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SUMMARY

For the past decade, graphene has been among the most heavily researched materials

in condensed matter physics. In particular, its unusual electronic properties have spurred

researchers to investigate new applications and theoretical insights. In this thesis, we focus

on a system consisting of two sheets of graphene at a relative twist angle. The physics of

this system has proved surprisingly rich and non-trivial. We summarize the current state of

theoretical work on this system and extend this theory to cover a new twist angle regime,

finding an exotic flat band state in the process. Finally, we investigate the possibility of

Peierls-like transitions in all regimes.
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CHAPTER 1

INTRODUCTION

1.1 History of Graphene

Graphene is a single layer of carbon atoms arranged in a honeycomb lattice. Its electrical

properties were first studied in an effort to approximate graphite as independent layers of

graphene [1].

Around 2004-2005, several groups managed to isolate few layer and single layer graphene

[3–6]. A number of remarkable properties emerged, the most interesting being a linear dis-

persion relation. At energies near the Fermi level, the dispersion of electrons is governed

by the massless Dirac equation.

Interest in single and few layer graphene rapidly expanded. The most obvious ap-

plication was incorporating graphene into electrical circuits using, for instance, graphene

transistors [7, 8]. However, there has also been copious theoretical work. Examples in-

clude tests of previously inaccessible high energy theory, integer and fractional quantum

hall effects, and topological insulators [9–11].

In growing graphene, the result is typically several layers in a stack. Some methods

result in layers that are rotated relative to one another, so called twisted multilayers or

turbostatic graphene [12, 13]. Twisted bilayers provide a good model for twisted multi-

layers. Understanding twisted bilayers has proven key to understanding results from these

experiments. In particular, it resolved the puzzle of how stacked graphene layers appear

electronically uncoupled [14]. The problem also proved surprisingly non-trivial from a

theoretical perspective. In the future, we may be able to exploit twist angle as a new degree

of freedom to access novel physics and applications.

In this thesis, we first review the current state of twisted bilayer theory. Then we use

1



a1

a2

δ1

δ2
δ3

Figure 1.1: Graphene Lattice. The blue atoms are sublattice A and the red atoms are
sublattice B.

this theory to explore two new ideas. First, we predict, find, and explain localization of

low energy states at certain large rotation angles. Second, we examine the possibility of a

Peierls transition.

1.2 Graphene Theory

Graphene is a two dimensional crystal of carbon atoms arranged in a honeycomb lattice. A

portion of a graphene lattice is shown in Figure 1.1. The lattice consists of two sublattices,

called the A and B sublattices. These are shown in red and blue in the figure. The basic

properties of graphene can be derived from tight binding models. Details can be found

in [15, 16].

In this thesis, ai denote the two lattice vectors , δi denote the three nearest neighbor

vectors , and bi denote the two reciprocal lattice vectors . We choose the following geom-

etry:

a1 = a (1, 0) a2 = a

(
1

2
,

√
3

2

)
(1.1a)

b1 =
2π

a

(
1,− 1√

3

)
b2 =

2π

a

(
0,

2√
3

)
(1.1b)
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δ1 =
a

2

(
1,

1√
3

)
δ2 =

a

2

(
−1,

1√
3

)
δ3 = a

(
0,− 1√

3

)
, (1.1c)

where a = 2.46Å is the lattice constant of graphene . We also define δ = a/
√

3 to be

the interatomic distance, that is, the distance between nearest neighbors . In real space, we

call the Hamiltonian for the nearest neighbor tight binding model HG:

HG = t
N∑
i=1

∑
j=<i>

a†σiaσ̄j, (1.2)

indexHG@HG where aσi is the field operator for sublattice σ and unit cell i . The

notation < i > signifies the unit cells connected to unit cell i by a nearest neighbor vector.

The notation σ̄ indicates the opposite sublattice from σ. The parameter t denotes the energy

of nearest neighbor hopping .

Now we write the Hamiltonian in momentum space. We use κ for the momentum . In

all that follows, we will set ~ = 1, so κ is also a point in the reciprocal space of the lattice.

The field operators are written:

aσi =
1√
N

∑
κ

aκσe
iκRiσ , (1.3)

where Riσ is the position of atom i in sublattice σ . The number N is the number of

cells in the sample indexN@N . The operator aκσ is the destruction operator for a state of

momentum κ on sublattice σ . In this momentum basis, the Hamiltonian is diagonal:

HG = t
∑
κσ

2∑
j=0

a†κσaκσ̄e
iκδj(δσA−δσB). (1.4)

At the two momentum space points, Kv=1 = 1
3
b1 + 2

3
b2 and Kv=2 = 2

3
b1 + 1

3
b2, the

eigenvalues are zero . These are called the Dirac points. Now we expand the Hamiltonian

around the Dirac point v, substituting κ = Kv +k. That is, k is momentum measured with

3
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Γ

Figure 1.2: Top view of Brillouin zone of graphene with inequivalent Driac points (left).
Dirac cone at the circled Dirac point viewed from the side (right).

respect to the Dirac point . If we expand to first order in k, we find:

H(v)(kx, ky) =

√
3at

2

0 e−νi2π/3(kx − νiky)

∗ 0

 , (1.5)

where ν = ±1 for v = 1, 2 respectively. The Hamiltonians H(1) and H(2) describe

the physics near each of the Dirac points. We say graphene has two valleys, one for each

Dirac point. The eigenvalues are clearly ±
√

3atk/2 where k is the magnitude of distance

to the Dirac point we choose to expand around. Thus, we see that near the Dirac points, the

spectrum takes the form of two cones joined by a vertex atE = 0 with velocity v =
√

3at/2

.

A schematic of the Brillouin Zone is shown in Figure 1.2. On the left, we see the

hexagonal BZ with the two inequivalent Dirac points at the corners. On the right, we see

an example of a Dirac cone which extends from each of the Dirac points.

For future convenience, we now define:

H0 = vk [cos (φ− 2π/3)σxτ0 + sin (φ− 2π/3)σyτz] , (1.6)

4



where kx and ky are now in the polar coordinates k and φ . We use σ for the Pauli

matrices for the sublattice degree of freedom, and τ for the Pauli matrices for the valley

degree of freedom. We use the representation:

σ0 =

1 0

0 1

 (1.7a)

σx =

0 1

1 0

 (1.7b)

σy =

0 −i

i 0

 (1.7c)

σz =

1 0

0 −1

 . (1.7d)

In other words, H0 is the four dimensional Hamiltonian that describes the low energy

theory at the two valleys.

1.3 Topology and Chern Number

We will make use of the topological index known as the Chern number. Thus, we give

a brief definition for future reference. These ideas were first derived in [17] and a good

reference is [18]. The Chern number is a topological index defined for any non-degenerate

band. Given such a band with eigenvector |n(κ)〉 throughout the BZ, we define the Berry

connection:

AC(κ) = i 〈n(κ)| ∇κ |n(κ)〉 . (1.8)

5



The Berry connection is not a gauge independent quantity. However, we may define the

gauge independent Berry curvature:

BC(κ) = ∇κ ×AC(κ). (1.9)

Note, that in the case of a two dimensional system, we have the simplification:

BC = 2Im 〈∂yn(κ)|∂xn(κ)〉 . (1.10)

The Chern number is then the integral of the curvature over the BZ:

C =
1

2π

∫
BZ
BC(κ). (1.11)

It is clear that the Chern number is quantized in integer units. The BZ has no boundary, and

thus, an application of Stokes’ Theorem gives C = 0 in the case whereAC is differentiable

throughout the BZ. If AC is not differentiable somewhere, we may divide the BZ into

patches and use local gauges that ensure differentiability. Then we integrate the Berry

connection over the boundaries of these patches. Over every boundary, we integrate in

both directions, the only difference being a gauge. The difference in such integrals is the

winding number of the gauge along the boundary and must be in units of 2π. Thus, the

Chern number is quantized.

1.4 Domain Walls

The Chern number is a topological index that is robust to all continuous changes of the

Hamiltonian that do not close the gap. As a topological index, we have an index theorem

[19]. Consider a system with one region where C = n and another region where C = m.

The boundary of these regions is called a domain wall. The index theorem guarantees n−m

topologically protected midgap states along the domain wall. These states will propagate

with some velocity, the sign of which is determined by the sign of n−m. In fact, this is the

6



origin of the Quantum Hall states that propogate along the edge of a topological insulator.

1.5 Valley Chern Number

In a system with Dirac valleys, like graphene, we may define another quantity called the

valley Chern number [20]. This quantity originates with the observation that Berry cur-

vature is localized to the valleys. If we evaluate the Chern number for a single valley in

the continuum limit, we find the integrated Berry curvature over this valley is Cv = ±1/2,

where we have the valley index, v = 1, 2. Note the Chern number is not quantized because

the continuum limit is not periodic.

Now, we define the valley Chern number as the difference between the integrated Berry

curvature of the two valleys:

Cv = C1 − C2. (1.12)

For example, in monolayer graphene with constant mass, one valley contributes 1/2

and the other valley contributes −1/2. Therefore, the Chern number of this system is zero,

but the valley Chern number is one.

The same index theorem applies to the valley Chern number as the normal Chern num-

ber with the caveat that there must be no intervalley scattering. For instance, consider a

sheet of graphene with real space mass such that we have a region of Cv = 1 and a region

of Cv = −1. The normal Chern number is zero in both regions. However, the differing

valley Chern number guarantees two topologically protected midgap states on the domain

wall between the regions, provided the dynamics of the system is confined to the valleys,

and there is no intervalley scattering.
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CHAPTER 2

BILAYER GRAPHENE

Once we understand the spectrum of single layer graphene, we move to bilayer graphene.

This is important because many growth methods result in multiple layers. In addition, as

methods are developed to control twist angle [21], we can use this angle as another degree

of freedom for manipulation of the graphene band structure.

2.1 Bilayer Hamiltonian

Consider a graphene bilayer with layer two rotated by θ relative to layer one. In general,

we write the Hamiltonian:

HBG(k) =

H0 H⊥

∗ Hθ

 , (2.1)

where the diagonal blocks are the Hamiltonians of layer one and layer two respectively,

and H⊥ describes the coupling between the layers. The Hamiltonian of layer one is simply

the single layer graphene Hamiltonian of Equation 1.6. The Hamilontian of layer two is

the same but rotated by θ:

Hθ = e−iθσzτz/2H0eiθσzτz/2. (2.2)

Here and in what follows, the sublattice degree of freedom will be represented by the

Pauli matrices σ, the valley degree of freedom by the Pauli matrices τ , and the layer degree

of freedom by the Pauli matrices l .

It is sometimes advantageous for the diagonal blocks of HBG to be identical. We may

8



accomplish this with the unitary rotation:

H̄ = ei(θlz/2+2πl0/3)σzτz/2He−i(θlz/2+2πl0/3)σzτz/2, (2.3)

where we are also gauging away the factor of exp(i2π/3) in H0. Thus, we have the

rotated Hamiltonian:

H̄ =

Hθ/2 H̄⊥

∗ Hθ/2

 , (2.4)

where

Hθ/2 = ei(θ/2+2π/3)σzτz/2H0e−i(θ/2+2π/3)σzτz/2 (2.5a)

H̄⊥ = ei(θ/2+2π/3)σzτz/2H⊥e
−i(−θ/2+2π/3)σzτz/2. (2.5b)

We have completely defined the diagonal blocks Hθ/2. We now turn to the question

of the form of the interlayer coupling, H̄⊥. Commensuration plays a critical role in the

interlayer coupling, as we see below.

2.2 Commensuration

In general, we consider two layers of graphene where layer two is rotated with respect to

layer one by θ. Depending on θ, this system may or may not have translational symmetry.

Systems that do have translational symmetry are called commensurate. Figure 2.1 plots

commensurate systems by θ and the number of atoms in the commensurate supercell. There

are only a few solutions with small numbers of atoms.

Figures 2.2 and 2.3 show the four smallest commensurations. In these figures, every
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Figure 2.2: 4 Atom Commensurations
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(a) SE even 38.2◦ (b) SE odd 21.8◦

Figure 2.3: 28 Atom Commensurations

atomic sublattice/layer combination is a different color. The red lines indicate a unit super-

cell, the smallest pattern that repeats throughout the structure. These structures have only

4 and 28 atoms respectively.

The fact that they come in pairs of equal size is not a coincidence, but a general prop-

erty of commensurations called sublattice exchange (SE) symmetry [22, 23]. Sublattice

symmetry divides all commensurations into one of two groups: SE even or SE odd. In

addition, every SE even commensuration at θ has an SE odd partner with the same number

of atoms at 60◦ − θ. The commensurations in Figures 2.2 and 2.3 show these partners.

We may define sublattice symmetry by the relations between the Dirac points. LetKlv

be the unique Dirac point v of layer l . Every even commensuration satisfies Klv = Kl̄v

, while every odd commensurations satisfies Klv = Kl̄v̄. In this notation, l̄ means the

opposite layer from layer l, and v̄ means the opposite valley from valley v. The equal signs

are understood to be modulo a reciprocal superlattice vector. In other words, the two points

are equivalent in the momentum space of the superlattice. The geometry of each case is

shown is Figure 2.4, where the red arrows are reciprocal superlattice vectors.

Sublattice symmetry is interesting because it has a significant effect on the low energy
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(b) SE odd 21◦

Figure 2.5: 28 Atom Commensurations

bands of any commensuration. We call this a commensuration effect because it depends

on the structure being exactly at commensuration. In general, an SE odd commensuration

effect can not open a gap by itself, while an SE even commensuration opens a gap (except

at 0◦). Figure 2.5 shows the bands for the 28 atom commensurations, created using simple

tight binding models. Every commensuration (except 0◦) has a low energy band structure

identical to either the SE even or SE odd 28 atom band structure. The only difference is the

scale of the low energy structure shrinks for larger commensurations. We will derive the

source of this commensuration effect below.
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2.3 Continuum Model

Commensurate angles are a very small subset of all possible rotation angles. Tight binding

models require periodicity, so they only work for commensurate angles. To understand the

vast majority of angles requires a theory without commensuration. The continuum model,

first developed in [24], does not require commensuration. This model yields an effective

Hamiltonian reproducing the low energy bands of the bilayer.

The unperturbed states are the single layer graphene states in each of the two layers near

the Dirac points. The interlayer coupling matrix H⊥ then weakly couples these states. If

the coupling is weak enough, we may apply perturbation theory to find the new eigenvalues

and eigenvectors.

First, we must derive the coupling between the layers. The full Hamiltonian is:

H = H(1) +H(2) +H⊥ (2.6a)

Hl = t
∑
σi

∑
j=<i>

a†lσialσ̄j (2.6b)

H⊥ =
∑
lσi
σ′j

a†lσial̄σ′jf(Rlσi −Rl̄σ′j), (2.6c)

where l is the layer index, σ is the sublattice index, σ̄ indicates the opposite sublattice

from σ, and < i > indicates unit cells linked by nearest neighbor hopping to the ith unit

cell. The vector Rlσi is the vector to the atom of sublattice σ in unit cell i of layer l. The

function f is the real space form of the interlayer coupling .

The single layer terms are diagonal in momentum, as for single layer graphene. How-
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ever, the interlayer term is more complicated. In momentum space, we find:

H⊥ =
∑
κlσσ′

∑
GlGl̄

a†lσκal̄σ′κ+Gl−Gl̄ f̃(κ+Gl)e
iGlδlσBe−iGl̄δl̄σ′B , (2.7)

where Gl is any reciprocal lattice vector of layer l . Note, we have also adopted the

special notation δlσB = δlδσB . The first δl is the nearest neighbor vector. The second δ is

the Kronecker delta.

