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SUMMARY 

As the demands for cost efficient, low power wireless communication solutions 

increases, analog and radio frequency (RF) systems have been implemented in scaled 

nanometer nodes. At these nodes, multi-dimensional process variations affect the fidelity 

of these systems resulting in highly unstable yields, in-field wear-out, and signal-integrity 

problems. Besides random defects, high parametric variations in the fabrication phase 

have a significant impact on quality and yield of these systems. As technology nodes 

scale into the extreme nanometer regime, the “guarantee by design” approaches lead to 

highly pessimistic designs that require significant area and/or power. As a result, the 

process variations in these systems have mandated the need for increased efforts in post-

manufacturing test and diagnosis phases of the devices.  

As the trend for integration of complex SoCs continues, the lack of access to internal 

nodes and cost considerations has increased the testing focus towards system-level test 

techniques. Traditionally, the measurement of the system specifications requires the use 

of high cost instrumentation and long test times. These system-level test specifications 

need to be obtained in an intelligent manner to reduce the overall manufacturing costs of 

these devices. At the diagnosis-level, traditional process variation management involving 

the use of test/kerf structures to measure individual process parameter is insufficient in 

terms of diagnosis resolution and turnaround time.  

Finally, it is necessary to develop fast and efficient techniques for performing post-

manufacture tuning in the devices for improving the yield and reliability of these systems. 

Current state of the art techniques for yield improvement through post-manufacture 

tuning involves performing trimming or switching of various resistors and current 

sources to compensate for an individual specification. Further, these trimming techniques 

are, in general, performed sequentially leading to high tune or trim times in the 

production environment. To offset the parametric performance deviations in these 



 xxii 

analog/RF circuits and systems, intelligent post-manufacture compensation framework 

that can be used to tune concurrently multiple specifications of a system in a time-

efficient manner is required. In addition, such techniques need to be able to compensate 

for process variation with optimal power performance to ensure reliable operation.  

In this thesis, the above-mentioned bottlenecks in test, diagnosis, and self-tuning/self-

healing are addressed. A concurrent test and diagnosis methodology is developed to 

obtain the specifications of the DUT as well as the critical circuit process parameters 

measurements on a per-die basis using specialized diagnostic signatures. The die-level 

simultaneous test and diagnosis approach aids in identifying process variations and 

providing feedback for correcting it in a quick and efficient manner. An on-line 

performance monitoring methodology that uses real-time signal to obtain the 

performance degradation characteristics of the single input single output (SISO) RF 

system is investigated. A rapid low cost system-level test technique has been presented 

for advanced wireless systems such as the multiple input multiple output orthogonal 

frequency division modulation (MIMO-OFDM) RF systems. 

A framework for performing low cost, signature driven post-manufacture tuning of RF 

systems is developed. Depending on the system computational resources and tuning 

knobs, different approaches have been detailed for SISO/MIMO-OFDM systems. 

Considering reliability and power budget limitations of the system, an adaptive power 

performance tuning approach has been developed that attempts to maximize the device 

performance considering the system power constraint.  

The strategies developed in this work facilitate rapid diagnosis of process variations as 

well as tune for these variations leading to yield improvement. The solutions presented in 

this thesis have a significant impact in reducing the manufacturing cost and the time to 

market of these systems. The outline of the thesis is presented in Figure 1. 
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Figure 1: Dissertation outline and scope. 

 

 

Process variation in analog/RF 

systems in nanometer nodes 

Low-cost post-manufacture 

techniques 

Test and 

diagnosis 

 Post-manufacture 

tuning  

· Die-level test and process parameter 

diagnosis

· System-level testing

· On-line diagnosis  

· DSP-assisted monitoring and tuning 

· On-chip digital assisted tuning 

· DSP-assisted monitoring, analog tuning 

 Improved process monitoring, 

correction for yield 

Reduced manufacturing 

costs

SISO and MIMO 

OFDM front-ends

Analog/RF circuits 

and systems



 

1 

CHAPTER 1.    INTRODUCTION 

The increasing demands for higher data rates and low power wireless solutions have 

required the implementation of complex RF systems in nanometer nodes. Increased push 

towards system on chip (SoC) solutions has made the implementation of integrated 

wideband multi-standard wireless systems feasible. Commercially available state-of-the-

art radio products integrate conventional communication standards along with application 

specific wireless solutions such as FM radio (100 MHz), RFID (13 MHz), digital TV 

(800-1600 MHz), GPS (1.5 GHz), Bluetooth (2.4 MHz), 802.11 (2.4 and 5 GHz), WiMax 

(2.5-3.5 GHz) etc. [1]. The recently adopted IEEE 802.16e and IEEE802.11n standards 

implement multiple input multiple output (MIMO) front-end chains with multiple 

antennas in a quest for increased data rates. To reduce the cost of these systems, the 

integration of multiple chains on a single chip is essential. The ITRS roadmap for RF and 

mixed-signal technologies developed for wireless applications emphasizes on the 

integration of various systems and process technology nodes in a single platform as 

shown in Figure 2. A critical aspect for co-existence of these multi-standard systems is 

the high fidelity of each of these front-end modules. The high fidelity ensures that there 

exists minimal interference between the different chains. 

 However, the resulting circuits implemented in these scaled nodes have been 

increasingly susceptible to manufacturing process variations. Further, low-power design 

techniques have made the goal of obtaining high yields at these nanometer nodes a 

greater challenge. At nodes such as 60 nm and below, process variations in the 

manufacturing of silicon systems by integrating analog/RF with digital pose a significant 

challenge to designers [3]. These challenges include problems in signal integrity, 

verification, and process variations among other problems. As increased efforts are been 

made to implement more analog and digital IP on the same chip, the optimization of a 
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technology node for digital performance has led to significant yield challenges for analog 

components.  

 

Figure 2: Future trends in wireless systems (Source: ITRS [2]). 

Performance deviations (both inter-die and intra-die variations) due to parametric 

variations are of significant importance in wideband and multi-standard wireless devices 

over its narrowband counterparts. This challenge is due to the need to maintain the 

performance over a wider range of frequencies (broadband signals) as well as produce 

minimal interference. Further, as the number of components or chains in multi-standard 

wireless devices increase, the possibility of potential yield loss increase rapidly as well. 

Due to input-output pin constraints, it is highly unlikely that most of these systems have 

access to internal nodes. Hence, testing these complex SoCs consisting of complex 

circuitry that have limited access to internal nodes in production environment in an 

intelligent and low cost manner is critical for commercial success. The low yield returns 

in these systems further mandate the use of post-manufacturing calibration/tuning 

methodologies to improve performance metrics. 
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1.1. Process Variation and Yield loss  

As analog and RF systems are implemented in nanometer nodes, the yield of these 

systems is affected by multi-dimensional process variation. Increased variance in process 

parameters as the technology nodes scale has been reported extensively in prior literature. 

In [4], the authors show that due to process variations, the worst-case specification 

variations in a VCO module is close to 43 %. The authors provide a technique to account 

for these process variations in the design flow using optimization techniques. In [5], it has 

been reported that the intra-die variation in threshold voltage has doubled as technology 

scaled from 130 nm to 45 nm. The substantial effect of drain induced barrier lowering 

(DIBL) on threshold voltage of CMOS transistors at 65 nm node is shown in [6]. The 

increased process variations cause the corresponding specifications of the devices to vary 

beyond the acceptable limits thereby leading to lower yields. To compensate for 

increased process variations, new design approaches have been formulated. Design 

centering approaches [7] that try to compensate for the effect of process variations on a 

given design by using genetic algorithm-based yield optimization on neutral network 

process models has been investigated in the past. Another approach is designing circuits 

based on process corners. In this approach, the circuit is designed such that the circuit’s 

specifications are within limits for extreme process parameter variations [8]. However, 

such a technique leads to over design of the circuit, usually at the cost of higher power 

consumption.  

Current industrial practices for performing process variation simulation at circuit-level 

involve the use of Pelgrom models [9]. Pelgrom models have been used traditionally, to 

analyze the effect of mismatches and process variations in a group of transistors. While 

these are commonly used in the design product development kits (PDK), they are not 

accurate enough for chips of larger dimensions. Due to the increased process variations, 

leading to parametric as well as catastrophic variations in the DUT, there exists a need for 
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development of low cost, time efficient techniques for test and diagnosis of analog/RF 

circuits. These manufacturing variations, along with other signal integrity impairments 

such as coupling (arising due to higher levels of integration and packaging), lead to 

degradation of the overall Quality of Service (QoS) metric in wireless systems. To 

improve yield in the presence of these high multi-dimensional process variations, it is 

essential to devise methods of performing post manufacturing tuning at different levels 

depending on the availability of test and tuning resources.  

To summarize, as complex analog and RF systems are implemented in scaled 

nanometer nodes, for achieving low manufacturing costs and improved yields, the 

following aspects need to be addressed: 

· Fast and low-cost techniques for testing and diagnosis of complex SoCs are 

required. These include techniques that are suitable for production and in field 

environment. 

· Rapid post-manufacturing techniques need to be developed to increase the 

yield of the process-skewed instances in the production environment 

considering power and reliability.  

1.2. Conventional Specification Testing of Analog/RF Circuits and Systems 

Conventional approach for production testing follows a sequential approach to test for 

each individual specification of the device. As modern analog/RF system DUTs consists 

of a slew of specifications in different modes, during the characterization phase of the 

product, bench test is performed to determine each specification along with its guard 

bands. During the production-testing phase, a set of critical specifications is identified 

based on various criteria as well as initial yield characteristics [10]. The DUT is then 

tested in a sequential manner for these critical specifications using certain test-ordering 

techniques to minimize the test cost of the DUT. Each test configuration involves a 
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particular hardware setup, application of the test stimulus, settling time of the DUT 

response, response capture, and finally analysis. Further, tests of different nature such as 

DC and AC tests are applied to the DUT using different signal sources and relays are 

used to switch between the different paths on the load board. With increasing levels of 

integration, the production test cost of complex wireless systems can amount to as much 

as 45% of total manufacturing test cost [11]. For example, a wireless MIMO transceiver 

is characterized by hundreds of specifications in different set of modes as shown in [12]. 

Some of the critical specifications for these chips include gain, non-linearity or distortion 

parameters such as input referred third order intercept point (IIP3), I/Q amplitude and 

phase imbalances, noise figure, DC offsets, transmitter input impedances, transmitter 

non-linearities, and VCO phase noise.  

1.3. Alternative Methodologies for Testing of Analog/RF Circuits  

To reduce the test cost and test time of standard specification-based testing approach, a 

number of techniques that involve concepts such as test ordering, compaction, test 

generation, designs for test have been developed. The authors in [13][14] provide a good 

overview of techniques for testing analog, mixed-signal and RF circuits. Defect-oriented 

testing is a technique that focuses on identifying faults in the system [15]. In this 

technique, fault models or dictionaries are developed through correlation of data. These 

fault models are used to avoid tests with high cost or test time. In quiescent current 

testing (Iddq), the current from various DUTs is monitored to provide information of 

fault coverage [16]. Structural testing of circuits is another low cost methodology for 

performing testing of analog/RF circuits [17]. In structural test, as opposed to functional 

test, the test emphasis is on the circuit implementation rather than the circuit 

specification. Oscillation-based test technique is discussed in [18]. In this technique, the 

oscillation frequency of the DUT under certain condition is measured to determine its 

functional specification. In VDD ramp test, the current signature over time is monitored 
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as the VDD of the DUT is stepped up, based on which the pass/fail decision is obtained 

[19]. Alternate test techniques or supervised learning techniques have been used in the 

past to replace specification tests [20][21][22][23]. In this technique, regression models 

are developed to predict multiple specifications of the device using the test measurements 

obtained from the DUT. The DUT is excited by an optimized stimulus such that its output 

response shows good correlation to specifications in the presence of process variations. 

Besides building regression models, another low cost test methodology for multiple 

specifications determination is the use of iterative model-solving techniques for mixed-

signal/RF systems. In this methodology, the system is represented using a behavioral 

model whose parameters can be iteratively changed such that its characteristics match 

that of the DUT. In [24], random OFDM frames are used as test inputs, to compute a 

number of specifications by analysis of demodulated data. The use of optimized test 

stimulus for diagnosis of RF specifications using nonlinear model solving was 

demonstrated in [25]. In [26], the authors implemented different learning techniques to 

determine go/no-go tests for RF devices.  

Another approach for low cost testing of wireless and wireline systems is the loopback 

testing. In this technique, the output of the wireless transmitter is fed back to the receiver, 

with or without frequency translation using an external mixer. The received signal is then 

processed in the tester or digital baseband (in built in test (BIT) methodology) to 

determine if the device is good or defective [27][28]. To perform loopback testing 

without external components, an internal programmable switch can be used between the 

transmitter output and receiver output. However, the isolation provided by the switch and 

the non-linearity effects of the switch are critical parameters that need to be taken into 

account.  

BIT methodology is a low cost technique that is particularly useful for complex SOC 

where access to all the internal nodes might not be feasible. To perform BIT testing of 



 7 

high frequency devices, various sensors such as the peak detectors, RMS detectors and 

envelope detectors have been used to obtain the low frequency or DC signal 

corresponding to high frequency outputs [29][30][31]. To implement BIT methodology, 

area overhead and signal integrity effects due to the sensor loading are some of the 

important aspects that need to be considered. 

1.4. Diagnosis for Analog/RF Circuits and Systems   

In the context of integrated circuit manufacturing, diagnosis is the process of 

determining the causes of variation/failure in the DUT caused by manufacturing 

variations. As technology nodes continue to scale, die-to-die and wafer-to-wafer has 

variations have become significant resulting in inconsistent device yield. Ideally, the 

circuit should be designed to ensure that the specifications of the device, under process 

variations, lie within the acceptable region of the device. The acceptable region of a 

device is a complex multi-dimensional hyper surface that defines a region where all the 

specifications are within its lower and upper bounds. However, as process technology 

scales, ensuring compliance with acceptable region limits consistently is a challenge. 

This challenge is due to the high variability and time-varying effects of process 

parameters and their interaction effects occurring in production environment. As a result, 

continuous monitoring of process deviations and correction of these deviations are 

required for shorter time to market and yield sustainability of the device. This process of 

monitoring, determine the cause of a parametric shift or failure and providing feedback is 

referred to as diagnosis in this thesis. As process shifts are tracked, the variation in these 

shifts is fed back to the fab, to prevent any yield loss.  

The causes of failure/variation can be attributed at various levels of manufacturing. 

These include manufacturing variations such as etch variation, photo resist variations, 

chemical composition variations, photolithographic variations. These variations are 

reflected in variations in the Spice-level process parameters such as Tox, Vth0, Lln, 
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mismatches in capacitances, transconductance of transistors, and other layout parameters 

etc.  

Depending on the nature of the variations, there exist two different types of yields 

namely functional and parametric yield. Functional yield of a device characterizes the 

defects occurring due to the random nature of process variations. Parametric yield 

characterizes the failure of devices due to systematic shifts in process parameter values 

that cause the system specifications to spread beyond acceptable limits. In deep 

nanometer nodes, parametric variations and the associated yield problems are more 

prevalent and challenging as opposed to functional yield problems, which can be pruned 

out with minimal testing efforts at early stages of manufacturing testing. Diagnosis 

efforts in this work focus solely on developing an efficient methodology for identifying 

parametric variations with high resolution without adding significant overhead to existing 

manufacturing cycle, and providing feedback at the earliest to correct for these process 

deviations. 

Current state-of-art diagnosis efforts rely on electrical test (e-test) measurements and 

their correlation to parametric variations in specifications. Using the above information, 

parametric yield loss is characterized and yield management is performed. On each 

wafer, the e-test parameters are measured at a limited number of test sites. To account for 

any deterministic e-test parameter variation that would result in yield loss, a significant 

amount of data needs to be collected for a long timeframe. Faster feedback can be 

achieved by increasing the number of test structures per wafer. However, the drawback of 

such a technique would be longer test time and increased silicon area.  

In the past, parametric test measurements [32] for zero-yield wafers were used to 

predict process parameters. Data-mining [33] techniques have been used for diagnosis of 

process integration errors. In [34], process variation testing using sensing circuitry and 

frequency domain analysis, to obtain information pertaining to specific regions of a 
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wafer, is proposed. In [35], the authors use Bayesian theory aided by the construction of 

fault dictionaries to detect large parametric variations. To increase diagnostic resolution 

they perform online computations as well. Defect filtering and regression modeling were 

used to diagnose faults in a LNA circuit in [36]. Certain parameters of the circuits such as 

R, L, and C are obtained by analyzing the polynomial coefficients of the behavioral 

models of the analog circuit in [37]. A methodology for diagnosing critical process and 

circuit parameter values from diagnostic performance measurements (generated from 

specific measurements at critical nodes of the circuits) using reverse solution of forward 

regression models (mapping process/circuit parameters to the test measurements) was 

developed in [38]. In [39], the nearest neighbor residual (NNR) technique is implemented 

on Iddq tests to help identify outliers. 

In digital chips such as microprocessors, a common trend in the recent years is to 

implement ring oscillators, delay lines for speed measurements, and memory matrices to 

identify certain MOSFET process parameters such as transistor threshold voltages, 

channel length, gate capacitance, drain to source resistance etc. [40][41]. These on-die 

measurements can be used to compensate for local process variations using adaptive bias 

of substrate etc. However, such techniques are not common for analog chips because of 

the high area overhead involved in implementing the on-die parametric measurements. 

A technique for performing concurrent testing and diagnosis of analog/RF circuits in 

production environment on a per chip basis is developed in this work. This allows both, 

the specifications and critical spice-level device parameters, of the analog/RF circuits to 

be predicted accurately from the DUT response with lower test-time and test-hardware 

cost compared to standard testing techniques and allows for rapid yield debug and 

process correction.  
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1.5.  System-Level Specification Testing 

Recent years have witnessed a surge for high data rate portable wireless 

communication devices while low power wireless front-ends have become ubiquitous in 

day-to-day life. Currently, complete system-on-chip (SoC) implementations of WLAN 

modules are available in the wireless market. To meet the demand for higher data rates, 

MIMO systems have rapidly emerged as leading technology. Within a relatively short 

time, MIMO has been adopted into modern communication standards such as WLAN, 

WiMax and LTE. To maintain healthy profit margin, with higher levels of integration, it 

is necessary to develop efficient system-level testing solutions, thereby eliminating the 

test time and test cost associated with performing individual specification tests for each 

RF sub-module. While circuit-level specifications characterize the analog/RF modules of 

the individual circuit, system-level specifications such as error vector magnitude (EVM), 

bit error rate (BER), transmit spectral mask, receiver sensitivity, complementary 

cumulative distribution (CCDF), and  transmit center frequency leakage can be used to 

quantify the end-to-end imperfections that exist in the wireless systems. These quantify 

the effect of all the imperfections that are present in analog/RF front end and the mixed 

signal circuits (such as ADC and DAC clock jitter, offsets, distortion, quantization noise 

etc.) as well as the interaction efforts that exist between these impairments.   

Testing advanced RF modules, especially for system-level metrics such as EVM, 

BER, and CCDF etc. is challenging due to the capital and computational costs involved, 

thereby limiting parallel multi-site testing architectures. In the past, specialized patterns 

of test stimuli have been used to develop regression-based prediction of system 

specifications of single input single output (SISO) transceiver in [42]. This technique 

requires an explicit training phase on hardware measurements and hence uses standard 

testing procedures for calibration.  
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A number of techniques have been developed for determining the system-level EVM 

of SISO systems. An order of EVM computation test time is saved using technique 

discussed in [43] by sharing data while testing different modulators. A built-in test 

approach that uses the baseband processor for EVM computation is discussed in [44]. In 

[45], the authors develop methods for enhancing EVM test using refined EVM 

computation in conjunction with measurement of path input-output impedances. In [46], 

the authors discuss a technique for performing EVM testing by rotation of constellation 

points in a WLAN OFDM SISO system. In [47], the authors propose the decomposition 

of transceiver performance into static and dynamic non-idealities for calculating the 

EVM metric of RF SISO systems using regression functions. In [48], the authors propose 

design of simple digital design for test (DFT) circuits in the baseband of the RF 

transmitter to determine the overall transceiver EVM. It was shown that EVM could be 

determined from knowledge of RF system non-linearities and the noise spectrum by 

expressing EVM as an analytical function of these parameters [49]. All the above 

techniques have been proposed to determine system-level EVM specification for SISO 

systems. In [50], the authors provide a low cost methodology for performing BER testing 

of pulsed transceivers. In [52], a technique is developed for reducing the test time to 

determine the EVM and CCDF specifications for MB-OFDM UWB systems. The 

technique uses specialized digital streams obtained through test generation for exciting 

the DUT rather than the conventional pseudo-random digital inputs used to test the above 

specifications. These digital streams excite the imperfections of the system in an optimal 

manner as compared to the standard digital streams thereby reducing the time taken to 

determine these specifications.  

In the case of advanced wireless transmitter modules such as MIMO RF SOCs, the 

authors in [53] present a low cost technique of measuring MIMO specifications using a 

combination of signal sources and switches that define a set of RF measurements. The 
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Gain, IIP3 and the phase offset of various RF chains are measured. Multiple RF chains 

are tested concurrently by applying tones at specific frequencies to different RF chains in 

such a way that the fidelity of each chain can be determined by observing spectral content 

across non-overlapping frequency bands of the observed response. However, the authors 

determine specifications such as cross coupling by testing the RF chains sequentially. 

The scalability of the methodology with RF chains is not possible without switching 

matrices and multiple sources. Further, the authors do not tie the lower-level 

specifications to higher system-level test parameters like EVM, transmit spectral mask. 

While commercial systems are available for performing system-level testing of different 

MIMO system specifications [54], these incur high cost in terms of the test equipment 

and test time.  

In this work, a methodology for performing parallel system-level testing of MIMO-

OFDM RF transmitter modules using optimized bandwidth-partitioned stimulus applied 

from the embedded DSP module of the RF system and a simple combination of sensors 

on the load board. A comprehensive set of behavioral specifications of multiple RF 

modules chains are computed simultaneously from the observed DUT response using a 

single data acquisition and are used to compute the system-level specifications. As 

multiple chains of the MIMO front-end system are tested concurrently, the presented 

technique enables lower test cost and test time. 

1.6. Prior Work in Tuning of Analog/RF Circuits  

As analog/RF circuits approach the nanometer regime, process variations assume great 

significance in the overall yield. The emphasis on design for manufacturability (DFM) 

and design for yield (DFY) in the case of analog/RF circuits as technology is scaled is 

highlighted in [55]. The two essential components of yield improvement through post-

manufacturing tuning or calibration are as follows: 
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· Existence of a control unit that runs algorithms to estimate or monitor the 

imperfections in the DUT due to process variations. This can be the system 

DSP or the tester in production environment. 

· Analog or digital tuning “knobs” for correcting the imperfections at various 

points of the system. Compensation of the non-idealities of a RF system can be 

performed both in the DSP domain using digital linearization techniques such 

as pre-distortion (digital knob) and in the analog domain using techniques such 

as feedback, tuning of varactors, inductors, bias current.  

The tuning and control strategy that is adopted depends on numerous factors such as 

area, power, and complexity of the chip. Based on the above two factors, various tuning 

techniques that have been proposed in prior literature can be broadly classified as one of 

the following categories: 

· Digital baseband (also known as the digital signal processor (DSP)) monitoring 

and tuning  

· On-chip monitoring and analog tuning 

· Digital baseband monitoring and analog and digital co-tuning 

The overview of the tuning techniques is shown in Figure 3. 

 

Figure 3: Overview of the tuning concept. 
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1.6.1. Digital Baseband or DSP-Based Monitoring and Tuning 

This methodology involves estimating the imperfections in the front ends using 

measurements obtained from sensors/auxiliary components present in the front ends and 

correcting the imperfections in the baseband. The baseband is either before the 

transmitter front end or after the receiver front end. The imperfections that are corrected 

include DC-offsets, I/Q mismatches, and non-linearities. The advantage of using digital 

baseband for monitoring and correction is the high level of controllability in terms of 

resolution and precision that can be obtained. Unlike analog tuning knobs, no special 

hooks need to be incorporated into the front-end circuits for post-manufacture tuning. 

Further, these techniques can be characterized as direct learning or non-adaptive and 

indirect learning or adaptive methods based on the implementation technique. In adaptive 

compensation, continuous online monitoring and calibration of the system is performed 

by using techniques like least squares (LS), least mean squares (LMS) or recursive least 

squares (RLS). In [56], a digital compensation technique is described for correction of 

I/Q impairments up to 10% amplitude mismatch and 10° of phase mismatch. Adaptive 

techniques for I/Q mismatch compensation, DC-offset cancellation is described in [57] 

[58]. Non-iterative techniques based on one-time characterization for quadrature 

compensation is presented in [59]. For non-linearity correction, digital predistortion is a 

widely used linearization technique. The popularity of the above technique can be 

attributed to its flexible adaptive nature as well as the extent of implementation accuracy 

at lower cost. Baseband predistortion creates inverse characteristics of the transfer 

function of the RF power amplifier, thereby increasing the effective 1dB compression 

point of the power amplifier. Adaptive predistortion uses methods such as the recursive 

least squares (RLS) [60] [61] algorithm to tune the predistorter coefficients during field 

operation. Standard techniques used for adaptive predistortion perform tuning of the 

predistortion coefficients using the receiver down conversion chain [60]. The power 
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amplifier output is downconverted, demodulated and fed back through the internal 

receiver chain. The signal is then processed digitally to improve the overall end-to-end 

linearity. The digital correction and tuning technique, however, is affected by receiver 

LNA and down conversion mixer non-linearities, I/Q demodulator mismatches, and ADC 

non-linearities arising in the down conversion procedure. Further, the drawback of such 

an adaptive compensation technique is the time the system takes to converge to its 

optimum performance. In non-adaptive compensation, a one-time calibration of the 

system is done during production test and the results are stored in a look up table (LUT) 

and used in real time operation [59]. The drawback of this methodology is that it does not 

take care of ageing related performance drifts. Digital compensation techniques cannot 

correct large impairments due to the limitations in the dynamic range of the data-

converters in the system, amplification of DC-offset or saturation of front-end analog 

modules. However, these techniques are sufficient for correction of amplitude and phase 

impairments arising due to I/Q mismatches and DC-offset errors.  

