
A COMPUTER ARCHITECTURE FOR

DISCRETE MANUFACTURING

A THESIS

Presented to

The Faculty of the Division of Graduate

Studies and Research

By

Robert Baugh Sledge, Jr.

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

Georgia Institute of Technology

August, 1971!-

A COMPUTER ARCHITECTURE FOR

DISCRETE MANUFACTURING

Approved:

-e. C-AJtfordy Chairman

E. B. WagstafJft V^3"

• " - - • " - • ' • /

<\T. H. Schlag

Date approved by Chaiiman: <Jy ? °/ /

ii

ACKNOWLEDGMENTS

I wish to take this opportunity to thank my advisor, Dr. Cecil

0. Alford, for his help in identifying the problem and for his aid and

advice during the research. Thanks are due also to Dr. E. B, Wagstaff

for his numerous critical suggestions which resulted in improving the

final copy.

I would also like to recognize the help of my lord Jesus Christ,

without whose help this thesis would not have been completed within the

allocated time constraints.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ii

LIST OF TABLES * v

LIST OF ILLUSTRATIONS vi

SUMMARY . viii

Chapter

I. INTRODUCTION AND PAST APPROACHES 1

Introduction

II. IDENTIFICATION OF SYSTEM REQUIREMENTS 17

Microprocessor System Requirements

III. PROPOSED SYSTEM ARCHITECTURE 31

Level (l) System Architecture
Level (l) Microprocessor Architecture

IV. COMPARISON AT© EVALUATION OF PERFORMANCE 72

Performance Evaluation
Conclusions

APPENDICES

A. INPUT MODULE CIRCUITRY 91

B. INTERRUPT MODULE 9I+

C. OUTPUT MODULE CIRCUITRY 97

D. MEMORY MODULE 99

E. BASIC INSTRUCTION SET FOR THE GT 12*4-8 105

F. INTEL 8080 PROCESS CONTROL ROUTINES 13^

G. ROBOT CONTROL PROGRAMS 1*4-0

i v

Page

BIBLIOGRAPHY lU6

V

LIST OF TABLES

Table Page

1. Computer Usage in Manufacturing Operations « . . . 8

2. Computer Functional Requirements 12

3- Characteristics of the Level (l) System 30

k. Comparison of Microprocessor Capabilities k7

5. Flag Flip Flop Functions 51

6. ALU Operation Set 53

7- Field Specifications for the Register Control Instruction . 60

8. Double Register Field Specifications 6l

9. Fetch Instruction Functions 62

10. Jump Instruction Functions 66

11. Pulse Instruction Functions 69

12. Characteristics of the GT 12^8 Instruction Set 73

13• Relative Performance for Bit Oriented Instructions 79

1^. Evaluation of Test Program Results 86

15. Programming Symbols 106

vi

LIST OF ILLUSTRATIONS

Figure Page

1. IBM Comats Computer System k

2. Diagram of Computer/Process Interfacing 6

3. Characteristics of Manufacturing Operations 7

k. Four-Level Hierarchical Control System 10

5- Centralized Computer Wiring Costs 1^

6. Interlevel Communication 27

7. Level (l) Computer System Architecture 32

8. Partitioning of CPU Address Space c . 3^

9. Block Diagram of Input System 37

10. Output System Block Diagram kO

11. Memory System Block Diagram ^4-3

12. Flowchart for Vertical Information Transfer k$

13. Microprocessor CRT Architecture k8

Ik. Two Phase Clock Used for System Timing 5k

15. Control Section Architecture 56

16. Format for the RC, DR and Fetch Microinstructions 59

17. Control Store Address Mapping 6k

18. Format for the Jump, Pulse and Emit Microinstructions . . . 65

19. Robot Control Configuration 8l

20. Memory and I/O Map for the Robot Control Problem 83

21. Robot Control Flowchart 8k

22. Input Module Circuit Diagram . 92

vii

Figure Page

23. Interrupt Module Circuitry 96

2k. Output Module Logic Circuitry 98

25. Memory Module Circuitry 100

26. Memory Read Timing Sequence 102:

27. Memory Write Timing Sequence 103

viii

SUMMARY

Over the last decade, industrial control systems utilizing digital

computers have typically implemented large centralized computer facilities.

Two major drawbacks to this approach have been noted. First, the relia

bility of the central computer facility must be maintained near 100 per

cent since a system failure at this level can cause a cessation of all

manufacturing operations. The second objection stems from the fact that

excessively long control loops are necessary when using the centralized

facility. Economic and noise shielding problems accompany the use of

these control lines.

A four-level distributed computer hierarchy has been proposed

for industrial control applications. Different segments of the overall

control problem are assigned to dedicated computers at each of the four

levels. The levels are: l) Material Flow Level, 2) Process Control

Level, 3) Production Control Level and k) Management Control Level.

At the Material and Process Control levels, the emphasis is on real

time direct control of machines and processes while the Production and

Management Control levels are concerned with matters such as scheduling

and forecasting.

It has been proposed that real time control of machines and pro

cesses at the Level (l) Material Flow Level may be efficiently imple

mented using microprocessor CPU chips. In this scheme, each machine or

process on the plant floor would have a dedicated real time computer

system effecting control over that particular process. Such a system

ix

promises to offer benefits over the centralized concept with regards to

both reliability and economic factors.

The object of this research was to identify the specific require

ments placed on a microprocessor based computer control system capable

of operating as a Level (l) processor. Using these requirements to

specify the system, an architecture for the overall Level (l) system

was developed. This architecture covered both a theoretical micropro

cessor architecture as well as the computer system hardware architecture.

It was concluded that the microprocessor CPU should have an

instruction set that directly supports the control of machines and pro

cesses . This means that the microprocessor should be able to manipulate

both single and double word data as well as single bit data. The micro

processor system must have an expandable multilevel interrupt structure

to receive interrupts from the Level (2) supervisory computer as well as

from the plant floor. A writeable control store control section was

shown to offer an increase in system throughput and flexibility.

In comparing the performance of the Intel 8080 microprocessor

CPU with that of the theoretical microprocessor developed in the paper,

it was found that performance was comparable in operations working with

eight bit (single word) data. The 8080 proved to be moderately deficient

in its ability to manipulate double word data due to its reduced double

word instruction set. In manipulating single bit data, the 8080 suffered

its worst performance degradation in comparison to the theoretical micro

processor with execution times on the order of six times as large.

It was concluded that the Intel 8080 is capable of operating as

X

a Level (l) microprocessor within applications compatible with its

execution speed. A modification of the instruction set to better mani

pulate double word data and the addition of a bit processing feature

would significantly increase the process control capabilities of the

Intel 8080.

CHAPTER I

INTRODUCTION AND PAST APPROACHES

Introduction

Definition of the Problem

Manufacturing control systems over the past ten years have tended

toward digital control systems utilizing one or two large central com

puter systems exercising control over all processes within an entire

plant. Typically the entire spectrum of applications programs ranging

from management to process control are run in a multiporgramming environ

ment within the computer system, necessitating a large central facility.

Major drawbacks resulting from this approach to manufacturing

control have been noted. The centralized facility concept places an

extreme emphasis on central system reliability in that a major system

failure results in the termination of all control functions5 resulting

in a manufacturing halt. It has been reported that system availability

(uptime divided by uptime plus downtime) in some cases has been less

than 99-5 percent [1]. In order to increase system availability, some

systems have utilized the principle of dynamic backup in which a second

backup central processor is incorporated into the computer system. In

the event of a failure in the main central processing unit (CPU), the

secondary unit is automatically switched into the system, yielding

availabilities as high as 99-95 percent. In addition to the reliability

problem, the centralized concept has problems associated with program

2

interaction in the multiprogramming environment and high cabling costs

involved in bringing large amounts of data from the plant floor to the

computer facility.

The problems associated with large centralized control facilities

have led to a breaking apart of the control function into smaller sub

sets that may be more efficiently handled by dedicated computers in a

hierarchical computer system.

Background Information

The evolution of computerized process control stemmed from two

directions, the automobile industry and the aerospace industry. With

the advent of numerically controlled machine tools in the early 1950rs,

the trend was set for direct digital control of machines in on-line

operation [2]. Computer control systems typically cover a broad range

of control functions in the total plant automation role, incorporating

management, production and equipment control functions. Management

information systems and production support systems are typically not

real time critical activities, although they may account for a substan

tial portion of the computer workload in the total system. Equipment

control functions are in most applications real time critical, demanding

relatively frequent interaction between the control system and the

controlled process. Machines and processes under the equipment control

function usually fall into one of three main task categories referred

to as Make, Move or Test [3].

Early attempts at decentralizing the computer control facility

often resulted in a nonintegrated system structure. Such a system is

characterized by computers, totally unrelated to each other, spread out

3

over the plant. Each computer provides equipment control over Make,

Move and Test operations occurring simultaneously in from one to a

number of separate processes or operations on the plant floor [k~].

In an effort to overcome the shortcomings of the nonintegrated

system, the trend has been toward a hierarchy of computers. Each com

puter in the hierarchy is associated with a particular level of the

control function. The IBM COMATS computer system [5] shown in Figure

1 is an example of one of the first large scale hierarchical manufactur

ing control systems. The hierarchical nature of this system stems from

the fact that the lk60 computers act as supervisor over the terminals

which in turn provide the direct interfacing and control at the plant

floor. Three types of terminals are used with this system. A universal

tester, a process control terminal built around the IBM 1^1 CPU, or a

data acquisition terminal which acts as an Input/Output (i/o) buffer

can be used to interface the computer to the plant. Up to 99 such

terminals can be multiplexed to either of the two IBM lk60 computers.

One 1^60 is normally used to handle the real time interrupts generated

by the terminals while the other is used for time shared processing and

dynamic backup capability.

COMATS was the predecessor to the IBM Manufacturing Process Con

trol System [6]. This architecture is similar to the COMATS architecture

but was designed to be more versatile. Two system /3&0 computers provide

data analysis and large data banks for the satellite computers. The

satellite computers interface to the process and test equipment through

sensor based Input/Output typically employing standard sensors such as

input and output contact interfaces, analog-to-digital (A/D) interfaces

1460
Computer
System

Test, Process Control or Data Acquisition Terminals

Figure 1. IBM COMATS Computer System

5

and digital-to-analog (D/A) interfaces [7] as shown in Figure 2. This

IBM system placed most of the data processing requirements at the higher

level /360 computers in an effort to minimize satellite computer require

ments. Satellite computers were typically IBM 1130, 1800 or System /360

series computers and each satellite computer typically controlled more

than one process. A special purpose operating system called PCOS (Pro

cess Control Operating System) was developed for the main /360 computers

to permit them to act in a supervisory and data processing mode for the

satellite computers [8]. A high data rate intelligent multiplexing

system known as the TCU (Transmission Control Unit) was developed to

handle data requests and multiplexing between the supervisory computers

and satellite computers [9]. This IBM process control system represented

a significant advance in integrated hierarchical control, but the total

plant automation function encompasses more than just equipment control.

The management information system function must be incorporated into the

computer hierarchy. Additional integrated computer control systems

similar to the two mentioned here are described in the literature [10],

[11], [12].

Hammond and Oh have characterized manufacturing operations as

being divided into four levels as shown in Figure 3* These levels are:

l) the Material Flow Level, 2) the Process Control Level, 3) the Pro

duction Control Level and k) the Management Control Level [2]. Computer

usage at the different levels is cited in Table 1.

The most critical response times occur at the Process Control

Level where real time interaction between computer and process are

crucial. At the Production and Management Control Levels the shift is

6

ANALOG-to-
DIGITAL

INTERFACE

s - s

DIGITAL-to-
ANALOG

INTERFACE

^w ^T ^V

c INPUT INTERFACE 3 c
£

OUTPUT INTERFACE 3
A

CO
CD

i i

CO
4J tc

h
e

s
w

i A k

CO

Si o •i-» *tf ctf CU *d CO
CO o CO £ CU 4-» •u CU •U
G 4J 4J c/5 •o cO fc T) CO
O •r-t C O Q CO co O Q
•u £ O CU O •T3 •u O
•U CO r j fc r H •H C/J

CO
r-t

3 3 t^ 2 o CO CO & S , 0 •u ts CO H 6 C ^ £ 4-J &
3 X ! •H CO co CO •H CU 0 H A CO 3 CO B r-» CU C CJ 1 - 1 4J CO bC c: O

3 v-» CU M •H CU o o l - < •H •H CU
p-l ^ Pi PU PQ Q C/J a < t J PQ O

v i r
m
^ V i r

PRODUCTION EQUIPMENT

Figure 2. Diagram of Computer/Process Interfacing

Subassembly (1)
Prod. (11

Rejected Subassembly

Orders
For
Basic
Mater
ials

Basic
Stock

~ •'[Basic)
Materi
als

LLf
Inventory
Control

Mfg.

Operation

Sub-
Assembly

Accepted
Sub-

Assembly

Stock
Sub-
Assembly

Assembly
••

(i)

Subassembly (N)

Assembly

Control

T

Prod.(j)

H

DATA ACQUISITION

Reliabil
ity

Cost
Control

Scheduling

MANAGEMENT DECISIONS

Prod. (j)j Stock
Prod.

i-,

Engi
neering
Spec

(J)

Prod. (J) Ship
ments

Prod. (M)

* T
Invoicing

(1)
Material
Flow
Level

(2)
Process
Control
Level

(3)
Production
Control
Level

(4)
Hanageaent
Control
L«v«l

i

Figure 3. Characterization of Manufacturing Operations

Table 1. Computer Usage In Manufacturing Operations

ON-LINE OFF-LINE

Process
Control

A.l Data Acquisition

A.2 Test Control

A.3 Manufacturing Operation
Control

A.k Assembly Operation

A.5 Manufacturing Support Operation
(e.g., N/C tape production, IC
mask generation, etc.)

Produc
tion
Control

B.l Accounting

B.2 Daily Production
Scheduling

B.3 Inventory of Products
and. Parts

B.l* Quality Control

B.5 Cost Control

B.6 Inventory Control

B.7 Quality and Reliability
Parameters

B.8 Computation of Production
Parameters from Engineering
Data

C.l Generation of Management
Manage- Information (e„g,, Profit,
ment Resource Utilization, Pay-
Control roll, Personnel Data)

C.2 Simulation Studies for
Forecasting Economic
Environment, Product Demand,
Rates of Return, etc.

C„3 Maintenance of Management
and Engineering Information
Files

9

away from real time response and toward, more conventional batch type

processing. At these two upper levels information is the basic flow

quantity.

What is needed is a hierarchical computer system capable of

exercising the proper control at all four levels of manufacturing

operations. A computer control system architecture structured as in

Figure k has been proposed to meet this need [l], [13]. At the lowest

level of the hierarchy, Level (l), the emphasis is on real time control

of a single machine or process. The computer at this level contains

the program and data necessary for such control. Since it is desirable

to minimize the storage requirements of the Level (l) system, the Pro

cess Control Computer System, Level (2), will contain in its mass memory

files a copy of all applications programs used at Level (l). Level (2)

memory may also contain those parameters that influence initial machine

setup, assembly operations and required product output. Since there is

no direct horizontal communication between Level (l) computers, the

Level (2) Process Control Computer acts as a transmission link as well

as a supervisor. The real time requirements at Level (2) are much less

critical than those at Level (l) since no direct control of a given

machine takes place at this level. Interlevel communication may be

initiated by either Level (l) or Level (2) via interrupts to the called

processor. In this hierarchical architecture, Level (2) will be used

as a coordinating and supervisory control for all the machines, pro

cesses and operations at Level (l) [13].

The task of setting up primary production schedules is handled

by the Production Control Computer System at Level (3). This function

10

Level(4)
MANAGEMENT

INFORMATION LEVEL
< 3 — ^ Management

Data Presentation

Level (3)
PRODUCTION *

CONTROL LEVEL

Supervisor* s
Consoles

Level(2)
PROCESS

CONTROL LEVEL

Level(1)

System

Level(1)

System
OOO

Level(1)

System

Specialized

Local

Control

Level(1)

Q PROCESS J (̂ PROCESS J Q_ PROCESS J

Figure 4. Four-Level Hierarchical Control System

11

requires input from a variety of sources associated with scheduling as

detailed in Figure 3. The computer system at this level is a general

purpose data processor with large memory, mass storage, high speed.

input/output and the capability to support multiple terminals for message

requests. The system should support a number of high level languages,

offer a high speed interrupt capability and feature a multiprogramming

operating system [lU]. Included at this level should be the necessary

software to support program development in a suitable process control

language for Level (l) process control programs.

The Management Control Computer System at Level (U) has the large

task of generating the decisions for future plant directions and plans.

Computer architecture at this level must be data base oriented and

capable of the time shared support of a large number of terminals for

managers. Functional requirements [13] of the various computer systems

may be found in Table 2.

A four level hierarchy of control represents a shift away from

the centralized control concepts of the last decade toward the distri

buted computer systems [1*4-] mentioned in the literature today. This

distributed system shifts the bulk of the real time process control

away from a relatively large computer controlling many processes to

many dedicated computers at Level (l), each controlling a single process

or machine. Three advantages of using a distributed hierarchical archi

tecture as opposed to a centralized architecture immediately suggest

themselves.

Modularity. The modular system structure at Level (l) will tend

to increase system availability. In a centralized system, a processor

Table 2. Computer Functional Requirements

INFORMATION SYSTEMS FUNCTIONS EQUIPMENT CONTROL SYSTEM FUNCTIONS

Level k Management Information System
Planning Tools for Management Decisions

General Support Functions
Payments
Cost Reporting
Cost Estimating
Pricing
Tax Reporting
Personnel

Simulation Models

Level 3 Production Support Functions

Product Data for each item
Specifications
Test & Reliability
Scheduling Information
Resources Required
Inventory
Product Changes
Unit Cost
Sales History
Critical Resources

Production Control
Inventory Control
Optimal Resource Allocation

Level 2 Data Acquisition and Control

13

failure can lead to many machines and processes coming to a halt for

lack of control. A system failure in a Level (l) processor would only

have the immediate effect of stopping one machine or process, although

other processes could presumably be affected. In this case the Level

(2) Supervisory Computer would rearrange the workload among the remain

ing machines by altering the programs in their controlling processors.

Partial System Installation. The total control system could be

built up in parts. A starting system could consist of only the first

two levels of the control hierarchy. As plant equipment requirements

expanded, additional Level (l) systems could easily be added without

having to expand Level (2) hardware requirements. The ability of one

Process Control Computer to supervise many subordinate processors is

due to the fact that on a time scale, communication between any Level

(l) processor and the Level (2) Supervisor is envisioned as being

relatively infrequent and short. Each Level (l) processor is a complete

computer system capable of independent operation to the extent that the

controlled process will allow. This suggests a fallback capability to

Level (l) operation exclusively in the event of a major Level (2) system

failure.

