693 2 262 1 1260 2 3560 2 

Dallas/Ft.Worth                   

  1 1966   216   436   0   

  2 2534   281   746   0   

  3 2293 2 246 1 1147 2 375 1 

Denver                   

  1 504   0   0   474   

  2 603   0   134   1750   

  3 603 2 0 1 142 1 1574 2 

Los Angeles                   

  1 7738   0   319   7994   

  2 8715   0   779   15540   

  3 8148 2 0 1 1085 1 9235 2 

Miami                   

  1 959   42   442   705   

  2 1006   6   583   1408   

  3 1353 2 0 1 725 2 1321 1 

Minneapolis                   

  1 884   133   118   0   

  2 983   130   119   0   

  3 1032 2 158 2 127 1 0 1 

New York                   

  1 11736   569   2863   1172   

  2 12285   651   2622   7251   

  3 10878 2 986 2 3213 2 5359 2 

Philadelphia                   

  1 1532   39   295   0   

  2 1587   0   469   810   

  3 1487 2 13 1 565 2 908 1 

Phoenix                   

  1 1897   0   423   2453   

  2 1854   0   678   4851   

  3 2143 2 0 1 1207 2 1709 2 

Seattle                   

  1 796   0   444   0   

  2 807   0   615   749   

  3 986 2 0 1 771 2 548 1 
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Table 5.3:  Estimated influenza and RSV associated death counts by city and model,  

1991−2000 cumulative total.  Degrees of freedom for each viral spline in Model 3 are 

also given. 

City Model Influenza* df RSV df 

Chicago           

  1 5078   0   

  2 5778   1679   

  3 6168 2 1379 1 

Dallas/Ft.Worth           

  1 2608   0   

  2 3406   0   

  3 3692 2 1235 2 

Denver           

  1 504   295   

  2 712   1510   

  3 700 2 1555 2 

Los Angeles           

  1 9407   8210   

  2 10994   14816   

  3 9879 2 8637 2 

Miami           

  1 1476   313   

  2 1748   1230   

  3 2200 2 1019 1 

Minneapolis           

  1 1262   0   

  2 1386   0   

  3 1368 2 0 1 

New York           

  1 15722   1582   

  2 16224   7867   

  3 12055 2 7621 2 

Philadelphia           

  1 2046   292   

  2 2174   935   

  3 1824 2 1147 1 

Phoenix           

  1 2396   1943   

  2 2423   4238   

  3 2715 2 2090 2 

Seattle           

  1 1118   0   

  2 1202   291   

  3 1342 2 201 1 

                 * Influenza includes all A(H1N1), A(H3N2), and B types/subtypes 
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Table 5.4:  Estimated average annual rates* of influenza and RSV attributable deaths by 

city, viral type, and model, 1991−2000.  

City Model A(H3N2) A(H1N1) B RSV 

Chicago           

  1 51.10 3.92 9.61  ns** 

  2 58.23 3.89 11.51 39.28 

  3 73.07 4.08 19.62 55.43 

Dallas/Ft.Worth           

  1 64.83 7.12 14.38  ns 

  2 83.56 ns 24.60  ns 

  3 75.61 ns 37.82  ns 

Denver           

  1 40.17 ns ns   ns 

  2 48.06  ns  ns  139.49 

  3 48.06  ns  ns  125.46 

Los Angeles           

  1 83.57  ns  ns  86.34 

  2 94.12  ns  8.41 167.83 

  3 88.00  ns  11.72 99.74 

Miami           

  1 32.76  ns  15.10  ns  

  2 34.36  ns  19.91 48.09 

  3 46.21  ns  24.76 45.12 

Minneapolis           

  1 48.51 7.30  ns   ns  

  2 53.94 7.13  ns   ns  

  3 56.63 8.67  ns   ns  

New York           

  1 109.80 5.32 26.79  ns  

  2 114.94 6.09 24.53 67.84 

  3 101.77 9.22 30.06 50.14 

Philadelphia           

  1 68.99  ns  13.28  ns  

  2 71.47  ns  21.12  ns  

  3 66.96  ns  25.44  ns  

Phoenix           

  1 59.16  ns  13.19 76.50 

  2 57.82  ns  21.14 151.28 

  3 66.83  ns  37.64 53.30 

Seattle           

  1 44.80  ns  24.99  ns  

  2 45.41  ns  34.61  ns  

  3 55.49  ns  43.39  ns  

         *   Attributable deaths rates are given only for statistically significant mortality  

                counts listed in Table 5.2. 

           ** ns = not statistically significant  
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Table 5.5:  Estimated average annual rates* of influenza and RSV attributable deaths by 

city and model, 1991−2000. 

City Model All Flu RSV* 

Chicago       

  1 79.07  ns** 

  2 89.97 26.14 

  3 96.04 ns  

Dallas/Ft.Worth       

  1 86.00 ns  

  2 112.32 ns  

  3 121.75 40.73 

Denver       

  1 40.17 ns  

  2 56.75 120.36 

  3 55.80 123.95 

Los Angeles       

  1 101.60 88.67 

  2 118.74 160.02 

  3 106.70 93.28 

Miami       

  1 50.42 ns  

  2 59.71 42.01 

  3 75.15 34.81 

Minneapolis       

  1 69.25 ns  

  2 76.06 ns  

  3 75.07 ns  

New York       

  1 147.09 ns  

  2 151.79 73.60 

  3 112.79 71.30 

Philadelphia       

  1 92.14 ns  

  2 97.90 ns  

  3 82.14 ns  

Phoenix       

  1 74.72 60.59 

  2 75.56 132.17 

  3 84.67 65.18 

Seattle       

  1 62.92 ns  

  2 67.64 ns  

  3 75.52 ns  

  *    For RSV, attributable death rates are given only for statistically  

        significant RSV-attributable death counts from Table 5.3.  

