
Detecting and Tracking Eyes By Using Their Physiological Properties,
Dynamics, and Appearance

Antonio Haroy Myron Flicknerz Irfan Essay

yGVU Center / College of Computing zComputer Vision Enhanced User Interfaces
Georgia Institute of Technology IBM Almaden Research Center

Atlanta, GA 30332-0280 San Jose, CA 95120

Abstract

Reliable detection and tracking of eyes is an important
requirement for attentive user interfaces. In this paper, we
present a methodology for detecting eyes robustly in in-
door environments in real-time. We exploit the physiologi-
cal properties and appearance of eyes as well as head/eye
motion dynamics. Structured infrared lighting is used to
capture the physiological properties of eyes, Kalman track-
ers are used to model eye/head dynamics, and a proba-
bilistic based appearance model is used to represent eye
appearance. By combining three separate modalities, with
specific enhancements within each modality, our approach
allows eyes to be treated as robust features that can be used
for other higher-level processing.

1. Introduction

In this paper, we present methods for tracking and de-
tecting eyes in complex scenes. Robust and reliable eye de-
tection is an important first step towards the development
of user interfaces capable of gaze tracking and detecting
eye contact. To support concurrent higher-level process-
ing, algorithms for eye detection should be cheap both in
cost and computational complexity. For this reason, we
have developed an algorithm that runs in real-time on a
consumer-end processor using an inexpensive (under $50)
black and white camera with structured infrared lighting.
Our algorithm does not require any camera calibration and
works for all people. We also do not require users to do
any pre-registration prior to having their eyes detected.

Our main goal is to detect eyes reliably and in real-time.
We establish for a given frame in an incoming video se-
quence which regions are likely to be eyes as well as a
degree of confidence that the region is indeed an eye. In
our method, we use the physical properties of pupils along
with their dynamics and appearance to extract regions with
eyes. The detector gives us a probabilistic measure of eye

detection for each region. The probability for each region
is weighted with components coming from the appearance
and dynamics along with temporal information.

To deal with the dynamics of head/eye movements, we
use Kalman trackers with a simple motion model to mea-
sure the movement of different candidate regions. A proba-
bilistic appearance based model of the eyes is used to com-
pute statistics of the texture for different regions to aid in
our classification. All three processes measuring eye phys-
iology, dynamics, and appearance are merged to achieve
robust detection and tracking.

Once we know which regions are likely to be eyes, we
undertake higher level processing on these regions. We
observe pairs of regions and probabilistically determine
which regions are most likely to be faces when paired to-
gether. This allows for higher-level processing on the face
level instead of the pupil level. We present some higher-
level processing applications using this method.

1.1 Previous Work

There is much prior work on finding faces and fa-
cial features in complex scenes. Some approaches, like
Kothari, et al. [3], find eyes in images without finding
faces. They observed that the gradient intersection points
were good candidate locations for eyes. They removed
most false positives by using temporal cues and by finding
pairs of candidates that are close given a priori inter-eye
distances and have similar numbers of gradient intersec-
tions. The physical properties of the eyes are not taken
into account nor are dynamics modeled as we propose in
our method. In addition, the technique functions on the
pixel level so there is no model.

Other approaches like those of [9, 7] find faces first and
then process the facial regions to find facial features. Faces
are usually chosen to be located first because they occupy
more of the image than their features. Our method differs
from these approaches in that we use eyes to reliably locate

Figure 1. Our infrared structured lighting cam-
era [6]

faces.
Scassellati [9] finds faces in cluttered scenes in real-

time. Once the faces are located, their system foveates on
them and then zooms in on the left eye. However, their
system uses ratio templates to find faces and as such is not
rotationally invariant. Also, specialized DSP chips are re-
quired to achieve real-time performance. Our algorithm
does not require any specialized chips to perform tracking
in real-time.

Oliver, et al. [7] utilize blobs and Kalman tracking to
find and track faces as well as facial features in real-time.
They initially use blobs and color information to create a
mixture model to find the faces and then assign trackers to
track each face. The system runs in real-time and achieves
good results, but due to the fact that color and anthropo-
metric statistics (to find facial features) drive their system,
faces might not always be detected if they are of a size and
shape that the system was not trained on. This situation
could arise if a face is occluded by an object, or if someone
is not completely within the field of view of the camera.