Wiring Economics. A centralized control facility requires that

large amounts of information must be brought from the plant floor to

the control computer. Figure 5 shows an analysis of the cost of the

cabling necessary to run control loops from the plant floor to a centra

lized facility [1], From this graph it is apparent that the cost of

installing this wiring network is not insignificant, especially under

the consideration that a single process on the plant floor may require

COSTS INCLUDE:

* INTERFACE

* CABLING

* TERMINATION

128 160 192

NUMBER OF CONTROL LOOPS

Figure 5. Centralized Computer Wiring Costs
•t>»

15

tens of control loops. The distributed hierarchical control architecture

would eliminate the majority of this cable network. All control loops

for a process would terminate at the Level (l) processor controlling

that particular process. One data link from each Level (l) processor

to Level (2) Supervisor is all that is required, thus eliminating the

need for many long control loops. Other problems associated with noise

shielding and data multiplexing are also eliminated using on-site com

puters .

Purpose of the Research

In proposing a four level control hierarchy, both Alford and Keyes

have suggested that the Level (l) computer system may be efficiently im

plemented using microprocessors as the central processing unit. This

research will seek to determine the requirements placed on a Level (l)

microprocessor system under the constraints of the distributed hierarch

ical control system. Various methods of satisfying these requirements

will be examined. A theoretical microprocessor system architecture will

be investigated that will efficiently satisfy Level (l) control require

ments . Structure for the memory system and the input/output system will

be examined as well as the internal architecture of a Read Only Control

Store (microprogrammable) microprocessor.

In addition, the performance of the Level (l) microprocessor con

trol system will be evaluated using two different CPU's. The performance

using the theoretical microprogrammable CPU will be compared to that

using the Intel 8080 microprocessor CPU chip. The test control problem

will be oriented toward control of a manufacturing robot. Relative

advantages and. disadvantages of each system will be discussed in light

16

of the f indings.

17

CHAPTER II

IDENTIFICATION OF SYSTEM REQUIREMENTS

Microprocessor System Requirements

In this section, the specific requirements imposed on the Level

(l) microprocessor system will be identified under the constraints of

the four level hierarchical control system. As these requirements are

identified and defined, they will specify the system structure required

for Level (l) control. In the past, commercial control systems have

often combined Level (l) and Level (2) into a single computer system

used to control many separate processes. A number of such minicomputer

systems were originally designed as data processing machines, resulting

in a bulky software package to allow them to function as a real time

control processing system.

In an effort to identify purely Level (l) control requirements,

the structure of a purely process control minicomputer system has been

examined with regard to its Level (l) functions. The Texas Instruments

960 is a minicomputer control system designed exclusively for process

control utilizing an i/O system, operating system and instruction set

tailored to the unique control environment [15], [16], [17]- Those

features of the TI 960 that are directly applicable to a Level (l) con

trol system, as well as others unique to the hierarchical structure are

reflected in the following Level (l) system requirements.

18

Instruction Set

The Level (l) microprocessor CPU should have an instruction set

designed especially for the control of machines and processes [l6].

Currently available microprocessors have a machine language instruction

set, that is, the set of elementary operations specified by software

and executed by hardware, designed for general purpose data manipulation.

Such an instruction set is suitable for many applications, but exhibits

coding inefficiencies when used in implementing process control instruc

tions. For instance, a common process control instruction involves

setting an output control line to a high or low state based on the- test

of a specified, input line. Normally, this entire test and set sequence

would be specified by a single command in an arbitrary high level pro

cess control language such as PROSPRO, which is used on the IBM l800

system [3]- The actual sequence of machine instructions (object code)

necessary to perform this test and set command would then be generated

by the process control language compiler. But whether this object code

is generated by hand or by a compiler, a relatively large number of

machine language instructions will be necessary in order to implement

the test and set command. Two approaches to this problem that have been

used extensively are inline programming and subroutine programming.

Inline Programming. Each time a high level control instruction

must be executed, the machine language instructions necessary for its

execution are written sequentially into memory. This approach has the

advantage of simplicity but suffers in reduced speed due to the multiple

memory accesses needed to fetch the object code. It is felt that inline

coding would also be prohibitive from a memory space standpoint due to

19

economic considerations and limited memory capabilities of micropro

cessor systems.

Subroutine Programming. In the utilization of this method the

section of object code that executes each process control command is

written as a subroutine. Thus, instead of writing object code inline,

a subroutine call is used to reach a desired section of machine language

instructions. Memory must be either permanently allocated to contain the

entire set of subroutines corresponding to all process control commands

or only those subroutines actually used in a particular program must be

passed to the Level (l) memory along with the control program. Subrou

tine programming has the advantage of requiring less memory than inline

programming since each segment of object code is written only once, but

a loss of speed due to subroutine linkages is encountered.

These considerations lead to requiring an instruction set designed

specifically for process control. In the example given above, there

would be a "test and set" machine language instruction included in the

CPU's repertoire of instructions. A not necessarily complete listing

of the types of instructions to be included in the instruction set is

given in Appendix E.

A substantial savings in speed is realized by storing in the con

trol section of the CPU those sequences of operations that implement a

process control command rather than storing those sequences as object

code in the memory of the Level (l) system. Substantial memory savings

are also realized by reducing inline programs or process control sub

routines into instructions included in the CPU's instruction set.

20

Bit and Byte Oriented System

Industrial sensors are many times bit oriented, i.e., the valve

is either open or closed, the switch on or off. Analog-to-digital and

digital-to-analog converters are primarily byte oriented devices, fre

quently requiring additional bytes of information to be used for multi

plexing purposes. The overall architecture of the Level (l) computer

system should be designed to facilitate both bit and byte I/O operations

efficiently.

Bit Manipulation at CPU Level

Closely associated with the notion of a bit and byte oriented

system is the ability to easily test and set or reset individual bits

within a byte at the CRT register level. This ability to easily mani

pulate individual bits within a register is a feature not found in the

present generation of microprocessors. With this feature status words

could easily be set up in a prescribed location in memory. This would

allow the supervisory computer at Level (2) to check on the status of

the Level (l) processor and associated machine or process by performing

a direct memory access (DMA) on the status words. This concept is parti

cularly important in assembly line control where the status of adjacent

machines on the line must be known for proper overall control [l6]. Also,

since many of the instructions of a process control computer are bit

oriented, this feature will allow for an easier implementation of these

instructions by the control section of the CPU.

Flexible Input/Output System

As previously stated, the i/o system of a Level (l) processor

should possess an architecture that facilitates both bit and byte

21

operations. The total integration of a flexible i/O system must span

i/O hardware design, CPU hardware considerations and firmware/software.

Hardware design includes all hardware considerations of the i/O

system that are external to the CPU. The hardware implementing the

input function must be capable of accepting addressable inputs from the

plant floor. As information about specific inputs is needed by the CPU,

this information must be transferred, under CPU control. The input

system should have the capability to gather information from a single

line or a group of lines, i.e., both bit and byte input capability.

Output system considerations are likewise similar. The CPU

should be able to set the state of a single output line or a group of

lines simultaneously. The hardware implementing this function must con

tain memory to hold the state of the output line and each output line

must be addressable by the CPU.

i/o architecture should be modular in nature, with the ability

to arbitrarily change the number of input and output lines. It should

be possible to build the I/O system up modular ly, adding additional input

or output modules as needs dictate. The ability to develop or use spe-=

cial purpose modules such as D/A or A/D converter modules and interrupt

modules is also necessary. These requirements strongly suggest a bus

oriented I/O architecture.

Microprogrammable Control Section

The requirement that the Level (l) processor have an instruction

set specifically designed for process control points to the need for a

microprogrammable control section. The sequence of steps necessary to

carry out a process control command, such as "test and set," could then

22

be stored in the control memory as a microprogram and executed whenever

the "test and set" instruction was fetched from memory. This would give

the system designer the flexibility to create special purpose process

control instructions designed, to fit the particular plant environment.

The feasibility of building a microprocessor utilizing a microprogrannnable

control section has already been demonstrated by National Semiconductor

in their IMP series microprocessors [18],

It is the control section that sends and receives the control

signals that synchronize the memory and i/O modules with the timing of

the CPU. Thus, the control section should have input and output control

lines under microprogram control. These lines would provide flexibility

in interfacing the CPU with other components of the computer system.

The control section is responsible for handling primary interrupt

signals. A primary interrupt indicates to the CPU that an interrupt has

been received, but does not identify the interrupting device. After

receipt of a primary interrupt, the computer must save the processor

state, identify the device causing the interrupt and service the inter

rupt. Interrupt routines can be handled either by a machine language

subroutine (software) or a microprogram routine (firmware). An inter

rupt routine stored in microprogram memory would provide for faster

interrupt servicing than that of a machine language routine, but would

be difficult to modify once stored. For this reason, it is felt that

the processor state should be saved under microprogram control, and sub

sequent device identification and servicing be done by a machine lan

guage subroutine contained in the operating system. Restoring processor

state after interrupt servicing could be done under microprogram control

23

if desired.

While there are certainly benefits to be gained from implementing

a microprogrammable control section, these benefits do not come without

their corresponding problems. Notably, two major problems present them

selves: pin count and address translation.

If the control ROM is implemented outside the CPU chip, as it

must be for a truly microprogrammable control section, then provision

must be made for both address and data lines to communicate with the

ROM. Consider an 8K control ROM composed of 21 bit microcode words.

Without any multiplexing of address and data, 3^ extra pins must be

added to the microprocessor package in order to communicate with the

ROM. If address and data were multiplexed over a single bus, then only

21 extra pins would be required. Even if the control section were imple

mented. on a separate chip, the pin count per package would not be changed

significantly and the total system pin count would almost double.

The problem of generating the starting address of a microprogram

routine from its corresponding op code becomes especially difficult when

the set of microprogram routines is subject to user change. Modifying

the address of a low ROM routine would tend to change the address of all

subsequent routines in higher ROM. Assigning each routine a fixed length

block of ROM would tend to eliminate this problem but ROM fragmentation

would result. Routines requiring more than one block would eliminate an

op code for each additional block used. In an effort to eliminate unused

ROM memory, an address translation mechanism could be used to translate

the op code to the segment address of the corresponding microprogram

routine. But this approach brings us back to the problem of modifying

2k

routines. One solution to this problem is to permanently assign a basic

instruction set in low ROM so that corresponding op codes would trans

late to routine segment addresses. A block or page could then be

assigned to remaining unused high address op codes. These high op codes

could subsequently be user microprogrammed with special purpose micro

program routines.

Interrupt Structure

The interrupt structure of the Level (l) computer system should

be modularly expandable and capable of priority interrupt servicing. A

modularly expandable structure is necessary because of the multiplicity

of different types of industrial machines and processes that will fall

under Level (l) control. One machine may be relatively simple, with few

possible interrupt conditions and therefore requiring few interrupt lines.

The computer system controlling this machine would need only enough

interrupt lines to service its machine plus provision for standard

interrupts common to all Level (l) systems. In like manner, some Level

(l) systems may control relatively complex processes exhibiting a higher

number of possible interrupt conditions. With interrupt circuitry

packaged modularly, the system needs may be met by using only enough

modules to satisfy the particular requirement. The priority nature of

the interrupt system is necessary because of the relative importance of

the different events that cause interrupts. An important event should

be serviced before a less important event, thus the need, for a priority

interrupt structure.

It should be possible to store interrupts until they are. serviced

so that an interrupting device need only signal its interrupt once. Each

25

interrupt line should have an associated mask to disable that line.

Interrupts received during the execution of an instruction should not be

acknowledged until that instruction has completed its execution. Upon

receipt of multiple interrupts, it should be possible to nest interrupt

service routines if desired so that the highest priority interrupt is

always being serviced.

Vertical Communication

An essential requirement placed upon a Level (l) computer system

is that it be able to efficiently communicate with the Level (2) Super

visory computer. Why is this necessary? As stated previously, the

memory requirements at Level (l) should be minimized as much as possible

since a large number of Level (l) computer systems, i.e., one for each

machine or process, are necessary. For instance, a particular process

may operate under varying conditions over a given time period. Under

each set of conditions, a different control program may be necessary

for proper operation. If the complete set of control programs for this

process were stored at Level (l), a great deal of memory would be

necessary to store these temporarily unused programs. On the other

hand, with temporarily unused programs stored in mass storage at Level

(2), memory requirements at Level (l) are reduced.

Interlevel communication will be necessary to pass other types

of data between Level (l) and Level (2). Transferred information may

relate to initial machine setup, assembly operations, machine parameters

or any other information deemed necessary. Basically, there are two

modes of communication possible between the Level (2) and Level (l)

systems, active and passive.

26

Passive Communication. The manner in -which data transfers are

initiated determines whether a system is operating in the active or

passive mode. The situation is depicted in Figure 6. In a passive

communication system, all data transfers are initiated by the Level (2)

computer. This means that the Level (l) computer must keep current

information needed by the Level (2) computer present in its memory at

all times since a direct memory access may be initiated by the super

visory computer at any time. This method somewhat simplifies the oper

ating system required at Level (l) but has the disadvantage of limiting

overall control flexibility.

Active Communication. A system structure in which data transfers

may be initiated either by Level (l) or Level (2) is defined as an active

mode system. Interrupts are generated to signal the called processor

that information is ready to be recieved or ready to be transmitted.

Such an approach offers the systems designer a much greater flexibility

in his design and reduces the need for a careful timing sequence for

data transfer between levels. For this reason, the Level (l) micro

processor system should be capable of active mode communication.

Additional Requirements. During the time that a data transfer is

taking place between Level (l) and Level (2), the Level (l) CPU should

not be diverted from normal processing tasks. This restriction is

necessary because of the critical real time nature of process control.

If the CPU were involved in the actual data transfer, then its attention

would have to be diverted from its primary task of process control. As

shown in Figure 6, direct memory access is one possible solution to this

27

TO LEVEL(3)

PROCESS CONTROL COMPUTER

(Supervisor)

Level(2)

INTERFACE

OOO

To Other Level(1) Systems

Figure 6. Interlevel Communication

28

problem, but provision must be made so that Level (l) memory can be

accessed both by the Level (l) CPU and the Level (2) computer system at

the same time. Otherwise, the Level (l) CPU will end up waiting for its

own memory while a data transfer is taking place.

Independant Operation

In the event of a supervisory computer failure at Level (2), the

interprocessor communication link for Level (l) computers would be lost

along with the overall control and supervision functions performed by

the Level (2) computer. Obviously, every possible effort should be

taken at Level (2) to prevent a major system failure. If such a failure

were to occur though, it would be desirable to continue plant operation

to the fullest possible extent allowed by the situation. Some plant

situations exhibit a substantial interdependence among individual pro

cesses, as in an assembly line. Unless some provision were made for

limited direct communication between Level (l) computers in this partic

ular case, a Level (2) failure would probably mean a cessation of con

trol activities. Other process control situations are relatively inde

pendent of any other process and would be largely unaffected by a Level

(2) failure.

In any case, provision should be made to load control programs

into Level (l) systems from a secondary source. It this source is linked

into the overall architecture at the supervisory computer level, then

Level (l) architecture will be unaffected. Nevertheless, the Level (l)

architecture should support a direct link from a remote source such as

paper tape in case this approach were taken.

29

Actually, the hardware necessary to implement this requirement

has already been specified in the input, output and interrupt systems.

The only additions necessary are software routines for input device

loading and these may be kept permanently in the operating system. Any

type of input device could easily be interfaced to the Level (l) system

through the i/O system.

Environmental Considerations

The Level (l) processor system should be able to operate in a

hostile plant environment. Since this requirement is not directly

related to the Level (l) architecture problem, only a cursory view of

the factors involved in this problem will be examined. Factors of a

plant environment usually fall into four categories: atmospheric con

tamination, thermal factors, mechanical factors and electromagnetic

factors. Atmospheric contaminants are usually eliminated with proper

system enclosures, but this can intensify the thermal problems. Mechan

ical factors are usually present in the form of vibration that can

degrade circuit connections. Some applications may require a high

acceleration resistance. Electromagnetic shielding is essential when

operating in a plant environment due to the numerous sources of this

interference. Provision may be a backup power supply circuit in

each Level (1) computer system. Without this, a short power disturbance

could destroy the contents of all Level (l) semiconductor memories.

The essential characteristics of a Level (l) system are given in

Table 3-

30

Table 3» Characteristic

Function

Instruction Set

Data Types

I/O System

Interrupts

Interlevel
Communic at ion

of the Level (l) System

Requirements

Oriented toward the process control
situation. Must include instructions
capable of operating on individual
bits and bytes in the range 12-16
bits.

Bit, Byte, Word, Fixed Point Binary

Capable of sending and receiving all
data types to and from the plant
floor.

Priority system capable of storing
interrupts and nesting to service
the highest interrupt.

Capability to communicate with the
Level (2) supervisory computer.
During data transfer the Level (l)
CPU should not be inhibited.

31

CHAPTER III

PROPOSED SYSTEM ARCHITECTURE

Level (l) System Architecture

In Chapter II, the specific requirements imposed on a Level (l)

microprocessor control system were examined. In order to meet these

requirements, what other system components will be necessary in addition

to a microporcessor CPU chip? Basically, in addition to the CPU, there

are three main system areas that must be covered: the memory system,

the output system and the input system which contains the interrupt

lines as well as input lines. The overall system architecture proposed

for the Level (l) control system is shown in Figure 7*

System Structure

The major building block of this architecture is the micropro-

grammable microprocessor CPU and its control section. Contained within

the CPU are the arithmetic logic unit, the registers and the internal

busses common to all computer CPU's. The control section contains the

system timing circuits, the control store memory to hold the micropro

grams and assorted registers, busses and decoders to carry out the CPU

control function [19]. The i/O bus handles all data transfers between

the CPU and input, output or memory systems. All three systems are

accessed by the CPU as if they were a single large memory system composed

of a mix of random access read/write and read only memory elements.

Essentially this means that memory space, input system space and output

32

MICROPROCESSOR CPU

DATA ADDRESS
BUS

¥ MICROPROGRAMMABLE

CONTROL SECTION

o
I
N

o
o

P
U
T

S

,1— —»
i
i

-LJ

Y
S 5 A/D

—»
i
i

-LJ

Y
S

D/A

-̂ ^

I/O
BUS

MEMORY

MODULE

MEMORY

MODULE

+~* MPX

I

MEMORY

MODULE

V
TO LEVEL(2) COMPUTER

Figure 7. Level (1) Computer System Architecture

33

system space must all be disjoint subsets of the CPU address space.

