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Abstract—This paper presents a high-speed periodic signal
acquisition technique using incoherent sub-sampling and back-
end signal reconstruction algorithms. The signal reconstruction
algorithms employ a frequency domain analysis for frequency
estimation, and suppression of jitter-induced sampling noise. By
switching the sampling rate of a digitizer, the analog frequency
value of the sampled signal can be recovered. The proposed
signal reconstruction uses incoherent sub-sampling to reduce
hardware complexity. The results of simulation and hardware
experiments indicate that the proposed signal reconstruction
algorithms are able to reconstruct multi-tone high-speed periodic
signals in the discrete time domain. The new signal acquisition
technique simplifies signal acquisition hardware for testing and
characterization of high-speed analog and digital signals.

Index Terms—signal reconstruction, incoherent sub-sampling.

I. INTRODUCTION

ASampling-based signal acquisition device is frequently
utilized for high-speed signal measurement and char-

acterization. The sampling rate of such instrumentation is,
however, limited in practice. To overcome such a limitation,
high-speed digital oscilloscopes are equipped with equivalent-
time sampling functions, which employ a fixed frequency
sampling clock combined with a swept delay circuit. The
digitizer captures the horizontal sweep of a periodic waveform
at a relatively low sampling speed. Using timing information
obtained from the swept delay circuit, the digitized samples are
processed digitally to re-build the signal for a single cycle. In
this sampling technique, the accuracy of the swept delay line
is critical for minimizing measurement timing error. However,
due to imperfections in the delay circuitry, nonlinearity and
random errors are possibly introduced into the delay time;
consequently, this timing error degrades the measurement
accuracy. Another approach for digitizing high speed signals
using low speed clocking mechanisms is the parallel sampling
architecture. In this architecture, multiple samplers are used in
parallel to digitize the common analog signal using indepen-
dent sampling clocks that contain dedicated timing delay. In
[1], the total real-time sampling rate of 20-Gsps was achieved.
In the parallel sampling method, imperfections in the multiple
delay lines degrade the measurement resolution in the same
manner as equivalent-time sampling.

For high-speed signal spectral analysis, coherent sub-
sampling is utilized [2][3]. In this approach, an analog wave-
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form is digitized over an integer number of cycles (coherency)
at a sampling speed which is lower than the Nyquist rate. Co-
herent sampling eliminates unwanted discontinuities in sam-
pled signals and minimizes the spectral leakage of the signals
in the frequency domain. However, the coherent sub-sampling
method (for spectral analysis) has limitations. First, enabling
coherency requires additional hardware for synchronizing the
sampled analog signal to the sampling clock. Second, spectral
content outside the sampling bandwidth is aliased, so the
analog frequency information of the sub-sampled signal is lost
unless the frequency of the sub-sampled signal is known pre-
cisely and the sub-sampling rate is adjusted to accommodate
for that. Finally, infrequent glitches and timing noise in the
signal are hard to be observed in spectrum analysis due to its
averaged power measurement.

In contrast to the coherent sub-sampling based spectral
measurement, a time-domain measurement using incoherent
sub-sampling is presented in this paper. First, using the
proposed back-end signal reconstruction algorithms, a raw
incoherently sub-sampled signal is re-mapped to represent
the signal within its single cycle (in the discrete time do-
main). Note that the proposed signal acquisition technique
does not require timing circuitry such as a delay line or a
synchronization module: such hardware-based timing func-
tions are replaced by digital processing algorithms which do
not require the use of additional analog hardware. From the
reconstructed waveform in the discrete time domain, signal
parameters such as rise/fall time, pulse width/height, signal
overshoot/undershoot and ringing can be determined for test
and measurement purposes (even though not evaluated in this
paper). Random timing noise of the signal can be also observed
in the discrete time domain. It is shown that spectral leakage
related measurement inaccuracy due to incoherent sampling
can be overcome using digital signal processing. In addition,
by switching the sampling speed, the analog frequency value
can be recovered from sampled signals. The analog frequency
information of sub-sampled signals is, otherwise, lost due to
spectrum aliasing distortion.

The core innovations of the signal acquisition technique
proposed in this paper are:

• simplified signal acquisition architecture in terms of
RF/mixed-signal designs.

• software implementation of time synchronization hard-
ware used in traditional digital oscilloscopes.

• reduced measurement and test cost due to their ease of
deployment and simplicity.
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Fig. 1. Time re-mapping of an incoherently sub-sampled signal: (a) an analog
periodic signal shown with its sampled data (in the raw sequence), and (b)
the reconstructed waveform with the re-mapped samples in the discrete time
domain.

The remainder of the paper is organized as follows. In
Section II, the proposed signal acquisition method and related
theories are described. Hardware experiment results and re-
lated practical issues are summarized in Section III. Finally,
conclusions are discussed.

