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Abstract— In this paper, we discuss a coordinated haptic 
training architecture useful for transferring expertise in 
teleoperation-based manipulation between two human users. 
The objective is to construct a reality-based haptic interaction 
system for knowledge transfer by linking an expert’s skill with 
robotic movement in real time. The benefits from this approach 
include 1) a representation of an expert’s knowledge into a more 
compact and general form by learning from a minimized set of 
training samples, and 2) an increase in the capability of a novice 
user by coupling learned skills absorbed by a robotic system 
with haptic feedback. In order to evaluate our ideas and present 
the effectiveness of our paradigm, human handwriting is 
selected as our experiment of interest. For the learning 
algorithms, artificial neural network (ANN) and support vector 
machine (SVM) are utilized and their performances are 
compared. For the evaluation of the performance of the output 
of the learning modules, a modified Longest Common 
Subsequence (LCSS) algorithm is implemented. Results show 
that one or two experts’ samples are sufficient for the 
generation of haptic training knowledge, which can successfully 
recreate manipulation motion with a robotic system and 
transfer haptic forces to an untrained user with a haptic device. 
Also in the case of handwriting comparison, the similarity 
measures result in up to an 88% match even with a minimized 
set of training samples. 

I. INTRODUCTION 

APTIC transference of an expert’s skill to non-experts is a 
well-established methodology [1], [10]. By capturing the 

sophisticated operation of a human expert using high 
degree-of-freedom haptic interfaces, a user’s skill can be 
stored, analyzed, and transferred to other human operators. 
The ability of the haptic device to capture and generate forces 
positions the haptic device as both a mediator and a trainer in 
the skill transfer process. 
 What we find common in the various architectures used in 
this transfer process is that the expert’s data is usually not 
altered – i.e. the ground truth that is used without 
modification. It has led to a common architecture that 
primarily copies the expert’s data, instead of compiling the 
generalized representation of the expert’s skills. As such, we 
focus on an approach for manipulating the expert’s data for 
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the purpose of compacting and generalizing the haptic data 
into a form of “haptic knowledge.” 
 The next aspect of the conventional haptic transfer system 
we examine is the utilization of a robotic system in the 
transfer process. Although in some cases two identical haptic 
devices function as a master-slave system, the expert’s skill is 
not always directly identifiable. We propose the bidirectional 
linkage of a robotic system be coupled with a haptic 
interaction process that allows more realistic operation and 
increases understanding of a real-world practice through a 
direct observation of the robot’s performance while operating 
the haptic device. 
 Our research is similar in nature to the concept of “learning 
from demonstration” (also called imitation learning or 
programming by demonstration) in the robotics community, 
as we need to both capture human motions as well as 
mimic/recreate them with a robotic/haptic system. As 
illustrated in Fig. 1, our intention with this work is to integrate 
the learning path with the haptic knowledge flow, to increase 
the efficiency of the haptic training loop and to broaden the 
modality in human-robot interaction with the haptic pathway. 

 
 We select human handwriting as the subject of our 
experiments, since handwriting functions as a good testbed 
for showcasing the complexity of human dexterity. Hand- 
writing is a research topic that is studied in the haptics area for 
training applications, and it is also a challenging area for 
robotics [15], [16]. The reason that handwriting is difficult is 
that it is a three dimensional task, which increases to six 
dimensions if changes in orientation are considered. Most 
importantly, the position and velocity of the writing utensil 
(or pen) can change abruptly over the time-domain, making it 
more difficult to generalize the pattern. For example, to write 
a simple letter ‘b’, one needs to approach a paper with a pen, 
make contact with the pen tip, apply a straight down-stroke 
motion followed by a circular stroke, stop at the same spot as 
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Fig. 1.  Our paradigm of robot-coordinated haptic training. 
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the end of the straight stroke, then finally lift up the pen from 
the paper. This simple depiction is representative of the 
complexity inherent in the motion, variability in velocity, and 
changes in position associated with a handwriting task. 
 To successfully tackle the skill transfer issue, we propose a 
haptically-linked human-robot interactive learning architect- 
ure. In Section II, we describe previous research related to 
this subject matter. We explain the architecture of our system 
and the algorithms in Section III, and we display the 
experimental setup in Section IV. We discuss the 
corresponding results and analysis in Sections V and VI. We 
then conclude our work with a brief summary in Section VII. 