   ** ns = not statistically significant 
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Figure 5.1:  Association between daily mortality count for persons age 65+ years and 

percent-positive viral type, New York City, combined years 1991−2000. Association 

modeled using spline function (red) and linear function (green). 
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Figure 5.2:  Association between daily mortality count for persons age 65+ years and 

percent-positive viral type, Chicago, combined years 1991−2000. Association modeled 

using spline function (red) and linear function (green). 
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Figure 5.3:  Association between daily mortality count for persons age 65+ years and 

percent-positive viral type, Los Angeles, combined years 1991−2000. Association 

modeled using spline function (red) and linear function (green). 
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Figure 5.4:  Association between daily mortality count for persons age 65+ years and 

percent-positive viral type, Miami, combined years 1991−2000. Association modeled 

using spline function (red) and linear function (green). 
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CHAPTER 6 

LITERATURE REVIEW:  STATISTICAL PROCESS CONTROL 

CHARTS FOR OUTBREAK DETECTION IN SYNDROMIC 

SURVEILLANCE 

 

Statistical process control (SPC) charts, designed for quality control monitoring in 

industry, have been widely adapted for use in disease and syndromic surveillance.  

Adaptations of the Cumulative Sum (CuSum) and Exponentially Weighted Moving 

Average (EWMA) charts have been used to monitor counts of nosocomial infections 

[Benneyan, 1998; Brown et al., 2002], hospital emergency department visits [Burkom, 

2003; Yuan et al., 2004; Ivanov et al., 2003], visits to medical facilities [Burkom, 2003; 

Yuan et al., 2004; Ivanov et al., 2003; Bradley et al., 2005], prescription drug sales [Chen 

et al., 2005], and sales of over-the-counter health care products [Burkom, 2003; Hogan et 

al., 2003; Marx et al., 2006].  Tsui et al. [2008] give a detailed review of popular SPC 

methods and performance measures used in public health and syndromic surveillance.  

When used in syndromic surveillance, a statistically significant increase in observed data 

demonstrated by an SPC chart might be considered evidence of an emerging outbreak.   

This chapter reviews the current literature on three SPC charts (CuSum, EWMA, 

and Shewart residual charts) used for detection of rate or count increases in public health 

surveillance.   

6.1  Statistical Process Control Charts 

The typical control chart is a graphical representation of information collected from a 

monitored process over time.  It displays sample measurements of a quality characteristic, 

either a variable (quantitative, e.g., length of product) or an attribute (qualitative, e.g., 
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defective/conforming).  The purpose of such a chart is to allow for the detection of an 

unusual occurrence that may reflect an actual process change. 

The control chart is essentially a set of sequential tests of the hypothesis that the 

process is in a state of statistical control.  If a point plots within the control limits, the 

hypothesis would not be rejected.  If the point plots beyond the control limits, the 

statistical control hypothesis would be rejected.  Thus, specifying the control limits is a 

critical decision.  By widening the control limits, the risk of a Type I error is decreased, 

i.e., the risk of a point falling outside the limits when the process is still in control (or no 

assignable cause is present) is decreased.  However, the risk of a Type II error, i.e., a 

point falling within the limits when the process is actually out of control, is increased.  

The opposite effect occurs when the control limits are brought closer to the center line.  

In that case, the Type I risk decreases while the Type II risk increases.   

The average run length (ARL) is the average number of points plotted on the chart 

before a point indicates an out-of-control condition.  For uncorrelated process 

observations, the ARL for any Shewhart chart can be calculated as ARL = 1/p, where p is 

the probability that any point falls beyond the control limits [Montgomery, 2005].  This 

method is often used to evaluate the performance of the control chart.  For an in-control 

process, the ARL (onward denoted ARL0) represents Type I error, or a "false alarm."  As 

such, this value should be large.  For an out-of-control process, on the other hand, the 

ARL (onward denoted ARL1) should be very small for timely detection.  In general, 

ARL0 represents the control chart's reliability while ARL1 measures how sensitive the 

chart is to process excursions. 

Numerous types of control charts have been developed to monitor various quality 

characteristics.  Three popular variable charts used widely in business and industry 

include: Shewhart charts, CuSum charts, and EWMA charts.  CuSum and EWMA charts 

utilize information collected from prior observations and therefore are able to detect 

smaller shift changes more efficiently than Shewhart charts.   
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6.2  Cumulative Sum Charts in Public Health Surveillance 

Let �� be the target value for the process mean, and I̅2 be the average of the jth sample.  

Then %I̅2 − ��& is the deviation of the jth sample mean from the target value.  The CuSum 

chart plots the following: 

�� =Y%I̅2 − ��&�
2[� . 

The quantity �� is the cumulative sum of deviations up to and including the ith sample.  

Because they combine information from all prior samples, CuSum charts are more 

effective than Shewhart charts for detecting small process shifts. 

       If the process is in control at the target value ��, the cumulative sum is a random 

walk with mean zero.  If the process mean shifts upward, however, then an upward (or 

positive) drift develops and is depicted on the chart.  Similarly, if the mean shifts 

downward, then a negative drift develops.  If such trends are depicted on the CuSum 

chart, the process is considered out-of-control and causes for variation should be 

determined. 

The theoretical properties of CuSum charts have been widely investigated [e.g., 

Page, 1954; Shiryayev, 1963; Lorden, 1971; Pollak, 1985; Lai, 2001].  Lucas [1985] 

gives a detailed examination of the run length of Poisson CuSum charts.  Brook et al. 

[1972] utilized the CuSum chart for detection of a shift in mean rates given a Poisson 

error structure.  White et al. [1996] approximated the target threshold for an in-control 

average run length (i.e., ARL0) using a Markov chain algorithm.  In biosurveillance 

research, Lee et al. [2014] examined the performance of analytically approximated 

control limits in multivariate CuSum charts used to detect emerging disease clusters.  Hill 

et al. [1968] and Weatherall et al. [1976] utilized CuSum charts for the surveillance of 

congenital abnormalities.  Cowling et al. [2006] monitored influenza sentinel surveillance 

data using an upper CuSum chart that incorporated a seven-week buffer period designed 
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to avoid inadvertently averaging out a gradual increase in number of cases.  Jackson et al. 

[2007] compared the performance of an EWMA chart, a Shewart chart, and a generalized 

linear modeling method using daily count data of emergency department visits related to 

respiratory illnesses.  Joner et al. [2008] and Fricker [2008] introduced modifications to 

traditional CuSum charts to account for the spatiotemporal characteristics of 

biosurveillance data.  Woodall [2006] and Tsui et al. [2008] reviewed applications of 

CuSum and other SPC methods in health surveillance. 