II. PROPOSED SOFTWARE-BASED SIGNAL
RECONSTRUCTION

To prepare a sampled signal utilized by the proposed
software-based signal reconstruction technique, a high-speed
periodic signal, whose operation frequency is higher than half
the sampling rate of the digitizer, is incoherently sub-sampled
at a fixed rate. As shown in Figure 1-(a), the data points of
the sub-sampled signal are coarsely distributed in time. Even
though the time resolution of the sampled signal is not enough
to completely reconstruct its real-time waveform—the Nyquist
sampling criteria, the sub-sampled signal can be reconstructed
in non-real-time, where the samples are re-mapped to the
discrete time domain [0, 2π) as illustrated in Figure 1-(b). Each
sample point contributes to re-building the waveform in the
equivalent-time sense. For such signal re-mapping, standard
instrumentation utilizes additional hardware such as delay and
trigger signal generators. In the proposed approach, however,
the signal re-mapping is enabled by the software-based signal
reconstruction (described in Section II).

As shown in Figure 2, the proposed incoherent sub-sampling
and signal reconstruction setup consists of an analog-to-digital
converter (ADC), sampling oscillator and digital signal pro-
cessor (DSP). In addition, the frequency switching function of
the sampling oscillator is necessary for determining the analog
frequency value of the sub-sampled signal. The ADC inco-
herently sub-samples a periodic analog signal in the absence
of synchronization circuits, and the DSP performs frequency
domain analysis to reconstruct the signal in the discrete time
domain in the equivalent-time sense.

The proposed signal acquisition system operates under the
following condition: (1) the frequency of the analog signal to

Fig. 2. The proposed incoherent sub-sampling (fx>fs/2) and signal
reconstruction setup.

be acquired is assumed to be unknown, and (2) the sampling
oscillator contains low far-out phase noise.

A. Discrete Frequency Estimation

Discrete frequency is the frequency measure of discrete
signals determined in the range of [0, π) (the term is defined
in Appendix A). To reconstruct the waveform from coarsely
sampled data, estimating the discrete frequency of the sampled
signal is essential as described in Section II-B.

The discrete frequency value of a sampled signal can be
found by locating a fundamental spectral peak of the discrete
spectrum of the sampled signal. Such discrete spectral analy-
sis, however, suffers a finite spectral resolution ∆f , which is
defined by

∆f =
π

n
, (1)

where n is the number of samples. The value of ∆f is hardly
driven small enough since the sample size n is, in practice,
limited by the available memory size of a digitizer. For this
reason, any discrete frequency values can be measured only
at the frequency that is an integer multiple of ∆f . Due to
this reason, the discrete frequency estimation (an essential
procedure in the proposed signal reconstruction method) is not
accurate enough without further assistance described below.

To improve the resolution of discrete frequency estimation,
pre- and post-conditioning techniques can be applied to the
discrete Fourier transform (DFT) [5]. First, pre-conditioning
is used to minimize the spectral leakage of the incoherently
sampled signal. The incoherently sampled signal contains a
discontinuity at the beginning and the end of the sample
sequence. Such a discontinuity causes spectral leakage of the
discrete spectrum as shown in Figure 3-(a), which results in
reduced accuracy of the discrete frequency estimation. To min-
imize signal discontinuity and spectral leakage, the sampled
signal is multiplied by a window function (windowing) and
then transformed to the frequency domain using DFT. For
instance, the Gaussian window, denoted by ω, can be applied
to the sampled signal using the normalized Gaussian function:

w[k] = e−(k−l/2)2/(2σ2), (2)
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Fig. 3. Spectral analysis for sub-sampled data: (a) with and without pre-
conditioning (marked as squares and circles respectively), and (b) spectral
peak estimation using post-conditioning (a magnified view of the squared
region in (a)).

where l denotes the window length, σ the standard deviation,
and k=1, 2, ..., l. The formula l=n holds true when the
window is applied to the entire sampled signal. It is shown
in Figure 3-(a) that the spectrum obtained from the DFT with
signal pre-conditioning, denoted by X , contains less spectral
leakage than the unconditioned spectrum. Second, in signal
post-conditioning, the spectral points are interpolated to locate
the spectral peak with enhanced resolution. In Figure 3-(b),
the abscissa of the spectral maximum, which falls between
the spectral bins, is located by interpolating the magnitude
of three frequency bins: one with the highest magnitude and
its two neighbor bins. Using the Gaussian interpolation, as
an example of interpolation methods, the discrete frequency
estimation, f̂d, is calculated using the formula:

f̂d = ∆f ·
(
m +

ln X[m+1]
X[m−1]

2 · ln X[m]2

X[m+1]X[m−1]

)
, (3)

where m denotes the index of the frequency bin with the
highest magnitude.