Our work has a lot in common with the work of Ras-
mussen,et al. [8]. In both works, trackers are given mul-
tiple sources of information to update their estimates. The
main difference is that our algorithm runs in real-time as
our model is simpler, without any degradation in perfor-
mance. Also, like in their work, we utilize a probabilistic
framework for our tracker’s components. This allows us to
combine the information from the components and is what
makes our algorithm robust. These components can be in-
terchanged with stronger components for possibly better
performance. In section 5. we will discuss how the differ-
ent components’ modalities are combined.

2. Pupil Thresholding

Our system utilizes a black and white camera with struc-
tured infrared lighting [6] as a first step in pupil detection.

The camera utilizes two concentric rings of IR LEDs (Fig-
ure 1), one along the camera’s axis, and one off-axis to ex-
ploit thered eye effect. As the two rings are flipped on and
off, they generate two images (Figure 2) for a single frame.
The image where the inner ring is on, which we will refer
to as thebright image, has white pupils. The image where
the outer ring is on, which we will refer to as thedark im-
age, has dark pupils. While the images look very similar
except for the difference in eyes, in practice, the difference
image that results from subtracting them from each other is
quite noisy. The difference image will contain things like
eyes, specular reflections from objects and light sources in
housings (e.g. fluorescent lights). We use the difference
image despite its noisiness as a preprocessing step since it
contains valuable information.

There are several things we can do to get rid of the
non-eye pixels in the difference image such as thresholding
the image. Thresholding the image has its own problems
however, as deciding on a threshold is hard. Even when a
good one is found, there is no guarantee that the particular
threshold will be good for different environments. While
adaptive thresholding could be used, it is very computa-
tionally expensive especially when done on a consumer-
end CPU as it must be done on every frame and is a slow
operation. However, if we have a lot of noise in the dif-
ference image, we would like to get rid of as much of it
as possible before doing any higher level processing. We
want to get rid of the pixels that are obviously not eyes, but
we do not want to mistakenly miss out on finding any eyes
in the scene.

2.1 Fast Adaptive Thresholding

We have developed an algorithm for doing fast adap-
tive thresholding which behaves like adaptive thresholding
but is much cheaper performance-wise. This algorithm is
intended to get rid of as much noise as possible in each
incoming frame while not getting rid of any eye pixels
mistakenly, so it is conservative. We would rather have
excess candidates at this stage than miss a pupil region.
The idea behind the algorithm is simple: looking at the
histogram for the current frame, we back-integrate the his-
togram, keeping a certain amount of the brightest pixels
(about 1/1000 of the total number of pixels in the frame).
The rest of the pixels are then set to black. This algorithm
is extremely fast, which is desired as this is the lowest level
step in our overall approach and the later steps are more
computationally expensive.

Now that we have a smaller group of pixels to work
with, we want to group these into candidate regions. Can-
didate regions are those groups of pixels that we suspect
are likely to be pupils. Pixels are put into candidate regions

2

by fitting 16x16 (pixel) windows centered on the brightest
pixel in each candidate region. Any pixels that are not suf-
ficiently connected are not turned into candidate regions
and are set to black. We also ensure that the regions do not
overlap as it is impossible for two pupils to overlap. Since
we will be processing regions individually later and col-
lecting statistics on them, removing overlaps at this stage
will save us some time in the future.

3. Candidate Region Tracking

Now that we are working with candidate regions instead
of just with pixels, we can start to gather some higher level
information on these regions. One thing we can do is to
track these candidate regions. Tracking allows us to see
how each region is behaving over time, which provides ad-
ditional information. Also, if we track the regions, then we
will be able to handle blinks, which would cause signifi-
cant problems otherwise.

