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Abstract— In this paper, we present an analysis and synthesis
framework for guaranteeing that the phase of a single-input,
single-output closed-loop transfer function is contained in the
interval [−α, α] for a given α > 0 at all frequencies. Specifically,
we first derive a sufficient condition involving a frequency
domain inequality for guaranteeing a given phase constraint.
Next, we use the Kalman-Yakubovich-Popov theorem to derive
an equivalent time domain condition. In the case where α = π

2
,

we show that frequency and time domain sufficient conditions
specialize to the positivity theorem. Furthermore, using linear
matrix inequalities, we develop a controller synthesis frame-
work for guaranteeing a phase constraint on the closed-loop
transfer function. Finally, we extend this synthesis framework
to address mixed gain and phase constraints on the closed-loop
transfer function.

I. INTRODUCTION

The ability to address gain and phase uncertainties is es-
sential for maximizing achievable performance in controlling
uncertain dynamical systems. The small gain theorem guar-
antees robust stability by requiring that the loop gain (includ-
ing desired weighing functions for loop shaping) be less than
unity at all frequencies. The small gain theorem, however,
does not make use of phase information in guaranteeing
stability. To some extent, phase information is accounted for
by means of positivity theory [1–5]. In this theory, a positive
real plant and a strictly positive real uncertainty are both
assumed to have phase less than 90◦ so that the loop transfer
function has less than 180◦ of phase shift, hence guaranteeing
robust stability in spite of gain uncertainty. Other notable
results addressing phase information include concepts such
as principal phases [6], [7], multivariable phase margin
[8], phase spread [9], phase envelope [10], phase matching
[11–14], phase-sensitive structured singular value [15], [16],
and plant uncertainty templates [17–19]. With the exception
of positivity theory all of the aforementioned methods are
restricted to frequency domain characterizations and are not
amenable to state space formulations necessary for devel-
oping controller synthesis methods with guaranteed phase
constraints.

In this paper, we present an analysis and synthesis frame-
work for guaranteeing that the phase of a single-input, single-
output closed-loop transfer function is contained in the inter-
val [−α, α] for a given α > 0 at all frequencies. Specifically,
we first derive a sufficient condition involving a frequency
domain inequality for guaranteeing a given phase constraint.
Next, we use the Kalman-Yakubovich-Popov (KYP) theorem
to derive an equivalent time domain condition. In the case
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where α = π
2 , we show that frequency and time domain

sufficient conditions specialize to the positivity theorem.
Furthermore, using linear matrix inequalities (LMIs), we
develop a controller synthesis framework for guaranteeing a
phase constraint on the closed-loop transfer function. Finally,
we extend this synthesis framework to address mixed gain
and phase constraints on the closed-loop transfer function.

II. MATHEMATICAL PRELIMINARIES

In this section, we introduce notation and several key
results necessary for developing the main results of this
paper. Let R denote the set of real numbers, let R

n×m denote
the set of real n×m matrices, let S

n denote the set of n×n
symmetric matrices, and let AT and A∗ denote the transpose
and complex conjugate transpose of A, respectively. We write
‖ ·‖2 to denote the Euclidean vector norm, In or I to denote
the n × n identity matrix, and M ≥ 0 (resp., M > 0) to
denote the fact that the symmetric matrix M is nonnegative-
definite (resp., positive-definite). Furthermore, we write

G(s) ∼
[

A B
C D

]

to denote the state space realization of the transfer function
G(s) = C(sI − A)−1B + D. The notation “

min∼ ” is used
to denote a minimal realization. In the case where G(s) is a
scalar transfer function, ∠G(ω) denotes the phase of G(ω).

Let L2 denote the space of bounded Lebesgue measurable
functions on [0,∞). For a measurable function v : [0,∞) →
R

r recall that the L2 function norm with Euclidean spatial
norm is given by

|||v(t)|||L2

�
=

(∫ ∞

0

‖v(t)‖2
2dt

) 1
2

,

and the H∞ norm of a transfer function G(s) with input u
and output y is defined as

|||G(s)|||∞ �
= sup

u(·)∈L2

|||y(t)|||L2

|||u(t)|||L2

= sup
ω∈R

σmax[G(ω)].

Next, we state the well-known Kalman-Yacubovich-Popov
(KYP) theorem.

Theorem 2.1 ([20]): Let

G(s) ∼
[

A B
C D

]
,

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
l×m, and D ∈ R

l×m.
Furthermore, let Q̂ ∈ S

l, Ŝ ∈ R
l×m, and R̂ ∈ S

m. Then,

G∗(ω)Q̂G(ω) + G∗(ω)Ŝ + ŜTG(ω) + R̂ ≤ 0,

ω ∈ R, (1)

if and only if there exists P ∈ S
n such that[

ATP+PA−CTQ̂C PB−CT(Q̂D+Ŝ)
BTP−(Q̂D+Ŝ)TC −(R̂+ŜTD+DTŜ+DTQ̂D)

]
≤ 0.