In computer simulation, the discrete frequency estimation
accuracy obtainable from the pre- and post-conditioning was
evaluated. The ADC models with sampling rate of 500 Msps,
10-, 12- and 64-bit resolution, were constructed. Note that
static nonlinearity was not incorporated in these models. Ana-
log signals (sinusoids) with various frequencies were examined
to determine the discrete frequency estimation accuracy at
various signal frequencies: the frequency of the analog signal
was swept with the center value of k∆f ≈ 1.275756 GHz
(k = 10451, ∆f ≈ 0.1220703 MHz), which falls exactly at
the frequency bin, and with the range of ±∆f/2. For signal
pre- and post-conditioning, a Gaussian window with r = 8
(the ratio between the window length n and the standard
deviation) and Gaussian interpolation were used, respectively.

Fig. 4. Discrete frequency estimation error of digitizers with bit resolution
of 10 (denoted as [+]), 12 (denoted as [o]), and a value approaching machine
precision (denoted as a solid line).

In Figure 4, the discrete frequency estimation errors are plotted
for various swept signal frequencies. According to the plot,
the amount of the estimation error depends on where the
signal frequency resides between the DFT frequency bins.
The simulation results of the highest resolution ADC show
that the maximum estimation error is 0.0087% of ∆f at the
signal frequency of k∆f ±1/4∆f . As the ADC bit resolution
decreases to 12 (denoted as [o]) and 10 (denoted as [+]), the
estimation errors increase but are bounded by 0.015% of ∆f .

B. Signal Reconstruction in the Time-Domain

In this section, the sampled signal x, sequenced according
to raw sampling time as shown in Figure 1-(a), is re-mapped
to represent the signal within a single fundamental cycle, as
shown in Figure 1-(b). For signal re-mapping, the discrete
frequency measure f̂d obtained in Section II-A is required to
determine the discrete time of the samples. Such a discrete
frequency-to-time conversion (described in Appendix A in
detail) can be expressed using the modulo operation. The
discrete time of the k-th sample, x[k], is determined in the
discrete time range of [0, 2π) by

td[k] = mod
(
td[k − 1] + f̂d , 2π

)
, (4)

where f̂d is the estimated discrete frequency, and mod(a, b)
is the modulo operation which finds the remainder of division
of a by b. Note that this formula is the discrete version of the
analog frequency-to-time conversion shown below.

φx(t) = φx(t − ∆t) + ωx · ∆t, (5)

where φx, ωx, t and ∆t denote the analog phase, angular
frequency, time and time increment of a periodic signal,
respectively. In the analog domain, the angular frequency
defines the phase of a periodic signal at a particular time. In
the discrete domain, on the other hand, the discrete frequency
specifies the discrete time of a sampled signal at a particular
sample point, as described in Equation 4. The only additional
component in Equation 4 as compared to Equation 5 is the
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Fig. 5. Reconstruction of sub-sampled clock signal: (a) data in a raw
sequence, (b) the reconstructed waveform, (c) the magnified view of the
squared region in (b), and (d) the reconstructed waveform resulted from an
erratic frequency estimation.

modular operation, which is required for the discrete time to
be confined within the range of [0, 2π).

Due to possible estimation error in the discrete frequency
measure f̂d with respect to the true discrete frequency value
f∗d , the discrete time of the sampled signal can be determined
incorrectly: the error in td[k] accumulates over k (= 1, 2, ...,
n). Thus, a small error εfd

in the estimated discrete frequency
can result in large discrete time errors for large values of k

εtd
[k] = mod

(
k · εfd

, 2π
)
, (6)

εfd
=

∣∣∣f̂d − f∗d

∣∣∣ . (7)

According to the equations above, the discrete frequency
estimation error should be lower than 1% of ∆f to bound
the discrete time error to 0.01.

The proposed phase re-mapping method was simulated
using a 10-bit ADC without additional amplitude and timing
noise. An analog signal (square wave) was acquired at the
sampling rate of 1.159 times the analog signal frequency. The
discrete frequency of the sampled signal was located with
an estimation error of 0.0097% of ∆f . Using the discrete
frequency measure, the sub-sampled signal was reconstructed
into a single cycle of the waveform. The sub-sampled raw
data and the reconstructed signal are shown in Figure 5-(a)
and -(b), respectively. Figure 5-(c) is a magnified view of
the squared area in Figure 5-(b). To show how the discrete
frequency estimation error distorts the reconstructed signal,
the error of 1% of ∆f was intentionally applied to f̂d. The
waveform reconstructed from the erratic frequency measure is
plotted in Figure 5-(d), which shows discrete time dispersion
of ≈0.01π (peak-to-peak value).