That is not to say that the CPU cannot, for example, perform a read

operation on the output system. As it turns out just such an operation

will have to be done. The essential point to be made here is that any

word in any of the three systems must not have the same address as any

other word in any other system.

Figure 8 shows one possible partitioning of the CPU address space.

Essentially, the address space is subdivided into equal length pages of

L = 2^ words each, p an integer. Assuming that the address bus is

capable of handling an n bit address, this results in a total of N = 2 p

pages for the address space.

It is expected that the majority of the CPU address space will be

allocated to the memory system. In order to achieve the modular structure

discussed in Chapter II, the memory system could be divided into modular

memory modules of L words each. Each memory module used in a Level (l)

system would occupy one page of memory space * The modular nature of this

memory system allows memory capacity to be easily changed in order to

meet changing control requirements. Serviceability is enhanced as a

result of direct replacement of faulty modules. Each memory module could

be composed of either random access read/write semiconductor (BAM), core

or read only (ROM) memory elements.

Figure 8 shows that the last page of the address space contains

the addresses for both the input and output systems. These two systems

utilize a different addressing scheme from the memory system in that

absolute addresses are bit addresses, although to the CPU these addresses

look like word addresses. For instance, if the CPU were to load a

34

Absolute
Address

0

PAGE 1

PAGE 2

PAGE N-l

PAGE N

L Words

* w bits *

INPUT SYSTEM

OUTPUT SYSTEM

2n-l

Insertable pages

(modules) of RAM

or ROM Semiconductor

Memory

Figure 8. Partitioning of CPU Address Space

35

register with the contents of an Input system address, the register would

be loaded with a w bit word from the input system in which the bit that

was originally addressed is located in a predetermined position within

the word. The mechanics of the situation will be discussed in the next

section. A bit addressed input and output system is necessary to meet

the requirements set for these systems in Chapter II. It must be possible

to deal with these systems on either a bit or byte basis.

In light of the preceeding discussion, the following relation

must hold.

2 n :> 2 X + 2 y + 2 Z x, y, z integers (l)

where

Input Address space, 1 = 2 (2)

Output Address space, 0 = 2 y (3)

Memory Address space, M = 2 (k)

This means that the input system will be able to handle a maximum of I

input lines and the output system a maximum of 0 output lines. The

memory system will be able to accomodate a total of M words of w bits

each.

The choice of page size L is governed by two basic factors. On

one hand, the value of L should not be so small as to force the number

of pages N to an excessively large number. Restraints on the physical

container size of the Level (l) memory system as well as economic factors

regarding the number of memory modules in the system dictate that N be

36

less than some least upper bound. On the other hand, increasing values

of L tend to lead toward a large unused memory fragment within the last

memory module as well as unused address space within the page assigned

to the input and output systems. The value of L should be an integer

power of two to aid in address decoding.

Input System

Basically the input system is composed of an input bank to which

the various input lines from the plant floor or other sources are con

nected, as shown in Figure 9* Logic level inputs are received at the

input ports on the bank. Each port can accept w input signals.

Each input line of each port is addressable by the CPU address

register via the address bus. The lower order q bits of the address

specify the particular input line within the port and the remaining

higher order bits select the correct port, with q given in equation five,

q = flog2(w)] (5)

where [x] denotes the least integer greater than x* Both bit and byte

input addressing is afforded using this scheme. During an input system

read operation all w bits of the addressed input port are transferred

to the CPU. Further, if the condition of a single input line is needed,

the bit corresponding to that line may be tested by the CPU using a soft

ware or firmware routine. The particular bit within the w bit word is

addressed by the low order q bits of the address register. A maximum of

I = 2 ^ ~q-' ports may be accomodated by the input system.
Jr

Physically, the input system could be constructed using printed

circuit cards which plug into the i/O bus. Each card could contain

37

w
input
l ines

•
•

-1—•

r~
INPUT

MODULE

-Q>

INPUT

MODULE

I/O
BUS

<
<

C/3

w
Pi
Q

p
K

&
(U

+
IX

o

CN

U
O

Hh
m
Pu
c_>
o

w
interrupt.
lines

*
INTERRUPT

MODULE

Hh*

MODULE +
>

•^S

I/O
BUS

Figure 9. Block Diagram of Input System

38

several input ports if necessary due to space limitations. Appendix

A contains a more detailed discussion of one possible structure of the

input port module.

Special purpose input modules may be incorporated into this input

system. Modules containing A/D converters and interrupt circuitry are

two that immediately suggest themselves.

Interrupt Modules. The need for an expandable priority interrupt

structure has already been established. This requirement may be met by

using modified input modules to receive incoming interrupt signals. The

interrupt module must be capable of accepting either pulse or level

interrupt signals. Each interrupt module is plugged into the I/O bus

like a standard input module as shown in Figure 9* Internal mask cir

cuitry is contained in each module and mask buffers are set on either

a bit or byte basis. Each module contains R interrupt inputs up to a

maximum of W inputs, each distinctly addressable.

Four basic operations control the interrupt module. First, a

read interrupt buffer (RIB) operation transfers the state of the inter

rupt flip flops within the interrupt module to the CPU via the data bus.

The specified interrupt module is addressed by the high order (n-q) bits

of the address bus. In the RIB operation, the low order q bits of the

address are meaningless to the interrupt module but can be used by the

CPU in identifying the interrupting device. Second, a set mask (SMSK)

operation sets the state of the mask flip flops to the state contained

on the data bus. Again, only the high order (n-q) bits of the address

bus are used to decode the correct module. The third and forth operations

are set individual interrupt mask (SIIM) and reset individual interrupt

39

mask (RIIM). In each of these operations an individual flip flop and

mask associated with an interrupt input are addressed by the address

bus. The SUM operation enables the specified interrupt line while the

RIIM operation disables the specified individual interrupt line and

resets its interrupt flip flop. The application of an interrupt signal

to any enabled interrupt line both sets that interrupt flip flop and

signals the CPU via the primary interrupt line that an interrupt has

occurred. Logic requirements and timing considerations for the interrupt

module are discussed in Appendix B.

An interrupt structure like the one described above is needed to

meet the requirements placed on interrupt handling set forth in Chapter

II. Enabling and disabling of interrupt lines is accomplished by the

SIIM and RIIM operations* Each operation could correspond to a machine

language instruction. Interrupts are stored (until they are serviced)

within the interrupt flip flops contained in each interrupt module. The

state of the interrupt flip flops of any module can be read by the CPU

via the RIB operation which is simply a memory read operation with the

address of an interrupt module. The SMSK operation corresponds to a

memory write operation in which the mask flip flops of an addressed

interrupt module may be written into as a group.

Output System

The output system provides the link for data output from the CPU

to the external world, that is, the plant. A diagram of the overall

output system is given in Figure 10. System structure is similar to

that of the input system. Output modules containing w output lines

per module are plugged into the i/O bus. Individual modules are addressed

40

<-

OUTPUT

MODULE

w
output
lines

OUTPUT

MODULE

I/O
BUS

>

etf

+
T-t
P M

o

+
v—'
CM
P^
O

o

+
^~s
CO
P M

c_>
c

»
.4
^

OUTPUT

MODULE
iff

OUTPUT

MODULE ^

j i

^

^

I/O
BUS

Figure 10. Output System Block Diagram

in

by the high order (n-q) bits of the address word. The low order q bits

of the address specify a particular output line within the module. A

maximum of 0 = 2 " ^ output modules may be contained within the out

put system.

Conceptually, the output system may be thought of as a random

access memory composed of w bit words. Each word corresponds to an

output module. Furthermore, all bits of the memory are simultaneously

externally accessable through the output lines. This architecture

results in a modular structure that is both bit and byte oriented.

Two basic output system operations are necessary using this

structure. The write full word (WFW) operation writes a w bit word

from the data bus into the output flip flops driving the addressed out

put port. The read full word (RFW) operation transfers the state of the

addressed output module to the CPU via the data bus. In order to set

the state of a single output line, it is necessary to perform a RFW

operation on the module housing that line. The CPU then sets the state

of the correct bit within the output word using the low order q bits of

the address register to identify the correct bit. The output word is

sent back to the output module via the WFW operation and the sequence

is completed.

A discussion of the logic implementation of the output module may

be found in Appendix C.

Memory System

Figures 7 and 8 show that the memory system may be composed of

(N-l) memory modules. Each module has an address space of L words com

posed of w bits per word. Modules may be made up of either core or RAM

k2

or ROM type semiconductor memories. Core memories have the advantage

of non-volatility which could prove helpful in case of a power failure,

but due to the declining cost per bit of semiconductor memories these

will probably be used in the majority of Level (l) memory systems. Those

segments of the operating system that are permanent and re-entrant could

be stored in ROM for security. Permanent process control programs could

also be kept in ROM. Core or RAM semiconductor memories could be used

for scratch pad applications and must be used in the memory module shown

connected to the multiplex (MPX) circuit in Figure 7• Read/write memory

must be used in this transfer module because it is the two way communi

cation link between Level (l) and Level. (2). During an information trans~

fer from Level (l) to Level (2), the Level (l) CPU writes the information

into the transfer module where it is subsequently read by the Level (2)

supervisory computer. The procedure is reversed for Level (2) to Level

(l) communication.

Figure 11 gives a block diagram of the memory system. The

function of the data and address busses is the same as in the input and

output systems. The R/W control line indicates whether a read or write

cycle is about to be initiated and the 0CP1 control line is used to

indicate to the memory during a write cycle that data is stable on the

data bus. The Ready line is a wired-OR common connection among the

memory modules used to indicate module status to the CPU. This line

allows slow cycle time memories to be used in the system by synchronizing

the CPU to the memory. Appendix D gives a further discussion of memory

module hardware and timing requirements.

Multiplex Circuit. The multiplex circuit connecting the memory

43

I/O
BUS

MEMORY

*

MODULE

3 H
co
00

Q
fi

<
[X

£

n
P4 P̂

o

Pi
tU

MEMORY

MODULE

<-
-ifft

CM

P-<
a
o

co
P-I o o

MEMORY

<fr

MODULE

Figure 1 1 . Memory System Block Diagram

hk

module to the I/O bus in Figure 7 serves the purpose of a multi-pole

double throw switch. Depending on the state of the output line coming

from the output system, the memory module is connected to either the

Level (l) i/O bus or an interface to the Level (2) computer system.

In this way, verticle communication to and from the Level (2) computer

system is possible. Yet, while the actual information transfer is

taking place, the Level (l) CPU is free to execute its process control

program from any other memory module in the Level (l) system. Allocat

ing and deallocating the transfer memory module is accomplished by the

Level (l) CPU through interrupt routines. The normal state of the multi

plex circuit is with the transfer module connected to the i/O bus.

Figure 12 gives a flow chart of the steps necessary for any information

transfers. The format of the transferred information could be either

executable statements or binary data.

At this point it may be argued that the multiplex scheme is just

a cumbersome method of implementing a dual port memory, so why not use

a dual port memory instead? The multiplex scheme is best for several

reasons.

First, the cost of building dual port memory modules would be

greater than that of single port modules. There is no need for the

entire memory system to be dual port. The only time that the Level (2)

computer would need to modify the contents of an entire Level (l) memory

system would be during a setup operation when new control programs were

being sent to the Level (l) memory. During setup, time is not a critical

element and the Level (l) CPU is free to move programs and data through

the transfer module. Still, it might be argued that the transfer module

Level(2) interrupt
to Level(1)

Interrupt signals
read operation
complete

Interrupt signals
information present
in transfer module

Interrupt signals
request for transfer
module

*

Level(1) processing

Standard Level(1) Processing

"X"

Switch t ransfer
module onto
I/O Bus

Switch t ransfer
module onto
I/O Bus

J2_
Take appropriate
action on data
or program in
transfer module

Write information
into module

Switch transfer
module onto Level(2)
interface

Switch transfer
module onto Level(2)
interface

Level(1) interrupt
to Level(2)

Return to
program

Interrupt signals
that information
is ready to be
transferred

Interrupt signals
transfer module
switched to Level(2)
interface

Figure 12. Flowchart for Vertical Information Transfer

k6

should be dual port. But this would still require that two separate

types of memory modules be built. The multiplex scheme only requires

the single port memory module which is used throughout all Level (l)

systems. Controlling the state of the multiplex circuit with an output

line from an output module provides the CPU" with a convenient means of

controlling the switching of the transfer module.

The second reason for favoring the multiplex scheme stems from

an observation that if dual port memory modules were used in the memory

system, then possible memory conflicts could result [23]. Essentially,

the problem is that of two processors sharing a common memory. The dual

port approach would offer a costly flexibility that is not essential in

this application, while the simpler multiplexing of a single.port transfer

module is economically beneficial and adequate for this application.

Summary

In the preceeding sections an architecture for the input, output

and memory systems has been proposed. This architecture was developed

under two primary constraints. First, it should be modular so that each

Level (l) computer system can be built up to the level required by its

unique control situation. Secondly, the architecture should support

the system requirements identified in Chapter II. The major requirement

affecting the design of the input and output systems was the need for a

bit and byte oriented system. It is felt that the proposed architecture

meets these requirements in a manner that affords easy interface with a

microprocessor CPU.

47

Level (l) Microprocessor Architecture

In this section, the architecture of an eight bit microprogrammable

microprocessor called the GT 1248 will be described. A machine width of

eight bits has been chosen so that a valid comparison with the perfor

mance of the eight bit Intel 8080 can later be made. In Chapter II the

requirements for the overall Level (l) system were set forth. Table 4

compares the projected capabilities of the GT 1248 with those of the

Intel 8080 in satisfying the major requirements imposed upon the Level

(l) processor.

Table 4. Comparison of Microprocessor Capabilities

Operation GT 1248 Intel 8080

Bit manipulation at
the Register level.

Memory operations at
the bit level.

Double word operations
such as load, store,
compare.

Single word operations

Special purpose
instructions

Available through
firmware and sup
ported in the
instruction set.

Supported in the
instruction set.

Supported, in the
instruction set.

Supported in the
instruction set.

Available indirectly
through software rou
tines.

Available indirectly
through software
routines»

Reduced capability in
the instruction set.

Supported in the
instruction set.

Available as machine Available through
language instructions software routines.
through micropro
gramming .

GT 1248 Microprocessor CPU Architecture

Figure 13 gives the internal CPU architecture of the GT 12U8,

• r
B
U
S
 L

r
B
U
S
 R

• r
B
U
S
 L

r
B
U
S
 R

^

A

• r
B
U
S
 L

r
B
U
S
 R

^

4 w A L_l r
B
U
S
 R

^
H L

^
B

H L
^

B 4 1

» R
E
G
I
S
T
E
R

SE
LE
CT

H L

D 1

. H

B 4 1

» R
E
G
I
S
T
E
R

SE
LE
CT

E F
?

1 FT . H

» R
E
G
I
S
T
E
R

SE
LE
CT

E F

1 \ 1 FT . H

» R
E
G
I
S
T
E
R

SE
LE
CT

X Y
DATA

LPORT
1 FT

MAR
*

» R
E
G
I
S
T
E
R

SE
LE
CT

X Y
DATA

LPORT J MAR
*

» R
E
G
I
S
T
E
R

SE
LE
CT

U V

D
A
T
A
 B
U
S

»
MAR

» R
E
G
I
S
T
E
R

SE
LE
CT

U V

D
A
T
A
 B
U
S

»

^

A
D
D
R
E
S
S
 B
U
S

T

» R
E
G
I
S
T
E
R

SE
LE
CT

U V

D
A
T
A
 B
U
S

»

To ATR
in Control
Section

^

A
D
D
R
E
S
S
 B
U
S

» R
E
G
I
S
T
E
R

SE
LE
CT

G K

D
A
T
A
 B
U
S

»

To ATR
in Control
Section

^

f A ™/„

A
D
D
R
E
S
S
 B
U
S

» R
E
G
I
S
T
E
R

SE
LE
CT

G K

D
A
T
A
 B
U
S

»

To ATR
in Control
Section

^ r i

* LC

A
D
D
R
E
S
S
 B
U
S

» R
E
G
I
S
T
E
R

SE
LE
CT

W M •

D
A
T
A
 B
U
S

»

To ATR
in Control
Section

\ ALU y * LC

A
D
D
R
E
S
S
 B
U
S

» R
E
G
I
S
T
E
R

SE
LE
CT

SP

D
A
T
A
 B
U
S

»

To ATR
in Control
Section

A
D
D
R
E
S
S
 B
U
S

PC

D
A
T
A
 B
U
S

»

I

4 r̂

A
D
D
R
E
S
S
 B
U
S

PC

D
A
T
A
 B
U
S

»

I /o] 0 HI H 0 LATCH

A
D
D
R
E
S
S
 B
U
S

i .

D
A
T
A
 B
U
S

»

_
LATCH

A
D
D
R
E
S
S
 B
U
S

i

i

D
A
T
A
 B
U
S

»

_

> T

A
D
D
R
E
S
S
 B
U
S

i

i f •

D
A
T
A
 B
U
S

> T
r

A
D
D
R
E
S
S
 B
U
S

DRA

y t ^ r
OUTPU' r BUS

^

D 7 - D 0
R/W A15 " A0

Figure 13. Microprocessor CPU Architecture

.£-
00

9̂

Three major internal eight bit busses route data between the arithmetic

and logic unit (ALU) and the data registers. Data is transferred to

and from the CPU via data bus lines D7 - D connecting the data port

(DP) to external system components. Depending on the state of the i/O

flip flop, data is routed from the data bus to Bus R (input mode) or

from register D to the data bus (output mode). The address for all

memory, input or output system references is carried from the memory

address register (MAR) to external components via the address bus,

A..,_ - An. The function of the double register arithmetic (DRA) unit is

to provide increment, decrement and complement operations on l6 bit

double words from the register stack.

CPU Registers. Connected to Bus L are the A register, D register

and the .data port (DP). Each register is eight bits wide and data flow

into and out of all registers is under the control of the microprogram

control section. Bit manipulation is accomplished in the A register.

Bit address within the A register can be supplied either by the B register

or by the microprogram control store. The D register is used for data

output in conjunction with the data port and may also be used as a

temporary store for intermediate results.

Connected to Bus R are the register stack, the B and A registers,

the memory address register (MAR) and the DP. The register stack is

made up of l6 eight bit registers. These registers may be accessed as

either a single eight bit register via connections to Bus R and the out

put bus or as a double register composed of l6 bits via connections to

the DRA and MAR. Double registers HL, EF, XY, UV and GK are available

at the machine language level as general purpose registers. The WM

50

register is reserved for control section use to store intermediate

results. The stack pointer (SP) and program counter (PC) are also

available at the machine language level but are reserved for their

dedicated functions. The memory address register (MAR) is a l6 bit

register made up of two concantenated eight bit registers. The register

containing the high order bits, iL. - Ar>, of the address is referred to

as register MARH. Likewise, the low order bits of the address, A,̂ - An,

are stored in the lower register, MARL. Register B is a three bit

special register used to implement addressing for bit manipulation.