The quantity f̃(κ + Gl) is the Fourier transform of the interlayer coupling function,

which we define as:

f̃(κ) =
1

A0

∫ ∞
−∞

∫ ∞
−∞

f(r)eiκrd2r, (2.8)

where A0 is the area of the unit cell of graphene . In the case of a radially symmetric

interlayer coupling function, this reduces to the Hankel transform:

γ̃(κ) =
2π

A0

∫ ∞
0

xf(x)J0(κx)dx, (2.9)

where J0(r) is the Bessel function .

The formula for H⊥ in Equation 2.7 is the central equation to understanding bilayer

graphene. It says that the state in layer l at momentum κ couples to all states in layer l̄ at

momentum κ plus any sum of reciprocal vectors of both layers, Gl −Gl̄. This is entirely

expected as the set of all such sums is identical to the set of reciprocal superlattice vectors.

In other words, H⊥ couples any states differing by a reciprocal superlattice vector. The key

point is that the energy scale of the coupling, f̃(κ +Gl), involves the reciprocal vector of

layer l, and not simply the reciprocal superlattice vector.

2.3.1 Perturbation Theory

Now we perform degenerate perturbation theory to find the low energy corrected bands.

Since we are interested only in the low energy theory, we use |ψlgv〉 to mean a single layer
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state of layer l and valley v with momentum Klv, that is, at the specified Dirac point .

The index g specifies the positive or negative energy state of the particular Dirac cone.

Therefore, we have an eight dimensional degenerate perturbation theory because there are

eight states in the degenerate subspace. We define H(n)
⊥ (θ) to be the order n perturbative

correction to the uncoupled Hamiltonian . The first order correction is:

H
(1)
⊥ (θ) = 〈ψlgv|H⊥ |ψl′g′v′〉 . (2.10)

We understand that each set of indices gives one element of the eight by eight matrix

H
(1)
⊥ (θ). The second order correction is:

H
(2)
⊥ (θ) =

∑
κl′′g′′

〈ψlgv|H⊥ |ψl′′g′′(κ)〉 〈ψl′′g′′(κ)|H⊥ |ψl′g′v′〉
El′′g′′(κ)

, (2.11)

where |ψlg(κ)〉 is the single layer graphene state of layer l′′ with energy sign specified

by g′′ at κ . Note, this state does not include the subscript v′′ because it may not be near any

particular valley. In general, the perturbation theory above results in three types of terms,

which we describe now.

The first type of term is called direct coupling. This term describes the coupling of

the degenerate subspace to itself. According to Equation 2.10, it can only be non-zero if

the two Dirac points considered are coupled by H⊥. Equation 2.7 demonstrates that H⊥

only couples states that differ by reciprocal superlattice vectors. We explained in Section

2.2 that this occurs if and only if the superlattice is commensurate [22]. Thus, we call this

the commensuration term. Note, this term must be layer off-diagonal. In addition, while

this term may be valley diagonal (SE even) or valley off-diagonal (SE odd), it cannot be

both [22]. Therefore, the commensuration term is at most a two by two matrix. Since

this term couples degenerate states, its effect will be large, and it is the origin of the gap

mentioned previously.

The second type of term is called perturbative indirect coupling. These terms describe
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the coupling of the degenerate subspace to higher energy states and then back. Thus, they

appear as second order terms in the perturbative sum. Once again, the matrix elements can

only be non-zero for states that differ by reciprocal superlattice vectors. Note, this term is

layer-diagonal.

The third type of term is called non-perturbative indirect coupling. These are also sec-

ond order in the perturbative theory. However, they describe coupling to a state outside the

degenerate subpsace that is too close in energy to be accurately described by perturbation

theory. If such a term exists in the sum, perturbation theory is no longer accurate for the

system, and we say the system is in the non-perturbative regime.

Even though only one term is called the commensuration term, we may associate every

term in the perturbative sum with a possible commensuration of the system. All second

order terms describe a link from a Dirac point to a point differing by a reciprocal superlat-

tice vector. There exists a commensuration angle for which this coupling is direct, and we

may associate this term with that commensurate angle. This association is useful because

(as we will see below) the strength of the term depends on its associated commensuration

angle, even if the system is not at that commensuration.

We now describe each term in more depth.

2.3.2 Direct Coupling

Recall direct coupling only occurs if there are reciprocal vectors that connect Dirac points

of layer one to Dirac points of layer two. Solutions exist for any commensuration: for even

commensurations,Klv connects toKl̄v, while for oddKlv connects toKl̄v̄.

Thus, the term, H(1)
⊥ (θ) is composed of blocks of two by two matrices. These blocks

either connect like valleys of each layer or opposite valleys depending on the even or odd

nature of the commensuration. We add the valley labels to specify the blocks, H(1)
⊥,vv′(θ).

According to Equation 2.7, the calculation of interlayer coupling requires solutions to

the equation K1v + G1 = K2v′ + G2, where Gl is a reciprocal lattice vector of layer l.
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Suppose we are at a commensuration angle c. Let Gc be the set of all such solutions:

Gc = {(G1,G2)|K1v +G1 = K2v′ +G2}. (2.12)

Now we define a function,Nc, that maps members of Gc to the appropriate norm for

measuring coupling strength:

Nc(G1,G2) = ||K1v +G1||. (2.13)

We next define the set of all norms of Gc, and we order the results:

Nc = {Nc(g)|g ∈ Gc} = {n1
c , n

2
c , n

3
c , · · · }. (2.14)

We partition Gc into subsets, Gc = ∪iGic, such that all members of a subset have the

same value under the function Nc:

Gic = {(G1,G2)|(G1,G2) ∈ Gc, Nc(G1,G2) = nic}. (2.15)

We make the further defintion that the norm of the subset is |Gic| = nic. Assuming

the interlayer coupling obeys C3 symmetry, all members of Gic share the same associated

coupling strength:

γ̃ic = f̃(K1v +G1) s.t. G1 ∈ Gic. (2.16)

In practice, we only care about the solutions in the set G1
c and their associated coupling

strength γ̃ic. This is because the Fourier transform of the interlayer coupling is exponentially

decreasing with the length of its argument. Therefore, for a particular commensuration

angle, c, we associate one coupling strength, γ̃c = γ̃1
c and ignore the others . In addition, G1

always has three members, so we label the important solutionsGi
l, where l denotes the layer
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K11

K21

G1

G2

Figure 2.6: Even commensuration showing BZ of each layer and a solution to the coupling
equation.

and i ranges from one to three for each possible solution . We have dropped the subscript

c because we will only deal with one commensuration. In other words, once we choose

a commensuration, we have an associated coupling strength and three reciprocal lattice

vectors. In Figure 2.6, we show an even commensuration and one of the solutions. The

two other solutions couple the other equivalent Dirac point pairs, and are the C3 symmetric

partners of the depicted solution.

Since only two valleys ever couple directly, we can separateH(1)
⊥ into two by two blocks

between valley v and v′. Therefore, we may write the interlayer coupling:

H
(1)
⊥,vv′(θ) = χ(θ, v, v′)γ̃θ

3∑
i=1

 1 e−iνG
i
2δ2

eiνG
i
1δ1 eiνG

i
1δ1e−iνG

i
2δ2

 , (2.17)
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where ν = ±1 for v = 1, 2, and χ(θ, v, v′) is an indicator function:

χ(θ, v, v′) =


δvv′ θ is SE even

δv̄v′ θ is SE odd

0 otherwise

. (2.18)

We may perform the sum to find the simplified form:

H
(1)
⊥,vv′(θ) = χ(θ, v, v′)3γ̃θ

1 0

0 eiν2πq(θ)/3δvv′

 , (2.19)

where q(θ) ∈ {−1, 0, 1} and depends on the specific geometry of the commensuration

.

In addition, odd commensurations have only one non-zero element and even commen-

surations have two non-zero elements. The phase twist in the element that pairs the B

sublattices is the origin of the gap that opens in the SE even case. Note that θ = 0 is unique

among even commensurations because there is no phase twist and the gap does not open.

We may write the interlayer coupling in terms of the Pauli matrices:

H⊥ = O(θ)
3γ̃θ
2

(σ0 + σz)τxlx + E(θ)
3γ̃θ
4

[
(σ0 + 3σz)τ0lx + (−1)q

√
3(σ0 − σz)τzly

]
,

(2.20)

where O(θ) = 1 if θ is an odd commensuration and zero otherwise , and E(θ) = 1 if θ

is an even commensuration and zero otherwise . Thus, we have the total Hamiltonian:

H̄ = Hθ/2l0 + H̄⊥, (2.21)

where H̄⊥ is calculated from Equation 2.5b.

These matrices reproduce the earlier results concerning commensuration. In particular,

19



an even commensuration is gapped (except at zero degrees), while an odd commensuration

is ungapped.

2.3.3 Indirect Coupling

Recall indirect coupling describes coupling from the degenerate subspace to non-zero en-

ergy states outside the degenerate subspace and then back. Figure 2.7 shows the momentum

space picture for a system at arbitrary angle θ. At K11, there are zero energy states from

layer one. AtK21, there are zero energy states from layer two. If the system were at 0◦ then

there would exist the set G0 of reciprocal superlattice vectors connecting K11 and K21. At

the current angle θ, these vectors couple states atK11 instead to states of layer two at some

higher energy.

In general, we take only the strongest couplings, that is the coupling corresponding to

the set G1
0 . Thus, in Figure 2.7, we only consider the three states at the end of the dashed

red arrows. In addition, we assume θ is close enough to commensuration that we may use

the linear approximation aroundK21. Thus, the energy of these three states is vδK, where

δK is their distance fromK21 . The scale of the coupling as dictated by perturbation theory

is then, γ̃0/vδK.

Figure 2.7 only describes the indirect coupling associated to the zero degree commensu-

ration. However, terms exist for every commensuration not exactly realized by the system.

In Figure 2.8, we see two Dirac points and one solution,Gl, for the 38.2◦ commensuration.

The zero energy states at K11 will couple to the high energy states of layer two at the end

of the dashed red arrows. Assuming we are close enough to commensuration to use the

linear approximation of the Dirac cone, their energy is vδKc . The scale of this coupling as

dictated by perturbation theory is then γ̃38/vδKc.

For the general case, the energy scale is γ̃c/vδKc. We use δKc to emphasize that this

describes the closest approach of the two Dirac points in all momentum space.

The result of these indirect perturbative couplings is four decoupled two by two Hamil-
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K11

K21

Figure 2.7: Indirect coupling through θ = 0◦ commensuration term. The dashed arrows
point from the Dirac point of layer two to the states of layer two that will couple to the
Dirac point of layer one.
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K11

K21

G1

G2 δ kc

Figure 2.8: Indirect coupling through θ = 38.2◦ commensuration term. The dashed arrows
point from the Dirac point of layer two to the states of layer two that will couple to the
Dirac point of layer one.
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tonians, one for each layer valley combination. In the standard treatment of bilayer graphene,

we choose an angle near zero. This allows us to discard all terms except those associated

with the zero degree commensuration.

For each dashed arrow, we can derive a coupling matrix, and by adding them together

we can perform perturbation theory. The unperturbed basis states are diagonal, and we

choose the matrix represenation:

H ′0 = −vkσ3τ0l0. (2.22)

Recall that k is the momentum measured with respect to the Dirac point. To perform

the calculation, we use the following approximation scheme:

γ̃c
vδKc

� 1, k � δKc, θ � 1. (2.23)

The first condition ensures we are in the perturbative regime. The second condition

ensures we are close to the Dirac cones. The third condition ensures we can expand every-

thing for small angle. We find that the second order indirect coupling correction, H(2)
⊥ (θ),

is:

H
(2)
⊥ (θ) =

γ̃2
0

t

(
1− 3

√
3

2π

)
σ0τ0l0 + kv

27γ̃2
0

4t2θ2π2
σ3τ0l0. (2.24)

We can further simplify by using the expansion parameter, α = γ̃c/vδKc . In this

case, we use c = 0◦ because we are interested in the 0◦ commensuration. In general

δK0 = 4πθL0/3a
2, where L0 is the side length of the 0◦ commensuration unit cell . We

find:

H
(2)
⊥ (θ) =

γ̃2
0

t

(
1− 3

√
3

2π

)
σ0τ0l0 + 9α2vkσ3τ0l0. (2.25)

23



There is a rigid shift and negative velocity renormalization. This effect was first derived

in [24], but with an incorrect value for the shift.

While the near 0◦ case is the most studied regime, there is nothing in the theory that

restricts us to these angles. We can perform a similar perturbative calculation near 38.2◦.

Instead of θ, we now use δθ , the difference from commensuration, as our expansion pa-

rameter. To lowest order in δθ, we find the correction:

H
(2)
⊥ =

27γ̃2
38

14πtδθ
σ0τ0l0. (2.26)

This is a rigid shift. If we go one order higher in δθ, we can also see the velocity

renormalization:

H
(2)
⊥ =

27γ̃2
38

14πtδθ
+ vk

(
27γ̃2

38

28π2t2δθ2

)
σ3τ0l0. (2.27)

This can be further simplified and generalized to all angles by using α = γ̃c/vδKc and

δkc = 4πδθLc/3a
2:

H
(2)
⊥ = −q(θ) 27a2γ̃2

c

2πtL2
cδθ

σ0τ0l0 + 9α2vkσ3τ0l0. (2.28)

Note the velocity renormalization is the same in all cases. However, the rigid shift is

commensuration dependent. In particular, non-zero commensurations have a 1/δθ term

that is not present in the case of 0◦.

2.3.4 Non-perturbative Coupling

We have seen that indirect coupling terms have an energy scale γ̃c/vδKc. As θ → c, we

have δKc → 0. In other words, the perturbation parameter blows up, and perturbation

theory is no longer valid. The range of angles for this non-perturbative regime depends on

the numerator γ̃c. This is expected to decrease exponentially and be irrelevant for all but

the smallest commensurations, and in general we do not worry about such terms. However,
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θc θc′

Figure 2.9: Schematic of twist angle. Each commensurate angle has a zone of influence
where the effect is perturbative (blue) and non-perturbative (red).

near the smallest commensurations, non-perturbative angles are accessible.

We may estimate the non-perturbative range of angles using the formula δθc = γ̃c/v|G1
c |.

For near zero degrees, we find an angle of about 1◦. Indeed, the non-perturbative effects of

this regime have been investigated. As θ → 0, there is a series of magic angles where the

electron velocity vanishes. The first of these is predicted by the renormalization effect of

perturbative theory, but the others are inaccessible to the perturbative theory and represent

true non-perturbative physics [25]. Flat bands are interesting because they allow for elec-

tron interactions to dominate the physics of the system. In fact, such magic angle twisted bi-

layers have been constructed and unconventional superconductivity was observed [26, 27].

In addition, wavefunctions tend to localize to AA stacked regions [28, 29].

For near 38.2◦, we find an angular range on the order of 0.01◦. This angular range

corresponds to system sizes of hundreds of nanometers. Thus, we need large systems to

observe this effect. However, incorporation of interaction effects through renormalization

theory is expected to scale the interlayer coupling term with system size [30]. The exact

exponent of the scaling is uncertain, but it seems to be at least 1/2. In this case, effects may

become visible at system sizes down to tens of nanometers. We will explore this regime

further in Chapter 3.

