In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institute shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may be granted by the professor under whose direction it was written, or, in his absence, by the Dean of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is understood that any copying from, or publication of, this dissertation which involves potential financial gain will not be allowed without written permission.

$7 / 25 / 68$

CASEM - A SYSTEM FOR

 COMPUTER AIDED SEIECTION OF ENGINEERING MATERIALS
A THESIS

Presented to
The Faculty of the Graduate Division
by
Nezih Vefik Divitci

In Partial Fulfillment
of the Requirements for the Degree Master of Science in Mechanical Engineering

Georgia Institute of Technology
March, 1970

CASEM - A SYSTEM FOR

COMPUIER AIDED SELECTION OF ENGINEERING MATERIALS

ACKIVOWLEDGMENTS

The author wishes to express his gratitude to all who have contributed to this study by their suggestions, help, and encouragement. Special thanks go to Dr. Joseph P. Vidosic who suggested the topic and gave many ideas at the initial stages of the work. The author is especially grateful to Dr. John H. Murphy, and also to Dr. Harold L. Johnson and Dr. Joseph Krol, for their review, criticism, and assistance.

Appreciation is also extended to the staffs of the School of Information Science and the Rich Electronic Computer Center for their Invaluable assistance during the development of the computer program.

Last, but not the least, thanks go to Dr. P. Durbetaki, without whose help in procedural matters this thesis would never have been completed.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS. ii.
LIST OF TABLES iv
LIST OF ILLUSTRATIONS v
SUMMARY. vj.
Chapter
I. INTRODUCTION. I.
II. ENGINEERING MATERIALS AND THEIR PROPERTIES 6
III. ANALYSIS OF DECISION PROCESS AS RELATED TO THE SELECTION OF ENGJNEERING MATERIALS. 16
IV. DIGITAL COMPUTERS AND DECISION THEORY AS ENGINEERING TOOLS 24
V. "CASEM" - A SYSTEM FOR COMPUTER AIDED SELECTION OF ENGINEERING MATERIALS. 31
VI. RECOMMENDATIONS AND SUGGESTIONS 48
Appendices
A. STATISTICAL DECISIONS 51
B. NOTES ON THE COMPIIATION OF MATERIALS DATA. 54
C. SAMPLES OF COMPUIER OUTPUT FROM CASEM 60
D. COMPUTER PROGRAM LISTING. 72
E. SAMPLES OF FORMS USED WITH CASEM 82
IITERATURE CITED 87

LIST OF TABLES

Table Page

1. Various Descriptions of the Design Process. 17
2. Materials Properties and Rankings 43
3. Materials Classifications 55
4. Subclasses for Ferrous Metals (Class 1) 55
5. Subclasses for Non-ferrous Metals (Class 2) 56

LIST OF ILLUSTRATIONS

Figure Page

1. Materials Selection and Evaluation Activities During Design Process 19
2. Material Selection -- A Simplified Flow Chart 2.1
3. System Flow Chart 33
4. Program Flow Chart. 35
5. Program Flow Chas:t (continued) 36
6. "CASEM" Input Deck Set Up for B-5500. 38
7. Selection Request Form for the Example. 47
8. Materials Data Form 83
9. Delete List 84
10. Listing Request Form. 85
11. Selection Request; Form. 86

SUMMARY

The principal objective of this work has been to develop a computer-oriented pilot system for the selection of the most suitable material for a given design case.

Special emphasis has been placed upon the means of creating a well organized materials catalog from which the selections can be made. The numerical values for various properties and the order of importance of relevant properties (as designated by the designer who is requesting the selection) are the bases of comparisons.

Properties defined as "Secondary" for the purpose of this pilot study are qualitatively rated on a scale of ten for the want of a better basis of comparison. The lack of uniformity in test data or the total lack of quantitative data on such properties is mainly responsible for such a loose basis of comparison.

The main conclusion reached as a result of this study is that the cataloging and selection system presented here in detail can be implemented nationwide with the cooperation of the materials manufacturers and users through a universal clearing house.

The following conclusions and recommendations should also be considered for further development:

1. Further work in this field is necessary, desirable, and justified. The system presented in this study should be improved upen by extending the materials data catalog and by reducing the Input/Output and processing times through program refinements.
2. To simplify comparisons between materials of different nature, the data pertaining to the properties of engineering materials should be made uniform by the use of compatible units. By establishing uniform test conditions for high-temperature properties, creep, corrosion, and the like, these can be jncluded in the compilation of the catalog, and the use of ratings can be eliminated.
3. Today, the selection of a particular material in a given design situation is largely based on the experience of the individual designer and his access to a large, up-to-date catalog library. Therefore, in most cases the decisions are based on a limited variety of materials resulting in costly changes during the production phase.
4. At present the dissemination and maintenance of specific data on engineering materials is done by distribution of catalogs, bulletins, and leaflets published by the manufacturers. Therefore the users have to go through the costly process of maintaining a huge library of cata. logs or several such libraries, when the design efforts are decentralized. These disadvantages can be eliminated with this proposed system by the propagation of mass-produced punched cards and/or magnetic tapes. The recent developments in time-share techniques and peripheral equipment make it possible to reach a catalog in a central computer from distant locations by remote terminals through telephone data lines.

CHAPTER I

INTRODUCTION

In a broad sense an engineering material is any physical substance from which a finished product can be manufactured, fabricated, or constructed to serve a pre-defined purpose. Thus, the common volcanic rocks from which mankind's first wheel and first weapons were made, and tropical tree limbs from which the first bow and arrows were made, qualify as engineering materials as well as today's powder metallurgy mixtures and composite materials. However today, in an age when mankind's needs are incomparably more sophisticated in quality and huge in quantity, a narrower more practical definition is necessary. Therefore, specifically, an engineering material is a substance from which an item in demand can be competitively produced.

The value of an engineering material is highly relative, depending on the specific circumstances under which it is to be used. A statement such as "Steel is the most adaptable material," and "Cast iron is the cheapest material" are blanket statements irrelevant to a good design engineer. There are as many different materials suitable for a given design as there are different designs to accomplish a certain design goal. However, there is a "best" material for a certain design when a sufficient number of conditions are set for the material to meet. Consider a simple cylindrical connecting rod to be used in a four-bar linkage. When no conditions are set, a wooden pole with a
knot-hole at each end is just as good as a machined steel bar or any other material for that matter. In short, there are an infinite number of materials suitable for this application. However as more conditions are introduced, the selection narrows down. One basic condition almost universal to all design situations is "low cost" which in general applies to the material as well as the other design variables. Another condition is derived from the fact that this hypothetical linkage is to be used in an airborne application and will be subject to high bending loads: the requirement for a high specific strength. It is obvious that an infinite number of conditions such as the two above, can be set to finally limit the choice of available materials to a small number. In most cases however, it becomes necessary to make compromises from the requirements at this stage to reach a definite decision. This is only possible by setting relative priorities for each requirement; i.e., "what is the most important requirement?", "second most?", etc. and then comparing each material successively with others in view of requirements and priorities.

It is apparent from this short discussion that a theoretically ideal material selection which starts from an infinite number of available materials and proceeds with a large number of requirements and their assigned priorities, suggests a lengthy, time consuming process of successive comparisons. In actual practice such a long, uneconomical process is avoided by limiting the number of materials available to those with which the designer has previous experiences and/or those used for similar applications in the past. Requirements are also limited to a few that have the highest priority, i.e., the most important ones.

The rest is left to be decided by costiy trial-and-error methods that quite successfully indicate critical shortcomings in tangible properties such as strength, corrosion, etc., but fail to indicate any intangible disadvantages such as the high cost, low specific strength, etc.

Developments in the last 30 years in several fields made a systemaitic approach that more closely approximates the theoretically ideal material selection, both necessary and possible. These developments are:
a. Unprecedented expansion of technical and scientific informa-
tion. It is estimated that scientific and technical information has doubled every 12 or 15 years since 1750. In the field of engineering materials the growth of information is at least parallel to this, if not more accelerated. The 1962 edition of the Materials Handbook issued by the Materials in Design Engineering (4) has only less than 200 pages in comparison with more than 550 pages of materials data in the 1965 edition (5). A close look at the latter also reveals that, during the year 1965 only, information became available on ten new irons and steel; 15 non-ferrous metals; 24 plastics and rubber; nine ceramics, glass, carbon, and mica; five fibers, felts, wood, and paper; and 12 composite materials, in addition to new data on more conventional materials and their variations. The first volume of the Metals Handbook prepared by the American Society for Metals (6), has expanded threefold from the seventh edition to the eighth. Other facts pointing at the

[^0]information explosion specifically in the field of engineering materials are too numerous to list. The inescapable conclusion is that all these data should be systematically organized for easier access, wider use, better cataloging, and wider dissemination ($1,2,3$).
b. Development of automatic data processing devices and the birth of the information science. Three principal reasons, namely emergence of statistics as an important tool in economics; fast rising costs of labor; and industrialization, gave way to the development of electronic data processing equipment (7). Extensive developments in the computer technology in a short period have made the multi-purpose computers and the smaller, cheaper limited-purpose computers a standard tool of management and engineering (8). The formulation of time-sharing systems and the emergence of data processing service companies have brought the computers inte the reach of even the smaller engineering companies (9). It is only natural to deduce that computers should be utilized to bring comprehensive materials data within reach of every engineer to the benefit of both the users and the manufacturers.
c. Emergence of operations research as an important branch of applled science. Operations research was born during the Second World War in response to military logistics problems. However, its techniques are being widely used today in industrial management to improve decisions, scheduling, queuing, stocking, and many other management functions (10). Mathematical development of the statistical decision theory is one of its many contributions and it applies equally well to engineering decisions as it does to management (11).

One of the basic decisions that a design engineer faces frequently
is the selection of a material suitable for the manufacture of a part under consideration. In view of the trends above, it is logical to assume that a system can be devised to develop and maintain a well organized, extensive materials catalog and to select the most suitable material for a given design situation by utilizing the mathematical decision theory together with the computational speed and huge memory capacity of the electronic computers. This, then, is the principal object of this pilot study.

ENGINEERJTVG MATERTALS AND THEIR PROPERTIES

A Brief Look at the Present Status and the Future

Materials

A very rapid and accelerated development of new engineering materials occurred during and in the years following the Second World War. During the war, most publicized developments were in the light metals, and in plastics and synthetics. However, the necessity of conserving scarce raw materials also led to revaluation and improvements in older materials (12).

After the war, the impact of the theories developed in the 1930's in the basic sciences became increasingly more pronounced. The entire picture of the subatomic structure of matter was revolutionized by the development of quantum mechanics. The studies of crystal defects, the development of a dislocation model for plastic flow, and the studies of diffusion were advances so revolutionary that it was only a question of time until the field of materials would begin to feel the impact (13).

