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SUMMARY

Over the last decade, industrial control systems utilizing digital
computers have typically implemented large centralized computer facilities.
Two major drawbacks to this approach have been noted. First, the relia-
bility of the central computer facility must be maintalined near 100 per-
cent since a system failure at this level can cause a cessation of ﬁll
manufacturing operations. The second objection stems from the fact that
excessively long control loops are necessary when using the centralized
facility. Economic and noise shielding problems accompany the uge of
these control lines.

A four-level distributed computer hierarchy has been proposed
for industrial control applications. Different segments of the overall
control problem are assigned to dedicated computers at each of the four
levels. The levels are: 1) Material Flow Level, 2) Process Control
Level, 3) Production Control Level and b4) Management Control Level.

At the Material and Proceas Control levels, the emphasis is on real
time direct control of machines and processes while the Production and
Management Control levels are concerned with matters such as scheduling
and forecasting.

It has been proposed that real time control of machines and pro-
cesses at the level (1) Material Flow Level may be efficiently imple-~
mented using microprocessor CPU chips. In this scheme, each machine or
process on the plant floor would have a dedicated real time computer

system effecting control over that particular process. ©Such a system



promises to offer benefits over the centralized concept with regards to
both reliability and economic factors.

The object of this research was to identify the specific require-
ments placed on a microprocesscor based computer control system capable
of operating as a Level (1) processor. Using these requirements to
specify the system, an architecture for the overall ILevel {1) system
was developed. This architecture covered both a theoretical micropro-
cessor architecture as well as the computer system hardware architécture.

It was concluded that the microprocessor CPU should have an
instruction set that directly supports the control of machines and pro-
cesgses. This meansg that the microprocessor shou;d be able to manipulate
both single and double word data as well as single bit data. The micro-
processor system must have an expandable multilevel interrupt structure
to receive interrupts from the Level (2) supervisory computer as well as
from the plant floor. A writeable control store control section was
shown to offer an increase in gystem throughput and flexibility.

In comparing the performance of the Intel 8080 microprocessor
CPU with that of the theoretical microprocessor developed in the paper,
it was found that performance was comparable in operations working with
eight bit (single word) data. The 8080 proved to be moderately deficient
in its ability to manipulate double word data due to its reduced double
word instruction set. In manipulating single bit data, the 8080 suffered
its worst performance degradation in compariscon to the theoretical micro-
processor with execution times on the order of six times as large.

It was concluded that the Intel 8080 is capable of operating as



a Level (1) microprocessor within applications compatible with its
execution speed. A modification of the instruction set to better mani-
pulate double word data and the addition of a bit processing feature
would significantly increase the process control capabilities of the

Intel 8080.



CHAPTIER 1

INTRODUCTION AND PAST APPROACHES

Introduction

Definition of the Problem

Manufacturing control systems over the past ten years have tended
toward digital control systems utilizing one or two large central com-
puter systems exercising control over all processes within an entire
plant. Typically the entire spectrum of applications programs ranging
from management to process control are run in a multiporgramming environ-
ment within the computer system, necessitating a large central facility.

Major drawbacks resulting from this approach to manufacturing
control have been noted. The centralized facility concept places an
extreme emphasis on central system reliability in that a major system
fallure results in the termination of all control functions, resulting
in a manufacturing halt. It has been reported that system availability
{uptime divided by uptime plus downtime) in some cases has been less
than 99.5 percent [1]. In order to increase system availability, some
gystems have utilized the principle of dynamic backup in which a second
backup central processor is incorporated into the computer system. In
the event of a failure in the main central processing unit (CPU), the
gsecondary unit is automatically switched into the system, yielding
availabilities as high as 99.95 percent. In addition to the reliability

problem, the centralized concept has problems asscciated with program



interaction in the multiprogramming emirsment ‘a.nd high cabling costs
involved in bringing large amounts of data from the plant floor to the
computer facility.

The problems associated with large centralized control facilities
have led to a breaking apart of the control function into smaller sub-
sets that may be more efficiently handled by dedicated computers in a
hierarchical computer system.

Backzround Information

The evolution of computerized process control stemmed from two
directions, the automobile industry and the aercospace industry. With
the advent of mumerically controlled machine tools in the early 1950's,
the trend was set for direct digital control of machines in on-line
operation [2]. Computer control systems typically cover a broad range
of control functionsg in the total plant automation role, incorporating
management , production and equipment control functions. Management
information systems and production support systems are typically not
real time critical activities, although they may account for a substan-
tial portion of the computer workload in the total system. Equipment
control fﬁnctioné are in most applications real time critical, demanding
relatively frequent interaction between the control system and the
controlled process. Machines and processes under the equipment control
function usually fall into one of three main task categories referred
to as Make, Move or Test [3].

Farly attempts at decentralizing the computer control facility
often resulted in a nonintegrated system structure. Such 2 system is

characterized by computers, totally unrelated to each other, spread out



over the plant. Each computer provides equipment control over Make,
Move and Test operations occurring simultaneocusly in from one to a
mumber of separate processes or operations on the plant floor [4].

In an effort to overcome the shortcomings of the nonintegrated
system, the trend has been toward a hierarchy of computers. Each com-
puter in thé hierarchy is associated with a particular ievel of the
control function. The IBM COMATS computer system [5] shown in Figure
1 is an example of one of the first large scale hierarchical manufactur-
ing control systems. The hierarchical nature of this system stems from
the fact that the 1460 computers act as supervisor over the terminals
which in turn provide the direct interfacing and control at the plant
floor. Three types of terminals are used with this system. A universal
tester, a process control terminal built around the IEM 1441 CPU, or a
data acquisition terminal which acts as an Input/Output (I/O) buffer
can be used to interface the computer to the plant. Up to 99 such
terminals can be multiplexed to either of the two IBM 1460 computers.
One 1460 is normally used to handle the real time interrupts generated
by the terminals while the other is used for time shared processing and
dynamic backup capabillty.

COMATS was the predecessor to the IBM Manufacturing Process Con-
trol System [6]. This architecture is similar to the COMATS architecture
but was designed to be more wversatile. Two system /360 computers provide
data analysis and large data banks for the satellite computers. The
gatellite computers interface to the process and test equipment through
sensor based Input/Output typically employing standard sensors such as

input and output contact interfaces, analog-to-digital (A/D) interfaces
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and digital-to-analog (D/A)} interfaces [7] as shown in Figure 2. This
TEM system placed most of the data processing requirements at the higher
level /360 computers in an effort to minimize satellite computer require-
ments. Satellite computers were typically IBM 1130, 1800 or System /360
series computers and each satellite computer typically controlled more
than one prlocess. A special purpose operating system called PCOS {Pro-
cess Control Opersting System) was developed for the main /360 computers
to permit them to act in a supervisory and data processing mode for the
satellite computers [8]. A high data rate intelligent multiplexing
system known as the TCU (Transmission Control Unit) was developed”to
handle data requests and multiplexing between the supervisory computers
and satellite computers [9]. This IBM process control system reprezented
a significant advance in integrated hierarchical control, but the total
plant automation function encompasses more than just equipment control.
The management information system function must be incorporated into the
computer hierarchy. Additional integrated computer control systems
similar to the two mentioned here are described in the literature f10],
(113, [12].

Hammond and Oh have characterized ﬁanufacturing operations as
being divided into four levels as shown in Figure 3. These levels are:
1) the Material Flow Level, 2) the Process Control Level, 3) the Pro-
duction Control Ievel and 4) the Management Control Level [2]. Computer
usage at the different levels is cited in Table 1.

The most critical response times occur at the Process Comtrol
Level where real time interaction between computer and process are

crucial. At the Production and Management Control Levels the shift is
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Table 1.

Computer Usage In Manufacturing Operations

ON-LINE

OFF-LINE
A.1 Data Acquisition A.5 Manufact;ring Support Operetion
{e.g., N/C tape production, IC
Process A.2 Test Control mask generation, ete.)
Control A.3 Manufacturing Operation
Control .

A4 Assembly Operation

B.1 Accounting B.5 Cost Control

B.2 Dally Production B.6 1Inventory Control
frodue- Scheduling B.7 Quality and Reliability

B.3 Inventory of Products Parameters
Control and Parts

B.8 Computation of Production
B.bh Quality Control Parameters from Engineering
Date

C.1 Generation of Management C.2 Similation Studies for
Manage=~ Information (e.g., Profit, Forecasting Economic :
ment Resource Utilization, Pay- Environment, Product Demand,
Control roll, Personnel Data.) Rates of Return, etc,

C.3 Maintenance of Management

and Engineering Information
Filea




away frbm real time response and toward more conventional batch type
processing. At these two upper levels information is the bhasic flow
quantity.

What is needed is a hierarchical computer system capable of
exercising the proper control at all four levels oi manufacturing
operations.. A computer control system architecture struqtured as in
Figure 4 has been proposed to meet this need [1], [13]. At the lowest
level of the hierarchy, Level (1), the emphasis is on real time control
of a single machine or proceas. The computer at this level contains
the program and data necessary for such control. Sinece it is desirﬁble
to minimize the storage requirements of the Level (1) system, the Pro-
cess Control Computer System, Level (2), will contain in its mass memory
files a copy of all applications programs used at Level (1). Ievel (2)
memory may also contain those parameters that influence initial machine
setup, assembly operations and required product output. Since there is
no direct horizontal communication between Level (1) computers, the
Level (2) Process Control Computer acts as a transmission link as well
as a supervisor. The real time requirements at Level (2) are much less
critical than those at Level (1) sinmce no direct comtrol of a given
machine takes place at this level., Interlevel communication may be
initiated by either Level (1) or Level (2) via interrupts to the called
processor. In this hierarchical architecture, Level (2) will be used
28 & coordinating and supervisory control for all the machines, pro-
cesses and operations at Level (1) [13].

The task of setting up primary production schedules is handled

by the Production Control Computer System at Level (3). This function
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requires input from a variety of sources ;ssociéted with scheduling as
detailed in Figure 3. The computer system at this level is a general
purpose data procesgor with large memory, mass storage, high speed
input/output and the capability to support multiple temminals for message
reguests. The system should support a number of high level languages,
offer a high speed interrupt capability and feature s multiprogrﬁmmiug
operating system [1b]. Included at this level should be the necessary
goftware to support program development in a suitable process control
language for Level (1) process control programs.

The Management Control Computer System at Level (4) has the large
task of generating the decisions for future plant directions and plans.
Computer architecture at this level must be data base oriented and
capable of the time shared support of a large number of ferminals for
managers. Functional requirements [137] of the various computer systems
may be found in Table 2.

A four level hierarchy of control represents a shift away from
the centralized control concepts of the last decade toward the distri-
buted computer systems [147] mentioned in the literature today. This
distributed system shifts the bulk of the real time process control
away from a relatively large computer controlling many processes to
many dedicated computers at Level (1), each controlling a single process
or machine. Three advantages of using a distributed hierarchical archi-
tecture as copposed to a centralized architecture immediately suzgest
themselves.

Modularity. The modular system structure at Level (1) will tend

to increase system availability. In a centralized system, a processor



Table 2. Computer Functional Requirements

INFORMATION SYSTEMS FUNCTIONS EQUIPMENT CONTROL SYSTEM FUNCTIONS

Level L

Management Information System
Plamming Tools for Management Decisions

General Support Funetions
Payments
Cost Reporting
Cost Estimating
Pricing
Tax Reporting
Personnel

Simulation Models

Level 3

Production Support Functions Proguction Control
Inventory Control

Product Data for each item Optimal Resource Allocation

Specifications

Test & Reliability
Scheduling Information
Regources Required
Inventory

Product Changes

Unit Cost

Sales History

Critical Resources

Level 2

Level 1

Data Acquisition and Control

cl
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failu:e'can lead to many machines and processes coming to & halt for
lack of control. A system failure in a Level (1) processor would only
have the immediate effect of stopping one machine or process, although
other processes could presumably be affected. In this case the Level
(2) Supervisory Computer would rearrange the workload among the remain-
ing machines by altering the programs in their controlling processors.

Partial System Installation. The total control system could be

bullt up in parts. A starting system could consist of only the first
two levels of the control hierarchy. As plant equipment requirements
expanded, additional Level {1) systems could easily be added without
having to expand Level (2) hardware requirements. The ability of one
Process Control Computer to supervise many subordinate processors is

due to the fact that on a time scale, communicstion between any Level
(1) processor and the Level (2) Supervisor is envisioned as being
relatively infrequent and short. Each Level (1) processor is a complete

computer system capable of indepéndent operation to the extent that the
controlled process will allow. This suggests a fallback capability to

Level (1) operation exclusively in the event of a major Level (2) system
failure.

Wiring Economics. A centralized control facility requires that

large amounts of information must be brought from the plant floor to

the control computer. Figure 5 shows an analysis of the cost of the
cabling necessary to run control loops from the plant floor to a centra-
lized facility [1]. From this graph it is apparent that the cost of
installing this wiring network is not insignificant, especially under

the consideration that a single process on the plant floor may require
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tens of control loops. The distributed hierarchical control architecture
would eliminate the majority of this cable network. All control loops
for a process would terminate at the Level (1) processor controlling
that particular process. One data link from each Level (1) processor

to Level {2) Supervisor is all that is required, thus eliminating the
need fof many long control loops. Other problems associated with nolse
shielding and data multiplexing are also eliminated using on-site com-
puters.

Purpose of the Research

In proposing a four level control hierarchy, both Alford and Keyes
have suggested that the Level (1) computer system may be efficiently im-
plemented using microprocessors as the central processing unit. This
research will seek to determine the requirements placed on a Level (1)
microprocessor system under the constraints of the distributed hiersrch-
ical control system. Various methods of satisfying these requirements
will be examined. A theoretical microprocessor system architecture will
be investigated that will efficiently satisfy Level (1) control require-
ments. Structure for the memory system and the input/output system will
be examined as well as the internsl architecture of a Read Only Conbrol
Store (microprogrammable) microprocesscr.

In addition, the performance of the Level (1) microprocessor con-
trol system will be evaluated using two different CPU's. The performance
using the theoretical microprogrammahble CPU will be compared to that
using the Intel 8080 microprocessor CPU chip. The test control problem
will be oriented toward control of a manufacturing robot. Relative

advantages and disadvantages of each system will be discussed in light



of the findings.
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CHAPTER II

IDENTIFICATION OF SYSTEM REQUIREMENTS

Microprocessor System Reguirements

In this section, the specific requirements imposed on the Level
(1) microprocessor system will be identified under the constraints of
the four level hierarchical control system. As these requirements are
identified and defined, they will specify the system structure required
for Level (1) control. 1In the past, commercial control systems have
often combined Level (1) and Level (2) into a single computer system
used to control many separate processes. A number of such minicomputer
systems were originally designed as data processing machines, resulting
in a bulky software package to allow them to functlon ag a real time
control. proceasing system.

In an effort to identify purely Levei (1) control requirements,
the structure of a purely process control minicomputer system has been
examined with regard to its Level (1) functions. The Texas Instruments
960 is a minicomputer control system deéigned exclusively for process
control utilizing an I/O system, operating system and instruction set
tailored to the unique control enviromment [15], [16], [17]. Those
features of the TI 960 that are directly applicable to a Level {1) con-
trol system, as well as others unique to the hierarchical structure are

reflected in the following Level (1) system requirements.
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Instruction Set

The Level (1) microprocessor CPU should have an instruction set
designed especially for the control of machines and processes [16].
Currently available microprocessors have a wmachine language instruction
set, that is, the set of elementary operations specified by software
and executed by hardﬁare, deaigned for generél purpose data manipulation.
Such an instruction set is suitable for many applications, but exhibits
coding inefficiencies when used in implementing process control instruc-
tions. For instance, a common process control instruction involves
setting an output control line to a high or low state based on the teat
of a specified input line. Normally, this entire test and set sequence
would be specified by a single command in an arbitrary high level pro-
cess control language such as PROSFRO, which is used on the IBM 1800
system [37]. The actual sequence of machine instructions f{object code)
necessary to perform this test and set command would then be generated
by the proceas control langusge compiler. Byt whether this object code
is generated by hand or by a compliler, a relatively large number of
machine language inatrﬁctions will he necessary in order to implement
the test and set command. Two approaches to this problem that have heen
ugsed extensively are inline programming and subroutine programming.