6.3  Exponentially Weighted Moving Average Charts in Public Health    

       Surveillance 

Like the CuSum chart, the EWMA control chart is highly effective in detecting small 

shifts in the process mean.  The exponentially weighted moving average is defined as 

follows: Ã� = XI� + (1 − X)Ã�@�, 

where 0 < X < 1 is a constant.  The starting value is generally either the process target Ã� = ��, or the average of preliminary data (Ã� = I̅).  The EWMA Ã� is a weighted 

average of all prior sample means. Ã� = XI� + (1 − X)Ã�@� = XI� + (1 − X).XI�@� + (1 − X)Ã�@#0 = XI� + X(1 − X)I�@� + (1 − X)#Ã�@# 

Substituting recursively for Ã�@2 , q = 2,3, … � gives 

Ã� = XY(1 − X)2�@�
2[� I�@2 + (1 − X)�ÃÄ. 

The weights X(1 − X)2 decrease geometrically and sum to unity since 

XY(1 − X)2�@�
2[� = X Å1 − (1 − X)�1 − (1 − X) Æ = 1 − (1 − X)�. 
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       If the process observations I� , � = 1,2, … , � are independent random variables with 

variance "#, then the variance of Ã� is 

"Ç<# = "# È X2 − XÉ y1 − (1 − X)#�{. 
The EWMA control chart is then constructed as follows: 

UCL = �� + Ì"ÍÈ X2 − XÉ .1 − (1 − X)#�0 
CL = �� 

LCL = �� − Ì"ÍÈ X2 − XÉ .1 − (1 − X)#�0 
where Ì" is the distance from the center line to the control limit and UCL, CL, and LCL 

are the upper confidence limit, center line, and lower confidence limit, respectively.  The  Ã� values are plotted on this chart and any deviations beyond the control limits indicate an 

out-of-control process. 

       Two parameters of the EWMA chart are the multiple of sigma used in the control 

limits (Ì) and the value of X in the EWMA equation.  These parameters can be chosen so 

that the ARL performance of the EWMA control chart closely approximates the CuSum 

ARL performance for detecting small shifts.   

The optimal design procedure using the EWMA chart starts by specifying the 

desired ARL0 and ARL1 values as well as the anticipated magnitude of the process shift.  

The combination of X and Ì should then be selected based on these specifications.  

Typically, smaller values of X are used to detect smaller shifts.  Smaller X values place 

more emphasis on prior information.  

The theoretical properties of two-sided EWMA charts have been widely 

investigated [Hunter, 1986; Crowder, 1987; Crowder, 1989; Ng and Case, 1989; Lucas 

and Saccucci, 1990].  Performance of the two-sided EWMA is limited when X is small.  

If a dramatic shift in the mean occurs toward the opposite side of the center line from the 
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current EWMA value, it could take several periods before the shift is detected.  With 

smaller X, the newer data would not be as heavily weighted.  A comparison of one- and 

two ̶sided EWMA charts can be found in Shu et al. [2007].   One-sided EWMA control 

limits were also examined in Robinson et al. [1978].  Borror et al. [1992, 1998] 

approximated the in-control ARL of a Poisson EWMA chart using Markov chain 

simulation methods.  Gan [1990] monitored the mean shift of a Poisson process using a 

modified EWMA chart.  Joner et al. [2008] introduced a one-sided multivariate EWMA 

(MEWMA) to monitor Poisson counts via a Á# statistic. 

Many studies have compared the performance of CuSum and EWMA chart 

methods under continuous distributions.  Srivastava and Wu [1993] have shown that 

under stationary conditions, the EWMA chart is less efficient than the CuSum chart.  

They also showed that the performance of a two-sided EWMA detection method is 

comparable to that of a CuSum [1997].  Lucas [1985] and Yashchin [1993] showed that 

the CuSum method slightly outperformed the EWMA when a mean shift size is equal to 

its standard deviation.  Joner et al. [2008] compared a CuSum and a scan statistic method 

on Bernoulli observations and found that the CuSum outperformed the scan statistic 

given a steady-state ARL0. 

6.4  Residual Charts in Public Health Surveillance 

An important assumption in control chart usage is that the data generated by the in-

control process are independently distributed with mean � and standard deviation ".  

Both parameters are considered fixed and unknown.  A shift in either � or " to a different 

value would lead to an out-of-control condition.  When the process is in-control, the 

quality characteristic at time �, IE, can be represented by the model IE = � + �E, where �E~(0, ").  Under these assumptions, conventional control charts can be used to draw 

conclusions about the statistical control state of the process.  Though a Gaussian error 

structure is assumed, these charts still work reasonably well even when the normality 
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assumption is slightly to moderately violated [Montgomery, 2005].  Chen et al. [in 

review] investigated the in-control and out-of-control sensitivities to the third and fourth 

standardized moments of the symmetric +Î chart. 

       The independence of observations is a critical assumption regarding control chart 

usage.  Conventional control charts perform poorly even with low levels of 

autocorrelation over time.  If successive observations are positively correlated, even to a 

small degree such as 7 = 0.25, where 7 is Pearson’s correlation coefficient, the number 

of false alarm signals will substantially increase [Montgomery, 2005].  Since the 

assumption of independence is sometimes not satisfied in practice, autocorrelation is an 

important issue to consider in control chart implementation. 

       An approach often used in dealing with autocorrelated data is to remove the 

autocorrelative structure with an appropriate model, and then to apply a conventional 

control chart to the residuals.  In this case, the residuals would be approximately normal 

and independently distributed with mean zero and constant variance.  Any unusual 

pattern in the sequence of residuals on the chart would then imply that the original 

variable was out of control. 