II. RELATED WORKS 
There are a number of research efforts that have 

successfully showcased robotic learning of behaviors. 
Nicolescu and Matarić [2] divided the sequence of tasks 
being performed by a robot into multiple behaviors and 
accomplished the learning and generalization process using 
the longest common subsequence algorithm. Campbell et al. 
[3], [4] introduced the sensory-motor coordination and 
behavioral superposition, which enabled a humanoid robot to 
perform 3D manipulation tasks such as grasping and 
handling. However, their work required many repeated 
training samples  for each short period of subtasks (e.g. 45 
reruns for grasping). Mayer et al. [5] suggested the use of 
Recurrent Neural Networks (RNNs) with long short-term 
memory cells for training the robot to do more complex 
shaped manipulation tasks such as tie-knotting. The 
drawbacks with this approach are that RNNs are hard to train 
and are unable to meet the performance criteria with respect 
to the run-time due to the noise, and only a portion of a 
subtask is learnable. One research effort that is similar to our 
proposed work, in terms of human trajectory learning, was 
conducted by C. Lee in his thesis [6], in which principal 
curves were collected and regenerated using a spline 
smoothing method to find the best-fit for a human trajectory 
data. His work though required the existence of a model to 
derive principal curves of the trajectory. 

Handwriting has been continuously studied in the haptics 
arena, with the primary purpose of aiding in teaching or 
rehabilitation, mainly through the use of haptic guidance. 
Among many haptic guidance related studies, Feygin et al. 
evaluated the effectiveness of haptic and visual guidance in 
the training of perceptual motor skills [9], and Liu et al. 
compared performance associated with combining haptic 
guidance and visual guidance in training new movements for 
rehabilitation [10]. Wang et al. developed a Chinese character 
teaching system using a haptic interface and experimented 
with sequential training accompanied by haptic and visual 
guidance which evaluated the trainee’s memorization level 
[11]. Much more work can be found in the past decade with 
regard to this matter, but the most common characteristic in 
these efforts is that the expert data is carefully recorded and 
just replayed in the training process. Even when the data was 

preprocessed with learning methods, the number of example 
data was usually high (at least more than10 samples). 
 In this work, we adopt supervised learning algorithms to 
process the haptic task performing data provided by a human 
expert, human-handwriting in this case. The data is then 
transformed into a generalized haptic knowledge that is both 
applicable for the haptic system and for the robotic system, 
and in turn is used to transfer skills to the human novice by 
combining the output from both systems. 

III. SYSTEM ARCHITECTURE 
There are three primary components that govern our robot 

coordinated haptic training architecture: the human control 
loop, the robotic learning loop, and the haptic training loop 
(Fig. 2). At first, the human teacher tele-operates the robot to 
perform a task, that is, write a letter in this case. After the 
robot executes the commands from the human operator, the 
learning modules are trained over the temporal sequences of 
the trajectory. Then, the learned modules are used to control 
the robotic system and to autonomously perform the trained 
task. During this process, the haptic device simultaneously 
generates force guidance input through the haptic device to 
the human novice, synchronizing the robotic motion and the 
haptic interface. 

 
A. Control Flow 
In the human control loop, a human expert controls a 

pen-like haptic device (Phantom Omni) which can receive 
continuous six-dimensional position inputs over its 
workspace. The control input is linearly converted to match 
the differences between the workspace of the input device 
and the workspace of the robotic manipulator. The mapped 
pattern then updates the robot controller which transmits back 
the status of the robot, the position and velocity vectors in 
Cartesian space, to the learning module. 