Only the low order three bits of data from the output bus are loaded

into B during its register load operation. When B is gated onto Bus R,

high order bits are gated as logic zeroes while the three low order bits

come from B. Register B is always loaded whenever register MARL is

loaded from the output bus or whenever the MAR is loaded from the DRA

or stack. In this manner B always contains the three low order bits of

any MAR address.

ALU Components. Associated with the arithmetic and logic unit

(ALU) are: a true/complement (T/C) gate array for Bus R, a group of

five flag flip flops and an output latch. The T/C array can be used

to gate into the ALU the complement of the data contained on Bus R.

This is done under microprogram control and is useful in performing

one's and two's complement subtraction schemes.

The functions of the five flag flip flops comprising the pro

cessor state word (PSW) are given in Table 5« The l/o flip flop is

under microprogram control exclusively, while flags P, Z, S and C are

loaded during certain ALU operations. The five flags may be thought of

51

Table 5- Flag Flip Flop Functions

Flip Flop Function

I/O Determines the state of the data
port. Logic 1 = data port in the
input mode. Logic 0 = data port
in the output mode. Normally
this flip flop is kept in the
logic 0 state.

P Reflects whether the last word
gated from the ALU contained even
or odd parity. P = 1 denotes odd.
parity, P = 0 denotes even parity.

S Reflects whether the last word
gated from the ALU was positive
or negative depending on the state
of the MSB. S = 1 indicates that
the word was negative. S = 0
indicates that the word was posi
tive.

Z Reflects whether the last word
gated from the ALU was equal to
zero. Z = 0 denotes that the
last word was nonzero. Z = 1
denotes that the word was zero.

C During certain ALU .add' operations,
the carry generated from the MSB
additions is gated into C. During
a right or left rotate, the bit
rotated is loaded into C.

52

as a separate register that may be gated onto Bus R or recieve data

from the output bus. When gated as a register, the five flags are

right justified in the field of the word. This feature permits the

flags to be stored in memory prior to interrupt servicing.

Table 6 gives a description of the operation set of the ALU.

During an ADD operation, a binary one may be gated into the carry of

the l.s.b. addition by applying a logic one to the LC terminal of the

ALU. During an ADD (with carry) operation, the LC terminal is connected

to the C flip flop, otherwise it is under microprogram control and is

useful in two's complement schemes.

The eight bit output of the ALU is gated, into a temporary latch

that holds the result long enough to allow it to be gated via the output

bus into a register.

CPU Timing. Figure Ik shows the two phase clock used to control

all register transfers. The same clock is used for control section

timing. During time t^ data is gated onto Busses L and R, through the

ALU and into the latch. Time ti must be greater than or equal to the

worst case propagation delay through the ALU and into the latch. During

time t,,, the data present at the latch is locked in, in much the same

way as in the TTL 71+100 latch [21]. Flag flip flops are gated and locked

according to the same timing as the latch.

The contents of the latch are gated into a selected register via

the output bus during time t~. Time tp must be greater than or equal

to the worst case propagation delay through the output bus into the

register. During time t„p the contents of the register are locked in,

so that CPU registers may be of the same structure as the latch.

.53

Table 6. ALU Operation Set

Operation Description

ADD

ADD (with carry)

ADD (no flags)

AND

OR

EXCLUSIVE OR

ROTATE L

ROTATE R

OUTPUT - Bus L + Bus R (arithmetic
sum)
(c) «- carry, all flags affected

OUTPUT «- Bus L + Bus R + (c)
(C) «- carry, all flags affected

OUTFJT - Bus L + Bus R
no flags affected

OUTPUT - Bus L A Bus R
(C) unaffected

OUTPUT «- Bus L V Bus R
(C) unaffected

OUTPUT *- Bus L ¥ Bus R
(C) unaffected

OUTPUT «- rotate left (Bus L + Bus R)
(c) «-= m.s.b. before rotate operation

OUTHJT - rotate right (Bus L + Bus R)
(c) «- l.s.b. before rotate operation

Gate data into ALU
and result into latch

i
set latch

t
Load RAR

Gate latch
into register

1 set register
load RDR

<&> > & r2,
> ^ +

Figure 14. Two Phase Clock Used For System Timing

Ui

-o

55

Registers whose data transfer is accomplished on the positive edge of

the clock cannot be used with this timing sequence. Time t^ is used to

allow the decoder signals to settle prior to 0n of the system clock.

GT 121+8 Control Section Architecture

Figure 15 gives the basic architecture of the control section.

The 13 bit ROM address register (RAR) contains the address of the next

microinstruction to be executed and is similar in function to the standard

program counter. Normal control section operation assumes that micro

instructions are fetched sequentially from the ROM, so it is the function

of the increment logic (INC) to increment the RAR by one during each

microinstruction cycle [22]. Microinstruction words fetched from the

ROM control store are stored in the 20 bit R register. The various

decoders are attached to the R register so that the proper control

signals can be generated from the current microinstruction word. An

interrupt flip flop with its associated mask is provided to receive the

primary interrupt signal. The 0P1 control line is driven by the 0P1

flip flop and is used to provide a level control signal to external

circuits. Similarly, the 0P2 line is used to provide a control pulse

to external circuits. Used in conjunction with these two control lines

are bits 13 - 0 of the microcode word (see Figure 18) which are available

externally at the ROM to provide an address for the multiplexing of 0P1.'•

and 0P2.

The interrupt test flip flop (i) can be set to the one state

during an unconditional microprogram jump. If (i) A (PRI INT) = 1, then

instead of the RAR being loaded with the jump address, the RAR is cleared

and an interrupt microprogram routine entered at control store location

56

•\ '

R r e g i s t e r

/

Maximum
S i z e

8K x 20

CONTROL
STORE

ROM

R r e g i s t e r

/

> . 20 /
1

i '

19 0 1
I I 1 1 1 1 1 1 1 1 i i i i 1 1 1

F
Decode

T
Decode

BL
Decode

BR
Decode

OB
Decode

ALD
Decode

1 1 1 1 rrr~ \T 1 I I

- . 13

hi - • o ROM Address
R e g i s t e r

(RAR)

y r
J Stack

(2 Levels)

hi - • o ROM Address
R e g i s t e r

(RAR)
Increment

J Stack

(2 Levels)

hi - • o ROM Address
R e g i s t e r

(RAR)
Increment

J Stack

(2 Levels)

ROM Address
R e g i s t e r

(RAR)
s

J Stack

(2 Levels)

J L

"' ' ' •

» 1 X
"' •

512 x. 11

Address

Translation

ROM

MASK
— z —

(LC - DP)
Int. FT

Pri. Interrupt

0P1 FT

0P1

Interrupt
Test

Logic I FF

T

OP2

Figure 15. Control Section Architecture

57

zero. This interrupt detection and vectoring will be discussed more

fully under the section on the jump microinstruction.

Up to two levels of microprogram subroutines can be handled with

the help of the two level first in last out J stack. The address trans

lation ROM (ATR) is a 512 word by 11 bit read only memory contained

within 'the control section used, to convert the eight bit op code used

in the GT 12U8 to a ROM control store segment address * Each segment

contains the microprogram routine for a single machine language instruc

tion. A more detailed discussion of the ATR will be presented, later.

Control Timing. Referring to Figure 1^, it is seen that during

time t,, the ROM address of the next microinstruction is loaded into

the RAR. ROM's are static devices so that within the access time after

the RAR is loaded and settled, the next microinstruction will appear at

the output port of the control store ROM. During time t^, the next

microinstruction is loaded into the R register dictating that register

R input a new microcode word on the negative edge of its gating or clock

signal. Each instruction in the microprogram corresponds to a single

microcode word fetched from the control ROM. The clock time, t , used
c

to execute one microinstruction is referred to as one machine state or

cycle.

If the control section is implemented on a separate chip from

the CPU, then the microinstruction word will have to be decoded both on

the control chip and on the CPU chip. It is felt that this approach

would lead to an unnecessary duplication of logic. Most current micro

processors have both their CPU and control section integrated on a single

chip. The elimination of the large control store ROM from the chip, as

58

is the case with the GT 12U8, will free needed chip area for the GT

12U8's large register stack, while at the same time leaving room for

the circuitry of Figure 15- In an effort to reduce the pin count of

the GT 12k8, control store address and data could be multiplexed through

a single 20 pin ROM port synchronized by the system clock. This approach

would yield a microprocessor pin count of about 51> which is only 11

above that of the Intel 8080.

The GT 12^8 micreprogrammable control section recognizes six

basic types of microcode words: register control, double register,

fetch, jump, pulse and emit.

Register Control Instruction. The register control instruction

is used to control the ALU and route eight bit data through the CPU.

Figure 16 gives the format of this microcode word. The T field is used

to select one of l6 eight bit registers from the register stack. The

T/C field is used to control the T/C gate array on Bus R. If (T/C = l)

then (ALU *- Bus R). The N field is used to control the i/O and OPl flip

flops which are used to synchronize the CPU to the memory during a read

or write cycle. If (OB = 010) then ((OPl) - N during tg) else ((i/o) -

N during tp). The LC field is used to control the LC terminal on the

ALU. If (LC = l) then (carry into l.s.b. addition) else (no carry into

l.s.b. addition). The BL field controls register gating onto Bus L as

defined in Table 7'. The BR field controls register gating onto Bus R.

Register gating from the output bus into CPU registers is controlled by

the OB field. The ALU field selects the ALU function for the current

microinstruction cycle. The function codes for these fields are given

in Table 7- The mnemonic for the register control microinstruction is

59

REGISTER CONTROL INSTRUCTION

T I I 1 I «

1 1

F
j v.

N T/C LC BL BR OB ALU

DOUBLE REGISTER INSTRUCTION

1

1 1
•

1 I
0

• i

l

i
0

i

i

! 1
1

l
1

i

1
i

X

l I

, x ,Ro

F

V /
N LC

v / \ /
F T N LC BL BR I/O

FETCH INSTRUCTION

1 1 J r 1 1 1 1 1 • • r "'
1

1
1 X X X

1 1
X

i
1 X X

1 1 1
1 1

1
1

1
X X

1
X

\ f

F N LC BR

Figure 16. Format for the RC, DR and Fetch Microinstructions

60

Table J. Field Specification for the Register Control Instruction

Field BL BR OB ALU

0 0 0 zero zero A ADD

0 0 1 D s t a c k s t a c k ADD (wi th c a r r y)

0 1 0 A A D ADD (no f l a g s)

O i l DP B B AND

1 0 0 X MARL MARL OR

1 0 1 X MARH MARH EX-OR

1 1 0 X PSW PSW ROTATE L

1 1 1 X DP R e s t r i c t e d ROTATE R

as f o l l o w s :

RC; Operational Function

For example, the mnemonic RC; (A) •- (DP) + (A) + 1, (l/o) — N indicates

that register A is to be loaded with the results of the addition, which

is actually a two's complement subtraction of (A) - (DP). The I/O flip

flop is loaded with the contents of the N field. If the i/O specifi

cation is omitted, then by default (l/o) «- 0.

Double Register Instruction. This microinstruction is used to

control all l6 bit data transfers and arithmetic operations done in the

double register arithmetic (DRA) unit. The format of this instruction

is given in Figure l6. Selection of one of eight double registers to

output from the stack into the DRA during t, is accomplished by the T

61

field. Selection of one of eight double registers to receive data from

the DRA during time tp is accomplished by the BR field.

The N and LC fields are used to control loading of the MAR in

parallel with a DRA operation. IF (LC = l) then ((MAR) •- data selected

by the N field) else (MAR is not loaded). If (N = 0) then (data = DRA

input) else (data = DRA output). The BL field controls the function of

the DRA as shown in Table 8c During time t?, the i/O flip flop is loaded

with the contents of the low order bit, R , of the R register.

Table 8. Double Register Field Specifications

Field T or BR BL

0 0 0 0 (H)(L) Increment

0 0 0 1 (E)(F) Decrement

0 0 10 (X)(Y) Complement

0 0 1 1 (U)(V) No Change

0 10 0 (G)(K) X

0 1 0 1 (W)(M) X

0 1 1 0 (SP) X

0 1 1 1 (PC) X

The mnemonic for the double register microinstruction follows•

DR; Operational Function

For example, the mnemonic DR; (MAR) - (PC), (PC) - (PC) + 1 indicates

that during time t.. the MAR is loaded with the contents of the PC double

register and during time t0 the PC register is incremented. If the i/O

62

specification is omitted, then (i/O) •- 0 by default.

Fetch Instruction. Figure 16 gives the format for the fetch

instruction. This instruction is used in the fetch sequence to load

the EAR with the segment address for the current machine language

instruction microprogram routine. During time t?, the i/O flip flop is

loaded with the contents of the N field. The LC field is used to denote

the type of fetch instruction being executed as shown in Table 9«

Table 9° Fetch Instruction Functions

Mnemonic LC Field Function

Fetch S 0 (RAR) - ATR(C-DP), (i/o) - N

Fetch D 1 (RAR) - ATR(l-DP), (i/o) - N

The operation of Fetch S is as follows. During time t, the op

code, which is present at the data port (DP), is applied to the lower

eight bits of the address translation ROM (ATR) while the contents of

the LC field is applied to the high order input of the ATR (see Figure

15). The segment address corresponding to that op code is then locked

into the RAR during time t _. The sequencing of Fetch D is exactly the

same except that LC = 1.

Two types of fetch instructions are used so that the control

section of the GT 12^8 is capable of decoding a total of 511 op codes

as opposed, to the 256 found in the Intel 8080. The extra op codes are

needed to handle the process control oriented machine language

63

instructions that will be added to the GT 12^8 instruction set. Some

of these additions will be discussed in a later section.

Figure 17 gives a pictorial representation of the use of these

two fetch commands. Immediately after the current machine language

instruction has completed execution, an unconditional microprogram jump

statement directs microprogram execution to the "single op code fetch"

routine. This routine loads the first eight bit word of op code for

the next machine language instruction from the system memory. This op

code is applied to the input of the address translation ROM (ATR). The

ATR directs microprogram execution to the segment address of the micro

program routine corresponding to that op code unless the first word of

op code equals binary zero. In that case, microprogram execution is

directed to the "double op code fetch" routine which loads the second

word of op code from system memory. This op code is then used in con

junction with the Fetch D microinstruction to direct microprogram exe

cution to the segment address of the microprogram routine corresponding

to that double op code. Fetch time for a double op code instruction will

be twice as long as for a single op code instruction.

Jump Instruction. The format of the jump microinstruction is

in Figure l8. This instruction is used to provide conditional and uncon

ditional jumps within the microprogram. It can also be used to call a

microprogram subroutine and return upon completion. As shown in Table

10, the T field determines the type of jump instruction under execution.

All actions specified by the various jump commands must take place during

the 0.. phase of the system clock.

At this point it should be instructive to describe the JMP Write

64

XOH
Location

0

OP CODE

Word

Word

Word

Word 1

Word 2

Vord 3

Word A

Address
Translation
ROM

SINGLE OP CODE INSTRUCTION

id

2

3 _J
DOUBLE OP CODE INSTRUCTION

0 0 0 0 0 0 0 0

c '
,

Sagmcnt

Address

Op Code

One or two
or more
bytes of
data or
address

Op

Code

One or two
or more
bytes of

data or
address

I >

8K

Interrupt Routine

Single Op Code
Fetch Routine

Double Op Code
Fetch Routine

Routine 1

Routine r

Dnused Op Code

Vector Positions

Dnused

User

Definable

ROM

Figure 17. Control S tore Address Mapping

65

JUMP INSTRUCTION

l T r
J L

i 1 1 1 ; 1 I T » r

j i i i t ' t i

T r
0 1

j i i, i
J _

N Jump Address

PULSE INSTRUCTION

1—i j 1 1 1 1 1 1—r
' ' ' ' ' ' ' 1 1 L

T 1 1 1 1 r
I I I I 1 L.

1 0

J \~ J _

Available for multiplexing of OPl and 0P2

EMIT INSTRUCTION

1 1 1 1 1 1 r

J I i ' i i i
0 0

\ i r

J I L

-i—r

j L

— i — i —

O i l
i i -J V J V J V.

Emit Data OB

Figure 18. Format for the Jump, Pulse and Emit Microinstructions

Table 10. Jump Instruction Functions

T Field. Mnemonic

0 0 0 0 JMP(N) Address

0 0 0 1 JMP Sub, Address

0 0 1 0 JMP Return

0 0 1 1 JMP(N) A_, Address

0 1 0 0 JMP(N) P, Address

0 1 0 1 JMP(N) Z, Address

O i l 0 JMP(N) S, Address

O i l 1 JMP(N) C, Address

1 0 0 0 JMP(N) PI, Address

1 0 0 1 JMP(N) Ready, Address

1 0 1 0 JMP Write, Address

Action Conditional?

1 0 11 JMP Read, Address

1 1 0 0 unused

1 1 1 1 unused

(RAR) - Address, (i) - N No

(J) - (RAR) +1, (RAR) - Address No

(RAR) - (J) No

If (bit A^ = N) then ((RAR) -Address) Yes

Else ((RAR) - ((RAR) + l)

If ((P) = N) then ((RAR) - Address) Yes

If ((Z) = N) then ((RAR) - Address) Yes

If ((S) = N) then ((RAR) - Address) Yes

If ((C) = N) then ((RAR) - Address) Yes

If (Primary Interrupt = W) then ((RAR) - Address) Yes

If (Ready = N) then ((RAR) -Address) Yes

If (Ready = 0) then ((RAR) -Address) Yes

Else ((RAR) - (RAR) + 1, (OPl) - 0)

(I/O) - 1, If (Ready = 0) then ((RAR) -Address) Yes

Else ((RAR) - (RAR) + l)

67

and JMP Read instructions as they apply to the memory read and write

cycles. The JMP Read microinstruction is used in the following manner

during a memory read.

DR; (MAR) - (PC), (PC) - (PC) + 1, (i/o) - 1

JMP Read, *

RC; (A) - (DP), (I/O) - 0

This section of microcode loads the A register with the contents of

memory specified by the program counter (PC) and increments the PC.

During 0 ? of the double register instruction, the MAR is loaded and the

R/W control line goes high indicating to memory to start a read cycle.

The "JMP Read, *" instruction jumps to itself until ready is indicated

by the memory. At this point the RC instruction is executed, the A

register is loaded and the R/W control line reset.

In order to store register A in the memory location pointed to

by the PC, the following code could be used.