       It has been noted that residual control charts are not very sensitive to small process 

shifts.  The CuSum or EWMA charts could be applied to residual data instead of 

Shewhart charts to help improve sensitivity.  Tseng and Adams [1994] have found that 

since the EWMA is not an optimal forecasting scheme for most processes, it will not 

completely account for all autocorrelation.  This, in turn, can affect the statistical 

performance of control charts that are based on EWMA residuals.  Montgomery and 

Mastrangelo [1991] show that the use of supplementary procedures called tracking 

signals, combined with residual control charts, considerably enhance the performance of 

such charts.  Various forecasting methods have been used to remove the autocorrelation 

in process data for use in residual control charts.  Three widely used approaches include 

regression modeling, ARIMA modeling, and EWMA methods.   
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6.4.1  Preconditioning Data with Regression Models 

The NYC Department of Health [Das et al., 2005] monitors sales of over-the-counter 

(OTC) medications by tracking residuals from a cyclic linear regression model.  Brillman 

et al. [2005] developed a loglinear regression model based on the Serfling cyclic 

regression method for each of seven chief complaint categories.  They tracked emergency 

department (ED) chief complaints data via a residual chart.  Burkom et al. [2007] used a 

residual chart to compare a nonadaptive, loglinear regression model using a long 

historical baseline and an adaptive regression model with a shorter, sliding baseline.  

Lewis et al. [2002], Jackson et al. [2007], and Burr et al. [2006] used Poisson regression 

to model seasonal data, then tracked residuals using a Shewart method.  

6.4.2  Preconditioning Data with ARIMA Methods 

Autoregressive Integrated Moving Average (ARIMA) methods are also commonly used 

to model seasonal effects in syndromic surveillance data.  ESSENCE II, a syndromic 

surveillance system developed by the Department of Defense Global Emerging Infections 

System and the Johns Hopkins University Applied Physics Laboratory, is a regression-

based behavior modeling method with an ARIMA error structure [Burkom, 2003].  

Mandl et al. [2004] used a hybrid method of ARIMA and cyclic regression with good 

predictive ability.  Lewis et al. [2002] described the ESSENCE outbreak detection system 

in the greater Washington, DC area.  Baseline levels of three of seven syndrome groups 

were established through a regression-ARIMA model.  Miller et al. [2004] used a hybrid 

model to predict daily counts of influenza-like illness given a three-year historical period.  

Ozonoff et al. [2004] compared a regression-ARIMA model, a spatial statistic, and a 

bivariate test statistic to predict upper respiratory infection counts in a major healthcare 

provider setting in eastern Massachusetts.  Wang et al. [2005] proposed an automated 

outbreak detection system for syndromic surveillance which utilized an autoregressive 

periodic model (ARP) to describe daily ED visits relating to respiratory syndromes.  Reis 
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and Mandl [2003] preconditioned data using a trimmed-mean seasonal model based on 

historical averages to estimate expected counts.  To account for autocorrelation in the 

residuals, the authors fit an ARIMA(2,0,1) to the overall ED volume counts, and an 

ARIMA(1,0,1) to the respiratory-related ED volume.  The same modeling strategy was 

used in Reis et al. [2003] which assessed the use of multi-day temporal filters for 

outbreak detection.  Buckeridge et al. [2005] simulated outbreaks based on inhalational 

anthrax exposure which were superimposed onto real, baseline data.  The authors first 

smoothed the data using a procedure described by Reis et al. [2003], then accounted for 

autocorrelation in the residuals using a seasonal ARIMA model.   

6.4.3  Preconditioning Data using Exponential Smoothing Methods 

A third preconditioning approach for residual chart usage is Holt-Winters exponential 

smoothing.  The Holt-Winters exponential smoothing algorithm, a variant of simple 

exponential smoothing, is often used for forecasting series that exhibit seasonality or 

trend, characteristics inherent to most syndromic surveillance series.  Burkom et al. 

[2007] compared the performance of the multiplicative Holt-Winters procedure to 

adaptive and nonadaptive regression methods and found that it outperformed both 

procedures in modeling the original series.  Murphy and Burkom [2008] coupled six 

forecasting methods (including Holt-Winters and adaptive regression) with six anomaly 

detection measures, 36 pairs total, to compare detection performance and again found the 

Holt-Winters method to be superior to other approaches.   

6.5  Summary 

SPC charts have been widely adapted for use in disease and syndromic surveillance.  

These charts have been used to monitor counts of nosocomial infections, hospital 

emergency room visits, prescription drug sales, etc.  An unusual change, usually an 

increase, in disease counts could trigger an alarm from an SPC chart before the increase 
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is observed using more-traditional health and disease surveillance methods.  CuSum and 

EWMA charts utilize information collected from prior observations and therefore are 

able to detect smaller shift changes more efficiently than Shewhart charts.  If data are 

correlated over time, CuSum and EWMA charts can be used on residual data where a 

preconditioning method was used to remove autocorrelation from the original series. 
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CHAPTER 7 

COMPARISON OF CUSUM AND EWMA CHARTS FOR  

DETECTION OF INCREASES IN NEGATIVE BINOMIAL COUNTS 

 

A fundamental goal of public health surveillance, particularly syndromic surveillance, is 

the timely detection of increases in the rate of unusual events.  In syndromic surveillance, 

a significant increase in the incidence of monitored prodromal covariates would trigger 

an alert, possibly prompting the implementation of an intervention strategy after further 

investigation of a possible illness outbreak.  Public health surveillance generally monitors 

count data (e.g., counts of influenza-like illness, sales of over-the-counter remedies, and 

number of visits to outpatient clinics).  These data, observed sequentially, are often 

assumed to follow Poisson dynamics.  When an outbreak occurs, a shift in the baseline 

Poisson rate would occur.  In many cases, however, the Poisson distribution is not an 

appropriate choice due to the assumption of mean and variance equality.  Public health 

data are often overdispersed with respect to the Poisson distribution.  To this end, the 

negative binomial distribution can be useful in describing discrete data where the 

variance exceeds the mean.  Since the negative binomial distribution has two parameters, 

the second parameter can be used to adjust the variance independently of the mean.      

       Popular methods for monitoring and detecting public health surveillance data involve 

the use of CuSum and EWMA statistical process control charts [Montgomery, 2005; 

Hawkins and Olwell, 1998].  A detailed review of these methods as well as their 

applications in public health surveillance is given in Chapter 6.  This chapter compares 

the CuSum and Exponentially Weighted Moving Average (EWMA) methods for 

detection of increases in negative binomial rates under independent and identically 

distributed (iid) conditions.  As noted by Han et al. [2010], the behavior of these 

detection methods on discrete distributions has not been explored in detail.  Several 



98 

 

studies have assessed the performance of such methods under Bernoulli or Poisson 

dynamics [Han et al., 2010; Joner et al., 2008].  Performance of the CuSum and EWMA 

detection methods will be evaluated using the conditional expected delay (CED) criterion 

under different shift sizes and different times at which the shift occurs. 