To be sure, the engineers of the Pharaohs erected marvelous buildings three thousand years ago, with no power except that of men and animals, and virtually no materials except stone, brick, and gypsum plaster. They also built carriages made of only wood and leather. The situation changed very little until the nineteenth century.

This extraordinarily slow progress was not completely due to a
lack of mental ability on the part of the engineers all through the centuries, but partly due to a lack of suitable materials with which to work. The idea of the steam engine had been in men's minds for centuries, but it took 25 years and one of the best machine builders in Great Britain for James Watt to build an engine that would function satisfactorily. His inventive genius could design governors, linkages, and gears, but he could not obtain a true cylinder or a tight piston. When he did obtain a cylinder only an eighth of an inch larger at one end than the other, he hailed it as a triumph. Due to the lack of heavy rolling mills, the only sheets available for boiler manufacture in Watt's days were of wrought iron. The whole development of steam power had to lag until large machine tools could be built, and these tools had to await the production of large ingots of steel, and large ingots of steel were unknown until Bessemer invented his steelmaking process in 1856.

The impact of the developments between the First World War and the Second came in the late forties and early fifties in the form of better alloys, improved properties, and composite and reinforced materials. Airplane, space, and weapons technologies, coupled with unprecedented economic expansion and prosperity, both benefited from, and forced, the development and widespread use of new materials and alloys. Massproduced aluminum, magnesium, and titanium alloys, powder metallurgy, refractory metals, superalloys, coated and high-strength steels, are all answers developed in response to requirements imposed by these technologies.

The nonmetallic materials, responding to the expanding economy and consumer prosperity, have exploded into the marketplace. Polymers
and their blends, ABS/PVC thermoplastic sheets, and other conventional mill forms, structural foams, fiber glass, phenolics, polyesters and numerous other thermosets, elastomers, new ceramics, carbons and graphites, are not only replacing conventional materials, but also are finding imaginative uses no one would have expected 20 years ago.

In any field changing as fast as the field of englneering materials does, it is highly desirable to take the time to review the status of various areas before any projections into the future are made. The following, then, is a snapshot of this field, assessing the present status and the future of each area.

Steel. Today steel is available in a wide range of alloys and a variety of mill forms. The amount of information gathered in alloying and manufacturing steels in most applications is so detailed that it is almost possible to custom make alloys for specific products. Because of this, most of the developments should be expected in the improvement of mill methods, heat treatments, and further specialized areas of coated steels, P / M products, etc.

Superalloys. Development of superalloys that withstand high loads at high temperatures have made space re-entry vehicles, supersonic aircraft and rocketry, and gas turbines possible. New developments in these nickel-, and cobalt-based alloys and titanium are most likely to be in the methods of production and in the improved stress-corrosion characteristics.

Copper. The use of copper for applications requiring high rates of heat transfer and electrical conductance together with strength is being challenged by aluminum and other light metals readily available
in materials markets. The diminishing supply and the resulting higher prices are forcing the users to look for substitutes. So the future developments are most likely to be in the improvement of these properties together with new and better reclamation processes. Developments in newer and cheaper beaxing alloys are also probable.

Light Metals. The use of magnesium in space applications has increased tremendously in recent years. Because of the very high specific strength it possesses, its use should continue increasing and trigger further developments in both the manufacturing processes and improved properties.

Aluminum use should continue to grow and spread further into new areas such as bearing alloys, electronics; composites, etc. The most important future development will probably be in the improvement of its stress-corrosion resistance without sacrificing strength.

Refractory Metals. Columbium, tungsten, and tantalum alloys are presently being used in aerospace applications and weapons systems. Future developments should be in the direction of improved stressrupture strength, better oxidation resistance, refined heat treatments, and production innovations.

Powder Metallurgy. This relatively new technique is gaining widespread use in replacing conventional casting and forging processes because of its advantages of increasing ductility and improving properties. Its versatility in obtaining custom-tailored properties through the manipulation of blending ratios and compacting density, and the possibilities it offers In blending metals with nonmetallics, are virtually endless. Future developments, obviously will be in providing a
wider range of powdered materials (possibly superalloys) as well as improved blending and forging techniques.

Plastics, Rubber, and Ceramics. With the continuing trend of decreasing prices, themosets and thermoplastics have invaded the markets that traditionally belonged to paper, wood and other organic materials; and lower priced cast metals. They are everywhere; from products for the home to automobiles, to industrial products. Developments in the near future are more likely to be in novel applications and custom-tailored properties rather than new compounds. Important developments will probably also unfold in reinforcing and plating techniques in an effort to open new markets as substitutes for higher priced metals.

Elastomers have come a long way from natural rubber. Synthetic manufacturing methods coupled with chemical post-curing and hardening techniques are producing elastomers that respond to classical applications better. Improvements will probably be in the direction of more economical production methods as well as improved extreme temperature characteristics.

Probably the most significant trend taking place in ceramic materials is their growing use in many new applications: New uses are being found in chemical processing, automotive, appliance, and electrical and electronic equipment where maintenance-free, long lasting usage is made possible by the outstanding oxidation and corrosion resistance, dimensionel stability, and heat resistance qualities of ceramics. Developments in the near future will have to be oriented toward individual applications.

Other Materials. Most of the other materials such as fibers,
felts, wood, paper, carbon and graphites, rare metals, etc. have all shown improvements in production methods and/or mechanical and physical properties. But these improvements mostly have been geared to individual applications in recent years, and there is no reason to think that it will be different in the near future.

In this continuous interaction of sociological, economical, and technological activities, new trends inevitably mean new and improved. materials and methods. I[t is not very hard to project that the dawning ecological renaissance will no doubt re-direct at least some of the efforts toward reclamation processes and reusable rather than disposable materials. Precarious prices and supplies in the world market for metals such as nickel, chromium, and cobalt are already pushing the manufacturers toward the development of substitute materials and new designs using other materials. New technologies such as cryogenics, nuclear power, underwater research, off-shore mining, and space exploration do and will continue to require materials with extreme properties that were hitherto unnecessary. Answers to these challenges will be provided by new materials as well as new production methods such as reinforced materials, composites, powders, whiskers, finishes, and coatings, etc.

Properties

A quantity that defines a specific characteristic of a material is a property. The properties of a material provide a basis for predicting its behavior under various conditions (14). Materials properties commonly used in engineering design can generally be classified into five major groups: mechanical (strength, etc.), physical (density,
electrical and thermal conductance, etc.), chemical (corrosion resistance, etc.), technological (machinability, etc.), and composite properties (specific strength, etc.).

If a property is to be used as the basis of comparison between different materials, obviously the method with which it is evaluated must be standardized. Until recently this standardization was usually undertaken by either the users or the manufacturers, and often by both. A healthy trend in the sixties, however, has been toward the merging of all standard testing specifications into the large body of specifications created and standardized by the American Society for Testing Materials.

The testing methods, and the properties tested, are generally dependent on the particular material group in question because of the different physical configurations, particular range of properties, and the different end uses. For example, the bursting strength for polyethylene films and shear strength for cast steels are generally known properties, but bursting strength for cast steel and shear strength for polyethylene film would not only be useless properties but also meaningless. Therefore, a preliminary comparison of the materials has to be made based on the intrinsic qualities of their general classes. A quantitative comparison between different classes is often not feasible and is usually unnecessary, except in extreme cases. One must be very careful in interpreting and comparing property test results for different materials even within the same general class. Test methods will often change to accommodate widely varying ranges in the value of the property and the physical limitations imposed by the materials themselves. For example, tensile strength is evaluated by ASTM D882 for polyester films,
but for woven glass reinforced polyester fabric the method generally used is ASTM D638. Corresponding values of the tensile strength are 17-18 ksi and 25-55 ksi, respectively.

A good understanding of definitions of various properties is usually the first requirement toward correct interpretation of the values determined by tests. Therefore, it is appropriate to outline the definitions of the properties used in this study $(6,15)$.

Tensile Strength. Under tensile testing conditions, the ratio of the maximum load to the original cross-sectional area. This is also called the "ultimate strength."

Yield Strength. The stress at which a material exhibits a specified deviation from the proportionality of stress and strain. An offset of 0.2 percent is used for many metals.

Shear Strength. The stress required to produce fracture in the plane of the cross section, conditions of loading being such that the directions of the force and of resistance are parallel and opposite, although their paths are offset a specified minimum amount.

Compressive Strength. The maximum compressive stress that a material is capable of developing, based on the original cross-sectional area.

Tensile, yield, shear, and compressive strengths are measured in psi (pounds per square inch) or ksi (1000 psi).

Elongation. In tensile testing the increase in gage length measured after fracture of the specimen within the gage length, usually expressed as the percentage of the original gage length.

Reduction of Area. Expressed as a percentage of the original
area, the difference between the original cross-sectional area of a tensile test specimen and the minimum cross-sectional area measured after complete separation.

Modulus of Elasticity. A measure of the rigidity of materials. Ratio of stress, within the proportional limit, to corresponding strain. Usually, unless otherwise specified, it refers to the Young's modulus, obtained in tension or compression, measured in psi or ksi.

Endurance Limit. The maximum stress below which a material can presumably endure an inflinite number of stress cycles. Alse called "fatigue limit" and measured in psi or ksi.

Brinell Hardness. Resistance of metal to plastic deformation by indentation as measured by the Brinell method.

Machinability. The relative ease of machining a metal. Usually expressed on a scale where AISI B1112 steel is assumed to have a machinability of 100.

Density. Weight of material per unit volume, measured in pounds per cubic inch.

Electrical Resistance. The property of material which determines the amount of current produced by a given difference of electrical petential. Usually used to mean the specific electrical resistance, which is the resistance of the unit volume expressed in ohm-cm or microohm-cm.

Melting Point. The temperature at which a pure metal, compound, or eutectic changes from solid to liquid; the temperature at which the liquid and solid phases are at equilibrium. Measured in degrees Fahrenheit (${ }^{\circ} \mathrm{F}$).

Thermal Conductivity. Time rate of transfer of heat by' conduction,
through unit thickness, across unit area, for unit difference of temperature. Measured in British thermal units per hour per square foot of cross-sectional area for a thickness of one foot and a temperature difference of one degree Fahrenheit ($\mathrm{BTU} / \mathrm{hr} / \mathrm{sq} . \mathrm{ft} /{ }^{\circ} \mathrm{F} / \mathrm{ft}$).

Thermal Expansion. The ratio of the change in length of a material due to heat input for a change of one degree Fahrenheit in temperature, to the original length measured at $32^{\circ} \mathrm{F}$.

Composite Properties. Combination of two or more basic properties. Those used in this study are specific stiffness and specific strength which are obtained by dividing the modulus of elasticity and the yield strength by the density. Also used are stiffness price and strength price obtained by dividing the same properties by the comparative price per pound.

Obviously, there are many other properties that play important roles in the selection of materials in various design situations, but neither the scope nor the purpose of this pilot study would permit the inclusion of these. Properties included here, however, should be sufficient to demonstrate how all properties generally affect the decision process as employed in engineering design and materials selection.