1.6.2. On-Chip Monitoring and Analog Tuning 

In this methodology, the impairments are estimated by circuitry on the chip and are 

from the estimated performance criteria the device circuit parameters are tuned. These 

techniques can be analog or digital in nature. In analog tuning or compensation, the 

calibration/tuning is performed in the analog domain by changing the circuit parameters 

such as bias, supply voltage, passive components such as capacitors, inductors, and 

resistors. Generally, this methodology involves some form of circuit-level feedback. A 

completely analog scheme for tuning I/Q mismatches and the resulting image rejection 

ratio (IRR) performance in a two-stage down conversion receiver is presented in [62]. In 

this technique, an auxiliary chain performs a two-stage down conversion by either using 

In-phase or Quadrature phase LO at any point of time. The final output of the main 

transceiver is mixed with the output from the auxiliary chain to obtain the mismatch 
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values in the DC component after low pass filtering. More than 15 dB of IRR 

performance improvement is achieved using this technique. Analog pre-distortion for 

non-linearity improvement is performed using matching network design with 

independent amplitude and phase control [63]. A self-calibration scheme for tuning the 

impedance mismatches of a LNA by using a variable inductor with taps is presented in 

[64]. The technique involves real-time current sensing whose magnitude varies with the 

input match of the LNA, which is then amplified and peak detected to obtain a dc signal 

corresponding to the input match. To determine the frequency offset in matching, two 

tones of different frequencies are applied one after the other and the difference in the 

corresponding DC voltage is used to calibrate the shift in S11 of the circuit. In this 

technique, the inductor has taps with switches connecting to these taps. The parasitics of 

the switches as well as those of the interconnects need to be characterized. The advantage 

of using on-chip monitoring and tuning is the fact that short calibration time (in the order 

of microseconds) is achieved as opposed to digital baseband calibration schemes 

(generally in the order of milliseconds). The bandwidth of the analog feedback system 

generally decides the convergence in this methodology. In the digital monitoring design 

paradigm, on-chip digital logic is used to monitor and aid the compensation of mixed-

signal/RF performance due to process variations. By implementing such a technique, the 

design focus is shifted from the analog circuitry to the digital circuitry. There has been 

significant work in the area of digitally assisted tuning of analog circuits including PLLs, 

frequency synthesizers, and ADCs. In the past, there has been numerous digital 

techniques for calibration of PLL, which is predominantly a digital block [65][66][67]. A 

LMS based technique for calibration of pipelined ADC is presented in [68]. 

In this methodology, there is no requirement for interaction with the system baseband 

leading to possibly lesser number of pin counts. This technique reduces the load on the 

system baseband processor. However, as opposed to analog circuit, voltage or current 
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sampling for feedback is difficult to achieve in RF circuits without actually affecting the 

output response. Depending on the type of feedback circuitry, the PVT variations in the 

feedback circuitry itself can affect the calibration performance.  

However, the above research examples focus primarily on testing and tuning of 

specific analog/RF/ADC specifications. There is no generic scalable methodology that 

can concurrently tune multiple design specifications using on-chip circuitry. In this work, 

a self-contained on-chip digital-logic-based tuning methodology is developed.   

1.6.3. Digital Baseband Monitoring, with Analog and Digital Co-tuning 

In this methodology, the monitoring and control unit is the DSP of the transceiver 

system and numerous knobs in the baseband as well as analog front end have been 

incorporated in the system to tune for front-end imperfections. Such a methodology has 

gained significant attention in the past decade. The bias voltages of various front-end 

circuits are controlled using DACs that can be configured in post manufacturing phase 

for tuning. In [69], the authors use current DACs to compensate for the LO feed through 

(LOFT). The output of the transmitter is envelope detected and the frequency spectrum of 

the output calculated in the DSP is used for impairment correction. In [70], the authors 

develop an adaptive technique to compensate for I/Q mismatches observed in typical RF 

front ends, by making use of a variable delay gain cell to feedback correction vectors to 

the system LO. In [71], a dual mode 802.11b/Bluetooth radio along with tunable bias for 

LNA, Mixer and LOFT cancellation. In [72], the authors propose a scheme for 

compensating static and time varying dc offset as well as TX LO leakage using the 

baseband processor. There exist a number of internal calibration paths, which are 

controlled through switches, for calibrating the front-end components during test mode. 

In [73], a technique for tuning of RF front-end modules by running a gradient algorithm 

that attempts vary the output response of the transmitter to the reference output is 

presented.  
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To develop a monitoring scheme that is generic for performing multi-dimensional 

tuning, it is necessary to observe the variation in specifications simultaneously. Alternate 

test methodology or supervised learning methodology is well suited for this purpose 

[20][21][22][23]. The authors in [74] develop a one-time tuning technique in which the 

values of the analog tuning knobs of a LNA are directly predicted using supervised 

learning techniques. The methodology leads to lesser calibration time. However, it is 

limited by the accuracy of the regression models and does not guarantee power 

optimality. In [75], the circuit is reconfigured to oscillate in test mode and the oscillation 

signature in conjunction with regression models are used to tune the amplifier for yield 

improvement. A critical aspect of the analog tuning is the availability of hooks in the 

front-end circuits. Various papers have been published in the past that discuss the various 

tunable circuits. In [72], current steering DACs are used for dc-offset cancellation. 

Conversion gain of each I and Q path and IIP2 correction technique in mixers have been 

proposed in [76]. The conversion gain can be used for tuning of I/Q amplitude mismatch. 

In [77], an orthogonal tunable LNA in which the gain and the non-linearity characteristics 

of the device can be controlled independently without affecting each other is presented. A 

technique for controlling the input match, gain, and resonant operating frequency of LNA 

is presented in [78]. Baseband analog filter tuning can be achieved using RC 

reconfigurable filters [79]. This scheme is relatively easily to implement as the signal is 

in the low-frequency domain where the parasitics have less impact. A self-healing 60 

GHz PA amplifier implemented in 65 nm technology nodes that can self-tune its gain and 

1dB compression point is presented in [80]. Three control knobs operating at different 

power-levels are used for tuning.  

With respect to the above tuning techniques, multiple specifications are tuned 

sequentially one after the other leading to considerable tune times. Further, in each step 

of the tuning, standard specification testing is performed. In this work, a framework for 
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performing rapid low cost iterative tuning of multiple RF systems in a power conscious 

manner using the system DSP is presented. Finally, none of the prior techniques 

investigates the effect of the power increase due to self-tuning. In this work, an adaptive 

tuning methodology is developed that attempts to optimally trade-off performance 

metrics against power, i.e. a methodology that maximizes performance of the device for a 

given power constraint is developed.  
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CHAPTER 2.    PRINCIPLES OF SUPERVISED LEARNING 

AND MODEL-SOLVING-BASED TEST TECHNIQUES 

2.1. Supervised Learning or Alternate Testing Technique 

As explained in chapter 1, conventional test strategies for mixed-signal, analog and RF 

circuits are based upon specification-based testing techniques where the DUT 

specifications are measured using one or more input signals with possibly different test 

setups for each specification. These specifications are compared against pre-defined 

specification bounds to make device pass/fail decisions. This requirement of multiple test 

stimulus and different test set-up for each specification results in increased costs in terms 

of test time and test infrastructure. Alternate testing or supervised learning methodology 

involves the  use of a single test configuration and predicts multiple specifications of 

interest with a single highly optimized input stimulus, thereby, reducing the overall test 

time and test cost. The fundamentals of alternate test or supervised learning framework 

are briefly described in this chapter.  

Consider variations in the process parameter space P as shown in Figure 4 that affect 

the specifications of the DUT. For low cost diagnosis, an alternate set of measurements is 

determined such that the test measurements under process variations are strongly 

correlated with variations in the test specification values of the DUT. This set of 

measurements defines the measurement space M. Any deviation in the observed 

measurements from the expected implies a corresponding deviation of the measured RF 

specifications of the DUT from the expected in the specification space S, due to 

perturbations in the process space P. Hence, if an optimized stimulus is used such that the 

corresponding output response of the DUT varies due to process variations resulting in 

specification variations, then a model can be developed relating the specification (S) and 

measurement (M) domains. This model can be stated as follows: 
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      . Equation 1 

There exist a number of different techniques for developing the regression mapping 

function   relating the test measurements and the specifications. In alternate test 

technique, a nonlinear regression model is developed using the technique called 

Multivariate Adaptive Regression Splines (MARS) [81]. The devices are excited by an 

optimized stimulus and the regression model is developed using measurements obtained 

on a “training set” of devices and the corresponding specifications. In the production 

environment, this model is then used to predict the RF test specifications S of the DUT 

from the observed alternate test measurements M as shown in Figure 4. The MARS 

algorithm selects a set of basis functions (linear or higher order) using the input variables. 

It also selects the coefficients for the basis functions to develop the regression function. 

Based on the input data variations, the MARS algorithm uses the concept of recursive 

partitioning to develop the model. The MARS algorithm consists of two steps that are 

referred to as the forward step and the backward step. In the forward step, basis functions 

are added to the model. In the backward step, the basis functions that contribute 

minimally to the least square fit of the model are removed. The backward step is 

evaluated using the generalized cross-validation error (GCVE) criterion. The criterion 

balances between over-fitting of the data and the residual error. The failure coverage of 

the alternate testing technique depends on the choice of the input test stimulus. 

Learning or training: The optimized test stimulus is applied to each of these DUTs and 

their resulting responses are sampled and stored. Simultaneously, the output 

specifications of these devices are measured using the conventional specification-based 

test set-ups. The sampled transient measurements are mapped onto the specifications of 

the device using non-linear regression functions. During production test, this non-linear 

regression function is used to predict the specifications of a DUT from its response to the 

same optimized test stimulus. The production test implementation of alternate test or 
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supervised learning technique is shown in Figure 5. The requirement of standard test 

setup during the training phase is a disadvantage of the supervised learning technique. 

 

Figure 4: Alternate test or supervised learning technique. 

 

Figure 5: Implementation of supervised learning in production floor. 
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Model-solving-based testing/monitoring, as the name suggests uses a parametric 

behavioral model of the system for testing purposes. In this technique, an optimized 

stimulus, obtained through pre-computed test generation scheme is used to excite the 

DUT as well as a behavioral model of the DUT simultaneously [24][25]. The output from 

both is compared by computing the least square error between their responses, which is 
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used to guide a non-linear solver in updating the behavioral model of the DUT. When the 

error in response is minimized, from the computed behavioral parameters, the system 

specifications can be computed using correlation techniques or through simulating the 

behavioral parameters in the software domain to compute the DUT specifications. Many 

different non-linear optimization techniques can be used for obtaining the behavioral 

parameters of the system. In this work, we use the trust-region-reflective algorithm for 

determining the behavioral parameters [82]. The bounds on the values of the behavioral 

model parameters of the DUT need to be determined during the characterization phase 

devices. Alternatively, the model can be solved directly without using any iterative 

techniques. The choice of the technique depends on the availability of computational 

resources, model complexity, and accuracy required in determining the model 

parameters.  

In this technique, it is assumed that the behavioral model closely matches the behavior 

of the device. The concern with this technique is that behavioral parameters must 

accommodate uncertainties in measurement, which can be alleviated using a carefully 

calibrated and accurate measurement setup. The overview of the technique is shown in 

Figure 6. The advantage of this technique is that it avoids the need for a training phase 

and cost associated with it.  

 

Figure 6: Model-solving-based testing. 
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2.3. Test Optimization 

 The test optimization procedure is a one-time offline optimization that needs to be 

performed to ensure that the input test stimulus is carefully optimized to result in an 

output response that is highly correlated with the specification values of interest. This 

forms the basis of supervised learning technique as well as model-solving-based test 

technique. This step can be either performed in simulation environment on the DUT 

circuit or on the initial set of characterization devices (provided there is a considerable 

process variation distribution among these devices). The optimization of the test stimulus 

depends on the type of DUT being tested and the performance parameters being 

evaluated. For a given DUT, there are several test generation algorithms available for 

optimizing the input test stimulus. An initial population of the DUT is selected such that 

it covers the entire process space with reasonable accuracy and the optimization is 

performed on this set. In the simulation environment, more than the expected process 

variations (which is in general ± 3σ where σ is the standard deviation of process 

parameter) are used to ensure that the process space of the DUT is well represented. The 

effectiveness of each test stimulus at each stage of test generation is evaluated by using 

the captured test response from all the devices and using the test technique (either 

supervised learning technique or model solving based technique) to compute their 

specifications. The prediction error in the specifications is used to drive the optimization. 

In this thesis, various versions of genetic optimization algorithm are used to determine 

the optimized stimulus to excite the DUT. 
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CHAPTER 3.    TEST AND DIAGNOSIS OF RF CIRCUITS AND 

SYSTEMS  

With increasingly shorter product cycles, yield entitlement is a critical parameter for 

commercial success of semiconductor devices. In the case of analog and RF circuits 

implemented in advanced nanometer nodes, attaining high yields is a challenge. Higher 

levels of circuit integration and implementation of circuits in scaled nanometer nodes has 

made the DUT test and diagnosis steps a crucial step in the manufacturing cycle.  

In scaled technology nodes, to maintain good yield, it is necessary to monitor process 

variations continuously. Process variation management involves continuous process 

monitoring and feedback to offset process deviations due to environmental and thermal 

effects thereby improving chip yield. Current industry practice has two lines of defense 

that prevent misclassification of devices and thereby affect the yield of a device. These 

lines of defense are the fab parameter limits and test specification limits. The overall 

yield of a given device is determined by these limits.  

At the fabrication level, a number of statistical control methods are used to monitor 

individual e-test parameters. The values of the e-test parameters are used to decide 

whether a wafer is good or defective. In general, a fab monitors a large gamut of e-test 

parameters based on the process technology used. These parameters are monitored 

through control charts where each e-test parameter is expected to be within an upper 

control limit (UCL) and a lower control limit (LCL). Current industry practice to 

determine yield/specification compliance of analog/RF devices at the test floor involves 

testing the DUT through standard specification testing techniques. To determine if the 

device has passed or defective, various specifications of a device are checked against 

their respective specification limits. In general, analog/RF circuits are characterized 

through a multitude of specifications. For each individual specification, the standard 
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testing technique involves a distinct test setup and utilizes expensive instrumentation that 

increases test time and test cost. Further, these testing techniques do not provide any 

insight into process parameter variations. While the above-mentioned test and fab 

checkpoints exist, each of these checkpoints operates independently.  

3.1. Concurrent Test and Diagnosis of Analog/RF Circuits  

The problem with the existing technique is that it does not take into account the 

sensitivity criterion that exists between a given e-test parameter and a test specification. 

Further, on each wafer, the e-test parameters are measured at a limited number of test 

sites. Thus, to account for any deterministic e-test parameter variation that would result in 

yield loss, a significant amount of data needs to be collected across a large interval of 

time. In production environment (time t = 0), it is essential for performing the above 

mentioned test and diagnosis steps in a cost effective manner and in a time efficient 

manner. In the present process control and monitoring techniques, a significant volume of 

data across multiple lots of wafers needs to be stored and analyzed before high 

confidence in parametric process diagnosis is possible. In general, multiple reasons for 

process-related deviations are generated and the feedback cycle can take several weeks. 

This problem becomes severe in the case of analog/RF technologies, which suffer 

significantly from parametric yield issues that force higher power consumption or lower 

yield design solutions. A further challenge is in the development of SoC and SiP 

packaging solutions that are in high demand across advanced product lines and the need 

to use known good die (KGD) in these packaging solutions. Hence, there exist a need for 

developing efficient and rapid test and process diagnosis techniques for analog/RF 

technologies. 

In this work, an efficient methodology for die-level test-and-diagnosis for analog/RF 

circuits is developed. The key contribution of this work lies in the ability to both 

determine the DUT specifications as well as the underlying Spice-level model parameters 
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from the same DUT test response on a per-chip basis, thereby providing higher diagnostic 

resolution. A computationally efficient algorithm enables the test and diagnosis 

procedure for test stimulus generation. The algorithm simultaneously targets test 

sensitivity and Spice-parameter diagnosability. This allows cause-effect analysis to be 

performed that relates perturbations in the Spice-level model parameters to the DUT 

performance metrics (or specifications). Further, the cause-effect diagnosis is achieved at 

a test cost comparable to prior testing schemes that target only pass/ fail classification of 

tested devices [20][21][22]. The overview of the proposed technique is shown in Figure 

7. Concurrent process diagnosis and testing enables of circuits enables rapid feedback 

providing insight into process variations occurring in volume manufacturing.  

 

 Figure 7: Proposed concept. 

3.1.1. Proposed Methodology  

In general, the specifications of analog or RF circuits are continuous functions of the 

circuit or device parameters. In the absence of a hard or catastrophic fault, significant 

information about process variations is contained in the DUT response. If the test-

stimulus is designed (e.g., by varying its amplitude or frequency or both) to exhibit strong 

statistical correlation with its performance (test) specifications, then a forward regression 
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specifications     (see Figure 8). This regression model is built in the circuit simulation 

environment by obtaining several devices through statistical sampling of an extended (to 

cover the range of expected process shifts) process space    . Using these devices, a 

regression model    that maps measurements (   of the devices to their specifications 

(   is built. A correction regression function    is then determined using the 

measurements obtained on a set of hardware training devices (characterization wafer lots) 

such that      is the composition of    and   , i.e.,            . This is done to 

compensate for calibration errors in hardware measurement. Initially the regression 

function    is used on the characterization wafers to predict their specifications. Then the 

actual specifications of the DUTs are measured using standard specification testing. 

Finally, a map    is built between the actual specifications of characterization wafers and 

the predicted specifications. From the same statistical sampling procedure used for 

building   , a reverse regression model        is computed by mapping the 

measurement space   to the Spice-level model parameter space   (Figure 8). Since the 

actual Spice-level parameters of a tested IC are not known, it is not possible to apply any 

correction to the mapping      to account for modeling inaccuracies. In this case, it is 

assumed that the simulation models have been accurately calibrated through independent 

measurements on electrical test structures [83] [84]. At the minimum, in the case that any 

residual process modeling inaccuracies persist, the proposed diagnosis scheme will track 

perturbations in the process-parameters and specifications. Since measurements are made 

on a per-chip basis, the focus is to capture the systematic inter-chip variations as opposed 

to intra-chip random variability effects. It should be noted that a defect-filter is used to 

determine DUTs with catastrophic or large parametric defects. The defective devices that 

are determined by the defect-filter are not used to build the mappings      and      . 

The test methodologies developed in prior literature such as in [31][21][20] using 

Alternative test or Supervised learning are targeted exclusively for specification-based 
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testing and do not guarantee high correlation to process-parameters. Hence, these 

techniques, as opposed to the presented methodology, cannot reveal why certain 

specifications fail.  

 

Figure 8: Overview of the methodology. 

3.1.2. Test Generation  

For effective diagnosis, the response of the DUT to the test stimulus used should have 

a strong correlation to the Spice-level parameters and specifications. In addition, for 

practical implementation, the test generation algorithm should be computationally 
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using the DUT circuit design. For obtaining the optimum stimulus, a Genetic algorithm is 

used. The algorithm minimizes a cost-function that is based on a differential sensitivity 
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In this work, the process domain of the DUT is represented by a vector    

               , the output measurement domain of the DUT comprising of n response 

measurements is represented by a vector                    , and the 

specification domain of the DUT comprising of k specifications is represented by a 

vector                      . A change      in Spice-level parameters causes a 

change     in measurement parameters and       in specification parameters. 

Considering the first-order approximation, the Spice-level parameters and measurements 

can be related as 

            ,  Equation 2 

where     is the sensitivity matrix defined below in Equation 3: 
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Equation 3 

The ability to diagnose the Spice-level parameters can be evaluated using singular 

value decomposition (SVD) of the sensitivity matrix. The SVD of the matrix       is 

defined as 

         , Equation 4 

where U, V are unitary matrices and   is a diagonal matrix whose entries are called the 

singular values of matrix    . To determine the   process-parameters from n 

measurements uniquely, the effective rank of the sensitivity matrix should be equal to  . 

The effective rank of the sensitivity matrix is defined as the number of singular values 

    of the matrix that are above a predefined threshold. Hence, to determine the   

parameters, a test optimization algorithm that increases the values of all the singular 

values     of the sensitivity matrix is used. The algorithm generates different singular 
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values     of     by varying the amplitudes and frequencies of different tones in the test-

stimulus. Since Genetic optimization minimizes the cost-function, the inverse of the sum 

of singular values is calculated. This cost-function is mathematically stated as follows: 

                   
 

 ∑   
  

 
   

 . Equation 5 

In the above stated cost-function, a thresholding function is implemented to modify the 

singular values of the sensitivity matrix. The thresholding function is used to ensure that 

all singular values have a significant contribution to the overall cost-function. The 

thresholding function is defined as follows: 

                    
   ; 

               
   

  
 ⁄   

Equation 6 

where   is a predetermined threshold,    and   
  are the original and modified singular 

values, respectively.  

Similar to Equation 2, the matrix relating     with     can be defined as  

            , Equation 7 

and the matrix relating     with     can be defined as   

            . Equation 8 

Using the matrices in Equation 2, Equation 7, and Equation 8 following equation is 

obtained:    

           . Equation 9 

When the rank of the matrix     is    (after performing test optimization), from 

Equation 9, matrix     can be written as 
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               Equation 10 

Now in order to determine the   specifications uniquely from the measurements, the 

effective rank of the     matrix should be equal to  . Once the effective rank condition 

(explained earlier) for the matrix     is satisfied, the resultant stimulus is the optimum 

stimulus. In general, the sensitivity matrix may be rank-deficient due to the existence of 

linear dependences between the various manufacturing process-parameters. Such 

parameters are said to belong to ambiguity groups. A method presented in [54] is used to 

handle ambiguity groups. The flowchart presented in Figure 6 explains the overall 

proposed test generation algorithm. Using the optimized stimulus, the DUT is excited and 

the statistical regression models relating the measured responses to the specifications and 

the Spice-level parameters are developed. A tool called MARS (Multivariate Adaptive 

Regression Splines) [81] is used to develop the regression models. The complete 

methodology of our technique is shown in Figure 9. 

3.1.3. Determination of Significant Device/Circuit Parameters 

To diagnose the Spice-level model parameters, the parameters that have significant 

effect on the circuit performance need to be determined. In [85] , the authors have shown 

that the number of parameters that define the process space of the circuit can be reduced 

to a small number of parameters. In this work, a simple three-level factorial analysis is 

performed on the initial parameter space and the significant parameters above a threshold 

are obtained. In this work, the layout-area dependent process-parameters [85] are not 

considered. 

3.1.4. Simulation Results - Diagnosis and Testing  

3.1.4.1. Case Study I - Operational Amplifier 
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The DUT is a two-stage Op-Amp designed in AMI 0.5um technology node. The gain 

of the DUT is 45 dB and the f3dB is 10 MHz. The circuit is implemented in Cadence 

Spectre environment. The circuit is interfaced with Matlab for test generation and 

diagnosis purposes. During test optimization, the amplitudes and frequencies of the test 

stimulus is optimized. The sensitivity matrix is computed by varying each of the process 

parameter, one at a time, about its nominal value (      where    is the percentage 

standard deviation of each process parameter. The optimized stimulus obtained is shown 

in Figure 11. The optimized stimulus has nine tones (from 100 KHz to five MHz) of 

varying amplitude. 

During the training phase, the significant process parameters are varied using a 

random uniform distribution of     (  being the standard deviation of each process 

parameter) and 1000 such DUT instances were obtained. The defective parts (for e.g., 

those parts which have a catastrophic fault such as a short or open), were pruned out 

using specification-based defect filter. The DUT measurements are the output voltage 

sampled at 40 MHz and the transient response of the supply current sampled at 5 MHz. 

The responses are used to develop the models      and     . During evaluation phase, 

150 instances of Gaussian distribution were considered. The relative error in the 

prediction of the process parameters as well as the specifications is shown in Figure 12.   

is the current mirror ratio of the input stage of the Op-amp, Lln and Wln are the length 

and width reduction factors respectively, Vth0 is the zero-bias threshold voltages, Tox is 

the thickness of oxide, and Vsat is the saturation velocity at nominal temperature. The 

terms 2nd HD and 3rd HD are the second order and third order harmonic distortion 

components respectively. The n and p terms in parenthesis in the Figure 12 indicate the 

corresponding parameters for NMOS and PMOS transistors respectively. As can be seen 

from Figure 12, the proposed methodology accurately predicts the test and diagnosis 

parameters with a prediction error of less than 9% for all parameters. 
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Figure 9: Flowchart of the test generation algorithm.   

 

 Figure 10: Complete methodology of proposed technique. 
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Figure 11: Optimized input stimulus. 

  

Figure 12: Prediction error in specifications and process parameters. 

3.1.4.2. Case Study II - Low Noise Amplifier  

The case study considered is a 3 GHz radio frequency (RF) low noise amplifier 

(LNA). The three-stage LNA design has a nominal gain of 16 dB and IIP3 specification 

of -9.5 dBm. The DUT is implemented in 180 nm CMOS technology. The Spice-model 

used for this design is BSIM3v3. For simulating the LNA, a high frequency air coplanar 
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probe (ACP) model is used to account for the input and output probe parasitics. Initially 

25 parameters of the BSIM3v3 model are considered and seven significant parameters 

using the methodology discussed in section 3.1.3 are obtained. The significant parameters 

are Lln(n), Vth0(n), Tox, Wln(n),  Vsat(n), Cgdo(n), L1(input stage inductor).The test-

stimulus optimization routine is performed using the technique described in Section 3.1.2. 

The frequencies and amplitudes of the input tones are optimized. The progression of the 

cost function with generations is shown in Figure 13.  

 

Figure 13: Test generation cost function progression. 

The final stimulus consists of 18 tones spaced within a bandwidth of 150 MHz. The 

LNA multi-tone output response is down-converted to a low frequency response by a 

mixer (implemented in Matlab) and the transient response along with the transient supply 

current is used as the alternate diagnostic signature. For training the regression model, 

2000 circuit instances are used. These instances are drawn from a randomly distributed 

uniform variation of all process-parameter perturbations (   , where   is the percentage 

standard deviation). In the evaluation phase, 150 instances of the DUT are used. These 

instances are generated using a Gaussian distribution. Prior to training, a simple 
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specification based defect filtering approach is used to eliminate the inclusion of 

defective DUTs. The prediction plots for some of the device and circuit process-

parameters are shown in Figure 14. The relative and root mean square (RMS) error 

(expressed in percentage) in the prediction of the specifications and process-parameters 

are shown in Figure 15.  

 

Figure 14: Prediction plots for specifications and process parameters. 

The proposed technique is an efficient method to track process shifts occurring during 

volume manufacturing. For a suitably estimated regression models, the technique 

provides the ability to track any shift in the nominal value of the process-parameter as 

well as its distribution (over different wafers during production). To validate the above 

concept, a known ( 1 to 2σ) process shifts are injected into multiple process-parameters 

of the LNA. The original, injected, and tracked histograms are shown in Figure 16. 