7.1    Negative Binomial Distribution 

There are several parameterizations of the negative binomial distribution [Hilbe, 2008; 

Hogg, 1995].  One widely used parameterization is as follows.  Let the random variable + 

denote the total number of failures before the 7EA success in a sequence of iid Bernoulli 

trials.  Here, 7 is a positive, fixed integer and the parameter r denotes the probability of 

success.  In this case, the probability mass function (pmf) for the negative binomial 

distribution is: 

Pr(+ = I) = Ï7 + I − 1I Ð r:(1 − r)],							I = 0,1,2, … 

= 0								elsewhere 

with mean � = :(�@-)-   and variance "# = :(�@-)-Ò .  Writing parameters 7 and r in terms of 

the mean � and variance "# gives 7 = ÓÒÔÒ@Ó and r = ÓÔÒ.   From these equations, we have 

"# = � + 17 �#. 
In words, the variance is larger than the mean for the negative binomial, and it 

approaches the mean as 7 gets larger.  Based on this relation, smaller values of 7 

correspond to greater dispersion, and as such, 7 is sometimes referred to as the ‘inverse 

dispersion parameter’ (with � = 1 7⁄  referred to as the ‘dispersion parameter’). 

       An alternative formulation of the negative binomial pmf is parameterized with the 

mean � and dispersion factor 7 since r = ::°Ó.  In this version,  the negative binomial pmf 

can be written: 
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Pr(+ = I) = Γ(I + 7)Γ(I + 1)Γ(7) Ï1 + �7Ð@: È �� + 7É] ,								�, 7 > 0,				I = 0.1.2… . 
= 0								elsewhere 

where Γ(I) is the gamma function.  In this formulation, the combinatorial roots for 

defining the negative binomial distribution are essentially ignored, and instead the 

distribution is viewed as a general-purpose discrete distribution that can be used to model 

nonnegative, integer-valued data.  It should be noted that 7 can now be any non-negative, 

real number since the binomial coefficient in the pmf definition is replaced by equivalent 

gamma expressions.  Further, the second formulation can be viewed as a generalization 

of the Poisson.  Consider: 

lim:→Ö.Pr(+ = I)0 = lim:→Ö Γ(I + 7)Γ(I + 1)Γ(7) Ï1 + �7Ð@: È �� + 7É] 

= lim:→Ö �]I! Γ(I + 7)Γ(7)(� + 7)] Ï1 + �7Ð@: 

= �]¤@ÓI!  

In words, the negative binomial distribution converges to the Poisson distribution with 

parameter	7	controlling the deviation from the Poisson.  Again, this makes the negative 

binomial distribution a more ̶ robust alternative to the Poisson.  The negative binomial 

approaches the Poisson for large 7, but has a larger variance than Poisson for small 7.  In 

this study, the negative binomial parameterization with mean � and dispersion parameter 7 will be utilized for the CuSum log-likelihood ratio since it directly incorporates the in-

control and out-of-control parameters, �� and ��, being tested. 

7.2     Detection Methods 

7.2.1     Negative Binomial Cumulative Sum Chart 

The cumulative sum (CuSum) technique can be viewed as a sequential hypothesis test.  

For the negative binomial distribution with fixed dispersion factor 7, the null hypothesis 
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specifies a target, in-control location parameter (��) while the alternative hypothesis 

specifies a target, out-of-control location parameter (��).  The method monitors the 

statistic �E where �E = maxO0, �E@� + ÌEQ 
and where the increment ÌE is the log-likelihood ratio: 

ÌE = ln �(IE; 7, ��)�(IE; 7, ��). 
By convention, �� = 0.  The method stops when an alarm is triggered, which occurs 

when �E > ℎ, where ℎ is a threshold level determined by the in-control ARL.  Further, 

once an alarm is triggered, the test concludes that a shift in the location parameter has 

occurred from �� to ��. 

       If �� and �� are negative binomial pmf’s with fixed dispersion factor r, the log-

likelihood ratio simplifies to: 

 

Ì(I) = ln Ø Γ(I + 7)Γ(I + 1)Γ(7) Ï1 + ��7 Ð@: Ï ���� + 7Ð]Γ(I + 7)Γ(I + 1)Γ(7) Ï1 + ��7 Ð@: Ï ���� + 7Ð]Ù 
= ln ÚÏ1 + ��7 Ð@: Ï1 + ��7 Ð: È ���� + 7É] È ���� + 7É@]Û 
= 7 ln Ú7 + ��7 + ��Û + I ln Å��(�� + 7)��(�� + 7)Æ 
= I ln Å��(�� + 7)��(�� + 7)Æ − 7 ln Ú7 + ��7 + ��Û@� 

 

According to Hawkins and Olwell [1998], if the probability distribution for the CuSum 

statistic is a member of the single ̶ parameter exponential family, then the optimal CuSum 

design is completely specified by the selection of the in-control parameter, the out-of-
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control parameter, and the in-control ARL.  Further, in such cases, a one-sided, upper 

CuSum statistic �E can be recursively calculated by the equation �E = maxO0, �E@� + +E − ®Q, 
where ® is known as the reference value. 

       In this case, since 7 is considered fixed, the negative binomial is a member of the 

exponential family, and with the log-likelihood ratio above, the reference value ® 

becomes: 

® = 7ln t7 + ��7 + ��uln Ú��(�� + 7)��(�� + 7)Û. 
7.2.2     Exponentially Weighted Moving Average Chart 

The EWMA statistic, �E, is recursively calculated by the equation �E = �+E + (1 − �)�E@�, 
where 0 < � ≤ 1 and �� = �(+).  A straightforward, thorough explanation of the 

EWMA statistic and control chart is given by Montgomery [2005].  The one-sided 

EWMA is used in cases where only an increase (or decrease) in the process mean is of 

interest.  In this case, the monitored statistic is �E3 = maxO��, �EQ. 
For both the conventional EWMA and the one-sided EWMA, the parameter	� is 

generally optimized through a grid search of � values (e.g., � = 0.1, 0.2, … , 1.0), where 

the optimal	� value is determined by minimizing a function of the forecast residuals. 