Kalman trackers [12] are assigned to each candidate re-
gion. We chose Kalman tracking instead of a more ad-
vanced tracking scheme because it can be implemented to
update in real-time and provides the necessary function-
ality we require. Since our algorithm is multi-modal, we
can afford to have individually weak sub-parts that work-
ing together yield robustness. It is possible to periodically
lose track of regions with Kalman tracking, especially if
someone is making very sudden head movements because
those are not modeled. However, if a tracker goes com-
pletely off-track it is removed from the list of active track-
ers. The region it lost track of can then be tracked again
with a new tracker. While statistics that the tracker was
gathering are lost when we remove it, that is not a problem
because the new tracker eventually acquires the statistics
the old tracker possessed. Key to these assumptions are the
facts that frames are not dropped and that people cannot
suddenly move from one side of the image to the other in
one frame. However, as we show later, our algorithm still
works even under these conditions.

The trackers are implemented as having four dimen-
sional state vectors:x-position,y-position, velocity in the
x direction, and velocity in they direction. We did not in-
corporate acceleration information into the state vector as
we found it did not improve the performance. The dynam-
ics are modeled simply: we state that thex andy positions
of the state vector change by one pixel between frames
and that the velocity of the region in thex andy direc-
tion changes by two pixels between frames. This model
works because we assume that people do not perform sud-
den, jerky movements in real-life. We make several other
assumptions if our model does not hold. If a tracker does
not have a measurement near to it, which in our algorithm

is a candidate region from the newest frame, then it con-
tinues going at the same velocity it was going before. If
it does not have a measurement for a number of consecu-
tive frames, then it is made inactive and removed from the
candidate list. When new trackers are added, they check to
see if any other tracker is tracking that region already; if
not they start tracking. Also, if trackers collide with each
other, we remove one and keep the other. This is done be-
cause there should never be two trackers tracking the same
region.

We use the Kalman filter’s covariance matrix to give us
a measure of similarity between a particular region’s mo-
tion compared to a pupil’s motion. The covariance matrix
update equation for the Kalman filter is given by:

Pk = (I �KkH)P
0

k; (1)

where K is the Kalman gain matrix, H is the connection
between the state vector and measurement vector,P

0

k is the
prior estimate ofPk , andPk is the covariance matrix at
time k. To see how well each individual tracker is doing,
we can compute:

P (x̂k+1) = N(x̂k; Pk): (2)

This equation yields a measure of how well the previous
state estimate and the current state estimate correlate to the
covariance of the model. If this result is near 0, it means
that the tracker is not sure if it is tracking well because
the state changed significantly compared to the covariance
between the two frames. If this result is near 1, it means
that the tracker is confident that it is tracking well. As a
result, we can compute:

M = 1� P (x̂k+1): (3)

M gives us a sense as to whether the region is moving
as a pupil that is attached to a head should move: if it is
near 0, it implies that the region is stationary, because the
tracker was confident, and hence the region is not moving
like an eye. If it is near 1, it implies that the region is mov-
ing like an eye and that the tracker is not that confident of
the tracking. It should be noted that these movement cues
are clearly not enough to classify the regions yet; someone
could be sitting still, or something that is as bright as an
eye in the difference image could be in the scene. Also,
it should be noted that the strength of the tracker does not
affect the above equation. We talk of tracker confidence,
but what we are really comparing are the state estimates in
the previous and current frames. Even if we were using a
perfect tracker, this equation would still hold because the
state must either change from frame to frame, or remain
stationary. In both cases, the formulation forM is correct.

3

Figure 2. Left: the bright image, Center: the dark image, Right: Difference Image (contrast enhanced)

4. Appearance based models for candidate
regions

So far, we have not looked at the actual texture belong-
ing to each candidate region. Texture information is taken
into account to increase the robustness of the algorithm.
We have to do this because something could be as bright
as a pupil in the difference image and could move like a
pupil, but could in reality just be a moving reflective sur-
face. For example, in Figure 3 we see a set of regions in
one frame that are being tracked. Those regions are be-
ing tracked because they passed our adaptive thresholding
pre-processing and because they are moving in a way that
complies with our motion model. However, the majority
of the regions that are being tracked are specular reflec-
tions off of the glass of water, which we are not interested
in.

We perform appearance based matching using principal
component analysis (PCA). We create two vector spaces
as done in [11]: one for eyes, with 85 training images of
pupils from the dark image, and one for non-eyes, with 103
training images of patches that are not eyes from the dark
image. The idea is that we will take each candidate region,
form a vector from its texture, and project it into both of the
spaces. Whichever space the vector is closest to, that will
be the space we will classify it as belonging to. This class
information is then added to the information being kept for
the region.