Notice that the variations are induced both in the mean and in standard deviation of the 

-13 -12 -11 -10 -9 -8 -7
-13

-12

-11

-10

-9

-8

-7

Actual Value (dBm)

P
r
e
d

ic
t
e

d
 V

a
lu

e
 (

d
B

m
)

Prediction Plot for IIP3

1 1.1 1.2 1.3 1.4 1.5 1.6

x 10
-8

1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

-8

Actual Value

P
r
e
d

ic
t
e

d
 V

a
lu

e

Prediction Plot for Inductor L1

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Actual Value

P
r
e
d

ic
t
e

d
 V

a
lu

e

Prediction Plot for Lln

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

Actual Value(V)

P
r
e
d

ic
t
e

d
 V

a
lu

e
(
V

)

Prediction Plot of Vth0

0.55 0.6 0.65 0.7 0.75
0.55

0.6

0.65

0.7

0.75

Actual Value

P
r
e
d

ic
t
e

d
 V

a
lu

e

Prediction Plot for Wln

13 14 15 16 17 18 19
13

14

15

16

17

18

19

Actual Value (dB)

P
r
e
d

ic
t
e

d
 V

a
lu

e
 (

d
B

)

Prediction Plot for Gain



 38 

process-parameters. The results obtained from the histograms can be used for detecting 

multi-dimensional excursions in the fabrication facility during early stages of product 

manufacturing. 

 

Figure 15: Error in prediction of the parameters. 

 

Figure 16: Specification and Spice-level parameter histograms. 
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3.1.5. Simulation Results - Cause-Effect Monitoring 

The ability to diagnose process-parameters during wafer-level testing for a given 

circuit enables us to analyze the effects of the process variation on specifications of the 

circuit. This methodology is termed as Cause-Effect analysis. Using the process and 

specification domain information, a regression model        relating both these 

distributions is developed. The presented analysis technique uses this regression model to 

determine the relative contribution of each of the process-parameter distribution to the 

DUT specification distribution. The analysis involves regrouping the function        into 

multiple smaller functions. Each of these smaller functions consists of either individual 

process-parameter or multiple process-parameters. The variance contribution of each of 

the smaller function to the overall specification variance is determined. The regrouped 

function is shown as 

       ∑       ∑              ∑                       ,   Equation 11 

where    is one of the process-parameters in the vector                    and        

relates the process-parameters to one of the   specifications represented by    

              The first term in Equation 11 accounts for all the functions corresponding 

to individual parameters    that determine the specification   . The second term in the 

equation indicates all the functions that consist of a combination of two different 

parameters and so on. In Equation 11,               vary from one to  . Considering that 

   ́  is the diagnosed value of     instance of parameter   , the contribution of each 

parameter to the specification is calculated using metrics stated as follows: 

  ́ 
 

 

 
∑   

 
       ́  , Equation 12 

     ́   
 

   
∑        ́     ́ 

   
    , Equation 13 
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where N is the number of samples of the distribution,   ́ 
 and      ́   is the mean 

and variance of each function       , respectively. The mean and variance of each 

interaction function is computed in a similar manner. Equation 12 and Equation 13 

represent the ANOVA decomposition technique for a regression model [81]. Such an 

analysis is performed for both the gain and IIP3 specifications of the original and 

process-varied distribution (used for diagnosis in Figure 16) and the Cause-Effect 

analysis results are presented in Figure 17. As evident from Figure 17, the gain variation 

(between the two distributions) is affected by the Tox, Lln, and Vth0 variations while the 

IIP3 variation is affected significantly by the length reduction factor (Lln) and Vth0. In 

addition, the variations in second order interaction-effects also contribute to the 

specification variation, but to a lesser degree of significance. The error portion in the 

graph is the percentage variation that cannot be explained by any process-parameter 

(error from the model). As evident from the graphs, most of the variations in the 

specifications can be explained by our diagnosis approach. The accuracy of the analysis 

is affected by the error in the prediction of the process-parameters. However, it does still 

provide significant information in regards to the process-variation trends that can be fed 

back to the fabrication facility for process monitoring.  

 

Figure 17: Cause-Effect analysis of gain and IIP3 specifications of LNA. 
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3.1.6. Hardware Validation of Proposed Methodology  

Traditionally, the effect of process variations is studied using measurements of e-test 

parameters at different sites (also called as shots or reticles) of the wafer. In the absence 

of a catastrophic defect, the variation in the output response of a DUT depends on the 

variation of its process parameters. To validate the proposed work, instead of developing 

the regression functions in simulation environment, the e-test parameters of the device 

are used as the Spice-level parameter replacement. Hence, from the test measurement 

data of the DUT, one should be able to obtain information about the e-test parameters that 

influence the device. The above information regarding e-test parameters is obtained using 

a mathematical regression model that relates the output measurements of the device to 

each of its e-test parameters. The number of sensitive e-test parameters that can be 

determined depends on the number of independent measurements spanning the test 

measurement space. In production environment, a combination of probe-level tests 

(called Multiprobe) and final tests constitute the test measurement space. The regression 

model relating the e-test parameter and the test measurements can be developed using the 

initial characterization or design of experiment (DOE) wafers. In these wafers, many 

process parameters are varied beyond their normal expected variations in the production 

environment. Ideally, the e-test parameters that significantly influence the circuit 

specifications can be determined using experiments such as central composite design 

(CCD) in the simulation environment [86] (a variant of it is used in this work as 

explained earlier in Section 3.1.3). If the e-test parameters cannot be varied during the 

device characterization phase, the regression mappings need to be developed using the 

initial set of production wafers. Ideally, there are tens of e-test parameter measurements 

made on an individual wafer. Hence, to capture the spatial variation trends in the 

presence of noise as well as missing measurements would require many measurements 

over lots. This would lead to greater amount of time to implement the feedback 
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framework. Alternatively, there exists significant process variation information on each 

wafer in the shots where the measurements have not been made. This spatial process 

variation on each wafer can be obtained by interpolating the existing e-test parameter 

measurements to other locations on the wafer. Once a higher resolution wafer map of the 

process e-test parameter is obtained using a few wafers of the first lot, regression models 

relating the test data of the devices and the interpolated process e-test parameters can be 

developed (see Figure 18). Please note that spatial interpolation of an e-test parameter 

does not indicate its significance or its insignificance to the device. Any parameter that 

has spatial correlation can be interpolated. Hence, it is important to develop the 

regression model relating these parameters and the test data for each circuit. If the test 

measurement space is not large enough, then prediction of all the sensitive e-test 

parameters will not be feasible. However, the presented technique would still provide 

information about the variation in some of the critical parameters. Once the regression 

model is developed, using the test data from different locations of a wafer, the e-test 

parameters at the corresponding locations can be determined. As the test measurements 

made on every die are used to determine the e-test parameters, any drift occurring in the 

parameters can be quickly identified. At this point, feedback can be provided to the fab to 

tune the corresponding process parameter before any future yield loss occurs. To 

determine the sensitive e-test parameters, mathematical regression models are developed 

by mapping all the test measurements to each e-test parameter. In this step, a 

methodology called Multivariate Adaptive Regression Splines (MARS) is used for 

regression function development. The overview of hardware validation approach is 

shown in Figure 18. 

3.1.6.1. E-test Parameters and Process control 

As mentioned in introduction of the chapter, current methodology of process control 

monitoring involves measuring process e-test parameters at either 21 or 9 locations on 
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each individual wafer in a fab. These e-test parameters are measured using test structures 

placed in scribe lines (in between the dies) in specific sub-regions of a wafer called photo 

shots (also called as shots or reticles of the wafer). A hypothetical shot-map with the 

different shots/sites across the wafer where measurements are made is shown in Figure 

19. The e-test parameters are measured using specialized test structures at a certain 

limited number of test shots on each wafer. Each shot is square/rectangular region 

composed of dies, and test structures that are placed in the scribe lines in between the 

dies. As each wafer provides only 9 or 21 measurements, a significant amount of data 

needs to be collected across large intervals of time (wafers and lots) to account for any 

deterministic process e-test parameter variation. Faster feedback can be obtained using 

increased number of test structures but at the cost of greater test time and silicon area. 

Each test structure measures a particular e-test parameter and the wafer is classified as a 

good wafer as long as the individual e-test parameter lies within certain limits. Often 

there exist hundreds of parameters, and the fab does not have any knowledge of the 

relative importance of the parameters and the limits with which the parameters need to be 

controlled for a given circuit.  

 

Figure 18: Hardware validation approach. 
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Figure 19: Hypothetical shot-map of the wafer.  

3.1.6.2. Spatial Interpolation 

In this work, the Virtual Probe (VP) technique is used for performing spatial 

interpolation [87]. The technique applies the principle of compressed sensing to 

semiconductor e-test parameters for achieving wafer-level spatial interpolation. If an e-

test parameter has high amount of spatial correlation along the standard coordinate 

dimensions, then the e-test parameter in the spatial frequency domain (i.e., fourier or 

cosine transform of the spatial variation) is sparse with large number of coefficients being 

small or close to zero. The e-test parameter that needs to be spatially interpolated can be 

expressed as a two dimensional function in X-Y domain namely       , where    

         , y            (see Figure 19) are the coordinates that define the variation 

of the e-test parameter along their respective directions. If the discrete cosine transform 

(DCT) of the two dimensional function can be stated as                      

   , then the corresponding inverse discrete cosine transform (IDCT) function can be 

stated as shown in . 

       

 ∑ ∑            
      

        

  
 
       

         

  
 ,  

Equation 14 
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           ,                                                

In Equation 1,       are the scaling coefficients. Now considering that the e-test 

parameter is being measured in L locations (L being 21 or 9), i.e. the values of        at 

these locations are known. The goal is to use these measurements to find        at other 

locations using Equation 14. Further, it has been shown in that the DCT coefficients 

       are sparse due to the existence of high amount of spatial correlation across the 

wafer. Hence, by considering the joint probability distribution function (PDF) of all the 

sparse discrete cosine transform (DCT) coefficients and using maximum a-posteriori 

probability (MAP) estimation, it has been shown that the DCT coefficients can be 

obtained by formulating the optimization problem as a L1-norm regularization problem 

[86]. The above L1-norm regularization can be solved using the Least Absolute 

Shrinkage and Selection Operator (LASSO) algorithm [88]. Once the estimate for all the 

DCT coefficients is obtained, the interpolated values of the parameter can be calculated 

using inverse discrete cosine transform (IDCT). The accuracy of interpolation obtained 

using the VP technique was found to depend on the extent of spatial correlation of each e-

test parameter. The assumption of high amount of spatial correlation is true for most e-

test parameters. Please note that spatial interpolation of an e-test parameter does not 

indicate its significance or its insignificance to the device. Any parameter that has spatial 

correlation can be interpolated. 

3.1.6.3. Device Results  

The device considered is a SOC implemented in a 180 nm process that is currently in 

production. It has both Analog and digital components that include DC-DC converters, 

amplifiers, ADCs and DACs among other modules. The simulation environment used for 

interpolation and regression analysis is Matlab. This section provides the experimental 

validation of the spatial interpolation technique implemented. A set of 18 wafers is 
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implemented with test structures at all the 70 shots of a wafer rather than the 

conventional 21 or 9 shots. Each e-test parameter is measured once in a shot. The choice 

of 21 (called category A parameters) or nine (called category B parameters) locations 

depends on the parameter significance (input from the designer & process engineer based 

on experience).  

To use the VP interpolation technique, it is necessary that the e-test parameters exhibit 

a significant amount of spatial correlation across the wafer. The spatial correlation 

condition is verified by performing a DCT transformation using all the measured values 

of a parameter in a wafer. As an example, a DCT transformation of the N-Well sheet 

resistance parameter is performed using all its 70 measured values. The histogram of the 

DCT coefficients is shown in Figure 20. A large number of DCT coefficients of the N-

Well sheet resistance parameter are close to zero indicating that there exists high spatial 

correlation across the wafer. Once the existence of high spatial correlation is verified, the 

conventional 21 and nine site measurements are chosen out of the 70 shot measurements 

and are used to interpolate to the remaining sites. The error metrics obtained for various 

e-test parameters by interpolating measurements made at 21 locations is provided in 

Table 1. Similar error metrics obtained by interpolating measurements made at nine 

locations are listed in Table 2. The relative error is calculated using the formula shown in 

Equation 15 

               {( ̃            )       ⁄ }     , Equation 15 

where  ̃      is the interpolated value and        is the measured value. The mean of 

the absolute value of relative error and the standard deviation of the relative error at 

various locations and wafers are tabulated. 
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Figure 20: Histogram plot of the DCT coefficients. 

Out of 126 e-test parameters that are measured for interpolation, 107 parameters are 

interpolated with mean relative error of less than five percent. The original and 

interpolated wafer maps of the N-well sheet resistance parameter are shown in Figure 21. 

E-test parameters having significant outlier measurements with non-normal distribution 

or parameter measurements with insufficient measurement resolution are the common 

causes for high interpolation error. While the basic method of VP has been implemented 

here, more advanced versions of this methodology that use multiple wafers of the same 

lot have been proposed [89]. The technique discussed in [89] could aid in providing 

interpolation results with greater resolution. 

For the purpose of regression analysis, data from 108 wafers across four lots is used 

(close to 170,000 dies). On each of the 108 wafers, 97 e-test parameters are measured at 

21 sites (Category A), and 168 e-test parameters are measured at nine sites (Category B). 

The measurements of each e-test parameter are screened to remove outliers. This outlier 

detection is an important step as these outliers can have a significant effect in the 

interpolation and the regression development steps. A non-parametric inter-quartile range 
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(IQR) technique is used to remove the outlier observations. The above outlier removal 

step helps in removing spurious data that occurs because of measurement error and 

various other related error sources. 

To avoid defects, only dies that passed all the tests are considered in the experiment. 

Hence, to perform regression analysis, the probe-level test measurements of all the pass 

dies in a single shot are collected. The median of all the measurements from the collected 

die measurements is calculated. Out of the 347 probe-level test measurements, statistical 

distribution across devices is not observed for 50% of the measurements. 

Table 1: Error metrics obtained by interpolating 21 measurements. 

Parameter 
Mean absolute relative 

error (%) 

Standard deviation in 

relative error (%) 

N-well sheet resistance 0.513 0.637 

Unit capacitance 1 1.772 2.345 

PMOS VT 0.505 0.512 

PMOS 2 off current 5.126 3.871 

PMOS drive current 0.505 0.532 
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Table 2: Error metrics obtained by interpolating nine measurements. 

Parameter 
Mean absolute relative 

error (%) 

Standard deviation in 

relative error (%) 

N-well sheet resistance 0.734 0.729 

Unit capacitance 1 0.729 2.232 

PMOS VT 0.709 0.600 

PMOS 2 off current 12.94 5.198 

PMOS drive current 1.064 0.886 

 

 

Figure 21: Original and interpolated e-test wafer maps for N-well sheet resistance. 

For each of the e-test parameters, regression functions are developed using all the 

remaining test measurements that showed statistical distribution. In the training phase of 
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the regression function, 1400 observations are selected randomly from the wafers in Lot 

one and Lot two. For training the regression functions for the e-test parameters, 1400 

observations were selected randomly from all the wafers in the first 2 lots as well as from 

22 wafers of lot three. A combination of the actual and interpolated e-test parameters 

were used for training. For evaluation, 201 observations collected from the three wafers 

of lot three not included in the training and from all the wafers in Lot four were used. The 

scaled prediction plots for the various process e-test parameters are shown in Figure 22. 

As can be seen from the graphs, using this technique, accurate prediction of the process 

e-test parameters to which the circuit is sensitive is performed.  

 

Figure 22: Scaled prediction plots for process e-test parameters. 

The error values for some of the process e-test parameters belong to different 

categories that could be predicted are given in Table 3. Along with the mean of relative 
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error, the normalized root mean square (      
√∑                   

 

             
 ) is calculated. 

The goodness-of-fit metric (linear correlation) between the actual and the predicted 

values is also provided. 14 parameters in category A and 35 parameters in category B 

were predicted with their NRMS values ranging from nine to 20%. The minimum 

goodness-of-fit metric for these parameters was 0.683 (PMOS VT) which is the worst 

predicted parameter. The PMOS drive current prediction across different wafers/lots is 

shown in Figure 23. The mean relative error for wafer 23 is 0.54 % and the mean relative 

error for wafer 4 is 2.3%. The wafer predictions at all the 70 shots/sites (3x resolution 

increase) as well as for the all the pass devices in the wafer are shown in Figure 24.  

Even though the regression function is developed at the shot-level, the measurements 

of every individual die can potentially be used to predict their respective e-test 

parameters with acceptable accuracy. As can be seen from Figure 24, there exists some 

white spots in the wafer map corresponding to the failed devices. Hence, a greater 

resolution of wafer map can be achieved using this technique. This technique also enables 

a tighter multi-dimensional control of process parameters (based on the values obtained 

from pass devices) as opposed to using uni-dimensional control charts. The accuracy of 

this prediction can be made better if an interpolation algorithm that is capable of 

interpolating to the resolution of a die is used and the regression model is developed 

using the test measurements of every die rather than the median of the dies in the shot. 

Advanced outlier detection mechanisms applied to the measurement domain can also 

improve the prediction accuracy.  
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If process monitoring is performed using test data of every die (close to 1300 values in 

a wafer as opposed to the traditional 21/9 e-test structure measurements), any process 

shifts can be quickly identified and information can be fed back to the Fab, before any 

yield loss occurs. The number of parameters that can be predicted can be increased 

further by using the post-packaging final test data for prediction. 

An analysis of the regression functions was performed to determine the relative 

contribution of each test measurement. The regression function for each individual 

process e-test parameter is given by the equation below  

           ∑        ∑              , Equation 16 

where the function is regrouped to provide the relative contribution of each measurement 

towards the process e-test parameter prediction. In Equation 16,        is the 

contribution of the measurement to the process e-test parameter   . This analysis can be 

considered providing a coefficient for each test measurement. Such an analysis is 

performed for the process e-test parameters Poly sheet resistance 1 and Parallel plate 

capacitance 1 and shown in Figure 25 and Figure 26 respectively. As can be seen from 

Figure 25, T18, T19, T20 contribute significantly to the poly sheet resistance 1 

parameter, these measurements are the I/O resistance and current measurements. This 

observation concurs with the design knowledge of the circuit. Further, as a methodology 

to cross validate the developed regression models, we perform a bivariate analysis 

between each predicted e-test parameter and test measurement. Spearman's rank 

correlation is used as a metric to obtain the correlation of a process e-test parameter to a 

test measurement. The rank correlation metric indicates the extent to which the 

relationship between two variables can be expressed by a monotonic function. 
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Table 3: Prediction of e-test parameters. 

Parameter 

NRMSE 

(%) 

Relative 

error (%) 
Goodness-of-fit 

PMOS drive current 12.85 1.491 0.752 

Parallel plate capacitance 1 13.92 0.841 0.818 

Poly sheet resistance 1 10.64 0.658 0.895 

Poly sheet resistance 2 9.860 1.325 0.817 

VIA Resistance 1 12.17 1.689 0.894 

NMOS drive current 14.68 0.980 0.801 

Metal 6 resistance 13.55 6.282 0.854 

Poly high sheet resistance 1 9.860 1.325 0.817 

PMOS VT 19.72 0.344 0.683 

Depletion MOS DVT 11.80 1.054 0.883 
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Figure 23: Scaled prediction plots of PMOS drive current for different wafers. 

The rank correlation metric is mathematically stated as 

   
∑      ̅      ̅  

   

√∑      ̅   
   ∑      ̅   

   

 ,                                  
Equation 17 

where   ,    are the ranked variables and  ̅,  ̅ are their respective means;   is the number 

of measurements. The rank correlation between the poly sheet resistance 1 parameter and 

the top test measurements is listed in Table 4. Thus, the test measurements that contribute 

to the prediction of the parameter have a high amount of correlation with the parameter, 

thereby validating the model as well.  
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Figure 24: Prediction plots of PMOS drive current at site-level and die-level. 

Table 4: Rank correlation between test measurements and poly sheet resistance. 

Test Number Spearman's rank correlation 

T20 0.93 

T19 -0.70 

T18 0.96 

T17 0.69 

T16 0.95 

T15 0.89 

 

All the e-test parameters that were predicted had Spearman's rank correlation factor of 

at least 0.45 to one or more of the test measurement. For all the cases where the 
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correlations exceeded the threshold (0.45), p-value is estimated to ensure that valid 

correlation exists between the e-test parameters and the test measurements. E-test 

parameters that were not predicted did not show any substantial rank correlation to any 

test measurement. From Figure 26, it can be inferred that no single test measurements 

contribute significantly to the parallel plate capacitance 1. This makes sense from a 

design perspective as a number of test measurements get affected by capacitance and 

hence contribute to its prediction. The variation in the coefficients of the regression 

function over time can be guard banded to determine the extent of process variation as 

well as periodic recalibration of regression models. 

 

Figure 25: Analysis of regression model for poly sheet resistance 1. 

 

Figure 26: Analysis of regression model for poly sheet resistance 1. 
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3.1.6.4. Significant E-test Parameters (Dimensionality Reduction)  

To implement an intelligent test based feedback control, the e-test parameters to be 

monitored in the process domain need to be selected intelligently. Currently, the 

parameters measured using the test structures account for many different variants of a 

particular parameter that are highly correlated with each other. Current technologies have 

as many as 500 process e-test parameters that are measured on very wafer. If a feedback 

control were to be implemented using all the process e-test parameters, such a technique 

would be highly complicated. 

 However, we can exploit the fact that many manufacturing steps are highly correlated 

affecting multiple groups of parameters (such as MOS parameters, resistance parameters 

etc.) in a similar manner. Hence there exists an opportunity to perform dimensional 

reduction and monitor at all times lesser number of parameters rather than the entire set 

of e-test parameters that are currently measured. To achieve the objective of dimensional 

reduction, Principal Component Analysis (PCA) is adapted in this work. Principal 

Component Analysis is a multivariate methodology that transforms observations in a 

given data set with high amount of correlation into a data set consisting of linearly 

uncorrelated variables that are termed as principal components. 

 If we considered a vector     [           ] consisting of one set of 

measurements of   process e-test parameters and     is a matrix of   such 

measurements.     is the data set in the new coordinate system and     is the 

orthonormal transformation matrix called projection matrix. The transformation matrix 

     consists of eigenvectors of the covariance matrix         
    . The eigenvalues 

of the covariance matrix is the variance explained by each of the principal component. 

The eigenvector with the highest eigenvalue forms the first principal component of the 

new data set     and so on. The first principal component accounts for the largest 
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possible variance in the data set and the second principal component accounts for the next 

largest possible variance that is not accounted by first component. 

In this work, the goal is to select a subset of the total process e-test parameters   that 

can be used to explain majority of the variation in the original larger data set. Hence, the 

objective is to reduce the dimensions of the original data set. There exist a number of 

techniques for performing dimensional or variable reduction using PCA. One such 

technique that was implemented is explained below: 

Start 

· Implement PCA on the original dataset     consisting of   process e-test 

parameters and   observations or measurements.  

· Find all eigenvectors whose eigenvalues are lesser than a predetermined threshold  

· Let the number of selected eigenvectors be   (1 <   <   ) 

·  For i = 1 to k 

{ 

· Find the parameter   whose coefficient     of the eigenvector i that has the 

maximum value  

· Remove the parameter from the original data  

· Reduce p = p -1 

} 

· Obtain the final list of e-test parameters that need to be monitored. 

Stop 

The idea behind the e-test parameter reduction principal is that the parameter that 

contributes maximum to the eigenvector that explains less amount of variation in the data 

can be eliminated without losing any variance information. If there is high amount of 
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correlation between a set of process e-test parameters, then the technique picks one 

parameter from the correlated set. It is important to note that this technique provides a 

reduced parameter set that explain majority of the overall process variation. However, not 

all these selected process e-test parameters variations cause variations in the circuit. Thus, 

the parameters that can be predicted through regression methodology should be 

essentially a subset of the above set determined to the PCA methodology. This way our 

predictions can be cross-validated. 

The measured process e-test parameter data collected from the four lots (108 wafers) 

consisting of 2057 observations (for 97 parameters belonging to category A) and 645 

observations (for 168 parameters belonging to category B) is used for the study. These 

observations are obtained after applying the outlier routines. This outlier screening 

procedure is important, as the PCA transformation is very sensitive to gross outliers. As 

the units of the different e-test parameters are different, the data matrix is normalized 

such that observations of each e-test parameter have a zero mean and unit variance. 

Further, the data set is rearranged into groups depending on the nature of measurements 

(e.g., MOS parameters, capacitance measurements, BJT measurements). There exist 

multiple methodologies for selection of threshold parameter. One technique involves the 

use of scree plot. The scree plot is the plot of the eigenvalues in descending order. As the 

eigenvalues indicate the variance accounted for by the principal components, the 

eigenvectors corresponding to low eigenvalues are selected for parameter reduction. In 

this work, the threshold was selected to be 0.7. Various studies performed in prior 

literature have shown that in principal components analysis using correlation matrices, 

variances values greater than one should be considered. The results of parameter 

reduction for different groups of process e-test parameters are shown in Table 5. 
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Table 5: Dimensionality reduction results for e-test parameters. 

Process e-test parameter group Selected subset of parameters 

CMOS parameters (25 variables) 

(dimensional reduction weakest) 

NMOS 3 drive current  

PMOS 3 VT (linear region) 

NMOS 2 off drive current  

NMOS 2 drive current  

PMOS 2 drive current  

NMOS drive current  

NMOS VT (linear region) 

PMOS off drive current  

Resistor parameters (12 parameters) Poly sheet resistance 2 

Active resistance 

Poly sheet resistance 3 

Sheet resistance Nwell  
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Via Chain and Contact parameters (24 

variables) 

Poly contact chain  

Contact resistance 

Kelvin contact Via resistance  2 

Via resistance 5 

Via resistance 1 

Kelvin contact Via resistance  1 

 

Hence, the technique provides an efficient methodology for picking process e-test 

parameters for monitoring and implementing a feedback based on it. The parameters 

provided in Table 5 in bold are predicted through regression models. Other parameters 

that are predicted have a strong correlation to one of the above-predicted parameters. It is 

important to note that all parameters that have variation need not necessarily impact the 

device as these might not be used in the design or do not affect the device due to its 

design or layout methodology. 

3.1.7. Key Contributions and Applications 

The main contribution of this work is that it attempts to develop a means of relating 

the optimized output measurements of every device to the process/circuit parameters that 

affect it. Such a methodology has immense potential in performing fine-grained diagnosis 

at device level, which can be utilized to provide faster feedback to the fab. The key 

benefits or accomplishments of the proposed approach are as follows: 
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· Concurrent specification and Spice-level parameter prediction capability with 

much faster test time and lower test cost compared to standard testing. 