C. Jitter-Induced Noise Suppression

In case a sampling oscillator is unstable and generates a
signal with timing noise (or jitter), the sampled signal obtained
from this unstable time-base contains jitter-induced sampling

noise. The waveform that is reconstructed from such a noisy
sampled signal also involves discrete time noise in the discrete
time domain. This type of noise in the reconstructed waveform
is represented as a time-dispersed waveform in the discrete
time domain.

To compensate the reconstructed waveform for jitter-
induced sampling noise, a discrete frequency tracking method
is used. Timing jitter of an unstable oscillator can be seen
as unstable (or time-varying) operation frequency in the fre-
quency domain. For this reason, the time-varying frequency
information of the sampling oscillator is used for jitter tracking
(or compensation), instead of using the constant (or averaged)
frequency value as shown in Equation 4. In addition, the time-
varying frequency information does not need to be measured
directly from the sampling oscillator, rather observed indirectly
from time-varying components in the discrete spectrum of the
sampled signal. Note that the time-varying (discrete) frequency
tracking method only suppresses long-term jitter components
since it does not track short-term fluctuations in sampling
frequency.

Time-varying discrete frequency can be detected by using
the short-time Fourier transform (STFT) of the sampled signal,
where each of the time-windowed signal spectrum represents
the frequency components within the time period of the
time-windowed signal. The estimated discrete frequency value
(from the STFT results) as a function of the sample index k,
f̂d[k], is used for the discrete frequency-to-time conversion
(the modification of Equation 4):

td[k] = mod
(
td[k − 1] + f̂d[k] , 2π

)
. (8)

Since f̂d[k] tracks the frequency fluctuation of the sampling
oscillator over time, Equation 8 results in the discrete time
value of td[k] that compensates for jitter of the unstable
sampling oscillator. Thus, the reconstructed signal based on
td[k] contains less dispersion in the discrete time domain.
In fact, the jitter compensation bandwidth is determined by
the discrete frequency detection bandwidth of the STFT-based
spectral analysis.

The proposed noise suppression technique was evaluated
using computer simulation. A harmonically related multi-
tone signal (the fundament of ≈3.853 GHz and its third and
fifth order harmonics) were generated and digitized (assum-
ing no quantization errors). First, the sampled signal was
reconstructed into the [0, 2π) discrete time range with and
without the jitter-induced noise suppression. The performance
of the noise suppression was evaluated by comparing the
noise-suppressed result to the one without noise-suppression.
On the merit of simulation, the discrete time dispersion of
the reconstructed waveforms can be quantized directly from
the plot of the sample index versus phase (time) error as
shown in Figure 6. The phase noise applied to the 1 GHz
sampling oscillator is denoted by (a). The phase estimation
(b) is based on Equation 4 (the constant discrete frequency
estimation), and the phase estimation (c) is from Equation 8
(the time-varying discrete frequency estimation). The time-
varying discrete frequency value used to generate the plot (c) is
derived by using the time window width of 1024 samples and
shown in Figure 7. The reconstructed waveforms based on (b)
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Fig. 6. Phase noise estimation: (a) the instantaneous phase noise of a
sampling oscillator, (b) the phase noise estimation based on the constant
discrete frequency measure, and (c) the phase noise estimation using the
STFT-based time-varying discrete frequency detection.

Fig. 7. STFT-based time-varying discrete frequency estimation.

and (c) are shown in Figure 8(a) and Figure 8(b) respectively.
The amounts of discrete time dispersion in the two waveforms
were calculated from the data in Figure 6. The reconstructed
signal without the noise suppression in Figure 8(a) contains
the discrete time dispersion of ≈0.12067 rms, and the one
with the noise suppression in Figure 8(b) contains the discrete
time dispersion of ≈0.027786 rms.

D. Analog Frequency Recovery

Conventional sub-sampling architectures are not able to
extract analog frequency information from digitized signals
because of spectrum aliasing distortion. Only the discrete
frequency is retained in discrete signals. On the contrary, to
enable a digitizer to specify the analog frequency of sampled
signals, the proposed technique utilizes a sampling rate switch.
As the sampling speed deviates by a small amount (digitally
controlled in hardware), the analog frequency of the sampled
signal can be located by observing the vector of discrete line
spectra movement. In the case that analog frequency value fx

(a) A simulation result of the reconstruction of a multi-tone signal without
jitter-induced noise suppression.

(b) A phase-noise suppressed form of Figure 8(a) using the time-varying
discrete frequency estimation and jitter-induced noise suppression technique.