The problem with PCA itself is that the distances to the
spaces are not in any particular scale. This makes it hard
to combine this texture information with the tracking infor-
mation we are already maintaining for each region. This is
not good since the ultimate goal is to use this information
to help in making a decision as to whether a particular re-
gion is an eye or not. Also, if we just use the distances,
we have no measure of confidence that something belongs
to the eye or non-eye vector space. To alleviate both of
these problems, we use probabilistic principal component
analysis (PPCA) [10, 5].

4.1 Probabilistic PCA

Probabilistic principal component analysis (PPCA)
frames the distances in a PCA vector space probabilisti-
cally. PPCA treats all of the training data as points in
a probability density with Gaussian distribution. We use
PPCA because we want a means to get a probability for a
particular region; that is, we want to know the probability
that the texture for a particular candidate region belongs to
the eye vector space or to the non-eye vector space. Ift

is the region we are interested in classifying, we want to
calculateP (t) for both the eye vector space and for the
non-eye vector space. The maximum of these probabilities
yields the probability density that the region is most likely
a part of. Bishop,et al.provide the full derivation [10] for
P (t) by using the fact that PCA is a special case of factor
analysis. Here we will present a condensed version of their
derivation.

Factor analysis is similar to PCA in thatN dimensional
data is reduced toD dimensional data withD � N . When
dimensionality is reduced with factor analysis, one ends up
with:

t =Wx+ �+ ": (4)

This means for anN dimensionalt, we can reduce it to aD
dimensional vectorx, which represents the latent variables.
W are the factor loadings,� is the mean of the training
set, and" is the error, modeled asN(0;), where	 is
diagonal. The model for t is also assumed to be normal
N(�;C) whereC = 	 +WW

T . In factor analysis, if�
and C are calculated, then the probability oft belonging to
a particular density is given byP (t) = N(�;C).

If the factor loadings were indeed the principal compo-
nents, one would be able to see the similarities to PCA.
However, the loadings are not guaranteed to be the prin-
cipal components so we must calculate them. It is pos-
sible to calculate them because in PCA the data is as-
sumed to have a systematic component, an error term for
each variable, and common variance�2. If 	 = �

2
I and

4

Figure 3. Tracking all candidates

S = WW
T + �

2
I , where S is the covariance of the train-

ing data, then PCA can be treated as factor analysis. There-
fore,W = E

p
(�� �2I)R, whereE are the eigenvectors

of the training data,� is a diagonal matrix with the eigen-
values, and R is an arbitrary rotation matrix (since we are
concerned withWW

T , which eliminates theR). Because
we are concerned with maximum likelihood,�2 ends up
being the average of the lost variance or the average of the
eigenvalues of the unused eigenvectors:

�
2 =

1

N �D

NX

i=D+1

�i: (5)

All of these equations allow us to calculateP (t) given PCA
information for a set of training data. For a given candidate
region, the probability that it is an eye or not an eye can
now be determined. Since these probability densities are in
high dimensional space, the probabilities end up being very
small, so they are normalized to be in the interval between
0 and 1.0.

5. Classifying Candidate Regions

We use PPCA to give us probabilities of candidate re-
gions being eyes or non-eyes. This is still not enough as
the probabilities are not temporally stable and they depend
on the regions being centered closely around the pupils.
Since the region positions are being driven by the results
from the Kalman trackers, they might not necessarily be
exactly over eyes at a given time. Moreover, if classifica-
tion is done just for one frame, no temporal information is
used. This is undesirable because the tracker might have
drifted off slightly and would be misclassified as a result.
Clearly, we would also like to incorporate the movement
information that we are calculating for each frame coming
from the Kalman tracker’s covariance matrix.