(2)

Proceedings of the
46th IEEE Conference on Decision and Control
New Orleans, LA, USA, Dec. 12-14, 2007

ThB15.1

1-4244-1498-9/07/$25.00 ©2007 IEEE. 3757

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 25, 2009 at 15:57 from IEEE Xplore.  Restrictions apply. 



Remark 2.1: Note that if in Theorem 2.1 Q̂ ≤ 0 and A is
Hurwitz, then P ≥ 0.

Corollary 2.1: (Bounded Real Lemma [2]) Let γ > 0
and consider the linear dynamical system

G(s) min∼
[

A B
C D

]
,

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
l×n, and D ∈ R

l×m.
Then the following statements are equivalent:

i) There exists matrices P ∈ R
n×n, L ∈ R

p×n, and
W ∈ R

p×m , with P positive definite, such that

0 = ATP + PA + CTC + LTL, (3)
0 = PB + CTD + LTW, (4)
0 = γ2Im − DTD − WTW. (5)

ii) |||G(s)|||∞ ≤ γ.
Proof. The proof is a direct consequence of Theorem 2.1

and Remark 2.1 with Q̂ = −Il, Ŝ = 0, and R̂ = γ2Im.
P > 0 follows from the fact that (A, C) is observable.

Remark 2.2: Note that (3)–(5) can be written as[
ATP + PA + CTC PB + CTD

(PB + CTD)T −γ2Im + DTD

]
≤ 0, (6)

and in dual form as[
AQ + QAT + BBT QCT + BDT

(QCT + BDT)T −γ2Il + DDT

]
≤ 0, (7)

where Q > 0.
The following theorem gives sufficient conditions for

guaranteeing that the phase of a scalar transfer function G(s)
is bounded by ±α, where α ∈ (0, π

2 ].
Theorem 2.2: Let α ∈ (0, π

2 ], let

G(s) ∼
[

A B
C D

]
,

where A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n, and D ∈ R, and

let λ > 0. Then,

0 = ATP + PA + CTC + LTL, (8)
0 = BTP + (D − λ)C + WTL, (9)

0 = 2λD − D2 − λ2 cos2 α − WTW, (10)

where P ∈ S
n, L ∈ R

p×n, and W ∈ R
p×1, if and only if

G∗(ω)G(ω) − λ(G∗(ω) + G(ω)) + λ2 cos2 α ≤ 0,

ω ∈ R. (11)

Furhtermore, if (11) or, equivalently, (8)–(10) hold, then
∠G(ω) ∈ [−α, α], ω ∈ R.

Proof. The equivalence of (8)–(10) and (11) is a direct
consequence of Theorem 2.1 with Q̂ = −1, Ŝ = λ, and
R̂ = −λ2 cos2 α. To show that ∠G(ω) ∈ [−α, α], where
α ∈ (0, π

2 ] and ω ∈ R, define G(ω) = βeθ , where β > 0
and θ ∈ R. In this case, (11) can be written as

β2 − 2λβ cos θ + λ2 cos2 α ≤ 0, (12)

or, equivalently,

(β − λ cosα)2 + 2λβ(cosα − cos θ) ≤ 0, (13)

which implies cosα ≤ cos θ. Hence, ∠G(ω) ∈ [−α, α],
where α ∈ (0, π

2 ] and ω ∈ R.

Remark 2.3: Note that if in Theorem 2.2 A is Hurwitz,
then P ≥ 0. If, in addition, (A, C) is observable, then P > 0.

Remark 2.4: A dual representation to (8)–(10) is given by

0 = AQ + QAT + BBT + LLT, (14)
0 = CQ + (D − λ)BT + WLT, (15)

0 = 2λD − D2 − λ2 cos2 α − WWT, (16)

or, equivalently,[
AQ + QAT + BBT QCT + (D − λ)B
CQ + (D − λ)BT −2λD + D2 + λ2 cos2 α

]
≤ 0, (17)

where Q ∈ S
n. The sign definitness of Q can be established

using identical assumptions as in Remark 2.3.
Remark 2.5: Note that it follows from Theorem 2.2 that

if there exists P ∈ S
n, L ∈ R

p×n, and W ∈ R
p×1 such that

0 = ATP + PA + cosαCTC + LTL, (18)
0 = BTP + cosαDC − C + WTL, (19)
0 = 2D − cosαD2 − cosα − WTW, (20)

or, equivalently,

cosα(G∗(ω)G(ω)+1)−(G∗(ω)+G(ω)) ≤ 0,

ω ∈ R, (21)

then ∠G(ω) ∈ [−α, α], ω ∈ R. To see this, note that
(8)–(10) are identical to (18)–(21) with λ = secα and P ,
L, and W replaced by P cosα, L