Fig. 8. Comparison of the signal reconstruction with and without jitter-
induced noise suppression.

resides in the k-th Nyquist range

(k − 1) · fs

2
< fx < k · fs

2
, (9)

where k is a positive integer and fs is the sampling frequency,
the spectral peak in the discrete spectrum is located at

f̂d = |fx − bk

2
cfs| ·

π

fs/2
, (10)

by definition of discrete frequency described in Appendix A.
The absolute value operator, |fx − bk

2 cfs|, is introduced to
address a folding effect which occurs when a sampled signal
is aliased in the discrete frequency domain, and the term, π

fs/2 ,
is a normalization factor for the discrete frequency range [0,
π). If the sampling speed of the digitizer is switched from fs

to fs + ∆fs, the spectral peak is re-located to

f̂d + ∆f̂d = |fx − bk

2
c(fs + ∆fs)| ·

π

(fs + ∆fs)/2
. (11)

Subtracting Equation 10 from Equation 11, the amount of
discrete frequency shift is determined as

∆f̂d =

{
−fx · 2∆fs

fs(fs+∆fs) · π k = odd
+fx · 2∆fs

fs(fs+∆fs) · π k = even
. (12)

Solving for fx using Equation 12, the analog frequency value
fx is preliminarily determined as,

fx = |∆f̂d

π
| · fs(fs + ∆fs)

2∆fs
. (13)

Note that ∆f̂d and ∆fs are possibly incorrect due to limited
measurement accuracies. The analog frequency value fx ob-
tained in Equation 13 is used only for determining the Nyquist
range index k. Resolving for fx using Equation 10, fx is
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Fig. 9. The spectra of the multi-tone periodic signal (sub-sampled at 500
Msps).

determined using k, the Nyquist range index determined using
Equation 9.

fx =

{
bk

2 cfs + f̂d·fs

2π k = odd
bk

2 cfs − f̂d·fs

2π k = even
, (14)

assuming the sampling frequency fs is known accurately.
The amount of the discrete frequency shift, ∆f̂d, due to the

digitizer sampling frequency switching is, in general, smaller
than DFT frequency resolution. However, the value of ∆f̂d is
still resolvable if signal pre- and post-conditioning described in
Section II-A are used to enhance DFT resolution. To determine
the feasibility of the analog frequency recovery, a computer
simulation was performed. In the simulation, a noisy multi-
tone signal (≈1.276-GHz square wave which consists of up
to the ninth harmonic of the fundamental tone, which shows
an SNR of 95.91 dB) was incoherently sub-sampled at the
sampling speed of 500 Msps. In Figure 9, the spectra of
the multi-tone signal (before applying the sampling frequency
switching) are shown. First, the analog frequency cannot be
extracted due to spectrum aliasing. Second, the fundamental
tone, which is noted as (e) in Figure 9, can be identified
only under the assumption that the fundamental frequency
contains the highest power. To resolve these limitations, the
same multi-tone signal was re-sampled at the sampling speed
of 500.1 Msps. Then, spectral locations of two sampling
results are compared to each other for specifying ∆f̂d. The
discrete frequency shift of the spectrum (e) due to the sampling
frequency switching is shown in Figure 10. The obtained
simulation results are summarized in Table I: The spectrum (e)
represents the fundamental tone (1.276 GHz) of the sampled
multi-tone signal, and the spectra (d), (c), (b) and (a) are the
3rd, 5th, 7th and 9th harmonics respectively.

E. Problematic Sample Distribution

In some problematic sampling cases, a reconstructed signal
contains samples that are stuck together in the discrete time
domain. Under such conditions, the discrete time values of
multiple samples are identical, and those samples locate at
the same position in discrete time. Consider, for instance, a

Fig. 10. The sampling speed switching differentiates the discrete frequency
of the sampled signal-(e): (x) at sampling speed of 500 Msps, and (o) at
sampling speed of 500.1 Msps.

TABLE I
SAMPLING FREQUENCY SWITCHING RESULTS

Tone ∆fs (kHz) f̂d (·π) ∆f̂d (·π) k fx (GHz)
(a) 100 0.070992 0.009183 46 11.482
(b) 100 0.277546 0.007143 36 8.931
(c) 100 0.484101 0.005101 26 6.379
(d) 100 0.690656 0.003061 16 3.828
(e) 100 0.897211 0.001020 6 1.276