Figure 4. Classified results

For a particular candidate regiont, we combine all
of the modalities in the following equation which is a
weighted probability of all of the statistics we have at time
i:

Pi(t) = �Peye(t) + �Pnoteye(t) +
M + Pi�1(t); (6)

where�, �, and
 vary on the confidence of the results
from the PPCA components and the Kalman tracker re-
spectively,M (see section 3) is a measure of whether the
region is moving like an eye, andPi�1(t) is the previous
weighted probability of the particular region and has an
exponential dropoff. All regions have all of these statistics
initialized to 0 in the first frame. The motivation of this
equation is that if the trackers are somewhat off-center and
the probabilities that a region is an eye or non-eye are close,

 will be increased and� and� decreased. Conversely,
if the movement information is not very helpful, we rely
more on the PPCA component. Temporal information is
also included so that single instances of misclassification
from the PPCA components do not bias the final classifi-
cation. OncePi(t) is calculated, if it is> 0.5, we classify
the region as an eye for this frame; if it is� 0:5 we do not.

We chose to compute probabilities for our different
modalities so that we could combine them together at this
stage easily. If we had not used probabilities in our for-
mulations up to this point, we would have had to rely on
heuristics to combine the modalities to make a classifica-
tion decision.

Figure 4 shows a frame from live video of a user doing
some movements in front of the camera. Notice that the
eyes are the only things that are classified; even the specu-
lar reflections from the glass do not fool the system. While
the appearance of the glass is indeed (at some orientations
and scales) similar to a pupil due to specular reflections,
it is not classified as such because the movement statistics
that have been gathered for the region do not match the mo-

5

tion model and the appearance is not consistent over time
with that of an eye.

6. Results of Eye Tracking

Our method yields a robust pupil detector. Pupils are
found very easily, and false positives are minimized. While
false positives occur very rarely, as a result of incorporating
temporal information into our classifier, they always decay
out quickly (within five frames or less). False positives
occur in the current implementation of the system when
something reflects light back like an eye, moves slowly like
an eye, and actually looks like an eye. For a false positive
to occur, all three of these conditions must occur, which
is rare. In order for the algorithm to misclassify a region,
these three conditions would have to hold over a large num-
ber of frames.

Our implementation runs very fast. On a single proces-
sor Pentium II, the system runs at about 25 frames per sec-
ond at an interlaced resolution of 640x480 (320x240 each
for the bright image and the dark image). On a dual pro-
cessor Pentium II, the system runs at about 29 frames per
second at the same resolution. This is a result of having
our system largely parallelized to take advantage of multi-
ple processors and to fully exploit the processing pipeline.

Several experiments were performed to test the relia-
bility of the pupil regions that are detected and tracked.
For detailed evaluation, we recorded two sequences of 30
sec. of video at 30fps. The first sequence had slow head
movements with small out of plane rotations. The second
had fast head movements with large out of plane rotations.
The sequences were chosen to see how the tracking and
classification error for Kalman tracking with the adaptive

RMS error Kalman tracking Weighted prob.
(900 frames) (Our method)
Left eye x 3.06888 2.13689
Left eye y 1.51138 1.49021
Right eye x 2.52898 2.02244
Right eye y 1.46873 1.42833

Table 1. Seq. 1: Slow and small head movements

RMS error Kalman tracking Weighted prob.
(900 frames) (Our method)

Left eye x 17.56796 13.53245
Left eye y 10.27857 6.10000
Right eye x 17.31363 17.89213
Right eye y 12.78411 5.75922

Table 2. Seq. 2: Fast and large head movements

Detected eyes Kalman tracking Weighted prob.
(900 frames) (Our method)
None detected in 0 frames 0 frames
Average detected 3.95540 2.10813

Table 3. Seq. 1: Slow and small head movements

Detected eyes Kalman tracking Weighted prob.
(900 frames) (Our method)

None detected in 0 frames 81 frames
Average detected 4.89608 1.80335

Table 4. Seq. 2: Fast and large head movements

thresholding preprocessing were affected by head speed
compared to our method. For each frame in each sequence,
the eye positions were manually determined for compari-
son. Both sequences consisted of one user sitting in front
of the camera. The results of these experiments can be seen
in tables 1 to 4.

In table 1, the RMS error is only slightly better with our
method. The reason for this is that for small head move-
ments, the trackers can track fairly well. However, in the
faster sequence, shown in table 2, the RMS error is signifi-
cantly smaller with our method when compared to Kalman
tracking with adaptive thresholding. Our method is 0.5
worse than just Kalman tracking in the case of the right
eye’s x value, but this is most likely due to unsteady hands
when selecting the eyes for ground truth.