The role of the learning module during the robotic learning 
cycle is  to train the learning algorithms over the expert’s 
haptic data and generalize it into suitable parameters for 
subsequent task implementation. In this learning cycle, haptic 
movement sequences are scaled down to increase the 
performance of the learning algorithm, and passed to the 
learning module along with the scaled data of the robot’s 
previous status. The haptic movement sequence is a sampled 

 
Fig. 2.  Teaching data flow for the robot coordinated haptic training 
system architecture. (Blue arrow: human expert’s teaching flow; Red 
dashed arrow: novice teaching flow with the learning module) 
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trajectory of human handwriting taken over the workspace of 
the haptic device at every haptic device update cycle. After 
each haptic operation is finished, the training data is updated 
and the learning module is trained over the data. 

The processes of up-scaling and down-scaling the input 
data have two merits. First, it transforms the data into a fixed 
uniform range so any learning module can be used 
interchangeably. Secondly, since the 3D motions are 
transformed to fit into a confined volume space, it allows the 
learning module to be trained over any type of motion, 
accounting for variability in ranges of movement and velocity 
constraints, thus minimizing the chance of losing the detailed 
features that define the task. 

Finally in the haptic training loop, the learned module is 
provided with the robot’s previous and current status (which 
are also scaled down), and its output is scaled up and handed 
to both the haptic controller and the robotic controller. The 
output consists of the velocity vector for the next movement, 
corresponding to the position and velocity of each timestep, 
and the sequential output vector controls the robot while, at 
the same time, providing input into the haptic device for 
generating the guiding forces to make the same trajectory. 

B. Learning Algorithms 
Learning a three-dimensional data pattern involves 

predicting the next robot command sequence given its 
previous sequence and its current position at a certain time. 
This was studied previously in [14] only without the effect of 
the time variable. In this work, we trained the learner with and 
without the time variable as an input and observed the 
difference in performances. 

We investigate the performances derived from implement- 
ing the multi-layer feed-forward neural network (NN) and the 
support vector machine (SVM) as our learning algorithms, 
which are selected based on the fact that these two supervised 
learning algorithms possess good generalization capability 
over continuous range space of input data with 
high-dimensional characteristics. 

1) Neural Networks 
For learning in three-dimensional Cartesian space, we first 

implement the neural network regression algorithm. The 
time-series data patterns are collected from the human control 
sequences, and fed into our multi-layer feed-forward neural 
network (NN) modules to train them recursively over the 
pattern. 

 

As illustrated in Fig. 3, the NN module takes as inputs the 
current arm’s end position in 3D space, the differential values 
of current position and previous position (representing the 
velocity of the arm’s end position), and the timesteps from the 
beginning of the sequence. The timestep input is needed to 
provide additional dimension, since the time value can 
differentiate between states when there are intersections or 
circular motions in writing. 
We train 3 networks (corresponding to each X,Y,Z space) for 
each letter dataset. The parameters for the network 
configuration are primarily based on our a priori knowledge, 
and only a few parameters are changed to evaluate over 
complex letters. The back-propagation [12] method is 
adopted to optimize the networks and the training is 
terminated if the error term reaches a certain allowable 
criteria—details are discussed in the results section. The 
networks then go through a preliminary evaluation process 
and a real-system evaluation in sequence. 

2) SVM 
SVM [7], [13] is another popular machine learning 

algorithm that shows good performances in data classifi- 
cation and dimensional reduction. The SVM uses a kernel 
method to find the best hyperplane between high dimensional 
training datasets in a relatively fast time compared to other 
classification algorithms. Since it is crucial in robotic learning 
problems to guarantee accurate control and strong resilience 
against disturbances while maintaining short training time, 
we choose to utilize SVM for our human trajectory regression 
problem.  