Inline Programming. Each time o high level control instruetion

must he executed, the machine language instructions necesséry for 1ts
execution are written sequentially into memory. This approach has the
advantage of simplicity but suffers in reduced speed due to the multiple
memory accesses needed to fetch the object code. It is felt that inline

coding would also be prohibitive from a memory space standpoint due to
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economic considerations and limited memory capabilities of micropro-
cessor systems.

Subroutine Programming. In the utilization of this method the

section of object code that executes each process control comtand is
written as a subroutine. Thus, inste&d of writing object code inline,

a subroutine call is.used.to reach a desired section of machine language
instructions. Memory must be either permanently allocated to contain the
entire szet of subroutines corresponding to all process control commands

or only those subroutines actually used in a particuelar program must be

passed to the Level (1) memory along with the control program. Subrou-

tine programming has the advantage of requiring less memory than inline
programming since each segment of object code is written only once, but
8 losg of speed due to subroutine linkages is encountered.

These considerations lead to requiring an instruction set designed
specifically for process control. In the example given above, there
would be a "test and set” machine language ingstruction ineluded in the
CPU's repertoire of instructions. A not necessariiy complete listing
of the types of instructions to be inecluded in the instruction set.is
given in'Appendix E.

A substantial savings in speed is realized by storing in the con-
trol section of the CHU those sequences of operations that implement a
process control command rather than storing those sequences as object
code in the memory of the Level (1) system. Substantial memory seavings
are also realized by reducing inline programs or process control sub-

routines inte instructions included in the CPJ's instruction set.
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Bit and Byte Oriented System

Industrial sensors are many times bit oriented, i.e., the valve
is either open or closed, the switch on or off. Analog-to-digital and
digital-to-analog converters are primarily byte oriented devices, fre-
quently requiring additional bytes of information to be used for multi-
plexing.purfoses. The overall architecture of the Level (1) comﬁuter
system should be designed to facilitate both bit and byte I/O operations
efficiently.

Bit Manipulation at CPU Level

Closely associated with the notion of a bit and byte oriented
system is the ability to easily test and set or reset individual bits
within a byte at the CPU register level. This abllity to easily mani-
pulate individual bits within a register is a feature not found in the
present generation of microprocessora. With this feature status words
could easily be set up in a prescribed location in memory. This would
allow the supervisory computer at Level.(a)-to check on the status of
the Level (1) processor and associsted wachine or process by performing
a direct memory access (DMA) on the status words. This concept is parti-
cularly iﬁportant in assembly line control where the status of adjacent
wachines on the line must be known for proper overall control [167. Also,
since many of the instructions of & process control computer are bit
oriented, this feature will allow for an easier implementation of these
instructions by the control section of the CFPU.

Flexible InEut/Output Systen

As previously stated, the I/0 system of a Level (1) processor

should possess an architecture that facilitates bhoth bit and byte
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operations. The total integration of a flexible I/0 system must span
1/0 hardware design, CPU hardware considerations and firmware/software.

Hardware design includes all hardware considerations of the I/0
system that are external to the CPU, The hardware implementing the
input function mist be capahle of accepting addressable inputs from the
plant floor. As information about specific inputs is needed by the CFU,
this information must be transferred under CFU control. The input
system should have the capability to gather information from a single
line or a group of linea, i.e., both bit and byte input capability.

Output system considerations are likewise similar. The CPU
should be able to set the state of a single output line or a group of
lines simultaneously. The hardware implementing this function must con-
tain memory to hold the state of the output line and each ocutput line
must be addressable by the CFU.

I/b architecture should be modular in nature, with the ability
to arbitrarily change the number of input and oﬁtput lineg. It should
be possible to build the I/0 system up modularly, adding additional input
or output modules as needs dictate. The ability to develop or use spe-
cial purpose modules such as D/A or A/D converter modules and interrupt
modules is also necessary. These requirements strongly suggest a bus
oriented I/0 architecture.

Miecroprogrammable Control Section

The requirement that the Level (1) processor have an instruction
set specifically designed for processg control points to the need for a
microprogrammable contreol section. The sequence of steps necessary to

carry out a process control command, such as "test and set,” could then
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be stored in the control memory as a micrﬁprogrém and executed whenever
the "test and set" instruction was fetched from memory. This would give
the system designer the flexibility to create special purpcse process
control instructions desgigned to fit the particular plant envirorment.

The feasibility of building a microprocessor_utilizing a microprogramable
control section has already been demonstrated by National Semiconductor
in their IMP series microprocessors [18].

It is the control section that sends and receives the control
gighals that synchronize the memory and I/O modules with the timing of
the CPU. Thus, the contrel section should have input and output control
lines under microprogram control. These lines would provide flexibility
in interfacing the CPU with other components of the computer system.

- The control section is responsible for handling primary interrupt
signals. A primary interrupt indicates to the CPU that an interrupt has
been received, but does not identify the interrupting device. After
receipt of a primary interrupt, the computer must save the processor
state, identify the device causing the interrupt and service the inter-
rupt. Interrupt routines can be handled either by a machine language
subroutine (software) or a microprogram routine (firmware). An inter-
rupt routine stored in microprogram memory would provide for faster
interrupt servicing than that of a machine language routine, but would
be difficult to modify once stored. For this reason, it is felt that
the processor state should be saved under microprogram control, and sub-
sequent device identification and servicing be done by a machine lan-
guage subroutine contained in the operating system. Restoring processor

state after interrupt servicing could be done under microprogram control
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if desired.

While there are certainly benefits to be gained from implementing
a microprogrammable control section, these benefits do not come without
their corresponding problems. Notably, two major problems present them-
selves: pin count and address translation.

If the control ROM is implemented outside the CHU chip, as it
must be for a truly microprogrammable control section, then provision
must be made for both asddress and data lines to communicate with the
ROM. Consider an 8K contrcl ROM composed of 21 bit microcode words.
Without any multiplexing of address and data, 3% extra pins must be
added to the microprocessor package in order to communicate with the
ROM. If address and data were multiplexed over a single bus, then only
21 extra pins would be required. Ewven if the control section were imple-
mented on a separate chip, the pin count per package would not be changed
significantly and the total system pin count would almost double.

The problem of generating the startlng address of a microprogram
routine from its corresponding op code becomes especially difficult when
the set of microprogram routines is subject to user change. Modifying
the address of a low ROM routine would tend teo change the address of all
subsequent routines in higher ROM. Assigning each routine a fixed length
block of ROM would tend to eliminate this problem but ROM fragmentation
would result. Routines regquiring more tha.n one block would eliminate an
op code for each additional block used. In an effort to eliminate unused
ROM memory, an address translation mechanism could be used to translate
the op code to the sezment address of the corresponding microprogram

routine. But this approach brings us back to the problem of wodifying
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routines. One solution to this problem is to permanently assign a basic
instruction set in low ROM so that corresponding op codes would trans-
late to routine segment addresses. A block or page could then be
agsigned to remaining unused high address op codes. These high op codes
could subsequently be user microprogrammed with special purpose micro-
program routines.

Interrupt Structure

The interrupt structure of the Level (1) computer system shduld
be modularly expandable and capable of priority interrupt servicing. A
modularly expandable structure is necessary because of the multiplicity
of different types of industrial machines and processes that will fall
under Level (1) control. One machine may be relétively simple, with few
possible interrupt conditions and therefore.requiring few interrupt linea.
The computer gsystem controlling this machine would need only enough
interrupt lines to sgervice its machine plus provision for standard
interrupts common to all Level (1) systems. In like manner, some Level
(1) systems may control relatively complex processes exhibiting a higher
mmber of possible interrupt conditions. With interrupt cireuitry
packaged modularly, the system needs may be met by using only enough
modules to satisfy the particular requirement. The priority nature of
the interrupt system is necessary because of the relative importance of
the different events that cause interrupts. An important event should
be serviced before a less important event, thus the need for a priority
interrupt structure.

It should be possible to store interrupts until they are serviced

so that an interrupting device need only signal its interrupt once. Each
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interrupt line should have an associated mask to disable that line.
Interrupts received during the execution of an instruction should not be
acknowledged until that instruction has completed its execution. Upon
receipt of multiple interrupts, it should be poasible to nest interrupt
service routines if desired so that the highest priority interrupt is
always being serviced.

Vertical Communication

An essential regquirement placed upon a Level (1) computer sfstem
is that it be sble to efficiently communicate with the Level (2) Super-
visory computer. Why is this necessary? As stated previocusly, the
memory requirements at Level (1) should be minimized as much as posaible
since a large number of Level {1) computer aystemﬁ, i,e., one for each
machine or process, are necessary. For lnstance, a particular process
may operate under varying conditions over a given time pericd. Under
each set of conditions, a different control program may be necessary
for proper cperation. If the complete set of control programs for this
process were stored at level (1), a great deal of memory would be
necessary to store these temporarily uﬁuaed programgs. On the other
hand, with temporarily unused programs stored in mags storage at Level
(2), memory reguirements at Level (1) are reduced.

Interlevel communication will be necessary to pass other types
‘of data between Level (1) and Level (2). Transferred information may
relate to initial machine setup, assembly operations, machine parameters
or any other information deemed necessary. Basically, there are two
modes of communication possible between the Level (2) and Level (1)

systems, active and passive.
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 Passive Communication. The manner in which data transfers are

initiated determines whether a system is operating in the active or
passive mode. The situation is depicted in Figure 6. In a passive
communication system, all data transfers are initiated by the Level (2)
computer. This means that the Level (1) computer must keep current
information needed by the Level (2) computer present in its memory at
all times since a direct memory access may be initiated by the super-
visory computer at any time. This method somewhat simplifies the oper-
ating system required at Level (1) but has.the disadvantage of limiting
overall control flexivility.

Active Communication. A system structure im which data transfers

may be initiated either by Level (1)} or Level (2) is defined as an active
mode system. Interrupts are generabted to signal the called processor
that information is ready to be recieved or ready to be transmitted.

Such an approach offers the systems designer a much greater flexibility
in his design and reduces the need for a careful timing sequence for
data transfer between levels. For this reason, the Level (1) micro-
processor system should be capable of active mode communication.

Additional Requiremenﬁs. During the time that a data transfer is

taking place between Level (1) and Level (2), the Level (1) CPU should
not he diverted from normal processing tasks. This restriction is
necessary becausge of the critical real time nature of process control.
If the CPU were involved in the actual data transfer, then its attention
would have to be diverted from its primary task of process control. As

shown in Figure 6, direct memory access is one possible solution to this
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problem, but provision must be made so that Level (1) memory can be
accessed both by the Level (1) CPU and the Level (2) computer system at
the same time. Otherwise, the Level (1) CPU will end up waiting for its
ovn nmemory while a data transfer is taking place.

Independant Operation

In the event of a supervisory computer failure at Level (2), the
interprocessor communication link for Level (L) computers would be lost
along with the overall control and supervision functions performed by
the Level (2) computer. Obviously, every possible effort should be
taken at Level (2) to prevent a major system failure. If such a failure
were to occur though, it would be desirable to continue plant operation
to the fullest possible extent allowed by the situabion. Some plant
situations exhibit a substantial interdependence among individual pro-
cesses, a3 in an assembly line. Unless some provision were made for
limited direct communication between Level (1) computers in this partic-
ular case, a Level (2) failure would probably mesn a cessation of con-
trol activities. Other process control situations are relastively inde-
pendent of any other process and would be largely unaffected by a Level
(2) failure.

In any case, provision should be made to load control programs
into Level (1) systems from a secondary source. It this source is linked
into the overall architecture at the supervisory computer level, then
Level (1) architecture will be unaffected. Nevertheless, the Level (1)
architecture should support a direct link from a remote source such as

paper tape in case this approach were taken.
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Actually, the hardware necessary to implement this requirement
has already been specified in the input, output and interrupt systems.
The only additions necessary are software routines for input device
loading and these may be kept permanently in the operating system. Any
type of input device could easily be interfaced to the Level (1) system
through the I/0 system.

Environmental Considerations

The Level (1) processor system should be able to operate in =a
hostile plant environment. Since this requirement is not directly
related to the Level (1) architecture problem, only a cursory view of
the factors involved in this problem will be examined. Factorg of a
plant environment usually fall into four categories: atmospheric con-
tamination, thermal factors, mechanical factors and electromagnetic
factors. Atmospheric contaminants are usually eliminated with proper
system enclosures, but this can intensify the thermal problems. Mechan-
ical factors are usually present in the form of vibration that can
degrade circuit comnections. Some applications may regquire a high
ascceleration resgistance. Electromagnetic shielding is essential when
operating in a plant environment due to the numerous sources of this
interference. Provision may be a backup power supply circuit in
each Level (1) computer system. Without this, a short power disturbance
could destroy the contents of all Level (1) semiconductor memories.

The essential characteristics of a Level (1) system are given in

Table 3.
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Table 3. Characteristics of the Level (1) System

Function Requirements

Instruction Set Oriented toward the process control
situation. Must ineclude instructions
capable of operating on individual
bits and bytes in the range 12-16

bits.

Data Types ' Bit, Byte, Word, Fixed Point Binary

I/O Systen Capable of sending and receiving all
data types to and from the plant
floor, '

Interrupts Priority system capable of storing

interrupts and nesting to service
the highest interrupt.

Interlevél Capability to communicate with the

Communication Level {2) supervisory computer.
During data transfer the Level (1)

CPU should not be inhibited.
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CHAPIER III

PROPOSED SYSTEM ARCHITECTURE

Level (L) System Architecture

In Chapter II, the specific requirements impesed on a Level (1)
microprocessor control system were examined. In order to meet these
requirements, what other system components will be necessary in addition
to a microporcessor CPU chip? Basicélly, in addition to the CPU, there
are three main system areas that must be covered: the memory system,
the output system and the input system which contains the interrupt
lines as well as input lines. The overall system architecture proposed
for the Level (1) control system is shown in Figure 7.

Syatem Structure

The major building block of this architecture is the micropro-
grammable microprocessor CPU and its control secfion. Contained within
the CPU are the arithmetic logic unit, the registers and the Internal
busgses common to all computer CPU's. The control section contains the
system timing circuits, the control store memory to hold the micropro-
grams and assorted registers, busses and decoders to cafry out the CHU
control function [19]. The I/0 bus handles all data transfers between
the CPU and input, output or memory systems. All three systems are
accessed by the CPU as if they were a single large memory system composed
of a mix of random access read/write and read only memory elements.

Esgentially this means that memory space, input system space and output
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system space must 2ll be disjoint subsets of the CHJU address space.
That is not to say that the CPU cannot, for example, perform a read
operation on the output system. Asg it turns out Jjust such an operation
will have to be done. The essential point to be made here is that any
word in any of the three systems must nof have the same address as any
other word in any other system.

Figure 8 shows one possible partitioning of the CPU address space.
Eszentially, the address space is subdivided into equal length pages of
L = 2F words each, p an integer. Assuming that the address bus is
capgble of handling an n bit address, this results in a total of N = 2(:1-9)
pages for the address space.

It is expected that the majority of the C?U address space will be
allocated to the memory system. In order to achleve the wmodular structure
discussed in Chapter II, the memory system could be divided into modular
meory modules of L words each. Each memory module used in a Level (1)
system would occupy one page of memory space. The modular nature of this
umemory system allows memory ceapaclty to be easily changed in order %o
meet changing control requirements. Serviceability is enhanced as a
result of direct replacement of fauliy modules. ZEach memory module could
be composed of either random access read/write gsemiconductor (RAM), core
or read only (ROM) memory elements.

Figure 8 shows that the last page of the address space contains
the addregses for both the input and ocutput systems. These two systems
utilize a different addressing scheme from the memory system in that
absolute addresses are bit addresses, although tc the CPU these addresses

look like word addresses. FPor instance, if the CPU were to load a
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register with the contents of an input system address, the register would
be loaded with a w bit word from the input system in which the bit that
was originally addressed is located in a predetermined posgsition within
the word. The mechanics of the situation will be discussed in the next
gection. A bit addressed input and output system is necessary to meet
the requirements set for these systems in Chapter II. It must be possible
to deal with these systems on either a bit or byte basis.