CHAPTER III

ANALYSIS OF DECISION PROCESS AS RELATED TO THE SELECTION OF ENGINEERING MATERIALS

Proper analysis of material selection requires an understanding of the logical activities involved in the process of mechanical design. In this chapter, general procedures used in the design of mechanical systems and elements and material selection will be outlined with specisal emphasis on the methods employed for major decisions throughout the process.

Design Methodology

A review of the literature shows that every author that attempted the task of analyzing the design process concluded with a different set of steps representing the process. These differences, in general, can be attributed to varying past experiences and backgrounds of the investigators. It is obvious that a somewhat different approach would be used in the design of a weapons system as compared to the design of a consumer product. Table 1 shows a comparison of various descriptions of the design process collected by Alger and Hays (16). It can be argued, however, that the differences are generally those of semantics, interpretation, and emphasis rather than basic methodology. Regardless of these variations in emphasis, every successful design effort can be broken down into four main activities:

1. Recognition of a need for a system to perform a certain

Table 1. Various Descriptions of the Design Process

Source A	Source B	Source C	Source D	Source E
Analysis	Recognize	Investigate direction	Recognize	Review requirements
Synthesis	Define	Establish measures	Specify	Brainstorm
Evaluation and decision	Conceive	Develop methods	Propose solutions	Evaluate and analyze
Optimization	Apply	Optimize a structure	Evaluate alternatives	Analyze and refine
Revision	Evaluate	Complete a solution	Decide on a solution	Layout and design review
Implementation	Communicate	Convince	Implement	Details, hardware and manufacturing

SOURCES
A) M. Asimow, "Morphology or Vertical Structure of Engineering Work," Introduction to Design, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962.
B) Engineering Services, General Electric Company, 1955.
C) E. K. Von Fange, Professional Creativity, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1959, pp. 129-130.
D) J. R. M. Alger, C. V. Hays, Creative Synthesis in Design, PrenticeHall, Inc., Englewood Cliffs, N. J., 1964.
E) A. E. Coryell, "The Design Process," Machine Design, November 9, 1967, pp. 154-161.
function. This activity includes the definition of basic requirements.
2. Formulation of a feasible concept. This usually involves several cycles through the phases of conceptual design and feasibility determination until a feasible concept is found and/or optimized.
3. Development of the basic concept into a working system. This includes component selection and/or design, if applicable.
4. Production of the developed system. This includes improvements based on the feedback from actual applications.

Often the design process cycles through these steps several times for a single product.

Materials Selection in Design Frocess

Material selection and evaluation takes place to some extent in all of the above activities, with the possible exception of the first. To reflect that, an analysis of the design process is shown in flow chart form in Figure 1 (17). . First encounter with a materials question is generally during the evaluation of feasibility of the tentative concept. Questions to be answered are of a general nature and are mostly concerned with whether or not any extreme material properties would be required. It is at this stage that certain classes of materisis are usually eliminated from consideration due to their limitations. Often a tentative decision is made as to the general class of materials to be considered. It is also possible that materials limitations might make it necessary to reformulate the tentative concept and even force modifications in the secondary specifications for the function to be performed.

The most extensive materials evaluation takes place during the development stage. This usually involves the determination of critical

Figure 1. Materials Selection and Evaluation Activities During Design Process
values for various materials' properties, as well as desirable manufacturing methods, allowable costs, availability of standard shapes, and other such factors peculiar to the design problem at hand. These activities are investigated in further detail in the next section.

Materials evaluation also takes place during the production but this is usually of minor importance compared to the activity in the development stage. The occurrence of unexpected conditions in tooling, purchasing, production, or marketing might sometimes cause a major change in material specification, but this generally also requires a redevelopment effort and therefore is the same as the activities associated with the development phase.

Logical Decisions in Material Selection

Material selection in engineering design can be represented as a series of decisions and actions as shown in Figure 2. The process usually starts with a search for previous experience by the designer on similar applications. Availability of direct (2) ${ }^{*}$ or indirect (3) infor. mation on such applications either from the designer's own experience or from technical literature provides the starting point, but this also diminishes the possibility of a fresh look at the probable hidden disadvantages such as excessive cost, newly available substitutes, etc. Quite often the matter of possible recent changes is not investigated (11), and response to the question of alternatives (20) is negative.

In the absence of information on previous experience, the next

[^1]

Figure 2. Material Selection--A Simplified Flow Chart
action is an ordering of priorities of various property requirements (6), and (based on the dominant property so determined) the selection of the general class of materials to be considered (7). The latter is bypassed if this determination was made in the feasibility stage.

Following the class determination, a series of comparisons takes place to match the design requirements against properties of each individual material in the selected class. Usually there is no compromise from the major requirement (15). The minimum acceptable numerical value of the property leading the priority ranking has to be satisfied. In addition to that, if optimization techniques are being used, a combination of several properties assoctated through a design equation must be satisfied. Minor requirements (those that follow the major property on the priority list) can usually be compromised if the situation requires it (14). A considerable omount of flexibility is also exercised in the requirements for auxiliary features such as standard mill forms, availability (lead times), manufacturing methods, etc. (13). If all of these tests are properiy passed or compromised, material is added to the list of acceptables for further consideration (12,19). Alternates are added to the list through repetitions of the same process until all likely materials in the selected class are investigated (20).

If there is more than one candidate on the resulting list of acceptable materials, a final elimination takes place based on either the material selection factor (19) (if optimum design methods are employed) or auxiliary requirements such as cost, fabrication methods, etc. (21,22).

It should be emphasized that this picture of the material selection
process is simplified to bring out the highlights, and at a given location for a specific design project, there might be variations both in sequence and in importance placed on different steps.

Current material selection process as characterized above has various important drawbacks:

1. Dependence on previous experience hinders the consideration of newer, possibly more suitable, materials.
2. Dependence on proper maintenance and updating of materials catalogs by vendors slows down dissemination of data and limits the materials data available for selection.
3. Compromises are often made on the basis of personal preferences that are not explicitly known or stated.
4. Cost factor is often considered with only a passing interest and has. to be reevaluated by value engineering during production stages. ;
5. Numerical comparisons of properties are made in a sequential manner rather than simultaneously, resulting in uneconomical use of materials with better properties than necessary.

In the following chapter an automated system to minimize these disadvantages will be developed and presented.

CHAPTER IV

DIGITAL COMPUTERS AND DECISION THEORY AS ENGINEERING TOOLS

Digital Computers

In the few years since their development, computers have become important tools in many branches of engineering. Their use in engineering today is incomparably more sophisticated than their humble beginnings as glorified calculators. This growth has been a result of developments in three important directions:

1. Sophistication of physical devices associated with computer systems.
2. Development of advanced compilers, program packages, and programing systems, further facilitating engineer-computer communications
3. Increasing emphasis with which engineering schools educate students in programing and use of computers.

Many routine computational tasks in engineering have been programmed through the efforts of computer manufacturers, engineering groups of private companies, or educational institutions. Specialized programs are now widely used in many disciplines of engineering. Some specific examples of such programs are:
"SKETCHPAD" (20), a system developed by the Mechanical Engineering Department at the Massachusetts Institute of Technology (MIT), for kinematic evaluation of linkages.
"COMMEND" $(21,22)$, COMputer aided Mechanical ENgineering Design, developed by the International Business Machines Corporation (IBM), for design computations on basic machine elements (springs, gears, etc.)
"STRESS" (23), developed by the Civil Engineering Department at MIT for structural analysis computations
"COGO" (24), COordinate Geometry Program for surveying and plane geometry calculations
"DYANA" (25), DYnemic ANAlyzer for analysis of dynamic systems "ECAP" (37), Electronic Circuit Analysis Program, developed by IBM.

These are some representative examples, the list is too long to include here.

Development of systems and programs for storage, search, and retrieval of engineering information has been much slower. Of the two facets of the information retrieval problem in engineering, one (document retrieval) has received all the attention while the other (data organization and retrieval) has been grossly ignored.

The emphasis on document retrieval has been mainly due to pressure exerted by groups of engineers and scientists alarmed by the information explosion that has been taking place in the last 30 years. First such system of programs to be developed and successfully implemented was in the field of Chemical Research (Chemical Abstracts Search and Retrieval System) which did not lend itself to uniform quantification of standardized data. Since then many such programs have been initiated $(26,27,28,29)$ by private industry but the main thrust has come from the
efforts of the Engineers Joint Council (30).
Engineering data retrieval, on the other hand, shows very little development despite the fact that several articles appeared in professional journals since the 1962 Report of the Engineers Joint Council, envisioning and encouraging such systems. As early as 1965 , it has been predicted that:
...programs will be available to engineers throughout the design process to provide fast and reliable access to frequently used information. The programs not only retrieve information from a file, but select the items on the basis of their match to some specified set of characteristics (22).

A 1966 paper presented to the Design Engineering Conference by Norman E. Cottrell, Director of Documentation Service for the American Soclety for Metals, stated:
...a relatively small number of journals cover the field of engineering materials definitively. Therefore the task of systematically organizing this type of information presents fewer complications than many other fields . . (1).

These projections and claims are yet to be realized.
Other problems, similar to the material selection problem in nature, have been programmed and are in use in other fields (32,33,34). These are, in general, simple programs matching the required component characteristics to those on a disk or tape file on a go, no-go basis. Since these matches are on a one-to-one basis (i.e., only one match exists for every requirement), sophisticated decision or compromising techniques are not necessary.

In the selection of engineering materials, however, often there is no exact match for the requirements, and a compromise has to be made. In addition, usually many materials exceed the specified requirements
and criteria must be developed as bases of decisions. The technique for such a selection is developed from the methods of statistical decisionmaking and is outlined briefly in the following section.

Statistical Decisions in Material Selection

Bayesian decision rules and their evaluation is a topic of statistical decision theory. For reference purposes, a brief explanation is included in Appendix A on those aspects of the theory that are necessary in the development of material selection criteria. Development of Selection Criteria

To be able to apply the statistical decision theory to the problem of material selection, it is necessary to develop the desirability and probability matrices $(18,35)$ in terms of materials' properties and design requirements.

Notation. The following notation is developed for a group of m acceptable materials judged on the basis of n properties. P denotes the matrix of the numerical values of each property for each material, i.e., element $p_{j k}$ is the numerical value of the $j^{\text {th }}$ property for the $k^{\text {th }}$ material. I denotes the importance vector representing the weighting factors assigned to each property by the designer on the basis of their relative importance for the particular design problem, i.e., $\mathbf{i}_{\mathbf{j}}$ is an element of vector I and represents the relative importance of the $j^{\text {th }}$ property for all acceptable materials. R denotes the request vector, similar to \underline{I} with the exception that element r_{j} represents the numerical value requested by the designer for the $j^{\text {th }}$ property. \underline{V} denotes the vector representing elements v_{j} specified by the designer to indicate the
direction of optimization for the $j^{\text {th }}$ property. Element v_{j} can be assigned only two values, zero and one, causing the optimization of the numerical value for the $j^{\text {th }}$ property upwards or downwards, respectively. D_{k} is an index of the computed desirability of the $k^{\text {th }}$ material.