√
cosα, and W

√
cosα,

respectively.
The next corollary specializes Theorem 2.2 to the gener-

alized positive real theorem.
Corollary 2.2: (Generalized Positive Real Theorem) Let

G(s) ∼
[

A B
C D

]
,

where A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n, and D ∈ R. Then

0 = ATP + PA + LTL, (22)

0 = BTP − C + WTL, (23)
0 = 2D − WTW, (24)

where P ∈ S
n, L ∈ R

p×n, and W ∈ R
p×1, if and only if

G∗(ω) + G(ω) ≥ 0, ω ∈ R. (25)

Furthermore, if (25) or, equivalently, (22)–(24) hold, then
∠G(ω) ∈ [−π

2 , π
2 ], ω ∈ R.

Proof. The proof is a direct consequence of Theorem 2.2
with α = π/2.

III. CONTROLLER SYNTHESIS WITH GUARANTEED

PHASE AND GAIN CONSTRAINTS

In this section, we present a control design framework for
single-input, single-output systems with guaranteed closed-
loop phase and gain constraints. We formulate this problem
using linear matrix inequalities. First, we present the phase
constrained control problem.

Phase Constrained Control Problem. Given the linear
dynamical system

ẋ(t) = Ax(t) + Bu(t) + D1w(t), x(0) = x0, t ≥ 0,

(26)
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with performance variables

z(t) = E1x(t) + E2u(t) + D2w(t), (27)

where x(t) ∈ R
n, u(t) ∈ R

m, w(·) ∈ L2, A ∈ R
n×n,

B ∈ R
n×m, D1 ∈ R

n×1, E1 ∈ R
1×l, E2 ∈ R

1×m, and
D2 ∈ R, determine a static feedback control law

u(t) = Kx(t), (28)

that satisfies the following design criteria:

i) The undisturbed (w(t) ≡ 0) closed-loop system given
by (26) and (28) is asymptotically stable, that is, A +
BK is Hurwitz; and

ii) ∠G̃(ω) ∈ [−α, α] for some given α ∈ (0, π
2 ], where

G̃(s) is the closed-loop system given by

G̃(s) ∼
[

A + BK D1

E1 + E2K D2

]
.

Theorem 3.1: Consider the linear dynamical system (26)
and (27), and assume that (A, D1) is stabilizable and (A, E1)
is detectable. Let α ∈ (0, π

2 ] and λ > 0. Suppose there exist
Q ∈ R

n×n and Z ∈ R
m×n, with Q positive definite, such

that [
X M

MT Y

]
≤ 0, (29)

where

X
�
= AQ + QAT + BZ + ZTBT + D1D

T
1 , (30)

M
�
= QET

1 + ZTET
2 + (D2 − λ)D1, (31)

Y
�
= −2λD2 + D2

2 + λ2 cos2 α. (32)

Then the feedback controller (28) with K = ZQ−1 guaran-
tees that A+BK is Hurwitz and ∠G̃(ω) ∈ [−α, α], ω ∈ R.

Proof. Note that the closed-loop system (26)–(28) is given
by

ẋ(t) = Ãx(t) + D1w(t), x(0) = x0, t ≥ 0, (33)

z(t) = Ẽx(t) + D2w(t), (34)

where Ã
�
= A + BK and Ẽ

�
= E1 + E2K . Now, it follows

from (29) that

0 ≥ AQ + QAT + BZ + ZTBT + D1D
T
1 , (35)

which can be equivalently written as

0 ≥ (A + BK)Q + Q(A + BK)T + D1D
T
1 . (36)

Hence, since (A, D1) is stabilizable by assumption, (Ã, D1)
is also stabilizable, and hence, since Q > 0, Ã = A + BK
is Hurwitz.

To show that ∠G̃(ω) ∈ [−α, α], where α ∈ (0, π
2 ] and

ω ∈ R, note that with Z = KQ, (29) can be written as[
ÃQ + QÃT + D1D

T
1 QẼT + (D2 − λ)D1

ẼQ + (D2 − λ)DT
1 −2λD2 + D2

2 + λ2 cos2 α

]
≤ 0,

(37)

or, equivalently, [
U N

NT V

]
≤ 0, (38)

where

U
�
= (A + BK)Q + Q(A + BK)T + D1D

T
1 , (39)

N
�
= Q(E1 + E2K)T + (D2 − λ)D1, (40)

V
�
= −2λD2 + D2

2 + λ2 cos2 α. (41)

Now, it follows from Theorem 2.2 and Remark 2.4 that
∠G̃(ω) ∈ [−α, α], where α ∈ (0, π

2 ] and ω ∈ R.