Also of note are tables 3 and 4, which show that when
using Kalman tracking with adaptive thresholding there are
about double the amount of detected regions compared to
the expected number of eyes (2) in the image. Our method
on average detected close to the correct number of regions.
However, it did not detect eyes in the fast test case for
a small portion of the frames (81/900), but this is due to
its inability to exploit temporal information since the head
movements are very jerky.

In looking at all of the tables together, we see that our
method tracks with a higher accuracy than Kalman track-
ing with adaptive thresholding and also yields more mean-
ingful regions. Our method consistently finds the right
number of pupils in the scene, and as such, is a better foun-
dation for higher level processing.

7. Higher-level Processes

In addition to the above results we developed methods
to add higher level processing that rely on our eye tracking
methods.

6

Figure 5. Facial pairing training data

Pairing Candidate Regions: While having a list of re-
gions that have high probabilities of being pupils is valu-
able, having information on how to pair these regions into
faces is more so as pairing the pupils off into faces is the
first step in any other higher level processing. Since our
pupil list is reliable, we can pair pupils very reliably as
well.

We use a facial appearance model to classify faces.
PPCA is used by creating a vector space of a set of the
upper quarter of 165 faces at a low resolution (20x11).
Each face training sample consists of the bounding rect-
angle around the left and right eyes with a small amount
of space above and below the eyes as shown in Figure 5.
For every pair of pupils in our list of candidates at each
frame we figure out all possible pairings such that a priori
information on interocular distances is satisfied. We then
find the affine warp to normalize the face candidate’s tex-
ture region so that the left and right pupil positions line up
with the left and right pupil positions of our training data.

Once this is done, we can project the candidate face’s
texture into the vector space to calculate a probability that
the pairing constitutes a face. We find the maximum a pos-
teriori (MAP) set of pairings for our set of pupil candidate
regions for each frame. The pairings that result are very
reliable even for users with their faces close together or at
different head orientations. Mis-pairings do not occur if
only one eye is visible; single eyes and non-eyes are left
unpaired. Figure 6 shows an example of the results of our
pairing algorithm. As a result of this pairing step, if users
are facing the camera, we can very reliably find an arbi-
trary number of faces in the scene. Otherwise, we try to
pair unpaired regions again in the next frame.

Incorporating Eye Blinks: With faces identified in the
image, we can now go after even higher level features. One
of these which we use to make our tracking stronger is eye
blinks. We identify eye blinks by creating an appearance
model for closed eyes with PPCA as we did with faces.
After we find faces in the scene, we look at the eye candi-
dates for each potential face. For each pair, we compute the
probability that each region constitutes a closed or closing
eye. This allows us to increase the confidence in those re-
gions that exhibit eye closing/opening appearance as they
should be even more likely to be eyes as a result. When

Figure 6. Pairing found pupils from multiple people

Peye(t) is computed in equation 6, we take it to be:

Peye(t) = max(Pface(t; u)i�1; Peye(t); Pclosed(t)i�1)

(7)
which is the maximum of the probability that a region,t,
is an eye that is open or closing, or was at some prior time
a part of a face with an arbitrary regionu. In equation 6,
we have not done any facial pairing yet so the best we can
do is to look at the probability that the region was part of a
face in the previous frame,i� 1. Likewise, at that stage in
the algorithm we do not compute blink probabilities since
those are only computed for regions that are likely to be-
long to faces. Therefore, we look at the probability that
regiont was a closed eye in the previous frame.

Using this formulation, candidate regions that are part
of faces or appear to have blinked recently will be less
likely to be removed from the candidate list. This pro-
vides a mechanism to reliably track an eye region even
if the eye is blinking. In our testing, we found this to be
a reliable metric, however, we encountered difficulties in
creating an adequate and scale invariant appearance model
of closed/open eyes.

Testing with an active robot: We also tested the system
on a robot head in our lab with the aim of creating an atten-
tive user interface. The robot has a black and white camera
with structured infrared lighting in its nose and maintains
eye contact with the user closest to the camera. The eye
motors are driven by back projecting the pupils that are
found with the known camera parameters. This allows us
to figure out how to line up the robot’s eyes so that they
are looking at the pupil positions in the image plane, and
hence maintain eye contact. The robot is able to success-
fully make, establish, and maintain eye contact with differ-
ent users at distances of up to three feet from it.