We use ε-SVR approach to map our 7 dimensional real 
valued input data to continuous real valued 3 dimensional 
outputs, forming a set of SVM classification over continuous 
output range space. The objectives of ε-SV regression are in a 
given training set of N instance pairs (xi , yi), i = 1, ..., N where 
xi in RN , firstly to find a function f(x) that has at most ε 
deviation from the actually obtained targets yi for all the 
training data, and secondly to make the function as flat as 
possible at the same time. Specifically, it requires solving the 
following optimization problem: 

∑
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training vectors ix  to a higher dimensional space by the 
transformation function )( ixϕ . Then, SVM is used to find a 
separating hyperplane with the maximal margin in this higher 
dimensional space. The kernel functions we use are as 
follows: 
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Fig. 3.  Training loop by a human teacher and  robot’s self-writing loop. 
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Throughout Eq. (1) to (4), C and γ affect the accuracy of 
the SVM module most significantly, where C>0 is the penalty 
parameter of the error term and γ is a kernel parameter. In our 
experiment, to find good values for C and γ in a reasonable 
amount of time, we adapted the grid search method [8]. 

C. Haptic Guidance 
Forces for haptic guidance are generated both in the human 

control cycle and in the haptic training cycle. During the 
human control cycle, the haptic device creates a passive 
guidance force feedback which generates potential-like 
centering forces to the operator’s hand position. The primary 
objective of this guidance is to provide a reliable control 
environment, since it is difficult for a human operator to 
maintain a steady position in a 3 dimensional workspace 
without any support in the device. The haptic device is 
updated every 10 ms (100 Hz), so as the human operator 
moves the haptic device, the passive potential force follows 
the human operator’s position and creates continuous holding 
forces, enabling a passive haptic support. 

In the haptic training loop, after the learning cycle, a 
guiding force field is also applied to the device, except that 
this time the learning module generates a potential-like force 
field based on the current position and velocity.  In this 
regard, the haptic force guidance becomes an active guidance 
toward the next position, thus guiding the human trainee to 
follow the same trajectory as the human expert  - i.e. guidance 
in writing the same letter. 

D. Validation Algorithm (Similarity Measure) 
As the last step of the experiment, the robot’s writing 

trajectories are processed to evaluate the robot’s performance 
given the specific human training example. We adopt and 
implement a LCSS (Longest Common Sub-Sequence) 
algorithm, which was originally designed to compare 
common phrases in texts. 

We modified the algorithm to measure the differences in 
two vectors by extracting the longest sequence of similar 
trajectory slices. This algorithm increases the number of ‘hits’ 
if the error between the two trajectory slices is within a 
certain threshold, and keeps the maximal value of the ‘hits’ if 
not. With this method, we measure the similarity between the 
original pattern and the pattern created by the robot, and 
provide a computational match between the two writings. 

The algorithm is described in detail in Eq. 5. For  the 
comparing of a sequence A(i) and an original sequence B(i), 

 

  

⎪
⎩

⎪
⎨

⎧

−
<−Δ−−+

=

=

                                 , ))(),1((max( 
 )()(      , ))1(),1((1 

             )( ),(                                             , 0 
) )( ),( (

,,,,

otherwiseiBiALCSS
iBiAifiBiALCSS

nulliBiAif
iBiALCSS

zyxzyx δ

(5) 

IV. EXPERIMENT 

A. System Setup 
The robotic platform used for our haptic training system 

consists of a 5 DoF (degrees-of- freedom) robotic manipula- 
tor with a 6 DoF input haptic device, the Phantom Omni. A 

human operator, or namely the human teacher, manipulates 
the Omni to control the manipulator to perform a 
sophisticated task, and a PC connected to the system performs 
the required calculations such as running the machine 
learning algorithms.  
The data to be learned are constructed as a set of arrays of real 
valued data taken over time. The human control data consist 
of a set of trajectories over 3D space, and the related data that 
we learn are the set of motion vectors corresponding to the 
trajectories from current positions to the next positions. 
Computed over the time-series data, the final learned result 
becomes a function F such that  
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B. Experimental Setup 
To test ouralgorithms, we select letters ‘3’, ‘b’, and a word 