In light of the preceeding discussion, the following relation

must hold.
oft 5 ¥ 4 o¥ 4 2% X, v, 2z integers (1)

where

Input Address space, I = 2% (2)
Output Address space, 0 = 27 (3)
Memory Address space, M = 2% (4)

This means that the input system will be able to handle a maximum of I
input lines and the output system o maximum of O output lines. The
memory system will be able to accomodate a total of M words of w bits
each.

The choice of page size L is governed by two basic factors. On
one hand, the value of L should not be so small ag to force the number
cof pages N to an excessively large number. Restraints on the physical
container size of the Level (1) memory system as well as economic factors

regarding the number of memory modules in the system dictate that N be
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less than some least upper bound. On the other hand, increasing values
of L tend to lead toward a large unused memory fragment within the last
memory module as well as unused address space within the page assigned
to the input and output systems. The value of L should be an integer
power of two to aid in address decoding.

Input Systenm

Basically the input system is composed of an input bank to which
the various input lines from the plant floor or other sources are éon—
nected, as shown in Figure 9. Iogic level inputs are received at the
input ports on the bank. Each port can accept w input signals.

Each input line of each port is addressable by the CPU addresa
register via the address bus. The lower order g bits of the address
specify the particular input line within thé port and the remaining

higher order bits select the correct port, with q given in equation five,

q = [Log, (w)] | (5)

where [x] denotes the least integer greater than x. Both bit and byte
input addressing is afforded using thisz scheme. During an input system
read operation all w bits of the addressed input port are transferred

to the CPU. Further, if the condition of a single Input line iz needed,
the bit corresponding to that line may be tested by the CPU using a soft-
ware or firmware routine. The particular bit within the w bit word is

addressed by the low order g bits of the address register. A maximum of

1 = o(x-9)

. ports may be accomodated by the input system.

Physically, the input system could be constructed using printed

circuit cards which plug into the I/0 bus. Each card could contain
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several input ports if necessary due to sﬁace limitations. Appendix
A confa.ins a more detajled discussion of one possible structure of the
input port module.

Special purpose input modules may be incorporated into this input
system. Modules conftaining A/D comverters and interrupt circuitry are
twoe that immediately suggest themselves.

Interrupt Modules. The need for an expandable priority interrupt

structure has already been established. This requirement may be met by
using modified input modules to receive incoming interrupt signals. The
interrupt module must be capable of accepting either pulse or level
interrupt signals. Each interrupt module is plugged intc the I/O bus
like a gtandard input module as shown in Figure 9. Internal mask cir-
cuitry is contained in each module and mask buffers are set on either

a bit or byte basis. ZEach medule contains R interrupt inputs up to a
maximum of W inputs, each distinetly addressable.

Four baslc operations control the interrupt module. First, a
read interrupt buffer (RIB) operation transfers the state of the inter-
rupt flip flops within the interrupt module to the CPU via the data bus.
The specified interrupt module is addressed by the high order {n-g) bits
of the address bus. In the RIB operation, the low order q bits of the
address are meaningless to the interrupt module but can be used by the
CPU in identifying the interrupting device. Second, a set mask {SMSK)
operation sets the state of the mask flip flops toc the state contained
on the data bus. Again, only the high order {n-g) bits of the address
bus are used to decode the correct module. The third and forth operations

are set individual interrupt mask (SIIM) and reset individual interrupt
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mask (RIIM). 1In each of these operations an individual flip flop and
mask associated with an interrupt input are addressed by the address

bus. The SIIM operation enables the specified interrupt line while the
RIIM operation disables the specified individual interrupt line and
resets its interrupt flip flop. The application of an interrupt signal
to any enabled interrupt line both sets that interrupt flip flop and
signals the CPU via the primary interrupt line that an interrupt has
gceurred, Logic requirements and timing considerations for the intérrupt
module are discussed in Appendix B.

An interrupt structure like the one described above is needed to
meet the requirements placed on interrupt handling set forth in Chapter
IT. Enabling and disabling of interrupt lines is.accomplished by the
8I™M and RIIM operations. Each operatlon could correspond to a wmachine
language instruction. Interrupts are stored (until they are serviced)
within the interrupt flip flops contained in each interrupt module. The
state of the interrupt flip flops of any module can be read by the CPU
via the RIB opersation which is simply a memory read operation with the
address of an interrupt module. The SMSK operation corresponds to a
memory write operation in which the mask flip flops of an asddressed
interrupt module may be written into as a group.

Qutput System

The output system provides the link for data output from the CPU
to the external world, that is, the plant. A diagram of the overall
output system is given in Figure 10. BSystem structure is similar to
that of the input system. Output modules containinz w output lines

per module are plugged into the I/O bus. Individual modules are addressed
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by the high order (n-q) bits of the address word. The low order q bits
of the address specify a particular output iine within the module. A
maximum of 0p = Z(Y'q) output modules may be contained within the ocut-
put system.

Conceptually, the output system mey be thought of as a random
access memory composed of w bit words. ZEach word corresponds to én
output module, Furthermore, all bits of the memory are simultaneously
externally accessable through the output lines. This architecture
results in a wmodular structure that is both bit and hyte oriented.

Two basic output system operations are necessary using this
structure. The write full word (WFW) operation writes a w bit word
from the data bus into the output flip flopa driving the addressed out-
put port. The read full word (RFW) operation transfers the state of the
addressed output module to the CPU via the data bus, In order to set
the state of a single output line, it is necessary to perform a RFW
operation on the module housing that line. The CPU then sets the state
of the correct bit within the output word using the low order q bits of
the address register to identify the correet bit. The output word is
sent back to the output module via the WFW operation and the sequence
is completed.

A discussion of the logic implementation of the output module may

be found in Appendix C.

Memory System

Figures 7 and 8 show that the memory system may be composed of
(N-1) memory modules. Bach module has an address space of L words com-

posed of w bits per word. Mcdules may be made up of elther core or RAM
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or ROM type semiconductor memories. Core memories have the advantage

of non-volatility which could prove helpful in case of a power failure,
but due to the declining cost per bit of semiconductor memories these
will probably be used in the majority of Level (1) memory systems. Those
segments of the coperating system that are permanent and re-entrant could
be stored in ROM for security. Permanent process control programs could
also be kept in ROM. Core or RAM semiconductor memories could be used
for seratch pad applications and must be used in the memory module éhowu
connected to the multiplex (MPX) circuit in Figure 7. Read/write memory
.must be used in this ftransfer module because it is the two way communi-
cation link between Level (1) and Level (2). During an information trans-
fer from Level (1) to Level (2), the Level (L) CPU writes the information
into the transfer module where it is subsequently read by the Level (2)
supervisory computer. The procedure is reversed for Level (2) to Level
(1) communication.

Figure 1l gives a block diagram of the memory system. The
function of the data and address busgses is the same as in the input and
output systems. The R/W control line indicates whether a read or write
¢yele iz about to be initiated and the OCPlL control line is used to
indicate to the memory during a write cycle that data is stable on the
data bus. The Ready line is a wired-OR common connection among the
nemory modules used to indicate module status to the CPU. This line
allows slow ¢ycle time memories to be uszsed in the system by synchronizing
the CPU to the memory. Appendix D gives a further discussion of memory
module hardware and timing requirements.

Multiplex Circuit. The multiplex circuit connecting the memory
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nodule to the I/O bus in Figure 7 serves the purpose of a multi-pole
double throw switch. Depending on the state of the output line coming
from the output system, the memory module is connected to either the
lLevel (1) I/0 bus or an interface to the Level (2} computer system.

In this way, verticle communication to and from the Level (2) computer
system is possible. Yet, while the actual information transfer is
taking place, the Level (1) CPU is free to execute its process control
progran from any other memory-module in the Level (1) system. Allocat-
ing and deallocating the transfer memory medule is accomplished by the
Level (1) CPU through interrupt routines., The normal state of the multi-
plex circuit is with the transfer module connected to the I/0 bus.
Figure 12 gives a flow chart of the steps necessary for any information
transfers. The format of the transferred informaztion could be either
executable statements or binary data.

At this point it may be argued that the multiplex scheme is just
& cumbersome method of implementing a dual port mémory, 80 why not use
a dual port memory instead? The multiplex scheme is best for seversl
reasons,

First, the cost of building dual port memory modules would be
greater than that of single port modules. There is no need for the
entire memory system to be dual port. The only time that the Level (2)
computer would need to modify the contents of an entire Level (1) memory
system would be during a setup operation when new control programs were
being sent to the Level (1) memory. During setup, time is not a critical
element and the Level (1) CPU is free to move programs and data through

the transfer module., Still, it might be argued that the transfer module
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should be dual port. But this would still require that two separate
types of memory modules be built. The multiplex scheme only requires
the single port memory wodule which is used throughout all Level (1)
systems., Contrclling the state of the multiplex circuit with an ocutput
line from an output mocdule provides the CPU with a convenient means of
controlling the switching of the transfer module.

- The second reason for favoring the multiplex scheme stems from
an chservation that if dual port memory modules were uzed in the mémory
system, then possible memory conflicts could result [23]. Essentially,
the problem is that of two processors sharing a common memory. The dual
port approach would offer a costly flexibility that is not essential in
this application, while the simpler multiplgxing'of & single.port transfer
module is economically beneficial and adequate for this application.
Summary

In the preceeding sections an architecture for the input, output

and memory systems has been proposed. This architecture was developed
under two'primary congtraints. Firgt, it should be modular so that each
Level (1) computer system can be built up to the level required by its
unique control situetion. Secondly, the architecture should support
the system requirements identified in Chapter II, The major requirement
affecting the design of the input and output systems was the need for a
bit and byte oriented system. It is felt that the proposed architecture
meets these requirements in a manner that affords easy interface with a

microprocessor CPU.
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Level (1) Microprocessor Architecture

In this section, the architecture of an eight bit microprogrammable
microprocessor called the GT 1248 will be described. A machine width of
eight bits has been chosen so that a valid comparison with the perfor-
mance of the eight bit Intel 8080 can later be made. In Chapter II the
requirements for the overall Level (1) system were set forth. Table b4
compares the projected capabilities of the GT 1248 with those of the
Intel 8080 in satisfying the major requirements imposed upon the Lefel

(1) processor.

Table 4. Comparison of Microprocessor Capabilities

Operation GT 1248 Intel 8080
Bit manipulation at Available through Available indirectly
the Register level. firmware and sup- through software rou-
ported in the tines.
instruction set.
Memory operations at Supported in the . Avalilable indirectly
the bit level. instruction set. through software
routines.
Double word operations Supported in the Reduced capability in
such as load, store, instruction set. the instruction set.
compare.
Single word operations Supported in the Supported in the
instruction set. instruction set.
Special purpose Available as machine Awvailable through
ingtructions language instructions software routines.
through wmicropro-
graming.

GT 1248 Microprocessor CPU Architecture

Figure 13 gives the internal CPU architecture of the GT 1248,
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Three major internal eight bit busses route data between the arithmetic
and logic unit (ALU) and the data registers. Data is transferred to
and from the CPU via data bus lines D7 - D0 connecting the data port
(DP) to external system components. Depending on the state of the I/O
flip flop, data is routed from the data bus to Bus R (input mode) or
from register D to the data bus (output mode). The address for all
memory, input or output system references is carried from the wemory
address register (MAR) to external components via the address bus,

Al5 - AO. The function of the double register arithmetic (DRA) unit is
to provide increment, decrement and complement operations on 16 bit

double words from the register stack.

CFU Registers. Connected to Bus L are the A register, D register

and the data port (DP). Each register is eight bits wide and data flow
into and cut of all registers iz under the control of the microprogram
control section. Bit manipulation is accomplished in the A register.

Bit address within the A register can be supplied either by the B register
or by the microprograa control store, The D register is used for data
output in conjunction with the data port and may also be used as a
temporary store for intermediate results.

Connected to Bus R are the regigter stack, the B and A registers,
the memory address register (MAR) and the DP. The register stack is
made up of 16 eight bit registers. These registers may be accessed as
either a gingle eight bit register via connections to Bus R and the out-
put bus or as a double register composed of 16 bits via connections to
the DRA and MAR. Double registers HL, EF, XY, ﬁV and GK are available

at the machine language level as general purpose registers, The WM
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register is reserved for control section ﬁse to étore intermediate
results. The stack pointer (SP) and program counter (PC) are also
available at the machine language level but are reserved for their
dedicated functions. The memory address register (MAR) is a 16 bit
register made up of two concantenated eight bit registers. The register
containing the high order bits, A15 - Aﬂ’ of the address is referred to
as register MARH. Likewise, the low order bits of the address, A7 - AO,
are stored in the lower register, MARL. Register B i3 a three bit
gpecial register used to implement addressing for bit manipulation.

Only the low order three bits of data from the output bus are loaded
into B during its register load operation. When B is gated onto Bus R,
high order bits are gated as logic zeroes while the three low order bits
come from B. Register B is always loaded whenever register MARL is
loaded from the output bus or whenever the MAR is loaded from the DRA
or stack. In this manner B always containg the three low order bits of
any MAR address.

ALU Components. Associated with the aritimetic and logic unit

(ALU) are: a true/complement (T/C) gate array for Bus R, a group of
five flag flip flops and an output latch. The T/C array can be used
to gate into the ALY the complement of the data contained on Bus R,
This is done under microprogram control and is useful in performing
one's and two's complement subtraction schemes.

The functions of the five flag flip flops comprising the pro-
cessor state word (PSW) are given in Table 5. The I/0 flip flop is
under microprogram control exclusively, while fiégs P, Z, 8 and C are

loaded during certain ALU operations. The five flags may be thought of
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Tahle 5. Flag Flip Flop Functions

Flip Flop Function

1/0 Determines the state of the data
port. Logiec 1 = data port in the
input mode. ILogic O = data port
in the coutput mode. Normally
this flip flop is kept in the
logic O state.

P Reflects whether the laat word
gated from the ALU contained even
or odd parity. P = 1 denotes odd
parity, P = O denotes even parity.

3] Reflects whether the last word
gated from the ALU was positive
or negative depending on the state
of the MSB. 8 = 1 indicates that
the word was negative, S8 =0
indicates that the word was posi-
tive.

7 - Reflects whether the last word
gated from the ALU was equal %o
zero. 4 = Q denotes  that the
last word was nonzero. 2 = 1
denotes that the word was zero.

c During certain ALU add operations,
the carry generated from the MSB
additions is gated into C. During
a right or left rotate, the bit
rotated is loaded into C.
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as a separate register that may be gated onto Bug R or recieve data
from the output bus. When gated as a register, the five flags are
right Justified in the field of the word. This feature permits the
flsgs to be stored in memory prior to interrupt servicing.

Table 6 gives a description of the operation set of the ALU,
During an ADD operation, a binary one may be gated into thé carry of
the l.s.b. addition by applying a logic one to the IC terminal of the
ALU. During an ADD (with carry) operation, the LC terminel is connected
to the C flip flop, otherwise it is under microprogram control and is
useful in two's complement schemes.

The eight bit output of the ALU is gated into a temporary latch
that holds the result long enough to allow it to be gated via the output
bus into a register.

CPU Timing. Figure 1k shows the two phase clock used to control
all register transfers. The same clock is used for control section
timing. During time t; data is gated onto Busses L and R, through the
ALU and into the latch., Time t; must be greater than or egual to the
worst case propagation delay through the ALU and into the latch. During
time tfl the data present at the lateh is locked in, in much the same
way as in the TTL 74100 latch [21). Flag flip flops are gated and locked
according to the same timing as the latch.

The contents of the latch are gated into a selected register via
the output bus during time t2' Time t2 must be greater than or equal
to the worst case propagation delay through the output bus into the

register. During time tf2 the contents of the register are locked in,

so that CPU registers may be of the same structure as the latch.
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Teble 6, ALU Operation Set

Operation Description

ADD _ OUTPUT «~ Bug L + Bus R (arithmetic
sum )
(C) ~ carry, all flags affected

ADD (with carry) QUTPUT «~ Bus L + Bugs R + (C)
(C) ~ caxrry, all flags affected

ADD (no flags) QUTPUT « Bus L + Bus R
no flags affected

AND QUTPUT «~ Bus L A Bus R
(C) unaffected

OR QUTPUT ~ Bug L V Bug R
{C) unaffected

EXCLUSIVE OR QUIPUT «~ Bus L ¥ Bus R
(C) unaffected

ROTATE L OUTPUT - rotate left (Bus L + Bus R)
(C) ~ m.s.b. before rotate operation

ROTATE R QUTPJT ~ rotate right (Bus L + Bus R)
(¢) « 1.s.b. before rotate operation
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Registefs whose data trangfer is accomplighed on the positive edge of
the clock cannot be used with this timing sequence. Time t3 is used to
allow the decoder signals to settle prior to ¢l of the system clock.