Technique of Selection. Assuming that desirability (D_{k}) of a material k is inversely proportional to the variation of catalog values of its individual properties ($p_{j k}$ where $j=1, \ldots, m$) from the requested values (r_{j}); elements of the property matrix $p_{j k}$ can be normalized with the elements of the request vector r_{j} such that the normalized property matrix \underline{q}^{n} will have the elements:

$$
\frac{r_{j}-p_{j k}}{r_{j}}
$$

representing the degree of desirability of each property for each material. This normalized property matrix has to be further changed to account for the differences in the direction of optimization. This is done by multiplying each element by (-I) ${ }^{\mathrm{V}} \mathrm{j}$. So \underline{p}^{n} now has elements:

and is a fair representation of the desirabilities associated with each material and each property.

Importance vector I in this instance is to represent the weighting factors that make up the probability matrix in the classical decision theory. To do that, however, it must be modified so it will fulfill the requirement that the cumulative total probability must be 100 percent.

This can be accomplished simply by dividing each i_{j} by $\sum_{j=1}^{n} i_{j}$. But, before that can be done, the following special condition must be considered. To avoid possible overreliance on, and misuse of, subjective ratings (properties for which uniformly reliable numerical data are not available, i.e., corrosion characteristics) and composite properties (not explicitly available to the designer, e.g., specific strength), constant factors of 0.5 and 0.75 have been applied to corresponding elements of the importance vector I. Since (as will be seen in Chapter V):

$$
\begin{array}{ll}
j=1, \ldots, 5 & \text { represent primary properties, } \\
j=6, \ldots, 9 & \text { represent ratings (} 0.5 \text { factor) } \\
j=10,11,12 & \text { represent composite properties }(0.75 \text { factor) }
\end{array}
$$

the cumulative total probability is:

$$
\sum I=\sum_{j=1}^{5} i_{j}+0.5 \sum_{j=0}^{9} i_{j}+0.75 \sum_{j=11}^{12} i_{j} .
$$

So the normalized importance vector \underline{I}^{n} has the elements:

$$
\begin{aligned}
& i_{j} / \sum I \text { for } j=1, \ldots, 5 \\
& 0.5 i_{j} / \sum I \\
& \text { for } j=6, \ldots, 9 \\
& 0.75 i_{j} / \sum I \text { for } j=10,11,12
\end{aligned}
$$

If the technique of statistical decision-making is followed, the desirability ranking D_{k} of each material would be obtained by multiplying the columns of normalized property matrix $\underline{\mathrm{P}}^{\mathrm{n}}$ with the corresponding element of the normalized importance vector I^{n} and finding
the sum of the elements on each row. In the classical sense, each sum would then represent the expected "loss" for the corresponding row. For reasons of computational efficiency, however, each element of normalized property matrix \underline{P}^{n} is subtracted from unity, thus reversing the order of the final ranking of the above mentioned sums. So now these new values do not represent the "loss," but the relative desirability D_{k} of corresponding material. Hence, the $\mathrm{k}^{\text {th }}$ material, maximizing the value of:

$$
\begin{aligned}
\sum_{j=1}^{5}\{1 & \left.-\left[(-1)^{v_{j}} \frac{r_{j}-p_{j k}}{r_{j}}\right]\right\} \frac{i_{j}}{\Sigma I}+0.5 \sum_{j=t}^{9}\left\{1-\left[(-1)^{v_{j}} \frac{r_{j}-p_{j k}}{r_{j}}\right]\right\} \\
& \quad \frac{1}{j}_{\Sigma I}^{i I}+0.75 \sum_{j=10}^{1 a}\left\{1-\left[(-1)^{v_{j}} \frac{r_{j}-p_{j k}}{r_{j}}\right]\right\} \frac{i_{j}}{\Sigma I}
\end{aligned}
$$

should be selected as the most desirable material.

CHAPT'ER V

"CASEM" - A SYSTEM FOR COMPUTER AIDED SELECTION OF ENGINEERING MATERIALS

System Description

Definition

CASEM is a pilot system for compilation, maintenance, and updating of engineering materials data, and selection of materials from this data-base to fulfill specific property requirements.

Characteristics

The system was desjgned to have the following characteristics:

1. Appropriate edjting of input data
2. An expandable materials catalog
3. Computation of composite properties
4. Procedures for updating and maintenance of materials data catalog
5. Selection process based on statistical decision-making

techniques

6. Output to provide flexibility for the designer to exercise his judgment on the final selection
7. Complete listing of the data-base, or listing(s) sorted on the basis of an individual property as requested
8. Program and data on punched cards.

Minimum Computing System Requirements

Computer program associated with the system was implemented on a Burroughs B-5500 computing system. On that basis, the minimum system requirements are: 80 -column card reader, 120 -character printer, 24 K minimum core storage for program (48-bit words), minimum of two diskdrives, and a COBOL-61 (or higher level) compiler with the Disk-Sort feature.

System Flow Chart

A flow chart showing input, output, and processing activities associated with this system is shown in Figure 3.

Engineering Department Materials Data Coordinator (A) ${ }^{*}$ is the focal point of maintenance and updating activities. Changes to and deletions of the materials already in the catalog and up-to-date catalog listings are all accomplished and obtained through him. As new materials are brought to his attention, he adds these to the catalog using Materials Data Form (C, D) and requests up-to-date listings (\underline{B}) from the Data Processing Department using the Listing Request Form (samples of a.ll forms are included in Appendix E). Designers (B) can also submit listing requests, but their main use of the system is with the Selection Requests (F). All of these requests are key punched and verified and arranged into the form of an input deck (Figure 6) for periodical runs. Included in the input deck is the complete Materials Catalog Deck (L) as well as the program deck (\mathbf{M}). Output ($\underline{O}, \underline{P}, \underline{Q}$) is distributed to originating parties.
*Underlined letters in parentheses refer to Figure 3.

Figure 3. System Flow Chart

Computer Program

A listing of the computer program is included in Appendix D. The program is written in COBOL language because of the relative ease with which literal (alphabetical) data can be handled in this language. A summary flow chart of inputs to, outputs from, and operations within the program is show in Figures 4 and 5. First processing activity is reading and editing of all input data (2) ${ }^{*}$ where all sequence and format errors are detected and warnings are printed. If there are no terminal errors (i.e., only card sequence errors), processing continues after discarding all data on the cards with sequence errors. If a listing request was included in the input deck for a complete catalog listing (2), all properties of all materials in the catalog are printed in a tabular form. If there are no other requests (no selections or property listings), the run is then terminated. If there was a selection request (up to nine selection requests can be handled in one run), it is reorganized to indicate properties that are used as bases for selection, and these properties are earmarked for later sorting ($6, \underline{8}$). The same process is used to earmark properties for which a property listing is requested (6,10). In either case, the first property that needs to be sorted is determined (2 or 11) and sorted (12). If there was a selection request using this property, then the first ten materials fulfilling the requirements set forth in each request are determined from the sorted list and are added to a list of possibly acceptable materials for that request (14,15). If there was a listing
*Underlined numbers in parentheses refer to Figures 4 and 5.

Figure 4. Program Flow Chart
(Continued on Figure 5)

Figure 5. Program Flow Chart
(Continued from Figure 4)
request (14,17 or $14,15,16,17$), it is also fulfilled. After all properties earmarked for sorting are processed in the same manner, the run is terminated (20,21) unless at least one selection request was encountered in the input data deck. In that case, for the first request, the Importance Matrix is built (22). Materials data (for each material that is in the list of possible materials) are checked to insure that they satisfy the limitations for properties other than the one on the basis of which the material was added to the list. If it passes these tests, then it is included in the desirability matrix. Composite properties are computed (if required), and rankings are also placed in the desirability matrix if necessary (23,24,25). Finally, both matrices (desirability and importance) are normalized and the decision index is evaluated for each material (26) as outlined in Chapter IV. On the basis of their computed desirabilities, the best three materials are printed out and the process is repeated for the next selection request (27,29,22). After the last request is processed, the execution is terminated (27,22,28). Input Deck Setup

Illustrated in Figure 6, the input deck consists of:

1. MCP (Master Control Program) and COBOL compiler control cards
2. Program deck (in source or object language)
3. Data file control (introduction) card,
4. Materials data catalog on cards, each material consisting of two cards, up to 161 materials (total capacity for this program).
5. Selection request cards, if any. One card is required for each request. Up to nine requests can be processed in each run.

Figure 6. "CASEM" Input Deck Set Up for B-5500
6. Listing request card, if there is a listing request. Only one listing request card can be processed in each run.
7. End card (orange).

Output Reports

In addition to the error and program messages, three types of reports are generated if requested. These are:

1. Catalog listing tabulating all materials and all of their properties in a sequential order.
2. Property listings showing, in ascending or descending order, all materials for which data are available for a primary property.
3. Selection results, for up to nine requests, showing the results of the selection process in a tabular form with material numbers and relative desirabilities.

Samples of output reports are included in Appendix C. Warnings and Messages

Error messages of a warning nature are printed during editing of input data. All error messages are preceded by: 'XXXXXXX WARNING FLAGDATA SECTION." The error messages are:

1. "AAA CARD MISSING THEREFORE CARD NUMBER NNNNN IS EXCLUDED FROM THE CATALOG." where AAA is either " $1 S T$ " or "2ND" and NNNNN is the number of the card that is in error.
2. "THE FOLLOWING CARD IS UNIDENSIFIED, THEREFORE NOT PROCESSED:," followed by the image of the unidentified card.
3. "CATALOG DATA SUPPLIED EXCEEDS STORAGE CAPACITY, THUS ONLY IST 160 MATERIALS ARE COMPILED, CARD NUMBER NNNNN AND ALL MATERIALS DATA FOLLOWING THIS CARD ARE OMITIED."
4. "THE LISTING REQUEST CARD BELOW IS REJECTED, DO NOT COMPILE MORE THAN ONE:," followed by the image of the rejected card.
5. "THE SELECTION REQUEST CARD BELOW IS REJECTED, DO NOT COMPILE MORE THAN NINE:," followed by the image of the rejected card. When an error condition is found during editing, the card that is in error is discarded and processing is continued.

The program prints three messages to supply information about completion of program phases. Each one preceded by "XXXXXXX PROGRAM MESSAGE:,$"$ these messages are:

1. "PROGRAM AND DATA HAVE BEEN COMPILED, CATALOG CONSISTS OF NNN ITEMS," where NNN is' the number of materials in catalog.
2. "EXECUTION IS REQUESTED BUT CATALOG NOT SUPPLIED THEREFORE THIS COMPUTER RUN IS SUSPFNDED: SUPPLY CATALOG WITH NEXT RUN."
3. "SUPPLIED CATALOG HAS BEEN READ IN AND FILED,--EXECUTION TERMINATED SINCE NEITHER LISTING NOR SELECTION IS REQUESTED."