For larger commensurations, we may safely neglect the non-perturbative regime. In

general, the exponential fall off of γ̃c ensures that system sizes become prohibitive.
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2.4 Summary

We have fully developed the perturbative theory of bilayer graphene to second order. Figure

2.9 presents a schematic. We show two commensuration angles, θc and θc′ . For each angle,

we have three regions that dictate how the given commensuration will affect a system at

arbitrary angle θ.

If θ falls in the blue region, the commensuration has a perturbative effect. If θ falls in

the red region, the commensuration has a non-perturbative effect. If θ is precisely at the

commensuration, the effect is a direct coupling. The size of each of the first two regions is

dictated by the appropriate Fourier component of the interlayer coupling.

Note, the schematic is inaccurate in the sense that there are many more than two com-

mensuration angles. In fact, the commensuration angles are a dense subset of all angles.

This means there are countably infinite such regions to consider for arbitrary angle. How-

ever, only the commensurations at 0◦ and 38.2◦ have large enough strength to appreciably

affect the low energy electronic structure. Therefore, we restrict ourselves to these cases

and safely ignore effects from all other commensurations.
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CHAPTER 3

BILAYER GRAPHENE NEAR COMMENSURATION

In the previous chapter, we derived the complete theory of graphene bilayers at arbitrary

twist angle. We derived perturbative corrections for systems near the smallest commen-

surations. In general, perturbation theory is a good tool for describing these angles and

the problem is solved. However, this leaves the more difficult case of the non-perturbative

regime. In this chapter, we examine the available tools to tackle this case and reveal new

physics for systems near commensuration [31].

3.1 Available Tools

In the non-perturbative regime, we must adopt a different method to derive the low energy

band structure. The simplest solution is to diagonalize full tight binding models for these

systems. This has two disadvantages.

First, tight binding models require translational symmetry, while we want the band

structure for arbitrary angle. This is not actually a problem. Given an arbitrary angle, we

may choose a commensuration arbitrarily close to this angle for the tight binding model.

The difference in band structure will only be the direct effect of the commensuration. How-

ever, in the non-perturbative regime the unit cells of these commensurations will be very

large, and their effect will be exponentially small.

This solution creates the second problem. The size of the matrices becomes too large.

The available computing power is insufficient for the system we want to study.

A different method is to tackle the problem in momentum space. Having derived the

interlayer coupling in momentum space, we make the observation that the coupling states

are arrayed in their own honeycomb lattice [25]. We can write a sparse matrix to describe

the coupling induced between the two layers. This matrix has infinite dimension, but we

27



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Angle

v/
v
f

Figure 3.1: Renormalization of the Fermi velocity as θ → 0. We see a series of magic
angles with zero velocity.

can truncate so that only states below a certain energy are included. In other words, we

assume most of the bilayer states can be described by single layer states below a certain

energy threshold. This is reasonable because higher energy states will have a larger energy

denominator and less effect on the low energy electronic structure of the system.

In Figure 3.1, we use this method to reproduce the magic angles in the non-perturbative

regime near 0◦. As θ → 0◦, we see angles where the Fermi velocity is zero. This method

is effective at saving some computational resources, but if we wish to extend this plot to

lower angles, we must include more single layer states and will eventually have the same

computational problem. In addition, it provides little insight into the physics of the system.

We now turn to a different technique.
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Figure 3.2: The gray lines are the supercell for a bilayer very near 0◦. The circles show a
magnified view of regions of AA, AB, and BA stacking.

3.2 Local Lattice Stacking

Consider a bilayer in the non-perturbative regime very near the 0◦ (or any other) com-

mensuration. Although we must abandon perturbation theory, we can still achieve a local

understanding of the electronic structure using the local stacking pattern in the supercell.

For instance, at the origin, the lattice is locally nearly indistinguishable from a 0◦ com-

mensurate lattice. In fact, at every point in the superlattice, the lattice is locally the 0◦

pattern plus an interlayer translation. Figure 3.2 shows a schematic. The gray lines are the

supercell of a system very near 0◦. The circles show a magnified view of the local lattice

stacking in three special regions. In these regions, the stacking is locally AA, AB, and BA

respectively.

In fact, if we choose any point in the supercell, the local stacking will be indistinguish-

able from AA stacking plus an interlayer translation that depends on the point we chose. In

addition, there is nothing special about 0◦. For a system very near a commensuration, θc,

the local lattice stacking at any point in the supercell is nearly indistinguishable from the

commensuration plus a position dependent translation.

Using Figure 3.3, we can derive the translation that gives us the local stacking. Let Ri
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Figure 3.3: Decomposition of a rotation into a rotation plus a translation.
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be the position of atom i in the commensuration with respect to the origin . Let R′i be the

same atom but rotated with respect to the origin by some small angle δθ. Let Si and S′i

be the same positions, but measured with respect to the arbitrary point r . The following

relations hold:

Si = Ri − r R′i = rot[δθ]Ri S′i = R′i − r. (3.1)

Note S′i and Si are not related by a rotation. That is, the atomic sites are only related

by a small rotation about the origin, not some other point. However, we seek a translation

T , such that if we shift the atomic sites by T , these sites will be related by a rotation about

the new origin to unrotated sites . That is, we seek T that satisfies:

S′i = rot[δθ](Si + T ) = R′i − r. (3.2)

Combining all the equations, we find:

T = (1− rot[−δθ])r = Fr, (3.3)

where F is a matrix representation of T that we will use in a later chapter .

Suppose we have a two layer system very near commensuration. Local to the origin,

the system is very near commensuration, so that it appears almost indistinguishable from

commensuration. Now select a new origin, r. Local to r, the system does not look like the

commensuration but like the commensuration plus T (r). This proves that near an arbitrary

r, the lattice is locally the given commensuration plus the translation T (r). If we expand

the translation to lowest order in δθ, we find:

T = 2r sin

(
δθ

2

)
θ̂ = rδθθ̂ +O(δθ2)θ̂, (3.4)

where θ̂ is the unit vector at r pointing in the direction of increasing θ.
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This confirms our intuition. The local lattice stacking in any region is just that of the

origin plus the translation resulting from the twist by δθ. This formula may be applied

about any origin. The local lattice stacking may be corrected to an exact commensuration

to good approximation by untwisting the lattice.

Knowing this translation, we can derive the local low energy Hamiltonian for any lo-

cation in the superlattice. These Hamiltonians describe the semi-classical states that exist

in a near commensurate superlattice. As the superlattice becomes large, this semi-classical

approximation becomes good. At a few special points throughout the supercell, we will

have the exact SE even and SE odd structures, while everywhere else will be an interpola-

tion between them. This suggests we derive a general four by four Hamiltonian describing

the superlattice throughout real space.

3.2.1 Real Space Hamiltonian

Let H(r) be the effective low energy Hamiltonian of a bilayer near commensuration θ at r

in the superlattice. We can repeat the analysis of Equation 2.1. The diagonal blocks will be

the same, but we expect the interlayer coupling to be a function of r. We write the general

Hamiltonian:

H(r) =

H0 H⊥(r)

∗ Hθ

 . (3.5)

To find H⊥(r), we return to Equations 2.7 and 2.17. Now, we add the translation T (r)

to all sites in the second layer. This results in an additional factor multiplying each term of

the sum:

H
(1)
⊥,vv′ = γ̃θχ(θ, v, v′)

3∑
i=1

e−iνG
i
2T (r)

 1 e−iνG
i
2δ2

eiνG
i
1δ1 eiνG

i
1δ1e−iνG

i
2δ2

 , (3.6)

where again χ(θ, v, v′) is an indicator function that links like valleys for even commen-
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surations and unlike valleys for odd commensurations. Note the addition of the translation

breaks the symmetries that produced zero off-diagonal elements. We expect the translation

to interpolate between the even and odd cases.

In general, we apply the same gauge transformation as in Equation 2.5b, so that the

diagonal blocks are identical and the difference is absorbed into H̄⊥. We would like to

write H̄⊥ in terms of the Pauli matrices. Without loss of generality, we may focus solely on

even commensurations. In other words, we will only consider commensurate angles that

correspond to SE even systems. A system at or near an SE odd angle is also captured by

this theory because all odd commenurations are even commensurations plus a translation.

A theory that only includes even commensurations will be complete. Thus, we will now

drop the valley degree of freedom, τ .

The full Hamiltonian is:

H̄ = Hθ/2l0 +Ai,jσilj, (3.7)

where Ai,j are all real numbers . The summation over repeated indices is implied. For

generality, we allow the indices i, j to run over x, y, z, 0. However, the interlayer coupling

can only involve terms with lx and ly. Later, we will add an interlayer electric field, which

will correspond to an lz term. However, here we may make the definition:

Ai = (Ai,x,Ai,y). (3.8)

In other words, we defineAi as the vector with components Ai,x and Ai,y. In addition,

we will also define Ai to be the vectorAi in the complex plane.

In addition, under these assumptions, the Hamiltonian H̄ has the following symmetry:

PlzH̄P lz = −H̄, (3.9)

where P is inversion in momentum space . Since H̄(r) is the local Hamiltonian at r, we
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understand this symmetry to be local to r. Due to this symmetry, the local bandstructure

will have particle hole symmetry after inversion of momentum. This symmetry has an

important consequence. The bandstructure has no state at zero energy iff it is gapped. We

now prove this statement.

First, we prove that if the bandstructure is gapped, the gap must include zero energy.

If there is a gap, then there is an energy interval, (E1, E2) in which there are not states

at any momentum. The symmetry guarantees if the interval is (E1, E2) at k, it must be

(−E2,−E1) at −k. However, the interval must be the same at all k if the system is truly

gapped. Therefore, E1 = −E2. If the gap has non-zero width, it must include zero energy.

Thus, any gapped bandstructure has no zero energy state.

Second, we prove that the absence of zero energy state implies a gap. If there is no state

at zero energy, there must be an interval around zero energy with no state. This is because

we can exclude all cases where the bands approach zero energy but never touch it. The

bands are continuous, so this could only happen in the limit of large k. However, we know

in the limit of large k, the bands approach±vk, as in uncoupled graphene. Therefore, there

is an interval around zero energy with no states.

Before beginning an analysis of these gauge fields, it is useful to have an intuition for

how they distort the band structure. With all gauge fields set to zero, we have two coincident

Dirac cones. The field A0 shifts these Dirac cones in opposite directions in energy. The

fields Ax and Ay split the Dirac cones in momentum space. Finally, the field Az creates

mass at the Dirac cones, opening gaps. These observations can all be verified by numerical

experimentation.

We now try to quantify the behavior of the bands. In particular, we are interested in

when the bands have degeneracy and when they have states at zero energy.
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3.2.2 Gauge Field Analysis

In analyzing the gauge fields, we are interested in two criteria. First, we want to know when

the Hamiltonian is not gapped. We proved above that this is equivalent to the condition that

there is a state at zero energy. This will allow us to build a semi-classical picture of zero

energy states throughout the supercell. Second, we want to know when the two Dirac

equations implicit in the Hamiltonian have a degeneracy.

First, we set A0 = 0. There will exist a zero eigenvalue iff the determinant of the

Hamiltonian is zero for some real value of momentum, that is:

Det [H(k)] = 0 for k ∈ R2. (3.10)

We write k in polar coordinates (k, φ) and calculate the determinant. We introduce

a, b, c to stand in for the coefficients of the polynomial. We find the determinant is:

Det [H(k)] = av4k4 + 2bv2k2 + c =

v4k4 + 2
[
||A2

z||+ (||Ay||2 − ||Ax||2) cos 2φ− (AxĀy + ĀxAy) sin 2φ
]
v2k2

+ ||A2
x + A2

y + A2
z||2, (3.11)

where the unbolded Ai denote the vector Ai in the complex plane. Recall that the z-

component of all gauge fields is zero, so all gauge fields lie in the complex plane. The roots

of this equation are then written:

k = ±1

v

√
−b±

√
b2 − c. (3.12)

Finding the conditions for k ∈ R is equivalent to finding when the following two con-
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ditions are satisfied:

b < 0 b2 > c. (3.13)

Since b must be negative, we know it must also satisfy:

b ≤ −
√
c = −||A2

x + A2
y + A2

z||. (3.14)

The coefficient b is a simple sinusoidal function of φ. Therefore, the critical values are

identical to the extremal values. We find the maximum and minimum occur for:

φ =
1

2
arctan

(AxĀy + ĀxAy)

(||Ax||2 − ||Ay||2)
+ n

π

2
n ∈ integers. (3.15)

Using the critical values of φ, we find b is restricted to the interval:

||A2
z|| − ||A2

x + A2
y|| ≤ b ≤ ||A2

z||+ ||A2
x + A2

y||. (3.16)

Combining Equations 3.14 and 3.16 and using the reverse triangle inequality, we arrive

at the condition:

b = ||A2
z|| − ||A2

x + A2
y|| = −||A2

x + A2
y + A2

z||. (3.17)

This equality in turn requires that ||A2
z|| ≤ ||A2

x + A2
y|| and that A2

z is anti-parallel to

A2
x + A2

y. If both these conditions are satisfied, we will have zero energy states at:

k = ±1

v

√
||A2

x + A2
y + A2

z|| (3.18a)

φ =
1

2
arctan

(AxĀy + ĀxAy)

(||Ax||2 − ||Ay||2)
(3.18b)

.
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Now, we reintroduce A0. Once again introducing a, b, c for the coefficients, the deter-

minant is:

Det [H(k)] = av4k4 + 2bv2k2 + c =

v4k4 + 2
[
||A2

z|| − ||A2
0||+ (A2

y − A2
x) cos 2φ− (AxĀy + ĀxAy) sin 2φ

]
v2k2

+ ||A2
x + A2

y + A2
z − A2

0||2. (3.19)

The form of the roots and the conditions placed on b are the same as for the case without

A0. Now when we maximize with respect to φ, we find the limits on b:

||A2
z|| − ||A2

0|| − ||A2
x + A2

y|| ≤ b ≤ ||A2
z|| − ||A2

0||+ ||A2
x + A2

y||. (3.20)

In this case, the discriminant is not necessarily zero, and there will be four different

solutions for k. There is an interval in which b may reside:

||A2
z|| − ||A2

0|| − ||A2
x + A2

y|| ≤ b ≤ −||A2
x + A2

y + A2
z − A2

0||. (3.21)

Since b will attain the lower limit for some φ, we know that there will be at least some

zero energy state as long as:

||A2
z|| − ||A2

0|| − ||A2
x + A2

y|| ≤ −||A2
x + A2

y + A2
z − A2

0||. (3.22)

3.2.3 Network Models

The analysis of the gauge fields reveals that under the right conditions bilayers near com-

mensuration display a mosiac of gapped and ungapped regions. We find the latter often

percolate throughout the system, forming topologically protected wires. The system can

display an emergent topologically protected network. This will occur if different gapped
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regions of the supercell are topologically inequivalent. For a large enough system, pro-

tected midgap modes will appear on the boundaries of these regions. Then the electronic

structure of the whole system within the gap is equivalent to that of this network.

Below, we will develop two important examples of network models: near zero degrees

with bias, and near 38.2◦.

3.3 Network Model: Near Zero Degrees

The near zero case is the most well-studied twisted bilayer in the literature. We have

already explained the non-perturbative regime exhibits localization in AA stacked regions

and a series of magic angles. This localization is not due to local gaps. In fact, this system

has Az = 0 everywhere and has no local gap. However, we now apply an interlayer

bias V0 . This bias locally gaps AB and BA stacked regions with opposite mass, creating

a topologically protected network [29]. The forms of the gauge fields are given in the

Appendix. Their graphical form is shown in Figure 3.4.