Remark 3.1: Note that in the case where D2 = 0, (29)
and (32) imply that λ2 cos2 α ≤ 0, which holds if and only
if α = π

2 . Hence, if the direct transmission term D2 = 0 in
the performance variable z, then the only feasible value for α
is π

2 . Since for H2 optimal control we require that D2 = 0, it
follows that it is impossible to guarantee a closed-loop phase
of ±α ∈ (0, π

2 ) for optimal linear-quadratic regulators.

Mixed Phase and Gain Constrained Problem. Given
the linear dynamical system (26) with performance variables
(27), determine a static feedback control law (28) that
satisfies design criteria i), ii), and

iii) The H∞ norm of the closed-loop system satisfies
|||G̃(s)|||∞ ≤ γ, for some given constant γ > 0.

Theorem 3.2: Consider the linear dynamical system (26)
and (27), and assume that (A, D1) is stabilizable and (A, E1)
is detectable. Let α ∈ (0, π

2 ], λ > 0, and γ > 0. Suppose
there exist Q ∈ R

n×n and Z ∈ R
m×n, with Q positive

definite, such that (29) holds and[
X M̂

M̂T −γ2 + D2
2

]
≤ 0, (42)

where X is given by (30) and

M̂
�
= QET

1 + ZTET
2 + D1D2. (43)

Then the feedback controller (28) with K = ZQ−1 guaran-
tees that A + BK is Hurwitz, ∠G̃(ω) ∈ [−α, α], ω ∈ R,
and |||G̃(s)|||∞ ≤ γ.

Proof. Asymptotic stability of the closed-loop system
(26)–(28) and the phase constraint ∠G̃(ω) ∈ [−α, α], where
α ∈ (0, π

2 ] and ω ∈ R, follow as a direct consequence of (29)
using Theorem 3.1. Next, it follows from Corollary 2.1 and
Remark 2.2 that |||G̃(s)|||∞ ≤ γ if and only if[

ÃQ + QÃT + D1D
T
1 QẼT + D1D2

(QẼT + D1D2)T −γ2 + D2
2

]
≤ 0, (44)

or, equivalently,[
U N̂

N̂T −γ2 + D2
2

]
≤ 0, (45)

where U is given by (39) and

N̂
�
= Q(E1 + E2K)T + D1D2. (46)

Hence, since (45) is equivalent to (42) with Z = KQ, the
result follows.

IV. ILLUSTRATIVE NUMERICAL EXAMPLE

Consider a mass-spring-damper system with mass m =
1, damping coefficient c = 1, and spring stiffness k = 1.
Suppose that the inputs to the system consists of a control
force u(t) exerted by an actuator and an external disturbance
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w(t), where w(·) ∈ L2. The dynamic equations of the system
are given by (26) with

A =
[

0 1
−1 −1

]
, B =

[
0
1

]
, D1 =

[
0
1

]
. (47)

Let the performance variable z(t) be given by (27) with
E1 = [0, 1], E2 = 1, and D2 = 1. Here, we consider two
designs. First, we impose a phase constraint on the closed-
loop system. Specifically, let α = 10 degrees and λ = 1.18.
The YALMIP [21] and SeDuMi [22] MATLAB toolboxes are
used to solve the LMI feasibility problem given by Theorem
3.1. The feasible value of the controller gain was found to
be K∗ = [0.0719 − 0.7245]. For the second design, we add
a gain constraint of γ = 1.1 and solve the LMI feasibility
problem given by Theorem 3.2. The feasible value of the
controller gain was found to be K∗ = [0.0051 − 0.9762].
The magnitude and phase plots for both closed-loop designs
along with a standard H∞ control design are given in Figure
1 and 2, respectively.
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Fig. 1. Magnitude plot of closed-loop system
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Fig. 2. Phase plot of closed-loop system

V. CONCLUSION

In this paper, we developed a controller design framework
for guaranteeing closed-loop phase constraints of single-
input, single-output systems. The framework can be easily
extended to ensure that the phase of the loop-gain transfer
function is well behaved in frequency regimes in which
the loop transfer function has gain greater than unity. In
particular, phase stabilization can be used to allow high
loop gains, and hence, achieve high system performance in
frequency regimes in which sufficient phase information is
available thereby avoiding gain stabilization (e.g., rolloff)
needed to ensure stability where the phase of the system is
poorly known. Finally, using the recently developed notion
of the structured phase margin [23], future research will
concentrate on multivariable extensions of the proposed
phase stabilization approach.
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