· Cause-Effect analysis and rapid feedback providing insight into process 

variations occurring in volume manufacturing. The test and diagnosis 

implementation is simple, and can be run independently in any programming 

environment. It is obtained almost “free of cost”. 

The following benefits can help the various steps of manufacturing cycle in following 

ways: 

· The learning of the relationship between test measurements and process e-test 

parameters can be helpful for performing diagnosis on customer return devices, 

i.e., Cause-Effect analysis in post-Si diagnosis.  

· The methodology enables in defining new pass device-based variation limits 

for important process e-test parameters when the devices are transferred from 

the existing fab or other fabs. These limits are different from the traditional 

uni-variate control of process parameters as these limits would be based on the 

circuit design, and would enable identify those parameters that need to be 

controlled with tighter limits.  

· Finally, the results of the presented analysis would help the design engineers 

and process-modeling engineers by providing a means to compare process 

models (Spice models) with variations occurring in production environment 

In recent years, there have been an number of different spatial interpolation techniques 

that have been developed [87][89]. As mentioned earlier, spatial interpolation techniques 

eliminate the random component of process variation. This random component is 

reflected only in the device test measurement. Hence, by predicting the e-test parameter 

using measurement and comparing it with the spatial interpolated value may give an 

indication of extent of randomness in that parameter. This assumes that the noise in the 
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measurement and the residual error in the regression model are minimal (first order of 

approximation). However, this idea needs to be investigated further. 

3.2. Online Testing or Performance Monitoring of Analog/RF Front Ends 

Aggressive scaling of CMOS silicon real estate for higher circuit densities has led to 

greater variability in the silicon manufacturing process. The consequent reliability of 

process-skewed devices is a key concern for systems operating in the field where device 

monitoring and maintenance is difficult to perform. This work presents a new approach to 

real-time performance monitoring of analog portion of mixed-signal circuits and RF front 

ends using signal processing algorithms running on the baseband DSP that perform rapid 

RF front-end parameter estimation. High power RF modules suffer from temperature-

induced memory effects, which lead to performance deviations. State-of-the art RF front-

ends employed in the base stations are designed to operate at high power levels exceeding 

50 Watts resulting in high rates of heat dissipation and thermal cycling. High power 

modules suffer from temperature induced memory effects that lead to performance 

deviations [90]. 

The majority of research in the on-line testing realm has targeted error detection in 

VLSI circuits. Prior research has mainly focused on developing Built-In Self-Test (BIST) 

techniques for detecting defects and performance degradation in analog/RF 

systems[91][92][93]. However, they are not suitable for online monitoring of wireless RF 

systems, particularly wireless base stations that must be operational round the clock 

without significant “down-time”. Such an on-line monitoring system is essential in the 

case of a system such as base station where it is imperative to have no down time as well 

as in continuously adaptive circuits, which would require constant monitoring of its own 

current state while adapting to the external environmental conditions.  



 64 

In [94], the authors propose the use of built-in current sensors for on-line testing. In 

[95], an on-line testing methodology for testing identical circuits by output comparison is 

presented. In [96], the authors propose techniques for detecting gross-delay faults. The 

majority of research in the on-line testing realm has targeted error detection in VLSI 

circuits. In the recent past, there has been significant interest in developing online testing 

techniques for mixed signal circuits such as data converters and operational amplifiers 

[97][98][99][100][101]. In [97], Gao and Wang propose a reconfigurable ADC with 

online testing capability using a configurable switch network. In [98], Peralias et. al., 

propose a practical implementation of a DfT technique for a pipelined ADC. In [99], 

Kolarik et al., propose to develop self-exercising analog checkers for concurrent detection 

in analog and mixed signal circuits. In [100], the authors propose to develop a 

programmable window comparator with adaptive error threshold for analog online testing. 

In [101], an online BIST approach using window comparators and current-based checker 

circuits for mixed signal systems is presented. While techniques have been developed for 

mixed-signal circuits, online testing of RF circuits and systems is still in its early stages. 

Some of the listed techniques involve circuit-level feedback that is more challenging to 

implement in RF circuits due to stability issues arising from parasitic effects. In [102], 

Haralampos et al, discuss the design of an adaptive checker for concurrent error detection 

based on common mode signal analysis. An on-line test strategy is proposed for testing RF 

circuits in [103]. The technique uses simple voltage comparator to analyze the power 

spectral density functions of RF circuits and determine their characteristics. In [104], 

Natarajan et al., propose an online testing technique to assess the health of wireless RF 

transmitters. The spectral features of real-time signals at the baseband input and the 

corresponding spectral content at the output of the RF node are jointly processed by the 

DSP in the system to determine the performance of the transmitter without impeding 

normal service. The proposed technique requires extensive “supervised learning” during 

the production phase of the device. As opposed to earlier proposed techniques of utilizing 
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supervised learning algorithms [104], the current approach accomplishes real-time 

performance monitoring of RF front ends using signal processing algorithms running on 

the baseband DSP that perform rapid RF front-end parameter estimation without any 

prior learning.  

3.2.1. Proposed Approach  

The approach presented in this work uses a signal processing module in the baseband 

DSP to compute what the (transmitted) down-converted signal would look like if the RF 

transmitter were ideal (linear). The model that allows this computation is called the 

“parallel model”. Using minimal hardware overhead in the form of an embedded power 

detector sensor and a mixer, the output signal is referenced against the processed input in 

the OFDM transmitter baseband unit. Using minimal computation power, the parameters 

of the system are estimated to acceptable accuracy limits. The log of the behavioral 

parameters versus time can be used to perform wear out and aging related prognostics for 

preventive maintenance. In this work, we do not discuss the causes of the performance 

degradation but model the degradation in the form of changes in specifications. There 

exist a number of physical phenomenons such a hot carrier injection (HCI), oxide soft 

breakdown (SBD) that cause performance degradation in RF circuits. These effects cause 

changes in the device parameters such as tranconductance, mobility, and threshold 

voltages shifts. These parameter changes result in deviations of circuit specifications such 

as gain, non-linearity, matching, and noise figure of RF circuits [105].  

3.2.2. Architecture of  Proposed Solution  

The architecture of the proposed technique is shown in Figure 27. The shaded blocks 

are the online test circuitry. Due to the high peak to average ratio (PAPR) of the OFDM 

system, the power amplifier is designed to exhibit high levels of linearity across a wide 

power range of the input signal. Hence, in field estimation of distortion levels is feasible 
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only with high power input signal levels. Consequently, the validation engine can be 

turned on only when the input signal power is above a predetermined (calibrated) 

threshold level. The RF output of the transmitter is down converted using an auxiliary 

mixer, which can be designed to have relatively high linearity in comparison to the front-

end mixer. The auxiliary ADC present in the system is used to sample the down 

converted signal and the sampled time domain signal is referenced against the real-time 

input. A QR factorization-based method is used to determine the behavioral parameters 

of the system, and is used to determine the performance deviations of the transmitter. The 

delay unit is programmed based on the delay (phase delay) through the RF transmitter 

path and provides a reference for synchronization of the output signal with input. A 

switch present at the local oscillator output is used to periodically monitor the 

performance of the I and Q paths. The operation of the system is described in Figure 28. 

Since the online test circuitry is used only during certain periods of the test intervals and 

is switched off rest of the time, degradation effects on the test circuitry are less prominent 

compared to the main RF transmitter module.  

3.2.3. Mathematical Framework  

In this section, the basic theory of parameter estimation technique of the RF DUT 

using its real-time transient signal is developed. The conceptual block diagram for N-

order model estimation is given in Figure 29. Assuming there exist three different signals 

as shown in the Figure 29. For a given Reference Test Stimulus (RTS), the Golden 

Response Signal (GRS), and the Distorted Response Signal (DRS) are captured. For 

simplicity, the RTS is shown to be a single tone sine wave. Golden Response Signal 

(GRS) is the signal output if the transmitter was to have ideal characteristics (assuming 

gain of one V/V), and Distorted Response Signal (DRS) is the actual signal at the output 

of the transmitter (shown in Figure 29).  
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Figure 27: Block diagram of the proposed technique. 

Key observation: The polynomial that maps the golden response signal (GRS) to the 

distorted response signal (DRS) captures the distortion characteristics of the nonlinear 

transfer function of the RF device under test (DUT). If the GRS and the DRS of a DUT 

are known, the polynomial that characterizes the distortion can then be computed by 

constructing the “Vandermonde” matrix  . Let us assume that the GRS is assigned as   

and DRS is assigned as  . The objective is to determine the polynomial ‘ ’ that maps   

to  . Let the degree of the polynomial be defined to be ‘ ’. For a given   and a degree 

‘ ’ the Vandermonde matrix   can be constructed as follows: 

       
   

, Equation 18    

where      is an element of the Vandermonde matrix   with row index  ‘ ’ and column 

index ‘ ’. Once the Vandermonde matrix is computed, the polynomials are obtained by 

solving the following equation in the ‘least squares’ sense. 

     . Equation 19   
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Equation 19 is solved by using standard QR factorization techniques to calculate   in a 

computationally efficient manner. 

 

Figure 28: Flowchart of the proposed methodology. 

 

Figure 29: Conceptual diagram for proposed theory. 

Vin 

V
o

u
t 

Vin 

V
o

u
t 

Reference Test 

Stimulus 

(RTS) 

Observed (Distorted) 

Response (DRS) 

Golden Response 

(GRS) 

Validation 

Engine 
Distortion 

Coefficients 

α 

’s 

(α ’s) 

(Parallel Digital Model) 

(Downconverted RF 

transmitter output) 



 69 

An example of the mathematical theory is provided in the Figure 30. The responses at 

the output of the RF devices (GRS and DRS) to a single tone excitation are shown only 

for explanation purposes. In practice, the developed theory of comparison-based 

estimation makes no assumption of the waveform of GRS and DRS. The above proposed 

concept is one of the many optimization algorithms that can be implemented to determine 

the distortion characteristics. Depending on the computation and performance demands 

of the required solution, many other linear and non-linear optimization algorithms can 

also be implemented to determine   in Equation 19. 

 

Figure 30: Sine wave example of the mathematical theory. 

3.2.4. Application to Transmitter Framework 

In quadrature modulator architecture as shown in Figure 27, the input to the power 

amplifier (PA) can be written as follows: 

          (       )   (       ). Equation 20 

Let us consider that the non-linearity of the PA is characterized by a function f. Hence, 

the PA output can be written as: 
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Equation 21 

Equation 22 

The    term produces frequency components that are either at baseband or twice the 

carrier frequency. The terms   and    contribute to components at carrier and higher 

frequencies respectively. The output after simplification is stated as follows: 
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 . Equation 23 

Hence, the resultant signal around the carrier signal can be approximated to as shown 

in Equation 24. 
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       .  Equation 24 

Now this high frequency signal is down converted by a built-in down conversion 

mixer running at carrier frequency. This down converted signal is filtered, sampled by an 

auxiliary ADC. The down converted signals have the distortion information and can be 

used to find the nonlinearities in the I and Q path as follows: 
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       . Equation 25 

The above stated signal is low pass filtered, and the resultant signal is digitized.   
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where LPF is the low pass filtering of the signal. Similarly, multiplying the output PA 

signal with quadrature LO signal results in a signal of the form shown in Equation 27. 
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)           Equation 27 

 Hence, LO signal to the down-conversion mixer is switched and the auxiliary ADC is 

used to obtain the response to find out the gain and non-linearities in both I and Q paths 

separately. This switching can be performed at periodic intervals. 

3.2.5. OFDM Transmitter Baseband Modeling 

In OFDM, orthogonal frequency encoded onto a large number of closely spaced 

orthogonal sub-carriers. OFDM is a spectrally efficient technique and has inherent 

robustness to inter-symbol interference and multi-path fading across a channel. Hence, 

the OFDM technique is the preferred choice for most of the commercial standards present 

today. The incoming data bits to an OFDM transmitter is split into parallel data streams 

according to the number of subcarriers present in the system. After digital modulation, 

the data streams are mapped onto the sub-carriers using an inverse fast fourier transform 

(IFFT) to result in a noise-like time domain OFDM signal. Guard time and cyclic prefix 

is encoded onto the OFDM signal just before transmission to result in an OFDM frame. 

The signals (real-time) such as the one shown in Figure 31 are used as the inputs for 

validation engine for parameter estimation technique and the subsequent performance 

monitoring. 
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Figure 31: Baseband OFDM signal. 

3.2.6. Modeling RF Front Ends 

The incoming baseband signal is converted into an analog signal using digital to 

analog converters (DAC). The analog/RF front-end consists of mixers and amplifiers 

required for the up-conversion of the baseband signal into RF frequencies and subsequent 

amplification. 

Mixers: In this work a mixer is modeled as an ideal multiplier C = x1(t).x2(t) for an 

input signal x1 and  ‘LO’ signal x2. The ideal multiplier is followed by a non-linear 

transfer function block defined by polynomial distortion coefficients. 

Amplifiers: In this work, amplifiers are modeled as a non-linear transfer block. A 

model so chosen is suitable for online monitoring applications. For a given input signal 

x(t), output y(t) can be represented as a 3
rd

 order polynomial as shown in Equation 24. 

The coefficients are extracted from the Vin vs. Vout circuit level simulations using HP 

Advanced Design System (ADS) where    is the gain and   ,    are 2nd and 3rd order 

nonlinearity relating to IIP2 and IIP3 respectively. Once the behavioral parameters are 

identified, these can be used in the simulation environment to determine the gain and 

distortion characteristics of the circuit.  
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3.2.7. Simulation Setup and Results  

The OFDM system consisting of 200 frames of data is used in the simulation setup. 

Each frame consists of the 128-point IFFT data and the guard band bits. Noise 

performance of the system is considered through the addition of additive white Gaussian 

noise in the simulation setup. The mixer and power amplifier are modeled as discussed in 

the previous sections. The simulation results presented are discussed with reference to the 

Figure 32. The input power signal to the transmitter (in the I-path shown in Figure 27) is 

monitored continuously over the data frames. The initial set of data frames (up to 50) 

experience low power signal levels in the I-path. Performance deviations are induced 

during the OFDM data frames through deviations power amplifier characteristics and the 

ability of the system to track the performance deviations is presented. It is to be observed 

that gain tracking is realized during all the frames, whereas IP1dB has a greater 

dependence on the input power level in I channel. This is visible in the first 50 frames 

where the tracking is better when the input power amplitude is higher. At Frame 50, the 

IP1dB is increased from the nominal value. The increased linearity requires the power to 

be higher than that of normal power levels for the distortion characteristics to be excited. 

Hence, during this period the distortion estimation trends follow the input power level. 

For Frames 80 to 200, the IP1dB is reduced from -11.73 dBm to -19.0 dBm. As a result 

of reduction in IP1dB, lower power levels excite the non-linearity characteristics of the 

front end and IP1dB performance deviation is tracked. The relative error in tracking the 

system specifications when power levels exceed threshold levels are provided in Table 6. 

As an experiment, performance deviation in the down conversion mixer is considered 

and the simulation was repeated by injecting up to 10% mismatch in the down conversion 

mixer and its corresponding digital model. The relative error in the specification tracking 

is provided in Table 7. It should be noted that even under performance variation in the 

mixer the tracking trend is maintained. To explain the logistics of performance tracking 
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the normalized power spectrums of Frame 65 and 120 are shown along with the 

corresponding input signals. From Figure 33 and Figure 34, it is clear that there exists 

spectral leakage in the data frame 120 caused by the amplifier distortion. This distortion 

is captured in the down converted time domain signal thereby enabling the performance 

deviation monitoring. The distortion performance evaluation can be used to tune the 

system for increased reliability as well as better performance. The tuning approach 

involved is beyond the scope of this current work and hence is not discussed here. 

 

Figure 32: Performance monitoring of in-field RF transmitter. 
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variations. The proposed architectural overhead is minimal in terms of computation 

complexity and hardware. The presented technique does not involve any supervised 

learning techniques and has strong implications in providing prognostics of in-field DUTs 

using the log of the in-field system performance deviations. Alternative algorithms can be 

used to solve the model parameters. However, the choice of the algorithm depends on the 

implementation and model complexity. 

Table 6: Relative error in specification monitoring of the system. 

Specification Gain(dB) IP1dB(dBm) 

Relative error (%) 3.414 7.54 

 

Table 7: Specification monitoring in presence of feedback performance deviation. 

Specification Gain(dB) IP1dB(dBm) 

Relative error (%) 6.414 10.91 

 

In recent times, a non-linear constrained optimization technique has been used in 

conjunction with optimized pilot symbols to determine the transmitter performance 

deviation in real-time [106]. While such a technique might provide performance tracking 

with higher accuracy, it requires explicit test generation scheme on pilot symbols and 

increases the DSP workload in terms of the solver complexity. Thus, there exists a trade-

off between the accuracy of performance tracking, the characterization steps, and the 

optimization complexity. 
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Figure 33: Spectral plot of frame 65-minimal distortion. 

 

Figure 34:  Spectral plot of frame 120-spectral leakage causing distortion.  
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CHAPTER 4.    DIGITALLY ASSISTED TUNING 

TECHNIQUES FOR ANALOG AND RF SYSTEMS 

Higher levels of CMOS radio integration and technology scaling trends pose a 

substantial challenge for producing highly efficient and linear RF circuit designs in the 

face of large process variations. Low cost manufacturing techniques for scaled 

technology nodes cause increased process variations, the impact of which, present 

themselves as imbalances and distortion in millimeter wave devices. Design 

methodologies to combat these process variations have led to over-designing the circuit 

in terms of power and area. Hence, in this work, intelligent post-manufacture tuning 

methods for reducing the impact of process variations on the performance of such devices 

are investigated to enhance yield. To perform the multi-dimensional tuning of these 

analog/RF devices in a time-efficient manner, at every step the state (in terms of 

specifications) of the devices needs to be evaluated. In this work, intelligent methods to 

determine and correct the circuit specifications by performing an iterative test-tune-test 

methodology is described. 

In the past, digital compensation techniques that address specific impairments such as 

I/Q mismatch, skew, IIP3, etc. have been developed. Further, to perform tuning using 

digital compensation, most tuning techniques rely on signal processing operations 

performed by the digital baseband (or the digital signal processor) in the case of a BIST 

scenario or the tester in the production environment. In analog compensation, the 

calibration is performed in the analog domain by using local feedback to modify circuit 

characteristics such as bias voltages or currents or using passive variables circuit 

elements such as varactors, inductors with taps and resistor banks. These methods 

focused on providing tuning solutions for particular specifications of individual circuits 

by either using localized feedback/feed-forward to tune for the specification. In the cases 
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where different parameters are tuned, these are performed in a sequential manner leading 

to high test/tune times.  

4.1 Overview of Self-Tuning/Self-Healing Methodology  

The aim of this research revolves around developing a framework for designing self-

healing RF systems (SISO and MIMO) using intelligent post-manufacture built-in 

diagnosis and tuning algorithms that will adapt autonomously to manufacturing process 

variations with the least (negative) impact on power consumption (power-conscious self-

healing). Various frameworks that perform self-healing based on the system-level 

resources available are explored. The basic ideology is shown in Figure 35. A control unit 

(which may be the DSP of the system or a simple on-chip dedicated digital circuitry) uses 

sensors present in the system to diagnose the health. These sensors can be at the system 

output as well as at intermittent nodes. The sensors enable low frequency capture of 

design for test (DFT) responses to perform tuning with a low-cost infrastructure, 

amenable for production floor deployment (time T=0) as well as in field self-healing/self-

tuning (built-in tuning). Further, the control unit tunes for the RF impairments of the 

system according to a control algorithm. The RF front-end modules that have process-

induced imperfections are designed with built-in tuning knobs that provide the capability 

to tune the performance. As the performance of the device is tuned, the power 

consumption of the device varies. Finally, an adaptive self-healing methodology that 

attempts to maximize the performance of wireless devices across channels for a given 

system power constraint is presented. The methodology trade-offs the performance of the 

device under certain conditions for a given system-level power constraint. Such a 

technique results in devices that are tuned for various power-performance combinations 

and results in binning of wireless devices according to system-level performance 

constraints. 
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Figure 35: System-level self-healing conceptual diagram. 
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an overall yield improvement.  

4.2. Principles of the Proposed Tuning Approach   

4.2.1. Optimal Stimulus Generation 

 In alternate testing or supervised learning (Section 2.1), the test stimulus to a mixed-

signal/RF DUT is designed in such a way that under process variability effects, the test 

response (observed in the time or frequency domain) exhibits strong statistical correlation 

with its test specification values. Using the observed response, the test specification can 

be predicted from the former using nonlinear regression functions that map the obtained 

response to the corresponding DUT specification values. 

SoC with Tunable 

components

Sensors

Stimulus

Diagnosis 

& Tuning

Control

Unit

GOAL:

Yield 

Enhancement



 80 

 Considering there exist    process parameters represented by                     

,    DUT response measurements represented by                     , 

  specifications represented by               , and a set of tuning knob values 

                  , an optimum test stimulus is developed such that a strong statistical 

correlation between the observed test response and a specified set of DUT specifications 

is exhibited under large process variations across the parameters      for a range of tuning 

knob values   . In the above, strong statistical correlation across simultaneous multi-

parameter perturbations in the vector         is implied. For simulation purposes, the 

parameters    are assumed to be Gaussian with larger than normal (calibrated) values 

of   , where   is the vector of standard deviations of each parameter in each element of 

vector   . The parameters of    are assumed to be uniformly distributed across a 

predetermined (calibrated) range of values. The    parameters are used for performing 

tuning. The methodology is illustrated in Figure 36. The optimum stimulus generation for 

performing tuning is developed by considering each tuning knob setting of each process 

instance as an individual DUT for genetic algorithm-based test generation. 

 

Figure 36: Optimum test stimulus generation concept. 
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4.2.2. Tuning Methodologies Overview   

As mentioned in Chapter 1, there exist different tuning approaches that have been used 

in the past. These approaches include using the system DSP, on-chip logic as the control 

unit for performing tuning. Different tuning methodologies have used different knobs for 

compensation of impairments. These include digital baseband filters, current DACs, 

resistor switches, digital gain, and phase correction. As mentioned in Section 1.6, prior 

tuning methodologies can be broadly classified as one of the following categories: 

· Digital baseband (also known as the digital signal processor (DSP))  based 

monitoring and tuning  

· On-chip monitoring and analog tuning 

· Digital baseband monitoring with analog and digital co-tuning 

In this work, techniques have been developed in these categories that aid in 

performing faster and low-cost tuning of multiple specifications of device.  

Typically, the main drawback of these digital compensation techniques is the long 

convergence time for the baseband adaptive filter coefficients. Further, they use the 

traditional receiver chain in loopback mode to perform the compensation. In analog on-

chip tuning techniques, the bias voltages/currents of different circuits are varied to bring 

the circuit-level specification back within its specified limits. These circuit-level 

feedback techniques might be difficult to implement for RF circuits, due to stability 

issues. Finally, the DSP or the tester in the production environment can be used as a 

control engine to perform the iterative test-tune-test steps. In this technique, in the BIST 

scenario, the DSP chip of the system controls the performance of the front-end chip. The 

DSP uses both digital and analog knobs to correct the imperfections. However, the 

techniques discussed in the past do not perform power-conscious tuning and often correct 
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the imperfections in a sequential manner. In this work, a framework is developed to 

perform concurrent tuning of multiple parameters in a low-cost iterative manner. 

The tuning techniques developed in this thesis, contribute in the following manner:  

· In the realm of DSP based monitoring and tuning, a methodology for reducing 

the compensation time without using receiver chain in loopback mode is 

proposed.  

· In this work, a low-cost DSP-based methodology that simultaneously tunes 

multiple specifications with minimal overhead in power consumption is 

proposed. Further, in the case of devices that consume more than an acceptable 

power consumption, an adaptive tuning technique that maximizes the 

performance of the device for a given power constraint is presented. An 

optimal trade-off methodology that trade-offs performance under certain 

channel conditions for a wireless system against power consumption is 

explored. 

· Alternative to the DSP-based tuning, an architecture that uses simplified on-

chip digital logic to perform tuning of process-induced circuit imperfections is 

developed in this work. This technique aids in reducing the workload on the 

system DSP and is amenable for performing BIST at wafer-level before front-

end integration with system baseband. This work provides a complete on-chip 

self-tuning solution for tuning multiple specifications of a RF transmitter 

concurrently using digital logic.  

4.3. Digital Baseband (DSP) Based Monitoring and Tuning  

4.3.1. Low-Cost Digital Correction Scheme for PA Imperfections  
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RF power amplifier linearity is a critical metric that determines the quality of the 

transmitted signal, and the out-of-band power determines if the stringent FCC spectral 

mask regulations are met. However, the compressive nature of RF power amplifiers (RF 

circuits in general) causes them to operate in a non-linear manner at high power levels. 

This nonlinear operation results in intermodulation distortion products and spectral 

regrowth resulting in poor transmitted signal quality. To ensure linear PA operation under 

signals with high peak-to-average ratio as in OFDM, the power amplifier is backed off by 

several dB from saturation. This however, causes the power amplifier to operate at low 

levels of efficiency resulting in higher than necessary power consumption.  

In general, AM-AM and AM-PM distortion effects are relatively uniform across small 

bandwidths of operation (20 MHz) for “good” narrowband RF power amplifier designs. 

However, wideband devices (devices designed to operate at more than one carrier 

frequency, such as a WiMax PA that operates from 2.3 to 2.7 GHz) suffer different 

distortion effects at frequencies spaced far apart from each other in the frequency domain 

(100 MHz) [107]. Hence, there has been increased emphasis on linearization techniques, 

both adaptive and non-adaptive [60][61]. 

Standard techniques used for adaptive predistortion perform tuning of the predistortion 

coefficients utilizing the receiver chain [60]. The power amplifier output is 

downconverted, demodulated and fed back through the internal receiver chain. The signal 

is then processed digitally to improve the overall end-end linearity. This technique, 

however, is affected by receiver LNA and down conversion mixer non-linearities, I-Q 

demodulator amplitude and phase mismatches and ADC non-linearities arising in the 

down conversion procedure [108]. As transistor sizes continue to decrease and the impact 

of process variations on the RF components becomes significant, large perturbations in 

the receiver noise and nonlinearity specifications are caused across different devices. 
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These variations in the receiver chain affect the optimality of the RF power amplifier’s 

nonlinearity compensation using predistortion.  