DR; (MAR) - (PC)

RC; (D) - (A), (OPl) - 1

JMP Write, *

The RC instruction loads register D and sets OPl to the one state. The

OPl control line can be used to drive the OCPl control line to the memory

that indicates the start of a write cycle. When the memory indicates

the data has been written or accepted, the "JMP Write, *" instruction

6a

allows the next sequential microinstruction to be executed.

During a "JMP(N) Address" jump instruction, the I flip flop is

set to N. The nJMP(l) Fetch" jump instruction is used at the end of

each microprogram routine to go back to the fetch routine, at the same

time setting (i) = 1 during time t , . If during time t.., (i) A (PRI.

INT.) = 1, then the RAR is cleared and. the next microinstruction to be

•executed will not be the first line of the fetch routine but the micro

instruction at control store location zero. This microinstruction can

be either a jump to an interrupt routine or the first line of an inter

rupt routine segment. During time t? the I flip flop is cleared..

Pulse Instruction. The format of the pulse microinstruction is

shown in Figure 18. This instruction is basically used by the control

section for individual bit manipulation by applying pulses to set, reset

and toggle inputs on appropriate flip flops. As shown in Table 11, the

T field is used to determine the function of the pulse instruction.

All pulse operations occur during phase 0p of the system clock.

Bit positions 13-0 of the microinstruction can be used for multiplexing

of control signals 0P1 and 0P2 since these bits are available at the

control store ROM output port during 0?.

Emit Instruction. The format of the emit microinstruction is

shown in Figure 18, With this instruction, any CPU register can be

loaded with eight bit data stored in the emit microcode word. During

time t,, the emit data is loaded into the temporary latch instead of

data from the ALU. All flags remain unaffected. During the latter half

of the system clock cycle the contents of the latch are transferred to

the CPU register specified by the OB field, just as in the register

69

Table 11. Pulse Instruction Functions

Mnemonic T Field Function

Pulse; Set Ag 0 0 0 0 bit Ag - 1

Pulse; Reset A^ 0 0 0 1 bit Ag - 0

Pulse; Comp. A- 0 0 1 0 bit h ^ h
Pulse; Set A Q B 0 0 1 1 bit A Q B - 1

Pulse; Reset A 0 1 0 0 bit A Q B - 0

Pulse; Comp. A Q B 0 1 0 1 b i t A0B - A0B
Pulse; Set I/O 0 1 1 0 (I/O) - 1

Pulse; Reset I/O 0 1 1 1 (I/O) .- 0

Pulse; EI 1 0 0 0 (MASK) «- 1

Pulse; DI 1 0 0 1 (MASK) - 0, (IWT) - 0

Pulse; Set 0P1 1 0 1 0 (0P1) «- 1

Pulse; Reset 0P1 1 0 1 1 (0P1) - 0

Pulse; 0P2 1 1 0 0 line OPS is pulsed during t„

Pulse; Set C 1 1 0 1 (c)-.i
Pulse; Reset C 1 1 1 0 (c) - o

unused 1 1 1 1

70-

control instruction. The T field is used to select one of 16 stack

registers if the stack is being loaded. The mnemonic for this instruction

is as follows.

EMIT; (r) - Quantity

For example, the instruction EMIT; (X) •- 372n means that the X register

is to be loaded with an octal 372.

. Control ROM Partitioning. A detailed analysis of the instruction

set necessary for a process control microprocessor is not the subject of

this paper, but in any architectural consideration the size of an expected

instruction set should be approximately known so that the hardware can

support it. While an analysis of the basic GT 121+8 instruction set will

be reserved for a later section, the results of that analysis with res

pect to size and space requirements will be briefly presentedr

The basic GT 121+8 instruction set consists of approximately 98

machine language instructions, as found in Appendix E. This instruction

set utilizes approximately 316 different op codes, dictating that approxi

mately 6l of these op codes will have to be dual op code instructions.

These 3l6 different op codes require approximately 132*+ words of control

store to hold the necessary microprogram routines and subroutines along

with the two fetch routines.

In Figure 175 the control store address mapping procedure was

depicted. The ATR is capable of specifying a segment address within the

first 2K of the control store ROM. Within this region the basic instruc

tion set microprograms should be permanently stored. Assuming that the

approximately 1270 words required for this storage is reasonable, then

71

approximately 720 locations are left free within the lower 2K of ROM.

The ATR would be permanently programmed to direct unused double op codes

to sequential locations within the lower part of this free area. When

the user wanted to microprogram a new machine language instruction, he

could insert a MJMP(0) Segment Address" instruction in the location

corresponding to a chosen double op code. This jump would then vector

the control section to the correct user defined microprogram routine in

higher ROM.

The permanent section of the control store should be stored in

mask programmed ROM for economic and security reasons, while the remainder

could be programmable (PROM) or erasable (EPROM) memory for user defined

microprograms. The call for a user microprogrammable microprocessor has

already been acknowledged in the literature [18]. It has been suggested

that microprocessor programming be done more at the microprogram level

in an effort to increase efficiency and throughput.

72

CHAPTER IV

COMPARISON AND EVALUATION OF PERFORMANCE

Performance Evaluation

Up to this point, the overall architecture of a microprocessor

based computer control system for discrete manufacturing control has

been presented. In particular, an architecture for the GT 121+8 has been

presented that was developed with the express purpose of satisfying the

microprocessor requirements developed in Chapter II. In this chapter,

a comparison will be made between the performance of the GT 12̂ +8 and

that of the Intel 8080. Performance will be measured on the basis of

speed of execution of a given task and the number of words of program

needed to accomplish that task, as given in equation six,

Performance (P) = —- (6)

where T is the execution time for the task and N is the number of eight

bit words of source code needed to program the task.

Microprocessor Instruction Set

Appendix E gives a detailed description of the basis instruction

set of the GT 12hQ. A condensed summary of the characteristics of this

instruction set is given in Table 12, where those instructions that

essentially are not found in the instruction set of the Intel 8080 are

preceeded by an asterisk. In evaluating the execution speeds of the

instructions, it was assumed that each is a single op code instruction

73

Table 12. Characteristics of the GT 12U8 Instruction Set

Mnemonic

Number of Words

Double Single
Op Code Op Code

Execution Equivalent Intel 8080
Time (US) Execution Time (US)

MOV r
la

, * lb

MOV M,] Cl

MOV r , M

MVI r±

MVI M

*MVII M

INR rn

DCR r±

INR M

DCR M

*INRI M

*DCRI M

INX dd

DCX dd

*INX M :

*DCX M

*INXI M

*DCXI M

- Single Register and Memory Instructions -

2.5

3.5

3.5

3.5

5

10 **

2.5

2.5

5

5

10 **

10 **

^-5.5

1 3.5

1 3.5

2 3-5

2 5

I* 8

1 2.5

1 2.5

1 .̂5

1 h.5

3 7.5

3 7.5

- Double Data Word Instructions -

1 2.5

1 2.5

1 7.5

1 7.5

3 10.5

3 10.5

2.5

2.5

21.5 **

21.5 **

26.5 **

26.5 **

7h

Table 12. (Continued)

Mnemonic

Number

Double
Op Code

of Words

Single
Op Code

Execution
Time (US)

Equivalent Intel 8080
Execution Time (US)

LXJ dd 3 5 5

MOVX dd , ddv a7 b
1 2.5 2.5

STDD dd1 3 8 8

LDDD dd 3 8 8

*STID dd2 1 5 12 **

*LDID dd2 1 5 12 **

DAD ddx 1 h 5

*DADI M 3 10 15 **

*CMD H 1 2.5 1^ **

*TCMP H 1 3 16.5 **

*TCSM 1 3-5.5 27.5 **

*RLCH 1 5.5 12.5 **

*RRCH 1 6.5-7.5 ko **

*RALH 1 5.5-6 12.5-15 **

*RARH 1 6.5-7.5 ko **

*CMHDX 3 10.5-15.5

*CMHD dd 1 7.5-13

*CMHD M 1 10.5-15.5

- Accumulator Group Instruct ions -

LDA 3 6.5 6.5

STA 3 6.5 6.5

75

Table 12. (Continued)

Mnemonic

Number of Words

Double Single
Op Code Op Code

Execution Equivalent Intel 8080
Time (US) Execution Time (US)

CMA

CIA

STAX EF

LDAK EF

RLC

REC

RAL

RAR

ADD r2

SUB r2

A M r2

XRA r2

ORA r2

CMP r2

ADD M, ADI

SUB M, SBI

A M M, ANI

XRA M, XRI

ORA M, ORI

CMP M, CPI

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1,2

1,2

1,2

1,2

1,2

1,2

2.5

2.5

3.5

3.5

2.5

2.5

3.5

3.5

2.5

2.5

2.5

2.5

2.5

2.5

3.5

3.5

3.5

3.5

3.5

3.5

2

2

3.5

3.5

2

2

2

2

2

2

2

2

2

2

3.5

3.5

3.5

3.5

3.5

3.5

76

Table 12. (Continued)

Mnemonic
Number of Words

Double Single
Op Code Op Code

Execution Equivalent Intel 8080
Time (US) Execution Time (US)

- Program Counter and Stack Instructions -

CALL

RET

*PUSH A

*POP A

JC

JNC

JZ

JNZ

JP

JM

JPE

JPO

PUSH dd]

POP ddx

XTHL

*SMB

*RMB

*SMBI

*RMBI

3 8.5 8.5

1 5 5

1 3.5

1 3.5

3 3.5--5, .5 5

3 3.5--5. .5 5

3 3.5--5. .5 5

3 3.5--5. .5 5

3 3.5--5, .5 5

3 3.5--5. .5 5

3 3.5--5. .5 5

3 3.5--5, .5 5

1 5 5.5

1 5 5

1 7.5 9

- Bit Oriented Instructions -

1 5 63.5 **

1 5 63.5 **

3 8 68.5 **

3 8 68.5 **

77

Table 12. (Continued)

Mnemonic
Number of Words

Double Single
Op Code Op Code

Execution Equivalent Intel 8080
Time (US) Execution Time (US)

*TMB

*TMBI

*SEA

*RBA.

*SIIM

*RIIM

HLT

NOP

EI

DI

STC

CFL

h.5

7.5

2.5

2.5

3

3

- Miscellaneous Instructions

Variable

3.5

k

1 2.5

k

6

50.5 **

55-5 **

3^.5 **

3^.5 **

16.5 **

16.5 **

Variable

2

2

2

2

2

#-*
Time given represent approximate execution time for an 8080 machine

language routine.

78

unless otherwise noted. Double op codes were assigned to 6l of the

total 316 possible op codes needed for the basic instruction set. Also,

it was assumed that a 2.0 MHz system clock was used to drive the GT

121+8, since this is the maximum clock frequency used with the Intel 8080.

General Purpose Instructions. The single data word oriented

instructions in the 8080 instruction set appear to be adequate for handl

ing eight bit process control operations. This is to be expected since

the 808O is primarily an eight bit data oriented machine. For this

reason, the single word instructions included in the GT 121+8 instruction

set are essentially mirror images of their 808O counterparts.

On the other hand, the 808O does not support double data word

operations to the extent needed for efficient process control appli

cations. A great deal of the programming used in process control is

used in conjunction with A/D and D/A converters which normally require

more than eight bits of data. The instruction set of the Level (l)

microprocessor should then support these double word operations to much

the same extent that it supports its single word operations. The 8080

does not do this so the GT 121+8 features a number of double data word

instructions designed to supplement those found in the 8080.

Special Purpose Instructions. In addition to being both eight

and l6 bit data oriented, the Level (l) microprocessor must also be

capable of manipulating individual bits at the register level. This is

the area in which the 8080 runs into the most trouble, as is evident

from Table 6. In order to compare the relative performance of each

microprocessor in this area, the relative performance, P = p-io],o/Pononj

is given in Table 13 for the various bit oriented instructions.

79

Table 13. Relative Performance for Bit Oriented Instructions

Mnemonic
GT

T(US)

12U8

N

Intel

T(US)

8080

N
P
r

Speedup

SMB 5 1 63.5 3 38.1 12.7

SMBI 8 3 68.5 6 17.12 8.56

TMB ^5 1 50.5 3 33.66 11.22

TMBI 7.5 3 55.5 6 Ik. 8 l.h

SBA 2.5 1 3^.5 3 in. i* 13.8

SIIM 3 1 16.5 7 38.5 5.5

It was assumed in calculating the values for Table 13 that the

8080 routines were written as subroutines called by the control program.

This would certainly be the case since each subroutine is relatively

longj prohibiting inline programming. The only exception was taken with

the SIIM operation, which was assumed to be written inline due to its

brevity. These 808O subroutines are listed in Appendix F.

Robot Control Evaluation Problem

At this point both microprocessors will be evaluated regarding -

direct computer control of an industrial robot. Parameters for the test

situation are taken from the operation of the Unimate industrial robot

P*].

Test Situation. The Unimate industrial robot is a multiple arti

culation point to point machine. Physically, the Unimate resembles a

80

single mechanical arm extending from its control apparatus. The arm

has six motion axes which define its position. A commanded position

for the robot is given by a 128 bit program step which is stored in

memory. This program step is divided into eight 16 bit groups. Of

these eight l6 bit groups, six are used to control the six motion axes

of the Unimate, while the remaining two are devoted to auxiliary or

ancillary information such as operate external, wait for external,

clamp, weld, time delay, etc. The group assignments are:

Group 0: Auxiliary Commands

Group 1: Auxiliary Commands

Group 2: Swivel Servo

Group 3̂ Out-in (radial motion) servo

Group k: Yaw servo (wrist)

Group 5«* Down-up (shoulder motion) servo

Group 6: Bend servo (wrist)

Group 7: Rotary (waist mation) servo

Figure 19 gives a description of the robot control configuration,

The basic operation of the control system is as follows. Two milli

seconds are typically allowed for the scan of a complete program step.

Therefore the scan time for each articulation or auxiliary command is

250 usee. During the first 250 usee of a program step, the negative

commanded position for the first articulation is read from group one

of the program step and subtracted from the present position shaft

encoder corresponding to that group. The results of this subtraction

form an error quantity that is applied to the D/A converter. An octal

decoder enables the sample and hold circuit (S/H) that corresponds to

81

Interrupts

SHAFT
ENCODER

0

SHAFT
ENCODER n^^

I

N

P

U

T

S

Y

S

.T

E

M

MICROPROCESSOR

CPU

*

0

u
T
P
U
T
S
Y
S
T
E
M

MEMORY

SYSTEM

D/A

>P1

OCTAL
DECODE

G7 GO

To

"• Level(2)

SERVO
AMPS

S/H H>-
PI G7

* S/H H>
C—$

PI GO

Figure 19. Robot Control Configuration

82

the present group and the analog error signal is applied to the proper

servo amplifier when line PI is pulsed. This procedure is repeated

another seven times for the remaining seven groups within the program,

step, thus completing the two millisecond program step cycle. A parti

cular program step is cycled through until all error signals are reduced

to zero, and then the next program step is acted upon.

A map of the memory, input and output systems as they apply to

this problem is given in Figure 20. Each group is made up of two eight

bit words of memory, so that a program step occupies 16 sequential

memory locations. Successive program steps are arranged sequentially

in memory. The "Program Base Address" is a pointer to the base of the

program step sequence and the "Current Program Step Address" is a

pointer to the address of the program step under current execution.

Selection of the correct group within the program step is accomplished

through the use of the "Current Field" pointer. The "Program Step

Counter" keeps track of the number of program steps that have been

executed and is used to indicate the end of a program step sequence.

The flag word is tested at the end of each program step cycle

(2 ms. cycle) to determine if conditions have been met for sequencing

to the next program step. An interrupt routine initiated by analog

comparators monitoring the error voltages could be used to set the flag,

but for this particular test it will be assumed that the flag is set

by some undefined routine.

A flowchart depicting the steps which the microprocessor must

perform is found in Figure 21. This flowchart assumes that the micro

processor will perform the conversion from gray code (which is the code

83

MEMORY INPUT SYSTEM

(SP)

Program
Step n

Program
Step 0

PSW

CPS

PBW

IOB

CFW

FLAG

STACK

Group 7

Group 0

Group 7

Group 0

- Program Step Counter -

Current PS Address

PS Base Address

Input Base Address

0 0 0 0 0 0 0 0
Current Fie ld

Flag

Shaft Encoder 7

Shaft Encoder 0

Interrupt Modules

OUTPUT SYSTEM

DAA

OF

D/A Converter

Octal Field

Figure 20. Memory and I/O Map for Robot Control Problem

84

YES

Calculate address
of shaft encoder

for current group

[IOB] + [CFW]

Input Shaft Encoder
information

Convert from Gray
Code to 2's
complement

2
Input the commanded
position from the
current group of the
current program step

[CFW] + [CPS]

Generate error
quantity

Convert to Sign/Mag
for the D/A converter

UPDATE
12

• Flag <- 0

13 ir

[PSW] <- [PSW] + i

Go to end
routine

YES

[CPS] «- 16[PSW]+[FBW]

Go to START

jj Output error to D/A
I a n d initiate S/H

[CFW] *- [CFW] + 2
[OF] «- [OF] + 1

YES

[CFW] «- 0
[OF] <~ 0

I
Go to START

Figure 21. Robot Control Flowchart

85

used on the shaft encoders) to binary itself instead of using an

exclusive-or gate array. This assumption was made to so that the benefits

of being able to create special purpose process control instructions on

the GT 12^8 could be compared to the machine language routine approach

that must be taken on the Intel 808O.

Table 1^ gives a summary of the results of using each micro

processor to perform the algorithm of Figure 21. The programs used in

this test may be found for both processors in Appendix G. Relative

performance (P) is defined as performance for the GT 12^8 divided by

performance for the Intel 8080. The speedup is the execution time for

the GT 12^8 divided by the execution time for the 8080.

Discussion of Results. Several important limitations of the

Intel 8080 are clearly brought out by the data of Table 13. Referring

to step four, the advantages of being able to create a custom machine

language instruction through user microprogramming is obvious. The

8080 suffers performance degradation here because the routine must be

programmed in assembly language and because the 8080 does not support

bit manipulation in its hardware or software. Relative performance is

high in step four largely due to the numerous words of source code needed

to program the routine in the 8080. Since the cost of a 2K RAM memory

is over half the cost of the Intel 808O CPU at this time, the need for

keeping the process control programs as short as possible is obvious

on an economic basis.

Step seven displays similar results. Again the 8080 gets tied

up in a relatively long assembly language routine instead of having a

conversion routine included in the instruction set.