User Procedures

Materials Catalog Maintenance

There are three activities associated with this phase of the system: additions, deletions, and changes to the catalog. The step-by-step procedures to be used for these activities are given below for various groups involved.

Engineering Department:
Step El. Using Materials Data Form (Appendix E), indicate the type of request; add or change.

Step E2. If add, fill form according to instructions in Appendix A. Go to Step E5.

Step E3. If change, fill only the properties or fields to be changed. Columns $76-80$ should contain the number of the card to be changed. Go to Step E5.

Step E4. If delete, indicate the numbers of materials to be deleted on Delete List (Appendix E).

Step E5. Date and sign the document and forward to Data Processing Department.

Data Processing Department:
Step Dl. If change or delete, go to Step D5.
Step D2. Key punch the information from the document. All fields are numeric and right-justified except for Comments, Name, and Condition, which are alphabetical and left-justified.

Step D3. Key verify the punched cards (two per document).
Step D4. Place cards, in sequence, in the Materials Data Card File. Go to Step DIO.

Step D5. If delete, locate the cards in the Sequential Materials Data Card File and remove. Go to Step DlO.

Step D6. Locate card to be changed in Card File.
Step D7. Duplicate the unchanged portion of the old card, punching only the changed fields from the Materials Data Form.

Step D8. Key verify the newly punched fields.
Step D9. Place new cards in the Card File.
Step D10. Return deleted and changed cards and documents to Engineering Department to indicate the completion of the requested changes, additions, and/or cleletions.

Listing and Selection Requests

Catalog and property listings can be obtained by filling in the Listing Request Form (Appendix F). For selection requests, use the Selection Request Form and follow the directions below:

Engineering Department:
Step Sl. Determine, in numerical form if possible, all the important properties and qualities necessary. These would include design loads, price, corrosion, machinability, etc.

Step S2. Find the property numbers for each property or rating from Table 2.

Step S3. Decide the relative importance of each property or rating within its group on a scale of nine, where zero is the least important, and nine the most important.

Step S4. Decide the direction of optimization for each property (but not for ratings). If optimization is to be upward (i.e., the optimum value is the minimum acceptable), place 1 in the associated field (called "optimization" on the form), otherwise leave blank.

Step S5. Write the desired numerical values of each property in "Optimum Value" field. All ratings are on a scale of nine where nine indicates the best and zero the worst. Exceptions are Compressive Strength and Reduction in Area, where the rating is replaced by the actual numerical values, i.e., 26.7 percent reduction in area and 34 ksi compressive strength would be shown as ratings of 27 and 34 , respectively.

Table 2. Materials Properties and Rankings

Property Number	y Property	Unit
PRIMARY PROPERTIES		
01	Yield strength	ksi; $1000 \mathrm{lb} / \mathrm{sq}$ in.
02	Tensile strength	ksi; $1000 \mathrm{lb} / \mathrm{sq}$ in.
03	Elongation	percent
04	Shear strength	ksi; $1000 \mathrm{lb} / \mathrm{sq}$ in.
05	Brinell hardness	Brinell hardness number; BHN
06	Modulus of elastieity	100,000 lb/sq in.; 100 ksi
07	Endurance limit	ksi; $1000 \mathrm{lb} / \mathrm{sq}$ in.
08 M	Machinability	basis: 100 for AISI Blll2
09	Density	$0.001 \mathrm{lb} / \mathrm{cu} \mathrm{in}$.
10	Coefficient of thermal expansion	$0.00001 /{ }^{\circ} \mathrm{F}$
11 T	Thermal conductivity	$10 \mathrm{BTU} / \mathrm{hr} / \mathrm{sq} \mathrm{ft} /{ }^{\circ} \mathrm{F} / \mathrm{ft}$
12	Comparative price	ϕ / lb
14 M	Melting point	${ }^{\circ} \mathrm{F}$
15	Electrical resistance	0.1 microohm-cm
	COMPOSITE PROPERTIES	
01	Specific stiffness	10^{8} inches
02 St	Stiffness price	10^{10} in. -1b/ $\$$
03 S	Specific strength	10^{6} inches
04	Strength price	$10^{8} \mathrm{in}-\mathrm{lb} / \$$
	RATINGS	on a scale to 9
01 C	Corrosion resistance	industrial atmosphere
02		marine atmosphere
03		sea water
04		hydrochloric acid
05		sulphuric acid
06		ammonia
07 C	Creep characteristics	
08 I	Impact strength	
09 W	Wear resistance	
10 A	Availability	standard mill forms and sizes
11 C	Compressive strength	ksi; $1000 \mathrm{lb} / \mathrm{sq}$ in.
12 R	Reduction in area	percent

Step S6. When the form is completed, add date, sign, and forward to Data Processing Department.

Data Processing Department:
Step Rl. Punch Selection Request Card from the Selection Request Form. Verify.

Step R2. Accumulate requests unless either the selection requests exceed eight in number of there is a listing request. Then go to Step R3.

Step R3. Set up the input deck with the CASEM program and Materials Data Card File as shown in Figure 6. Run the program.

Step R4. Forward all printed output to the Engineering Department for distribution. Forward Request Cards to originators of Request Forms. Return program and Materials Data Card File to Card Cabinet marked "Materials."

The procedures given above are intended as examples and obviously would have to be amended to fit the specific organization that is using the system.

Example

A U-cross-section roller guide, used in the landing gear assembly of a fighter plane is presently being cast from nodular iron (type 120-90-02). Recent vendor problems, however, caused the necessity of considering an alternate material and a possible switch from the present manufacturing method. Specifications and tests of the actual material show that it has a Brinell hardness of 250 and a tensile strength of 125 ksi , with a factor of safety of 2.50. If a substitute can be found,
it preferably should be no heavier than the present weight, should have good wear characteristics, and although not extremely important, availability of a mill form close to the desired U-cross-section would be very convenient. Because of the amount of work that would be involved in redesigning the assembly, it is extremely undesirable to change the dimensional parameters from the present configuration.

Based on the statement of the problem given above, the selection criteria are:

1. Tensile strength of 125 ksi or more,

Property number is 2 (from Table 2),
Importance is judged to be 8 on a scale of nine,
Optimization is upward (value 1).
2. Hardness of 250 Brinell or harder (after heat treatment, if any),

Property number 5,
Importance 7 (slightly less than strength, but still important)

Optimization is upward (value 1).
3. Density 0.290 pounds per cubic inch or less,

Property number is 9,
As important as hardness; importance is judged 7 ,
Optimization downward (blank).
4. Wear rating should be good, possibly 9,

Importance judged 9, very important,
Rating number is 9.
5. Availability is not very important, importance is judged to be 5 ,

Only with a high rating of availability might there be a possibility of finding a standard U-section, so it is assumed to be 9 ,

Rating number is 10.
These requirements are coded onto the Selection Request Form which is show in Figure 7.

When this information is processed through the program, the following selections resulted:

First choice is Material \#72 (wrought nitride steel, type EZ) with tensile strength of 126 ksi , Brinell hardness of 255 , and a density of $0.283 \mathrm{lb} / \mathrm{cu} \mathrm{in}$. It is rated excellent for wear (9) but availability is average; therefore, likelihood of finding a standard U-section is not very good. Desirability of this selection was computed as 94 percent.

Second and third choices were also nitride steels (catalog numbers 66 and 69) and had desirabilities of 89 and 87 percent, respectively.

The outputs applying to this example are show in Appendix C under request number 5 .

CASEM

Figure 7. Selection Request Form for the Example

CHAPTER VI

RECOMNENDATIONS AND SUGGESTIONS

The principal objective of this work was to develop a computerbased pilot system for cataloging engineering materials data and making selections from that data base to fulfill specific property requirements.

As implied by the word "pilot," further work in this field is not only desirable and justified but also necessary.

The following suggestions should provide a basis for further development of this system:

1. Dissemination of timely and uniformly accurate data for new materials is most important to the designer, with or without this system. Therefore, it would be very desirable to prepare a detailed proposal for a "master plan" for standardizing such activities.
2. A method of comparison should be developed for properties that are compared only through ratings in this system.
3. Efforts should be undertaken to expand the Materials Catalog from the existing pool of 160 materials. The quality of selections will improve in direct proportion to the size of the catalog.
4. Processing time and core memory requirements should be reduced by utilizing the following recommendations for the CASEM computer program:
a. Data should be transferred to and be kept on disk or tape files rather than cards, thus improving the core usage.

Abstract

b. The program should be broken into three smaller programs independently executed but using the same file. These would be: (1) Catalog Maintenance Program (2) Catalog Jisting Program (3) Selection Program. c. Possibilities should be investigated for the feasibility of use through remote terminals in a conversational mode. In this instance, the program would interrogate the designer on a real time basis, to obtain the criteria necessary for selection.

5. The possibility of establishing conversion tables for use (only to provide a basis for comparison) in comparing properties tested by different methods for different materials should be investigated.
6. A method should be devised to make the initial decision as to what class of materials is to be considered for selection.
7. Fabrication methods that can be used with each material should be made a part of the data for each material so evaluations can be made on the basis of fabrication equipment available at the manufacturing location.

The system presented here can evolve into a major tool for the design engineer and greatly reduce the efforts required of him in this field as well as improve his selections. But most importantly, activities of this nature provide a thrust toward a better understanding of the logical processes involved. Thus it is hoped that even the simple activity of preparing the data for this system will help the designer

to grasp the explicit meanings of the assumptions he makes and judgments he exercises to make a material selection.

APPENDIX A

STATISTICAL DECISIONS

The following is a brief review of those aspects of the Statistical Decision Theory necessary for the development of a material selection technique.

Notation

Symbol X represents the vector X_{1}, \ldots, X_{m}, denoting the random variables on which the decision is to be based. Symbol Y represents the vector Y_{1}, \ldots, Y_{m}, denoting the random variables that will be observed after the decision is made. Symbol D is an index for possible decisions. Symbol s denotes a decision rule defined by non-negative numbers $s(x ; D)$, where $s(x ; D)$ is the probability assigned by the decision rule s to choosing the decision D when $X=x$. If L is the number of values D can take, then by definition:

$$
\sum_{D=1}^{L} s(x ; D)=1 \quad \text { for each } x .
$$

Symbol θ is an index for the possible joint distributions of X and Y. The loss incurred when $X=x, Y=y$ and decision chosen is D is $W(y ; D ; x)$ or $W(y ; D)$, when it does not depend on X explicitly. By definition, the expected value of a loss is

$$
r(\theta ; s)=\sum_{X} \sum_{D=1}^{L} R(\theta ; x ; D) s(x ; D)
$$

when the decision rule s is used and where $R(\theta ; x ; D)$ is the loss function.