4.3.1.1. Proposed Methodology  

Our proposed method provides for testing and adaptive compensation of a wideband 

RF power amplifier using a built in envelope detector sensor on the tester load board that 

consumes little area. A specially crafted multitone test stimulus generated from an 

external test system (test board) allows concurrent testing and compensation of the 

distortion characteristics of the RF power amplifier at each of the upconverted 

frequencies contained in the multi-tone stimulus. The captured response from the 

envelope detector connected to the RF power amplifier output is mapped to the AM/AM 

and AM/PM characteristics of the RF power amplifier using non-linear regression 

mapping functions built from calibration experiments. The estimated behavioral 

parameters are used to obtain the inverse predistortion transfer function (digital) for the 

RF power amplifier. The least mean squares algorithm is used to tune the predistortion 

coefficients using the envelope detector output to guide the search for the best tuning 

parameters using iterative test application. This allows faster convergence of the 

predistortion coefficient optimization process than current methods. In addition, as 

opposed to existing methods in which multiple tuning procedures need to be run at 

different carrier frequencies, a single testing and tuning procedure is used to perform 

concurrent testing and tuning at all the frequencies concerned, concurrently.  

A multi-tone stimulus consisting of the RF frequencies at which diagnosis and 

linearization are to be performed is passed through the power amplifier and the output 

obtained is used as an input to the envelope detector. To develop the MARS mapping 

functions a set of PA processes instances are used and the envelope responses for each 

instance is obtained. 
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The behavioral parameters of the power amplifier instances at each of the different 

carrier frequencies (considered in the above step) are obtained using the conventional test 

technique and the behavioral-level specifications at each carrier frequency is extracted.  

The envelope detector output for each of the selected instances is sampled and 

processed at the baseband to develop a mapping function between  behavioral 

parameters( calculated in the second step) and the obtained response (in the first step) and 

the AM/AM and AM/PM distortion effects of these instances of the power amplifier at 

each desired frequency is estimated.  

This test can be applied from an external tester to the power amplifier during 

production testing and response of the power amplifier can be captured and processed to 

determine the non- linearities. 

The predicted behavioral parameters are stored in a LUT indexed according to the 

carrier frequencies. The inverse transfer function coefficients are then computed and 

stored in LUT of the baseband system indexed according to frequency of operation. To 

obtain higher accuracy in predistortion, LMS algorithm is then used to fine-tune the 

predistorter filter coefficients. The overall proposed approach is shown in Figure 37 and 

Figure 38 respectively. 

4.3.1.2. Behavioral Modeling of Power Amplifier 

Behavioral models of power amplifiers provide an efficient method of observing the 

power amplifier characteristics without intricate and complex transistor-level simulation. 

Behavioral modeling of power amplifiers has been extensively studied and the models 

can be classified as (a) memoryless non-linear systems, (b) quasi-memoryless and (c) 

non-linear systems with memory [109][110]. Volterra series and neural network based 

methods are used in modeling these systems. A simple memoryless modeling technique 

is used for modeling AM/AM and AM/PM characteristics. Since the system considered 
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operates with narrow bandwidth (20 MHz) where the frequency dependent effects are not 

considerable, the use of the following model is justified. Hence, in this model the outputs 

depend only on the instantaneous inputs. The model is described using the following two 

Saleh equations [60] [109]: 

 (    )  
      

         
,  Equation 28 

 (    )  
       

         
, Equation 29 

where ))(( tA  is the amplitude distortion and ))(( t  is the phase distortion in the input 

signal  represented in the form shown below in Equation 30, 

               , Equation 30 

resulting in a output signal shown below in Equation 31, 

      (    )  (      (    ))
. Equation 31 

 

Figure 37: Training phase of the proposed methodology in production. 
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The power amplifier is designed in 0.18u CMOS technology in Agilent Advanced 

Design System (ADS). It consists of two stages namely the driver and the power stage. 

Input, inter-stage, and output matching is provided. It has a gain of 22 dB and a P1dB of 

24 dBm at a frequency of 2.4 GHz. The parameters of the power amplifier are estimated 

in standard least-squares approach using the theory and equations explained in [111]. The 

input and output voltages are normalized at their respective values in saturation. The 

AM/AM and AM/PM characteristics at these frequencies are shown in Figure 39. If the 

amplitude and the phase distortions in the predistorter are denoted by     and       

respectively, then the desired response of an ideally linearized amplifier is given by the 

following equations.  

 

Figure 38: DSP-assisted linearization of PA. 
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current transmitter systems [61]. However, the technique requires considerable iterations 

because it does not have prior knowledge of the power amplifier characteristics and starts 

with random initial coefficients. Our proposed technique uses a modified structure using 

LMS algorithm, which minimizes the error between the pre-distorted signal and the 

reference signal. This is used in addition to the analytically computed inverse transfer 

function coefficients obtained using Equation 32 and Equation 33. Using the low cost 

envelope detector to capture the response of the PA, the responses and the behavioral 

parameters are correlated using a non-linear mapping technique known as Multivariate 

Adaptive Regression Splines (MARS).   

4.3.1.3. Simulation Results  

A set of 70 instances were used in the training phase for building the regression 

model. The above instances are developed through Monte Carlo simulations of the power 

amplifier circuit. The output of the amplifier is passed through an envelope detector 

modeled in Matlab. A set of 30 instances are used in the prediction of the behavioral 

parameters simultaneously at the three carrier frequencies. This method provides for a 

decrease (3x) in the testing time of wideband power amplifiers compared to conventional 

testing methodologies. The estimated relative error in the prediction of the behavioral 

parameters of the power amplifier at three different carrier frequencies is shown in Table 

8. In the proposed scheme, the initial predistorter filter coefficients are obtained using the 

alternate diagnostic testing in addition to behavioral parameters of the power amplifier. 

The LMS algorithm is further implemented to fine tune the coefficients of the predistorter 

filter. A comparison between the conventional and proposed adaptive predistortion 

techniques is shown in Figure 40. It can be observed based on the error progression in our 

scheme that faster convergence (an error of 5e-3 is obtained in 40 cycles) of the 

predistorter coefficients is obtained compared to the conventional indirect adaptation 
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scheme where the error progression is gradual (an error of 5e-3 is obtained in 160 cycles). 

EVM is an efficient metric used for indicating the linearity in the system. 

 

Figure 39: AM/AM  and AM/PM characteristics at different carrier frequencies. 

Table 8: Relative error in AM/AM and AM/PM characteristics. 

Frequency 

Relative Error (%) 

            

2.3 GHz 4.421 2.309 4.546 5.811 

2.4 GHz 2.814 3.991 4.987 6.151 

2.5 GHz 2.267 3.778 4.360 5.886 

 

Hence, the EVM specification of system with and without predistortion are computed 
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noticed that the predistorted constellation points has a lesser skew compared to the 

constellation points of the system without predistortion indicating the decrease of 

amplitude and phase distortions. The EVM plots are shown in Figure 41. 

 

Figure 40: Error progression comparison. 

 

Figure 41: Constellation points of the transmitter. 
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High speed data transfer (up to 480 Mbps) over short-range distances (up to ~10 m), 

has made UWB a viable technology for wireless personal area network (WPAN) 

environments. The ability of UWB standard to coexist with other standards makes it an 

attractive “overlay” technology in the near future. There exist a number of applications 

such as Bluetooth, radar, and biomedical imaging etc., which plan to adapt UWB 

working standards. The FCC has legalized the frequency spectrum between 3.1 GHz -

10.6 GHz for commercial use by UWB devices with an allowed power spectral density of 

-41.25 dBm/MHz. Currently, multi band orthogonal frequency division multiplexing 

(MB-OFDM) and direct sequence code division multiple access (DS-CDMA) have been 

the two proposed approaches for UWB operation. The MB-OFDM system inherits the 

advantages of OFDM systems such as spectral efficiency, resistance to narrow band 

interference (NBI) and multi-path robustness. Further, the system has the ability to 

capture multi-path energy and the capability to turn on and off certain specific 

frequencies dynamically with a resolution of 4 MHz [112],[113]. The ECMA 368 

standard defines the physical and the medium access layers of the MB-OFDM UWB 

system. The frequency spectrum of 3.1-10.6 GHz is divided into 14 bands consisting of 6 

Band groups as shown in Figure 42. The bandwidth of each band is 528 MHz. UWB 

systems have a flexible data rate ranging from 53.3 Mbps to 480 Mbps. Operation in 

Band Group #1 is stated to be the mandatory mode. Techniques such as frequency and 

time domain spreading are provided to ensure the use of these systems under a variety of 

channel conditions. The wide operating range is exploited by using Band Groups #1 and 

#2 for longer-range applications and Band Groups #3 and #4 for shorter-range 

applications [114]. In [115], MB-OFDM UWB is presented as a cognitive approach for 

preventing interference with pre-existing technology standards. The transmitter 

architecture of MB-OFDM UWB systems is shown in Figure 43. Time-frequency coding 

with time-frequency interleaving determines the manner of frequency hopping from one 
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band to the other. A 128-point IFFT is employed using 100 data carriers, 10 guard tones, 

12 pilot tones and 6 NULL tones. 

 

Figure 42: Band groups in MB-OFDM UWB scheme. 

 

Figure 43: Traditional MB-OFDM transmitter 
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the literature [117]. Several such solutions capable of operating in multiple bands or the 

entire licensed UWB frequency range [118], [119], and [120] have been proposed in the 

recent past. To ensure operational reliability, wideband systems entail a “relatively flat 

performance characteristic” in the frequency range of interest. The above stated aspect 

becomes even more significant under severe process variation in the nanometer regime. 

Hence, there is a need to develop a low-cost wideband compensation methodology to 

maintain system performance and improve manufacturing yield. Compensation can be 

performed through analog circuit-level tuning techniques or through digital assisted 

techniques. In a MB-OFDM UWB system where the LO continuously hops across 

frequency bands, the implementation of “on the fly” analog compensation techniques will 

prove to be challenging. This is because the circuit switches in a period that is smaller 

than the settling time of circuit that is tuned. Further, digitally assisted compensation 

techniques provide for a relatively low cost solution with greater flexibility of 

implementation. In our proposed approach, a frequency dependent digital compensation 

block in the baseband provides the inverse of the RF front-end system characteristics, 

thereby increasing the linearity of the cascaded system (end-to-end wireless chain 

linearity increases). 

4.3.2.1. Motivation  

A number of present day commercial implementations of RF components are 

narrowband and hence the variation in their characteristics over the operating frequency 

range is not of primary importance. However, the implementation of MB-OFDM UWB 

front end necessitates that the devices work over several GHz of frequencies. Most of the 

current implementations of MB-OFDM are based on Band group #1 due to the 

limitations determined by hardware complexity. Companies like Alereon have started 

providing complete RF front-end solutions covering the complete UWB band of 3.1 to 

10.6 GHz. Present day wideband design capabilities provide for the in-band variations 
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(528 MHz) to be within the tolerance limits. Nevertheless, due to power consumption 

constraints there would always be significant inter-band variation (from Band 1 to Band 

14). In MB-OFDM, the Local Oscillator (LO) sweeps between any two specified 

frequency bands within a short interval of time ranging in nanoseconds. Therefore, the 

baseband signal experiences different transfer characteristics if the inter-band variation is 

significant. This variation in-turn increases the effective non-linearity of the system. This 

end-to-end nonlinearity can be reduced if the inter-band variation could be reduced by 

intelligent frequency dependent compensation. 

In this work, a compensation scheme for carrier frequency dependent non-linearity in 

wideband devices is developed. A low cost multitone-driven BIST technique for 

estimating frequency dependent diagnostic behavioral parameters of the system is 

developed. A multi-way compensation method for compensating distortion 

characteristics individually in each band of interest (528 MHz wide) is presented. Further, 

a novel unified compensation method for compensating for frequency dependent non-

linearities using just one compensation function for all the bands is developed thereby 

reducing the hardware requirement of the compensation block significantly. The 

frequency dependent compensation methodology is shown to work in an effective 

manner for non-idealities induced due to process variations as well.  

4.3.2.2. Compensation Technique  

The overall proposed approach for compensation is shown in Figure 44. The 

compensation for frequency dependent variation for nominal devices as well as process-

skewed instances is performed in the digital baseband domain preceding the digital to 

analog converter (DAC). The compensation block comprises of essentially one or more 

polynomial transfer functions chosen intelligently taking into consideration the tradeoff 

occurring between the maximum end-to-end linearity and complexity of implementation 

aspects. The use of inverse characteristics for the compensation works on similar lines to 
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that of predistortion. However, predistortion is generally a technique used in the 

compensation of non-linearities in narrowband systems for high power amplifiers (PA) 

which exhibit AM-AM and AM-PM effects. The output power of UWB system being 

relatively low, system implementations do not necessitate the use of a PA before signal 

transmission. The RF front-end (i.e., up-conversion mixer in transmitter or the LNA and 

down-conversion mixer in receiver) in UWB system exhibits frequency dependent non-

linearity due to wide frequency range of operation. The above aspect has not been 

addressed in earlier literature and hence an effective, low cost methodology for transfer 

function estimation and compensation scheme required to reduce the effects of variations 

across different operating frequencies in systems such as UWB is presented. 

In conventional estimation and compensation schemes, the RF transfer function 

characteristics are estimated using a loopback technique. This is affected by the non-

linearities existing in the receiver chain such as I/Q mismatch, LNA and down conversion 

mixer non-idealities. In the proposed approach, the estimation of transfer function is 

performed using an envelope detector at the output of the transmitter. The use of the 

above technique allows for an estimation technique, which is independent of receiver 

non-linearities. A well-crafted multitone stimulus is passed through the DUT (UWB 

mixer) and the mixer is characterized at its center frequency for each band. The response 

of the envelope detector which is a low frequency signal capturing the mixer non-

idealities is sampled and processed at the baseband to develop the mapping functions 

used to characterize the DUT. The mapping functions are developed using a regression 

tool called MARS during the calibration phase [81].  

Two approaches for compensation have been presented in this paper. One involving 

the use of multiple digital compensation functions and the other is using a single digital 

compensation function obtained using an iterative test application and optimization 

algorithm. The tradeoffs involved in either of the approaches have been presented. 
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4.3.2.3. System Description 

The schematic of the wide-band mixer designed in 0.18u technology is shown in 

Figure 45. The proof of concept design is based on a double balanced Gilbert cell with 

inductor degeneration for improved linearity over the operating frequency range of 3 to 8 

GHz. A balun is used for single to double-ended conversion. The mixer provides a gain 

of 15 dB, NF of 8 dB at 3.5 GHz. It consumes 6.6mW power at a nominal supply voltage 

of 1.8V and bias of 0.8V. The above operational frequency range(between Band Group 

#1 to Band Group #3) is considered for the evaluation of proposed technique, though due 

to conflicting standards, operation in Band Group #2 is not being considered for 

immediate future UWB implementations. The mixer specifications do not vary 

significantly within a 528 MHz frequency band(less than 0.5 dB) as shown in Figure 46, 

whereas over the complete frequency range it exhibits significant variation as shown in 

Figure 47. As the variation of the mixer characteristics over the maximum bandwidth 

concerned in MB-OFDM (528 MHz) is significantly small (less than 0.5dB variation), it 

is sufficient to characterize the mixer at its center frequency of operation.  

 

Figure 44: MB-OFDM system with digital compensation. 
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Figure 45: Schematic of wide-band mixer. 

 

Figure 46: Variation of mixer gain over a single band of frequency (528 MHz). 
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and TOI with frequency at different operating bands is compensated for using digital 

compensation techniques at the baseband. 

 

Figure 47: Mixer specifications variations over an operating frequency range. 
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To build the regression mapping, process variations are induced into the mixer by 

varying the behavioral parameters of the mixer and the signatures of every instance is 

then sequentially obtained for each operating band. The above stimulus can be generated 

from the baseband during the post manufacturing tuning or during the time the system is 

idle in the field. The use of the envelope detector provides for a simple low cost sensing 

technique. This provides a method of testing for the transfer characteristics of the mixer 

at all its desired operating frequencies using a single multi-tone test, thereby providing a 

low cost efficient test solution for UWB devices. 

 

Figure 48: Block diagram of BIST for non-linearity parameter estimation. 
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provided in subsection A. The system model includes those blocks that are shaded (dark) 

in Figure 44. The model implemented performs frequency hopping in Band Groups #1, 

#2 and #3 ranging from 3.168 GHz to 7.920 GHz. Hence, nine different polynomial 

equations are used to characterize the UWB mixer. The mixer diagnostic parameters are 

estimated using the concept of alternative diagnostic testing. 

4.3.2.5. Simulation Results - Multi-Way Compensation Technique 

An  ensemble of 100 devices were considered in which 70 were used to training for 

the development of the mapping functions and the remaining 30 were used to evaluate it. 

Figure 49 shows the scatter plots obtained different frequencies of operation. The x-axis 

lists the actual values and the y-axis shows the predicted values. The closeness of the 

scatter plots to the line with slope equal to one shows the accuracy in estimation of 

diagnostic parameters. In this section, the two proposed compensation techniques are 

explained and their tradeoffs are briefly outlined. 

The obtained coefficients are stored in a LUT table at the baseband and the inverse of 

these coefficients are computed individually for each operating frequency. The 

compensation polynomial functions, are realized as FIR filters at the baseband. The 

signal processing control unit responsible for the control of the PLL during the field 

operation of the system based on the time frequency codes (TFC), controls the 

application of the compensation function. The block diagram representation of the above 

scheme is as shown in Figure 50. Taking into consideration the constraints of complexity 

and power consumption at the DSP unit, the above compensation can be applied using 

the two approaches: 

· The inverse transfer function coefficients can be programmed into the LUT 

table present at the baseband unit and can be read from it to load the filter for 

every frequency hop made.  
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· The compensation coefficients are realized in the form of individual filters for 

each operating frequency band and the control unit coordinates a switching 

mechanism between the various filter blocks.  

 

Figure 49: Behavioral parameter prediction for the three bands. 
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UWB systems where high switching speeds at the digital and RF circuitry are a current 

major concern.  
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Figure 50: Multi-way compensation technique. 

 

Figure 51: EVM without and with compensation (multi-way). 

4.3.2.6. Simulation Results - Unified Compensation Technique  

Considering the above drawback of complexity involved in implementing high speed 

switching digital circuits, this approach presents an intelligent compensation solution that 

provides a single filter based compensation technique. The initial compensation 

coefficients are chosen by taking the inverse of the transfer function in the mid-range of 

the operating frequency range. The LMS algorithm is used with iterative test application 

to drive the search for the optimum compensation coefficients. The LMS algorithm is 

optimized by considering the average of the error of a particular input sample in all the 

operating frequency bands. The compensation coefficients are updated after a time when 
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the input signal is affected by all frequency dependent transfer characteristics in the 

operating frequency range of the UWB mixer. The coefficients are updated according to  

                                  Equation 35 

where         is the nth order coefficient, k is the iteration count of the baseband cycles. 

      is the average of the instantaneous error samples(difference between the desired 

and actual response) for a particular sample collected over the desired operating 

frequency range and    is the baseband test input samples. This methodology provides 

for a specialized search process that is capable of obtaining the tuning parameters that is 

best suited for all the frequencies of operation. The error progression during 

compensation of an instance is shown below in Figure 52, and it can be seen that 

convergence is achieved for 40 cycles. This technique necessitates the use of the control 

block for computation of LMS only during post manufacturing tuning and consumes 

lesser power (in real-time operation) than the former technique that consumes power 

throughout the operational life of the device. 

The EVM calculated for a system (assuming ideal down-conversion of the transmitter 

output) without compensation, using multi-way and unified compensation respectively is 

shown in Figure 53. Both the techniques show EVM improvement (7.4 % in the case of 

Multi-way compensation method and 8.6 % in the case of Unified compensation method) 

compared to the uncompensated system (15.6%). The multi-way provides incremental 

improvement at the cost of higher hardware and power compared to the unified 

compensation technique. 

4.3.2.7. Effectiveness of Digital Compensation Under Process Variation  

With transistor size scaling, the detrimental effect of process variation on wideband 

devices is greater than their narrowband counterparts as the variation of the 

characteristics of the devices over different frequency bands could exhibit different 
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amount of deviation from its nominal. A compensation method, which can compensate 

for this process induced variations on top of frequency dependent variations would ensure 

the linear operation for wideband devices even under severe process variation. The 

technique developed in this research uses built in self-test (BIST) to estimate the 

nonlinearity parameters in post manufacturing tuning phase, and hence it captures the 

effect of process on each device while calculating the compensation function for multi-

way or unified technique. This makes the compensation technique even more effective 

under process-induced variations. 

 

Figure 52: Error progression for optimum compensation coefficients.  

 

Figure 53: EVM variation due to proposed technique. 
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Several instances were generated by Monte Carlo simulations and the EVM for 

uncompensated (+) and compensated (*) case using multi way method is shown in Figure 

54. It can be seen for all the cases there is significant EVM improvement, the maximum 

and average being 12.8% and 10.1% respectively: both of which are greater than nominal 

improvement of 8.2%. This shows that the proposed BIST assisted digital compensation 

technique is extremely effective under both process and frequency variations. 

 

Figure 54: EVM of the devices with and without compensation. 
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4.4. On-Chip Digital-Assisted RF System Tuning Methodology  

The DSP-assisted system tuning techniques rely on signal processing operations 

performed by the system baseband processor. However, most existing RF designs 

incorporate the RF front end and the baseband processor (from different manufacturers) 

on different chips for signal integrity reasons. In such a scenario, the use of the baseband 

DSP for test and tuning of the integrated RF front end is difficult and can be achieved 

only after package integration. In the DSP-assisted technique, there needs to be a high 

amount of interaction between the baseband DSP and RF front end. As a result, such a 

technique would require a complex calibration block to interface between the baseband 

and front end. This requirement would lead to increased load in the baseband unit. 

Finally, this solution would affect the cost and time to market of the wireless units as 

yield improvement would only be feasible only after putting all the units together on a 

single package. One approach that alleviates the above problem is that of on-chip digital 

logic assisted tuning of mixed-signal/RF systems. In this design paradigm, on-chip digital 

logic is used to compensate for loss of mixed-signal/RF performance due to process 

variations. As the digital circuitry is relatively more robust to process variations in 

comparison to analog circuitry and is efficient to implement, the sensing and tuning 

circuitry is implemented using digital logic. The overview of the proposed technique is 

shown in Figure 55. 

 

Figure 55: Conceptual diagram of the proposed methodology. 
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There has been significant work done in the area of digitally assisted tuning of analog 

circuits including PLLs, frequency synthesizers, and digital radio. However, the research 

above focuses primarily on testing and tuning of individual analog/RF/ADC 

specifications. To resolve this issue, this work proposes a generic tuning algorithm that 

can be used to test and tune multiple design specifications concurrently within a single 

comprehensive testing and tuning framework without using an external processor. In this 

work, the digital signature obtained from the device in response to an optimized stimulus 

is used to assess the extent of process variations in the circuit and compensate for the 

variations. With increased drive towards complex system on chip (SOC), system in 

package (SiP) and 3D integration technologies, the demand for known good die (KGD) 

has increased. The presented technique facilitates die-level calibration of the RF system 

thereby increasing the yield before integration.  

The tasks of tuning the RF front ends are performed by dedicated circuitry enabled by 

digital signatures called “Hamming Distance Proportional” (HDP) signatures with the 

unique property that the hamming distance of the observed signature from the ideal is 

directly proportional to “how bad” the analog/RF circuit test response is under process 

variability effects relative to the nominal design. Due to this unique property, a hardware 

synthesizable sign-sign LMS-based algorithm can be used to tune the circuit for 

performance improvement. The objective of the optimization algorithm is to minimize 

the signature hamming distance through the tuning process.  

In this section, the term DUT is used to refer to the device that is being tuned. In this 

methodology we do not perform any explicit testing to determine the specifications of the 

system. Under the theoretical framework of Figure 36, because the DUT response to the 

optimized stimulus has strong statistical correlation with the DUT specifications under 

the stated ranges of tuning knob values, we argue that: 
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· If the observed DUT response is different from the ideal for nominal 

values of the tuning knob values T, then one or more of the DUT’s specs 

needs to be tuned. 

· If the response of the RF DUT after tuning is identical to the expected 

“golden” response of the DUT to the applied test stimulus, then 

theoretically, the specifications of the DUT after tuning are identical to the 

nominal specifications of the DUT.  

As a result, the measurement can be directly used for tuning the knobs of the process-

skewed device, without actually predicting the specification. The signature obtained from 

the process-skewed device can be compared to its ideal signature obtained from a 

reference or golden device and the difference between them can be reduced to tune the 

specifications of the process-skewed instance back to its nominal values. An ideology 

similar to the one stated here is used in [73]. However, the algorithms running in system 

DSP are used to perform calibrations operations. This would require the integration of the 

RF module and the system DSP.  

In this work, the analog response or signature obtained from the process-skewed 

device is processed on-chip to obtain a digital signature. This digital signature is 

compared to a reference digital signature to obtain a difference or error metric that is used 

to tune the device using a hardware driven algorithm. The principles for obtaining the 

digital and the difference signatures are discussed in the following sections. 

4.4.1. DUT Performance Evaluation   

The tasks of analysis and tuning the RF front end are performed by dedicated circuitry 

enabled by digital signatures, which we term as “Hamming Distance Proportional” 

(HDP) signatures. For DUT performance evaluation, the Hamming Distance Proportional 

(HDP) signature is developed from the low-frequency signature obtained at the device 

output. The proposed technique is showcased for a transmitter. However, the proposed 
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methodology can be used for a receiver as well. The architecture discussed is shown in 

Figure 56.  

Consider the device response to the optimized stimulus is periodic with period N, 

where N is the number of S/H clocks (the S/H clock period is normalized to a value of 

“1”) and the response is captured at the output of the envelope detector using a 1-bit 

comparator. The other input to the 1-bit comparator is a reference waveform generator 

that produces a linear ramp waveform with period M. The system can be designed such 

that across all process variations and tuning knobs settings of the device, the dynamic 

range of the reference waveform signal is greater than the device output response. One 

period of the periodic device response waveform at the sample and hold output is defined 

to consist of the samples                                  and one period of the 

reference ramp consists of the samples                            

           . Thus,      and      are periodic waveforms offset in frequency. For 

                            and for                              . A 

total number of       comparisons at the comparator output are acquired. The 

sampling approach is similar to Vernier sampling used for measuring fractional distances. 

However, the manner in which the test response is interpreted is completely different. 

Let   be defined as a     matrix with row indices going from 0 to     and 

column indices going from 0 to     (left to right). At time t,            is compared 

against           .      is connected to the positive input of the comparator. At any 

clock comparison at the comparator, if          , then the output of the comparator is 

high (1), else the output is low (0). The following observations can be obtained using the 

comparator digital output     .   
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Figure 56: On-chip digitally assisted DUT architecture. 