GT 1248 Control Section Architecture

Figure 15 gives the basic architecture of the control section.
The 13 bit ROM address register (RAR) contains the address of the next
microingtruction to be executed and is similar in function to fhe standard
program counter. Normal control section operation assumes that micro-
instructions are fetched sequentially from the ROM, so it is the function
of the increment logic (INC) to increment the RAR by one during each
microinstruction eycle [22]. Microinstruction words fetched from the
ROM control store are stored in the 20 bit R register. The various
decoders are attached to the R register so that the proper control
signals can be generated from the current microinstruction word. An
interrupt flip flop with its associated mask is provided to receive the
primary interrupt signal. The OPl control line 15 driven by the OFl
flip flop and is used to provide a level control signal to external
circuits. 8imilarly, the OP2 line is used to provide a control pulse
to externél circuits. Used in conjunction with these two control lines
are bits 13 - O of the microcode word (see Figure 18) which are available
externally at the ROM to provide an address for the multiplexing of OPLl:
and OF2,

The interrupt test flip flop (I) can be set to the one state
during an unconditional microprogram jump. If (I) A (PRI INT) = 1, then
instead of the RAR being loaded with the jump address, the RAR is cleared

and an interrupt microprogram routine entered at control store location
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zero. This interrupt detection and vectoring wiil be discussed more
fully under the section on the jump microinstruction.

Up to two levels of microprogram subroutines can be handled with
the help of the two level first in 1ast out J stack. The address trans-
lation ROM (ATR) is a 512 word by 11 bit read only memory contained
'withis_l..-'the control section used to convert the eight bit op code used
in the GT 1248 to a ROM control store segment address. Each segment
containg the microprogram routine for a single machine language instruc-
tion. A more detailed discussion of the ATR will be presented later,

Control Timing. Referring to Figure 14, it is seen that during

time tl, the ROM address of the next microinstruction is loaded into
the RAR. ROM's are static devices so that within the access time after
the RAR is lcaded and settled, the next microinatructlon will appear at
the output port of the control store ROM. During time tf2’ the next
microinstruction 1s loaded into the R register, dictating that register
R input a new microcode word on the negative edgé of itg gating or clock
signal. ZEach instruction in the microprogram corresponds to a single
microcode word fetched from the control ROM. The clock time, tc, used
to execute one microinstructlion is referred to as one machine state or
cycle.,

If the control section is implewented on a separate chip from
the CPU, then the micreoinstruction word will have to be decoded both on
the control chip and on the CPU chip. It is felt that this approach
would lead to an unnecessary duplication of logic. Most current micro-
processors have hoth their CPU and control section integrated on a single

chip. The elimination of the large control store ROM from the chip, as
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is the éase with the GT 1248, will free needed chip area for the GT
1248's large register stack, while at the same time leaving room for
the circuitry of Pigure 15. In an effort to reduce the pin count of
the GT 1248, control store address and data could be multiplexed through
a single 20 pin ROM port symchronized by the system clock. This approach
would yield a microprocessor pin count of about 51, which is only 11l
above that of the Intel 8080,

The GT 1248 microprogrammable control section recognizes six
basic types of microcode worde: register control, double register,
fetch, jump, pulse and emit.

Register Control Instruction. The register control instruction

1s used to control the ALU and route eight bit data through the CFU.
Figure 16 gives the format of this microcode word. The T field is used
to select one of 16 eight bit registers from the register stack. The
T/C field is used to control the T/C gate array on Bus R. If (T/C = 1)
then (ALU = Bus R). The N field is used to control the I/O and OF1 flip
flops which are used to synchrOnize the CPU to the memory during a read
or write cycle. If (0B = 010) then ((OPl) « N during t2) else ((1/0) ~
N during t2). The LC field is used to control the IC terminal on the
ALU. If (I = 1) then (carry into 1l.s.b. addition) else (no carry into
l.s8.b, addition). The BL field controls register gating onto Bus L as
defined in Table 7. The BR field controls register gating onto Bus R.
Register gating from the output bus into CPU registers is controlled by
the OB field. The ALU field selects the ALU function for the current
microinstruction c¢yele. The function c¢odes for these fields are given

in Table 7. The mnemonic for the register control microinstruction iz
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REGISTER CONTROL INSTRUCTION

L) ! 1 ) 1 ¥ 1 1 I [} )
1 1 L 1 H 1 ] L I | | ) 1 |
F T N T/C 1L.C BL BR 0B ALV
DOUBLE REGISTER INSTRUCTION
] | 1 1 1 ¥ Li ) ] 1 ]
1|0 0 1 1 1 |x x R0
L L } | 1 -} 1 1 [} 1 1
F LY r LY J e r
¥ T N LC BL BR I/0
FETCH INSTRUCTION
1 ] 1 [ I ] I ] 1 1 r
Ilx x x x 1 X X 1 1 1ix x X
[ (] | i | 1 i 1 [ 1 1
et — 7
F N LC BR

Figure 16. Format for the RC, DR and Fetch Microinstructions
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Table 7. Field Specification for the Register Control Instruction

Field BL BR OB - ALU

000 Zero zZero A ADD

001 D stack stack ADD (with carry)
010 A A D ADD {no flags)
11 DP B B AND

Loo X MARL MARL OR

101 X MARH MARH EX-OR

110 X PSW PSW ROTATE L

111 X DP Restricted ROTATE R

as follows:
RC; Operational Function

For example, the mnemonic RC; (&) ~ (DP) + (A) + 1, (I/0) «~ N indicates
that register A is to be loaded with the results of the addition, which
ié actually a two's complemént subtraction of (A) - (DP). The I/0 flip
flop is loaded with the contents of the N field. If the I/b specifii-
cation 1s omitted, then by default (I/0) «~ O.

Double Register Instruction., This microinstruction is used to

control all 16 bit data transfers and arithmetic operations done in the
double register arithmetic (DRA) unit. The format of this instruction
is given in Figure 16. Selection of one of eight double registers to

output from the stack into the DRA during tl is accomplished by the T
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field. :Selection of one of eight double registers to receive data from

the DRA during time t., is accomplished by the BR field.

2
The N and IC fields are used to control loading of the MAR in
parallel with a DRA operation. IF (LC = 1) then ((MAR) « data selected
by the N field) else (MAR is not loaded). If (N = O) then (data = DRA
input) else (data = DRA output). The BL field controls the funct.ion of
the DRA as shown in Table 8. Du;'ing time t2, the I/O flip flop is loaded

with the contents of the low order bit, Ro’ of the R register.

Table 8. Double Register Field Specifications

Field T or BR BL
0 000 (H)(L) Increment
0 001 (E)(F) Decrement
0 010 (X)(Y) Complement
0 011 (U)(V) No Change
0 100 (G)(K) ' X
0 101 (W)) X
0 110 (sP) X
0 111 (EC) X

The mnemonic for the double register microinstruction follows.
DR; Operational Functicn

For example, the mnemonic DR; (MAR) ~ (PC), (BC) ~ (PC) + 1 indicates

that during time t. the MAR is loaded with the contents of the PC double

1
register and during time t, the PC register is incremented. If the 1/0
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specification is omitted, then (I/0) ~ O by default.

Fetch Instruction. Figure 16 gives the format for the fetch

instruction. This instruction is used in the fetch sequence to load

the RAR with the segment address for the current machine language
instruction microprogram routine. During time t2, the I/0 flip flop is
loaded with the contents of the N field. The LC field is used td denote

the type of fetch instruction being executed as shown in Table 9.

Table 9. Fetch Instruction Functions

Mnemonic IC Field Function
Feteh S 0 (RAR) =~ ATR(0-DP), (I/0) -~ N
Fetch D 1 (RAR) = ATR(1-DP), (I/0) ~ N

The operation of Fetch § is as follows. During tioe tl the op
code, which is present at the data port (DP), is'applied to the lower
eight bits of the address translation ROM (ATR) while the contents of
the LC field is applied to the high order input of the ATR (see Figure
15). The segment address corresponding to that op code is then locked

into the RAR during time tf The sequencing of Fetch D is exactly the

1
same except that LC = 1.

Two types of feteh instructions are used so that the control
section of the GT 1248 is capable of decoding a total of 511 op codes
as opposed to the 256 found in the Intel 8080. The extra op codes are

needed to handle the process control oriented machine language



63

instrqc#ions that will be added to the GT 1248 instruction set. Some
of these additions will be discussed in a later section.

Figure 17 gives a pictorial representation of the use of these
two fetch commands., Immediately after the current machine language
instruction has completed execution, an unconditional microprogram jump
statemeﬂt directs microprogram execution to the "single op code fetch"
routine. This routine loads the first eight bit word of op code for
the next machine language instruction from the system memory.. This aop
code is applied to the input of the address translation ROM (ATR). The
ATR directs microprogram execution to the segment address of the micro-
program routine corresponding to that op code unless the first word of
op code equals binary zero. In that case, microprogram execution is
directed to the "double op code fetch" routine which loads the second
word of op code from system memory. This op code is then used in con-
Junction with the Fetch D microinstruction to direct microprogram exe-
cution to the segment address of the microprogram routine corresponding
to that double op code, Fetch time for a double op code instruction will
be twice as long as for a single op code instruction.

Jump Instruction, The format of the Jump mieroinstruction is

in Figure 18. This instruction is used to provide conditional and uncon-
ditional jumps within the microprogram. It can also be used to call a
microprogram subroutine and return upon completion. As shown in Table
10, the T field determines the type of jump instruction under execution.
All acticns specified by the wvarious jump commands must take place during
the ¢l phase of the system clock.

At this point it should be ianstructive to describe the JMP Write
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Figure 18. Format for the Jump, Pulse and Emit Microinstructions
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Jump Ingtruction Functions

T Field Mnemonie Action Conditional?
0000 JMP(N) Address (RAR) ~ Address, (I) « N No
0001 JMP Sub, Address (I} « (RAR) +1, (RAR) +~ Address No
0010 JMP Return (RAR) ~ (J) No
0011l JMP(N) A, Address If (bit Ay = N) then ((RAR) «~ Address) Yes
Else ((RAR) « ((RAR) + 1)
0100 JMP(N) P, Address If ((P) = N) then ((RAR) ~ Address) Yes
0101 JMP(N) Z, Address If ((Z) = N) then ((RAR) ~ Address) Yes
0110 JMP(N)} 8, Address If ({(S) = N) then ((RAR) ~ Address) Yes
0111 JMP(N) ¢, Address If ((C) = N) then ((RAR) « Address) Yes
1000  JMP(N) PI, Address If (Primery Interrupt = W) then ((RAR) =~ Address) Yes
1001 JMP(N} Ready, Address If (Ready = N) then ((RAR) +~ Address) Yes
1010 JMP Write, Address If (Ready = O) then ((RAR) + Address) Yes
" Else ((RAR) ~ (RAR) + 1, (OP1) «~ 0)
1011 JMP Read, Address (1/0) = 1, If (Ready = 0) then ((RAR) «~ Address) Yes
Else ((RAR) - (RAR) + 1)
1 unused
11 unused
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and JMP Read instructions as they apply to the memory read and write
cycles. The JMP Read microinstruction is used in the following manner

during a memory read.
DR; (MAR) « (FC), (PC) =~ (PC) + 1, (T/0) ~ 1
JMP Read, *
RC; (&) - (DP), (/o) -0

This section of microcode loads the A register with the contents of
memory specified by the program counter (PC) and increments the PC.
During Q&a of the double register instruction, the MAR is loaded and the
R/W contrel line goes high indicating to memory to start a read cycle.
The "JMP Read, *"' instruction jumps to itself until ready is indicated
by the memory. At this point the RC instruction is executed, the A
register is loaded and the R/W control line reset.

In order to store register A in the memorj location pointed to

by the PC, the following code could be uzed.
DR; (MAR) «~ (FC)
RC; (D) «~ (A), (OPL) ~ 1
JMP Write, *

The BC insiruction loads register D and sets OFL to the one state. The
0Pl control line can be used to drive the OCFL control line to the memory
that indicates the start of a write cycle. When the memory indicates

the data has been written or accepted, the "JMP Write, *" instruction



68

allowg the next sequential microinstructi;n tb bé executed.

During a "JMP(N) Address” jump instruction, the I flip flop is
set to N. The "JMP(l) Fetch” jump instruction is used at the end of
each microprogram routine to go back to the fetch routine, at the same

time setting (I) = 1 during time t If during time t,, (1) A (PRI.

rl’
INT) = 1, then the RAR is cleared and the next microinstruction to be

-executed will not be the first line of the fetch routine but the micro-
instruction at control store location zero. This microinstruction can
be either a jump to an interrupt routine or the first line of an inter-

rupt routine segment. During time t2 the I flip flop is cleared.

Pulge Instruction. The format of the pulse microinstruction is

ghown in Figure 18. This instruction is basically used by the control
gection for individual bit manipulation by applying pulses to.set, reset
aﬁd toggle inputs on appropriate flip flops. As shown in Table 11, the
T field is used to determine the function of the pulse Instruction.

All pulse operations occur during phase ¢2 of the system clock.
Bit positions 13-0 of the ﬁicroinstruction can be used for wmultiplexing
of control signals OFl and QF2 since these bits are available at the
control sfore ROM output port during ¢2.

Emit Instruction. The format of the emit microinstruction is

shown in Figure 18, With this instruction, any CPU register can be
loaded with eight bit data stored in the emit microcode word. During
time tl’ the emit data is loaded into the temporary latch instead of
data from the ALU. All flags remain unaffected. During the latter half
of the system clock cycle the contents of the latch are transferred to

the CPU register specified by the 0B field, Jjust as in the register
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Table 11. Pulse Instruction Functions

Mnemonic T Field Function
Pulse; SetA.B 0000 bitA.B‘—l
Pulse; Reset JLB 0001 bit A.B -0
Pulse; Comp. A.B 0010 bit A'B ‘-A.B
Pulse; Set AOB 0011 bit AOB -1
Pulse; Reset AOB 0OLOO bit AOB c—g
Pulse; Comp. AOB 0101 bit AOB - AOB
Pulse; Set I/0 0110 (/o) - 1
Pulse; Reset I/0 0111 (1/0) - 0
Pulse; EI 1000 (MASK) «~ 1
Pulse; DI 1001 (MASK) =~ 0, (IWT) « O
Pulse; Set OFl 1010 {(om) ~« 1
Pulse; Reset OP1 1011 (OPL) « O
Pulse; OF2 1100 line OF2 is pu;sed during t2
Pulse; Set C 1101 (c) -1
Pulse; Reset C 1110 {(c) ~0
ursed 1111
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control instruction. The T field is used to select one of 16 stack
registers if the stack is being loaded, The mnemonic for this instruction

is as follows.
EMIT; (r) « Quantity

For example; the instruction EMIT; (X) ~ 3728 means that the X register
iz to be loaded with an oetal. 372.

Control ROM Partitioning. A detailed analysis of the instruction

set necessary for a process control microprocessor is not the subject of
this paper, but in any architectural consideration the size of an expected
instruction set should be approximately known so that the hardware can
support it. While an analysis of the basic GT 1248 instruction set will
be reserved for a later section, the results of that analysis with res-
pact to size and space requirements will be briefly presented.

The basic GT 1248 instruction set consists of approximately 98

machine language instructions, as found in Appendix E. This instruction

set utilizes approximately-3l6 different op codes, dictating that approxi-
mately 61 of these op codes will have to be dual op code instructions.
These 316 different op codes require approximately 1324 words of control
gtore to hold the necessary microprogram routines and subroutines along
with the two fetch routines.