86

Table ik. Evaluation of Test Program Results

Step Number Execution Time _. n , . _, „
• £• on nm no),ft T + i ft^ft^ Relative Performance
in Figure 21 GT 124o Intel 0O0O Speedup (US) (US) r

1 12 13.5 1.31

2 18 23 1-7

3 5 9.5 5 .7

^ U2.5 16U.5 290.3

5 25.5 3^.5 2.03

6 k 5 1.25

7 5.5 27.5 65

8 23 1U0 9.13

9 19 21.5 1.27

10 9 9 1

11 20.5 20 0.975

12 9 8.5 0.9I&

13 10.5 18.5 l f . l l

ik 21 22 2.09

15 36 ^3 1.3

Major Cycle
Steps 1-15 260.5 560 ^.03

Minor Cycle
Steps 1-11 i & k68 5.22

1.12

1.28

1.9

3.87

1.35

1.25

5

6.08

1.13

1

0.975

0.9^

1.76

1.05

1.2 •

2.15

2.5^

lf.ll

87

. A critical deficiency in the 8080 is found in the execution of

step eight. This step outputs the error data to the D/A converter and

then initiates the S/H operation by setting and then resetting a single

output line. It is in the manipulation of the single output line that

the 8080 runs into its most trouble. The GT 12U8 can set a single out

put bit in 5 usee, as opposed to the 63.5 usee, taken by the 8080 sub

routine. Process control applications utilizing a microprocessor with

out a hardware bit manipulation feature will suffer an execution speed

degradation most severely in the bit oriented area.

The other flowchart steps show varying degrees of difference

between the two microprocessors, depending to a large extent on the

amount of 16 bit data being handled. The 8080 is capable of handling

most double word operations without too much difficulty, although at a

somewhat reduced execution speed compared to the GT 12U8. Architecturally

the 8080 is equiped to handle 16 bit data but the instruction set just

does not support this feature to the extent that it does single word

data. The double word compare operation of step ik would be much slower

in the 8080 if negative operands were allowed as in the GT 12U8.

Conclusions

This research has investigated the design of a microprocessor .

for process control application in a discrete manufacturing environment.

The design encompasses five major areas: l) input and output system

architecture, 2) instruction set requirements, 3) hardware bit mani

pulation requirements, k) processor architecture and 5) microprogrammable

control features. This microprocessor design has been compared to a

88

typical second generation microprocessor (Intel 8080) in the control of

an industrial robot.

The input and output system architecture developed in this paper

is similar to architectural approaches taken in minicomputer systems

but was developed to directly interface with microprocessor capabilities.

The i/O system presented in this paper is oriented to both bit and byte

digital input and output. Using this basic architecutre, the overall

I/O system may be easily upgraded to handle analog signals through A/D

and D/A converters. Additionally, other special purpose subsystems such

as event sense or relay register options are directly compatible to the

basic bit and byte I/O architecture. With regard to the memory system*

memory modules are commercially available now that parallel the blocked

memory system presented in Chapter III. Verticle communication with the

Level (2) Supervisory computer can be implemented using a simple multi-

plex circuit that switches a "transfer memory module" between the Level

(l) and Level (2) computers.

Present generation eight bit microprocessors primarily support

eight bit data through their instruction set. The Intel 8080 at present

is the only available machine supporting both eight and 16 bit data

manipulation directly through its instruction set. A process control

microprocessor should support at least 12 bit data formats since this

is a common A/D converter width. The 8080 can handle this type of

programming but the limited number of double word instructions included

in its instruction set limits execution speed due to software routines.

The GT 12^8 overcomes this difficulty by including an expanded double

89

word instruction group within its basic instruction set.

No present microprocessor directly supports bit manipulation at

the register level. In order to achieve the execution speed, of bit

oriented instructions enjoyed by minicomputer process control systems,

a microprocessor based system must have hardware support of bit mani

pulation. The Intel 8080 must implement these instructions through

software routines that are costly both in memory space and execution

speed. As an example, the TI 960 minicomputer can set a single bit in

its output system in 7 usee. Using a software routine the Intel 8080

takes approximately 63 usee, for an equivalent operation while the GT

12U8 takes only 5 usee.

The addition of bit manipulation to a microprocessor should

require no major architectural changes. When compared with the Intel

8080, the only additional bit manipulation hardware used on the GT 12^8

included the bit manipulation A register, addition of the B register and

corresponding additions to the control section. With respect to an

increase in chip area, the changes should not be significant * On the

8080, the decimal arithmetic hardware could be replaced with the bit

manipulation hardware.

The advantages of using a microprocessor with a user micropro-

grammable control section have already been voiced [18]. Specific

advantages of this feature have been examined in this paper with respect

to the process control problem. Considerable savings in execution time

and memory required can be gained through this approach since the object

code necessary for a given task is reduced. It is felt that the added

90

cost of implementing the external control store on the GT 12*4-8 will be

offset by subsequent reductions in the amount of program memory required.

In microprocessor based systems, memory cost can easily outweigh the

cost of the microprocessor itself.

In summary, microprocessors should make a significant impact

upon the process control computer market. Present second generation

microprocessors are capable of operating as Level (l) controllers

in operations compatible with their execution speed. In the future

there should be a shift toward an instruction set more oriented toward

16 bit data for process control micropressors . A bit manipulation

capability should also be added to the architecture. As third generation

microprocessors are introduced with lower execution times, the higher

order functions such as multiply and divide will become feasable within

the operation set of the process control microprocessor.

91

APPENDIX A

INPUT MODULE CIRCUITRY

The input system may be composed of different types of modules

for varying input requirements. The standard module is one that accepts

w binary valued input lines. Figure 22 shows the circuitry necessary

for the implementation of this type input module.

Input module circuitry consists mainly of address decoding logic

to select the addressed input module and the necessary logic to allow

the wired-OR connection to the data bus. Since wired-OR connection is

being used, negative logic will be employed on the data bus. That is,

zero volts will represent a logic one and the positive voltage level

will represent logic zero.

Output buffer NAND gates, are open collector type. When a logic

zero (positive logic) is applied to the Module Select Line, the data bus

is free to float with respect to the input module. A logic one applied

to the Module Select Line allows the information present at the input

lines to be transferred to the data bus. The input buffer is optional

and could be used, for level shifting and input protection. The address

decode logic is used to enable the addressed input module. Module

address is set by using jumper wires between the outputs of the true/

invert gates and an AND gate. No provision is made for a ready signal

to the CPU since the speed of the logic used in the input module is much

faster than the sequential operation of the CPU. The read sequence for

the input module follows.

1. CPU gates the address of the input module onto the address bus.

MODULE
SELECT
LOGIC

Figure 22. Input Module Circuit Diagra

2. Address decode logic enables the specified input module and

the state of the input lines is gated onto the data bus.

3. CPU gates the state of the data bus, inverted, into a register

within the CPU.

Operation complete.

9̂

APPENDIX B

INTERRUPT MODULE

Timing and Logic

The logic circuitry necessary to implement the interrupt module

is shown in Figure 23. For each of the four basic interrupt operations

a timing sequence and explanation of operation follows.

A. Read Interrupt Buffer (RIB) Operation.

1. CPU gates n bit address onto the address bus.

2. a. R/W control line is set to the logic one (read) state.

b. Module select logic enables specified interrupt module.

3. The state of the interrupt flip flops is gated onto the data

bus.

b. CPU gates data bus state into an internal register.

This sequence completes the actual RIB operation. Once the interrupt

state is gated into the CPU, the low order q bits of the address register

can be used to sequentially test the interrupt word until a logic one is

found. The corresponding address of the address register would specify

the interrupting device.

B. Set Mask (SMSK) Operation.

1. CPU gates n bit address onto the address bus.

2. a. R/W control line is set to the logic zero (write) state.

b. Module select logic enables specified interrupt module.

3. CPU gates desired mask state onto the data bus.

95

h. OCPl control line is pulsed by the CPU, resulting in the mask

state being transferred into the mask flip flops.

C. Set Individual Interrupt Mask (SIIM) Operation.

1. CPU gates n bit address onto the address bus,

2c a. R/W control line set to logic zero (write) state).

b. Module select logic enables specified interrupt module.

c. Decoder enables specific mask flip flop*

3̂ 0C!P3 control line is pulsed by CPU, resulting in the specified

interrupt mask flip flop being set to the interrupt enable state.

D. Reset Individual Interrupt Mask (RIIM) Operation.

1. CPU gates n bit address onto the address bus.

2. a. R/W control line set to logic zero (write) state.

b. Module select logic enables specified, interrupt module.

c. Decoder enables specific mask flip flop.

3. 0CP2 control line is pulsed by CPU, resulting in the specified

interrupt flip flop being set to the interrupt disable state and the

interrupt flip flop being set to the reset state.

For a possible implementation of the module select logic section,

refer to the circuit diagram of Figure 22 in Appendix A.

MASK INTERRUPT FFfs

ADDRESS
BUS

0CP1

DATA
BUS

Pri.
Int.

Figure 23. Interrupt Module Circuitry

97

APPENDIX C

OUTPUT MODULE CIRCUITRY

Logic necessary for the implementation of the output module is

shown in Figure 24. The module select logic is the same as that found

on the input system modules. The sequence of operation for the two

output system operations follows.

A. Read Full Word (RFW) Operation.

1. CPU gates n bit address onto the address bus.

2. a. R/W control line set to the logic one (read) state.

b. Module select logic enables specified output module.

3- The state of the output flip flops is gated onto the data bus

4. CPU gates the data bus states inverted, into an internal

register.

B. Write Full Work (WFW) Operation.

1. CPU gates n bit address onto the address bus.

2. a. R/W control line set to the logic zero (write) state.

b. Module select logic enables specified output module.

3. CPU gates output word onto the data bus.

4. OCPl control line is pulsed, transferring output word to the

output flip flops driving the output lines.

Physically, several output modules may be packaged on one PC

board in order to save space.

7W
<t

1>
< =

T

DATA
BUS

Figure 24. Output Module Logic Circuitry

99

APPENDIX D

MEMORY MODULE

The memory module must contain circuits for address decoding,

data storage and memory cycle sequencing. If semiconductor data storage

is used, either dynamic or static memory elements may be employed.

Dynamic memory requires circuitry to periodically refresh the binary

storage elements, while static memory requires no refresh circuitry.

Higher bit densities are possible with dynamic as opposed to static

memory, although static memory modules are easier to design since they

require no refresh circuits. Figure 25 shows the organization of a 2r

word by w bit static memory using 2 word by m bit memory chips. In

general, the rules [20] for wiring the array of Figure 25 are as follows:

1. All corresponding power supply leads are made common through

out the array.

2. The write enable signal is made common throughout the array.

3. All corresponding addresses are made common throughout the

array.

k. Corresponding data input and data output leads are made common

within array columns.

5. Corresponding chip select leads are made common within each

row. The function of the chip select leads is to permit the array inter

connection. When conditions for chip, i.e., row, selection are not met,

no input signal can affect the contents of that row. Nor does any

100

v input leads

(w/m groups of m leads each)

y ^ • \

(Input buffers
as required)

2<p-k) lines
to chip selects

CS
INI 0UT1

INm OUTm

CS
INI 0UT1

INm OUTm

o o
m.s.b.

MODULE

SELECT

DECODER

• •

CS
INI 0UT1

INm OUTm

CS
INI 0UT1

INm OUTm

• T
w output leads

(w/m groups of m leads each)

DATA
IN

CONTROL

LOGIC

rr i
RA/ 0CP1 READY

1 DATA
OUT-

• MULTIPLEX

k address lines
common to all
packages in array

DATA BUS

Figure 25. Memory Module Circuitry

101

unselected. chip affect the signals on the data output lines to which it

is connected. Thus the chip select lead permits output leads to be 0R-

tied and eliminates the necessity to decode the write pulse signal.

Further, the module select logic decodes the high order (n-p)

bits of the address to enable the correct memory module. The control

logic gates data onto the data bus throug the multiplex circuit (MPX)

whenever the R/W control line is in the read (logic l) state and the

module is enabled. The Ready line indicates to the CPU that valid data

is present on the data bus. When the R/W line is in the write (logic 0)

state and the module is enabled, data is gated from the data bus into

the input leads of the memory chips. The normal state of the R/W

control line should be in the logic zero (write) state.

Figure 26 shows the timing sequence for the read operation.

First, the address is sent out over lines A-. _ - A of the address bus.

This address enables the correct memory module, but at this point the

ready line is unaffected. Upon receiving the read signal from the R/W

line, the memory module recognizes that a read operation upon the speci~

fied address is being performed. The ready line is then pulled to the

low state so that the CPU will not erroneously input bad data during

the memory access time. Once valid data has been loaded into an output

buffer within the memory module, the module indicates ready and the CPU

subsequently inputs this data and sets the R/W line to the zero state.

This signals the memory module to complete the memory cycle time in the

case of dynamic semiconductor or core type memories.

Figure 27 shows the timing sequence for the write operation. The

ADDRESS

DATA

R/W

READY

0CP1

WRITE
ENABLE

*i
] Memory Cycle Time

M w .

r Address Stable \
fek
w

i A Data Stable
k.

1 -

0

1 .

/

Transfer

J*

1 -

0

1 .

/

\ ^ x ^ Completed

fc

1 -

0

1 . i ' I i
w

0

1 -

\ L Access
\ Time

/ \ Complete the
/ \ Cycle Time

/ . 0

1 -

w

fen
0

1 •

0

p

hh

0

1 •

0 w

Figure 26. Memory Read Timing Sequence

ADDRESS

DATA

R/W

READY

0CP1

WRITE
ENABLE

1--

<
Memory Cycle Time

Complete the
Cycle Time

Figure 27. Memory Write. Timing Sequence

10U-

address is first sent out as in the read operation. Next data is sent

out over the data bus, D - D , and the 0CP1 line indicates to the

memory module that valid data is present on the data bus. This signals

the memory module to start a write cycle and the ready line is pulled

down to the low state until the data has been written. When the ready

line again indicates ready the CPU can set the 0CP1 line to the zero

state. This action indicates to the memory module to signal not ready

if the memory cycle time must be completed so that a subsequent memory

access cannot be made until the memory is ready.

Memory module timing as shown here is compatible both with the

Intel 8080 and GT 12^8 theoretical microprocessor.

105

APPENDIX E

BASIC INSTRUCTION SET FOR THE GT 12^8

Table 15 gives a list of the symbols and their meanings as they

are used throughout this appendix.

In order to differentiate between those members of the GT 12*4-8

instruction set that are essentially the same as those found in the

Intel 8080 and those members that have been added in an effort to

support the process control environment, new instructions will be pre-

ceeded by an asterisk.

io6

Table 15. Programming Symbols

Symbol Meaning

•f-Vi

 The n byte of the instruction
n J

r One of the CPU registers A,E,F,X,
Y,U,V or B

r One of the CPU registers H,L,E,F,
X or Y

dd One of the double registers HL, EF,
XY, UV, GK, SP, PL or MAR.

dd.. One of the double registers HL, EF,
1 XY or UV

dd~ One of the double registers EF, XY,
^ UV or GK

() Contents of register

[] Contents of memory

Ag Bit B of the A register

«- Is transferred to

«- Is exchanged with

b Single bit addressed by [adr.]

ddH High eight bits of the double register

ddL Low eight bits of the double register

107

Single Register and Memory Instructions

Mnemonic
Flags
Affected

Description of Operation

MOV r n l a 5 r l b A l l (p l a } - (r l b }

MOV M, r l
A l l [(HL)] - (r x)

MOV r , M A l l (r x) - [(HL)]

MVI r x A l l (r ,) - <B2>

MVI M A l l [(HL)] - <B2>

*MVII M A l l [<B2XB >] - <B^>

INR r± A l l (r l) *" ^ r l ^ + 1

DCR r x A l l (r ,) - (r x) - 1

INR M A l l t (H L)] - C (H) (L)]+ 1

DCR M A l l [(HL)] - [(HL)] - 1

*INRI M A l l [<B 2XB 3>] - [<B 2 XB 3 >] + 1

*DCRI M A l l [<B 2XB 3>] - [<B 2 XB 3 >] «= 1

Double R e g i s t e r and Memory I n s t r u c t i o n s

Mnemonic
Flags

Affected
Description of Operation

INX dd None

DCX dd None

*IWX M C,S

*DCX M C,S

*INXI M C.S

(dd) - (dd) + 1

(dd) - (dd) - 1

[(HL) +1][(HL)] - [(HL) + 1][(HL)] + 1

[(HL) + 1][(HL)] - [(HL)] + 1][(HL)] - 1

[<B2XB2> + 1][<B2XB3>] - [<B2XB3> + 1]

[<B2XB3>] + 1

108

*DCXI M C,S

LXI dd s

MOVX dd ,
a ' d d b

None

STDD dd None

LDDD dd, None

*STID ddg None

*LDID d d 2 None

DAD dd S,C

*DADI M S,C

*CMD H None

*TCMP H None

*TCSM H S

<B2XB3> + 1] [<B 2 XB 3 >] - [<B2XB3> + 1]

<B2XB3>] - 1

dd) - <B2XB >

d d j - (dd^)

<B2XB3> + 1] [<B 2 XB 3 >] - (dd 1)

dd^) - [<B2XB3> + 1][<B2><B3>]

(HL) + 1] [(HL)] - (dd 2)

ddg) - [(HL) + 1] [(HL)]

HL) - (HL) + (d ^)

HL) - (HL) + [< B 2 X B > + 1] [<B 2 XB >]

HL) - (HL)

HL) «- two's complement (HL)

convert two's complement (HL) to sign/
magnitude

*RLCH

*KRCH

*RALH

*RARH

*CMHDX

*CMHD dd.