3.3.1 Semi-classical Picture

Near zero degrees there is no mass gauge field, and thus no possibility for a gap. The

interlayer bias provides another avenue for opening a gap. Using the same technique as in

the general case, we derive a condition for the existence of zero energy states:

−||A2
0||−V 2

0 −||A2
x+A2

y|| ≤ −||A2
x+A2

y−A2
0||2−V 4

0 −2V 2
0 (||A2

x||+||A2
y||+||A2

0||). (3.23)

Semi-classically, we expect electron density to be expelled from gapped regions. States

of the supercell must be confined to locally ungapped regions. In Figure 3.5, we show

regions of the supercell that have a zero energy state. We see that electron density must be

confined to a hexagonal network.
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(a) A0 ∈ (0, 3) (b) Az ∈ (0, 0)

(c) Ax ∈ (0, 1) (d) Ay ∈ (0,
√
3)

Figure 3.4: Magnitude of A0, Az,Ax, and Ay of a near 0◦ commensuration. In each case
there are 30 equally spaced contours in the given range in units of γ̃0

.
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Figure 3.5: Semi-classically allowed states near 0◦ with V0 = γ̃0. Yellow regions have zero
energy states. Blue regions do not.
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Figure 3.6: Topological midgap states at AB/BA domain boundary. A tight binding calcu-
lation was performed on a strip of graphene. On the left is the strip with no domain wall.
On the right is the strip with the domain wall. The two gap states are clearly visible. The
additional midgap states are localized to the edge of the strip and will not show up in a
continuous sample.

3.3.2 Network Model

The emergent toplogy for this system was established in [32]. The gapped regions alternate

between AB and BA stacking throughout the supercell. It can also be shown that AB and

BA regions display opposite valley Chern numbers of ±1. Therefore, whenever we cross

from one gapped region to another, we observe a gap closing and a net change in Chern

number of ±2.

The±2 change in Chern number means there will be two topologically protected modes

per valley in the ungapped regions. Each of these travel in the same direction. We verify

these gap states with a tight binding model on a strip of graphene. In the middle of the

strip is a domain wall separating AB and BA stacked regions under a bias. The results are

shown in Figure 3.6. On the left is the strip with no domain wall. On the right is the strip

with the domain wall. The two gap states are clearly visible. The additional midgap states

are localized to the edge of the strip and will not show up in a continuous sample.

3.4 Network Model: Near 38.2◦

Once we enter the non-perturbative regime near 38.2◦, the gauge fields take a qualitatively

different form. We note that γ̃38 ∼ 2.3meV. Thus, we expect the effect to be smaller.
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However, we may compensate for this by approaching the angle closer.

3.4.1 Gauge Fields

The exact expressions for the gauge fields are reproduced in the Appendix. Note, we use

non-orthogonal coordinates for those equations out of convenience. In Figure 3.7 , we

reproduce the graphical form of these fields.

Figure 3.8 shows the semi-classical picture. Lines connecting SE odd nodes semiclas-

sically have states because the spectrum is gapless. Near these gapless lines, the gap is

small, and the A0 can shift states to zero energy. Thus, in some region near the line there

still exist semi-classical states at zero energy. As the mass gauge field increases towards the

SE even regions, the mass gauge field overwhelms everything, creating an insurmountable

gap, and there are no semi-classical states at zero energy.

A general analytic solution for the semiclassical, local electronic structure is not possi-

ble. However, we can find solutions in special cases. We reproduce these here. Exactly at

the corners of the supercell, the local stacking is SE even. The analytic solution is:

E(k) = ±

√
9γ̃2

38 + v2k2 ± 3γ̃38vk

√
− cos θ +

√
3 sin θ + 2

E(k) = ±

√
9γ̃2

38 + v2k2 ∓ 3γ̃38vk

√
− cos θ +

√
3 sin θ + 2.

(3.24)

At the two SE odd points, the bands are:

E(k) = ± 1√
2

√
9γ̃2

38 + 2v2k2 ± 3γ̃38

√
9γ̃2

38 + 4v2k2

E(k) = ± 1√
2

√
9γ̃2

38 + 2v2k2 ∓ 3γ̃38

√
9γ̃2

38 + 4v2k2.

(3.25)

In both cases, the bands are radially symmetric. The even solution is gapped and the

odd solution in ungapped, as expected. Away from these points, the situation is more com-

plicated. Along the lines connecting SE odd nodes, there are degenerate states. We show

the two lowest states along this line in Figure 3.9. At the SE odd nodes, we have the nor-
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(a) A0 ∈ (0, .57) (b) Az ∈ (0, 2.95)

(c) Ax ∈ (0, 1.89) (d) Ay ∈ (0, 1.96)

Figure 3.7: Magnitude ofA0,Az,Ax, andAy of a near 38◦ commensuration. In each case
there are 30 equally spaced contours in the given range in units of γ̃38.
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Figure 3.8: Semi-classically allowed states near 38.2◦. Yellow regions have zero energy
states. Blue regions do not.
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Figure 3.9: Local band structure along the line of degeneracy. Top left is one node and
bottom right is the other node.

mal odd commensuration band structure. As we move along the line, there are two isolated

points with degenerate states. Locally the bands are linear near these degenerate points,

so we consider them Dirac pseudovalleys. The separation between the pseudovalleys in-

creases until the halfway point of the link. As we move towards the opposite node, the

pseudovalleys rejoin.

Along this line, only the solution exactly halfway between SE odd nodes is simple:

E(k) = ±2γ̃38 ∓
√√

7γ̃2
38 ∓ γ̃38vk +

√
7v2k2

E(k) = ±2γ̃38 ±
√√

7γ̃2
38 ∓ γ̃38vk +

√
7v2k2

. (3.26)

Away from the line of degeneracy, the pseudvalleys become gapped. Figure 3.10 shows

the two lowest bands exactly at the midway point of the link (blue), and then as we move

in the direction perpendicular to the link. The gap opens and becomes larger as we move

away. The topological invariants of these psuedovalleys are the key to understanding the

network model. We turn to these invariants now.
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Figure 3.10: Two lowest energy bands midway on the link (blue), slightly away in the
perpindicular direction to the link (yellow), and farther away (green).

Figure 3.11: Berry curvature at the Dirac point on either side of the degenerate line. The
left panel is on the left of the degenerate line, and the right panel is on the right of the
degenerate line. The curvature changes sign in each psuedovalley across the line.
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Figure 3.12: Topological midgap states at domain boundary of near 38.2◦ bilayer. Interlayer
coupling is exaggerated for clarity.

3.4.2 Network Model

We now introduce a network model to describe the low energy band structure of the super-

lattice. The key point is the existence of topologically protected modes originating with the

pseudovalleys described above. In Figure 3.11, we plot the Berry curvature at the bilayer

Dirac point on either side of the degenerate line. The two pseudovalleys are clearly visi-

ble with opposite curvature. In addition, the curvature in each pseudovalley changes sign

across the degenerate line. This leads us to define the pseudovalley Chern number (see Sec-

tion 1.5). Each pseudovalley has equal and opposite Chern number of ±1/2 that changes

across the degenerate line. Thus, the pseudovalley Chern number changes by two across the

degenerate line. This implies the degenerate lines are domain walls, along which we will

find two midgap states. Each pseudovalley originates one of the midgap states. Because the

sign change is opposite for each pseudovalley, the midgap states are counter-propagating.

We verify this argument with a tight binding model. In Figure 3.12, we show the

bands of a bilayer strip with a domain wall as in the near 38◦ system. We use couplings

derived from the local low energy Hamiltonians for the near 38◦ system. On the left, we use

couplings that imply equal valley Chern numbers on both sides of the domain wall. Thus,

we see no midgap states. On the right, we use couplings that imply opposte valley Chern

numbers on both sides of the domain wall. Two counterpropagating midgap states appear.

We model these states as a network of SE odd nodes arranged in a honeycomb lattice

47



5 6

1

3

2
4

Figure 3.13: A schematic of the network model. Six midgap states scatter amongst the
nodes of a honeycomb lattice defined by SE odd regions.

connected by one state traveling in each direction along the gapless lines in Figure 3.8.

A schematic of the network is shown in Figure 3.13. Each arrow represents one of the

topologically protected midgap states. The red lines represent the unit cell of the network.

We see we need six states per unit cell.

There are three incoming and three outgoing states at each node. Let |ψ〉I be the six-

dimensional vector of incoming states and |ψ〉O be the six-dimensional vector of outgoing

states. We number these states as in Figure 3.13. We seek a model of the scattering of these

six states.

First, we note that in the limit of large systems, scattering between the topologically

protected nodes only occurs at the SE odd nodes. Scattering only occurs when the states

satisfy the relation of Equation 2.12. In other words, the modes must be connected in

momentum space by repciprocal superlattice vectors. This implies that the pseudo-valleys
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of the local band structure must satisfy this relation. In the large system limit, the local

band structure does not change. However, momentum vectors of the scattering process

shrink. As these vectors shrink, only exponentially weak scattering processes will connect

the topologically protected states. For a very large system, only the node itself, where the

pseudo-valleys are coincident, will host any appreciable scattering.

Thus, as an electron percolates through the network, we consider two different pro-

cesses. First, an electron in an incoming mode scatters off a node into the three associated

outgoing states of that node. We use the unitary matrix U to describe this process . Second,

an electron traverses a link from one node to another. We use the unitary matrix eiεM(k)

to describe this process. The matrix M describes the geometry of the network and contains

the momentum dependence, that is the Bloch phase picked up by electrons moving through

the system . The real number ε is the phase picked up by traversing a link . The states of

the system must satisfy:

|ψ〉O = U |ψ〉I = eiεUM(k) |ψ〉O . (3.27)

We have an eigenvalue equation with eigenvalue eiε. Based on our analysis of the

network, we also know that the energy E = εv/L, where L is the length of the link and v

is the velocity of the traversing state. Thus, we can find the energy of the network of states.

We now turn to the form of the scattering matrix U . In general, we write:

U =

U1 0

0 U2

 (3.28a)

Uj = eiλjJj for Jj Hermitian, (3.28b)

where Uj describes the scattering at node j . Consider the first node. We divide the
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matrix Jj into three components:

Jj = Jj,0 + Jj,r + Jj,i, (3.29)

where Jj,0 is proportional to the identity, Jj,r is totally real, and Jj,i is totally imaginary.

Because Jj is Hermitian, each of these components is also Hermitian. We now use the

symmetry of the network to restrict the scattering matrix.

First, we have C3 symmetry. C3 rotations about a node relate all scattering processes

through that node of equal handedness. That is, all scattering processes involving the elec-

tron turning left (right) must be equal. In the case of Jj,r, opposite handed scattering pro-

cesses are equal by hermiticity. Thus, all elements of Jj,r are equal. We may absorb the

equal diagonal elements into Jj,0 and assume Jj,r is zero on its diagonal. In the case of Jj,i,

opposite handed scattering processes are opposite sign by hermiticity. Thus, all elements

of Jj,i are of equal magnitude with sign determined by handedness.

Second, there is reflection symmetry along the link. This reverses the handedness of

one of the scattering processes, ensuring that all scattering processes are equal in sign.

Therefore, all elements of Jj,i are zero.

Finally Jj,0 is just a constant prefactor which we parametrize with λ(0)
j . Therefore, we

find the scattering at node j is described by:

Uj = eiλ
(0)
j eiλjJj,r (3.30a)

Jj,r =


0 1 1

1 0 1

1 1 0

 . (3.30b)

We have four parameters: λ(0)
j and λj for j = 1, 2 . However, we have the additional
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symmetry of point reflection on the center of the line connecting the nodes. This relates

each mode at node one to a mode at node two. Since we have already determined the modes

at a single node are related by C3 symmetry, the additional reflection symmetry requires

U1 = U2. Thus, we reduce to the two parameters λ and λ(0) . The latter is simply a rigid

shift and can be discarded. Thus, we have reduced the scattering to a single free parameter

λ.

The matrix M depends on the geometry of the problem. Given our conventions, we

find:

M =



0 0 0 0 0 ei2πk1

0 0 0 0 ei2πk2 0

0 0 0 1 0 0

0 0 1 0 0 0

0 e−i2πk2 0 0 0 0

e−i2πk1 0 0 0 0 0


, (3.31)

where k1 and k2 correspond to the projection of momentum onto the reciprocal super-

lattice vectors .

Solving the eigenvalue problem, we find the bands shown in Figure 3.14. We show

bands for increasing λ, restricted to the interval [0, 2π/3). All λ differing by 2π/3 are

equivalent because systems differing by 2π/3 are the same up to a rigid shift in phase. This

is evident from the relation:

ei2πS1/3 = e−i2π/3I3, (3.32)

where I3 is the three by three identity matrix . In other words, increasing λ by 2π/3

only multiplies the eigenvalue equation by an overall phase and shifts all arguments of

eigenvalues by the same amount.

We see that for most values of λ, the bands are similar to those of a Kagome lattice. In
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particular, we have two dispersive bands with a pair of Dirac cones at the Dirac points of

the supercell, and one completely flat band. When λ = 2nπ/3, we have total reflection at

the nodes. This produces the expected degenerate flat bands. When λ = π/3, the system

crosses over from having the flat band on top versus on bottom.

In Figure 3.15, we show a three dimensional plot for λ = 1.3. Here we very clearly

see all three Kagome bands. The bandwidth, B, is the difference between the highest and

lowest energy state of one Kagome triple . We find:

B =
v

L


2π − 3λ 2(n+ 1)π/3 ≤ λ < 2nπ/3

3λ 2nπ/3 ≤ λ < 2(n+ 1)π/3

, (3.33)

where L is the length of a link. Thus, the bandwidth depends on the scattering parame-

ter, but it is always bounded above by πv/L.

3.4.3 Momentum Space Verification

To verify the network model, we turn to the methods outlined at the beginning of this

chapter. Recall the first method was to truncate a matrix involving all single layer states

coupled by the interlayer function. The matrix has the form:

H =

H(1) H⊥

∗ H(2)

 . (3.34)

H(1) and H(2) are block diagonal matrices that contain the Dirac Hamiltonians describ-

ing the low energy states of each layer . The vector qil is the momentum space location of

the Dirac point of state i in layer l . Thus, we have:

H(l) = diagi[H0(qil)], (3.35)

where i ranges over all the states included in the momentum space truncation and diag
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Figure 3.14: Bands from the network model with λ ∈ [0, 2π/3). The plotted values are the
phase ε from Equation 3.27. This unitless phase is independent of system size. To convert
to energy, it is necessary to multipy by a factor of v/L, where L is the length of a link.
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Figure 3.15: Three dimensional plot of the network model bands with λ = 1.3. The
Kagome structure of the bands is clear.

indicates arranging the arguments in diagonal blocks . The blocks themselves are:

H0(qil) = (k − qil)σl, (3.36)

where σl are the Pauli matrices corresponding to layer l . Note that σl includes any

rotation that is present in layer l.

The interlayer coupling H⊥ describes how the Dirac equations couple between the lay-

ers. For every state i, we consider the three states of the opposite layer to which it couples

most strongly. The matrix form of these couplings is:

H1
⊥ = γ̃38

 1 1

e−i2π/3 e−i2π/3

 (3.37a)

H2
⊥ = γ̃38

 1 ei2π/3

ei2π/3 e−i2π/3

 (3.37b)
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Figure 3.16: Bandstrcuture of a near 38.2◦ bilayer, as described by a momentum space
matrix coupling the 818 lowest energy states of the separate graphene layers.