In Figure 17, the control store address wapping procedure was
depicted. The ATR is capable of specifying a asegment address within the
first 2K of the control store ROM. Within this region the bagic instruc-
tion set microprograms should be permanently stored. Assuming that the

approximately 1270 words required for this storage is reasonable, then
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approximately 720 locations. are left free within the lower 2K of ROM.
The ATR would be permanently programmed to direct unused double op codes
to sequential locations within the lower part of this free area. When
the user wanted to microprogram a new machine language instruction, he
could insert a "JMP(0) Segment.Address" instruction in the location
corresponding to a chosen double op code. This jump would then vector
the control section to the correct user defined microprogram routine in
higher ROM.

The permanent section of the control store should be stored in
mask programmed ROM for economic and security reasons, while the remainder
could be programmable (PROM) or erasable (EPROM)_memory for user defineﬁ
microprograms. The call for a user microprogrammable microprocessor has
already been acknowledged in the literature [18]. It has been suggested
that microprocessor programming be done more at the microprogram level

in an effort to increase efficiency and throughput.
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CHAPTER IV
COMPARISON AND EVALUATION OF PERFORMANCE

Performance Evaluation

Up to this point, the overall architecture of a microprocessor
based computer control system for discrete manufacturing control has
been presented. In particular, an architecture for the GT 1248 has been
presented that was developed with the express purpose of satisfying the
microprocessor requirements develcped in Chapter II. In this chapter,

a comparison will be made between the performance of the GT 1248 and
that of the Intel 8080. Performance will be measured on the basis of
speed of execution of a given task and the number of words of program

needed to accomplish that task, as given in eguation six,
L | ,
Performance (P) = o (6}

where T is the execution time for the task and N is the number of eight
bit words of source code needed to program the task.

Microprocegsor Instruction Set

Appendix E gives a detalled description of the basis instruetion
set of the GT 1248. A condensed summary of the characteristics of this
instruction set is given in Table 12, where those instructions that
essentially are not found in the instruction set of the Intel 8080 are
preceeded by an asterisk. In evaluating the execution speeds of the

instrucetions, it was assumed that each is a single op code instruction
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Table 12. Characteristics of the GT 1248 Instruction Set

Number of Words

Mnemonic Double Single
Op Code Op Code

Execution Equivalent Intel 8080
Time (US) Execution Time  (US)

- Single Register and Memory Instructions -

MOV r, ., Ty 2 h-5.5 2.5

MOV M, ry 1 3.5 3.5

MOV ry, M 1 3.5 3.5

MVI ¢y 2 3.5 3.5

MVI M 2 5 ' 5

*MVII M 4 8 10 **

INR Ty 1 2.5 2.5

ICR ry 1 2.5 2.5

INRM 1 4.5 5

DCR M 1 h.5 5

*¥INRI M 3 7.5 10 **

*¥DCRI M 3 7.5 10 **
- Double Data Word Instructions -

INX dd 1 2.5 2.5

DCX dd 1 2.5 2.5

¥ M . 1 7.5 _ 21.5 **

*¥CX M 1 7.5 21.5 **

*INXI M 3 10.5 26.5 **

*CXI M 3 10.5 26.5 **



Table 12. (Continued)

7h

Number of Words

Execution Equivalent Intel 8080

Execution Time  (US)

oemorde pewie | single pinloe)

LXJ ad 3 5

MOVX dd_, da, 1 2.5

STDD dd; 3 8

LDDD ad, 3 8

*STID ad, 1 5

*¥LDID dd, 1 5

DAD dd, 1 L

*DADI M 3 10

*CMD H 1 2.5

*¥TCMP H 1 3

*PCSM 1 3-5.5

*RICH 1 5.5

¥RRCH - 1 6.5-7.5

¥RALH 1 5.5-6

*RARH 1 6.5-7.5

*CMHDX 3 16.5-15.5

*CMHD ad 1 7.5-13

*CMHD M 1 10.5-15.5
- Accumulator Group Instructions -

DA 3 6.5

STA 3 6.5

2.5

12 **

12 %%

15 **

1h #*
16.5 **
27.5 **
12.5 **
Lo w
12.5-15 **

Lo **

6.5
6.5
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Table 12. (Continued)

Numter of Words
Execution Equivalent Intel 8080

Mnemonic Double Single " .
Op Code Op Code  —-0¢ (US)  Execution Time  (US)

CMA 1 2.5 2
CLA 1 2.5 2
STAX EF 1 3.5 3.5
LDAX EF 1 3.5 3.5
RLC 1 2.5 2
RRC 1 2.5 2
RAL 1 3.5 2
RAR 1 3.5 2
ADD s 1 2.5 2
SUB 7, 1 2.5 2
ANA r, 1 2.5 2
XRA T, 1 2.5 2
ORA T, 1 2.5 2
CMP ry 1 2.5 2
ADD M, ADI 1,2 3.5 - 3.5
SUB M, SBI 1,2 3.5 3.5
ANA M, ANI 1,2 3.5 3.5
XRA M, XRI 1,2 3.5 3.5
ORA M, ORI 1,2 3.5 3.5

CMP M, CPI 1,2 3.5 3.5



76

Table 12. (Continued)

Number of Words Execution Equivalent Intel 8080

Mnemonic Double Single Time (US)  Execution Time (US)
Op Code Op Code
«~ Program Counter and Stack Instructions «
CALL 3 8.5 8.5
RET 1 p] >
¥PUSH A 1 3.5
¥POP A 1 3.5
JC 3 3.5-5.5 5
JNC 3 3.5-5.5 5
JZ 3 3.5-5.5 5
JNZ 3 3.5-5.5 5
JP 3 3.5-5.5 5
JM 3 3.5-5.5 5
JFE 3 3.5-5.5 5
JPO 3 3.5-5.5 5
PUSH ddl 1 > 5.5
FOP dd, 1 5 2
XTHL 1 7.5 9
-~ Bit Oriented Instructions -~
*SMB 1 5 63.5 **
*RMB 1 5 63.5 **
*SMBI 3 8 68.5 **
*RMBT 3 8 68.5 **
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Table 12. (Continued)

Number of Words Execution Equivalent Intel 8080

Mnemonic Double Single Time (US) Execution Time  (US)
Op Code Op Code
*TMB 1 4.5 | 50.5 **
a.f‘]IMBI 3 7.5 92.5 **
#3BA 1 2.5 3k.5 ¢
¥REA 1 2.5 3h.5 *=
*STTM 1 3 16.5 **
#RTIM 1 3 16.5 **
- Miscellaneous Instructions -
HLT 2 Variable Variable
NOP 2 3.5 2
ET 2 L 2
DI 1 2.5 2
STC 2 - L | 2
CFL 2 _ 6 2

Time given represent approximate execution time for an 8080 machine

language routine,
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unless'otherwise noted. Double op codes were assigned to 61 of the
total 316 possible op codes needed for the basic instruction set. Also,
it was assumed that a 2.0 MHz system clock was used to drive the GT
1248, since this is the maximum clock frequency used with the Intel 8080.

General Purpose Instructions. The single data word oriented

instructions in the 8080 instruction set apﬁear to be adequate for handl-
ing eight bit process control operations. This is to be expected since
the 8080 is primarily an eight bit data oriented machine. For this
reason, the single word.instructions included in the GT 1248 instruction
set are essentially mirror images of their 8080 counterparts.

On the other hand, the 8080 does not support double datae word
operations to the extent needed for efficient process control appli-
cations. A great deal of the programming used in process control is
used in conjunction with A/D and D/A converters which normally require
more than eight bits of data. The instruction set of the Level (1)
microprocessor should then suppbrt these double word operations to much
the same extent that it supports its single word operations. The 8080
does not do this so the GT 1248 features a number of double data word
instructions designed to supplement those found in the 8080.

Special Purpose Instructions. In addition to being both eight

and 16 bit data oriented, the Level (1) microprocessor must also be
capable of manipulating individual bits at the register level. This is
the area in which the 8080 runs into the most trouble, as is evident
from Table 6. In order to compare the relative performance of each
microprocessor in this area, the relative performance, P_ = P12h8/P8080’

is given in Table 13 for the various bit oriented instructions.
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Table 13. Relative Performance for Bit Oriented Instructions

GT 1248 Intel 8080

Mnemonic o(s) . 2(US) . Pr Speedup
SMB 5 1 63.5 3 38.1 12,7
SMBI 8 3 68.5 6 17.12 8.56
T™MB k.5 1 50.5 3 33.66 11.22
TMBI 7.5 3 55.5 6 1L.8 7.4

SBA 2.5 1 34.5 3 41k 13.8
SIIM 3 1 16.5 7 38.5 5.5

It was assumed in calculating the values for Table 13 that the
8080 routines were written as subroutines called by the control program.
This weould certainly be the case since each subroutine is relatively
long, prohibiting inline programming., The only exception was taken wlth
the SIIM operation, which was assumed to be written inline due to its
brevity. These 8080 subroutines are listed in Appendix F.

Robot Control Evaluation Problem

At this point both microprocessors will be evaluated regarding-
direct computer control of an industrial robot. Parameters for the test
situation are taken from the operation of the Unimate industrial robot
[24].

Test Situation. The Unimate industrial robot is a multiple arti-

culaticn point to point machine. Physically, the Unimate resembles a



single mechanical arm extending from its control apparatus. The arm
has six motion axes which define its position. A cowmmanded position
for the robot is given by a 128 bit program step which is stored in
memory. This program step is divided into eight 16 bit groups. Of
these eight 16 bit groups, six are used £o control the six motion axes
of the Uhimate, while the remaining two are devoted to auxiliary or
ancillary information such as operate external, wait for external,
clamp, weld, time delay, ete. The group assigrments are:

Group 0: Auxiliary Commands

Group l: Auxiliary Commands

Group 2: Swivel Serve

Group 3: Out-in (radizl motion) servo

Group 4: Yaw servo {wrist)

Group 5: Down-up (shoulder motion) servo

Group 6: Bend servo (wrist)

Group 7: Rotary (waist wation) serve

Figure 19 gives a description of the robot control configuration.
The basic operation of the control system is as follows. Two milli-
seconds are typically allowed for the scan of a complete program step.
Therefore the scan time for each articulation or auxiliary command is
250 usec. During the first 250 usec of a progrem step, the negative
commanded position for the first articulation is read from group one
of the program step and subtracted from the present position shaft
encoder corresponding to that group. The results of this subtraction
form an error quantity that is applied to the D/A converter. An octal

decoder enables the sample and hold circuit (S/H) that corresponds %o
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the present group and the analog error signal is applied tc the proper
servo amplifier when line FPi is pulsed. This procedure is repeated
another seven times for the remalining seven groups within the program
step, thus completing the two millisecond program step cycle., A parti-
cular program step is cycled through until all error signals are reduced
to zero, and then the next program step is acted upon;

A map of the memory, input and output systems as they apply to
this problem is given in Figure 20Q. Each group is made up of two eight
bit words of memory, so that a program step occupies 16 sequential
memory locations. Successive program steps are arranged sequentially
in memory. The "Program Base Address” is a pointer to the base of the
program step sequence and the "Current Program Step Address” is a
pointer to the address of the program step under current execution.
Selection of the correct group within the program step is accomplished
through the use of the "Current Field" pointer. The "Progrem Step
Counter" keeps track of the number of program stéps that have been
executed and is used to indicate the end of a program step sequence.

The flag word is tested at the end of each program step cycle
(2 ms. cycle) to determine if conditions have been met for sequencing
to the next program step. An interrupt routine initiated by analog
comparators monitoring the error voltages could be used to set the flag,
but for this particular test it will be assumed that the flag is set
by some undefined routine.

A flowchart depicting the steps which the microprocessor must
perform is found in Figure 21. This flowchart assumes that the micro-

processor will perform the conversicn from gray cecde {which is the code
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used on the shaft encoders) to binary itself instead of using an
exclusive-or gate array. This assumption was made to so that the benefits
of being able to create special purpose process control instructions on
the GT 1248 could be compared to the machine language routine approach
that must be taken on the Intel 8080.

Table 1% gives a summary of the results of using eabh aicro-
processor to perform the algorithm of Figure 21. The programs useq in
this test may be found for both processors in Appendix G. Relative
performance (Pr) igs defined as performance for the GT 1248 divided by
performance for the Intel 8080. The speedup is the execution time for
the GT 1248 aivided by the execution time for the 8080,

Discussgion of Results. BSeveral important limitations of the

Intel 8080 are clearly brought out by the data of Table 13. Referring
to step four, the advantages of being able to create a custom machine
language instruction through user microprogramming is obvious. The
B0B0 suffers performance degradation here because the routine must be
programed in assembly language and because the 8080 does not support
bit manipulation in its hardware or software. Relative performance is
high in step four largely due to the numerous words of source code neéded
to program the routine in the 8080. Since the cost of a 2K RAM memory
is over half the cost of the Intel 8080 CPU at this time, the need fof
keeping the process control programs as short as possible is obvious
on an economic basis.

Step seven displays similar results. Again the 8080 gets tied
up in & relatively long assembly language routine instead of having a

conversion routine included in the instruction set.
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Table 14, Evaluation of Test Program Results

izegigmuu;:egl GT gﬁgutlo?ngln{esoso Rﬂa‘ti"; Ferformance o edup
o (us) (Us) r
1 12 13.5 1.31 1.12
2 18 23 1.7 1.28
3 5 9.5 5.7 1.9
L 42.5 16k.5 290.3 3.87
5 25.5 34.5 2.03 1.35
6 N 5 1.25 1.25
7 5.5 27.5 65 5
8 23 140 9.13 6.08
9 19 21.5 1.27 1.13
10 9 9 1 1
11 20.5 20 0.975 0.975
12 9 8.5 0.94k4 .94k
13 10.5 - 18.5 4,11 1.76
14 21 22 2.09 1.05
15 36 L3 1.3 1.2 .
gig;: ?’c_i;e 260.5 560 403 2.15
Minor Cycle 184 168 5,22 2,54

Steps 1-11
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. A critical deficiency in the 8080 is found in the execution of
step eight., This step outputs the error data to the D/A converter and
then initiates the S/H operation by setfing and then resetting a single
output line. It is in the manipulation of the single output line that
the 8080 runs into its most trouble. The GT 1248 can set a single out-
put bit.in 5 usec., as opposed to the 63.5 usec. taken by the 8080 sub-
routine. Process control applications utilizing a microprocessor with-
out & hardware bit manipulation feature will suffer an execution speed
degradation most severely in the bit oriented area.

The other flowchart steps show varying degrees of difference
between the two microprocessors, depending to a large extent on the
amount of 16 bit data being handled. The 8080 is capable of handling
most double word operations without too much difficulty, although at a
somewhat reduced execution speed compared to the GT 1248. Architecturally
ﬁhe 8080 is equiped to handle 16 bit data but the instruction set just
does not support this feature to the extent that it does single word
data. The double word compare operation of step 1% would be much slower

in the 8080 if negative operands were allowed as in the GT 1248,

Conclusions
This research has investigated the design of a2 microprocessor .
for process control application in a discrete manufacturing envirorment.
The design encompasses five major areas: 1) input and output system |
architecture, 2) instruction set requirements, 3) hardware bit mani-
pulation requirements, L) processor architecture and 5) microprogrammable

control features. This microprocessor design has been compared to a



typical-second generation microprocessor (Intel 8080) in the control of
an industrial robot.

The input and output system architecture developed in this paper
is similar to architectural approaches taken in minicomputer systems
but was developed to directly interface with microprdcessor capabilities.
The I/O system presented in this paper is oriented to both bit and byte
digital input and output., Using this basic architecutre,; the overall
1/0 system may be easily upgraded to handle analog signals through A/D
and D/A converters. Additionally, other special purpose subsystems such
as event sense or relay register options are directly compatible to the
basic bit and byte I/O architecture. With regard to the memory system,
memory modules are commercially available now that parallel the blocked
memory system presented in Chapter III. Verticle communication with the
ILevel (2) Supervisory computer can be implemented using a simple multi-
plex circuit that switches a "transfer memory module” between the Level

.(1) and Level (2) computers. ‘

Present generation eight bit microprocessors primarily support
eight bit data through their instruction set. The Intel 8080 at present
is the only available machine supporting both eight and 16 bit data
manipulation directly through its instruction set. A process control
nicroprocessor should support at least 12 bit data formats since this
is a common A/D converter width. The 8080 can handle this type of
programming but the limited number of double word instructions included
in its instruction set limits execution speed due to software routines.