‘ML’. The numbers ‘3’ and ‘b’ are chosen since the ‘3’ is 
written in one continuous stroke consisting of two similar 
curves, and ‘b’ is selected since it contains two basic strokes, 
a straight line and a circle with a sharp turn in between, 
sharing an intersection. These two letters are thus suitable for 
evaluating whether the NN and the SVM learning modules 
are capable of learning spatiotemporal patterns. The word 
‘ML’, abbreviation for ‘Machine Learning’, is selected to 
validate if the learning modules can learn to write multiple 
letters as a whole sequence. 

For the SVM training and implementation process, we 
utilize the LibSVM [8] to implement the SVM learner in our 
system. LibSVM provides basic SVM functions in an 
integrated software package for support vector classification, 
regression, and distribution estimation.  

V. RESULTS 

A. Preliminary Results 

 
After the system was setup, a preliminary experiment was 

initiated to see whether our haptic system was able to learn a 
trajectory pattern. One training example of writing a number 

 
Fig. 5. Robot Arm writing ‘3’ after learning the pattern wth SVM.

    
Fig. 4.  Pioneer3AT mobile robot with 5DoF robotic arm, and the GUI. 
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‘3’ was given to the learners, and after training, outputs from 
the learning modules were observed given the same input 
data. This was not a cross-validation, and it would require 
more validation dataset to be a realistic test of performance. 
However, the primary goal was to check if the algorithms 
could actually perform regression over complex three- 
dimensional patterns with only a single training data example. 

The results were quite satisfactory, and as expected, the 
NN module showed a tendency to produce smoother output 
compared to the initial data, while the SVM tried to follow 
more details in the pattern as shown in Fig. 6. 

 
B. Neural Network Results 
With the NN as a learning module, the commonly used 

parameters were 7 input nodes, {4,8,12,16} hidden layer 
nodes, and one output node for each NN structure. Also, the 
learning rate of 0.15, momentum term of 0.85, error limit of 
5%, and iteration count of 3000 were the other parameters 
used, with minor variances depending on the dataset. 

As shown in Fig. 7, the robot learned the pattern of writing 
‘3’ with a single input pattern (Fig. 7, left). Although the 
trajectory became smoother than the human pattern, it 
promptly regenerated (Fig. 7, center) the two sequential 
curves for the number ‘3’ as the human had written. 

Then, the letter ‘b’ was demonstrated twice for the robot 
(Fig. 8, top), and the robot’s execution, with the timestep as 
an input to the NN and without the input parameter of 
timestep, were recorded. When ran without the timestep 
information, the robot miscalculated at the first straight 
down-stroke and drew a slightly bent curve, and after 
finishing the circle it kept circling again since the velocity and 
orientation matched again whenever it returned. However, 

when the time parameter was used as an input vector to the 
NN, it drew a perfect straight line at the first stage, and 
reduced speed after drawing one circle (Fig. 8, bottom left). 
The NN module even resulted in a more smooth and 
generalized pattern than the original data. 

Lastly, ‘ML’ was provided to the NN learner, and after a 
few minutes of training, the robot started to write a deformed 
‘M’ with a smoothed out ‘L’ quickly (Fig. 9). 

 

 

 
The only parameter we usually had to change for the NN 

was the number of hidden layer nodes. The common rule of 
thumb for the middle layer node number is the average of 
input and output node numbers, which in our structure is 4. 
The 4 middle nodes worked fine with connected characters 
such as ‘b’ and worked ok with ‘3’, but with more complex 
letters such as ‘M’ or ‘A’, the nonlinearity in the pattern 
increased and required a larger number of hidden layer nodes. 
Yet, training over 4 different ranges of middle layer nodes of 
{4,8,12,16} was enough to find a well trained network. 