Observation 1: If each comparison of      against every point of      obtained over 

      comparisons are regrouped and arranged as a column of the matrix  . Then the 

total number of 1s in        is directly proportional to the area under the curve of Y(t). 

Explanation: Consider a sample point     . The sample point is compared against 

    , at t=0. This comparison gives the value of         . The next comparison of 

     is obtained at     by comparing      =            against another point on 

    . Subsequently, at     ,       =  (        ) is compared against a third 

different point on      . Proceeding likewise, it is seen that      is compared against 

     for all         . All comparisons correspond to a single column in the matrix 

 . In a similar fashion, every point in       is compared with every element in  . 

Collecting all the comparisons for each element of      to form a vector and rearranging 

as column vector with all zeroes followed by ones and transforming to a column vector. 

The column vectors (total of  ) so obtained for each element of       can be 
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concatenated to form the matrix  .The number of 1s in each column represents the 

incremental area under the curve for the value of  ,         , corresponding to that 

column. The sum of the ones in each column is proportional to the amplitude at that time 

point and integrating over all the values of   (columns of  ) gives the stated result. 

This is analogous to comparison of every amplitude point of       to   different 

levels (equivalent to a       bit converter). However, in this case, the comparisons 

happen over a time cycles of the periodic output response waveform from the device and 

the reference waveform.  

Example: A theoretical example that explains the concepts of Observation 1 is shown 

in Figure 57. At each of the time steps     through      (corresponding to   = 4 and 

  = 3 in observation 1), the result of the comparison between      and      is shown in 

    . In this case, for ease of illustration, it is assumed that both      and      are 

piecewise ramp signals. The matrix   exhibits a ramp in its lower right corner with a high 

level of quantization representing the signal     . As can be seen the first column on the 

matrix has a single one, the second column has two and the third column has three. 

Observation 2: If      corresponds to the process-skewed response of the DUT with a 

time period of  , and         is the response of the nominal or reference DUT, then the 

absolute difference in the time-domain response between the two waveforms is given as 

shown below in Equation 36. 

∑ |            |

     

   

  ∑    (            )

       

   

  Equation 36 
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Figure 57: HDP signature example. 

Equation 36 is the area between the curves      and        . In prior work [73], it 

has been shown that the area metric has a strong correlation to specification variations. 

This area is directly proportional to the number of ones obtained by taking the     of 

the digital response obtained at the output of the comparator for the process-skewed 

device (    ) and the expected “golden” bitstream at the output of the comparator 

(       ) corresponding to the response        .  

The digital stream produced at the output of the     gate is the Hamming distance 

between the observed digital signature and the “golden” digital signature and is called the 

Hamming Distance Proportional (HDP) signature. The output is called so as the total 

number of 1s produced at the output of the XOR gate is the Hamming distance between 

the observed digital signature and the golden digital signature. By observation 2, the 

larger the value of difference between the two time-domain responses, the larger is the 

Hamming distance and vice versa. This Hamming distance value can be determined by a 

counter that is reset to zero at the start of the test and counts by one every time it sees a 
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“1” at the output of the     gate. The value of the counter after counting all the ones 

represents the hamming distance, and is called as an error metric or error count. This 

counter value, which determines the difference between      and the golden or reference 

response        , must be minimized in order to ensure that all the DUT specifications 

are tuned to their nominal values. Hence, the test is repetitively applied through different 

tuning steps, and the tuning algorithm is designed to minimize the counter value.  

A key outcome of the above is that, on a per clock cycle basis, comparisons between 

     and      (resulting in     )  and “golden” response correspondingly arranged 

(       )  are compared at the     gate input and the number of ones at the     gate 

output counted in the order of comparisons is directly proportional to the area of the 

curve between      and        . Due to Observation 2, the matrix        need not be 

constructed by the hardware. It is shown in Observation 1 only for the sake of 

explanation. Just counting the number of ones produced by the     gate output in the 

order that the comparisons between      and      are performed gives the stated result 

and simplifies the hardware implementation.  

While the explanation in the example is provided using ramp signal as the device 

response, the theory explained here holds good for any waveform with any number of 

multitones.  

As shown in Observation 1, the frequency of      is    
  

 
, and           

  

 
. The 

  samples of the process-skewed device response waveform need to be compared against 

all the   different levels of the reference waveform. In order for such a condition to hold, 

the frequencies of      and      should have a certain relationship given by the 

following Equation 37. 
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Equation 37 

Hence, according to Equation 37, the values  ,   are co-prime. For any other random 

values of  ,   the each sample of   would repeatedly be compared against a small 

subset of   rather than all its values over the       clock comparisons cycles. Under 

this condition, the number of ones in a column would not be proportional to the 

amplitude and the integrated value to the area under the curve. Note that the example 

where   = 4 and   = 3 is a one case of Equation 37 as any two consecutive numbers are 

co-prime. The choice of  ,   in our case can be based on implementation flexibility. 

4.4.2. Tuning Architecture   

The power amplifier and mixer circuits were designed in Advanced Design System 

(ADS) environment in 0.18um CMOS technology. The mixer is a Gilbert cell-based 

differential design. The PA is a two-stage CMOS design and is shown in Figure 58.  

 

Figure 58: Two-stage PA design with tunable elements. 

The tuning knobs used to tune the DUT are the bias knobs in the two stages of PA. 

The knobs can be implemented using CMOS switches. An envelope detector is connected 

to the output of the PA. The envelope detector captures the time-domain envelope of the 
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high frequency PA output signal, and hence contains the information of both the non-

linearity and gain of the PA. The envelope detector output is fed to the comparator’s 

positive input. The comparator output is at either logic 1 (if the device output voltage at 

any time is more than the voltage of the ramp signal at that time) or logic 0. The CUT test 

response waveform is transformed to a digital bit-stream that can be clocked at its output.   

The negative input of the comparator is fed by the reference ramp signal. Other 

reference waveforms that can be used include simple RC output. There has been a lot of 

literature in the past that discusses generation of ramp signals on-chip for performing 

BIST for components such ADCs where the frequencies of the ramp signal range from a 

few KHz to MHz [123][124]. In [123], calibration schemes for correction of the slope of 

the ramp signal have been presented as well. In this scheme, the on-chip ramp signal 

precision is accurate enough to test 15-16 bit ADCs. The basic operating principle of the 

ramp signal generation is shown in Figure 59 . The current source drives the capacitor 

according to the switch signal, which can be derived from the system clock using a 

counter serving as a divider. The value of M can be chosen depending on the ease of 

implementation of the counter.  

The XOR gate compares the output obtained from the comparator with the golden 

signal that is extracted from the nominal instance and stored in the on chip memory. 

However, as can be seen from Figure 57, the digital stream from   = 6 to 11 seen at the 

output of the comparator can be obtained by flipping the ones and zeroes of the digital 

stream obtained from    = 5 to 0. Hence, the entire digital stream does not need to be 

determined and comparisons only up to      /2 time points are sufficient. Further, 

instead of storing the actual digital stream, the number of continuous ones or zeros 

present in the golden digital bit stream, can be stored as a word in the memory. This 

technique reduces the memory requirement required to store the golden digital stream. By 

using a counter that counts to the value of word during which a bit (either one or zero) is 
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repeated in consecutive clock cycles, the bit pattern can be reproduced. Since the 

comparator operates at a much higher speed than the input signals, the ones and zeros in 

the digital stream do not alter in a frequent manner. The memory consists of words, 

which store the golden digitized pattern in the following format: 

Number of  continuous Ones One 

  Number of  continuous  zeroes Zero 

Number of  continuous Ones One 

 

 

Figure 59: On-chip ramp-signal generator [123]. 

To achieve the divided clock frequency, the digital bit stream, and the error metric, 

various counters need to be implemented. A simple control unit facilitates the test 

stimulus initialization, golden digital bit stream generation, the ramp signal generation, as 

well as processing the error to perform the tuning of the PA circuit knobs.  

4.4.3. Tuning Methodology  
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In this work, an efficient algorithm that is completely digitally synthesizable is used. 

The algorithm is based on the principle of Sign-Sign Least Mean Square (SS-LMS) 

algorithm. The SS-LMS is a variant of the LMS class of algorithms that are commonly 

used for adaptive filtering based digital compensation of analog/RF impairments. In this 

work, the principle of SS-LMS algorithm is used to tune analog knob settings of the 

tunable device. In our algorithm, the error metric obtained at the output of the     gate 

directs the search for the tuning knob settings of the PA. Let      be defined as the 

instantaneous error between the golden envelope or corresponding digital stream 

        and the circuit response or corresponding digital bit stream (    ) for a knob 

setting ‘     ’. The knob    is then updated to its new value as shown in the equation 

below in Equation 38 

                           ,                  Equation 38 

where the sign functions       and       are then defined as follows: 

If               , 

then       = 1; 

else       = -1; 

Equation 39 

 In the above equation,        is the error due to the     iteration and      is the 

error in the   iteration. Similarly       can be defined with respect to      . The 

approach tunes the knobs one at a time. The sequence of the knobs can be repeated for a 

pre-determined number of repetitions. The selection of the order of the knob can be 

obtained in the characterization phase by examining the variation of the specifications 

surfaces with the knobs. Due to the simplicity in the implementation of the algorithm, 

there is no adaptive step size selection. As a result, the optimum knob solution can 

converge to a local optimum value. To take care of this problem, multiple starting 
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locations for the tuning knobs are used. The flowchart explaining the tuning algorithm 

iteration for each knob setting is shown in Figure 60. The basic idea of the algorithm is to 

change the direction of search in a knob setting when the error increases. 

  

Figure 60: Sign-Sign LMS-based algorithm for tuning process-skewed instances. 

4.4.4. Cost Function Formulation 

As stated in Observation 2, the error metric or error count that is counted at the output 

of the     gate is directly proportional to the area difference (outcome of Observation 

2), and can be used as a cost function for tuning the RF circuit “knobs” to tune the 

specifications of the circuit back to its nominal value. In this work, the difference in the 

gain and non-linearity metrics between the process-skewed device and the nominal 

device contribute to the total computed error count between the reference digital stream 

and the process-skewed digital stream. However, since multiple metrics (Gain and OIP3 
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in this case) are to be tuned, it is required that the cost function is sensitive to every 

individual specification. In general, it is observed that the contribution from variation in 

gain specification takes dominance over the contribution from the OIP3 specification. 

This can be intuitively explained as gain variation is present at all power levels and 

variation due to non-linearities becomes significant at relatively higher power levels 

when the non-linearity of the device is excited. To increase the sensitivity of the error to 

non-linearity of the DUT multiple error count measurements are made at different power 

levels. This can be explained as follows: 

 For ease of explanation, let us consider that the transmitter is modeled as a third order 

polynomial as shown below: 

             
        

    . Equation 40 

When      amplitude is low, the amplitude of higher order terms (corresponding 

to      ) are small and hence ignored. Error    (calculated as in Observation 2) can be 

approximated as follows:  

    ∑ |            |
     
    |              |.  Equation 41 

   is the error metric obtained from the counter output that counts the number of ones 

at the     gate when the input amplitude is low. Now if amplitude of      is relatively 

higher (  times) corresponding to a higher input power level when the non-linearity 

characteristics of the device are excited, then the Error    is given as:  

    ∑ |            |
     
    |                

                                   |. 
Equation 42 

 If the higher order terms are insignificant, then the above error    can be stated as 

   . However, at the higher input power level, the effect higher order terms are 

significant leading to distortion characteristics. Hence, the difference between the 
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Equation 41 and Equation 42 corresponds to the non-linearity in the response and is 

stated as  

          . Equation 43 

The cost function (also called as the error count) is formulated as shown in Equation 

44, 

                      |  |     |   |,  Equation 44 

where    and    are the weights of the two error terms. This cost formulation provides 

a better metric for obtaining the effect of both gain and non-linearity terms on the final 

error cost function. To obtain the cost function, the device is excited using a stimulus of 

various amplitudes. This can be done by programming the gain of the filter or by 

changing the setting of the variable amplifier gain, which usually precedes the mixer of a 

transmitter. From Observation 2, it is known that   ,    are error metrics that can be 

obtained from the counter value at the output of the       gate for different input power 

levels. Further, the golden digital signature obtained for the nominal device at both the 

power levels used for process-skewed device needs to be stored in the memory.  

4.4.5. Optimized Stimulus Generation 

In this work, as explained in previous section, an error count that indicates the extent 

of variation of the specification from its nominal value is developed. In order for this 

metric to be effective, it is essential that an input stimulus be chosen such that it increases 

the sensitivity of error metric calculated for different process skewed instances and their 

corresponding specification variations. To obtain such a stimulus, a genetic algorithm 

driven stimulus optimization algorithm that excites the effects of process variation across 

tuning knob settings is proposed. In the proposed stimulus generation method, a digital 

bit pattern is optimized by a binary elitism-based genetic algorithm (GA). The bit stream 

generator shown in Figure 56 produces the optimized digital stream. This generator can 
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be a simple state machine or an on-chip register controlled by the tuning and control unit. 

Each chromosome in the population of the GA represents a bit pattern and by crossover 

and mutation operation, new chromosomes are created in every generation. The bit 

pattern is first band pass filtered to get a test signal within the pass band of the device and 

response of the device is captured by an envelope detector. Similarly, response of the 

nominal device is also captured to get the golden signature. For every chromosome (bit 

pattern), fitness value is calculated by applying that bit pattern to a set of devices from 

different process corners across all tuning knob settings and then evaluating the test 

generation cost function. GA converges after several generations and finds out the test 

stimulus that gives the optimum value of the cost function. The stimulus generation cost 

function        is designed such that it maximizes the error count or cost function for 

different process instances across different tuning knobs. Hence, using Equation 44, the 

stimulus generation cost function can be stated as follows: 

              ∑    
    .  Equation 45 

In the above equation,   corresponds to the total number of process instances under 

different tuning knob conditions. In the above formulation, a limiting function is used to 

prevent the contribution of any particular process instance under a knob setting from 

dominating the overall cost function. 

4.4.6. Simulation Results  

The proposed method is validated on a behavioral model of a wireless RF transceiver 

in MATLAB. Monte-Carlo simulation was performed to generate different process-

skewed instances of the PA and mixer. The process variations that were injected were the 

change in threshold voltages of the transistors, the length reduction factors of the 

transistors, oxide thickness, gate-source capacitance, channel mobility of the NMOS 

transistors. The input power characteristics vs. output power characteristics for different 
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instances were extracted, and the voltage transfer characteristics of the different instances 

were used to perform system-level simulations. The PA is modeled as a 5
th

 order 

polynomial and the mixer is modeled as a 3
rd

 order polynomial. The nominal 

specifications of the transmitter are shown below in Table 9. The test generation routine 

discussed in Section 4.4.5 is performed using a set of 50 process-skewed instances whose 

gain and IIP3 specifications are varied from the nominal device. The cost function 

progression over generations is shown in Figure 61. The optimized digital pattern 

obtained using test generation is shown in Figure 62. The digital bit pattern is 128 bit that 

is clocked using the system clock. In this simulation framework, the system clock is 

considered to be   
 

 
        Hzs. Such an on-chip clock frequency is quiet prevalent 

in today’s analog/RF modules and can be generated from the system LO. The optimized 

digital pattern is filtered to obtain a multi-tone stimulus of period 128   ( =128) and is 

shown in Figure 62. The reference ramp signal of time period of 311   ( =311). This 

value of   is equivalent to a 8-bit ADC. 

Table 9: Nominal specifications of the device. 

Specification  Nominal  Bound  

Tx gain  24 dB 3 dB ( 1.5 dB) 

Tx IIP3 -3.5 dBm > -4.5 dBm 

 

The envelope response obtained at the output of the PA is shown along with the ramp 

signal in Figure 63. For the ramp signal simulation, an offset error of 1% (mean) is 

modeled in different instances along with additive white Gaussian noise. The actual 

envelope output as well as the reconstructed signal (using Observation 1) for three 

process skewed different DUT instances are provided in Figure 64. The envelopes shown 
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here correspond to the higher input power level and the reconstructed envelopes have 

been scaled for comparison. 

 

Figure 61: Test generation progression. 

 

Figure 62: Optimized digital bit pattern and input stimulus. 



 124 

 

Figure 63: Comparator input signals. 

The total error count, the specifications of the different process instances and the 

normalized root mean squared (NRMS) error also called as the reconstruction error 

between the reconstructed envelope (scaled) and the original envelope responses are 

provided in Table 10.  

 

Figure 64: Validation of Observation 1. 
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Table 10: Error and reconstruction error for different instances. 

Instance Gain (dB) IIP3 (dBm) Error count 
Reconstruction error  

(%) 

1 24.05 -3.5 0 0.4 

2 24.5 -3.9 274 0.39 

3 27.3 -5.5 2795 0.31 

 

This reconstruction error arises because of the quantization effect among the ramp 

signal levels. The quantization effect can be reduced by increasing the comparator 

operation speed. This would result in higher memory requirements along with more 

precise sample and hold circuit.  

The cost function variation for a few process-skewed instances across tuning knobs is 

shown in Figure 65. As can be seen from the graphs, the error count reduces when both 

the gain approaches the nominal value of 24.0 dB and the IIP3 value is beyond its 

nominal bound of -4 dBm. Further, note that the error is high when only one of the 

specifications is within the pass bounds. It should be noted that complete decoupling of 

the non-linearity and gain effects is difficult to obtain by using a single error count. 

However, the use of two input power-levels and stimulus optimization aid in increasing 

the relative contribution of the two specification variations to the total error count or cost 

function. 

For validating the tuning methodology, 275 instances were used for performing the 

yield simulations. The yield histograms before and after tuning are shown in Figure 66. 
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The initial yield of the system was 70.6%, and the final yield was determined to be 86.5% 

and a yield improvement of 15.9% is obtained by the proposed tuning methodology. The 

algorithm takes 15 iterations on an average to converge in the optimum value. 

  

Figure 65: Cost function variation across tuning knobs and process instances. 

 

Figure 66: Yield histograms. 
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4.4.7. Hardware Validation 

For the purpose of experimental validation of the proposed concept, an industrial RF 

module consisting of PA/LNA module in production with Texas Instruments is used as a 

platform for demonstrating the proposed concept. The entire tuning methodology is 

demonstrated using off the shelf components and is shown in Figure 67. The system 

consists of a mixer MAX2039 that is used to upconvert the baseband signal generated 

using Agilent 33220A function generator. The mixer is powered using a Keithley 2400. 

The signal is upconverted at a LO frequency of 2.2 GHz generated using the HP E8648D 

RF signal generator. The upconverted signal is fed to the PA that has tunable control 

knobs. The PA chip is fed through a RF socket on the TI tester board as shown in Figure 

67. The output of the PA is downconverted and the low-frequency response is extracted 

using a custom-made envelope detector. The envelope detector is designed such that it 

has a cut-off frequency of 10 MHz. To prevent the comparator from loading the envelope 

detector, a buffer is used. The clocked comparator used is Hittite HMC874LC3C with an 

internal sample and hold. The clock signal used is 10 MHz and is provided by the Agilent 

81133A pulse pattern generator. The reference signal used is a ramp signal generated 

using AFG320. The digital bit stream at the output of the clocked comparator is fed to the 

digitizer in the NI PXI 1073E DAQ chassis. The digitizer is interfaced through NI 

LabVIEW to the Matlab simulation environment in a PC. The tuning algorithm is 

implemented in Matlab as well. NI 488.2 GPIB controller is interfaced with Matlab for 

controlling the tuning knobs. The nominal specifications of the transmitter system are 

shown in Table 11. 

For the transmitter setup, eight fabricated instances are used for process emulation. 

The tuning knobs used for compensating for process variation are the power amplifier 

supply (    2.4 to 3.9 V) and the digitally control (                    . These knobs 

control the gain and OIP3 specifications of the device. During characterization, an 
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Agilent ESA4407B spectrum analyzer was used in a standard two-tone test measurement 

setup for determining the specifications of the transmitter. The variation of the 

specifications for a particular instance with the tuning knobs used is shown in Figure 68. 

As shown in Figure 67, the trigger signal generated from the DAC initiates the input 

stimulus to the mixer using the AFG320 as well as the reference ramp signal using the 

Agilent 33220A function generator. The reference clock that was used was the 10 MHz 

signal generated on the DAQ. Considering N = 100, a 100 KHz tone was used to create a 

two-tone stimulus at the input of the PA. The ramp signal was generated with a M value 

of 311, resulting in a frequency of 32.154 KHz. The number of comparison points 

collected at the output of the comparator is 31100. The amplitude of the ramp signal was 

selected to be 1.38 Vpp and symmetry of 70 %.The amplitude is selected such that it has 

a dynamic range greater than that of envelope detected PA response over tuning knob 

ranges and across all process instances. 

 

Figure 67: Hardware validation of the proposed concept. 
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Table 11: Nominal hardware specifications. 

Specification Nominal Limits 

Gain (dB) 8 ±1 

IIP3 (dBm) 14.5 > 13.5 

Power (W) 0.58  

 

 

Figure 68: Specification value variation with tuning knobs. 

The main clock signal is generated in the DAQ chassis and is fed as a reference clock 

to both the pulse pattern generator (clock signal) and the RF signal generator (LO signal). 

The digital bit pattern obtained at the output of the comparator is collected for 31100 

clock cycles and is transferred to the PC. In the software domain, the comparison with the 

reference digital bit stream is performed using the XOR operation between the reference 

waveform and the process-skewed waveform, and the error count is calculated. the tuning 

knob selection based on the error count is applied using the GPIB control. Two power 
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levels of -5 dBm and -1 dBm are used at every tuning iteration to generate the cost 

function as discussed in Section 4.4.4 . The initial and the final measured values of the 

specification that are obtained before and after tuning are shown in Table 12. The average 

increase in the power consumption due to tuning in the tuned devices is 4.0 % and the 

average number of iterations performed to obtain the final tuned specifications is 18. Two 

different starting points were used in performing the tuning and the during 1
st
 and 2

nd
 

iteration Vcc and Vcontrol were used as the first knob to be tuned respectively. 

 

Figure 69: Reconstructed and original envelope signals. 

 

Figure 70: Reconstructed envelopes across tuning knobs. 
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Figure 71: Error from envelope and XOR output (proof of Observation 2). 

4.4.8. Key Discussions  

· Test Time Overhead: The test time is a strong function of the comparator 

speed. Conservatively, on-chip clocked comparators of up to 0.512 GHz are 

feasible at 0.18um CMOS technology nodes. In general, higher speeds would 

require a more precise sample and hold circuitry. Hence, considering our 

hardware setup acquisition size of 31100 samples, the total time taken to obtain 

the digital stream twice would be around 0.06 ms (considering only half of the 

bit stream needs to be acquired for each iteration due to the symmetry in the 

digital bit stream). The total number of tuning iterations required per device on 

an average is 18. As a result, the total time for performing the tuning is in the 

order of couple of milliseconds (ignoring circuit-tuning time, which would be 

in the order of microseconds). 

· Area Overhead: The area overhead is dominated by the reference signal 

generator due to the capacitor required for generating the ramp signal. The area 

for other components including the memory block (which can be implemented 

as a one-time programmable memory) is insignificant. The area of an on-chip 

ramp signal generator with calibration circuitry in 0.18um CMOS is 0.18 sq. 

mm [123]. A typical RF transmitter with on-chip power detector (similar to 
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envelope detector) and its control logic unit implemented in 0.18um CMOS is 

4.8 sq. mm [125]. Hence, the additional overhead due to the reference is 

around 4%. 

Table 12: Hardware validation of the technique. 

Instance Initial measured value of 

specifications 

Final measured value of  

specifications 

Iterations 

 Gain IIP3 Power Gain IIP3 Power  

1 10.284 17.75 0.580 9.03 20.54 0.589 19 

2 5.666 10.28 0.551 8.2 15.88 0.61 9 

3 8.972 11.7815 0.587 8.91 15.12 0.598 11 

4 9.58 15.9635 0.572 8.63 15.57 0.602 9 

5 6.26 12.993 0.545 8.1 15.8 0.581 11 

6 3.092 8.9715 0.54 8.29 15.92 0.63 13 

7 9.258 14.412 0.597 8.15 13.06 0.565 19 

8 9.844 15.6405 0.585 8.54 13.77 0.544 17 

9 7.206 9.3925 0.579 8.8 16.16 0.618 18 
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4.5. DSP-Assisted System Architecture with Analog and Digital Co-tuning  

The methodology described in Section 4.4 involves using on-chip digital logic to 

perform tuning of RF circuits or systems. In this section, the system processor is used to 

accomplish the tuning objective. The essential components involved in DSP-assisted 

system architecture are as follows: 

· DSP-based BIST for computing multiple performance metrics of RF circuits 

· DSP-based complex control law for tuning a circuit performance parameters  

The advantages of this tuning methodology is the fact that system-level tuning can be 

performed by using measurements (both analog and DC) from different circuits to 

simultaneously monitor or predict different system specifications. Further, complex 

calibration algorithms can be implemented in the system’s baseband processor and can be 

run to determine the optimal knob settings that guarantee system performance criteria 

with minimal impact on the power of the DUT. As opposed to the prior technique, in the 

DSP-based techniques, explicit specifications determination can be performed at multiple 

frequencies at every step of the test-tune-test methodology. 

4.5.1. DSP-Based BIST for Multiple Performance Metrics Estimation 

It is critical to develop low cost and test time efficient BIST technique that can 

evaluate multiple performance metrics to ensure an overall improvement in performance 

of a RF device. The primary focus of past research has been to develop compensation 

techniques in which conventional (time-consuming) system-level tests for specific 

performance metrics are run iteratively, each time a tuning knob is turned. While such 

techniques are useful to develop compensation schemes for a specific RF performance 

metric, they may not fare well in a real device that suffers from several such non-

idealities. Supervised learning techniques (Section 2.1), on the other hand, have the 

capability to estimate multiple performance metrics from a single response capture for an 
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optimized test stimulus. The supervised learning is performed using an optimized test 

stimulus that is obtained through the technique discussed in Section 4.2.1. For creation of 

a mapping function, each circuit knob setting for the system is considered as a separate 

instance of the device. This is done to facilitate the development of a non-linear 

regression model (running on the DSP) that can estimate multiple performance metrics 

across all process variations and across the entire tuning range for all possible circuit 

knob settings. 

4.5.1.1. Control Law for Tuning a Circuit Knob 

For a given RF device, we assume that multiple tuning knobs are available for 

modulating device performance (e.g. tuning can be performed on one or more of the 

passive circuit component values (capacitances, inductances and resistances) or active 

device biasing parameters (voltages, currents of a circuit module). In general, the number 

of tuning knob combinations can be quite large especially if fine-tuning is desired. 