H3
⊥ = γ̃38

1 e−i2π/3

1 e−i2π/3

 . (3.37c)

These are simply the three terms in the sum of Equation 2.17. Thus, every diagonal

block will couple to three diagonal blocks of the opposite layer with the three couplings

above.

We construct such a matrix for a near 38.2◦ bilayer with δθ such that γ̃38/vδK = 5.2.

We include 16 momentum space hops, resulting in a low energy matrix of dimension 818.

The resulting band structure is shown in Figure 3.16.

We clearly see the expected Kagome band pattern. However, this method gives no

insight into the real space localization of these states. For this, we turn to a tight binding

model.
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3.4.4 Tight Binding Verification

The second verification method is to construct a tight binding model. An immediate ques-

tion is the functional form of the interlayer coupling f(r). To create a realistic model,

we choose a short range Gaussian of length lr with a cut-off of length l0 for computation

efficiency:

f1(r) = γe−r
2/l2rΘ(l0 − r). (3.38)

In practice, we will choose l0 such that exp(−l20/l2r) � 1. To choose the other pa-

rameters, we refer to the physical constants in Appendix A. We choose a value for l to

match the known ratio γ̃0/γ̃38 = 48 [22, 24]. This yields about lr = .665δ, where δ is

the interatomic distance of graphene. We choose γ = .39eV = .14t to match the known

value γ̃0 = .11eV = .039t. We can calculate the dimension of the matrix we would have

to diagonalize to achieve the non-perturbative regime by calculating the angle for which

γ̃38 = vδK38, where δK38 is the momentum space difference between the nearest Dirac

points of the two layers:

sin
δθ

2
=

δK38

2|G1
38|

=
3γ̃a

8π
√

7v
. (3.39)

We find δθ = .000086. To find the size of the system, we find the area of the supercell,

A, corresponding to this angle:

A =

√
3a2

14δθ2
+O(δθ−1). (3.40)

Then, the number of sites in the model is:

NA = 4
A

A0

=
4

7δθ2
= 7.3× 108, (3.41)
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Figure 3.17: Fourier components of realistic coupling (blue) and artificial coupling (yel-
low). The red lines are the momenta corresponding to 0◦ and 38◦ commensuration effects.

where A is the area of the supercell and A0 is area of the unit cell of graphene.

Diagonalization of a matrix this large is not feasible for us. Thus, we need to artificially

enhance the strength of the coupling. In general, if we wish to maximize the effect of the

commensuration at angle c, we need to maximize the Fourier component: γ̃c = f̃(K1+G1)

where (recalling Equation 2.12)G1 ∈ G1
c . One possibility is:

f1(r) = γJ0(|G1
c |r)Θ(r − l0), (3.42)

where J0 is the Bessel function of order zero and l0 is a cutoff for computational ef-

ficiency. The prefactor γ controls the strength of the coupling . For the 38.2◦ commen-

suration, |G1
38| = 4π

√
7/3a. This coupling is a good choice because its Hankel transform

approaches a delta function at the appropriate Fourier component as l0 →∞.

In Figure 3.17, we plot the Fourier transform of the realistic coupling and the artificial

coupling. We see that the artificial coupling is heavily concentrated on the 38.2◦ commen-

suration. Thus, it is a good choice for seeing the non-perturbative effects.

Now, we plot an energy eigenvector of the tight binding model. We look at the Dirac

point and choose the state with energy closest to zero. The eigenvector is shown in Figure
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Figure 3.18: Lowest energy eigenvector of commensuration at θ = 38.546◦ with artificial
coupling. γ = .2t. The red lines are the supercell.

3.18. The pattern here is at θ = 38.546◦ with 16972 atoms. The artificial coupling used has

γ = .2t and l0 = 6δ. This yields γ̃38/vδK38 = 2.6. The red lines indicate the supercell.

Electron density is expelled from the SE even regions as predicted. The density localizes to

points halfway between the SE odd regions in a Kagome lattice pattern. This localization

explains why we see the Kagome bands in the network model. The electron states localize

in a Kagome pattern, producing an effective Kagome lattice on the scale of the supercell.

Next, we plot the wavefunctions for states at the Dirac point, but with energies farther

from zero. The result is shown in Figure 3.21 for energies ranging from −.143t to .169t.

Close to zero energy we get several states in this Kagome form. As we move away from

zero, we see variations in the pattern. However, the new patterns remain confined to the

honeycomb network, even as they can enter farther into the SE even regions.
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The band structure is shown in Figure 3.19. For the states with wavefunctions in the

Kagome localization pattern, we get the Kagome triplet of one flat band and two dispersive

bands touching at one point. The higher energy states with more complex localization

have distorted Kagome triples. We can explain this with a simple extension of the network

model.

We add a new process to the network model: backscattering at the middle of each link.

We parametrize this process by adding the parameter p to the transfer matrix M .

M(k)→ cos (p)I + i sin (p)M(k). (3.43)

We see that p = π corresponds to total reflection on the links, while p = π/2 corre-

sponds to total transmission. The bands for p ∈ [π/2, π] are shown in Figure 3.20. First,

we see that the flat band is robust to this backscattering. The main effect is to change the

three band pattern into a six band pattern by introducing an asymmetry. At some critical p

there is a triple degeneracy at Γ. For large p, both flat bands switch to the same dispersive

pair and the other dispersive pair is left with no flat bands. We see all these patterns in

Figure 3.19. Therefore, we conclude the network model captures the important physics of

the system. In the limit of very large systems, only scattering at the nodes is present, and

we will have pefect Kagome triplets.

We can also use the artificial coupling to refine our estimate of the real system size

where these effects will become visible with a realistic coupling function. By scanning

over γ in the artificial coupling, we first start to see localization around γ̃38/vδK38 = 1/2.

We then calculate the system size and find δθ = .00017. This implies:

T1 =
a√
7δθ

= 3851δ = 547nm, (3.44)

where T1 is the norm of a unit superlattice vector .

Therefore, we expect the network effect to dominate systems near 38.2◦ for supercells
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Figure 3.19: Lowest energy bands of commensuration at θ = 38.546◦ with artificial cou-
pling.
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Figure 3.20: Bands from the network model with λ = π/2 and p ∈ [π/2, π].
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of size 547nm on a side and larger. In other words, we require a period in the commensu-

ration pattern of about 547nm.
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Figure 3.21: Set of low energy eigenvectors of commensuration at θ = 38.546◦ with artifi-
cial coupling. γ = .2t. The red lines are the supercell.
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Figure 3.21: Continued (repeated from page 63)
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Figure 3.21: Continued (repeated from page 63)
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Figure 3.21: Continued (repeated from page 63)
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CHAPTER 4

PEIERLS TRANSITION NEAR 0◦

We now turn to the possibility of a Peierls transition in bilayer graphene. In this chapter,

we will review the theory of Peierls transitions and then examine the case of a bilayer near

0◦ [33]. In the next chapter, we will turn to the near 38.2◦ case.

4.1 Peierls Transition Theory

The Peierls transition describes the spontaneous distortion of a lattice at low temperature.

In particular, Peierls realized that one dimensional chains are unstable because there exist

phonon distortions that lower the valence band energy more than they increase the lattice

elastic energy. The basic outline of the argument is simple. Consider a one dimensional

atomic chain. If all atoms are equally spaced, the electronic dispersion is a simple cosine:

E(k) = 2t cos k k ∈ [0, 2π). (4.1)

Recasting the same problem with a two atom basis, we can fold the previous bands to

find:

E(k) = ±2t cos k/2 k ∈ [0, 2π). (4.2)

It is now possible to open a gap at the degenerate point k = π with the addition of a

phonon. In real space, this corresponds to a distortion of the lattice, breaking the sublattice

symmetry and causing the chain to transition from a conductor to an insulator. Suppose the

phonon opens a gap of size m that we will refer to as mass . If we are at half filling, the

filled electron states will be pushed down in energy by the gap opening. The total energy
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per unit length gained by pushing the states down is:

Uelec = 2
1

2π

∫ kf

0

(√
v2k2 +m2 − vk

)
dk =

m2

4v

(
1− log

m

4vkf

)
+O

[(
m

vkf

)3
]
.

(4.3)

The upper limit kf is any momentum sufficiently large to capture all the downward shift

. The mass is related to the amplitude of the phonon, u0, by:

m ∝ u0

a
t, (4.4)

where a is the lattice constant. This is because if an atom shifts by a, the energy change

will be order t. In general, the elastic energy cost per unit length is:

Uelas ∝
(u0

a

)2 t

a
. (4.5)

This is because the cost of shifting an atom by a, is the in-layer coupling t. We square

u0/a because we expect a quadratic dependence for a harmonic potential. We divide by a

to get the energy per unit length.

Because Uelas goes as u2
0 and Uelec has a term that goes as−u2

0 log u0, there always exists

a u0 small enough that the electronic energy gain is greater than the elastic energy cost.

The inevitable conclusion is that if any linear atmoic chain is cooled sufficiently, it will

spontaneously distort and become an insulator. Note that this is a scaling argument. While

we know a critical temperature for a metal-insulator transition exists, we must calculate the

appropriate prefactors to determine if it is attainable in experiments.

The classic Peierls argument will not work for a single layer of graphene. The key to

the argument is the logarithmic divergence of the electronic energy gain inm. This, in turn,

rests critically on the dimensionality of the system. For instance, the argument would fail
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Figure 4.1: Schematic of two Dirac cones shifted by opposite V0. On the left, the cones do
not interact. On the right, they interact with a mass gap along the Dirac circle.

for the Dirac point of graphene. In that case, the integral is:

Uelec = 2π
1

4π2

∫ kf

0

k
(√

v2k2 +m2 − vk
)
dk, (4.6)

which has a lowest order term proportional to m2. Although a phonon may open a gap,

the energy gained will not in general compensate for the cost of the distortion. There have

been proposals to circumvent this problem. For instance, out of plane phonons restore the

one dimensional nature of the problem, leading to a Peierls distortion [34]. In addition, one

could consider complex nesting vectors that couple more states and also lead to a Peierls

distortion [35]. Here we try a different approach.

4.2 Analytic Framework

The basis for our first approach is to use bilayer graphene under a perpendicular electric

field. This restores the one dimensional nature of the Peierls integral because the Dirac

point becomes a Dirac line. Thus, we will also restore the scaling argument that guarantees

a Peierls transition.

Consider a sample of bilayer graphene in the perturbative regime near 0◦. We now apply

a bias, V0 � t. Neglecting interlayer coupling, we have a doubly degenerate Dirac circle

around each Dirac point. To find a Peierls transition, we introduce a distortion, u(r) over

the sample that opens a gap of mass m over this Dirac circle. A schematic cross section is

shown in Figure 4.1.

In order for the distortion to be energetically favorable, the energy gained by the valence
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band per unit area, Uelec , must be greater than the elastic energy gained by the lattice per

unit area, Uelas . Assuming we have a mass gap, m, we can derive the energy gained by the

valence band per unit area:

Uelec =
V0

vπ

∫ kf

0

(√
v2k2 +m2 − vk

)
dk, (4.7)

where we have introduced a momentum cut-off kf , such that vkf � V0.

Uelec =
V0m

2

4πv2

(
1 + 2 log

2vkf
m

)
+O

[(
m

vkf

)3
]
, (4.8)

where we have integrated and then expanded in the limit, m� vkf . We have recovered

the logarithmic dependence by using the bias to restore the one dimensional character of

the problem. This logarithmic divergence will make the Peierls transition possible once

again.

The phonon that created the mass gap will have some amplitude, u0. We anticipate that

the mass will be proportional to u0 and the elastic energy will be proportional to u2
0. There-

fore, the total elastic energy cost will be proportional to m2. Just as in the one dimensional

case, we are guaranteed a Peierls transition for a sufficiently small m. The only question is

the temperature at which this transition will occur.

4.3 Mass Term

In choosing a phonon, we must consider two factors. First, the phonon should induce a

large mass all the way around the Dirac circle. Second, the phonon should have a low

elastic energy cost. Consider a phonon of the form:

u(r) =
u0

K

3∑
n=1

Kn
1v sin (δKnr − 2πn/3), (4.9)

where Kn
lv are the three shortest length equivalent Dirac points of layer l and δKn =

Kn
2v −Kn

1v . Note, for v we may choose either valley. Also, K is the norm of any of the
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bmKn
lv . The calculation will be the same. We will apply this phonon to the second layer.

This phonon is a good choice because it induces a large coupling between K1v and K2v.

Therefore, one can hope it will open a mass gap. In addition, it uses the long wavelength

δKn to accomplish this coupling. We show the real space vector field of this phonon in

Figure 4.2. The red lines indicate the supercell of a near zero degree system.

Now we derive the mass gap from the phonon. We will perform perturbation theory

using the coupling induced between single layer states by the phonon. First, we divide this

effect into two parts, Hu
‖ and Hu

⊥ . Hu
‖ describes the coupling through the phonon between

states in the same layer. Hu
⊥ describes coupling through the phonon between states in

opposite layers. We now estimate the size of both effects to show we may negelct Hu
‖ .

We expect the phonon to couple states that differ in momentum by δKn. The states at

the Dirac points of layer one differ in momentum by exactly δKn from the states at the

Dirac points of layer two. Therefore, the phonon induces direct coupling between these

states. The pertrbative correction is of order u0γ̃0/a.

For states in the same layer, the coupling is second order. In other words, a state at the

Dirac point couples to a higher energy state and back to itself. The size of the coupling

is of order (∇t‖δu0δK)2/vδK. Here ∇t‖ is the gradient of the nearest neighbor hopping

energy and δ is the interatomic distance . We may neglect Hu
‖ in the regime where:

u0

a
� γ̃0

vδK
= α� 1. (4.10)

That we are truly in this regime will be verified below. However, it makes sense. The

system size, and thus α, is a parameter we will choose to be as large as possible while still

being much less than one. In addition, we expect u0, the phonon amplitude that results in a

Peierls transition to be very small. We will see that it is small enough to satisfy this regime.

Now we derive the exact form of the interlayer perturbation. In second quantization,
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Figure 4.2: Phonon for a system at 11.6◦.
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the interlayer part of the Hamiltonian is now written:

H⊥ =
∑
ijσσ′

a†1iσa2jσ′f(R1iσ −Ru
2jσ′), (4.11)

where Ru
2jσ = R2jσ + u(R2jσ) denotes position of the atom of layer 2, site j, and

sublattice σ with the addition of the phonon distortion. Note, we are only distorting layer

2. For the lattice creation and annihilation operators, we substitute the Fourier transform:

aliσ =
1√
N

∑
k

alkσe
−ikRliσ . (4.12)

We find:

H⊥ =
∑

ijσσ′kk′q

a†1kσa2k′σ′ f̃(q)e
−iq(R1iσ−Ru2jσ′ )eikR1iσe−ik

′R2jσ′ . (4.13)

Assuming qu � 1, we can treat the phonon as small. The lowest order term is the

interlayer coupling without any phonon distortion. The first order correction due to the

phonon is:

Hu
⊥ =

∑
ijσσ′kk′q

a†1kσa2k′σ′ f̃(q)ei(k−q)R1iσe−i(k
′−q)R2jσ′ [qu(R2jσ′)] . (4.14)

The sin in the form of the phonon is composed of a positive and a negative exponential:

u(r) =
u0

2iK

3∑
n=1

Kn
1v

[
ei(δKnr−2πn/3) − e−i(δKnr−2πn/3)

]
. (4.15)

We break H⊥ into the sum of two terms, Hu,+
⊥ and Hu,−

⊥ . Hu,+
⊥ includes the positive

exponential of the phonon and Hu,−
⊥ includes the negative exponential of the phonon. Let
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us examine the coupling from positive exponential, Hu,+
⊥ . We find:

Hu,+
⊥ =

u0

2K

∑
ijσσ′kk′qn

a†1kσa2k′σ′ f̃(q)ei(k−q)R1iσe−i(k
′−q)R2jσ′ (qKn

1v)e
iδKnR2jσ′e−i2π/3.