The GT 1248 overcomes this difficulty by including an expanded double
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word 1nétruction group within its basic instruction set.

No present microprocessor directly supports bit manipulation at
the register level. In order to achieve the execution speed of hit
oriented instructions enjoyed by minicomputer process control systems,
a microprocessor. based éystem must have hardware support of bit mani-
pulation. The Intel 8080 must implement these instructions through
software routines that are cogtly both in memory space and execution
speed. As an exeample, the TI 960 minicomputer can set a single bit in
its output system in 7 usec. Using a software routine the Intel 8080
takes approximately 63 usec. for an equivalent operation while the GT
1248 takes only 5 usec.

The addition of bit manipulation to & microprocessor should
require no major architectural changes. When compared with the Intel
8080, the only additional bit manipulation hardware used on the GT 1248
included the bit manipulation A register, addition of the 3 register and
corresponding additions to the control section. With respect to an
increase in chip area, the changes should not be significant. On the
8080, the decimal aritlmetic hardware could be replaced with the bit
manipulation hardware.

The advantages of using a microprocessor with a user micropro-
grammable control section have already been volced [18]. Specific
advantages of this feature have been examined in thls paper with respect
tc the process control problem. Considerable savings in execution time
and memory required can he gained through this approach since the objecet

code necessary for a given task is reduced. It is felt that the added
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cost pf'implementing the external control store-on'the GT 1248 will be
offset by subsequent reductions in the amount of program memory required.
In microprocessor based systems, memory cost can easily outweigh the
cost of the microprocessor itgelf.

In summary, microprocessors should make a significant impact
upon the process control computer market. Present second generation
microprocessors are capable of operating as Level (1) controllers
in operations compatible with their execution speed. In the future
there should be a shift toward an instruction set more oriented toward
16 bit data for process control micropressors. A bit manipulation
capabllity should also be added to the architecture. As third generation
microprocessors are introduced with lower execution times, the higher
order functions such as multiply and divide will become feasable within

the operation set of the process control microprocessor.
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APFENDIX A
INPOT MODULE CIRCUILITRY

The input system may be composed of different types of modules
for varying input requirements. The standard module.is one that accepts
w binary valued input lines. Figure 22 shows the circuitry necessary
for the implementation of this type input module.

Input module clirculitry consists mainly of address decoding logic
to select the addressed input module and the necesgary logic to allow
the wired-OR connection to the data bus. Since wired-OR connection is
being used, negative logic will be employed on the data bus. That is,
zero volts will represent a logic one and the pogitive voltage level
will represent logic zero.

Qutput buffer NAND gates. are open collector type. When a logie
zero (positive logic) is applied to the Module Select Line, the data bus
is free to float with reapect to the input modulé. A logic one applied
to the Module Select Line allows the information present at the input
lines to be transferred to the data bugs. The input buffer is opticnal
and could be used for level shifting and input protection. The address
_ decode logic is used to enable the addressed input module. Module
address is set by using jumper wires between the outputs of the true/
invert gates and an AND gate. No provision is made for a ready signal
to the CPU since the speed of the logic used in the input module is much
faster than the sequential operation of the CPU. The read sequence for
tﬁe input module follows.

1. CPU gates the address of the input module onto the address bus.
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2. Address decode logic enables the specified input meodule and
the state of the input lines is gated onte the data bus.

3. CPU gates the state of the data bus, inverted, into a register
within the CPU.

Operation complete.
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AFPENDIX B

INTERRUPT MODULE

Timing and Logic

The logic circuitry.necessary to implement the interrupt module
is shown in Figure 23. For each of the four basic interrupt operations
a timing sequence and explanation of operation follows.

A. Read Interrupt Buffer (RIB) Operation.

1. CPU gates n bit address onto the address bus.

2. a. R/W control line is set to the logic one (read) state.

b. Module select logic enables specified interrupt module.

3. The state of the interrupt flip flops is gated onto the data
bus.

. CPU gates data bus state into an internal register.
This sequence completes the actual RIB operation. Once the interrupt
state is gated into the CPU, the low order q bits of the address register
can be used to sequentially test the interrupt word until a logic one is
found. The corresponding address of the address register would specify
the interrupting device,
B. Set Mask (SMSK) Operation.

1. CPU gates n bit address onto the address bhus.

2. a. R/W control line is set to the logic zero (write) state.

b. Module gelect logic enables specified inferrupt module.

3. CPU gates desired mask state onto the data bus.
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OCPl control line is pulsed by the CPU, resulting in the mask

state being transferred into the mask flip flops.

C.
1.
2.
3.
interrupt
D. Reset
1.
2.
3.
interrupt
interrupt

Set Individual Interrupt Mask (SIIM) Operation.

CPU gates n bit address onto the address bus.
a. R/W control line set to logic zero (write) state).
b. Module gelect logic enzbles specified interrupt module.
c¢. Decoder enables specific mask flip flop.

OCPF3 control line is pulsed by CPU, resulting in the specified
mask flip flop being set to the interrupt enable state,
Individual Interrupt Mask (RIIM) Operation.

CPU gates n bit address onto the ajddress bus.

a. R/W control line set to logic zero (write) state.
b. Module select logic enables specified interrupt module.
¢. Decoder enables specific mask flip flop.

OCP2 control line is pulsed by CPU, resulting in the specified
flip flop being set to the interrupt disable state and the

flip flop being set to the reset state.

For a possible implementation of the module select logic section,

refer to the circuit diagram of Figure 22 in Appendix A.
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APPENDIX C
QUTHJT MODULE CIRCUITRY

Logic necessary for the implementation of the.output module 1is
shown in Figure 24. The module select logic is the same as that found
on the input system modules. The sequence of operation for the two
output system operations follows.

A. Read Full Word (RFW) Operation.
1. CPU gates n bit address onto the address bus,
2. a. R/W control line set to the logic one (read) state,
b. Module select logic enables specified output module,

3. The state of the output flip flops is gated onto the data bus.

h, (CPU gates the data bus state, inverted, into an internal
reglster. |
B. Write Full Work (WFW) Operation.

1., CHU gates n hit address onto the address bus.

2. a. R/W control line set to the loglc zero (write) state.

b. Module select logic enables specified output module.

3. CPU gates cutput word onto the data bus.

4, OCPL control line is pulsed, transferring output word to tﬁe
output flip flops driving the output lines.

Physically, several output modules may be packaged on one FC

board in order to save space.
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APPENDIX D
MEMORY MODULE

The memory module must confain circults for address decoding,
data storage and memory cycle sequencing. If semiconductor data storage
is used, either dynamic or static memory elements may be employed.
Dynamic memory requives circuitry to periodically refresh the binary
storage elements, while static memory requires no refresh circuitry.
Higher bit densities are possible with dynamic as opposed to static
memory, althouzh static memory modules are easier to design since they
require no refresh circuits. Figure 25 shows the organization of a 2P
word by w bit static memory using Qk word by m bit memory chips. 1In
general, the rules [20] for wiring the array of Figure 25 are as follows:

1. All corresponding power supply leads are made common through-
out the array. |

2, The write enable signal is made common throughout the array.

3. Al corresponding.addresses are made common throughout the
arrsy.

k. Corresponding data input and data output leads are made cormon
within array columns.

5. Corresponding chip select leads are made common within each
row. The function of the chip select leads is to permit the array inter-
connection, When conditions for chip, i.e., row, selection are not met,

no input signal can affect the contents of that row. Nor does any
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unselected chip affect the signals on the data output lines to which it
is connected. Thus the chip select lead permits output leads to be OR=-
tied and eliminates the necessity to decode the write pulse =zignal.

Further, the module select logic decodes the high order {(n-p)
bits of the address to enable the correct memory modﬁlew The control
logic gates data onto the data bus thraug the multiplex circuit (MFX)
whenever the R/W control line is in the read (logic 1) state and the
module is enabled. The Ready line indicates to the CFU that valid data
is present on the data bus. When the R/W line is in the write (logic 0)
state and the module is enabled, data is gated from the data bus into
the input leads of the memory chips. The normal state of the R/W
control line should be in the logic zero (write) state.

Figure 26 shows the timing sequence for the read operation.
First, the address is sent out over lines A15 - AO of the a&dresa bus.

This address enables the correct memory module, but at this point the
ready line is unaffected. Upon recelving tﬁe reéd-signal from the R/W
line, the memory module recognizes that a read operation upon the speci-
fied address is being performed. The ready line Is then pulled to the
low state so that the CFU will nof exrroneously input bad data during
the memory access time, Once valid data has been loaded into an output
buffer within the memory module, the module indicates ready and the CfU
subsequently inputs this datsa and sets the R/W line to the zero state.
This signals the memory module to complete the memory cycle time in the
case of dynamic semiconductor or core type memories.

Figure 27 shows the timing sequence for the write operation. The



ADDRESS

DATA

R/W

'READY

0OCPl

WRITE
-ENABLE

Memory Cycle Time

<

-— e me e e wmm wm Ww R S e

Address Stable\\\

>

f Data Stable

1+ Transfer

/ \ - Completed
0 :

v v l . :
1 Access Complete the
Time Cycle Time

0
1 -
0
1 -
0

Figure 26,

Memory Read Timing Sequence

[40)}



ADDRESS

DATA

R/W

READY

OCPl

WRITE
ENABLE

' Memory Cycle Time
( < 1y >
/ Address Stable :
>
/// Data Stable \\\ .
' g
1..-
0 !
1 Complete the
I\ | t Cycle Time /
0 I 1 »
1 / \
0 >
14t ‘//f__;\\x
0

Figure 27.

Memory Write. Timing Sequence

€£oT
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addregs'is first sent out as in the read 6ferati$n. Next data is sent
out ovef the data bus, D7 - DO’ and the OCPl lire indicates to the
memory module that valid data is present on the data bus. This signels
the memory module to start a write cycle and the ready line is pulled
down to the low state until the data has been written. When the ready
line again indicates feady the CPU can set the OCPL line to the zero
atate. This action indicates to the memory module to signal not ready
if the memory cycle time must be completed s¢ that a subsequent memory
access cannot be made until the wmewory is ready.

Memory module timing as shown here is compatible both with the

Intel 8080 and GT 12%8 theoretical microprocessor.
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APFENDIX E
BASIC INSTRUCTION SET FOR THE GT 1248

Table 15 gives a list of the symbols and their meanings as they
are used throughout this appendix.

In order to differentiate between those members of the GT 1248
instruction set that are essentially the same as those found in the
Intél 8080 and those members that have been added in an effort to
support the process control enviromment, new instructions will be pre-~

ceeded by an asterisk.
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Table 15. Programming Symbols

Symbol Meaning
th | .

<Bn> The n ~ byte of the instruction

Ty One of the CPU registers A,E,F,X,
Y, U,V or B

T, One of the CPU registers H,L,E,F,
XorY

dd One of the double registers HL, EF,
XY, Uv, GK, SP, PL or MAR.

ddl One of the double registers HL, EF,
XY or UV

dd2 One of the double registers EF, XY,
UV or GK

() Contents of register

(] Contents of memory

Ay Bit B of the A register

- Is transferred to

s ' Is exchanged with

b adr Single bit addressed by [edr.]

ddn High eight bits of the double register

ddL Low eight bits of the double register




107

Single Register and Memory Instructions

. Flags
Mnemonic Affeoted Description of Operation
MOV 1.5 Ty, ALL (ry,) = (ryy)
MOV M, 1) A1l [(HL)] ~ (rl)
MVI ry A1l (rl) = <By>
MVI M All [(HL)] - <B,>
MMVII M A1l [<132><33>] - <B>
INR Ty All (rl) - (rl) +1
DCR r; A1l (rl) - (rl) -1
INR M All [(HL)] ~ [(H)(@)] + 1
DCR M A1l ((HL)] ~ [(HL)} - 1
*INRI M All [<132><B3>] - [<32><133>] + 1
*DCRI M A1l [<B,2><B3>] - [<Bg><33>] -1

Douple Register and Memory Instructions

Mnemonic Aﬁ:ﬁ:e 4 Description of Operation

INX da None (dd) ~ (ad) + 1

DCX dd None (dd) ~ (dd) -~ 1

¥IWX M C,8 [(EL) +2]0(:2)] ~ [(HL) + 1]0(HL)] + 1
*CX M C,3 [(HE) + LJ0(HD)] « [(H)] + 1]((HL)] - 1
#*INXI M c,S [<Bz><]32> + 1}[<32><83>] - [<Be><83> + 1]

[<B2><BB>] +1



*DCXI M

IXT dd
MOVK dd_, dd,
STDD dd,
LDDD dd,
*STID 44,
¥LDID dd,
DAD ad,
*DADI M
*CMD H
#FCMP H

*TCSM H

*RLCH

*RRCH

FCMHDXY

*CMHD dd

*CMHD M

c,s

None
None
None
None
None
8,C

3,C

None

None
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[<BE><B3> + l][<32><B3>] - [<Bz><B3> + 17
[<32><33>] -1

(ad} ~ <Bp><B>

(aa,) - (a4,)

[<B,><B,> + 1][<B,><B,>] ~ (a4;)

(ad,) = [<B><B> + 1][<By><B,>]

(L) + 1]0(HE)] = (ad,)

(ad,) « [(HL) + 1][(HL)]

(1) ~ (HL) + (aq;)

(HL) «~ (HL) + [<132><B3> + 1][<Bz><!33>]
(1) ~ (HL)

(HL) = two's complement (HL)

convert two's complement (HL) to sign/
megnitude

C [— H L

o [ Tk

C H L

If (HL) = <B,><B.> then (Z) « 1

2 3

(HL) > <E52><33> then (C) ~ 1 _QE

O
If (HL) = {(ad) then (2) =1 34;
: f=1. 1}
(HL) > (da) then {(C) «~ 1 :§
£ th
&5
Q

If (HL) = [(XY)+1][(XY)] then (2)«1

(HL) > [(XY)+1][(XY)] then (C)=1



Accumulator Group Instructions
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Mnemonic Af-]éi“iie 1 Description of Operation

LDA A1l (a) (<B,><B,>]

STA - A1l [<132><BB>] ~ (&)

CMA A (A) - (&)

CLA All (a) -0

STAX EF A1l [(EF)] ~ (A)

STAX HL A1l [(HL)] =~ {(A)

LDAX EF All (A) ~ [(EF)]

LDAYX HL A1l (A) « [(1)]

ric Alipgn

e 9E_F

RAL c A

RaR [

ADD 1, A1l (a) = (&) + (x,)

8UB r, All (A) - (&) - (rz) two's complement

ANA r, A1l (A) = (A) A (x,)

XRA T, All (A -~ (A) ¥ (r2)

ORA T, All Ay~ (@A) v (r2)

CMP r, If (A) = (:-2) then {Z) -1 Both

quantities

(A) > (r,) then (C) =1 positive

ADD M All (A) ~ (&) + [(HL)]

SUB M All (&) - (A} - [(HL))
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ANA M All (A) ~ (&) A [(HL)]

XRA M All (A) ~ (a) ¥ [(m)]
ORA M All (&) - (&) v [(H)]
CMP M If (A) = [(HL)] then (Z) ~ 1

(A) > [(HL)] then (C) ~ 1

ADI ALl - (A) -~ (A) + <B,>

SBI All (A) « (A) - <B,>

ANT A1l (A) ~ (A) A <B,>

XRI All (A) « (A) ¥ <B,>

ORI A1l (AY « (A) V <B,>

CPI If (A) = <B,> then (Z) =1
(a) > <B,> then (c) ~1

Program Counter and Staék -'I.nstlrtictions

Mnemonic Flags Description of Operation
Affected

CALL None [(sP)] - 1][(sP) - 2] ~ (PC), (SP) ~ (SP)

-2 (PC) ~ <BQ><BB>

RET None (pc) « [(8P) + 1][(sP)], (SP) ~ (SP) + 2

*PUSH A None [(SP) ~ 1]« (&), (SP) ~ (8P) ~ 1

* POP A None | (A) -~ [(SP)], (SP) - SP) + 1 |

JMP None (PC) « <BE><B3> (équiva.len‘t to LXI PC)

JC None If (C) = 1 then (PC) ~ <B,><B,>

JNC None If (C) = O then (PC) ~ <Bz>-<33>

J2 None 1f (Z) = 1 then (EC) ~ B,>By>

JNZ None If (Z) = 0 then (PC) ~ <B2><B3>



Jp - None
JM None
JFE None
JEO None
PUSH ddl. None
OP d61 Kone
XTHL None

Bit Oriented Instructions
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It (8)