Exhaustive enumeration of all possible such combinations to find the best one that 

restores the specifications of the device to its original values with minimal impact on 

power consumption can be very time consuming and expensive. Hence, a diagnostic 

BIST driven optimal control law that determines the best way to tune multiple knobs in 

an iterative manner in the shortest possible time is desirable. While the method of [123] 

develops such an approach, it does not allow multiple RF specs to be evaluated and 

therefore does not allow RF specs to be specifically traded off against each other through 

the tuning process. The proposed methodology is shown in Figure 72. In this work, a 

multi-dimensional gradient search algorithm with adaptive step size is used as an 

optimization engine to determine the knob settings corresponding to the “best” 

compensation that can be performed for each process instance. Let 

                 denote the vector describing   control knobs present in the 

system. Depending on the approach, a cost function   is formulated to tune for multiple 
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specifications in the system. A central-difference-based first derivative approximation of 

the cost function   is used to obtain the gradient value along the steepest direction for 

each tuning knob as shown in Equation 46. The gradient vector for all the knobs present 

in the system (as shown in Equation 47) is then used to obtain the steepest descent 

direction    as shown in Equation 48. Once the direction is computed, the optimum step 

size (    ) for each iteration is computed using a ‘golden ratio’ based line-search 

technique. Golden ratio based adaptive step size is used to ensure faster convergence. The 

control knob vector   is then updated accordingly. 

 

Figure 72: DSP-based tuning approach. 

The overview of the tuning algorithm is shown in Figure 73. During run-time, the 

optimization engine optimizes the control knob voltages, iterating from a random staring 

point to obtain the best possible knob settings. The set of equations describing the 

mathematical formulation of the optimization technique is shown below, 
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Figure 73: Gradient search with adaptive step size. 

4.5.1.2. Cost Function Formulation 

The key idea of the proposed post-manufacturing tuning technique is to offset any 

process variability to increase the overall yield of the system with minimum impact in 

power consumption. Hence, to facilitate the idea, the cost function is formulated as a 

weighted function of multiple specifications across the operating range of frequencies. 

The power consumption for a given knob setting is considered as an additional 

specification in the cost function formulation. In Equation 51,        
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specification for the ‘jth’ control knobs setting for a frequency band of operation defined 

by ‘    ’;            denotes the nominal specification value;      denotes the 

nominal power consumption value;         denotes the weight assignments for individual 

performance metrics and    denotes the weight assignment for power consumption 

value. 

     ∑ ∑         (  
       

 

          
)

 

 
   

 
          (  

  

    
)
 

.  Equation 51 

By assigning appropriate weights the proposed cost function can be manipulated to 

achieve various trade-offs between multiple performance metrics across frequency bands 

of operation for overall yield improvement with minimal impact in the power 

consumption. 

4.5.1.3. Simulation Framework  

The schematic of the wide-band mixer designed in 0.18u technology for verification 

purposes is shown in Figure 74. The proof of concept design is based on a double 

balanced Gilbert cell with inductor degeneration for improved linearity over the operating 

frequency range of 3 to 7 GHz. A balun is used for single-to double-ended conversion. 

The power consumption of the device at a nominal supply voltage of 1.8V and bias of 

0.8V is 6.6mW. For demonstration of the proposed methodology, two frequencies, 

namely, 3.4 GHz and 5.0 GHz where chosen. Process variations were induced in the 

above circuit with the aid of Monte Carlo simulations in Agilent Advanced Design 

Systems (ADS). In this work, Noise Figure (NF) is taken into consideration while 

determining the tuning ranges of the analog knobs based on circuit heuristics to ensure a 

guard banded noise performance as shown in Figure 75. 
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Figure 74: Schematic of the wideband mixer used as a case study. 

 

Figure 75: NF vs. circuit knobs. 

The mixer supply and the mixer bias values are chosen as the circuit knobs for this 

piece of work. Based on the acceptable NF margins the tuning ranges were limited from 

1.5 to 2.3V for the mixer supply and 0.5 to 0.8V for the mixer bias values. The NF plot 

across the supply and bias knob values at 3.4 GHz for a single process instance is shown 

in Figure 75. For the tuning ranges, the circuit knobs define a surface for all possible 

power values and individual specification values. The individual surfaces of one such 

metric (Gain) at 3.4 GHz and power are shown in Figure 76. By appropriately weighting 
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each of the surfaces, an optimal cost function surface can be obtained. The mixer of the 

RF subsystem is modeled as a non-linear transfer function followed by an ideal 

multiplier. The frequency mixing operation is realized by the multiplication operation as 

shown below as 

                  , Equation 52 

where C represents conversion gain of the mixer,       is the IF signal and       is the 

LO signal. Circuit-level simulations were performed to obtain the transfer curves for each 

process instance for all possible knob settings. 

 

Figure 76: Gain and power surfaces for a process instance. 

These transfer curves are then modeled behaviorally using polynomial coefficients up 

to a third order degree in Matlab. The behavioral modeling of the transfer function is 

expressed mathematically in Equation 53 as follows: 

 (    )                 
        

    . Equation 53 

The tuning is performed using the optimization algorithm and regression analysis is 

implemented in Matlab. A diagnostic BIST procedure is developed to estimate the 

multiple performance metrics of the wideband mixer module across the frequency bands 

of interest. A set of 20 process instances across all possible knob values are used as 

‘training instances’ to develop the non-linear regression model. The developed model is 
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evaluated for an ‘evaluation set’ of 10 process instances across all possible knob settings. 

While multiple performance metrics are evaluated, the scatter plots for one such 

performance metric across two frequency bands of interest (3.4 and 5.0 GHz) is shown in 

Figure 77. The closeness of the predicted values to the 45-degree line demonstrates a 

good accuracy in estimation of the performance metrics.  

 

Figure 77: Gain performance metric estimation. 

In this work, gain and IIP3 values are estimated by the proposed BIST technique 

across multiple frequencies, however other RF impairments can be estimated in a similar 

manner as well. In this case, study the performance of the tuning technique for various 

weight assignments are studied to analyze the trade-offs between multiple specs and 

power consumption for a boundary process instance. The nominal specs for gain, IIP3 

etc. are shown along with their test bounds in Table 13. In Table 14, the performance 

specifications of the boundary process before performing the post-manufacture tuning 

technique are shown. It should be noted that these experiments are analyzed only to 

demonstrate the cost function formulation. During run-time, the surfaces corresponding 

to specs at multiple frequencies and power are weighted simultaneously for yield 

improvement. In experiment I, only one performance metric (gain) at 3.4 GHz is 
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weighted and all others are assigned to zero. The corresponding cost function is as shown 

in Figure 78. In experiment II, the gain specification at 3.4 GHz is weighted along with 

the power consumption values. In experiment III, the gain specification at 3.4 GHz and 

5.0 GHz and the IIP3 specification at 3.4 GHz and 5.0 GHz along with the power 

consumption values are weighted. The objective of the experiment is to show the 

performance enhancements between various weighting assignments by analyzing the 

trade-offs between multiple specifications along with power considerations.  

Table 13: Nominal test specifications limits. 

  

GAIN(dB) 

3.4 GHz 

 

GAIN(dB) 

5.0 GHz 

 

IIP3(dBm) 

3.4 GHz 

 

IIP3(dBm) 

5.0 GHz 

 

Power 

(mW) 

Nominal 4.124 3.11 22.74 20.04 6.6 

Lower 

bound 
3.6 2.8 18.21 16.3 N/A 

Upper 

bound 
4.5 3.4 26.35 23.5 N/A 

 

The tuning results for all the three experiments are shown in Table 15. It can be 

observed that experiment I results in the best possible scenario for gain enhancement at 

3.4 GHz and experiment III results in an improvement in the overall performance of the 

system by bringing in all the specs from outside to inside the test bounds with a minimal 

impact in the power consumption. Further, in the proposed post-manufacturing tuning 

technique, digital pre-distortion is performed to improve the performance of the system. 
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Table 14: Performance metrics of the boundary process. 

 

Gain(dB) 

3.4 GHz 

Gain(dB) 

5.0 GHz 

IIP3(dBm) 

3.4 GHz 

IIP3(dBm) 

 

Power 

(mW) 

Before tuning 3.5 1.474 23.88 22.30 7.6 

After tuning 3.99 2.83 23.49 21.44 9.5 

 

In this technique, diagnostic BIST routines are used to compute the inverse correction 

polynomials to compensate for the static non-linearities present in the system. To 

demonstrate the effectiveness of the digital pre-distortion technique, the EVM 

constellation plots before and after tuning for QPSK modulation at 3.4 GHz and are 

shown in Figure 79. Such an analog, digital co-tuning technique cannot be performed in 

the previous on-chip digital logic assisted technique. 

Table 15: Tuning trade-offs for a boundary process. 

Experiment Gain(dB) Gain(dB) IIP3(dBm) IIP3(dBm) 
Power 

(mW) 

I 4.0203 2.013 28.92 24.74 11.2 

II 4.355 2.242 31.33 25.72 10.6 

III 3.99 2.83 23.49 21.44 9.5 
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Figure 78: Cost function surface for gain at 3.4 GHz with power. 

Up to 6.5% improvement was observed at 3.4 GHz and up to 6% improvement was 

observed at the 5.0 GHz.  

 

Figure 79: EVM improvements at 3.4 GHz and 5.0 GHz. 

4.5.1.4. Yield Analysis 

In this section, results pertaining to yield analysis of a process lot before and after the 

proposed post-manufacture tuning technique are presented. The results are shown in 

Figure 80. While the plots are shown for gain, the yield analysis is performed by taking 
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all other specifications such as IIP3 and NF into consideration across a wide range of 

operating frequency. The test bounds were fixed according to the values enumerated in 

Table 13. Based on the given bounds, the yield was observed to be 60.68% before tuning 

93.19% after tuning. Results show significant improvement in yield by 32.51% from use 

of the post-manufacture tuning technique. 

 

Figure 80: Yield enhancement. 

4.5.1.5. Hardware Validation  

In this section, the results of the proposed methodology are validated using a 2.4 GHz 

RF transmitter chain. The transmitter chain was constructed using mixer and PA 

ADL5320, which is a bias adjusting circuit and a varactor is used in the matching circuit. 

The variation in the varactor of the driver amplifier is used to create process variation. 

The driver amplifier is followed by a PA, which in turn is followed by an envelope 

detector. The output of the envelope detector is captured by the data acquisition (DAQ) 

system and the tuning is performed in the software environment in Matlab. The overall 

hardware setup is shown in Figure 81. The nominal as well as the final tuned values of 

the specification of the RF transmitter setup is shown in Table 16.  
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Figure 81: Hardware setup of the proposed approach. 

Table 16: Hardware validation of proposed methodology. 

 Gain (dB) IIP3(dBm) Power (W) 

Nominal 3.5 10.5 1.2 

Before tuning 6 8 1.26 

With power  

consciousness 
3.965 10.2290 1.402 

Without power 

consciousness 
4.45 10.04 1.652 

 

In the first case, the weight was provided to the power term and in the latter case, 

tuning was performed without considering the power term. As can be seen from the 
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results, the power consumption of the final tuned term varies significantly in both the 

cases.  

Further work in this direction for SISO RF systems have been performed using 

different tuning algorithms as well as larger number of tuning knobs in [126][127]. 

4.5.2. System-Level Test and Adaptive Tuning of MIMO RF Systems  

As the demands for higher data rates and increased transmission range of wireless 

devices are ever increasing, recent standards have adapted the use of MIMO-OFDM 

technology that incorporates multiple RF front-end chains operating simultaneously. 

Current 802.11n standard allows up to eight transceiver chains to be incorporated into a 

single chip. With increased functionality of these wireless devices, meeting the power, 

performance, and area constraints has becoming a challenge. The above factors have 

mandated the implementation of the RF front ends in scaled nanometer nodes such as 22 

nm and lower. At these nodes, the development of low-power solutions in an area-

efficient manner is making the task of attaining a high yield an increasingly difficult task 

[55]. With the profusion of MIMO SoCs, testing each sub module of the RF chain might 

be infeasible (due to lack of access to internal nodes) and expensive. Hence, it is cost and 

time efficient to test these for systems for system-level test metrics. However, testing of 

these systems especially for system-level metrics is expensive in terms of both test 

instrumentation. The advantage in performing system-level tests is that it captures 

multiple impairments along with interaction effects and enables end-to-end system 

performance calibration. As a result, there has been increased focus towards the 

development of cost and time-effective system-level post-manufacturing tuning 

techniques that can be implemented in the production environment. Such a post-

manufacturing tuning technique would involve performing iterative testing and tuning of 

the device.  
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A simple extension of a SISO testing techniques to multiple chains of a MIMO system 

would be feasible only if there exists independent instruments for each channel or if there 

were to be tested serially. While the former solution is cost hungry, the latter is expensive 

in terms of test time. Further, testing system-level specifications such as EVM, transmit 

spectral mask, adjacent channel power ratio (ACPR), etc. involve sending and acquiring 

real-time signals over an extended period of time and requires complex test instruments 

for modulation and demodulation  [54]. For each iteration of post-manufacture tuning, 

performing these measurements using the standard setups can be time consuming. Hence, 

there exists a need for developing a solution for obtaining a low cost setup for performing 

the iterative test-tune-test methodology.  

In general, yield improvements obtained by performing the above-mentioned post-

manufacturing tuning methodology usually comes at the cost of increased power 

consumption. Besides power-budget related issues, power consumption beyond an 

acceptable threshold in a device can lead to reliability related failures. Hence, those 

devices that meet the nominal specifications requirement at the cost of more than 

acceptable power need to be discarded (i.e., yield loss). Alternatively, these devices can 

be tuned to new performance metrics at the cost of reduced power consumption, and the 

tuned devices can be binned according to their final tuned performance metrics. In 

general, such a technique will be essential for analog or RF in scaled nanometer nodes 

where high process variation can lead to low yields, and post-manufacturing techniques 

cannot guarantee a nominal performance solution within power-budget and reliability 

concerns. Hence, a methodology for adaptive tuning that trades off the power of devices 

violating power budget or reliability constraints against their performance metrics in an 

optimal manner is presented in this work.  

4.5.2.1. Overview of MIMO-OFDM Systems 
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One of the primary reasons for the commercial success of MIMO systems is that they 

provide the flexibility to operate in both spatial multiplexing (SM) and spatial diversity 

(SD) modes [129][130]. SM mode is used for good channels (i.e., channels with high 

signal to noise ratio (SNR)) where the MIMO systems transmit multiple parallel 

independent data streams over multiple antennas thereby multiplying the data rate over 

the same frequency bandwidth. In SD mode, by utilizing space-time block coding 

(STBC) techniques (such as the Alamouti algorithm for 2 x 2 systems); the effective data 

rate is reduced to that of a SISO system [129]. However, using multiple antennas the 

receiver effectively combines the signal power across multiple paths leading to an 

increase in signal strength (diversity gain). As a result, the SNR of the signal becomes 

higher leading to greater range of transmission of the signal and reliability of 

transmission.  

To enable MIMO wireless operation requires incorporation of multiple transmitters 

and receiver chains on-chip. Traditionally, MIMO-OFDM RF systems operate in spatial 

multiplexing or spatial diversity mode. They are tested in either of these modes. In spatial 

diversity mode, the data is transmitted in a specific sequence to maximize its robustness 

under multipath fading channels. On the receiver side, upon channel estimation, the 

transmitted symbols are reconstructed as shown in Figure 82 and the system EVM is 

calculated.   

In SM mode, as independent data streams are sent, the error vector magnitude (EVM) 

of each chain is critical, and in SD mode, overall system EVM due to data coming from 

both the chains is critical. The system switches in these different modes depending on the 

channel conditions. For good channels, the system attempts to maximize data 

transmission and hence operates in SM mode and for bad channels, the system attempts 

to increase reliability or transmission SNR by operating in SD mode [129]. We term a 

channel as a good channel when it allows the higher data rate operation (for e.g., channel 



 149 

1 allows for 64 QAM SM mode allows for higher data transfer rate than 16 QAM in SM 

mode which in turn allows higher data rate than QPSK SD mode). The typical variation 

of EVM with transmission range or channels for a 2 x 2 MIMO system arranged 

according to the highest data rate is shown in Figure 83 [130]. Each channel is a Rayleigh 

fading channel with path loss and noise level associated with it. In SM mode, the EVM 

refers to EVM of each transmitter and system operates using the maximum of the EVM 

values of the two chains.  

 

Figure 82: 2 x 2 MIMO-OFDM system in spatial diversity mode. 

The reason for the system EVM to reduce when  the system switches modes (from 16 

QAM SM to 64QAM SD) is due to the reliability gained by switching from transmitting 

two independent streams (SM mode) to the redundancy of the same stream in both chains 

(SD mode) as shown in Figure 83.  

 

Figure 83: EVM variation in nominal transmitter device. 
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4.5.2.2. Test and Tune Architecture and Methodology 

The testing technique developed here involves concurrent testing of the multiple 

chains of the RF transmitter. The testing technique developed here involves partitioning 

the input bandwidth of the system into regions/bands that are equal to the number of 

chains present in the MIMO system. The optimized multi-tone stimulus in each region 

(corresponding to each chain) is generated on-chip using the IFFT block present in the 

MIMO-OFDM baseband system as shown in Figure 84. In the test mode configuration, a 

set of pre-computed (complex) coefficients are loaded to the IFFT inputs to generate the 

multi-tone stimulus for exciting the RF front end. The values of these coefficients are 

determined using a genetic optimization algorithm that is run one-time offline on a 

computation engine. The output of the DUT responses are combined using a combiner 

and down converted using an envelope detector, which is then digitized and processed in 

the tester. Single channel acquisition is performed by combining the output of the DUT 

as shown in the Figure 84 thereby minimizing the need for another sensor and ADC. The 

output response is captured over a period of time N slots and the time averaged signal is 

used to obtain the static parameters of the system. The time-averaged signal is used to 

correlate with the static system-level specifications of the MIMO RF front ends. The 

variance in the signal captured over periods is used to determine the noise in the signal, 

which is used to correlate to the dynamic component of system-level specifications. Once 

the behavioral parameters of the MIMO transmitter are determined, the regressing 

mappings relating the static behavioral and noise parameters to the system-level 

specifications are developed (explained in Section 4.5.2.5). It is important to note that 

such a mapping relating system model parameters to the system-level specifications is 

developed via simulation models and there does not exist any “training” phase on actual 

production devices. If the specifications are beyond the normal expected values, then an 

iterative test-tune-test approach is developed using a “power-conscious” cost metric to 



 151 

drive the tuning procedure (explained in Section 4.5.2.6). It is assumed that the MIMO 

RF front-end modules have “tuning knobs” that can be used to trade-off power for 

performance under large process variations. Finally, depending on the final device power 

consumption metric, an adaptive tuning strategy is investigated that trades-off the power 

consumption of the device with its performance (explained in Section 4.5.2.7). The steps 

involved in the proposed methodology are shown in Figure 85. 

 

Figure 84: Test architecture and methodology. 

4.5.2.3. Optimized Stimulus Generation for MIMO RF Transmitter  

An analytical approach to determine the initial search space for test tones in such a 

way that there exists minimal interference between the responses of each chain is 
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    . Hence, two tones separated by a maximum distance   can have intermodulation 

terms that exist at a distance of   from them. Considering a 64 (N) point IFFT,  if a sub-
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   such that there is minimal interference in their intermodulation products (3rd order) 

when the outputs of the signals are combined. Now considering the total baseband 

bandwidth at the IFFT input ranges between   and      . Hence we have     

    and we obtain the   =     . In general, if they are M chains, then to minimize the 

interference between channels, then the total bandwidth can be generalized to as shown in 

Equation 54. 

               Equation 54 

In this work, a 2 x 2 transmitter is considered. Hence, N = 64 and M = two; hence, 

tones considered in the first sub-band lie between   and 15  and the tones in the second 

sub-band lie between 48  and 63 . If N = 1024, and M = two,   = 512 . While, there 

does not exist any formal proof that the selection of these tones improve test accuracy, 

the selection of tones in this manner minimize the interference effects of one channel on 

other. Each sub-band   is used to test a transmitter chain. For initial tone spacing 

calculation, it is assumed that effect of higher order distortion does not affect 

significantly in the other sub-bands. However, similar equations with different   values 

can be obtained if the higher order distortion terms are significant. The tone selection 

scheme is shown in Figure 86. Considering these frequency bands as an initial point for 

genetic optimization, the amplitudes and phases of the frequency tones in each of the 

bands are optimized to estimate the behavioral model parameters of the chains of MIMO 

RF front end. During test generation, instances generated using Monte Carlo analysis of 

the circuits over different process corners as DUT instances are considered. In order for 

the test stimulus to be optimal for testing and tuning, the test generation needs to be 

performed across tuning knobs as well. In our test generation algorithm, for each process 

instance, at each knob setting, the model-solving-based test technique is used (see Section 

2.2). A non-linear solver attempts to reduce the difference in the observed response 

(obtained from the circuit) and the response from the behavioral model by updating the 
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model parameters (see Figure 87). The overall cost function for test generation that needs 

to be minimized is the relative error in determination of the static behavioral parameters 

obtained using the non-linear solver for all the instances across tuning knobs. This cost 

function determines the choice of test stimuli amplitudes and phases to be used in each 

sub-band.  

 

Figure 85: Proposed steps in the technique.  

A bandwidth partitioning technique is also proposed in [53]. However, the authors 

determine specifications such as cross coupling by testing the RF chains sequentially. 

The methodology does not scale easily across multiple RF chains without the use of 

switching matrices and multiple signal sources. Further, the authors do not tie the lower-

level RF specifications to higher system-level test parameters such as EVM and transmit 

spectral mask. In this work, the test generation/optimization approach presented in this 

research allows testing of a comprehensive (larger) set of specifications, scalability across 

diverse test specifications and most importantly, test stimulus design automation. The 

system-level specifications include I/Q gain or phase mismatch, DC-offset, nonlinearities, 

EVM, transmit mask offset, transmit center-frequency leakage, and cross-coupling effects 
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methodology is scalable to even M x M chains (M being the number of RF transceiver 

paths), without the need for many signal sources or increased test time. For brevity, we 

do not discuss the details of genetic optimization here. The reader is recommended to 

[131] and discussion in Section 2.3 for more details on genetic optimization. In the case 

of N being large enough to prevent bandwidth partitioning, in such a case, along with 

bandwidth partitioning, time sequencing can be performed. For example, in the case of 16 

x 16 transmitter with N = 64, then 4 transmitters can be tested at a time with 16 frequency 

tones. This technique would still lead to significant test savings.  

 

Figure 86: Selection of test tones scheme. 

 

Figure 87: Flowchart describing test generation algorithm. 
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4.5.2.4. MIMO RF Transmitter System Impairment Modeling   

In this work, a 2.4 GHz MIMO OFDM WLAN 2 x 2 transmitter platform is modeled. 

The modeling of the system includes impairments such as I/Q amplitude and phase 

mismatch, relative phase mismatch between MIMO transmitter chains, non-linearities of 

the front end, cross-coupling effects between the transmitter chains, DC offset in the 

chains, and phase noise in the LO signal. The modeled effects are shown in Figure 88. 

The multi-tone signal of each chain at the output of mixer is modeled as shown in 

Equation 55.  

         ((             )       ) Equation 55 

          (         )      (       )         

                              

Equation 56 

                                Equation 57 

where      is the LO signal, β,   and   are the DC-offset, I/Q amplitude and phase 

imbalances respectively.    and    in  Equation 56 are the signals at the output of the two 

transmitter chains.    and    are the cross-coupling coefficients. In MIMO systems, the 

signal at the output of each of the PA couples with other PA outputs through linear and to 

the LO signal through non-linear coupling. This effect is explained in [132], where it is 

shown that linear cross coupling is corrected to great extent through channel estimation 

and, hence does not have significant impact on the transceiver performance. However, 

non-linear coupling effects cannot be corrected for and have to be accounted for, while 

layout of the chip.    and    signals couple with both the I and Q LO signal paths. Hence, 

the signal components are represented with both real and imaginary components.      is 

the phase noise of the LO signal .The signal      undergoes distortion due to the mixer 

and power amplifier non-linearities that are each modeled as 3
rd

 order polynomials shown 

in Equation 56. It is assumed the amount of coupling in both the I and Q LO signals path 
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is equal for each chain. A relative phase shift between the two transmitter chains arising 

due to asymmetry in the paths is modeled at PA output as a time delay in signal. A model 

such as the one presented above was used in the test generation phase. 

 

Figure 88: Model of the MIMO-RF front end impairments. 

4.5.2.5. System-Level Specification Testing 

The system-level parameters that are determined for the transmitter (Tx) include DC-

offset in each chain, IIP3 (each Tx), I/Q mismatch (each Tx), average output power (each 

Tx), spectral mask measurements (each Tx), RF chain center frequency leakage, 

transmitter constellation error (TCE) or the EVM in SM and SD mode. These 

specifications can be obtained simultaneously for different chains of the transmitter 

without having to test them sequentially using a high-speed switching matrix (to switch 

between chains) as is the case in standard tests or prior literature. These system-level 

specifications can be classified as static and dynamic specifications. The static system 

specifications are specifications such as gain, IIP3, I-Q mismatch, cross coupling, 

spectral mask, and average output power. These are determined using a time windowed 

averaged output response of the captured signal. The static systems specifications are 

estimated by determining the values of the behavioral model parameters of the system 
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from the observed test results. This is performed using the model-solving-based test 

technique (explained in Section 2.2). We assume that the behavioral models used for 

analysis, accurately capture all the prominent non-idealities of the DUT. The DUT test 

stimulus is computed in such a way as to enable accurate determination of the DUT 

model parameter values from the observed DUT response. This happens when the 

response of the DUT to the test stimulus shows strong statistical correlation with 

variations in the relevant DUT model parameter values (explained in Section 4.5.2.3). 

Once the above test stimulus condition is satisfied, a nonlinear optimizer iteratively 

perturbs the behavioral model parameters in simulation until the response of the 

simulated model matches the observed response of the DUT.  

Dynamic or noise measurements are, in general, averaged across time or frequency to 

yield aggregate noise measures. To this effect, the variance of the captured time-domain 

signal estimated at the output of the digitizer (function of dynamic non-idealities) is used 

in conjunction with the RF chain static specifications to build a model (regression based) 

in simulation environment for predicting system level EVM contribution due to noise 

parameters          is determined. In this work, we utilize a tool called MARS for 

regression analysis. Note that the proposed use of MARS does not require the use of a set 

of training devices for building the regression mapping as in  prior supervised learning 

methods [40][21][20] and can be designed directly from simulation data.  