coherent sub-sampling case in which two entire cycles of a
periodic signal are sampled at eight points in time. The discrete
time values of the samples are consecutively 0, (1/2)π, π,
(3/2)π, 0, (1/2)π, π, (3/2)π. The first four samples form
one cycle of the signal, and the other four samples construct
another cycle of the signal, which is identical to the previous
one. Some samples are stuck to the others, and the information
contents of the samples are duplicated. For this reason, the
effective sampling rate is reduced to twice the Nyquist rate. To
prevent this, the number of cycles of the signal to be sampled
can be changed (three cycles of the signal are sampled at
eight points in time). The resulting samples are not stuck (or
close) to each other. Such a solution to problematic coherent
sampling is generalized and shown in Appendix B. In contrast,
perfect duplication of sample contents may not occur in
incoherent sub-sampling, but the effective sampling rate can
be compromised for a similar reason. Consider an incoherent
sub-sampling case in which 2.01 cycles of a periodic signal are
sampled at eight points in time. This incoherent sub-sampling
case is very similar to the previous problematic coherent sub-
sampling case. The samples are not perfectly stuck together,
but located very close to each other. Since the samples are
not equally distributed over the signal, the effective sampling
rate of the digitizer is compromised. As a solution to this
problematic incoherent sub-sampling case, the sampling speed
can be adjusted and the number of cycles to be sampled is
different from that of any problematic coherent sub-sampling
cases. See Appendix B for a generalized formulation.

A reconstructed signal with stuck samples is shown in
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Fig. 11. Distribution of the digitized samples: (a) a localized reconstructed
signal, (b) the histogram obtained from (a), (c) an unlocked reconstructed
signal, and (d) the histogram obtained from (c)

Fig. 12. Picture of the incoherent sub-sampling digitizer with the interface
to an FPGA.

Figure 11(a) using computer simulation. The corresponding
sample distribution contains null bins as shown in Figure
11(b). To release the stuck samples, a small offset frequency
was injected to the sampling frequency, and the analog signal
was re-sampled. The re-sampled signal is distributed over the
entire dynamic range of the signal as shown in Figure 11(c)
and shows an unlocalized distribution as shown in Figure
11(d). Note that, in hardware experiments, the sampling fre-
quency control is enabled by a frequency controllable sampling
oscillator (a voltage-controlled surface acoustic wave (SAW)
oscillator with a digital frequency control is used in Section
III).

III. HARDWARE EXPERIMENT

The proposed incoherent sub-sampling architecture was im-
plemented on a printed circuit board (PCB) utilizing a digitizer
(National Semiconductor ADC08B3000) with 8-bit resolution,
3-GHz bandwidth, 4-kByte built-in memory as shown in
Figure 12. The sampling clock for the digitizer was provided

by a surface acoustic wave (SAW) based voltage controlled
oscillator (Crystek CVS575) whose nominal frequency is 719
MHz. This oscillator is equipped with a digital control to
its operation frequency. In addition, the signal reconstruction
was performed using a field programable gate array (FPGA)
(XC3S200 Spartan3) on a separate PCB.

A. Discrete Frequency Estimation

When the discrete frequency estimation is evaluated in hard-
ware, it may be less accurate than that in software simulation
due to hardware non-idealities. In this subsection, first, the
accuracy of the discrete frequency measurement, which is
described in Section II-A, is verified in hardware. Second,
a fine tuning of the obtained discrete frequency value fd is
performed to obtain a more accurate value of fd. In this fine
tuning, the discrete frequency deviation (up to 1% of ∆f ) is
added the initially estimated value of fd, and the deviated
frequency value is re-applied to the discrete frequency-to-
time conversion shown in Equation 4. The sampled signal is
iteratively reconstructed based on each deviated value of fd.
Based on the iterative method, the value of more accurate
measures of fd can be obtained by searching for the best
reconstructed signal (the least discrete time dispersion).

For experimental purpose, a 1.5-GHz sinusoidal waveform
was generated from a signal generator (Agilent E4437B), and
fed to the signal acquisition board. The discrete frequency
of the sampled signal was calculated in the FPGA using
the pre- and post-conditioning technique described in Section
II-A, and denoted as f̂d in Figure 13. To evaluate frequency
measurement accuracy, the discrete time dispersion of the re-
constructed signal (based on f̂d) was computed and denoted by
the label DFT-based in Figure 13. The deviation of up to ±1%
of ∆f is applied to the initially obtained discrete frequency
f̂d, and the sampled signal is iteratively reconstructed. The
discrete time variance values of each reconstructed signal are
plotted. The lowest discrete time variance (phase dispersion)
assumably corresponds to the exact measure of the discrete
frequency. The estimated discrete frequency value after the
fine tuning (denoted by the label variance-based) shows the
estimation error of ≈(-)0.2% of ∆f in this particular experi-
mental setup.