7

8. Discussion & Applications

There are a large number of interesting applications that
can use the methods we have outlined here. We can utilize
the face positions to count the number of people in a scene,
to identify facial expressions, to perform facial recogni-
tion, or to estimate head pose for multiple people in the
scene, among many other possible applications. We are
particularly interested in the last application as we expect
to combine our robust face finding method with texture
based head tracking to do real-time multiple person pose
detection. Pose detection is possible in real-time because
only a small number of parameters need to be estimated.
Most of the affine parameters for the head positions can be
inferred from the orientation and interocular distances of
found faces.

With the eyes paired off, we can also do processing
to tell if someone is falling asleep by looking at how the
rate of their blinking changes as has been shown possible
in [1, 2, 4]. Our blink statistics could be used to do this
by measuring the delays between blinks or whether blinks
have stopped and the eyes are in fact closed.

We have shown that for our system utilizing multiple
modalities yielded increased robustness. We are interested
in exploring whether multiple simple modalities are always
better that single ’strong’ components. Another interesting
avenue of future investigation is how the performance of
our system would be affected by using better appearance
based models, such as utilizing support vector machines
instead of PPCA.

9. Summary

In this paper we presented a real-time pupil detector and
tracker. The system is multi-modal, which adds to its ro-
bustness. Since there are plenty of leftover cycles, we can
do interesting higher level processing with them, now that
eyes are very robust features. With eyes as robust features,
we can find faces, which in turn gives us even more infor-
mation to use in tracking and classifying pupil regions.

The system has been tested on a number of users each
with different eye shapes and skin tones. It was able to
consistently locate eyes and faces for single and multiple
subjects and was able to reliably track these as well.

Being able to find and track eyes reliably in complex
scenes has allowed us to do higher level processing, such
as maintaining eye contact and finding faces reliably. We
foresee many other applications employing this method.

References

[1] M. Eriksson and N. Papanikotopoulos. Eye tracking for detection
of driver fatigue. InIEEE Conference on Intelligent Transportation
Systems, pages 314–319, 1997.

[2] M. Funada, S. Ninomija, S. Suzuki, I. Idogawa, Y. Yazu, and H. Ide.
On an image processing of eye blinking to monitor awakening levels
of human beings. In18th Annual International Conference of the
IEEE Engineering in Medicine and Biology, volume 3, pages 966–
967, 1996.

[3] R. Kothari and J. Mitchell. Detection of eye locations in uncon-
strained visual images. InICIP96, page 19A8, 1996.

[4] S. Kumakura. Apparatus for estimating the drowsiness level of a
vehicle driver. U.S. patent no. 5786765.

[5] B. Moghaddam and A. Pentland. Probabilistic visual learning for
object detection. InInternational Conference on Computer Vision,
pages 786–793, 1995.

[6] C.H. Morimoto, D. Koons, A. Amir, and M. Flickner. Pupil
detection and tracking using multiple light sources. Techni-
cal Report RJ-10117, IBM Almaden Research Center, 1998.
http://domino.watson.ibm.com/library/cyberdig.nsf/Home.

[7] N. Oliver, A.P. Pentland, and F. Berard. Lafter: Lips and face real
time tracker. InCVPR97, pages 123–129, 1997.

[8] C. Rasmussen and G. Hager. Joint probabilistic techniques for
tracking multi-part objects. InCVPR98, pages 16–21, 1998.

[9] B. Scassellati. Eye finding via face detection for a foveated, active
vision system.Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98), 1998.

[10] M.E. Tipping and C.M. Bishop. Mixtures of probabilistic principal
component analyzers.Neural Computation, 11(2):443–482, 1999.

[11] M. Turk and A. Pentland. Eigenfaces for recognition.Journal of
Cognitive Neuro Science, 3(1):71–86, 1991.

[12] G. Welch and G. Bishop. An introduction to the kalman filter. Tech-
nical Report 95-041, University of North Carolina, Department of
Computer Science, 1995.

8