Some of the system-level specifications that are determined in this work are discussed 

below: 

Tx Gain, IIP3, I/Q mismatch, Cross-coupling, DC-offset: Ideally, these parameters can 

be obtained directly by determining the behavioral parameters of the system. Limitations 

in the model accuracy might give rise to mismatches between the specifications obtained 

through behavioral parameter estimation and the actual system specifications. These 

limitations can be overcome by developing a standard regression between the behavioral 
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parameters and specifications in the simulation environment. On each device, the 

behavioral parameters are determined initially and then specifications can estimated in 

the background using a regression model.  

TCE or EVM: It is known [47],[49] that system-level EVM can be computed as a 

function of the static and dynamic non-idealities of the RF system. This decomposition is 

performed in order to make the EVM computation without increasing the test time or 

utilizing complex test instrumentation. This technique of decomposition of            

helps in EVM prediction more accurately using regression. The static non-idealities cause 

movement of the “center of gravity” of each constellation cloud while the dynamic non-

idealities determine the “spread” of the constellation cloud around this “center of gravity” 

in the constellation map. To accomplish the computation of EVM, the EVM of the 

system can be modeled ([47], [49]) as shown below in Equation 58. 

         
            

         
  Equation 58 

Such an equation is true for a system where the noise and static parameters are 

statistically independent of each other.            represents the contribution to 

          due to all the static parameters (phase noise and thermal noise being zero), and 

       , the contribution only due to phase noise and thermal noise (all static 

parameters being zero).  

The            is determined by simulating the system using behavioral parameters 

representing static non-idealities of the system and developing a regression mapping 

between the static behavioral parameters and            [50]. It has been shown in the 

past that there exists a high amount of correlation between them and can be used to 

predicted using regression mappings developed one time in the simulation environment. 

For determining the        , it is required that all the static parameters are zero. 

However, the actual measurement from the optimized multi-tone output obtained over the 
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time (N time windows) consists of noise as well as the static impairments. To determine 

this noise parameter, we determine the absolute error between time averaged multi-tone 

signal (averaged over N time windows, see Figure 84) and multi-tone signal in each time 

window. For simplicity, if we consider that the output is a single tone of period T, this 

can be mathematically represented as shown below in Equation 59. 

       
 

 
∑              

                                   

                     

   Equation 59 

Considering the standard deviation over all time points, the error can be stated as 

shown in Equation 60. 

           (   (     ))    
Equation 60 

The above stated noise or variance metric, along with the static behavioral parameters 

of each instance, is used to build a regression model to determine the         during 

training phase and upon obtaining a suitable model, the value of         can be 

predicted and the          is calculated according to Equation 58. While these EVM 

components cannot be isolated in the hardware, once the static and noise behavioral 

parameters are calculated, the regression mappings between the static behavioral 

parameters and the static component of EVM and the combination of static and noise 

parameters with the         can be developed. The flowchart that outlines the 

procedure for determining the EVM is given in Figure 89. 

Transmit spectral mask: The spectral mask of the transmitter determines the 

compression of the system and the resulting spectral regrowth that affects the signal 

fidelity in adjacent channels. A typical transmit mask is shown in Figure 90. The 

difference between the power spectral density (PSD) values (for e.g.,     ) at different 

frequency offsets (10MHz and 20 MHz) provides the values of the spectral mask in dBr. 



 160 

Once the system behavioral parameters are determined, the regression function is 

developed in software domain mapping the static behavioral parameters to the power 

levels  ,             and the difference in PSD levels is calculated.  

Transmit central frequency leakage: Typical OFDM systems transmit null carriers at 

DC in order to prevent a DC-offset from saturating the receiver. However, DC offsets and 

non-linearities arising in the transmitter cause power to be leaked into carrier frequency 

of the transmit signal. The power leakage in the device is determined using a correlation 

function relating the leakage power and the static behavioral parameters developed in the 

simulation environment.   

 

Figure 89: Overview of the proposed EVM testing methodology. 

The following algorithm explains the methodology for determining the system-level 

specifications. 

1. Excite model and DUT with optimized stimulus. 

2. Capture the DUT output response repeatedly over a predetermined period. 
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3. Use the difference between time-averaged output response and model output 

response to update the static behavioral parameters of the system 

4. Correlate static parameters along with variance (noise metric) to determine 

system-level specifications such as          

5. Correlate static parameters along to determine system-level specifications such 

as           , transmit average power etc. 

The correlation is step 4, 5 was performed through regression analysis using 

multivariate adaptive regression splines (MARS) [81]. The overview of the work is 

shown in Figure 91. 

 

Figure 90: Typical transmit spectral mask. 

 

Figure 91: Overview of specification testing. 
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4.5.2.6. Tuning Methodology  

During each iteration of the tuning methodology, the behavioral parameters of the 

system under the tuning knob conditions are determined and using a regression function 

developed across tuning knobs, the system-level specifications are predicted. In this 

work, a system-level constraint driven tuning solution is proposed. The goal is to find a 

set of tuning knob values such that a set of system-level bounds are met while consuming 

minimum power. Thus, for process-skewed instances, if {Ti} be the set of all tuning 

knobs, then our aim is to find an optimum element of this set {Ti0} such that: 

   (      {  } )  {   }                     Equation 61 

              {   }                                  Equation 62 

           {   }                                 Equation 63 

               {   }                                 Equation 64 

where               ,        ,               are the transmit spectral mask at 20 MHz 

offset, transmitter output power and EVM in 64QAM SM mode for each transmitter 

respectively.    and    are the upper and lower bounds on the transmit output power 

levels respectively. While EVM ensures that the in-channel spectral distortion is 

controlled, the spectrum mask ensures that the adjacent channel distortion is under 

control. Ideally the transmit spectral mask has multiple measurements at different offsets 

that need to be satisfied. In this work, we consider one point while performing the tuning.   

A standard interior-point algorithm with inequality constraints is used for performing 

optimization. The cost function to be minimized is the system power and the system 

specifications are formulated as inequality constraints [133]. To avoid the problem of 

local minima, a multi-start algorithm that selects multiple start points is used.  

4.5.2.7. Adaptive Tuning Framework  
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As the process-skewed instances are tuned, it has been observed from prior results 

[73][74] that a number of tuned instances exist such that their final tuned power 

consumption is much higher than the nominal power consumption of the device. In a 

post-manufacture adaptation framework, limitation in the degree of performance tuning 

of the DUT comes from two factors namely power budget and reliability constraints. In a 

battery powered handheld devices, power consumption of the devices has to remain 

within a certain limit in order to achieve acceptable battery life. Hence, performance of 

the DUT cannot be traded-off arbitrarily with power consumption. During device 

production, there exists an upper limit to the acceptable power consumption of the 

device. Secondly, higher currents and voltages in a circuit module result in higher 

electrical stress on the components that reduce its lifetime. In the past, a number of 

techniques for dynamically varying the transmitter power consumption during its real-

time operation to save power have been proposed. These techniques depend on the 

operating conditions encountered by the device during in field operation. So considering 

the above factors, an adaptive tuning methodology for production environment is 

proposed for devices that have a final tuned power consumption value beyond the 

acceptable limit. 

In general, all wireless systems are built with a certain signal margin (called fade 

margin) that define their capability of operation under different channel conditions. 

Greater is the margin; better is the chance of operating in worst-case channels. The 

system-link budget that decides the system design can be provided as follows: 

                                               

                                  , Equation 65 

where                 is the output power of the transmitter, the      term accounts 

for the transmit and receive antenna gain, and the      term accounts for the free-path 

attenuation. The term             or             is the margin that accounts for 
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different types of fading that occur in a multipath environment. The extent of 

            is related to the probability of coverage in the presence of fading channel. 

The             incorporated in a given system depends on the application of the 

system [134][135]. Typical             numbers are anywhere between 25 to 40 dB. 

The system is designed such that with the fade margin a very high probability (close to 99 

% in some applications) of coverage at the cell boundary exists.  

Hence, for those devices having beyond acceptable tuned power consumption, in this 

work, a tuning solution that attempts to reduce the number of channels of operation under 

SD mode (or alternatively it can be considered as reducing the probability of coverage), 

while trying to reduce power consumption of the device is proposed. In this way, a 

methodology that attempts to maintain its operation in good channel conditions while 

trying to trade-off performance of the system under bad channel conditions against power 

consumption is presented. Here, it is assumed that the probability of occurrence of a bad 

channel with time is lower than that of good channel [136]. While very good channels 

also do not occur with high probability, they still allow transmission in the highest 

possible data rate whenever they occur, and optimizing for such a channel is justifiable. 

Hence, the adaptive methodology attempts to maximize the performance of the device 

across its different operating conditions for a given system power constraint. 

In the SD mode of operation, the combined EVM of the signal is depends on the 

combined performance of both the transmitters (especially the output powers of the two 

transmitters), which affect the power consumption of the MIMO system. Hence, if 

devices are tuned to worse performance specifications in SD mode, the power 

consumption decreases. For those devices having beyond acceptable tuned power 

consumption, a tuning solution that attempts to reduce the number of channels of 

operation under SD mode while trying to reduce the dc power consumption of the device 
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is proposed. These devices are binned according to their performance constraints. The 

optimization problem involves finding a new set of tuning knobs {   
 }  such that  

   (      {  } )  {   
 }                     Equation 66 

              {   
 }                                  Equation 67 

                 {   
 }                          Equation 68 

               {   
 }                           Equation 69 

where       and       are the bounds for the     in SD mode for a bad channel. In 

this iteration, instead of bounds on individual transmitter outputs, a bound is placed on 

the system EVM in the SD mode of operation under bad channel conditions. The values 

of       and       used in 2
nd

 iteration (2
nd

 bin) are higher than the values of the 

nominal device (i.e., devices in 1
st
 bin). Similarly, the values used for 3

rd
 iteration (3

rd
 

bin) are higher than the 2
nd

 iteration and so on. Thus, by increasing the bounds of EVM in 

SD mode, this methodology enables us to trade-off performance metrics against power 

consumption. General RF circuit knowledge dictates that this is a common trend; 

however, the presented algorithm attempts to find the performance combination for 

which the power performance is optimal. Thus, the presented technique attempts to: 

· Maximize the number of channels of operation of the device for a given power 

constraint, i.e., reduces coverage for bad channels while attempting to keep 

performance in good channels. 

· Find the knob combination with least power consumption that satisfies the new 

system constraints. 

The bounds decided for the various iterations can be obtained from a system 

characterization study. The number of bins depends on the acceptable levels of loss of 

performance in the case of bad channels, which in-turn will be application dependent.  
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4.5.2.8. System Results  

In this section, the results obtained on a 2.4 GHz 2 x 2 RF MIMO transmitter 

implemented in Matlab are presented. The phase noise of the system is added according 

to details provided in [132]. In this work, it is assumed that the phase noise in the 

multiple chains of the transmitter is completely correlated. The optimized multi-tone 

stimulus is captured for a time period equivalent to the time taken to sending 100 OFDM 

symbols each having 64 subcarriers. The combined output response of the transmitter 

chains is envelope detected, and is digitized using a 16 bit, 80 MHz digitizer. The 

amplitudes and phases of the frequency tones (selected by the methodology discussed in 

Section 4.5.2.3) are optimized using the genetic algorithm. The fitness value progression 

over generations is shown in Figure 92. The process variations for I/Q phase and 

amplitude, the relative phase shift in each RF chain and the cross-coupling parameters 

were generated using 3σ (where σ is the standard deviation, σ = 6-7 %variance) Gaussian 

variations from their nominal values. For the distortion characteristics, process instances 

were generated using the amplifier and mixer circuit under Monte Carlo analysis. From 

the power sweep of various instances, the instances were modeled in Matlab as explained 

in Section 4.5.2.5.  

 

Figure 92: Cost function progression over generations. 
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The optimized test stimulus is used to determine the static behavioral parameters for 

all the process instances generated using Monte Carlo simulations. The optimized 

stimulus used in each of the I and Q channels of the two chains are shown in Figure 93. 

The envelope responses for a couple of process-skewed instances are shown in Figure 94.  

 

Figure 93: Optimized input stimulus.  

 

Figure 94: Envelope response of the combined signal.  
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The prediction plots for some of the behavioral parameters are shown in Figure 95. 

The X-axis of plots is the actual values and Y-axis is predicted values. 370 instances of 

system are tested in nominal system settings. The behavioral parameters are estimated for 

these instances. The worst-case mean absolute percentage error obtained for all the static 

parameters was less than 3%. The nominal test condition for EVM is in SM mode for a 

good channel. In this condition, the contribution of EVM is completely from the device 

and negligible from the channel characteristics. The decomposition of the           into 

           and         is validated for randomly chosen 200 instances and is shown in 

Figure 96.  

 

Figure 95: Prediction plots of static parameters.  

Using Equation 59 and Equation 60, the        for all the 370 process instances were 

calculated from captured the time domain response. For the purpose of estimation of 

transmitter         , 220 instances are used to build the regressing maps and 150 

instances are used to evaluate it. The prediction plot for         in SM mode for 150 

random instances at nominal system settings is shown in Figure 97. 
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Figure 96: EVM calculated using decomposition versus actual EVM. 

Using the predicted         and          , the          is calculated using 

Equation 58. The variation of the relative error in prediction of         with varying 

resolution of the digitizer is shown in Table 17. The normalized root mean squared error 

is a metric indicative of the residual variance in the error. From the obtained static 

behavioral parameters of the system, the system-level specifications are calculated. The 

relative error in prediction of system-level specifications under nominal test conditions of 

the transmitter chains is calculated according to Equation 70 and is tabulated in Table 18.  

 

Figure 97: EVMrand prediction plot. 
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                     {                            ⁄  }        Equation 70 

The tuning knobs used are the two bias knobs of the two-stage PA, the bias and supply 

knobs of the gilbert cell mixer and the VGA gain settings (see Figure 84). A total of 9224 

knobs combinations are used. 306 instances are obtained after removing extremely large 

parameter deviation or defective instances (greater than four σ where σ is % variance in 

specifications). Instances that failed the          in SM mode due to high values of 

        in the 64QAM mode were discarded. Before performing analog tuning, digital 

correction for I/Q amplitude and phase mismatch was performed. Out of the 306 

instances, 122 instances are initially within bounds of the system. The nominal power 

consumption of the MIMO system is 0.816 Watt. The tuning algorithm is used to tune the 

devices to nominal specifications (as explained in Section 4.5.2.6) with bounds given in 

Table 19.  

Table 17: Error variation with ADC word size. 

Digitizer 

Normalized root mean 

squared error in  

         (%) 

Worst Case prediction 

of           (%) 

16 bit 80 MHz 3.74 0.62 

14 bit 80 MHz 4.87 0.97 

12 bit 80 MHz 6.12 1.5 
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Out of the 204 devices that failed to meet the specification limits initially, 126 devices 

are tuned to within nominal specification bounds. At each step of tuning, the 

specifications were predicted. The prediction plot for EVM in SM mode across randomly 

selected tuning knobs and process instances is shown in Figure 98. Of the 126 devices, 90 

devices are tuned with increase in power consumption. The initial and final tuned system 

specifications are shown in Figure 99. Considering the maximum tolerable power 

consumption overhead of 25% more than nominal, an upper bound of 1W on power 

consumption is selected. 50 out of 90 instances are tuned with a power consumption of 

more than 1W. These devices along with the other untuned devices are tuned in an 

adaptive manner.  

For the nominal MIMO transmitter system, the entire transmission range is divided 

into 14 channels (channel 1 being the best channel (64QAM SM operation mode) and 

channel 14 being the worst-case channel (high EVM in SD mode under QPSK 

modulation). The EVM in the SD mode for the nominal device at channel 11 is between 

17% and 22%. The 50 instances that consumed more than acceptable power are then 

tuned (2
nd

 iteration or 2
nd

 bin) in an attempt to trade-off performance and power 

according to the formulation given  in the adaptive tuning Section 4.5.2.7 with the EVM 

ranges for channel 11 in the SD mode being between 24%         and 30%        , 

           = 3% and    = -26dBr. Thus, the goal is to maximize the chances for the 

devices to operate in good channel conditions while losing coverage during bad channels. 

The same bound that was used in first iteration on the EVM value in SM mode is used for 

second iteration. The prediction of the EVM in SD mode for channel 11 across knobs and 

process instances is shown in Figure 98. For predicting the EVM in SD mode, the static 

behavioral parameters along with the noise metric was used to build a map. 

 30 of the 50 initial instances could be tuned for this condition. Additionally, 29 

instances that could not be tuned in the first tuning step are tuned for the given 
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constraints. The final tuned output power and power consumption of the 59 devices 

before and after tuning is shown in Figure 100. For a particular device tuned in this 

iteration, there exist 417 knob combinations that satisfy all of the EVM constraints with 

power values ranging from 0.659W to 0.92W and the optimization converged at its 

lowest value.  

Table 18: Error in the prediction of various MIMO transmitter specifications. 

Specifications Relative error (%) 

Transmit (Tx) average power (dBm) 1.63 

Tx spectral mask (20,10 MHz offset) 

(dBr) 

2.03,1.37 

EVM (SM 64QAM mode) (%) 4.42 

I/Q amplitude mismatch (Volts),  

phase mismatch (degree) 

1.18, 

2.03 

Tx center frequency leakage (dB) 2.41 

DC-offset(Volts) 1.02 

Tx IIP3(dBm) 2.92 

Tx cross coupling 2.51 
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Table 19: MIMO transmitter nominal specifications and pass bounds. 

Tx  O/P power 

        

           TX spectral Mask at 

(20 MHz offset)    

22.0 dBm (±1.5 dBm) < 3 % < -26 dBr 

 

 Figure 98: Prediction plots of the EVM under different channel conditions. 

 

Figure 99: Devices tuned for nominal specs (1
st
 iteration or bin). 
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Figure 100: Histogram plots of devices tuned for 2
nd

 tuning. 

The system-level performance variation for devices in different bins or iterations is 

shown in Figure 101. The first subplot shows the system operation for a nominal device. 

The second subplot shows the EVM variation with channels for a process-skewed 

untuned instance. The third subplot shows the same for the process-skewed instance after 

tuning it to the nominal system specifications (1
st
 iteration or bin). After tuning the 

device, the performance of the instance comes closer to the nominal. However, the final 

tuned power of the device is more than acceptable system power constraint of 1W. 

Hence, the device is tuned for 2
nd

 bin specifications. After performing the second tuning, 

the performance over channels for good channels is better than that of process-skewed 

device and closer to the tuned device after 1
st
 iteration but the performance is much worse 

for bad channels (i.e., EVM of 29%). Finally, the power value obtained at this iteration 

(0.937W) is the lowest among all possible knob combinations that satisfy the system 

specifications bounds for 2
nd

 bin. 

The remaining 20 instances are then tuned (3rd iteration or bin) for lower performance 

criteria of EVM in SD mode of channel 9 being between 24% and 30% and EVM in SM 

mode of 4%, and    = -26dBr. Out of the 20 instances, 15 instances are tuned. 
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Additionally 12 instances of the original untuned set are tuned for these performance 

criteria. The average performance and power metrics for the 27 tuned instances in the 3rd 

iteration or bin is shown in Table 20. 

 

Figure 101: System performance variation for devices in different bins. 

Hence for this system, the initial yield before tuning of the system is 122/390 (31%)  

and after performing self-tuning, 126 devices passed the specifications, out of which 50 

instances are beyond acceptable power limits resulting in 198/390 (50.5%)  tuned devices 

for nominal specs (1
st
 bin). Additionally, 86 devices are tuned by using the power-

performance trade-off concept. The yield numbers are calculated considering the devices 

that were initially removed as extreme outliers or defects. The overall result of the 

adaptive tuning methodology performed across the channels is shown in Figure 102. The 

Y-axis is the percentage of chips classified as pass and the X-axis is the number of 

channels across which the devices operate. Different such curves can be obtained 

depending on the system power constraints and system-level design constraints.  
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Figure 102: Adaptive tuning results. 

While in this work, an algorithmic framework has been developed that attempts to 

maintain operation capability in good channels while losing coverage in the bad channels, 

other possible tuning mechanisms that place different constraints on different channels 

are also feasible. For e.g., one such technique would be to trade-off performance against 

power consumption by losing the capability to operate in high data rate modes (good 

channels) while attempting to maintain coverage in bad channels. The advantage of this 

work is that it provides a framework that can be used to adaptively tune these devices and 

bin them according to different system design and power constraints. 

Table 20: Average performance metric of devices tuned in 3
rd

 iteration. 

Transmit power 

(dBm) 

EVM % (SM) EVM % (SD) 

(channel 9) 

Power (W) 
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4.5.2.9. Hardware Validation 

A MIMO 2 x 2 transceiver is implemented using external off-the shelf components. 

The baseband processing of MIMO system including channel emulation is implemented 

in Matlab. In the test mode architecture, only one downcoversion chain is used as shown 

in Figure 103.  

 

Figure 103: Hardware setup for MIMO RF transmitter. 
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chain, five equally spaced tones are used (chain I - 120-125 KHz and chain II - 170-175 

KHz). The inputs of the each chain experience different non-linearity characteristics that 

affect the signal swings and extent of compression in their respective output responses. 

The output responses of each chain are shown in Figure 104. The two responses are 

captured individually to show the difference in signatures obtained from each RF chain. 

However, in the test mode, the responses are combined. From this combined test response 

signature, the input-output linearity characteristics of the transmitter chains determined 

(see Figure 105). As can be seen from the graphs, the non-linearity characteristics have 

been captured accurately. 

 

Figure 104: Time domain output waveforms from each chain. 

 

Figure 105: Non-linearity characteristics of the transmitter chains. 
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A regression mapping is then developed between EVM and the parameters. To 

develop the regression, the EVM (in SM mode of each transmitter) is calculated by 

implementing the channel in baseband (Matlab). Then the mapping between the 

behavioral parameters and EVMSM is determined. The nominal specifications of the each 

chain is EVMSM = 4.6% (bound: < 5.6%), Tx power = 1 dBm (±1 dBm) and Power = 

1.6W. The average of the transmitter’s initial and final performance metrics for three 

instances along with total initial and final dc power values are shown in Table 21.  

Table 21: Tuning of performance metrics for MIMO-RF transmitter instances. 

Instance 
Initial 

specifications 
Final specifications Power (mw) 

 
Tx O/P 

power 
EVM 

Tx O/P 

power 
EVM Initial Final 

1 -0.8 3.2 1.13 5.0 1.44 1.70 

2 -0.3 7.4 0.9 4.1 2.2 2.64 

3 2.6 4.7 1.5 5.1 2.31 1.82 
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CHAPTER 5.    CONCLUSION AND FUTURE WORK  

The objective of the research is to develop strategies for performing low cost test and 

diagnosis for analog/RF systems, and to enable post manufacturing self-tuning for yield 

improvement and reliability. Methodologies that attempt to detect and correct process 

variability and its effects through intelligent test, diagnosis, and compensation techniques 

have been presented. Solutions amenable to both production environment and in field 

operation are presented. The presented work targets OFDM-based single input single 

output (SISO) and multiple input multiple output (MIMO) systems. The benefits of the 

presented techniques are to reduce manufacturing costs. 

In Chapter 3, a technique for performing concurrent testing and diagnosis of 

analog/RF circuits on a per-chip basis in production environment in presented. The 

method relies on the use of alternate diagnostic tests under which the DUT response 

(alternate diagnostic signature) exhibits strong simultaneous correlation with its 

specifications as well as critical Spice-level device parameters. This allows both the 

specifications and critical Spice-level device parameters of the analog/RF circuits to be 

predicted accurately from the DUT response with lower test time and test cost compared 

to standard testing techniques. The ability to predict the critical parameters of the circuit 

on a per-die basis aids in establishing a faster feedback methodology to correct for 

process variation shifts. In the latter part of the chapter, a technique to perform online 

diagnosis for OFDM transmitter systems using DSP-based time domain real-time signal 

monitoring technique is presented.  

In Chapter 4, various methodologies for performing post-manufacturing tuning of 

OFDM-based SISO and MIMO systems for yield improvement is presented. The 

methodologies discussed in this work use intelligent post-manufacture built-in test and 

tuning algorithms that are aided by simple on-chip support infrastructure.  
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· In the realm of digital compensation, a low cost digital compensation 

technique is presented for both OFDM SISO systems and MB UWB OFDM 

systems where quicker digital compensation of RF impairments is achieved by 

using regression functions to predict the initial compensation values. The 

techniques do not use the receiver to estimate the imperfections in the 

transmitter. 

· An effective self-contained methodology for tuning of RF modules using on-

chip digital logic is developed. In this methodology, digital signatures obtained 

from the device are used to monitor the performance deviations and correct for 

it. This technique helps in performing DSP free die-level self-tuning or self-

healing. 

· An alternate approach that uses a gradient descent algorithm running on a DSP 

of the SISO OFDM system to tune multiple specifications in a power 

conscious manner is investigated.  

· Finally, a methodology for performing efficient parallel system-level testing of 

MIMO-OFDM RF transmitter modules is presented. An adaptive power 

performance tuning technique for these modules that attempts to maximize 

system performance for given power constraint is also developed.  

In future, the developed diagnosis technique needs to be extended to enable 

determination of the critical process parameters at an intra-die resolution. Such a 

methodology with intra-die resolution would be essential for performing diagnosis and 

providing feedback to the fab especially in scaled nanometer nodes below 45 nm where 

significant mismatch effects and random effects are observed in analog/RF circuits,. 

Further, a methodology that can leverage the diagnosis data to perform adaptive testing of 

these devices in the production floor can be investigated. An extension of the framework 

developed in this thesis is to leverage the process parameter information in the tuning 
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framework to perform a more design-specific tuning. While the circuits used in the tuning 

techniques incorporate some preliminary circuit tuning knobs, an in-depth study of the 

various possible tuning knobs for different analog/RF modules is required. With greater 

trends towards dynamic adaptation as well as process compensation, intelligent selection 

of tuning knobs in circuits is essential. One such effort is made in [77], where an 

orthogonal tunable LNA is presented. In this work, the gain and the non-linearity 

characteristics of the LNA can be controlled independently. The presented system-level 

test and adaptive tuning techniques can be extended to MIMO-OFDM RF receiver 

systems. Various other frameworks of performing adaptive tuning by trading off 

performance against power under different operating conditions need to be investigated. 

Such an adaptive tuning technique will be essential in nanometer node SoCs where the 

extreme process variations in the devices will make the goal of tuning the performance 

specifications of devices to one set of nominal performance metrics highly challenging.  
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