1 then (PC) ~ <132><B3>
0 then (PC) =~ <32><133>

it

If (8)
If (P) = O then (PC) ~ <B2><B3>

If (P) = 1 then (EC) - <B,><B,>

[(sP) - 1][(sP) - 2] =~ (a4,), (SP) ~
(sp) - 2

(da,) ~ [(sp) + 13[(sP}], (SP) ~ (8P) + 2

(L) = [8P] < [(SP) + 1], (SP) unchanged

Flags .
Mnemonic Affected, Description of Operaticn
*3MB None bHII ~1
3] -
FMB None bHL 0
*SMBI None b<B B> 1
2773
¥RMBT None b<B ><B.> " 0
2773
*TMB If b = 1 then (C) » 1 else {C) « O
*TMBI if b<52><33> = 1 then (C) ~ 1 else (C) « 0
*SBA None AB -1
*RBA None AB -0
*3ITM None The mask flip flop addressed by (HL) is
set
*RIIM None The mask flip flop addressed by (HL) is
' reset
HLT None CPU is stopped. Upon receipt of an

interrupt the next sequential instruction
is executed



EI

DI

STC

CFL
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None Ko operation
None Enable primary interrupt
None Digahle primary interrupt
(Cy~1
(c) ~ (¢)

Microprogram Routines

Symbolic States Reqﬁired
Location Microcode (less fetch)
FETCH DR; (MAR) —~ (PC), (EC) ~ (PC) + 1, 3
(1/o) =1
JMP Read, *
FETCH 8, (I/0) ~ 0
DFETCH DR; (MAR) ~ (FC), (PC) ~ (FC) + 1, 3
(1/0) « 1
JMP Read, *
FETCH D, (I/0) - ©
MOV rr RC; (D) -~ (rlb) Single micro?ode 2-3
ingtruction if transfer
RC; (rla) ~ (D) is not stack to stack.
JMP(1) Fetch
MOVMr DR; (MAR) « (HL) L
RC; (D) = (x;), (OPL) -1
JMP Write, *
JMP({1) Fetch
MOVIM DR; (MAR) ~ (HL), (I/0) ~ 1 N

JMP Read, *



MVIr

MVIIM
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RC; (r) = (DP), (1/0) =0

JMP(1) Fetch

DR; (MAR) ~ (BC), (FC) « (PC) + 1, L
(I/o') -1

JMP Read, *

RC; (r;) = (D), (1/0) ~ 0

JMP(1) Fetch

DR; (MAR) ~ (PC), (FC) - (FC) + 1, 7
(1/0) ~1

JMF Read, *

RC; (D) -~ (OP), (I/0) ~ O

DR; (MAR)} ~ (HL)

PJLSE SET OF1

JMP Write *

IMP(1) Fetch

DR: (MAR) « (EC), (BC) = (FC) + 1, 13
(1/0) ~ 1

JMP Read, * -

RC; (W) «~ (DP), (1/0) - 0

DR; (MAR) ~ (EC), (FC) ~ (EC) + 1,

(1/0) -1

JMP Read, *

RC; (M) ~ (DP), (I/0) =0

DR; (MAR) ~ (PC}, (PC) ~ (PC) + 1,

(I1/0) =1

JMP Read, *



INRr

DCRr

THRM

DCRM

INRIM

RC; (D) ~ (0P}, (1/0) ~ 0
DR; (MAR) ~ (WM)

PULSE SET OFl

JMP Write, *

JMP(1) Fetch

RC; (rl) - (rl) +1

JMP(1)} Fetch

RC; (D) ~ (r{)

RC; (rl) ~ (D) + zero

JMP(1) Fetch

DR; (MAR) ~ (HL), (I/0) ~1
JMP Read, *

RC; (D) «~ (DP) + 1, (L/0) ~ O
PULSE SET OFl

JMP Write, *

JMP(1) Fetch

DR; (MAR) ~ (HL), (I/0) ~1
JMP Read, *

RC; (D) ~ (DP) + zero, (I/0) ~ O
PULSE SET OPL

JMP Write, #

JMP(1) Fetch

DR; (MAR) « (PC), (BC) ~ (FC) + 1,
(/o) -1

JMP Read, *

RC; (W) « (DP), (1/0) ~ 0O
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DCRIM

INXdd

DCXa4

INM

DR; (MAR) ~ (PC), (PC) = (PC) + 1
(1/0) - 1

JMP Read, ¥

RC; (M) - (DP), (I/0) ~ O

DR; (MAR) « (WM), (I/0) «1
JMP Read, ¥

RC; (D) « (DP) + 1, (If0) ~ 0
PULSE SET OF1

JMP Write, *

JMP(1) Fetch

Same microccde as above except

that line DCRIM + 8 is as follaws:

RC; (D) « (DP) + zero, (I/0) ~ 0O
DR; (dd) «~ (dd) + 1

JMP(1) Fetch

DR; (dd) ~ (ad) - 1

JMP(1)} Feteh

DR; (MAR) ~ (HL), (HL) ~ (HL) + 1,
JMP Read, *

RC; (M) - (DP) +1, (If0) ~ O

DR; (MAR) ~ (HL), (HL) ~ (HL) - 1,
(/o) -0

JMP Read, *

rC; (D) = (DP) + (C), (I/0) ~ 0
PULSE SET OPl

JMP Write, *
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DCXM

INXTM

DCIM

IXTdd

DR; (MAR) ~ (HL)

'y

RC; (D) = (M), (OPL) «~ 1, no flags set

e

JMP Write, *

JMP(1) Fetch

Same microcode as above except that 12
line DCXM + 2 is as follows:

RC; (M) ~ (DP) + zero, (I/0) =0

and line DC¥XM + 5 iz as followa:

RC; (D) « (DP) + zero + (C), (T/0) ~ O

DR; (MAR) « (FC), (BC) « (EC) + 1, 18
(r/o) ~ 1

JMP Remsd, *

RC; (W) ~ (DP), (T/0) -0

DR; (MAR) « (PC), (FC) ~ (BC) + 1,
(1/0) -1

JMP Read, *

e

RC; (M) ~ (DP), (1/0)~ O

remainder of code same &5 that of INAM

except substitute (WM) for (HL)

Same microcode as INKIM but change 18
line DCXIM + 8 to:

RC; (D) ~ (DP) + zero, (I/0) «~ 0O

and line DCXIM + 11 to:

RC

a

(D) ~ (DP) + zero + (C), (I/0) ~ O

DR; (MAR) = (FC), (FC) ~ (PC) +1, 7
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MOVXdd

3TDDad
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(£/o) ~ 1

JMP Read, *

RC; (adH) ~ (DP), (L/0) -0

DR; (MAR) ~ (BC), (BC) = (FC) +1,
(/o) « 1 |

JMP Read, *

RC; (ddL) « (oP), (1f0) - O,

no flags set

JMP (1) Fetch

DR; (ad_ ) - (da,) 2
JMP(1) Fetch
DR; (MAR) «~ (BC), (PC) « (FC) +1 13
JMP Read, *

RC; (W) ~ (DP), (I/0) « O, no flags set
DR; (MAR) ~ (FC), (EC) ~ (PC} + 1,

(/o) =1

JMP Read, *

RC; (M) ~ (DP), (I/0) ~ 0, no flags set
DR; (MAR) « (WM}, (WM) « (W) + 1

RC; (D) ~ (ddlL), (OPL) =~ 1, no flags set
JMP Write, *

DR; (MAR) « (WM)

RC; (D) ~ (dle), (OPL) ~ 1, no flags set
JMP Write, *

JMP(1) Fetch



LDDDAA

STIDdd

LDIDAd

Same microcode as for STDDdA but change 13
LDDDAd. + & through 1LDDDAd + 12 to:

DR; (MAR} « (WM}, (WM) ~ (WM) + 1,

(1/0) -1

JMP Read, ¥

RC; (d.d._LL) ~ (DP), (1/0) -~ 0, no flags set

DR; (MAR) « (WM), (1/0) ~1

JMP Read, *

RC; (dle) ~ (DP), (1/0) ~ 0, no flags set
JMP(1) Fetch

DR; (MAR) « (HL), (HL)} - (HL) +1 7
RC; (D) ~ (ﬂdzL), (OP1) « 1, no flags set

JMP Write, *

DR; (MAR) « (HL), (HL) «~ (HL) - 1

RC; (D) ~ (dd2H), (OP1) ~ 1, no flags set

JMP Write, * '

JMP(1) Feteh

DR: (MAR) ~ (HL), (HL) «~ (HL) + 1, 7
(1/0) - 1

JMP Read, *

RC; (dd2L) ~ (DP), (I/0) ~ 0, no flags set

DR; (MAR) - (HL), (HL) ~ (HL) - 1, (1/0) ~ 1
JMP Read, *

RC; (ddzH) ~ (DP), (1/0) « 0, no flags set

JMP (1) Fetch
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DADAd

DADTM
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RC; (D) - (aq,L) “ | 5
RC; (L) = (D) + (L)

RC; (D) ~ (dle), no flags set

RC; (H) ~ (D) + (H) + (C)

JMP{1) Fetch

DR; (MAR) « (PC), (PC) ~ (PC) + 1, 17
(1/0) ~ 1

JMP Read, *

RC; (W) ~ (DP), (1/0) ~ O

DR; (MAR) « (PC), (PC) « (BC) + 1,
(1/0) ~1

JMP Read, *

RC; (M) -~ (DP), (I/0) =0

DR; (MAR) = (WM), (WM) = (WM) + 1,
(1/0) ~ 1

JMP Read, *

RC: (D) ~ (DP) + (L),(I/0) « O

PULSE SET OF1

JMP Write, *

DR; (MAR) ~ (WM), (I/0) -1

JMP Read, *

RC; (D) «~ (DP) + (H) + (C), (T/0) ~ 0
PULSE SET OPL |
JMP Write, *

JMP(1) Fetch



CMDH

TCMPH

TSCM

TCSMI

Subroutine for

LSHL

RLCH

RALH

DR; (HL) ~ (FL)
JMP (1) Fetch

DR; (HL) « (HL)

DR; (HL) ~ (HL) + 1
JMP(1) Fetch

RC; (H) ~ (H) (flags set)
JMP(Q) S, TCSMI

DR; (HL) «~ (HL)

DR; (HL) = (HL) + 1
RC; (&) < (W)

PULSE SET A,

RC; (H) ~ A

JMP(1) Fetch

left shift (HL), (C) ~ m.s.b.

RC; (D) ~ (L)

RC; (L) = (D) + (1)

RC; (D) -~ (H), no flags
RC; (H) ~ (D) + (H) + (C)
JMP Return

JMP Subr., LSHL

RC; (L) « (L) + (C), no flegs

JMP(1) Fetch
JMP(1) C, RBS3
JMP Subr., LSHL

JMP(1) Fetch
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3-8

8-9



RBS3

Subroutine for

SRHL

RB3S

RBSL

RRCH

ADRT

RARHL

JMP Subr., LSHL

RC; (L) ~ (L) + 1

JMP(1) Fetch

right shift (HL), (€) =~ l.s.b.

RC; (H) «~ rotate right (H) ' 7-8
JMP(1) C, RBSL

RC; (L) «~ rotate right (L)

EMIT; (D) « 01111111,

RC; (L) « (D) A (L)

RC; (H) « (D) A .(H)

JMP Return

RC; (L) ~ rotate right (L)

EMIT; (A) =~ 10000000,
RC; (L) ~ (&) Vv (L)

JMP{0) RBS5 _

JMP Subr., SRHL ' ' 10-12
JMP(0) ¢, ADRI

RC; (H) « (4) V (H)

JMP(1) Fetch |

JMP(0) C, RARHL 10-12
JMP Subr., SRHL

RC; (H) ~ (A) V (H)

JMP(1) Fetch

JMP Subr., SRHL

JMP(1) Fetch
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Microprogram Routine to perform the douhlé word éompare between (HL)
and (WM)
CMEW RC; (H) «~ (H) 11-21
JMP(0) S, BOB2
RC; (W) « (W)
JMP(0) S, BOBL
JMP(O) CMPROU
BOBL Pulse Reset C
JMP(1) Fetch
BOR2 RC; (W) « (W)
JMP(0) 8, SMPROU
PULSE SET C
JMP{1) Fetch
CMEROU RC; (D) = (L)
RC; (M) « (D) - (M)
IMP(L) Z, CMEROUT
RC; (D) « (H), no flags
RC; (W) ~ - (W), no flags
(W) = (D) + (W) + (C)

RC; (M) ~ Zero V (M)

RC

e

JMP(1) Fetch
CMPROUL RC; (D) « (H), no flags
RC; (W) ~ -(W), no flags

RC; (W) ~ (D) + (W) + (C)

-

JMP(1) Fetch



CMHDX

CMHDAS

DR; (MAR) « (PC), (PC) = (PC) + 1,
(I/0) « 1

JMP Read, *

RC; (W) « (DP), (1/0) ~ 0O

DR; (MAR) « (PC), (PC) « (PC} + 1,
(I/0) « 1

JMP Read, *

RC; (M) « (DP), (I/0) ~ 0

JMP(0)} CMHW

DR; (W) «~ (ad)

JME(0) CMHW

DR; (MAK} = (XY), (XY) « (XY) + 1,
(1/0Y = 1

JMP Read, *

RC; {M} « (DP), (I/0) ~ O

DR; {MAR) « (XY), (XY) ~ (XY) - 1,
(T/0) 1

JMP Read, *

RC; (W) « (DP), (1/0) ~ 0O

JUP(0) (MW

DR; (MAR) ~ (BC), (FC) « (FC} + 1,
(1/0} « 2

JMP Read, *

RC; (W) « (DP), (1/0) ~ 0O

DR; (M&R) « (PC), (FC) ~ (PC) + 1,

(1/0) =1
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18-28

13-23

18-28

10



STA

CIA

STAXER

JMP Read, *

RC; (M) ~ (DP), (1/0) « 0
DR; (MAR) ~ (M), (I/0) «~1
JMP Read, *

RC; (A) ~ (DP), (1/0) ~ 0
JMP(1) Fetch

DR; (MAR) «~ (EC), (BC) « (EC) + 1,
(1/0) « 1

JMP Read, *

RC; (W) ~ (DP), (1/0) « 0
DR; (MAR) «~ (BC), (PC) ~ (PC) + 1,
(1/0) -1

JMP Reat, *

RC; (M) « (DP), (1/0) «~ 0
DR; (MAR) = (WM)

RC; (D) «~ (&), (OFL) =1
JMP Write, *

JMP(1) Fetch.