C. SVM Results 
In grid search for the SVM learner, a set of (C, γ) pairs are 

tried over the range and the one with the best cross-validation 
accuracy is selected. Specifically, the pair that generates the 
least MSE (mean squared error) is kept per each iterations. 

 

 

 
Fig. 6.  Top: original data for letter ‘3’, middle: pattern generated by 
NN for letter ‘3’, bottom: pattern generated by SVR_Linear for letter 
‘3’. 

 
Fig. 9.  Original data (left) and the ANN result for the word ‘ML’ 
(right). 

 
Fig. 8.  Letter ‘b’: human writing patterns (top) and robot’s writing 
patterns (bottom). Bottom left: result with NN learner, bottom right: 
result with SVR learner. 

 
Fig. 7.  Letter ‘3’: human writing pattern (left) and robot’s writing 
pattern (center, right). Center: result with NN learner, right: result with 
SVR learner.
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Exponentially growing sequences of C and γ is a well-known 
method to identify good parameters. In our experiment, the 
tested C and γ ranges are 102−  to 102 , and they are searched 
exhaustively. One of the advantages of this approach is that 
the search can easily be parallelized, because each (C, γ) pairs 
are independent. 

Scaling is also used to derive better performances. The 
dataset is scaled down before training and scaled up when the 
learning module is in control. The scaled range is -1 to 1. By 
means of scaling method, we were able to get two positive 
results. One, it created  more elaborate output data, and two, it 
dramatically shortened the training time. Especially, when we 
used a linear kernel for training, the order of training time 
decreased from minutes to seconds.  

As shown in Fig. 7-8, for the characters ‘3’ and ‘b’, the 
SVM module showed successful learning with more 
elaborate drawings, recreating the details of human 
hand-writing. Especially, when the robot wrote ‘b’, the SVM 
learner stopped moving exactly when it finished writing the 
letter, but the NN module looped the last stroke (a circle) 
again. 

However, for complex patterns such as ‘ML’, the SVM 
learner didn’t work; the grid search couldn’t find a proper 
parameter combinations and the module couldn’t manage to 
write any letters, while the NN tried to write ‘ML’ although 
the letters were smoothed out excessively. 

D. Haptic Guidance Result 
Haptic guidance forces were generated with a potential-like 

field, shifting the centers to the sequential points resulting 
from the learning algorithms (NN / SVM) thus creating a 
series of guidance for writing a letter. So the difference 
between the expert’s trajectory and the haptic guidance 
becomes the same as the difference between the expert’s data 
and the data created from the learning algorithms. We leave 
the discussion of the user study for a future paper, and 
visualize the resulting haptic guidance trajectory in Fig. 10.  

 
The clear and smooth trajectory of this writing training 

sample is due to the good training result of the NN learner, 
while the actual robot’s trajectory in the attached video seems 
to have unnecessary movements. The reason for this 
discrepancy lies in the following facts: First, the learning 
process is performed over the user’s haptic data, and the 
generalized haptic knowledge is recreated as a control input 
to the robotic and the haptic systems; Secondly, the 

manipulator with our robotic system is a low-cost educational 
device, having a slow response-time and a low accuracy 
movement with back-lashes, thus limiting us from achieving 
perfect closed-loop control. With these limitations, however, 
we prove that our algorithms can successfully perform actual 
learning and transference of the haptic knowledge. 

VI. ANALYSIS 

A. Data Compressibility 
The first factor we looked for, in order to show the 

effectiveness of applying machine learning algorithms on our 
problem, was the ability to compress the data. As shown in 
Table I and Fig. 11, the original pattern data for the writing 
samples of ‘b’, ‘3’, and ‘ML’ were 27kB, 22kB, and 36kB 
each. However, the trained NNs noticeably downsized them 
to 2kB, 4kB, and 6kB each, while the SVMs only reduced the 
size by 2/3, resulting in 17kB, 14kB, and 21kB each. 