(4.16)

Now, we separate out the dependence on sublattice:

Hu,+
⊥ =

u0

2K

∑
σσ′kk′qn

a†1kσa2k′σ′ f̃(q)ei(k−q)δ1σe−i(k
′−δKn−q)δ2σ′

∑
ij

ei(k−q)R1ie−i(k
′−δKn−q)R2j(qKn

1v)e
−i2π/3.

(4.17)

Now, we perform the lattice sums to arrive at the following conditions in momentum

space:

k +G1 = k′ − δKn +G2 = q. (4.18)

Given that k′ − δKn = k, we have the exact same condition as for the direct coupling

of a 0◦ commensuration (See Equation 2.12). Recall, the set of all (G1,G2) satisfying

this equation was defined to be G0. This set is partitioned into subsets of equal coupling

strength, and we only keep the set of strongest coupling, G1
0 . There are three solutions

in G1
0 , which we label (Gn

1 ,G
n
2 ). For each n, (Gn

1 ,G
n
2 ) satisfies Equation 4.18, for that

specific δKn.

The term involving the negative exponential, Hu,−
⊥ , will satisfy the equation:

k +G1 = k′ + δKn +G2 = q. (4.19)

In this case, there is no direct coupling because there are noG vector solutions. Therefore,

we neglect the term Hu,−
⊥ and set Hu

⊥ = Hu,+
⊥ .
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Substituting the solutions to Equation 4.18 into H+
⊥ , we find that q = Kn

1v. We arrive

at a simple sum over n:

H+
⊥ =

u0γ̃0

2
K
∑
n

eiG
n
1 δ1σe−iG

n
2 δ2σ′e−i2πn/3. (4.20)

Without the extra phase factor, this would clearly result in the coupling term 3u0γ̃0Kσ0τ0lx/2.

That is, the coupling induced by the phonon is identical to the interlayer coupling of an AA

stacked bilayer, scaled by the prefactor, u0K/2. If we include the extra phase, the sum

results in an odd commensuration effect of the same size. This results in an effective AB

stacked bilayer with scaled coupling. We wish to open an gap under bias. Therefore, we

clearly want the effective AB coupling, that is the phonon with added phase.

Upon application of the bias, the gap induced around the Dirac circle will be:

∆ = 2m =
2u0γ̃0K

2
=

2πu0γ̃0

a
. (4.21)

Note the result is independent of the bias voltage, V0. This is expected, just as the gap

in an AB bilayer under bias is independent of V0 for large bias. In other words, as V0

increases, the gap saturates. After the saturation point at V0 = γ̃0, V0 controls the radius of

the Dirac circle, while γ̃0 controls the size of the gap.

We verify this result by performing a tight binding calculation. We take a system at

11.6◦ with coupling f(r) = γ exp (−r2/l2r)Θ(l0− r), where lr = 2δ and l0 = 6δ. In Figure

4.3 we see the gap plotted against the amplitude of the phonon. The solid line shows the

theoretical prediction is in good agreement for small amplitude.

4.4 Peierls Transition

With the mass term in hand, we can derive the prefactors necessary to find the critical

temperature for a Peierls transition. First, we obtain the total electronic energy gained by
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Figure 4.3: Gap induced by the phonon for a system at 11.6◦. The solid line is the prediction
derived in the text.

opening the mass gap. This is simply Equation 4.7 with the derived mass:

Uelec = 4
γ̃2

0πu
2
0V0

a2v2

(
1 + 2 log

avkf
γ̃0πu0

)
, (4.22)

where the extra factor of four in front is for spin and valley degeneracy. Note both

valleys are affected because we include both ±δK in the phonon. Next, we obtain the

elastic energy cost of this phonon per unit area. We use a continuum approximation. The

elastic energy density for a single sheet of graphene is [36]:

Uelas =
λL
2

(∂xux + ∂yuy)
2 + µL

[
(∂xux)

2 + (∂yuy)
2 +

1

2
(∂xux + ∂yuy)

2

]
, (4.23)

where µL and λL are Lamé parameters. Since we are applying the phonon only to

the top layer, we calculate the elastic energy density for a single layer of graphene. For
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simplicity, we neglect the interlayer elastic energy cost. This is a competing effect that

could also be investigated in future work.

To find the total elastic energy cost per unit area we calculate:

Uelas =
1

A

∫
supercell

Uelas. (4.24)

For this specific phonon, we find:

Uelas =
8π2u2

0 [λL + 3µL − (λL + µL) cos θ]

3a2
(sin θ/2)2 =

4π2µL
3a2

u2
0θ

2 +O(θ3), (4.25)

where the second equality takes the lowest order term in θ. A Peierls transition will

occur when Uelec = Uelas. Equating our expressions and solving for u0, we find:

u0 =
a
√
ekfv

γ̃0π
e−µLπv

2θ2/6γ̃2
0V0 =

a
√
ekfv

γ̃0π
e−3a2µL/32πV0α2

, (4.26)

where in the second equality α = γ̃0/vδK must be small to stay within the perturbative

regime of the interlayer coupling. The only experimental degrees of freedom are θ, which

is buried in α, and V0. However, because α must remain small (equivalently, θ must remain

large), we see immediately the exponential is extremely unfavorable.

We find the gap is:

∆ = 2
√
ekfve

−3a2µL/32πV0α2

. (4.27)

If we use the values in Appendix A, and set V0 = t/2 and α = 1/10, we find a gap

that corresponds to an energy of 1.5 × 10−55K. This is far too small for observability in

any reasonable experiment. The crux of the problem is the α2 in the denominator being

massively amplified by the exponential. Should we allow α to increase, we will enter the

non-perturbative regime, which is beyond what this theory can handle. In the next chapter,
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we turn to a non-perturbative regime where an analytic theory is possible.
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CHAPTER 5

NON-PERTURBATIVE PEIERLS TRANSITION

In Chapter 4, we sought a Peierls transition using a bias to transform the graphene Fermi

surface into a one dimensional object. While this argument is sound and a Peierls transi-

tion exists, the critical temperature is too low for observation. We now turn to the non-

perturbative regime for a new idea [33].

We saw in Chapter 3 that a bilayer very close to commensuration produces a network of

topologically protected states. The low energy electronic structure of this network includes

a flat band. The system has a high density of states at the energy level of the flat band.

Therefore, it will be highly susceptible to spontaneous symmetry breaking and distortion

of the band, such as the one shown in Figure 5.1. If we partially fill the flat band, a distortion

will lower the total electronic energy. This energy gain has the potential to be very large

because the distortion will occur over the entire Brillouin Zone. Thus, we have a strong

possibility for a Peierls transition at a reasonable temperature.

5.1 Scaling Argument

Without calculation, the standard Peierls transition argument guarantees a transition be-

cause it is a scaling argument. The appearance of a logarithmic term guarantees a critical

Figure 5.1: Schematic of near 38.2◦ with (right) and without (left) added phase on the links.
The flat band undergoes a distortion.
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temperature. We present a similar scaling argument for our new idea.

The first question is the mechanism by which a phonon will induce a flat band distortion.

Recall the physics of the topologically protected midgap states in the network. These states

originate from two Dirac cones displaced from the Dirac point of the bilayer. In Figure

5.2, we see these Dirac cones as we traverse between two nodes. Each midgap state will

inherit the momentum of its respective Dirac cone as it traverses the link. The integral of

its momentum along the link is the total phase picked up by a mode as it traverses the link.

The addition of a phonon will change the local stacking order of the bilayer, changing

the local band structure and shifting the Dirac cones. This in turn will change the phase

picked up by the midgap states. In Figure 5.1, we see the effect of adding different extra

phases on different links within the network model. The flat band becomes distorted, as

required.

We now present rough estimates of the electronic energy gain and elastic energy cost.

Given a phonon that induces an extra phase of δψ, we expect the electronic energy gain per

unit area, Uelec, to have a linear term in δψ . The maximum bandwidth is v/L, where L is

the length of a link in the network model. We expect a generic band to have width of that

order. The number of states per unit area is 1/A. Thus, the total energy gain per unit area

is:

Uelec ∝
v

LA
δψ. (5.1)

The distorting phonon couples through the interlayer coupling, which has strength γ̃38.

A distortion of order a completely changes the local lattice stacking, changing the energy

by order γ̃38. Integrated along the link, a change in energy will change the accumlated

phase by a factor of L/v. Therefore, we expect δψ ∝ γ̃38u0L/av. Thus,

Uelec ∝
γ̃38u0

Aa
. (5.2)
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Figure 5.2: Local band structure along the line of degeneracy. Top left is one node and
bottom right is the other node.

We can also estimate the elastic energy cost per unit area of the distorting phonon, Uelas.

A distortion of order a completely separates neighboring sites, resulting in an energy cost

of t. Thus, the energy cost per atom is of order (u0/a)2t. We introduce the square because

we expect elastic energy to follow a harmonic potential in u0. To get the elastic energy cost

per unit area, we divide by the area associated with one atom a2. Therefore, we find:

Uelas ∝
(u0

a

)2 t

a2
. (5.3)

We see that Uelec is linear in u0, while Uelec is quadratic in u0. Therefore, we are guaran-

teed a Peierls transition at small enough u0, and there must be a critical temperature for this

transition. In addition, we no longer rely on the logarithm of the original Peierls argument.

Therefore, we will no longer have the unfavorable exponential in transition temperature.

We now turn to calculating the prefactors that will allow us to estimate this critical temper-

ature.

5.2 Effective Model

The effective model for a bilayer near 38.2◦ is built on topologically protected midgap

states scattering between SE odd nodes. The symmetries of the bilayer guarantee there is
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only one free parameter. However, we may break these symmetries with a lattice distortion,

introducing new parameters that distort the energy bands. If the energy gain from such a

distortion exceeds the elastic energy cost, we expect a Peierls transition.

5.2.1 Added Phase

The phonon changes the local lattice stacking, and thus the effective low energy Hamilto-

nian throughout the supercell. This results in an extra phase picked up by modes traveling

through the distorted region. Consider a mode traveling along an edge i between the nodes

of our network. The mode that travels this path is a midgap state of the Dirac cone arising

from the local effective Hamiltonian. As it travels between network nodes it acquires a

phase exp (iψi), where:

ψi =

∫
Linki

kdisp(r)dr (5.4)

and kdisp(r) is the displacement of the midgap state in momentum space relative to the

Dirac point. In other words, we integrate the momentum displacement of the midgap states

along the link. The momentum displacement kdisp(r) depends on the local lattice stacking

as we move through the supercell.

Our analysis of the twist-induced gauge fields describes how the momentum of the

mode varies in the superlattice. In general, it depends on all four gauge fields. However,

recall that momentum displacement of the pseudo-valleys is primarily provided byAx,Ay,

and Az. The primary effect of A0 is to shift the psuedovalleys in energy. For simplicity,

we may neglect it because its effect is small compared to the other fields. In Figure 5.3, we

see the comparative effect of A0. We plot the momentum of zero energy states along the

link connection SE odd nodes. The blue line shows this momentum withA0 included, and

the yellow line shows this momenum withA0 excluded.

We derived the expression for kdisp(r) in this case in Equation 3.18, where we used the
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Figure 5.3: Momentum of a zero energy state with (blue) and without (yellow)A0.

polar coordinates k and φ.

The angle φ is constant along the entire link. In other words, the pseudo-valleys displace

along a straight line in momentum space. In addition, the direction of the link is also

constant. Therefore, we can rewrite the accumulated phase:

ψi = cosw

∫
Linki

kdisp(r)dr, (5.5)

where w is the angular difference, from Equation 3.18, between the direction of the link

and the pseudo-valley displacement in momentum space. A careful calculation reveals that

w = 0 for all i. In other words, the diplacement of the pseudo-valleys is parallel to the

direction of the links. Therefore, we may set cosw = 1 in what follows.

To calculate the integral, we parametrize kdisp along the path of the link. Let r =

t1T1 + t2T2 where Ti are the supercell unit vectors . The link is parametrized by the path

t1 = t2 = s for s ∈ [1/3, 2/3]. By simplifying the gauge fields along this line, we find:
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kdisp(s) =
1

v

√
||A2

x + A2
y + A2

z||

=
γ̃38

2
√

7v

√
2 cos 4πs− 164 cos 2πs− 81 s ∈ [1/3, 2/3]. (5.6)

The phase picked up by the mode is then the line integral of kdisp along the edge it is

traversing. For instance, if there is no distortion, we find the accumulated phase:

ψ =

∫
Link

kdisp(r)dr =

∫ 2/3

1/3

kdisp(s)
dr

ds
ds =

3Lγ̃38

2
√

7v

∫ 2/3

1/3

√
2 cos 4πs− 164 cos 2πs− 81ds,

(5.7)

where we must calculate the integral numerically. We find ψ = 1.35Lγ̃38/v.

5.2.2 Distorted Flat Band

In the network model, there are three links, and thus, three phase parameters ψi. The added

phases enter the network model through the transfer matrix, M , of Equations 3.31:

M =



0 0 0 0 0 eiψ1e−i2πk1

0 0 0 0 eiψ2e−i2πk2 0

0 0 0 eiψ3 0 0

0 0 eiψ3 0 0 0

0 eiψ2ei2πk2 0 0 0 0

eiψ1ei2πk1 0 0 0 0 0


. (5.8)

Without a phonon, all ψi are equal, and we may ignore them because they correspond

to a rigid shift in all bands. However, the addition of different phases to different links

distorts the flat band. We call the added phase on link i, δψi .For instance, suppose we add

a phase to two of the links: δψ1 = −δψ2. That is, a mode traversing link one picks up an
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extra phase δψ1 and a mode traversing link two picks up an extra equal and opposite phase.

The effect on the band structure is shown in Figure 5.4.

Semiclassically, a change of the sum of phases,
∑
δψi, shifts the chemical potential of

the network modes, changing the electron number. However, in an experiment, an addi-

tional electric potential will build to maintain charge neutrality. Thus, we must maintain∑
δψi = 0 in the calculation. Given this constraint, the flat band will distort without an

overall shift in energy. Thus, if we partially fill the flat band, we expect a significant energy

gain from this distortion. To calculate this energy gain, we set the chemical potential, µ ,

to the energy of the undistorted flat band and assume the flat band is half-filled. The band

distorts symmetrically, and thus, the energy gain per unit area is due to all states that move

below µ.

Uel =
v

L4π2

∫
ε′<µ

(ε′ − ε)d2k, (5.9)

where ε and ε′ are the logarithm of the eigenvalues of the network model in Equation

3.27 without and with distortion, and L is the length of an edge. The integral must be

calculated numerically. For small added phase we keep the linear term:

Uelec =
v

LA
ξδψ1 +O

(
δψ2

1

)
, (5.10)

where A is the area of the supercell.

The dimensionless parameter ξ will be different depending on how phase is distributed

among the links. We will seek a phonon that adds phase to the links and then calculate ξ

numerically in each case.