*CMHD M

c —L H LJ
c +-U. H L

H P

m> * H •
If (HL) = <B2XB > then (Z) - 1

(HL) > <B2XB > then (c) - 1

If (HL) = (dd) then (Z) - 1

(HL) > (dd) then (C) - 1

If (HL) = [(XY)+1][(XY)] then (Z>-1

(HL) > [(XY)+1][(XY)] then (C>-1

B
03 f->

~ P
o <*-»

•H £
<D

aj i-i

« O
o

109

Accumulator Group I n s t r u c t i o n s

Mnemonic
Flags
Affected Description of Operation

LDA

STA

CMA

CIA

STAX EF

STAX HL

LDAX EF

LDAX HL

RLC

RRC

RAL

RAR

ADD rr

c

SUB r2

AM r2

XRA r^

ORA r„
c

CMP r̂

ADD M

SUB M

All

All

All

All

All

All

All

All

All

All

All

All

All

A l l

A l l

(A) - [<B2XB3>]

[<B 2XB 3>] - (A)

(A) - (A)

(A) - 0

[(EF)] - (A)

[(HL)] - (A)

(A) - [(EF)]

(A) - [(HL)]

C * D
J j A U

• \iH£y
Q n

(A) - (A) + (r 2)

(A) *- (A) - (rp) two's complement

(A) - (A) A (r0)

(A) - (A) ¥ (r2)

(A) - (A) V (rg)

If (A) = (r2) then (Z) - 1

(A) > (r2) then (C) - 1

(A) - (A) + [(HL)]

(A) - (A) - [(HL)]

Both
quantities
positive

110

ANA. M All

X M M All

ORA M All

CMP M

ADI All

SBI All

ANI All

XRI All

ORI All

CPI

(A) - (A) A [(HL)]

(A) - (A) ¥ [(HL)]

(A) - (A) V [(HL)]

If (A) = [(HL)] then (Z) - 1

(A) > [(HL)] then (c) - 1

(A) - (A) + <B2>

(A) - (A) - <B2>

(A) - (A) A <$2>

(A) - (A) ¥ <B2>

(A) - (A) V <B2>

If (A) = <B2> then (z) - 1

(A) > then (c) - 1

Program Counter and Stack I n s t r u c t i o n s

Mnemonic Flags
Affected

Description of Operation

CALL None

RET None

*PUSH A None

* POP A None

JMP None

JC None

JNC None

JZ None

JNZ None

[(SP)] - 1] [(SP) - 2] - (PC), (SP) - (SP)

-2 (PC) - <B2XB3>

(PC) - [(SP) + 1] [(S P)] } (SP) - (SP) + 2

[(SP) - 1] - (A), (SP) - (SP) - 1

(A) - [(S P)] , (SP) - SP) + 1

(PC) - <B2XB > (e q u i v a l e n t t o LXI PC)

I f (C) = 1 then (PC) - <BgXB >

I f (C) = 0 then (PC) - <B X B >

I f (Z) = 1 then (PC) - <B X B >

I f (Z) = 0 t hen (PC) - <B2>

Ill

JP None

JM None

JPE None

JPO None

PUSH dd, None

POP dd_̂ None

XTHL None

Bit Oriented Instructions

I f (S) = 1 then (PC) - <BgXB >

I f (S) = 0 then (PC) - <B X B >

I f (P) = 0 then (PC) - <B X B >

I f (P) = 1 then (PC) - < B X B >

[(SP) - 1] [(SP) - 2] - (d d x) ? (SP) -

(SP) - 2

(dd 1) - [(SP) + 1] [(S P)] , (SP) - (SP) + 2

(L) £ [SP] ^ [(SP) + 1] , (SP) unchanged

Mnemonic

*SMB

*KMB

*SMBI

*RMBI

*RIIM

HLT

Flags
Af fec ted

None

None

None

None

*TMBI

*SEA None

*RBA None

*SIIM None

None

None

D e s c r i p t i o n of Opera t ion

b H L ^

b HL<~°

b <B 2 XB.> *" 1

b <B 2 XB 3 > ~ °

I f b _ = 1 then (c) - 1 e l s e (c) «- 0
rlu

I f b ^ _ ^ = 1 then (c) - 1 e l s e (C) - 0
Kti^Xxi^^

h-1

h"°
The mask flip flop addressed by (HL) is
set

The mask flip flop addressed by (HL) is
reset

CPU is stopped. Upon receipt of an
interrupt the next sequential instruction
is executed

112

NOP None

EI None

DI None

STC

CFL

Microprogram Routines

No operation

Enable primary interrupt

Disable primary interrupt

(C)-l

(c) - (c)

Symbolic
Location Microcode

States Required
(less fetch)

FETCH

DFETCH

MOV rr

MOVMr

MOVrM

DR; (MAR) - (PC), (PC) - (PC) + 1,

(I/O) - 1

JMP Read, *

FETCH S, (I/O) - 0

DR; (MAR) «- (PC), (PC) «- (PC) + 1,

(I/O) - 1

JMP Read, *

FETCH D5 (I/O) - 0

RC; (D) •- (r_) Single microcode
instruction if transfer

RC; (r) «- (D) is not stack to stack.

JMP(l) Fetch

DR; (MAR) - (HL)

RC; (D) - (r^, (0P1) - 1

JMP Write, *

JMP(l) Fetch

DR; (MAE) «- (HL), (i/o) «- 1

JMP Read, *

2-3

113

MVIr

MVIM

MVIIM

RC; (rx) - (DP), (i/o) - 0

JMP(l) Fetch

DR; (MAR) - (PC), (PC) - (PC) + 1,

(I/O) - 1

JMP Read, *

RC; (rx) - (DP), (i/O) - 0

JMP(l) Fetch

DR; (MAR) - (PC), (PC) «- (PC) + 1,

(I/O) - 1

JMP Read, *

RC; (D) - (DP), (I/O) - 0

DR; (MAR) «- (HL)

PULSE SET OP1

JMP Write *

JMP(l) Fetch

DR: (MAR) - (PC), (PC) - (PC) + 1,

(I/O) - 1

JMP Read, • *

RC; (W) - (DP), (I/O) - 0

DR; (MAR) - (PC), (PC) - (PC) + 1,

(I/O) - 1

JMP Read, *

RC; (M) - (DP), (I/O) - 0

DR; (MAR) - (PC), (PC) - (PC) + 1,

(I/O) - 1

JMP Read, *

13

RC; (D) - (DP), (I/O) - 0

DR; (MAR) «- (WM)

PULSE SET OPl

JMP Write, *

JMP(l) Fetch

INRr RC; (r) - (i^) + 1

JMP(l) Fetch

DCRr RC; (D) - (i^)

RC; (r) - (D) + zero

JMP(l) Fetch

INRM DR; (MAR) - (HL), (l/o) - 1

JMP Read, *

RC; (D) <- (DP) + 1, (I/O) - 0

PULSE SET OPl

JMP Write, *

JMP(l) Fetch

DCRM DR; (MAR) - (HL), (l/o) - 1

JMP Read, * .

RC; (D) - (DP) + zero, (l/o) - 0

PULSE SET OPl

JMP Write, *

JMP(l) Fetch

INRIM DR; (MAR) - (PC), (PC) - (PC) + 1,

(I/O) - 1

JMP Read, *

RC; (W) - (DP), (I/O) - 0

115

DR; (MAR) - (PC), (PC) - (PC) + 1

(I/O) - 1

JMP Read, *

RC; (M) - (DP), (I/O) - 0

DR; (MAR) «- (WM), (i/o) - 1

JMP Read, *

RC; (D) - (DP) + 1, (I/O) «- 0

PULSE SET OP1

JMP Write, *

JMP(l) Fetch

DCRIM Same microcode as above except 12

that line DCRIM + 8 is as follows:

RC; (D) *- (DP) + zero, (i/O) «- 0

INXdd DR; (dd) - (dd) +1 2

JMP(l) Fetch

DCXdd DR; (dd) - (dd) - 1 2

JMP(l) Fetch

IMXM DR; (MAR) - (HL), (HL) - (HL) + 1, 12

JMP Read, *

RC; (M) - (DP) + 1, (I/O) «- 0

DR; (MAR) - (HL), (HL) «- (HL) - 1,

(I/O) - 0

JMP Read, *

RC; (D) - (DP) + (C), (I/O) - 0

PULSE SET OPl

JMP Write, *

116

DR; (MA.R) - (HL)

RC; (D) - (M), (OPl) - 1, no flags set

JMP Write, *

JMP(l) Fetch

DCXM Same microcode as above except that 12

line DCXM + 2 is as follows:

RC; (M) - (DP) + zero, (l/o) - 0

and line DCXM + 5 is as follows:

RC; (D) - (DP) + zero + (c), (l/o) - 0

INXIM DR; (MAS) - (PC), (PC) - (PC) + 1, 18

(I/O) - 1

JMP Read, *

RC; (W) - (DP), (I/O) - 0

DR; (MAR) - (PC), (PC) - (PC) + 1,

(I/O) - l

JMP Read, *

RC; (M) «- (DP), (I/O) - 0

remainder of code same as that of INXM

except substitute (WM) for (HL)

DCIM Same microcode as INXIM but change 18

line DCXIM + 8 to:

RC; (D) - (DP) + zero, (l/o) - 0

and. line DCXIM + 11 to:

RC; (D) - (DP) + zero + (C), (l/o) - 0

LXIdd DR; (MAR) - (PC), (PC) - (PC) + 1, 7

117

(I/O) - 1

JMP Read, *

RC; (ddH) «- (DP), (i/o) «- 0

DR; (MAR) - (PC), (PC) - (PC) + 1,

(I/O) - 1

JMP Read, *

RC; (ddL) - (DP), (i/O) - 0,

no flags set

JMP (1) Fetch

MOVXdd DR; (dd) - (dd^) 2

JMP(l) Fetch

STDDdd DR; (MAR) - (PC), (PC) - (PC) + 1 13

JMP Read, *

RC; (W) *- (DP), (I/O) «- 0, no flags set

DR; (MAR) - (PC), (PC) - (PC) + 1,

(I/O) - 1

JMP Read, *

RC; (M) - (DP), (I/O) - 0, no flags set

DR; (MAR) «- (WM), (WM) - (WM) + 1

RC; (D) - (dd1L), (OPl) - 1, no flags set

JMP Write, *

DR; (MAR) - (WM)

RC; (D) - (dd.^), (OPl) - 1, no flags set

JMP Write, *

JMP(l) Fetch

118

LDDDdd Same microcode as for STDDdd but change 13

LDDDdd + 6 through LDDDdd + 12 to:

DR; (MAE) - (WM), (WM) - (WM) + 1,

(I/O) - 1

JMP Read, *

RC; (dcLL) «- (DP), (l/o) «- 0, no flags set

DR; (MAR) «- (WM), (l/o) «- 1

JMP Read, *

RC; (dd-H) «- (DP), (l/o) - 0, no flags set

JMP(l) Fetch

STIDdd DR; (MAR) - (HL), (HL) - (HL) + 1 7

RC; (D) «- (ddpL), (OPl) «- 1, no flags set

JMP Write, *

DR; (MAR) - (HL), (HL) - (HL) - 1

RC; (D) «- (ddgH), (OPl) - 1, no flags set

JMP Write, *

JMP(l) Fetch

LDIDdd DR: (MAR) - (HL), (HL) - (HL) + 1 , J

(I/O) - 1

JMP Read, *

RC; (ddgL) - (DP), (l/o) «- 0, no flags set

DR; (MAE) - (HL), (HL) «- (HL) - 1, (l/o) «- 1

JMP Read, *

RC; (dd2H) - (DP), (l/o) - 0, no flags set

JMP (1) Fetch

119

DADdd RC; (D) «- (dc^L) 5

RC; (L) - (D) + (L)

RC; (D) «- (dd H), no flags set

RC; (H) - (D) + (H) + (C)

JMP(l) Fetch

DADIM DR; (MAR) «- (PC), (PC) «- (PC) + 1, 17

(I/O) - 1

JMP Read, *

RC; (W) - (DP), (I/O) «- 0

DR; (MAR) - (PC), (PC) «- (PC) + 1,

(I/O) - 1

JMP Read, *

RC; (M) «- (DP), (I/O) - 0

DR; (MAR) - (WM), (WM) - (WM) + 1,

(I/O) - 1

JMP Read, *

RC: (D) - (DP) + (L),(l/0) - O

PULSE SET OP1

JMP Write, *

DR; (MAR) - (WM), (l/o) «- 1

JMP Read, *

RC; (D) - (DP) + (H) + (c), (l/o) - 0

PULSE SET OP1

JMP Write, *

JMP(l) Fetch

120

CMDH DR; (HL) «- (HL) 2

JMP (1) Fetch

TCMPH DR; (HL) «- (HL) 3

DR; (HL) «- (HL) + 1

JMP(l) Fetch

TSCM RC; (H) - (H) (flags set) 3-8

JMP(O) S, TCSMI

DR; (HL) - (HL)

DR; (HL) - (HL) + 1

RC; (A) - (H)

PULSE SET iU

RC; (H) - A

TCSMI JMP(l) Fetch

Subroutine for left shift (HL), (c) -m.s.b.

LSHL RC; (D) - (L) 5

RC; (L) - (D) + (L)

RC; (D) - (H), no flags

RC; (H) - (D) + (H) + (c)

JMP Return

RLCH JMP Subr., LSHL 8

RC; (L) - (L) + (C), no flags

JMP(l) Fetch

RALH JMP(l) C, RBS3 8-9

JMP Subr., LSHL

JMP(l) Fetch

121

RBS3 . JMP Subr., LSHL

RC; (L) - (L) + 1

JMP(l) Fetch

Subroutine for right shift (HL), (C) - l.s.b.

SRHL RC; (H) - rotate right (H) 7-8

JMP(l) C, KBSk

RC; (L) - rotate right (L)

EMIT; (D) - Olllllllg

RC; (L) - (D) A (L)

RBS5 RC; (H) - (D) A .(H)

JMP Return

RBŜ + RC; (L) - rotate right (L)

EMIT; (A) - 100000002

RC; (L) - (A) V (L)

JMP(O) RBS5

RRCH JMP Subr., SRHL 10-12

JMP(O) C, ADRI

RC; (H) - (A)• V (H)

ADRI JMP(l) Fetch

RARH JMP(O) C, RARH1 10-12

JMP Subr., SRHL

RC; (H) - (A) V (H)

JMP(l) Fetch

RARH1 JMP Subr., SRHL

JMP(l) Fetch

122

Microprogram Routine to perform the double word compare between (HL)

and (WM)

CMHW RC; (H) «- (H) 11-21

JMP(o) S, B0B2

RC; (W) - (W)

JMP(O) S, B0B1

JMP(O) CMPROU

BOB1 Pulse Reset C

JMP(l) Fetch

B0B2 RC; (W) «- (W)

JMP(O) S, SMPROU

PULSE SET C

JMP(l) Fetch

CMPROU RC; (D) - (L)

RC; (M) - (D) - (M)

JMP(l) Z5 CMPROUI

RC; (D) - (H), no flags

RC; (W) - - (W), no flags

RC; (W) - (D) + (W) + (C)

RC; (M) - Zero V (M)

JMP(l) Fetch

CMPROUI RC; (D) «- (H), no flags

RC; (W) *- -(W), no flags

RC; (W) *- (D) + (W) + (C)

JMP(l) Fetch

123

CMHDX DR; (MAR) - (PC), (PC) «- (PC) + 1, 18-28

(I/O) - 1

JMP Read, *

RC; (VI) <• (DP), (I/O) - 0

DR; (MAJR) «- (PC), (PC) «- (PC) + 1,

(I/O) - 1

JMP Read, *

RC; (M) *-• (DP), (I/O) - 0

JMP(O) CMHW

CMHDdd DR; (WM.) - (dd) 13-23

JMP(O) CMBW

CMEDM DR; (MAK) - (XY), (XY) «- (XY) + 1, 18-28

(I/O) - 1

JMP Read, *

RC; (M) - (DP), (I/O) - 0

DR; (MAR) «« (XY), (XY) *~ (XY) - 1,

(I/O) - 1

JMP Read, *

RC; (W) - (DP), (I/O) - 0

JMP(O) (MM

LDA DR; (MAR) - (PC), (PC) «-- (PC) + 1, 10

(I/O) - 1

JMP Read, *

RC; (W) «•- (DP), (I/O) «- 0

DR; (MAR) - (PC), (PC) - (PC) + 1,

(l/0)-l

124

JMP Read, *

RC; (M) - (DP), (I/O) - 0

DR; (MAR) - (WM), (l/o) - 1

JMP Read, *

RC; (A) - (DP), (I/O) - 0

JMP(l) Fetch

STA DR; (MAR) - (PC), (PC) - (PC) + 1, 10

(I/O) - 1

JMP Read, *

RC; (W) - (DP), (I/O) - 0

DR; (MAR) - (PC), (PC) «- (PC) + 1,

(I/O) - 1

JMP Reat, *

RC; (M) «- (DP), (I/O) - 0

DR; (MAR) - (WM)

RC; (D) - (A), (0P1) - 1

JMP Write, *

JMP(l) Fetch

CMA RC; (A) «- (A) 2

JMP(l) Fetch

CIA RC; (A) «- zero + zero 2

JMP(l) Fetch

STAXEF DR; (MAR) - (EF) h

RC; (D) - (A), (0P1) - 1

JMP Write, *

JMP(l) Fetch

LDAXEF

RLC

RRC

RAL

RAL1

RAR

RAR1

ADDr

SUBr

DR; (MAR) «- (EF), (i/o) - 1

JMP Read, *

RC; (A) - (DP), (I/O) - 0

JMP(l) Fetch

RC; (A) <- rotate right (A)

JMP(l) Fetch

RC; (A) «- rotate left (A)

JMP(l) Fetch

JMP(O) C, RAL1

RC; (A) «- rotate left (A)

PULSE SET A o

JMP(l) Fetch

RC; (A) - rotate left (A)

PULSE Reset A
o

JMP(l) Fetch

JMP(O) C, RAR1

RC; (A) •- rotate right (A)

PULSE SET A,-,

JMP(l) Fetch

RC; (A) - rotate right (A)

PULSE Reset A7

JMP(l) Fetch

RC; (A) - (A) + (r2)

JMP(l) Fetch

RC; (A) - (A) + (r7) + 1

JMP(l) Fetch

ANAr RC; (A) - (A) A (i^)

JMP(l) Fetch

XRAr RC; (A) «- (A) ¥ (rg)

JMP(l) Fetch

ORAr RC; (A) - (A) V (rg)

JMP(l) Fetch

CMPr RC; (W) - (A) + (̂~) + 1

JMP(l) Fetch

ADD M DR; (MAR) - (HL), (l/o) - 1

JMP Read, *

RC; (A) - (A) + (DP), (I/O) - 0

JMP(l) Fetch

SUBM DR; (MAR) - (HL), (l/o) - 1

JMP Read, *

RC; (A) - (A) + (DP) + 1, (l/o) - 0

JMP(l) Fetch

ANA M DR; (MAR) «- (HL), (l/o) «- 1

JMP Read, *

RC; (A) «- (A) A (DP), (l/o) «- 0

JMP(l) Fetch

XRA M DR; (MAR) - (HL), (l/o) «- 1

JMP Read, *

RC; (A) - (A) + (DP), (l/o) - 0

JMP(l) Fetch

ORA M DR; (MAR) «- (HL), (l/o) «- 1

JMP Read, *

127

RC; (A) - (A) V (DP), (i/o) - 0

JMP(l) Fetch

CMIM DR; (MAR) - (HL), (i/o) «- 1 k

JMP Read, *

RC; (W) - (A) + (DP) + 1,

(I/O) - 0

JMP(l) Fetch

ADI, SBI, ANI, XRI, ORI and CPI have the same microcode as ADD M, SUB M,

ANA M, XRA M, ORA M, CMP M except that the first line of each should be

changed to:

CALL

DR;

(I/O

DR;

RC;

JMP Write, *

DR;

RC;

DR;

(I/O

MAR) - (PC), (PC) - (PC) + 1,

- 1

MAR) - (SP) - 1, (SP) <- (SP) - 1

D) - (PCH), (OP1) - 1, no flags

1^

MAR) - (SP)- 1, (SP) - (SP) - 1

D) «- (PCL), (0P1) - 19 no flags

JMP Write, *

MAR) - (PC), (PC) - (PC) + 1,

- 1, no flags

JMP Read, I

RC; (W) - (DP), (I/O) - 0, no flags

DR; (MAR) - (PC), (i/o) - 1

JMP Read, *

RC; (M) - (DP), (I/O) «- 0, no flags

128

DR; (PC) «- (WL)

JMP(l) Fetch

RET DR/ (MAR) - (SP), (SP) «- (SP) + 1, 7

(I/O) - 1

JMP Read, *

RC; (PCL) «- (DP), (I/O) - 0, no flags

DR; (MAR) «- (SP), (SP) - (SP) + 1,

(I/O) - 1

JMP Read, *

RC; (PCH) - (DP), (I/O) - 0, no .Clags

JMP(l) Fetch

PUSH A DR; (MAR) - (SP) - 1, (SP) - (SP) - 1 k

RC; (D) «- (A), (0P1) - 1, no flags

JMP Write, *

JMP(l) Fetch

POP A DR; (MAR) - (SP), (SP) - (SP) + 1, k

(I/O) - 1

RC; (A) - (DP), (I/O) - 0, no flags

JMP(l) Fetch

The following microcode segment is common to all conditional Jump

routines.