 

 

 
B. Training Time Comparison 
The second feature we observed is the training time. 

Compared to the NN, which is known for its long training 
time, the training time for the SVM regression was 
surprisingly fast (Table II). The NN usually took 10~30 times 
longer than the SVM’s training time, while the SVM usually 
finished training in a few seconds. 

However, the additional fact we gathered is that the SVM 
learners are very sensitive to the parameters (especially with 
C and γ) on each dataset, while the NNs usually trained over 
several datasets with the same parameters. So we had to run 
grid-search for every datasets we collected, and the time 
taken for the parameter search summed up with the time for 
training a single NN, which was around 1 minute. 

 

 

TABLE II 
TRAINING TIME FOR ANN AND SVM OVER 3 DATASETS (UNIT=SEC) 

Learner ‘3’ ‘b’ ‘ML’ 
NN 57 62 183 

SVM 1.39 5.62 9.31 

TABLE I 
DATA COMPRESSION RATIO OF ANN AND SVM (UNIT=KB) 

Learner ‘3’ ‘b’ ‘ML’ 
NN 2 4 6 

SVM 17 14 21 
Original Data 27 22 36 

 
Fig. 10.  Haptic guidance for ‘b’ with NN module. Each arrow 
represents the change in the center of haptic guidance with the size 
corresponding to the speed in between guiding points, together with 
color representation(blue=slow, green=modest, red=fast change). 

 
Fig. 11.  Data compression ratio of ANN and SVM over 3 datasets. 
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C. Validation 
The last parameter that we observed was the measure of 

similarity, that is, how well the learning module had learned 
from what the human teacher had taught (and only with a few 
teaching trials). As shown in Table 3, the LCSS results for the 
character ‘3’ were 65.7% and 87.7% for each ANN and SVM 
learners. Although both learners created letter ‘3’ that was 
legible, the SVM’s result were closer to the features of the 
original data which is the ‘human hand writing’, and the 
results from our similarity measure algorithm support that. 
For ‘b’, both algorithms created good results, but the SVM’s 
LCSS result was higher, due to the fact that the SVM learned 
more details such as the crooked circle shape or the edge at 
the end.  

However, both algorithms have limitations as well. When 
challenged to learn to write a word ‘ML’, we only achieved 
42.9% match from the ANN and failure in training with the 
SVM. 

 

VII. DISCUSSION 

We have proposed a human-robot coordinated interactive 
haptic training architecture, in which the demonstration of the 
robotic system is linked with the haptic control flow and the 
machine learning algorithms transform the haptic data into 
the compact haptic knowledge. Results show that our system 
successfully creates generalized haptic knowledge from only 
1 or 2 training examples, and the system is capable of 
transferring the haptic knowledge both through the haptic 
force guidance as well as through the robotic demonstration.  

As expected, the SVM results in learning more detailed and 
accurate strokes than the NN, since the SVM algorithm tries 
to find more optimal classifiers by keeping specific features. 
However, the NN exhibits better results if the sequence gets 
more complex, due to the NN’s powerful capabilities in 
generalization.  

The next step we are planning to take is to apply this 
learning process to other human-motor skills, such as object 
manipulation or basic exercise patterns. To expand the area of  
 
 

application, we will also expand the modalities of haptic feed- 
back. The enhanced haptic learning process will be able to 
increase the performance of haptic training, such as medical 
training system and skill transfer for the visually impaired. 
Future research will also focus on applying our methodology 
to robot-assisted rehabilitation and training. 
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Fig. 12.  Training time for ANN and SVM over 3 datasets. 

TABLE III 
LCSS RESULT COMPARISON FOR ANN AND SVM 

Learner ‘3’ ‘b’ ‘ML’ 
NN 65.7 % 83.5 % 42.9 % 

SVM 87.7 % 85.6 % - 
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