5.3 In-Plane Phonon

We now examine the possibilities for a Peierls transition due to an in-plane distortion of

one of the graphene layers.
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Figure 5.4: Distortion of flat band predicted by the network model when δψ1 = −δψ2 = .2
and δψ1 = 0. We use λ = 1.3. Note axes are not orthogonal.
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5.3.1 Electronic Energy

To distort the flat band, we need a phonon that results in different phase accumulation along

each of the links. Consider a general in-plane phonon, u(r), applied only to the top layer.

This phonon will change the local interlayer translation and thus the local lattice stacking.

While the phonon can not affect the gauge fields, it will distort their distribution throughout

the supercell.

Suppose we are at position r in the supercell. From Equation 3.3, we know this corre-

sponds to an interlayer translation:

T = Fr. (5.11)

The phonon is an additional interlayer translation, u(r). Thus, the total local translation

of the distorted system is T (r) + u(r). We want to find the point in the distorted system,

r′, where the local translation is equal to the local translation in the undistorted system.

This occurs when r′ satisfies:

T (r′) + u(r′) = Fr. (5.12)

Thus, we can view a phonon as a coordinate transformation:

r′ = r − F−1u(r′), (5.13)

where F is the linear transformation between real space position and translation. Recall,

we have already derived in Equation 3.3:

F =

1− cos δθ − sin δθ

sin δθ 1− cos δθ

 F−1 =
1

2

 1 cot δθ/2

− cot δθ/2 1

 . (5.14)
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For small amplitude phonons, we can approximate:

r′ = r − F−1u(r). (5.15)

Thus, F−1u(r) creates a flow throughout the supercell describing the distortion of real

space. To calculate the phase along a link, we calculate the line integral of the same mo-

mentum function but along this new distorted path:

ψ =

∫
Link
kdisp(r

′)dr′. (5.16)

We already know a parametrization of kdisp(s) from Equation 5.6. Therefore, we write

the distorted path as a function of this same parameter, r′(s). The difference in phase

accumulated between the undistorted and distorted path is then:

δψ =

∫ 2/3

1/3

kdisp(s)

(
dr′(s)

ds
− dr(s)

ds

)
ds, (5.17)

where r′ is the distorted path and r is the undistorted path. Recall that for the undis-

torted path, ρ = 0. That is, the pseudovalleys displaced from the Dirac point in the same

direction as the link. However, the distorted path may not have this property. In this case,

ρ must be calculated.

5.3.2 Elastic Energy

We use a continuum approximation to calculate the elastic energy of the phonon. Given an

in-plane phonon u(r), the elastic energy density is:

Uelas =
λL
2

(∂xux + ∂yuy)
2 + µL

[
(∂xux)

2 + (∂yuy)
2 +

1

2
(∂xux + ∂yuy)

2

]
, (5.18)

where we have neglected the interlayer energy change. This is justified because the
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phonon will not have a large effect on the energy associated with interlayer coupling. The

phonon alters the local lattice stacking in different regions of the supercell. Simply moving

regions of different local lattice stacking around the supercell can not change the total

interlayer energy. It is true that the phonon may expand or shrink local lattice stacking

regions. For instance, the SE odd region of the supercell may expand at the expense of

the SE even region. However, numerical calculations have found no energetic preference

between lattice stackings at large angles [40]. In other words, the energy of SE odd or SE

even regions is roughly the same. Therefore, the dominant contribution of the phonon is to

change the in layer energy. Integrating this over the supercell and dividing by its area gives

the elastic energy cost of the phonon per unit area:

Uelas =
1

A

∫
supercell

Uelas. (5.19)

5.3.3 Calculations

We will consider two types of distortions: localized and extended. The localized phonon

will be targeted to the links of the network model. It will alter the phase accumulated on

these links and leave the rest of the network undisturbed. The cost of this precision is higher

wavevector and higher elastic energy. The extended phonon will be low wavevector and

low elastic energy. However, it will distort the entire network. In the limit of large enough

system, we can make the phonon amplitude small enough to have minimum local effect but

still result in significant phase accumulation along the entire link.

Extended Phonon

Consider a phonon of the form:

u(r) = u0 {r̂1 sin [r1(r + T2/2)] + r̂2 sin [r2(r + T2/2)]} , (5.20)

89



(a) Real space phonon field (b) Real space distortion induced by phonon

Figure 5.5: Extended phonon for system at 38.57◦

where ri are the primitive reciprocal superlattice vectors and Ti are the supercell vec-

tors. In Figure 5.5, we show the real space form of the phonon and its real space distortion

flow. In Figure 5.6, we show the distortion of the network caused by the flow field. One link

is shortened, while the other two links are lengthened. The shortened link has the property

that w = 0. This path is contracted, but the direction of travel on the link does not change.

However, the lengthened links do have changing direction of travel. Thus, for those two

links we will have to calculate w along the path.

We now turn to the calculation of the added phase. In what follows, all δψi will be

calculated to lowest order in δθ and u0. In other words, we assume the system size is large

and the phonon distortion is small: u0 � δ � L, where δ is the interatomic spacing of

graphene.
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Figure 5.6: Distortion of the network caused by background phonon flow. Dashed lines are
the undistorted network. Black lines are the distorted network. System is at 38.57◦.
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For the shortened path, we find:

r(s)− r′(s) =
u0 sin 2πs√

7δθ

(√
3 cosπs,

9

2

)
+O

(
δθ0
)
. (5.21)

We then calculate the line integral to find:

δψ3 =

∫ 2/3

1/3

kdisp(s)
r(s)− r′(s)

ds
ds =

√
3πγ̃38u0√

7δθv

∫ 2/3

1/3

cos (2πs)
√

2 cos 4πs− 164 cos 2πs− 81ds.

(5.22)

The integral must be calculated numerically. We find:

δψ3 = ζ
2u0γ̃38

vδθ
+O

(
δθ0
)
, (5.23)

where ζ is the integral to be numerically calculated:

ζ =

√
3π

2
√

7

∫ 2/3

1/3

cos (2πs)
√

2 cos 4πs− 164 cos 2πs− 81ds = 2.13. (5.24)

For the lengthened links, we repeat the same calculation:

r(s)− r′(s) =
u0

2
√

7δθ

{√
3(sin 2πs+ 2 sin 4πs), 4 sin 4πs− 5 sin 2πs

}
. (5.25)

Now we find:

δψ1 =δψ2 =

∫ 2/3

1/3

kdisp(s)
r(s)− r′(s)

ds
ds =

−
√

3πγ̃38u0

2
√

7δθv

∫ 2/3

1/3

cos 2πs
√

2 cos 4πs− 164 cos 2πs− 81ds.

(5.26)
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To summarize, we found:

δψ1 = δψ2 = −δψ3

2
= −ζ 2u0γ̃38

vδθ
. (5.27)

Thus, to lowest order, this phonon has the nice property that the sum of added phase

is zero, as required by the considerations above. Using the derived phase, we find the

electronic energy gain per unit area:

Uelec = 4
v

LA
ξδψ1 =

57
√

7ξζ

a3
γ̃38u0δθ

2, (5.28)

where the factor of 4 is for spin and valley degeneracy and ξ is calculated to be about

.26. Next, we calculate the elastic energy cost per unit area of this phonon:

Uelas =
56

3a2
(λL + 2µL)δθ2u2

0 +O
(
δθ3
)
. (5.29)

The Peierls transition will occur if we satisfy Uelec < Uelas, which translates to:

u0 <
3
√

7ξγ̃38ζ

π2a(λL + 2µL)
. (5.30)

Using the parameters given in Appendix A, along with the numerically calculated ξ =

.26, we find u0 < 1.9× 10−5Å = 1.3× 10−5δ.

The next question is whether the system can be cooled to a low enough temperature to

allow this transition. To answer this, we calculate the mean energy deflection of the flat

band at the phonon amplitude corresponding to the transition:

UelecA =
84
√

3ξ2γ̃2
38ζ

2

a2(λL + 2µL)π2
. (5.31)

For the same values, we find a mean deflection of 6.4 × 10−8t = 1.8 × 10−7eV. This

corresponds to a temperature of 2.1mK. The system must be cooled below this temperature

to ensure we see the effect of the band distortion. At higher temperatures, thermal excitation
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of the electrons will negate the energy gain of lower energy bands. In other words, electrons

will not occupy many of the states that experience energy gain. Thus, this is an estimate of

the critical temperature of the Peierls transition.

Localized Phonon

We now perform the same calculation for a different phonon, one that is localized along

the links. We will see whether this provides a greater energy gain. We consider a phonon

of the form:

u(r) = υ0e
−||r−r0||2/l2r ||r − r0||2 sin

δθ

2
θ̂, (5.32)

where θ̂ is the unit vector perpendicular to r − r0.

This phonon partially undoes the twist relative to the point r0. The parameter υ0 is

unitless and ranges from zero to one, controlling what fraction of the twist is undone. The

parameter lr controls the range of the phonon. In general, we will choose r0 to be the

middle of a link and lr small enough that the phonon decays before reaching the SE odd

region. We show the phonon and its flow field in Figure 5.7. This phonon does not distort

the network at all and does not affect the SE odd regions. The effect is simply to stretch

the space on the link where phase accumulation is high and shrink space on the link where

phase accumulation is low.

To calculate the added phase of this phonon, we first reparametrize the momentum

according to:

s→ s

3
+

1

2
, (5.33)
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which yields the new parametrized expression for k(s):

kdisp(s) =
γ̃38

2
√

7v

√
2 cos 4πs/3 + 164 cos 2πs/3− 81 s ∈ (−1/2, 1/2). (5.34)

Recall that in Equation 3.4, we expanded the local lattice translation due to the twist to

lowest order and found it has the same form as the phonon we are now considering. Thus,

we may say that to lowest order in δθ:

u(r) = υ0e
−||r−r0||2/l2rFr. (5.35)

Using Equation 5.15 for the change of coordinates induced by the phonon:

r′ = r − F−1u(r) = r − υ0e
−||r−r0||2/l2rr. (5.36)

Therefore, the change of coordinates is a simple linear function. In our new parametriza-

tion, s = 0 corresponds to the origin of the phonon twist. Thus, we find the effect of the

phonon with the following substitution:

s→ s
(

1− υ0e
−s2/l̃2

)
, (5.37)

where l̃ = lr/L. This substitution parametrizes the effect of the phonon. In Figure

5.8, we show how the phase accumulates along the link. The integral of the blue line is

the phase accumulated without the phonon. The integral of the yellow line is the phase

accumulated with the phonon. We see that by undoing the twist near the middle of the link,

the local phase is increased.

To find the added phase, we first find the lowest order term of the difference in kdisp(s)
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with and without the phonon, which we call δkdisp :

δkdisp =
2e−s

2/l̃2πs(41 sin 2πs/3 + sin 4πs/3)

3
√

7
√

2 cos 4πs/3 + 164 cos 2πs/3− 81

γ̃38υ0

v
+O

(
υ2

0

)
. (5.38)

We make the further observation that the s dependence of the denominator of δkdisp may

be neglected for small l̃. In other words, localized phonons allow us to only consider the

numerator near the midpoint of the link. Thus, we have:

δkdisp =
2e−s

2/l̃2πs(41 sin 2πs/3 + sin 4πs/3)

27
√

7

γ̃38υ0

v
+O

(
υ2

0

)
. (5.39)

To find the accumlated phase, we integrate along the link:

δψ =
Lγ̃38

v

∫ 1/2

−1/2

δkdisp(s)ds. (5.40)

Since exp
(
−s2/l̃2

)
� 1 beyond the limits of integration, we may extend the integra-

tion limits to infinity:

δψ =
Lγ̃38

v

∫ ∞
−∞

δkdisp(s)ds =
2Lγ̃38

81
√

7v
e−4l̃2π2/9(2 + 41el̃

2π2/3)l̃3π5/2υ0. (5.41)

We will use two of these phonons on separate links and in opposite directions. There-

fore, we will have δψ1 = −δψ3 = δψ and δψ2 = 0. The electronic energy gain per unit

area is then:

Uelec =
16
√

7l̃3π5/2

81
√

3a2
e−4l̃2π2/9(2 + 41el̃

2π2/3)ξδθ2γ̃38υ0, (5.42)

where ξ is estimated to be around .15 and there was an extra factor of four for spin and

valley degeneracy.
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(a) Real space phonon field (b) Real space distortion induced by phonon

Figure 5.7: Localized phonon for system at 38.57◦
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Figure 5.8: Phase along a link with (yellow) and without (blue) the phonon. Parameters are
exaggerated.
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Next, we calculate the elastic energy per unit area:

Uelas =
1

21A
a2l̃2µLπυ

2
0 +O

(
δθ1
)
, (5.43)

where we have again extended the limits of integration to infinity. Note also there is a

factor of two because we have two such phonons.

Equating the electronic and elastic energy, we find that the Peierls transition will occur

at:

υ0 =
8
√

7l̃π3/2

27a2µL
e−4l̃2π2/9(2 + 41el̃

2π2/3)ξγ̃38. (5.44)

Using l̃ = .25, we estimate υ0 = 2.5× 10−4. The average distortion of the flat band is:

UelecA =
64l̃4π4

2187a2µL
ξ2(2 + 41el̃

2π2/3)2γ̃2
38. (5.45)

We should choose a value for l̃ that maximizes this function in order to have the best

chance of observability. However, the maximum occurs around 1 which is too large to

fulfill our limitations on the range of the phonon. Therefore, we choose the maximum

reasonable value, l̃ = 1/4. Thus, we estimate the mean distortion of the flat band to be

3.5 × 10−8eV. This corresponds to 0.41mK. This critical temperature is lower than for

the extended phonon. Therefore, the extended phonon is more advantageous for a Peierls

transition.

5.3.4 Verification of Phase Theory

We pause now to verify that the theory of phase connecting the network model to the full

tight-binding model is approximately correct. We cannot hope for perfect agreement since

our numerics cannot reach the large superlattice limit where the network model becomes

exact. However, an order of magnitude check will be sufficient to verify the idea behind

the theory. This idea ultimately concerns the scaling of elastic and electronic energy. Thus,
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exact numerical results are not critical. However, we will see the agreement is more than

sufficient.

For verification purposes, we consider a phonon:

u(r) = υ0||r − r0||2 sin

(
δθ

2

)
Θ(||r − r0||2 − l0)θ̂. (5.46)

That is, for positive υ0, we partially undo the twist up to length l0. We do not include

the gaussian prefactor in order to make the effect large enough to see for a small system.

We center this phonon on the midpoint of one of the links. For a qualitative comparison,

we compare the form of the flat band predicted by the network model and that obtained in

a tight binding model. The result is shown in Figure 5.9. In the tight binding model, we

choose υ0 = ±.2 for a system with 12532 atoms at 38.6◦. We see the qualitative agreement

is good.

For a quantitative comparison, we compare the bandwidth of the flat band predicted

by the network model and the bandwidth observed in the tight binding model. We use the

same untwisting phonon with υ0 = 1 and a varying l0. In other words, we completely undo

the twist on one link up to to a distance of l0. The added phase is:

δψ3 = 3L

∫ 1/2+l0

1/2−l0
kdisp(1/2)− kdisp(s)ds, (5.47)

where l̃0 = l0/L ∈ (0, 1/6). The integral must be computed numerically. Using the

network model, we can predict the bandwidth, B, as a function of δψ3:

B = βδψ3
v

L
, (5.48)

where β is a numerically calculated dimensionless constant that captures bandwidth as

a function of added phase to linear order. We calculate β from the network model by fitting

a linear function to the numerically calculated bandwidth as a function of added phase, δψ3.