Evaluation

In general, a decision rule is said to be "good" when $r(\theta ; s)$ is small for all θ. If s_{1} and s_{2} are two decision rules, s_{1} is said to be better than $s_{\text {a }}$ if:

$$
\begin{array}{ll}
r\left(\theta ; s_{1}\right) \leqq r\left(\theta ; s_{2}\right) & \text { for all } \theta \\
r\left(\theta ; s_{1}\right)<r\left(\theta ; s_{z}\right) & \text { for at least one value of } \theta .
\end{array}
$$

A decision rule t is called "inadmissible" if there is a decision rule which is better than t. Any decision rule that is not inadmissible is "admissible."

Bayesian Decision Rules

If $b(l), \ldots, b(h)$ are non-negative numbers adding to unity, then a decision rule s is called "Bayesian relative to $b(l), \ldots, b(h)$," if:

$$
\sum_{\theta=1}^{h} b(\theta) r(\theta ; a) \leqq \sum_{\theta=1}^{h} b(\theta) r(\theta ; t)
$$

for each and every decision rule t. Therefore any admissible decision rule is a Bayesian Decision Rule. However, some inadmissible decision rules are also Bayesian (36).

To construct a Bayesian decision rule relative to $b(1), \ldots, b(h)$, s should be chosen to minimize the expression:

$$
\sum_{x} \sum_{D=1}^{L} s(x ; D) K(D ; x)
$$

where $K(D ; x)$ is the loss function associated with $b(1), \ldots, b(h)$ for all θ and all Y. Obviously $s(D ; x)$ has to be set equal to zero for each pair of x and D, unless $K(D ; x)=\min \{K(1 ; x), \ldots \ldots, K(L ; x)\}$. If for some $x, K(D ; x)$ is minimized for more than one value of D, then there is more than one Bayesian decision rule relative to $b(l), \ldots, b(h)$.

Desirabilities and Probabilities

Construction of Bayesian Decision Rules when there is a finite number of distributions and a finite number of decisions, has been studied in detail by Jeffrey (35). In resulting methods, a set of more descriptive labels evolved to describe matrices represented by $r(\theta, s)$ and vectors represented by $b(\theta), r(\theta, s)$ is referred to as the "Desirability" matrix and $b(\theta)$ is called the "Probability" vector. The product matrix represented by the element $b(\theta) r(\theta, s)$, the sums of which must be minimized to give a Bayesian decision rule, is termed the "Consequence," "Expected Desirability," or the "Decision" matrix.

APPENDIX B

NOTES ON THE COMPILATION OF MATERIALS DATA

New materials are added to the Materials Data Card File (catalog) by the use of the Materials Data Form shown in Figure 8 in Appendix E. The same form is used for revising the data already in the catalog.

All numerical fields on the form are filled in right-justified, and alphabetical fields are left-justified. It is of utmost importance that all numerical data that do not conform to the units as shown on the form be converted by the use of conversion tables and conversion factors commonly available in professional handbooks.

If the form is being used only to change existing data, the appropriate box should be checked. In this case, only the field that is to be changed need be filled. For identification purposes, Class, Subclass, Name, Condition, and Card Number must also be shown.

For the addition of new data to the catalog, the following points should be kept in mind:

1. Data are punched on two cards per material. Card codes 1 and 2 (first column of each card) indicate first and second cards, respectively.
2. Class and Subclass numbers are assigned from Tables 3, 4, and 5. Their purpose is to facilitate preselection comparisons on the basis of dominant properties of each group of materials in future woris.

Table 3. Materials Classification

Class	Materials
1	Ferrous metals
2	Non-ferrous metals
3	Plastics
4	Rubber, ceramics, glass, carbon

Table 4. Subclasses for Ferrous Metals (Class 1)

Subclass	Materials
01	Grey cast iron
02	Nodular or ductile cast iron
03	Malleable (cast) iras
04	White and alloy cast irons
05	Ingot and wrought irons
06	Carbon steels--hardening grade
07	Carbon steels--carburizing grade
08	Nitriding steels --wrought
09	H-steels--wrought
10	Alloy steels--wrought
11	High strength steels--wrought
12	Ultra-high strength steels (wrought)
13	Free-cutting steels-wrought
14	High temperature steels--wrought
15	Austenitic stainless steels--wrought
16	Ferritic stainless steels--wrought
17	Martensitic stainless steels--wrought
18	Age hardenable stainless steels
19	Iron-based super alloys--wrought, cast
20	Iron-based chromium-nickel super alloys (cast)
21	Carbon steels--cast
22	Alloy steels--cast
23	Cast stainless steels
24	Heat resistant alloys--cast
25	Tool steels (wrought)
26	Alloy steels--quenched and tempered
27	Ferrous metal powders
$28-99$	Unused

Table 5. Subclasses for Non-ferrous Metals (Class 2)
Subclass Material

01	Wrought aluminum
02	Cast aluminum
03	Cobalt and cobalt-based super alloys
04	Tantalum, tungsten, molybdenum (wrought)
05	Wrought columbium
06	Wrought copper
07	Copper base cast alloys
08	Lead-acest or wrought
09	Wrought magnesim alloys
10	Cast magnesium alloys
11	Non-ferrous metal powders
12	Rare earth metals
13	Nickel and alloys--wrought
14	Nickel and alloys--cast
15	Low-expansion nickel alloys (wrought)
16	Nickel base super alloys
17	Precious metals--wrought
18	Tin--wrought, cast
19	Tin-lead-antimony alloys--cast
20	Titanium--wrought
21	Wrought zinc alloys
22	Cast zinc alloys
23	Hafnium, throium, uranium, vanadium, and
24	beryllium--wrought
$25-99$	Wrought zirconium and its alloys

3. All numerical values compiled in this study represent average values. They vary depending on the manufacturer. When the system is installed, if available, values representing materials in use at that specific location should be compiled.
4. Property values used here are reported to be determined by standard tests at room temperature and under normal conditions; unless otherwise indicated. Consistency and uniformity throughout the catalog are at least as important as the individual testing methods employed to determine the numerical values.
5. Where manufacturing methods cause appreciable difference in properties, the same material manufactured in several ways has been treated as several different materials, method of manufacture being indicated in the "Condition" field (i.e., hot rolled, cold rolled, etc.) or implied by the subclass selection (e.g., Class 2, subelass 13: "Nickel and alloys--wrought," versus subclass 14: "Nickel and alloys-cast").
6. Yield strength values are at 0.2 percent offset.
7. Shear strength values for wrought steels are taken to be 60 percent of the yield strength if explicit numerical values were not available.
8. Rockwell "C" and shore hardness values were converted to Brinell to make comparisons possible.
9. Values shown for modulus of elasticity are in tension.
10. Values given for fatigue strength are endurance limits in $k s i$ for 10^{6} cycles.
11. Machinability indexes are based on AISI B1112 : 100 .
12. Columns 52-75 on both cards are reserved for comments and will not be processed by the system.
13. Card numbers are to be unique, and assigned sequentially so they can be used to quickly identify cards to be changed or deleted during maintenance.
14. Prices are given only as comparative values and do not reflect pricing structures and manufacturing costs as they may apply to specific locations.
15. Material name should be as descriptive as possible within the given 25-character limit. Note that, because of report format space restrictions, middle three characters (the three positions of the middle line on the form) will not be printed in listings.
16. "Condition" shoüld describe the material when the reported properties were measured. Some examples are: cast, wrought, annealed, pearlitic, cold worked, investment cast, etc.
17. All ratings are based on a maximum of nine with the exception of compressive strength and reduction in area, which are explained below in items 19 and 20. A rating of nine indicates that the material so rated is very suitable for such applications.
18. Corrosion ratings are developed from published information and should be replaced if possible by judgments based on past experience at the specific location where the system is being used.
19. Compressive strength ratings are actual values in ksi and, if 100 or higher, 99 should be substituted.
20. Reduction in area ratings are rounded percentage values as obtained from tests.
21. A high creep rating indicates that rated material shows a relatively low rate of creep up to $1000^{\circ} \mathrm{F}$.
22. Impact ratings should be based on impact strength as determined by Notched-Izod test.
23. A high wear rating indicates good wear characteristics.
24. Availability ratings refer to variety and intricacy of commercially available shapes and cross sections such as sheets, bar-stock, hollow sections, etc.

Sources of Materials Data

Sources of materials and data used in this study are listed below:
--Metals Reference Issue, Machine Design, September 1965.
--J. M. Alexander, Manufacturing Properties of Materials, Van Nostrand Co., New York, 1963.
--R. L. Peters, Materials Data Nomographs, Reinhold Publishing Corp., New York, 1965.
--SAE Handbook, Society of Automotive Engineers, New York, 1965.
--C. A. Keyser, Materials of Engineering, Prentice-Hall, Inc.,' Englewood Cliffs, New Jersey, 1956.

Items 4, 5, 6, 12, 14, 15, and 19 listed under "Literature Cited" are also used but not listed here to avoid duplication.

APPENDIX C

SAMPLES OF COMPUTER OUTPUT FROM CASEM

Samples of computer printouts follow this page in the following order:

1. General Catalog Listing Header Page
2. Sample page from the Catalog Listing
3. Property Listing for Tensile Strength
4. Property Listing for Brinell Hardness
5. Property Listing for Density
6. An alphabetical listing of materials in the catalog
7. A typical output page showing selection results for six selections (requests 0 through 5).

All materials and properties used for the example in Chapter V are marked with asterisks for ease of reference.

GEHERAL TARLE

- LISTING of all mapertals and mapenties compiled in tac catalog -in the ofder of çamplatitime
 PEetimety for a discussion of subctasses refen To the text.
 3-Valuts con mathtwarlity ane gase om aisi mifit $=100$
 wost Destrable applications, aespectively.
s-pajces affe givem only as a comparative afasure to the value,
$6-F$ OLL OWINE UNTTS A解 NOT SHOWN IM THE TAOLF TOR THE SAKE OF

GOOULUS OF ELASTICITY E100000 F5:
ELECTHICAL

 TEMSILE STAENGTH

U4ITS: $\quad 1900 \mathrm{ps}_{\mathrm{I}}$
T* THE THALE RELOM - COLUYN I LISTS THE CATALJG NJ
COLUNM \& LISTS THE PROPERTY
FOH OTHER PROPERTIES OF ANY AATERIAL LISTED REIGA
QFFER TD THE GENERAL TABLE

FOZ DTMER PQDPEATIES of AMY MATERIAL GISTEO AELJM REfER TO THE GENERAL tible

＊

 t：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：

$-$ N ω 3んYA 9VIぬ31\％ん＊E

 annod sylmn
allsn3o
LISTING OF THE MATERIALS IN THE CATALOGOOAPAOPEATY LISTEO IN THE TABLE GELON IS：

\qquad
\qquad
\qquad
an alphabetical ligting of the mateatals in tae cataljo
in the rable belon t colunn 1 lists the catalog nj COLIMN 2 LISTS THE CLASS
COLUWN 3 LISTS TAE SUOCLASS

FOR abL BHEPROPERTIES OF ANY MAYERIAL LISTED OEGOH
REFER TO THE GEMEGAL TAGLE

APPENDIX D
 COMPUTER PROGRAM LISTING

A listing of the computer program developed for this system is included in the following pages. Below is a brief breakdown of the program, identified by the statement numbers.