7.3     Simulation Study 

7.3.1     Study Design and Parameter Selection 

A simulation study was conducted to investigate the detection capabilities of the EWMA 

and CuSum methods with negative binomial count data.  Three negative binomial data 
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distributions were used to represent disease incidence, all with an in-control parameter 

mean, �� = 1.4.  Three levels of the dispersion parameter, 7, were used to depict three 

levels of variance: (1) 7 = 19.6, (2) 7 = 0.7, and (3) 7 = 0.156.  A low level of variance, 

where the variance is approximately equal to the in-control mean (�� = 1.4, "# = 1.5), 
corresponded to dispersion factor 7 = 19.6 .  Note that when	7 = 19.6, the negative 

binomial distribution is a close approximation of the Poisson distribution with parameters �� = "# = 1.4.  The second dispersion value, 7 = 0.7, was used to describe a mid-level 

of variance,	"# = 4.2 , which is three times the in-control mean value, �� = 1.4.  The 

third dispersion factor, 7 = 0.156, corresponds to a high level of variance,	"# = 14, ten 

times the in-control mean,	�� = 1.4. 

       For each of these three data sets, two upward shifts from the target in-control mean (�� = 1.4) were to be detected: a small shift defined as a 25% increase in the mean 

number of cases (�� = 1.75), and a large shift defined as a 75% increase in the mean 

number of cases (�� = 2.45).  Table 7.1 shows the parameter values and shifts for each 

of the six scenarios.  Each of these simulated data sets was used to compare the 

performance of the CuSum and EWMA monitoring methods. 

       For the simulation study, optimal threshold levels were obtained.  For each of the 

methods, ARL0 was set as close as possible to 1,500 without going below this threshold.  

In other words, the threshold was set to generate one false alarm per 1,500 time periods.  

The threshold level corresponding to an ARL0  = 1,500 was determined based on 160,000 

simulations.   

       The threshold values for ARL0 were determined using an approach similar to that 

taken by Han et al. [2010].  For the CuSum simulation, Table 7.2 displays the set of 

parameters, thresholds, and corresponding ARL0.  For the EWMA approach, the 

parameters and thresholds determined by simulation are given in Table 7.3.   

  



103 

 

7.3.2     Conditional Expected Delay 

The goal of each method is to detect an increase in the mean number of cases as soon as 

possible after an upward shift (��,	where	�� > ��) has occurred.  Generally, the 

performance of a detection method is evaluated using two criteria: (1) the false alarm rate 

during the time of the in-control state, and (2) the detection delay in the out-of-control 

state.  As previously stated, the false alarm rate is fixed at 1 alert per 1,500 time periods.  

The conditional expected delay criterion, ���(�, ��), is a measure of the detection delay, 

i.e., the time between the occurrence of a shift and when that shift is detected.  The 

variable v represents the time at which the true shift occurred.  The variable  represents 

the size of the shift.  Thus, the criterion	���(�, ��) is used to compare the two methods 

at various shift times v, as well as a range of shift sizes (��).  Each calculated	���(�, ��) 
value was based on 15,000 simulations. 

7.3.3  ÜÝÞ(¡, ß/) results under fixed size of shift (ß/) and varying time of shift (¡) 
The two detection methods were compared by first considering different points of time, v, 

at which a shift occurred.  The value �� represents the shift size, either �� = 1.75 (25% 

upward shift) or �� = 2.45 (75% upward shift).  Figures 7.1a,c,e depict ���(�, ��) 
results for the small shift size (�� = 1.75).  Figure 7.1a shows results for small variance 

(7 = 19.6), Figure 7.1c for mid-level variance (7 = 0.7), and Figure 7.1e for high 

variance (7 = 0.156).  Based on these three figures, the EWMA approach outperformed 

the CuSum approach in detecting the smaller shift (using the criterion ���(�, �� =1.75)).  The greater the variance, the better the EWMA method performed relative to the 

CuSum.  Further, for all three variance levels, the EWMA CED values appear to be more 

robust relative to the CuSum approach.  In other words, for the EWMA method, CED 

values for a shift occurring at an early time period are very close to a CED value for a 

shift occurring at a later time period.  

1µ
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       Figures 7.1b,d,f  illustrate CED results for the larger shift size, (�� = 2.45).  The two 

methods are compared given negative binomial data with small variance (Figure 7.1b), 

mid-level variance (Figure 7.1d), and high variance (Figure 7.1f).  Figure 7.1b shows 

that, after a short start-up period, the CuSum outperformed the conventional EWMA in 

detecting the larger shift.  This result is consistent with findings by Han et al. [2010] for 

Poisson data.  Montgomery [2005] also notes that the CuSum method detects higher 

shifts more quickly than does the EWMA method.  The greater amount of variability in 

the data again makes both approaches less efficient in detecting a shift.  For the mid-level 

variation (Figure 7.1d), the CuSum performed worse than the EWMA method when the 

shift occurred at an early time period.  However, when the shift occurred later (� ≈ 33 or 

later), the CuSum performed as well as the EWMA.  For large variance (Figure 7.1f), the 

EWMA method outperformed the CuSum regardless of the time when shift occurred.   

7.3.4    ÜÝÞ(¡, ß/) results under fixed time of shift (¡) and varying size of shift (ß/) 
In the previous subsection, the two methods were compared using the CED criterion 

when the true shift size was known, but the time of the shift was unknown.  In this 

section, the ���(�, ��) values are assessed when the true shift size �� is unknown.  The 

time of a true shift occurrence is held constant at � = 50 so that the methods have time to 

adjust to the in-control, background data prior to the shift.  To investigate the condition 

where �� is unknown, a target shift size (��∗) can be set and the pattern of CEDs under 

different true shift sizes at some fixed point in time � = �∗ can be assessed.   

Figure 7.2 depicts the results for the three data distributions: low variance 

(Figures 7.2a,b), mid-level variance (Figures 7.2c,d) and high variance (Figures 7.2e,f).  