B. Jitter-Induced Noise Suppression

To evaluate the performance of the jitter-induced noise
suppression technique described in Section II-C, a 1-GHz
digital clock signal generated by an Agilent 8133A signal
generator is incoherently sub-sampled. In Figure 14(a), the
reconstructed signal based on the constant discrete frequency
measure is shown. Any dispersion of the reconstructed signal
in the discrete time domain is due to sampling time errors,
assuming the sampled analog signal is clean. Using the time-
varying discrete frequency measure, the signal reconstruction
was revised as shown in Figure 14(b). This noise-suppressed
reconstructed waveform contains less phase spread compared
to the waveform in Figure 14(a). To quantize the amounts of
phase dispersion of the waveforms in Figure 14(a) and 14(b), a
virtual clean reference waveform is necessary. Such a reference
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Fig. 13. Discrete frequency estimation by searching for the reconstructed
signal with the least time variance.

waveform was obtained by regressing the waveform in Figure
14(b). Comparing to the obtained reference waveform, the
discrete time dispersion of the two waveforms was calculated.
In Figure 14(c), the dispersion of the waveform in Figure
14(a) is shown in the histogram (a) showing the standard
deviation of ≈0.0031472, and Figure 14(d) calculated from
the waveform in Figure 14(b) represents the standard deviation
of ≈0.0014099.

C. Comparison with Standard Instrumentation

To compare the proposed signal acquisition technique with
the other standard instruments, a high-frequency analog signal
(pulse) was digitized using both the proposed signal acquisi-
tion board and a commercial digital oscilloscope (WavePro
7000A, 20-Gsps effective sampling rate, 3-GHz bandwidth)
using the experimental setup shown in Figure 15. Through
the path (a) noted in the figure, differential analog signals
were digitized (sub-sampled) by the signal acquisition board,
and the discrete frequency estimation and signal reconstruction
were performed in the following FPGA and computers. To
recover the analog frequency of the digitized signals, the
sampling speed was switched to a slightly different frequency
(∆fs ≈ 1.305 MHz) using the digital control implemented on
the FPGA board.

The results of sampling 1-GHz, 2-GHz and 3-GHz pulse
signals are plotted in Figure 16, where (a), (c) and (e) are
the results acquired from the WavePro 7000A, and (b), (d)
and (f) are from the proposed method. Notice that displayed
waveforms from the WavePro 7000A are the averaged values,
which do not represent a dispersion due to sampling time
inaccuracy. In comparison, the waveforms obtained from the
proposed method contain 4096 samples without averaging. In
addition, the calculated rise/fall time, peak-to-peak voltage and
slew rate are summarized in Table II.

D. Clock Jitter Requirement

A high-speed ADC demands a low-jitter sampling clock to
preserve signal-to-noise ratio (SNR). In particular, the best

(a) A reconstructed signal without jitter-induced noise suppression.

(b) A reconstructed signal with jitter-induced noise suppression.

(c) Discrete time error (dispersion) histogram of the signal 14(a).

(d) Discrete time error (dispersion) histogram of the signal 14(b).

Fig. 14. Hardware experiment of jitter-induced noise suppression.

Fig. 15. A hardware experiment setup for signal acquisition using both
(a) the DSP-based incoherent undersampling technique and (b) a commercial
digital oscilloscope.
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(a) A 1-GHz reconstructed clock signal obtained from WavePro 7000A
(averaging mode).

(b) A 1-GHz reconstructed clock signal obtained from the proposed method.

(c) A 2-GHz reconstructed clock signal obtained from WavePro 7000A
(averaging mode).

(d) A 2-GHz reconstructed clock signal obtained from the proposed method.

(e) A 3-GHz reconstructed clock signal obtained from WavePro 7000A
(averaging mode).

(f) A 3-GHz reconstructed clock signal obtained from the proposed method.

Fig. 16. Comparison with the standard instrumentation and the proposed
signal acquisition.

TABLE II
SIGNAL MEASUREMENT FROM DIGITIZED SAMPLES IN FIGURE 16

Case Risetime (ps) Falltime (ps) Pk-Pk (mV) Slew Rate (V/ns)
(a) 135 129 376 2.228
(b) 145 148 403 2.333
(c) 120 125 316 2.207
(d) 95 102 250 2.305
(e) 101 100 319 2.527
(f) 94 105 333 2.834

case noise floor of the digitizer (National Semiconductor
ADC08B3000), which is used for the hardware experiment
in Section III, is -49.9 dBc/Hz. From this level, the noise
floor increases further due to noise factors such as sampling
clock jitter, intrinsic ADC aperture jitter, ADC nonlinearity,
and thermal noise voltage. If only aperture jitter and sampling
clock jitter are considered (assuming the other noise factors
are negligible), total SNR can be derived from these jitter
values and the analog signal frequency fx [13]. According
to manufacturer datasheets for the digitizer and the sampling
oscillator (Crystek CVS575), which are used for the hardware
experiment, the aperture jitter and the sampling clock jitter are
specified as 400 fs rms and 200 fs rms (max, 0.05-80 MHz)
respectively. The achievable total SNR is calculated for various
frequencies of the analog signal to be sampled as shown in
Table III.