JP1 DR; (PC) «- (PC) + 1

DR; (PC) - (PC) + 1

JMP(l) Fetch

The u n c o n d i t i o n a l JMP <B2XB > i s equ iva l en t t o t h e LXI PC <B X B >

machine language instruction which has already been microprogrammed.

JC JMP(O) C, JP1 k-8

DR; (MAR) «- (PC), (WM) - (PC) + 1,

(I/O) - 1

JMP Read, *

RC; (PCH) - (DP), (I/O) - 0, no flags

DR; (MAR) - (WM), (i/o) - 1

JMP Read, *

RC; (PCL) - (DP), (I/O) - 0, no flags

JMP(l) Fetch

The remainder of the conditional jump routines have the same microcode

as in JC, except for the first line of code in each.

PUSHdd DR; (MAR) - (SP) - 1, (SP) - (SP) - 1 7

RD; (D) «- (ddxH), (OPl) - 1, no flags

JMP Write, *

DR; (MAR) - (SP) - 1, (SP) - (SP) - 1

RC; (D) «- (ddxL), (OPl) - 1, no flags

JMP Write, *

JMP(l) Fetch

POPdd DR; (MAR) - (SP), (SP) «- (SP) + 1, 7

(I/O) - 1

JMP Read, *

RC; (ddLL) - (DP), (i/o) - 0, no flags

DR; (MAR) - (SP), (SP) - (SP) + 1, (i/o) - 1

JMP Read, *

130

RC; (dd H) - (DP), (l/o) - 0, no flags

JMP(l) Fetch

XTHL DR; (WM) «- (HL) 12

DR; (MAR) - (SP), (SP) «- (SP) + 1,

(I/O) - 1

JMP Read, *

RC; (L) - (DP), (I/O) - 0, no flags

RC; (D) «- (M), (OPl) - 1, no flags

JMP Write, *

DR; (MAR) - (SP), (SP) - (SP) - 1,

(I/O) - 1

JMP Read, *

RC; (H) - (DP), (I/O) - 0, no flags

RC; (D) - (W), (OPl) - 1, no flags

JMP Write, *

JMP(l) Fetch

SMB DR; (MAR) - (HL), (l/o) «- 1 7

JMP Read, *

RC; (A) - (DP), (I/O) - 0, no flags

PULSE SET AB

RC; (D) - (A), (OPl) - 1, no flags

JMP Write, *

JMP(l) Fetch

RMB The RMB routine has the same microcode as 7

the SM3 routine except that line RMB + 3

131

should be: PULSE Reset A

SMBI DR; (MAR) - (PC), (PC) «- (PC) + 1, 13

(I/O) - 1

JMP Read, *

RC; (W) - (DP), (I/O) - 0, no flags

DR; (MAR) - (PC), (PC) - (PC) + 1,

(I/O) - 1

JMP Read, *

RC; (M) - (DP), (I/O) - 0, no flags

DR; (MAR) - (WM), (i/o) «~ 1

JMP Read, *

RC; (A) «- (DP), (I/O) - 0, no flags

PULSE SET A_
B

RC; (D) - (A), (OPl) «- 1, no flags

JMP Write, *

JMP(l) Fetch

RMBI The RMBI routine has the same microcode 13

as the SMBI routine except that line RMBI

+ 9 should be: PULSE Reset A^

TMB DR; (MAR) - (HL), (i/o) - 1 6

JMP Read, *

RC; (A) - (DP), (I/O) - 0, no flags

JMP(l) A,,, TMB2

PULSE Reset C

JMP(l) Fetch

TMB2 PULSE Set C

JMP(l) Fetch

TMBI DR; (MAR) - (PC), (PC) *- (PC) + 1, 12

(I/O) - 1

JMP Read, *

RC; (W) - (DP), (I/O) - 0 , no flags

DR; (MAE) - (PC), (PC) - (PC) + 1,

(I/O) - 1

JMP Read, *

RC; (M) - (DP), (I/O) - 0, no flags

DR; (MAR) - (WM), (i/O) - 1

JMP Read, *

RC; (A) - (DP), (I/O) - 0, no flags

JMP(l) AB, TMBI2

PULSE Reset C

JMP(l) Fetch

TMBI2 PULSE Set C

JMP(l) Fetch

SEA PULSE Set AB 2

JMP(l) Fetch

RBA PULSE Reset A_ 2

JMP(l) Fetch

SUM DR; (MAR) - (HL) 3

PULSE 0P2 - pulse (multiplexed to 0CP3)

JMP(l) Fetch

RIIM DR; (MAR) «- (HL) 3

PULSE 0P2 - pulse (multiplexed to 0CP2)

JMP(l) Fetch

HLT JMP(O) Pri. Int., * k

PULSE DI

PULSE EI

JMP(l) Fetch

NOP JMP(l) Fetch 1

EI PULSE EI 2

JMP(l) Fetch

DI PULSE DI 2

JMP(l) Fetch

STC PULSE Set C 2

JMP(l) Fetch

CFL RC; (W) - (A), no flags 6

RC; (A) - (PSW), no flags

PULSE Comp. A o

RC; (PSW) - (A), no flags

RC; (A) «- (W), no flags

JMP(l) Fetch

13^

APPENDIX F

INTEL 8080 PROCESS CONTROL ROUTINES

The following 8080 machine language routines are the approximate

equivalent of corresponding instructions found in the GT 12̂ -8 instruction

set.

Set Memory Bit (SMB) Instruction

The bit addressed by the contents of double register HL is set to

a logic one.

Memory Location Mnemonic Action

SMB

Base

MOV A,M

XCHG

MOV A,E

ANI<00000111>

MOV L,A

XRA A

MOV H,A

LXIB<Base>

DAD B

PCHL

JMP ABITO

JMP ABITI

(A) «- word containing

the bit

(DE) *- word address

(HL) «- bit position

(BC) - Base

(HL) *- vector address

Jump to vector

ABITO

ABIT1

ABIT2

ABIT3

ABITU

ABIT5

ABIT6

ABIT7

BOB

JMP ABIT2

JMP ABIT3

JMP ABITk

JMP ABIT5

JMP ABIT6

JMP ABIT7

ORI<00000001>

JMP BOB

ORI<00000010>

JMP BOB

0RI<00000100>

JMP BOB

ORI<00001000>

JMP BOB

ORI<00010000>

JMP BOB

ORI<0OlOOOOO>

JMP BOB

ORI<01000000>

JMP BOB

ORI<LOOOOOO>

XCHG

MOV M,A

RET

vectors

set desired bit

(HL) •- word address

[(HL)] - (A)

Return to main program

136

Set Memory Bit Immediate (SMBl) Instruction

The bit addressed by an immediate address is set to a logic one.

The following code could be written into the control program.

Memory Location Mnemonic Action

LXI H <Adr.>

CALL SMB

(HL) is loaded with the

immediate address

Call the SMB Subroutine

Test Memory Bit (TMB) Instruction

The bit addressed by the contents of double register HL is tested.

If b ^ = 0, then (Z) - 1.

Memory Location Mnemonic Action

TMB

Basel

MOV A,M

MOV A,L

ANI<00000111>

MOV L,A

XRA A

MOV, H,A

LXI B <Basel>

DAD B

PCHL

JMP BBITO

JMP BBIT1

JMP BBIT2

JMP BBIT3

(A) •- word containing

the bit

(HL) •- bit position

(BC) - Basel

(HL) •- vector address

Jump to vector

137

BBITO

BBIT1

JMP BBIT*+

JMP BBIT5

JMP BBIT6

JMP BBIT7

ANI<00000001>

RET

ANI<00000010>

RET

vectors

set (Z) and return

BBIT7 ANI<10000000>

RET

Test Memory Bit Immediate (TMBl) Instruction

The bit addressed by an immediate address is tested as in the

TMB instruction.

Memory Location Mnemonic Action

LXI H <Adr.>

CALL TMB

(HL) is loaded with the

immediate address

Call the TMB Subroutine

Set A Register Bit (SBA) Instruction

The desired bit of the A register, specified by the contents of

double register HL, is set to logic one. All other bits are unchanged.

138

Memo ry Location Mnemonic Action

SM

Base2

BIT1

LXI D <Base2>

DAD D

PCHL

JMP BITO

JMP BIT1

JMP BIT2

JMP BIT3

JMP BITU

JMP BIT5

JMP BIT6

JMP BIT?

0RIO0000001>

RET

(DE) - Base2

(HL) •- vector address

Jump to vector

vectors

set desired hit and return

BIT7 ORI<LOOOOOOO>

RET

Set Individual Interrupt Mask (SUM) Instruction

The address of a specified interrupt mask is sent out over the

address bus and the 0CP3 control line is pulsed. The 8080 pulses the

WR line during a write operation and this line is normally connected to

the 0CP1 control line. The SUM instruction must temporarily connect

139

WR to 0CP3 and pulse this line while the address of the mask is valid.

This short section of code could probably best be written inline in the

main program.

Memory Location Mnemonic Action

OUT OCP3> WE is connected to 0CP3

STA5 Address Mask is set

OUT* <0CP1> WR is connected to OCPl

1̂ 0

APPENDIX G

ROBOT CONTROL PROGRAMS

Main Control Routine

The following routine is divided into the steps presented in

Figure 21.

GT 1214-8
Number Location Mnemonic

Intel 8080
Location Mnemonic

12 UPDATE

13

Ik

15

CIA UPDATE XRA A

STA,FLAG STA,FLAG

IWXI,ESW LHLD,PSW

IWX H

SHLD,PSW

CMHDX<end> MOV A,H

JZ, End Routine SUKend H>

JNZ? Compute

MOV A,L

SUKend L>

JZ, End Routine

DAD HL COMPUTE DAD H

DAD HL DAD H

DAD HL DAD H

DAD HL DAD H

lUl

START

CONVERT

LDDD EF?PBW

DAD EF

STDD HL,CPS

LDA,FLAG

J Z , UPDATE

LDDD HL,IOB

DADI,CFW

START

LDID EF

CONV (see CONVERT

microprogram

for the convert

instruction follow

ing this section)

XCHG

LHLD,PBW

DAD D

SHLD,CPS

LDA,FLAG

ORA A

JZ, UPDATE

LHLD,IOB

XCHG

LHLD,CFW

DAD D

MOV C,M

INX H

MOV A,M

MVI D,<LOOOOOOO>

RLC

RLC Written

JNC}*+2 Inline Six

ADD D Times

MOV B,A

ANA D

ADD C

RLC Written

JTTC,*+2 Inline Six

ADD D Times

LDDD HL,CFW

DADI,CPS

LDID XY

MOVX HL,XY

WWW

DAD EF

TCSM

RLC

MOV C,A

MOV A,B

AJn<01000000>

JZ, WWW

MOV A, B

AHI<L0111111>

CMA

MOV B,A

MOV A,C

CMA

MOV C,A

INX B

LHLD,CPS

XCHG

LHLD,CFW

DAD D

MOV E,M

IMX H

MOV D,M

XCHG

DAD B

MOV A,H

ANI<01000000>

JZ, POSITIVE

MOV A,H

CMA

MOV H,A

MOV A,L

CMA

MOV L,A

INX H

STDD HL, BAA. POSITIVE SHLD,BAA

LXI HL, PI LXI H, PI

SMB CALL SMB

RMB CALL RMB

LBA,CFW LDA,CFW

INR A IER A

IWR A IWR A

IWRI M, OF LXI H5 OF

IWR M

CPI <L5> CPI <15>

JNC *+2 JC *+2

CIA XRA A

STA,CFW STA,CFW

STA,OF STA,OF

JMP,START JMP,START

Microprogram for the CONV Instruction

Symbolic Location Microcode

COW EMIT; (B) «- 1102

RC; (A) - (E)

RC; (W) - (A)

PULSE; Reset A_

JMP Sub., C0WV1

JMP Sub., COWV1

JMP Sub., COWV1

JMP Sub., COW1

JMP Sub., COW1

JMP Sub., COWV1

JMP(O) Ag, *+2

PULSE; Set C

RC; (E) •- (A), no flags

EMIT; (B) - 1112

RC; (A) - (F), no flags

JMP(O) C, *+2

PULSE; Coarp. A^

RC; (B) - (B) - 1

JMP Sub., COWV1

JMP Sub., COWV1

JMP Sub., COWV1

JMP Sub., COWV1

JMP Sub., COWV1

JMP Sub., COWV1

RC; (W) - (W)

JMP(O) S, C0WV2

1̂ 5

DR; (EF) - (EF)

DR; (EF) «- (EF) + 1

JMP(l), Fetch

C0WY1 JMP(l) A^, *+3

RC; (B) - (B) - 1

JMP(O), *+3

RC; (B) - (B) - 1

PULSE; Comp. Ag

JMP Return

Starting Conditions for the 8o8o Convert Routine

The conversion routine of step four is capable of converting a

ik bit signed Gray code to its equivalent two's complement representation

so that the error quantity may be calculated. Starting conditions for

the routine are with the following data in registers A and C:

S G13 G12 Gll G10 G9 G8 G7 ° G6 G5 % G3 G2 Gl G0

and the routine ends with the two's complement answer in registers B and

C as follows:

B C

X S B l 3
 B12 Bll B10 B

9
 B8 B7 B6 B5 B5 B3 B2 Bl B0

Ik6

BIBLIOGRAPHY

1. Keyes, M. A., "Distributed Digital Control," Control Engineering,
September 1973, pp. 77-80.

2. Hammond, J. L., Oh, S. J., "Evolution of Systems Approaches to
Computer Control in Discrete Manufacturing: A Survey," IEEE Trans.
Mfg. Tech., Vol. 2, June 1973, pp. ij-11.

3. Kinberg, C , Landeck, B. W., "Integrated. Manufacturing Systems:
Architectural Considerations," IBM Journal Res. and Dev., Vol. Ik,
No. 6, November 1970, pp. 589-6o£7~

k. Howell, R. S., "Computers In - A Look," Automation, May 1972.

5. Stuehler, J. E., Watkins, R. V., "A Computer Operated Manufacturing
and Test System," IBM Journal Res, and Dev., Vol. 11, July 1967,
pp. U52-k60.

6. Stuehler, J. E., "An Integrated Manufacturing Process Control
System: Implementation in IBM Manufacturing," IBM Journal Res.
and Dev., Vol. Ik, No. 6, November 1970, pp. 605-613.

7. Poisson, N. A., "Interfacing Computers to Production Equipment,"
Automation, May 1972.

8. Calva, J. R., "PCOS: A Process Control Extension to Operating
System /360," IBM Journal Res. and Dev., Vol. 1*4-, No. 6, November
1970, pp. 620-O32:

9. Thoburn, F. W., "A Transmission Control Unit for High Speed Computer-
to-computer Communication," IBM Journal Res, and Dev., Vol. lU, No.
6, November 1970, pp. 61U-619.

10. Harrison, T. J., Homiak, R. L., Merckel, G. U., "IBM System /7 and
Plant Automation," IBM Journal Res, and Dev., Vol. 1^, No. 6,
November 1970, pp. 652-660.

11. Gaines, N. W., Greenacre, G. R., Harris, B. J., O'Neil, W. E.,
Banks, R. S., Olson, W. R., Rammell, G. A., Romeu, F. J., "Union
Carbide Integrates Multi-Computer Process Control," Instrumentation
Technology, March 1967, pp. ̂ 9-51.

12. Rispole, L. M., "Hierarchichal Computer Control Systems," Instruments
and Control Systems, Part 1, October I970, pp. 117-119, Part 2,
November 1970, pp. II6-II9.

ll+7

13. Alford, C. 0., "Design Aspects of Computer Control in Discrete
Manufacturing," IEEE Trans. Mfg. Tech., Vol. 2, December 1973,
pp. 26-36.

ik. Nilsen, R. N., "Distributed Function Computer Architectures,"
Computer, Vol. 7, No. 3, March 197^, pp. 15-16.

15. Programmers Reference Manual, Model 960 Process Control Computer,
Texas Instruments Inc. manual, Part. No. 21^091-9701.

16. Shuraym, G., "Why the 960 Computer for Industrial Automation,"
Texas Instruments Inc. manual.

17. "Industrial Automation Simplified, with the Communications Register
Unit," Texas Instruments Inc. brochuret

18. Reyling, G., "Considerations in Choosing a Microprogrammable Bit-
Sliced Architecture," Computer, Vol, 7, No. 7, July 197̂ +, pp. 26-
29.

19. Husson, S. S., Microprogramming: Principles and Practices, Prentice
Hall, Inc., 1970, pp. 13-38.

20. The Intel Memory Design Handbook, Intel Corporation, 19735 pp. 1-9.

21. Signetics Digital 5 V ^ 0 0 Data Book, Signetics Corporation, 1972,
pp. 111-112.

22. "Design of a General Purpose Microcontroller," Application Note,
Scientific Micro Systems, Inc., July 1973.

23. Donovan, J. L., Systems Programming, McGraw-Hill Inc., 1972, pp*
395-1+00.

2.K. Unimate information gained through personal correspondence with Mr.
M. J. Dunne, Chief Engineer, Unimation Inc.