RC; (A) « (R)

JMP(1) Fetch

RC; (A) « zero + zero
JMP(1) Fetch

DR; (MAR) « (EF)

RC; (D) = (&), (0R1) ~ 1
IMP Write, *

JMP(1) Fetch
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" LDAXEF

RILC

RRC

RAL

RALL

RARL

ADDr

SUBr

DR; (MAR) « (EF), (I/0) ~1

JMP Read, *

RC; (A) «~ (DP), (1/0) ~ O
JMP(1) Fetch

RC; (A) +« rotate right (&)
JMP{1) Fetch

RC; (A) «~ rotate left (A)
JMP(1) Fetch

JMP{0) €, RALL

RC; (A) «~ rotate left (&)
PULSE SET A

JMP(1) Fetch

RC; (A) « rotate left (A)
PUISE EReset Ao

JMP(1) Fetch

JMP(0) C, RARL

RC; (A) =~ rotate right (A)
PULSE SET A -

JMP(1) Fetch

RC; (A) «~ rotate right (A)
PULSE Reset A7

JMP(1) Fetch

RC; (A) = (&) + (ry)
JMP(1) Fetch

RC; (A) = (&) + (rp) + 1

JMP(L) Fetch
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ANAY

XRATr

ORAr

CMPr

ADD M

SUBM

ANA M

XRA M

ORA M

RC; (&) = (&) A (rp)

JMP(1) Fetch

RC; (&) = (4) ¥ (1)

JMP(1) Fetch

RC; (&) ~ (A) V (x,)

JMP(1) Fetch

RC; (W) = (&) + (x5) + 1

JMP(1) Fetch

DR; (MAR) «~ (HL), (I/0) ~1
JMP Read, *

RC; (A) = (&) + (DP), (I/0) ~ O
JMP{1) Fetch

DR; (MAR) — (HL), (I/0) =1
JMP Read, * '

RC; (A) ~ (&) + (D) + 1, (1fo) ~o0
JMP(1) Fetch

DR; (MAR) « (HL), (I/0) -1
JMP Read, *

RC; (A) = (A) A (DP), (I/0) ~ O
JMP(1) Fetch

DR; (MAR) « (HL), (I/0) ~1
JMP Read, *

RC; (A) ~ (A) + (DP), (1/0) ~ 0
JMP(1) Fetch

DR; (MAR) ~ (HL), (1/0) ~1

JMP Read, *
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RC; (A) « (A) v (DP), (If0) =0
JMP(1) Fetch
CMRM DR; (MAR) ~ (HL), (1/0) «~1 4
JMP Read, *
RC; (W) « (&) + (DF) + 1,
(1/0) - 0
JMP(1) Fetch
ADI, SBI, ANI, XRI, ORI and CPI have the same microcode as ADD M, SUB M,

ANA M, XRA M, ORA M, CMP M except that the first line of each should be

changed to:
DR; (MAR) ~ (BC), (EC) « (PC) + 1,
(1/0) -1
CALL DR; (MAR) ~ (SP) - 1, (SP) ~ (SP) - 1 1k

RC; (D) « (PCH), (OPL) «~ 1, no flags
JMP Write, *

DR; (MAR) « (SP)- 1, (SP) « (SP) ~ 1
RC; (D) « (PCL), (OFL) + 1, no flags
JMP Write, *-

DR; (MAR) « (EC), (PC) ~ (EC) + 1,
(1/0) « 1, no flags

JMP Read, I

RC; (W) ~ (DP), (I/0) ~ 0, no flags
DR; (MAR) «~ (PC), (I/0) ~1

JMP Read, ¥

RC; (M) « (DP), (I/0) « 0, no flags
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DR; (BC) ~ (WM)
JMP(1.) Fetch
RET DR/ (MAR) «~ (SP), (SP) ~ (SP) + 1, 7 |
(1/0) ~ 1
JMP Read, *
RC; (PCL) ~ (DP), (I/0) ~ O, no flags
DR; (MAR) ~ (SP), (SP) ~ (SP) + 1,
(I/0) - 1
JMP Read, ¥
RC; (PCH) ~ (DP), (I/0) ~ 0, no flags
JMP(1) Fetch
FUSH A DR; (MAR) « (SP) - 1, (SP) = (SP) - 1 4
RC; (D) ~ (A), (OPL) « 1, no flags
JMP Write, #*
JMP(1) Fetch
POP A DR; (MAR) - (SP), (8P) « (SP) + 1, L
(1/0) - 1
RC; (A) = (DP), (I/0) ~ O, no flags
JMP(1) Fetch
The following microcode segment is common to all conditional jump
routines.
JP1 DR; (PC) «~ (PC) + 1
DR; (PC) ~ (PC) + 1
JMP(1) Fetch

The unconditional JMP <B2><B > iz equivalent to the IXI PC <B.><B >

3 2773
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machine language instruction which has already been microprogrammed.

JC

JMP(0) ¢, JRL ' 4-8
DR; (MAR) ~ (PC), (WM) ~ (FC) + 1,

(1/0) -1

JMP Read, ¥

RC; (FCH) «~ (DP), (1/0) - 0, no flags

DR; (MAR) = (WM), (I/0) «~1

JMP Read, *

RC; {PCL) «~ (DP), (I/0) « 0, no flags

JMP(L) Fetch

The remainder of the conditional Jump routines have the same microcode

as in JC, except for the first line of code in each.

PUSHA4

POPdd

DR; (MAR) ~ (8P) - 1, (SP) ~ (SP) - 1 7
RD; (D) ~ (dle), (OPL) « 1, no flags
JMP Write, *

DR; (MAR) -~ (SP) - 1, (SP) ~ (SP) - 1

RC; (D) = (ddlL), (OPL) « 1, no flags

JMP Write, *

JMP(L) Fetch

DR; (MAR) «~ (SP), (SP) ~ (SP) + 1, 7
(1/0) -1

JMP Read, *

RC; (ddlL) ~ (DP), (I/0) ~ 0, no flags
DR; (MAR) -~ (SP), (SP) « (SP) + 1, (I/0) ~ 1

JMP Read, *



XTHL

SMB

RC; (dle) ~ (DP), (I/0) ~ O, no flags
IMP(1) Fetch

DR; (WM} ~ (HL)

DR; (MAR) ~ (SP), (SP) « (SP} + 1,
(1/0) « 1

JMP Read, *

RC; (L) ~ (DP), (I/0) «~ 0, no flags
RC; (D) - (M), (OPL) ~ 1, no flags
JMP Write, *

DR; (MAR) — (SP), (SP} ~ (SP) - 1,
(I/0) -1

JMP Read, ¥

RC; (H) - (DP), (I/0) ~ 0, no flags
RC; (D) « (W), (OPL) - 1, no flags
JMP Write, *

JMP(1) Fetch

DR; (MAR) - (HL), (I/0) -1

JMP Read, *

RC; (A) - (DP), (1/0) ~ 0, no flags
PULSE SET Ag

RC; (D) ~ (&), (OPL) ~ 1, no flags
JMP Write, *

JMP(L) Feteh

The BMB routine has the same microcode as

the SMB routine except that line RMB + 3
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RMEI

should be: PULSE Reset Aj
DR; (MAR) - (BC), (BC) = (PC} + 1, 13
(1/0) =1

JMP Read, *

RC; (W) «~ (DP), (I/0) ~ 0, no flags

DR; (MAR) = (2C), (PC) = (EC) + 1,

(1/0) ~ 1

JMP Read, *

RC; (M) « (DP), (I/0) ~ 0, no flags

DR; (MAR) ~ (WM}, (I/0) ~1

JMF Resd, *

RC; (A) « (DP), (1/0) « O, no flags

PULSE SET A

RC; (D) «~ (A), (OP1) ~ 1, no flags

JMP Write, *

JMP(1) Fetch

The RMBI routine has the same microcode 13.

as the SMBI routine except that line RMBI

+ 9 should beﬁ PULSE Reset AB

DR; (MAR) ~ (HL), (I/0) =1 6
JMP Read, *

RC; (A) «~ (DP), (I/0) «~ 0, no flags

JMP(1) AB’ TMB2

PULSE Reset C

JMP(1) Fetch

131



TMB2

TMBI

™BI2

SBA

REA

SIIM

PULSE Set C

JMP(1) Petch

DR; (MAR) ~ (BC), (EC) = (BC) + 1,
(I/o0) ~ 1

JMP Read, *

RC; (W) -~ (DP), (1/0) ~ 0, no flags
DR; (MAR) «~ (PC), (PC) ~ (PC) + 1,
(1/0) « 2

JMP Read, *

RC; (M) «~ (DP), {I/0) ~ O, no flags
DR; (MAR) « (WM), (I/0) ~1

JMP Read, *

RC; (A) ~ (DP), (I/0) ~ 0, no flags
JMP(1) Ay, TMBI2

PULSE Reset C

JMP{1) Fetch

PULSE Set C

JMP{1) Feteh

PULSE Set A

JMP(L1) Fetch

PUISE Resel A‘B

JMP{1) Fetch

DR; (MAR) « (HL)

PUISE OF2 ~ pulse (multiplexed to OCP3)

JMP(1) Fetch
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HLT

NOFP
EI

DI

STC

CFL

DR; (MAR) ~ (HL)

PULSE OF2 « pulse (multiplexed to OCPF2)
JMP(1) Fetch

IMP(O) Pri. Int., *
FULSE DI

PULSE EI

JMP(L) Fetch

IMP(1) Fetch

HJISE EI

JMP(1) Fetch

PULSE DI

JMP(1) Fetch

PULSE Set C

JMP(1) Fetch

RC; (W) « (A), no flags
RC; (A) ~ (PSW), no flags
PULSE Comp. Ao

RC; (PSW) «~ (A), no flags
RC; (A) - (W); no flags

JMP(1) Fetch
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APPENDIX F
INTEL 8080 PROCESS CONTROL ROUTINES

The following 8080 machine language routines are the approximate
equivalent of corresponding instructions found in the GT 1248 instruction
set.

Set Memory Bit (SMB) Instruction

The bit addressed by the contents of double register HL is set to

8 logic one.

Memory Location Mnemonic Action
SMB MOV A M (A) ~ word containing
the bit

XCHG (DE) =~ word address
MOV ALE
ANI<00000L111>>
MOV L,A (HL.) +~ bit position
XRA A |
MOV H,A
LXIB<Base> (BC) ~ Base
bAD B (HL) ~ vector address
PCHL Jump to vector

Base JMP ABITO

JMP ABITI



ABITO

ABITL

ABIT2

ABIT3

ABITH

ABITS

ABIT6

ABITY

BOB

JMP ABIT2

JMP ABIT3

JMP ABITY

JMP ABITS

JMP ABITG

JMP ABIT7
ORI<DO00000L>
JMP BOB
ORI<00000010>
JMEP BOB
ORT<D0000L00>
JMP BOB
ORI<00001000>
JMP BOB
ORT<00010000>
JMP BOB
ORI<00100000>
JMP BOB
ORI<Q1000000
JMP BOB
ORI<L000000>
XCHG

MOV M,A

RET

vectors

set desired bit

(HL) « word address

[(HL)] - (&)

Return to main program
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Set Memory Bit Tmmediate (SMBT) Instruction

The bit addresged by an immediate address is set to a logic one.

The following code could be written into the control program.

Memory Location Mnemonic Action

I¥I H <Adr.> (HL) is loaded with the
immediate address

CALL SMB Call the SMB Subroutine

Test Memory Bit (TMB) Instruction

The bit addressed by the contents of double register HL is tested,

It by = 0, then () ~ 1.
Memory Iocation Mnemonic Action
TMB MOV A,M (A} = word containing .
the bit
MOV A,L
ANT<D0000111>
MOV L,A (HL) +~ bit position
XRA A
MOV, H,A
IXT B <Basel> (BC) ~ Bagel
DAD B (HL) ~ vector address
PCHL Jump to vector
Basel JMP BBITO
JMP BBIT1
JMP BBIT2

JMP BBIT3
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JMP BBITH | vectors
JMP BBITS
JMP BBITG
JMP BBIT7
BBITO ANI<00000001>
RET
BBITL ANT<000000L0>

RET set (Z) and return

L

BBITY ANI<10000000>

RET

Test Memory Bit Tmmediate (TMBI) Instruction

The bit addressed by an immediate address is tested as in the

TMB inatruction.

Memory Location Mnemonic Action

IXI H <Adr.> (HL) is loaded with the
immediate address

CALL TMB Call the ™B Subroutine

Set A Register Bit {SBA) Instruction

The desired bit of the A register, specified by the contents of

double register HL, is set to logie one. All other bits are unchanged.
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Memory Location Mnemonic

SBA 1XT D <Base2>
DAD D
PCHL

Bage2 JMP BITO
JMP BITL
JMP BIT2
JMP BIT3
JMP BITL
JMP BITS
JMP BIT6

JMP BIT7

BITL ORI<00000001>

RET

®

BIT? ORI<10000000>

RET

(DE) ~ Bage2
(HL) ~ vector address

Jump to vector

vectors

Set Individual Interrupt Mask (SIIM) Imstruction

- get -degired bit and return

The address of a specified interrupt mask is sent out over the

address bus and the OCP3 control line is pulsed.

The 8080 pulses the

WR line during a write operation and this line is normally connected to

the OCFL control line. The SIIM instruction must temporarily connect
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WR to OCP3 and pulse this line while the address of the mask is valid.
This short section of code could probably best be written inline in the

main program.

Memory Iocation Mnemonic Action
OUT <0CP3> WR is connected to OCP3
STA, Address Mask is set

OUT <DCPL> WR is connected to OCPL
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APPENDIX G

ROBCT CCNTROL FROGRAMS

Main Control Routine

The followlng routine is divided into the steps presented in

Pigure 21.
GT 1248 - Intel 8080
Number Location Mnemonic Location Mnemonic
12 UPDATE CiA UFDATE XRA A
STA,FIAG STA,FLAG
13 IWXI, PSW LHLD, PSW
WX H
SHLD, PSW
1k CMHDX<end>> - MOV AL,H |
JZ, End Routine SUI<end B>
JWZ, Compute
MOV A,L
SUI<end I>
JZ, End Routine
15 DAD HL COMPUTE DAD H
DAD HL DAD H
DAD HL DAD H

DAD HL DAD H



START

CONVERT

IDDD EF,PEW
DAD EF

STOD HL,CPS

LDA ,FLAG START

JZ, UPDATE

IDDD HL,IOB

DADI,CFW

IDID EF

CONV (see CONVERT

microprogram
for the convert
instruction follow-~

ing this section)

1k

XCHG
LHLD , PEW
DAD D
SHID,CES
1DA,FTAG
ORA A

JZ, UFDATE
LHLD, I0B
XCHG

LHLD, CFW

"DAD D

MOV C,M
INK H
MOV A,M

MVI D,<10000000>

' RIC

RLC Written

JNC, %2 Inline Six

ADD D Times
MOV B,A

ANA D

ADD C

RLC Written

JNC, %2  Inline Six

ADD D Times



0D HL, CFW
DADI,CPS
LDID XY
MOVX HL,XY

DAD EF

TCSM

WWW

RLC
MOV C,A

MOV A,B
ANI<01000000>
JZ, WAW

MOV A, B
ANI<10111111>
CMA

MOV B,A

MOV 4,C

CMA

MOV C,A

INX B
LHLD,CPS

XCHG

* LHLD,CFW

DAD D
MOV E,M
IN H

MOV D,M

- ACHG

DAD B
MOV A,H
ANT<0L000000>
JZ, POSITIVE

MOV A,H

1h2
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CMA
MOV H,A
MOV A,L
CMA
MOV L,A
INK H
8 STDD HL, DAA POSITIVE SHLD,DAA
IXT HL, F) IXT H, P1
SMB CALL SMB
RMB CALL RMB
3 LDA ,CTW LDA,CFW
INR A INR A
IWR A JWR A
IWRI M, OF IXI H, OF
TWR M
10 CPI <15> " CPFI 15>
JNC *+2 JC %2
1 CIA XRA A
STA,CFW STA,CFW
STA,OF STA,OF
JMP,START " JMP,START
Microprogram for the CONV Instruction
Symbolic Location Microcode
CONV EMIT; (B) « 110

2
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RC; (A) ~ (E)

RC; (W) = (a)

PUISE; Reset A.?

JMP Sub., COWV1

JMP Sub., COWVL

JMP Sub., COWVL

JMP Sub., COWV1

JMP Sub., COWV1

JMP Sub., COWVL

IMP(0) A, *2

PULSE; Set C

RC; (E) « (A), no flags
EMIT; (B) ~ 111,
RC; (A) « (F), no flags
JMP(0) C, *+2

PULSE; Comp. AB

RC; (B) ~ (B) -1

JMP Sub., COWVL

JMP Sub., COWV1

JMP Sub., COWVL

JMP Sub., COWVL

JMP Sub,, COWVL

JMP Sub., COWVL

RC; (W) ~ (W)

JMP(0) 8, cowve
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DR; (EF) ~ (EF)

DR; (EF) ~ (EF) + 1

JMP(1), Petch
COWVL IMP(1) Ay, 3

RC; (B) -~ (B) - 1

JMP(0}, *+3

RC; (B) ~ (B) -1

PULSE; Comp. Ap

JMP Peturn

Starting Conditions for the 8080 Convert Routine

The conversion routine of step four is capable of converting a
14 bit signed Gray code to its equivalent two's complement representation
80 that the error quantity may be calculated., Starting conditions for
the routine are with the following data in registers A and C:

A C

8 Gl3 G12 Gll GiO G9 G8 G7 Q G6 G5 Gh G3 G2 Gi GO

and the routine ends with the two's complement anawer in registers B and,

C as follows:



10.

1l.

12.

1k6
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