TABLE III
ACHIEVABLE SNR (FOR VARIOUS ANALOG FREQUENCY fx)

fx (GHz) SNR (dB) fx (GHz) SNR (dB)
0.5 49.1 3.0 40.9
1.0 47.4 3.4 39.7
1.5 45.5 4.0 38.6
2.0 43.8 4.5 37.7
2.5 42.2 5.0 36.8

In addition, the far-out jitter (phase noise) of the sampling
clock oscillator is critical because the signal acquisition time
of the proposed technique is relatively short; it takes 2.848
µs to collect 4096 samples for 1.438 Gsps sampling speed.
The incorporated sampling oscillator presents phase noise of
-138.11 dBc/Hz and -137.72 dBc/Hz at the offset of 100 kHz
and 1 MHz, respectively.

IV. CONCLUSION

A high-speed signal acquisition and software-based signal
reconstruction techniques are presented in this paper. In the
FPGA, an incoherently sub-sampled signal is reconstructed to
form a single cycle of the waveform. The analog frequency of
the sampled signal is recovered using sampling speed switch,
which is incorporated in the sampling oscillator. According
to experimental results, the proposed signal acquisition and
reconstruction technique is able to obtain precise reconstructed
waveforms.

APPENDIX A
DISCRETE FREQUENCY AND TIME

A brief overview of discrete frequency and time is described
in this appendix. The definitions of discrete frequency (in case
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of spectral aliasing) and discrete time are given as follows.
Definition 1: Discrete frequency fd, as the analogue for

discrete signals as analog frequency fx is to continuous
signals, is determined as

fd =
min(|fx − n · fs|)

fs
· 2π, (15)

where n is an integer, the function min() returns the smallest
value of the input augments with various n, fs is the sampling
frequency, and the discrete frequency value fd is in the range
of [0, π). The function min(|fx − n · fs|) models spectral
aliasing due to undersampling, and 2π

fs
normalizes the discrete

frequency to π.
Definition 2: Discrete time of a sampled signal is determined

as
td[k] = mod(k · fd, 2π), (16)

where k is the index of the sampled signal, fd is the discrete
frequency of the sampled signal, the function mod(x, y)
returns (x − n · y) and n is the greatest integer less than or
equal to x/y, and the discrete time value td[·] is in the range of
[0, 2π). Equation 16 is expanded and equivalent to Equation
4 shown in Section II-B.

td[k] = mod
(
(k − 1) · fd + fd, 2π

)
= mod

(
mod((k − 1) · fd, 2π) + fd, 2π

)
= mod

(
td[k − 1] + fd, 2π

)
. (17)

Note that the hat symbol attached to fd in Equation 4 indicates
an estimated value.

APPENDIX B
PROBLEMATIC SAMPLING COHERENCE

Incoherent sampling can be almost coherent even though
not intended depending on the sampled signal frequency. Some
of coherent sampling is problematic where multiple samples
of a reconstructed waveform contain the same (or similar)
discrete time value, which is called stuck samples in this paper.
When such sampling coherency occurs and how to escape from
the coherency are described in this appendix. First, coherent
sampling is defined as follows.

Definition 3: Coherent sampling is the sampling of a pe-
riodic signal, where the sampled signal represents an integer
number of its cycles within the sampled set.

fd

2π
=

nc

ns
, (18)

where fd denotes the (fundamental) discrete frequency of the
sampled signal, nc the integer number of cycles, and ns the
number of samples.

When the rational number nc/ns in Equation 18 is re-
ducible, multiple samples of the sampled signal are stuck
together in the reconstructed waveform in the discrete time
domain [0, 2π). As the result of such special cases of coherent
sampling, gaps among samples in the discrete time domain
may be too wide. Assuming that the gap larger than 2/(2απ)
is unacceptable, the sampling at the following frequency bands
is considered problematic in terms of sample distribution.

k

2α−1π
− ∆fe < fd <

k

2α−1π
+ ∆fe, (19)

∆fe =
( 2
2α−1π

− 2
2απ

)
/(ns − 2α−1)

=
2

2α(ns − 2α−1)π
,

where fd denotes the discrete frequency of the sampled signal,
∆fe the escape frequency, ns the number of samples, and k =
0, 1, ..., α-1, α. The equispaced frequency values k/(2α−1π)
in Equation 19 correspond to the cases of stuck samples
(the sampling coherence with the reducible rational number
nc/ns). By moving the sampling frequency apart from such
frequency values, stuck samples start to separate. The scape
frequency ∆fe is the amount of the frequency movement
required to separate the samples and force the discrete time
gaps less than or equal to 2/(2απ).
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