Statements 1-1 through 8-30 are identification, environment, and data divisions. Highlighting these divisions; statements $1-17^{*}$ through 1-28 are the input card file, 1-29 through 1-337 are the output report file, 1-34 through 1-40 are the sort file. Working storage starts at statement 1-41 and its highlights are Materials Data File (2-1 through 2-17), Listing Request Card (2-18 through 2-21), Selection Request Card (2-22 through 2-39), Error Messages (5-1 through 5-65), ard output formats (6-1 through 8-30).

The pracedure division starts at statement 10-1 and continues with Card Read and Edit Section (through 10-405), Table Headers (10-41 through 10-72), sort section (11-1 to 11-25), Property Listings (11-26 through 12-22), Matrix Manupilation and Decision Calculations (12-50 through 14-13), Selection (14-16) and Composite Property Calculations (through 14-58), Sort Processing sections (15-1 to 15-66), Catalog (16-1 to 17-49) and Selection (18-1 to 19-99) Listing Sections, and concludes with a calculation of the processing time requirements (20-1 to $20-3$).

Interrelationships of various sections are shown in Figures 4 and 5.
*Numbers referred are statement numbers.


```
```

 8M.
    ```
```

 8M.
 BRHCFS5-tsiCNSNOAD
 BRHCFS5-tsiCNSNOAD
 *P*SNONDO? 10.0.0.0.
    ```
```

 *P*SNONDO? 10.0.0.0.
    ```
```



```
```

 OHATA. CASEN:
    ```
```

```
```

 OHATA. CASEN:
    ```
```



```
```

 M:THOR. VGFJM NEPTH O1VITFT
    ```
```

```
```

 M:THOR. VGFJM NEPTH O1VITFT
    ```
```



```
```

 ENVIMRMUEVT NIVITIOW.
    ```
```

 ENVIMRMUEVT NIVITIOW.
 TNFPGUATIONSETTINM.
    ```
```

 TNFPGUATIONSETTINM.
    ```
```



```
```

 NP(GT DHTOUT \FC+VITN,
    ```
```

 NP(GT DHTOUT \FC+VITN,
 FLF-CONTZOL
 FLF-CONTZOL
 ELEET CAHNF
 ELEET CAHNF
 ELFET DHINTROT
 ELFET DHINTROT
 4S5TGN Tg READED
 4S5TGN Tg READED
 mata DIVISITN. PPEPRAED FMA a-550n,
mata DIVISITN. PPEPRAED FMA a-550n,
FILE SECPTOM:
FILE SECPTOM:
LAREL REPIRD IS STANDARD
LAREL REPIRD IS STANDARD
MLHF OF ID IS \#CASEMIN
MLHF OF ID IS \#CASEMIN
\i
\i
i CAREFTAMAT.
i CAREFTAMAT.
O) कrs%:

```
```

 O) कrs%:
    ```
```



```
```

 O3 Su&1,
    ```
```

 O3 Su&1,
 Fn PAINTH:NT
 Fn PAINTH:NT
 PAINFTHT
    ```
```

 PAINFTHT
    ```
```



```
```

 VALLF OF IO TS ECASEMIJP
    ```
```

 VALLF OF IO TS ECASEMIJP
 n1 PR1NTALANK SY 12n.
 n1 PR1NTALANK SY 12n.
 A2 PRRK s% t%.
 A2 PRRK s% t%.
 O* fTLLER st ?n.
 O* fTLLER st ?n.
 5)
 5)
 l
 l
 SORTREC:S PC %.
 SORTREC:S PC %.
 nz sersel PC no,
 nz sersel PC no,
 32 PVALIE PF PP90.
 32 PVALIE PF PP90.
 S2 PVALIIE PFP OP90.
 S2 PVALIIE PFP OP90.
 M7AKIVE-STUNASE SECTION.
M7AKIVE-STUNASE SECTION.
1 At Q00.
1 At Q00.
Aa Pe \$090:
Aa Pe \$090:
OME P0%:

```
```

 OME P0%:
    ```
```



```
```

 cतिक कc 0.
    ```
```

 cतिक कc 0.
 CHMT DC O.
 CHMT DC O.
 tin sc 0.
 tin sc 0.
 CTRt=c onv.
    ```
```

 CTRt=c onv.
    ```
```



```
    SELEET EANDF
```

 SELEET EANDF
 RS5IGN TO SORT DISK
 RS5IGN TO SORT DISK
 OATA REECNRD IS CARDFORMAT.
 OATA REECNRD IS CARDFORMAT.
 ##FTlE& st ?4.
 ##FTlE& st ?4.
 M2 Serset PC ngia.
    ```
    M2 Serset PC ngia.
```

```
M,
        n) watrix neasze 50.
```



```
    I smLyTEOV.
        T-1 nce:
```



```
    1 an5ufr5.
    > A<\4FA1 הr >.
            \ AnSwEO? Se, 3.0.
            M, Mri pe g9%.,
```



```
            C3 5"!% ce qu9v,7?
    *)
    #RG-OCe.
```



```
    It TABL=7%T.
```



```
        n? RnN-TITLE PC X(27).
        DE EPtume aC fo
```



```
            n# sTTO ne x.
    S
```



```
        a) s:र|N刀, v{>>): V
```



```
    \
        MORK=RNFA1 s>? ??:
        a) wall ar, x+3).
        O2 4R17.
```


GRY-AGE??
n) wapl:

```


```

 O7 FTLLE? 5% VA SPACES.
 O me?2.
    ```


```

 C4n33.
    ```

```

 n7FTLLE, s% S va Spaces.
 n) WAX4.
 3%FTLIFO &, # Ya spaces
 33 F'LLFO SY B YA SPACESS,
 M)
    ```
为
n? 4: 29.

02 Waper
WA>B1 SC 9.
no anct.
AT FiLLEC ST 7 VA SPaCfS.

1) 189


(WatESPr
D) WAPDBPC
\(n 1\)
n) 4740 nt 151 Pe \(x(z a)\).

MHITAARE.
serayp 191 pe x(15).

O11 acrirgs \(1 \times 0\) THES.



\({ }^{31}\)

is FTLEEOS7 1 .

C) STARz PC \(x_{0}\)
\({ }_{0} 3 \mathrm{Cl} 1\) pr 4.



n) EnYnfut PC x(11)


91


A3 MAMEMIT? PCC \(\times(25)\).
n3 SFLE AC, 89.

n3 ctran PC 999.

31
Mi4EARLYK.


```

 \ pungtar aso.
 #3 (1)2.0.
 O3 STAR!厶 OC
 #1,
 03 प4.00413 >C x(>>)
    ```

```

 A3 Capmoir ; pr: x(11)
 0] ST{R1P PC (X. (1)
    ```


```

 A staki, PC }x\mathrm{ .
 O) ITMETA.
 TItLEFA, ac,
 * f%l?d
 M新秋 }
    ```

```

 O4 Frblen 52 1.
 40? 吹 x.
    ```

```

 n4 FFLfa 5% 1.
 n& s,3pC x;
    ```

```

 FTLLEAST 1. G GOHK ALEN ZERT.
 GA STAPC X.
 N& f+LLERR Si fi,
 505 PC x.
 04 5%S PC X:
 $4 cuntyo po x(1,)
    ```

```

 A4 PSPGO OC Y(4); 7S QLANK HEN TERO.
 M&FLLEN 3T
 O1 ITTLPIT.
 NTLFIT:
 0
    ```


```

 na 5rtufle Sz t,
 0A FTLiEM 5z i
 O4,0LiER 5z 12
 AMFYLtF&St 1
 OA STMA=7.0.
    ```

```

 A4 FiLLEQ s7:.
 n& 5T1t pe x.0
 \a Fullra Sy 1.
 H FTR.

```

    \(0^{n 1}\)
    n2 F271 St rxy,




    - it Figa











    (1) MAAV HIVF
    B2 FILLEA ST 62 VA " DRJGRAY BWD OATA HAS REEN CRYPILEDE
    "CAfalog conkeisps or ".

                                    ".
    n) FiUER ST *\% va m IIFus

    "LIETY THIREPRRE SHIS COMPUTEQ RUN TS SUSPENDEOI SUPDLT CAFBLE


    al mis REDIESTEN -



    - \(n 1\) "
    iIthry.
    ap crice sy as va spaces.
    nh oxiprti pr re 30 ).
    31 TrTLis.



    \(n\)
    TTLFA 57 ion va


        chiny
    -at titláa ay lon va m"
    CiLivan z LIST: Ther supctass

```

*) iltlra. *
lol
*
*

```



```

 n) PTMLTO.
    ```

```

 O2FTLLEAS7t? *a *'3y * 5 **:
    ```



```

 "tal vadF, mon va***
    ```



```

 02 TPL23 PC O. CLASS = ".
 02 THLT3 PC 0.
 01
 02 FTLLE* SZ 63 va:*.
    ```

```

 ## FTLLEQ SY S5 VA SPACES*
 *)
    ```




```

 * OI GEMTAGLEA $7 120 VAF".
    ```




```

 - at GENTAALEAS ST 170 VA -
 3-valuEs
    ```

```

 OI OENTAMLEY 57 12NVA"".
    ```

```

 gentamtra st i?n van"*
 O1 GENTARLFA ST ITA VAMn.
 *
 REFER to
 *1 TVMF10.
    ```

```

NOM,

```



```

 a3. If nMP * WAVE CAADFHAWAT TD ERHAL WRITFPRIMTHLANK FAGM
 EARO AFTFQ ANVKCIMG I LIVES WHJTF *RIMTOLANX FRDU ERAS AFTER
    ```




```

 ANWANCINA CHANNFL I, IF DUMHY1 SO YOVE REST TO OESVAN (M)
    ```


```

 MDYANCING CHANNFL, WRITE PGINTALANK FAON EARG AFTER
    ```



```

 M,
    ```



```

 M,
    ```

```

 6T*00. T% xtFM i AD TO DRGaMIEE-REOUEST.
    ```

```

 STARS (K), STARS (K)& STGR7 (K)P STARS (K), STAGP (K).
    ```

```

 H0.
    ```

```

 STARII (3). STAKA (3), STAR9 (3). STARO (3), STAR10 (3),
 Malol
    ```




1. دQ1\% - 27c419 a

 - RIVTALANK FORY TITLEA AFTFA ANANCTNG 1 CIVF5 MOVE ALLL THE" TO TiLT NATE OQINTALAYX FXIM TIPLFR AFTEA ANVANCING ? LINES


 Livith ro. a. 6 in in sa.


ग. Nove amनi (7, in catwis (1). io







 フERTE TM CATNAR (1), CLSS (3). SCLA (3).

Y: WRVE RERCS TA OHMMY2.

 wRITE PAINTAI ANK FRTM TITLELS AFTER AOVANEJNG 1 LINES.

Th Liftrmi

 7. If numye * AND Du4ur












HESIPICY. WTVF 1 TI A.


 F5. IF MLIVA \{AA: = O OR AA \(=51\) GO TJ FIZ FLSE NDVE MLTNO (MA)


CIILUY














GOVL (A,AGA - 9) \()\) ) COMPUIE VALI (AA, AAA) FRSM ( \(0.75 \times 14 \mathrm{~F}\) ( 4


CAA - F) D)

Thata GA Th 5 a.
F7. HJve terns ta 4A



ci3. MFVE TATA AAS:





    (A). Su4s (A), suly (a).




F20.GO FFFYAL-REP
nsvacheras anil in J.