We estimate β = .68. Finally, we compare the predicted bandwidth with the bandwidth
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Figure 5.9: Flat band distortion for system at 38.57◦
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Figure 5.10: Predicted (solid) and measured bandwidth as a function of l̃0.

calculated directly from a tight binding model. We show the result in Figure 5.10. We see

the agreement is remarkably good considering that we are not testing the limit where our

analytic theory is applicable.

5.4 Peierls Transition in an Electric Field

Our previous work has focused on the possibility of a spontaneous Peierls transition in

twisted bilayers at low temperature. We have demonstrated multiple mechanisms for such

a transition. However, the stiffness of graphene is a formidable obstacle for observing

these effects at reasonable temperatures. Thus, we turn to a transition that occurs with the

application of an external electric field. In such a field, the total energy may be decreased

by a flexural phonon.

This idea has several advantages. First, graphene is much more flexible in the out of

plane direction, so we can expect larger phonons at at lower energy cost. Second, the

applied electric field is an external experimental parameter. The experimenter can increase

the field to drive the system to visible distortions and verify the dependence of distortion

on field strength.
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5.4.1 Electronic Energy

Consider the twisted bilayer in a uniform electric field E0 , directed perpendicular to the

plane. Suppose the bilayer has out of plane displacement h(r) throughout the supercell.

We assume h is very long wavelength. Recall from Equation 3.5, we have the effective

local Hamiltonian, H(r) throughout the supercell. By adding an electric field and out of

plane phonon, our new local Hamiltonian is:

HE(r) = H(r) + h(r)E0σ0τ0l0. (5.49)

We have neglected the potential difference between the layers. This is justified as long

as E0d � γ̃38, where d is the distance between the layers . In other words, interlayer

coupling dominates the potential difference between the layers. In this limit, we will still

have the topologically protected network of states that produced the flat band. However, the

momentum of the modes shifts due to the energy shift by δkdisp(r) = ±h(r)E0/v, where

the sign depends on whether we consider a right or left moving mode. The extra phase

accumulated along a link is now the line integral:

δψ =

∫
Link

h(r)E0

v
dr. (5.50)

Note the sign cancels with the direction of travel of the mode. The phase difference

accumulated is the same for modes travelling in both directions. Just as before, we find the

total energy gain per unit area is:

Uelec =
v

LA
ξδψ, (5.51)

where again ξ is a dimensionless constant that must be calculated numerically.

102



5.4.2 Elastic Energy

We use a continuum approximation for the elastic energy. For the phonon, h(r), the elastic

energy density is [36]:

Uelas =
κL
2

(∂2
xh+ ∂2

yh)2 +
λL
8

[
(∂xh

2 + (∂yh)2
]2

+
µL
2

[
(∂xh)4

2
+

(∂yh)4

2
+ (∂xh∂yh)2

]
, (5.52)

where λL and µL are Lamé parameters and κL is the bending rigidity. Once again, the

total elastic energy per unit area is the integral of the energy density over the supercell

divided by the area of the supercell. We will also have to multiply by two because we are

deforming both layers.

Uelas =
2

A

∫
supercell

Uelas. (5.53)

5.4.3 Calculations

We will consider two types of phonons: extended and localized. The advantages and dis-

advantages are the same as in the in-plane case. The extended phonon is longer wavelength

and lower energy. The localized phonon will not distort the network.

Extended Phonon

Consider a phonon of the form:

h(r) = u0 cos (r1r), (5.54)

where r1 is a reciprocal superlattice vector. We show the form of this phonon in Figure

5.11. We choose this phonon for its simplicity and low wavevector. We calculate the added
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Figure 5.11: Extended phonon throughout the supercell. Displacement of both graphene
layers is out of the page.

phases and find:

δψ1 = −δψ2 = −δψ3 =
3
√

3E0u0L

2πv
=

3aE0u0

2
√

7δθπv
+O(δθ0). (5.55)

Note that the sum of phases is not zero. We enforce
∑
ψi = 0 by subtracting −δψ1/3

from all bands, as explained in Section 5.2.2.

The electronic energy gain per unit area is then:

Uelec =
84ξδθ2E0u0

πa2
, (5.56)
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where ξ is measured to be about .18. The elastic energy per unit area is:

Uelas =
784π4(8κLu

2
0 + 3µLu

4
0)

9a4
δθ4 +O(δθ5). (5.57)

To find the value of u0 for which a Peierls transition occurs, we set equal Uelec and Uelas.

The result is a cubic equation in u0 of the form:

0 = (u3
0 + η1u0)δθ2 + η2, (5.58)

where η1 = 8κ/3µL and η2 = −9a2ξE0/28µLπ
5. The lowest order term in the solution

for u0 is:

u0 =

(
9a2ξE0

28µLπ5δθ2

)1/3

. (5.59)

Now we must ensure our solution fulfills the appropriate limits. We need E0d � γ̃38

to ensure the interlayer coupling dominates the energy and the network is still present.

Therefore, we set E0d = ωγ̃38 where ω � 1 . This translates to an electric field on the

order of meV/Å. Therefore:

u0 =

(
9a2ξωγ̃38

28µLπ5dδθ2

)1/3

. (5.60)

Using ω = .1 and δθ = .00017 (our estimate for appearence of the network model),

we estimate u0 = .46δ = .64Å. This is well within the depth resolution of a scanning

tunneling microscope, and should be visible. We also find the average deflection of the flat

band is:

UelecA =
6
√

3ξωγ̃38u0

dπ
, (5.61)

which we estimate to be 2.6 × 10−5eV. This corresponds to a temperature of 300mK.

This is a reasonable temperature for experimental conditions.
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Localized Phonon

Consider a phonon of the form:

h(r) = u0e
−||r−r0||2/l2 . (5.62)

That is, we have a Gaussian displacement with range l. We will place a phonon of

opposite sign on each of two links, ensuring the added phase sums to zero. The added

phase along one of the links is:

δψ =

∫ ∞
−∞

E0h(r)

v
dr =

E0l
√
πu0

v
, (5.63)

where we have extended the limits of integration due to the short range of the phonon.

Therefore, the electronic energy gain per unit area is:

Uelec =
56E0l̃

√
π√

3a2
u0ξδθ

2, (5.64)

where l̃ = l/L and ξ is estimated to be .15. Next, we calculate the elastic energy per

unit area, remembering to include a factor of four for the two localized phonon sites and

two layers:

Uelas =
1

A

(
168κLπ

a2l̃2
u2

0δθ
2 +

21µLπ

2a2l̃2
u4

0δθ
2 +

83349λLπ

4096a6l̃6
u8

0δθ
6

)
+O

(
u10

0

)
O
(
δθ7
)
.

(5.65)

We can discard the highest order term in δθ and we have the same form of equation as

in the extended case. By equating the elastic and electronic energies, we estimate that a

Peierls transition will occur for:

u0 =

(
8ξE0a

2l̃3

21
√
πµLδθ2

)1/3

=

(
8ξωγ̃38a

2l̃3

21
√
πdµLδθ2

)1/3

, (5.66)
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where we have again made the substitution E0 = ωγ̃38/d. Choosing l̃ = .1, δθ =

.00017, and ω = .1, we see u0 = 0.26δ = .36Å. The average deflection of the flat band is:

UelecA =
4ξωγ̃38l̃

√
πu0

d
=

(
512ξ4E4

0 l̃
6πa2

21µLδθ2

)1/3

. (5.67)

Using the same parameters, we estimate this to equal 2.6 × 10−6eV. This corresponds

to a termperature of 30mK.

5.4.4 Verification

Once again, we verify our theory of phase accumulation using a tight binding model. First,

we look for qualitative agreement between the network model and tight binding model. In

the tight binding model, we apply an extra poential on one link of the form:

V0(r) = V0Θ(||r − r0|| − l0). (5.68)

That is, we shift the energy of both layers by V0 if we are in a region within l0 of

the midway point of a link. This is the same effect we are considering with the phonon

and electric field in Equation 5.49. In this case, V0 = E0h, where we have h = 0 when

l > l0. The tight binding model should agree with the network model with added phase on

the link. Thus, we can check the results of tight binding model against the results of the

network model to ensure the effect is the same. We diagonalize a tight binding model for

a system at 38.6◦ with l̃0 = l0/L = .3. The result is shown in Figure 5.12. We see good

qualitative agreement with the network model.

Now we predict the bandwidth of the flat band with our network model and compare it

to the tight binding model. The added phase is:

δψ3 =
1

v

∫ 1/2+l0

1/2−l0
V0 =

2V0l0
v

(5.69)
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Figure 5.12: Flat band distortion for system at 38.6◦
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Figure 5.13: Predicted (solid) and measured bandwidth as a function of V0.

The predicted bandwidth, B, is:

B =
δψ3βv

L
= 2V0l̃0β, (5.70)

where β is a dimensionless constant capturing the linear relationship of added phase to

bandwidth in the network model. It is numerically estimated to be .68. We compare this

prediction as a function of the bias strength V0 to the result of a tight binding model in

Figure 5.13. We see good agreement.

5.5 Summary

We have presented evidence for a Peierls like transition in the non-perturbative regime of

twisted bilayer graphene. Our arguments for this transition originate in the scaling pre-

sented in Section 5.1. Thus, the existence of these transitions is guaranteed. We calculated

an estimate for the critical temperature below which these effects should be visible in ex-

periments. These temperatures are attainble.

A good method for detection is observation of the change is density of states with
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temperature. As the twisted bilayer is cooled, the density of states at the energy of the flat

band should soften and spread out as the flat band distorts. In the case of the bilayer in

an electric field, the out of plane distortion is large enough to be observed with a scanning

tunneling microscope.

In neither case did we try to optimize the phonon to produce the largest energy gain

possible. Our calculations are a lower bound on the critical temperature and distortion size

in the real system. Likely, there are other phonons that produce greater energy gains and

larger effect sizes. However, because our calculation serves as a lower bound, we know any

larger effect will observable in experiments. Thus, our work has established the existence

of a Peierls transition in this bilayer system.
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CHAPTER 6

CONCLUSION

In this thesis, we had two main objectives. First, we extended the theory of twisted bilayer

graphene to large angles in the non-perturbative limit. Second, we sought new regimes for

Peierls transitions in bilayer graphene.

In Chapters 2 and 3, we accomplished the first objective. We provided a complete char-

actarization of the interlayer coupling of bilayer graphene and targeted the non-perturbative

regime, where the underlying physics is not understood. We demonstrated the existence

of non-perturbative physics at large angles and the surprising flat bands that result. Fur-

thermore, we provided an effective low energy model based on the band topology of this

system.

In Chapters 4 and 5, we accomplished the second objective. We provided three differ-

ent graphene bilayer setups where a Peierls transition is guaranteed by scaling arguments.

The first system we examined was in the perturbative regime. This yielded a Peierls tran-

sition with temperature too low to be observed. However, the final two systems were in

the non-perturbative regime. We found Peierls transitions that are observable in feasible

experiments.

Bilayer graphene has proven to be a system with remarkably rich physics. In this thesis,

we have seen how the interplay of Dirac equations and commensuration leads to regimes

of surprising complexity. These ideas are not just applicable to graphene bilayers but all

layered two dimensional materials. The construction of such heterostructures is just begin-

ning [41, 42]. Further development and application of these methods in these new systems

should lead to interesting results in the future.
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APPENDIX A

PHYSICAL CONSTANTS OF GRAPHENE

We present useful physical constants for graphene that we use throughout this thesis.

Constant Symbol Value Reference
Graphene Lattice Constant a 2.46 Å [16]
Interlayer Spacing d 3.35 Å [24]
In-layer Hopping t 2.8 eV [16]
Fourier Component 0◦ γ̃0 .11 eV [24]
Fourier Component 38◦ γ̃38 .0023 eV [22]
Lamé Coefficient λ 2 eVÅ−2 [36]
Lamé Coefficient µ 10 eVÅ−2 [36]
Bending Rigidity κ 1 eV [36]
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APPENDIX B

GAUGE FIELDS NEAR 0◦

We present the non-zero gauge fields for a system near 0◦. For simplicity, we choose a

non-orthogonal basis: r = t1T1 + t2T2 such that T1 and T2 are the supercell basis vectors.

A0,x = γ̃0 [cos (2πt1) + cos (2πt2) + 1] (B.1)

A0,y = γ̃0 [sin (2πt2)− sin (2πt1)] (B.2)

Ax,x = γ̃0

[
cos (2πt1)− cos2 (πt2)

]
(B.3)

Ax,y =
γ̃0

2
[−2 sin (2πt1)− sin (2πt2)] (B.4)

Ay,x = −γ̃0

√
3 sin2 (πt2) (B.5)

Ay,y =
γ̃0

2

√
3 sin (2πt2) (B.6)

114



APPENDIX C

GAUGE FIELDS NEAR 38.2◦

We present the non-zero gauge fields for a system near 38.2◦. For simplicity, we choose a

non-orthogonal basis: r = t1T1 + t2T2 such that T1 and T2 are the supercell basis vectors.

We also use the symbol w = tan−1
(

11
5
√

3

)
/2.

A0,x =
γ̃38

4
√

7
(
5 +
√

3
)(−

(
3 + 5

√
3
)

sin

[
2

7
π (t1 + 5t2)

]
+
(

5 +
√

3
)

cos

[
2

7
π (t1 + 5t2)

]
+

2 cos (πt1)

{(
3 + 5

√
3
)

sin

[
1

7
π (5t1 + 4t2)

]
+
(

5 +
√

3
)

cos

[
1

7
π (5t1 + 4t2)

]}
)

(C.1)

A0,y =
γ̃38

4
√

7
(
5 +
√

3
)(
(

5 +
√

3
)

sin

[
2

7
π (t1 + 5t2)

]
+
(

3 + 5
√

3
)

cos

[
2

7
π (t1 + 5t2)

]
+

2 cos (πt1)

{(
3 + 5

√
3
)

cos

[
1

7
π (5t1 + 4t2)

]
−
(

5 +
√

3
)

sin

[
1

7
π (5t1 + 4t2)

]}
)

(C.2)
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Ax,x =
γ̃38

2
(sin

(
12πt1

7
+

4πt2
7

+
π

12
− w

)
+

sin

(
2πt1

7
+

10πt2
7

+
π

12
− w

)
+

cos

(
−12πt1

7
− 4πt2

7
+
π

4
− w

)
+

cos

(
−2πt1

7
+

4πt2
7

+
π

4
− w

)
−

cos

(
−2πt1

7
+

4πt2
7

+
π

12
+ w

)
−

cos

(
2πt1

7
+

10πt2
7

+
π

12
+ w

)
)

(C.3)

Ax,y =
γ̃38

2
(sin

(
−12πt1

7
− 4πt2

7
+
π

4
− w

)
−

sin

(
−2πt1

7
+

4πt2
7

+
π

4
− w

)
+

sin

(
−2πt1

7
+

4πt2
7

+
π

12
+ w

)
−

sin

(
2πt1

7
+

10πt2
7

+
π

12
+ w

)
+

cos

(
12πt1

7
+

4πt2
7

+
π

12
− w

)
−

cos

(
2πt1

7
+

10πt2
7

+
π

12
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)

(C.4)
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Ay,x =
γ̃38

2
(sin

(
−12πt1

7
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7
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+
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Ay,y =
γ̃38
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Az,x =
3γ̃38
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Az,y =− 3γ̃38

4
√

7
(
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√
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