Figures 7.2a,c,e illustrate results with a small target shift at ��∗ = 1.75.  Figures 7.2b,d,f 

give the results for a higher target shift at ��∗ = 2.45.  The true shift sizes �� (x-axis) 

range from 1.45 to 3.50.   
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Regardless of target shift size, the CED values of both methods increase with 

increasing variance, and take longer to converge with increasing variance.  Among all 

three charts with smaller target value (Figures 7.2a,c,e), smaller true shift size is detected 

more quickly than among charts with larger target shift size (Figures 7.2b,d,f).  With the 

smaller target shift size (Figures 7.2a,c,e), the EWMA method performed moderately 

better than the CuSum for low- and mid-variance data, and performed only slightly better 

given high-variance data.  The two methods converged when the true and target shifts 

were equal (i.e, when ��∗ = �� = 1.75).  Given the higher target shift size and the 

smallest variance case (Figure 7.2b), the EWMA outperformed the CuSum for smaller 

true shift sizes with both methods converging near �� = 1.75.  The same outcome was 

observed for the higher target shift and mid-level variance case (Figure 7.2d).  For the 

high target shift and high-level variance case (Figure 7.2f), the EWMA chart only slightly 

outperformed the CuSum given smaller true time shifts.   

7.4     Conclusions 

This study evaluated the performance of the CuSum and EWMA monitoring methods 

with negative binomial data observations.  These results show that when the variance is 

larger than the mean, CED is larger.  The greater variability in the data makes it more 

difficult for the two methods to detect shifts in general.  

With the smaller shift size, the conventional EWMA method detected the shift 

more quickly than the CuSum at all levels of variance.  With larger shift sizes, if the 

variance is relatively small (in this case approximately equal to the mean), the CuSum 

method outperformed the EWMA after a short start-up period.  For large shifts with data 

having mid-level variance, the CuSum performed as well as the EWMA method after a 

longer start-up period.   

When the two methods are monitoring data targeted for large shifts, true smaller 

shifts will either go unnoticed or will be extremely difficult to detect.  On the other hand, 
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when the methods are monitoring for a smaller shift size, larger shift sizes also become 

easier to detect.  In both scenarios, given low- to mid-level variance, the EWMA 

performed slightly better in detecting smaller true shifts.  With high variance, however, 

both methods performed comparably with EWMA having only a slight edge in detecting 

smaller true shifts.   

 Results from this study should be helpful in deciding which chart to use for 

monitoring and detecting changes in rates of rare diseases with overdispersed variance.  

The negative binomial distribution may better approximate the underlying distribution of 

events over time compared to the Poisson.  Further, based on these results, the detection 

of small shifts in disease rates would be quicker with the EWMA chart compared to the 

CuSum.  For detection of larger shifts, either approach may be used.        
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Table 7.1  Negative binomial parameter values for the simulation study assessing the 

performance of the CuSum and EWMA monitoring methods, �� = 1.4. �� "# 7 

1.75 1.5 19.6 

1.75 4.2 0.7 

1.75 14 0.156 

2.45 1.5 19.6 

2.45 4.2 0.7 

2.45 14 0.156 

 

 

 

 

 

 

Table 7.2  CuSum thresholds (ℎ) determined via simulation (target ARL0 = 1,500) 7 ��	(� = 1) ��∗ ℎ ARL0 (s.e.) 

19.6 1.75 1.75 18.150 1526.22 (3.54) 

19.6 2.45 2.45   9.905 1522.79 (3.61) 

0.7 1.75 1.75 41.200 1523.13 (3.57) 

0.7 2.45 2.45 26.850 1523.67 (3.58) 

0.156 1.75 1.75 95.0 1522.93 (3.65) 

0.156 2.45 2.45 70.2 1531.15 (3.61) 

 

  
 

 

 

 

Table 7.3  EWMA thresholds (ℎ) determined via simulation (target ARL0 = 1,500). 7 ��	(� = 1) 1 ℎ ARL0 (s.e.) 

19.6 1.75 0.02 1.715 1519.21 (3.59) 

19.6 2.45 0.09 2.274 1526.40 (3.62) 

0.7 1.75 0.01 1.731 1517.64 (3.56) 

0.7 2.45 0.03 2.160 1528.21 (3.63) 

0.156 1.75 0.01 2.033 1532.71 (3.56) 

0.156 2.45 0.01 2.033 1532.71 (3.56) 
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(a) ��∗ = �� = 1.75;  �� = 1.4;  "# = 1.5 

 

(b) ��∗ = �� = 2.45;  �� = 1.4;  "# = 1.5 

 
 

 
(c) ��∗ = �� = 1.75;  �� = 1.4;  "# = 4.2 

 

 

 
(d) ��∗ = �� = 2.45;  �� = 1.4;  "# = 4.2 

 
 

 
(e) ��∗ = �� = 1.75;  �� = 1.4;  "# = 14.0 

 

 

 
(f) ��∗ = �� = 2.45;  �� = 1.4;  "# = 14.0 

 
 

Figure 7.1  Conditional Expected Delay (CED) comparisons of CuSum (triangles) and EWMA 

(squares) by time of true shift (v).  Figures a,c,e have true shift �� 	= 	1.75 and target shift  ��∗ 	=	1.75.  Figures b,d,f have true shift �� = 2.45 and target shift  ��∗ 	= 	2.45.  Detection methods 

are compared across three simulated negative binomial time series with parameters �� 	= 	1.4 and 

variances "# = 1.5 (Figures a,b); "# = 4.2 (Figures c,d); and "# = 14 (Figures e,f). 



109 

 

(a) ��∗ = 1.75;  � = 50;  �� = 1.4;  "# = 1.5 

 

(b) ��∗ = 2.45;  � = 50;  �� = 1.4;  "# = 1.5 

 
 

 
(c) ��∗ = 1.75;  � = 50;  �� = 1.4;  "# = 4.2 

 

 

 
(d) ��∗ = 2.45;  � = 50;  �� = 1.4;  "# = 4.2 

 

 
(e) ��∗ = 1.75;  � = 50;  �� = 1.4;  "# = 14.0 

 

 

 
(f) ��∗ = 2.45;  � = 50;  �� = 1.4;  "# = 14.0 

 
 

 

Figure 7.2  CED comparisons of CuSum (grey triangles) and EWMA (black squares) detection 

methods across different true mean shift sizes (��) at fixed time of shift (v = 50).  Figures a,c,e 

have target shift ��∗ 	= 	1.75.  Figures b,d,f have target shift ��∗ 	= 	2.45.  Detection methods are 

compared across three simulated negative binomial time series with parameters �� = 1.4 and 

variances "# = 1.5 (Figures a,b); "# = 4.2 (Figures c,d); and "# = 14 (Figures e,f).  
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

This chapter summarizes the major results and conclusions from this thesis.  Suggestions 

for future research in these areas of public health are also given. 