```

(J.E+1).

```



    an inth,

    - if simy (a) : ant in E70.







    FTO. EXTY
    COWBUTINGAPADBERYES SETTION.




    xif. EX1T,
(atily Eretian.


    s3. Have reats 19 J .

    SORTIOUT SECTION.
    ?. 200 , To Jo

        wayr whinls in MNJt (d), GS ra p?.
    T?. Nivs
    加TPIN EECTHV.









    S4. Moyf zenns fa \(J\).

5. 000 5ECTIN4


    4. ynve zeacs T a.
5TRTAIM EECTM,



 s9. MOVF Jeans th. 1
Y4. FXIT.
sJATADUF
sif Dut sectinn.

 n6, Whyf, EEAns TA. "I7ERER日HET.




NK yalle priviglank aeter advaneing

 PRINTALAMK FROJ GENTARLES AFTER AOVANCTNG 12 LIMES WATTE










11. AF






5. c



 EILIJV-FIFLO (J)





A3t. WRTVE FRTNTALAMX ERTM TAQLET





*. Pn*



fr. compor an is isi.












 AA3: PEGETAEM 421:







 6901. WOYF AWLHA TS COLUMN-FIELO (1).
691. MRTE PRTNTALANK FADM TLNEEOUT:








 APY. WOVF EEANS in












AP\%. TH numw 1.










MONF SDICES TO PRINTPLANK WH1TE PRIMTELANK REFORE ADVANCIME
 CRITF PQTMTR1 AY FROW EENTALEA AFTFR ANVANEING 10 LINES

 PRIMTALANK FROU GENTABLEP AFTFR BDVANCIME 2 LIMES WRITE







 PAHLELANK FROM FAS AFTER GOVANGINA 1 LIUES WATTE PATMTOLAVK






\section*{APPENDIX E}

\section*{SAMPLES OF FORMS USED WITH CASEM}

Forms used in the transmittal of Materials Information and Requests are shown in Figures 8 through ll. Instructions for the preparation of Materials Data Form and Selection Request Form are in Appendix \(B\) and Chapter \(V\), respectively, Delete List and Listing Request Forms are self-explanatory.
\(\qquad\) \(/ 19\) BY: \(\qquad\)


Figure 8. Materials Data Form

DELETE LIST

TO THE DATA PROCESSING CENTPER:
The following materials data cards should be deleted from CASEM Catalog Card File:
\begin{tabular}{|c|c|c|c|c|}
\hline ITEM & CLASS & SUBCLASS & & NAME \\
\hline 1 & & & & CARD NO. \\
\hline 2 & & & & \\
\hline 3 & & & & \\
\hline 4 & & & & \\
\hline 5 & & & & \\
\hline 6 & & & & \\
\hline 7 & & & & \\
\hline 8 & & & & \\
\hline 9 & & & & \\
\hline 10 & & & & \\
\hline
\end{tabular}

By:
Dept.: \(\qquad\)
Date: \(\qquad\)

Figure 9. Delete List

\section*{CASEM LISTING REQUEST FORM}

Write " 1 " into the blank for the listing requested.
\begin{tabular}{|c|c|c|}
\hline Column & & Property Listing \\
\hline 1 & 3 & Code \\
\hline 2 & & Yield strength \\
\hline 3 & & Tensile strength \\
\hline 4 & & Elongation \\
\hline 5 & & Shear strength \\
\hline 6 & & Brinell hardness \\
\hline 7 & & ModuIus of elasticity \\
\hline 8 & & Endurance limit \\
\hline 9 & & Machinability \\
\hline 10 & & Density \\
\hline 11 & & Coefficient of thermal expansion \\
\hline 12 & & Thermal conductivity \\
\hline - 13 & & Comparative price \\
\hline 15 & & Melting point \\
\hline 16 & & Electrical resistance \\
\hline 17 & & Alphabetical listing \\
\hline 18 & & Class listing (fill in the class number) \\
\hline 19-20 & & Subclass listing (class must be indicated above) \\
\hline 21 & & Complete catalog listing \\
\hline
\end{tabular}

By:

Dept.: \(\qquad\)
Date: \(\qquad\) 19

Figure 10. Listing Request Form

\section*{CASEM}

\section*{SELECTION REQUEST FORM}


Figure ll. Selection Request Form

\section*{LITERATURE CITED}
1. N. E. Cottrell, "Information Retrieval Systems and Mechanical Engineering Data," ASME Technical Paper 66-MD-79, presented to the Design Engineering Conference, Chicago, May 1966.
2. W. M. Carlson, "Elements of Engineering Information System -Structure and Economics," Paper presented to the Second Annual National Symposium on Engineering Information, New York, October 1965.
3. "Proceedings of the Engineering Information Symposium," Engineers Joint Council, New York, January 1962.
4. "A Materials Handbook :- Parts and Forms for Design Engineering," Materials in Design Engineering, Reinhold Publishing Company, New York, 1959.
5. "Matexials Selector Issue," Matl. Des. Eng., October 1965.
6. Metals Handbook, Viol. 1, American Society for Metals, Eighth Ed., Fourth Printing, Metals Park, Ohio, May 1966.
7. E. J. Laurie, Computers and Computer Languages, 2nd Edition, Southwestern Publishing Company, Cincinnati, Ohio, 1966.
8. D. W. Cooper, "Digital Computers in Engineering Analysis," Machine Design, October :11 - December 6, 1962.
9. "Time Sharing Ends Design Bottleneck," Product Engineering, August 14, 1967, p. 124.
10. Lionel Weiss, "Statistical Decision Theory In Engineering," pp. 170-177, Information and Decision Processes, Edited by R. E. Machol, MeGraw-Hill Book Company, Inc., New York, 1960.
11. M. K. Starr, Product Design and Deciaion Theory, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1.963.
12. A. H. White, Engineering Materials, Second Edition, McGraw-Hill Book Company, Inc., New York, 1948.
13. R. M. Thomson, "The Impact of Materials Science on Materials Engineering," Journal of Materials, December 1969, p. 938.
14. C. W. Richards, Engineering Materials Science, Wadsworth Publishing Company, Inc., Belmont, Califormia, 1961.

\section*{LITERATURE CITED (Continued)}
15. Handbook of Chemistry and Physics, 4lst Edition, C. D. Hodgman, Editor in chief, Chemical Rubber Publishing Company, Cleveland, Ohio, 1959.
16. R. M. Alger and C. V. Hays, Creative Synthesis in Design, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1964.
17. T. M. Trainer, J. S. Glasgow, "Materials Selection in the Design Method," Mechanical Engineering, March 1965, pp. 41-43.
18. J. P. Vidosic, Decision in Design, Course Notes for ME 659, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 1964.
19. R. C. Johnson, Optimum Design of Mechanical Elements, John Wiley and Sons; New York, 1961.
20. R. W. Mann, "The CAD Project," Mech. Eng., May 1965, pp. 41-43.
21. M. A. Howard, "Design with Computers," Mech. Eng., May 1965, pp. 31-34.
22. L. F. Knappe, "A Computer Oriented System," Mech. Eng., May 1965, pp. 35-40.
23. S. J. Fenves, et al., Stress - A User's Manual, MIT Press, Cambridge, Massachusetts, 1964.
24. C. L. Miller, "COGO", Department of Civil Engineering Report, Massachusetts Institute of Technology, 1961.
25. D. E. Hart and R. D. Hargraves, "DYANA--A Computer Program for the Automatic Analysis of Dynamic Systems," Proceedings of NEC, No. 16, 1960, pp. 308-315.
26. "Information Retriaval System Saves Money, Time, and Space," Prod. Eng., August 14, 1967, p. 122.
27. N. D. Stevens, A Comparative Study of Three Systems of Information Retrieval, The Rutgers University Press, New Brunswick, New Jersey, 1961.
28. L. R. Bunnow, Study of and a Proposal for a Mechanized Information Retrieval System for the Missiles and Space Systems Engineering Library, Douglas Aircraft Company, Santa Monica Division, Santa Monica, California, May 1960.

\section*{LITERATURE CITED (Concluded)}
29. B. E. Holm, Information Retrieval -- The Problem..., Coordinate Indexing -- A Solution, Engineers Joint Council, New York, August 1963.
30. "Proposed EJC Course of Action in Field of Information Systems," Engineers Joint Council, September 21, 1962.
31. "Information Systeras -- Essential Tools in Engineering Application of Science for the Needs of Society," Proceedings of a Panel Program jointly sponsored by Enginears Joint Council and AAAS, AAAS 129th Annual Meeting, Philadelphia, Pennsylvania, December 27, 1962.
32. W. A. Donaldson, "Automated Design Engineering," ASME Technical Paper 66-MD-76, presented to the Design Engineering Conference and Show, Chicago, Illinois, May 9-12, 1966.
33. "Can You Computerize Equipment Selection," Modern Materials Handling, November 1966.
34. R. H. Reals, "Automated Manufacturing Planning", ASME Technical Paper 66-MD-53, presented to the Deaign Engineering Conference and Show, Chicago, Illinois, May \(9-12,1966\).
35. R. C. Jeffrey, Logic of Decision, McGraw-Hill Book Company, Inc., New York, 1965.
36. Lionel Weiss, Statistical Decision Theory, McGraw-Hill Book Company, Inc., New York, 1961.
37. G. R. Hogsett, ECAP/ \(360-\mathrm{E}-\mathrm{m}\) Electronic Circuit Analysis Pragram, IBM Program 360D-16.4.001, International Business Machines Corporation, White Plains, New York, 1967.```


[^0]:    *Numbers in parentheses refer to items cited in Bibliography.

[^1]:    *Underilined numbers in parentheses refer to block sequence numbers in Figure 2.