8.1  Summary of Results and Conclusions 

8.1.1  Pooling Influenza-associated Mortality Risks Across Locations 

This topic addressed the issue of local-level seasonal confounding in modeling 

national-level, influenza-associated mortality rates by introducing and implementing a 

two-stage hierarchical Bayesian modeling approach.  Results from this study showed 

considerable variability at the local level with respect to the association between 

influenza activity and mortality for subtypes A(H1N1) and A(H3N2).  These findings 

suggest that ambient temperature and other local-level seasonal factors significantly 

affect the relationship between influenza and deaths among persons aged 65 or older.  To 

better account for these city-level, time-dependent confounders, hierarchical modeling 

methods should be considered in future studies. 

Results from two hierarchical models were compared to those from a traditional 

modeling approach.  For A(H3N2) activity, the traditional GLM method estimated the 

risk of death to be significantly higher than the estimates from the two hierarchical 

models.   This difference may be attributable to the greater influence of counts from large 

cities when modeled via the traditional method.  The hierarchical approaches average all 

city-level parameter estimates taking into account estimated city-level variance, while the 

traditional method places more weight on outcomes of larger cities by pooling all data 

before modeling. 
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Results from the A(H1N1) influenza-associated mortality showed the hierarchical and 

traditional approaches leading to very different conclusions.  With A(H1N1), the relative 

risk is null from both hierarchical models, which is not surprising given the very low 

activity of A(H1N1) during the study period.  The traditional GLM model, however, 

showed a significant increase in deaths given A(H1N1) activity.  Again, this may be 

attributed to the high log-relative risk values of a few large cities.  For type B influenza 

activity, the three modeling approaches yielded similar results, suggesting that viral 

activity did not vary much geographically and/or other seasonal factors were not 

temporally collinear with type B influenza.  In this case, any of the three modeling 

approaches may be suitable for modeling.  

8.1.2  Modeling Measured and Unmeasured Background Seasonality 

This topic examined the effect of varying measures of seasonality on the association 

between influenza and mortality.  Three regression modeling approaches with distinct 

representations of background seasonality were chosen for comparison.  The covariates 

included data-driven as well as mathematically modeled proxies for seasonality.  Based 

on results from this study, background seasonality affects influenza-associated death 

estimates to varying degrees depending on viral subtype, city, and climate.  Estimates of 

A(H3N2) deaths are the most robust across all model types and seasonal representations.  

Findings from this study suggest, given U.S. seasonal influenza patterns, that spline 

functions with 20 knots are good approximations for data-driven seasonality variables 

such as ambient temperature. 

8.1.3  The Nonlinear Association Between Influenza and Mortality 

This topic investigated the relationship between influenza and mortality by modeling 

influenza terms using a flexible, natural cubic spline function instead of the conventional 

linear approach.  A significant finding from this study is the apparent nonlinear 
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association between influenza and mortality.  Given log-transformed mortality, we 

expected to find a nonlinear association between influenza and mortality that increased 

multiplicatively.  Results based on linearly modeled viral terms showed no multiplicative 

increase, and instead showed only a linear association (despite the logged mortality term).  

The influenza spline functions showed that the association is indeed nonlinear; however, 

instead of mortality increasing multiplicatively with increasing influenza activity, the 

association tended to taper off towards peak influenza season.  This study showed that in 

this study that relative to the spline fit, the linear function consistently underestimated the 

association during off-peak periods and overestimated during peak periods.  Based on the 

observed shape of the association, either spline functions, quadratic functions, or logged 

viral terms might offer a better fit for the influenza viral terms.   

8.1.4  Comparison of CuSum and EWMA Charts for Outbreak Detection 

This study evaluated the performance of the CuSum and EWMA monitoring methods 

with negative binomial data observations.  With the smaller shift size, the conventional 

EWMA method detected the shift more quickly than the CuSum at all levels of variance.  

With larger shift sizes, if the variance is relatively small (in this case approximately equal 

to the mean), the CuSum method outperformed the EWMA after a short start-up period.  

However, as variability increased, the EWMA again outperformed the CuSum.  Results 

from this study should be helpful in deciding which chart to use for monitoring and 

detecting changes in rates of diseases with overdispersed variance.  The negative 

binomial distribution may better approximate the underlying distribution of events over 

time compared to the Poisson.  Further, based on these results, the detection of small 

shifts in disease rates may occur more quickly with the EWMA chart compared to the 

CuSum.  For detection of larger shifts, either approach may be used.        
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8.2  Future Research 

Based on results and conclusions from this work, the following suggestions are made for 

future research. 

(1) Validation of results is particularly difficult when modeling influenza-associated 

deaths via regression methods since there are a number of temporally collinear 

variates.  Proper simulation studies which adequately represent mortality series 

with non-regression derived components of influenza-associated and non-

influenza-associated deaths are needed to validate and compare results from these 

modeling methods.   

(2) Bayesian hierarchical modeling is a novel approach to modeling influenza-

associated deaths.  It requires further investigation.  For instance, the assumption 

of a normal approximation for the likelihood function of each city-level model 

needs further examination, and an appropriate approach for estimating the 

correlation parameter in the spatial-correlation hierarchical model should be 

determined.   

(3) The percent-positive, influenza activity proxy may need further vetting.  An 

alternative proxy for influenza activity that incorporates both estimated percent-

positive activity as well as estimated percentage of influenza-like illness medical 

visits might better capture the true level of influenza activity in a particular 

region. 

(4) The percent-positive influenza proxy was also found to be nonlinearly associated 

with mortality.  Based on the observed shape of the association, either spline 

functions, quadratic terms, or logged viral terms might offer better fits for the 

influenza viral terms in future studies. 

(5) Syndromic surveillance data tends to contain long-term and seasonal trends, and 

generally are correlated over time.  A logical extension of this part of the thesis 
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would involve monitoring data with seasonal and other long-term patterns.  One 

approach might be to first precondition the data to remove time-dependent trends, 

and then compare SPC methods that monitor the residuals for detection of unusual 

activity.   
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