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INTRODUCTION

The two specific objectives of this project on wet pressing are (1) to

establish the dryness of wet paper under rapid compression, and (2) to assess the

extent of rewetting in subsequent expansion. In the ad hoc meeting held in March,

1975, and in Report One issued by the following June, a review of the dynamics of

wet pressing was undertaken, in which we summarized the complexity of this appar-

ently simple operation.

In the course of the review, we suspected that a large part of the con-

flicting evidence and its diverse interpretations in the literature on pressing

could arise from uncontrolled tests. In this project, therefore, we proposed to

begin with a definitive study of dynamic compression, experimentally by use of a

simplified system and analytically with the aid of a mathematical model. This

report deals with the initial results of the compression study.

Based on our previous experience with the static compression of fiber

mats, we deemed it necessary to choose a well-defined system for initial dynamic

experiments. Our work has been so far restricted to filtration-formed and

mechanically conditioned thick mats of dacron fibers confined in a cylinder be-

tween a stationary plate and a pneumatically driven permeable piston. During

the compression the force on the piston, the fluid pressure at the mat-plate

interface, and the mat thickness can be continuously monitored.

The experimental system possesses the following simplifications for the

purpose of this study:

1. The dacron fibers have nearly uniform properties. In addition,

they are practically nonswelling.
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SUMMARY

A filtration-formed, mechanically conditioned, and water-saturated

thick mat of dacron fibers was compressed in a piston. press under a schedule

of rapid pressure rise. During the compression the applied pressure, the mat

thickness, and the hydraulic pressure were continuously recorded on a light-

sensitive chart. The three traces were read into digital data. The data of

mat thickness were used to correct the applied pressure for piston inertia.

The corrected applied pressure schedule, together with the static compressibility

and the Darcy permeability of the mat, was fed into a mathematical model for wet

pressing to predict mat thickness and hydraulic pressure.

The predicted thickness was 2-13% lower than the data in the first 40

milliseconds (ms) of compression. A comparison of the predicted and measured

hydraulic pressure showed very similar patterns of rise and fall. The data,

however, lagged behind the predictions by approximately 5 ms. The first peak

of the predicted curve was about 30% lower than the measured value. These dis-

crepancies were attributed to the use of static compressibility in the model.

This study has firmly established the validity of the compression-flow

interaction concept. Our mathematical model is capable of accounting for the

effect of flow resistance on water removal provided the dynamics of mechanical

compression itself can be adequately described. The load-deformation-time be-

havior of wet paper holds the key to the ultimate effectiveness of pressing,

whatever the type of press or felt may be used.
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2. The filtration-formed and mechanically conditioned mats have

fairly stable and reproducible structures with respect to their compressibility

and permeability.

3. The flow of water out of these mats is unidirectional.

The instrumentation for measuring and recording the data meets the

following requirements: (1) fast responses, (2) sufficient precision, and (3)

little drifting. The measurement of fluid pressure without the interference

of fibers has been successfully developed in this project.

Mathematical modeling for a complex process is at best a simulation

of reality. Its main uses are (1) to serve as guidance in analyzing experi-

mental data, and (2) to aid a parametric investigation of a practical system when

only limited information is available. The present model for wet pressing is

based on the concept of dewatering a compressible fiber mat, developed at the

Institute more than a decade ago. It is a macroscopic description of the inter-

action of compression and flow in successive equilibrium states, and has the

inherent power of prediction if (1) the information of compressibility and per-

meability is available, and (2) the initial and boundary conditions are presecribed.
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EXPERIMENTAL

COMPRESSION APPARATUS AND INSTRUMENTATION

The compression apparatus (Fig. 1) consisted of a 3.00-inch (I.D.)

cylindrical cup mounted on a flat plate, into which was inserted a permeable

piston. The component parts were made of brass, and all contact surfaces were

machined. The top of the piston was connected with a driving member by a ball-

adapter joint to facilitate self-alignment. The driving member was a rod attached

to a flexible diaphragm sealed in an air chamber which was connected with a com-

pressed air source and the atmosphere through two quick-opening valves. The

piston proper contained a number of evenly distributed fluid channels with a fluid

reservoir in its midsection. The lower face of the piston was covered with a

35-mesh backing screen and a 100-mesh facing screen. The complete apparatus was

mounted in a heavy frame on a rigid base.

The force acting on the piston by compressed air was measured by a

strain-gage load cell mounted between the adapter and rod. The hydraulic pres-

sure was monitored with a miniature pressure transducer imbedded in the plate

about 1/4-inch deep and facing upward. Four small pressure taps drilled through

the face of the plate were connected by a horizontal passage to the transducer

to prevent the sensing element from direct contact with fibers. The piston dis-

placement or mat thickness was measured with a linear motion potentiometer. This

thickness gage mounted vertically on the base was attachable to the piston with

a swing arm. The three signals were transmitted to a Honeywell Accudata Multi-

channel DC amplifier and traced optically on a Honeywell Viscorder Oscillograph.

The response of the instrumentation from the sensing element to the

recorder was limited by the latter which was specified to have a step response
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of 0.2 ms. This was verified for each of the three channels by applying an input

from a pulse generator and observing the time elapsed for the output. The pulse,

a step function, could be generated in a few il:s and the obLerved time of re-

sponse agreed with the specified limit.

The galvanometers in the recorder, one for each channel, were checked

for linearity by measuring known thicknesses of a set of spacers with the linear

motion potentiometer and recording the output on a chart. It was found that all

three channels responded linearly.

Finally, the sensing devices were calibrated against a pressure gage,

a mercury manometer, and a micrometer. The resulted calibrations were all linear.

PREPARATION OF FIBER MAT

The fibers were prepared from a yarn of dacron monofilaments with a

razor-band cutter. The average length was measured to be 3.65 mm and the average

diameter 23.1 pm. The dacron fibers have a density 1.38 g/cm3 .

The fiber bundles were readily dispersed in hot distilled water under

a vacuum. The dispersed fibers were diluted to 0.1 g/liter with distilled water,

and formed by filtration into a mat about 2 cm thick in about 40 min to reach a

basis weight about 2000 g/m2 . The water-saturated mat was transferred, with the

support of a plastic film, onto the plate of the compression apparatus. After

the mat was properly centered, the cup was replaced, and the piston lowered on

the mat.

The maximum air pressure desired for dynamic compression was applied to

the mat for 2 min. The pressure was then released, and the mat allowed to expand

and remain water-saturated under the weight of the piston (1576 g) for 2 min.
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This compression-recovery cycle was repeated 12 times. The mat was thus "mechan-

ically conditioned."

After a dynamic compression test, to be described later, the wet mat

was removed and dried overnight in an oven at 105°C. The dry mat was weighed and

replaced on the plate for mechanical conditioning again.

STATIC AND DYNAMIC COMPRESSION TESTS

The static test for both wet and dry mats was performed in the compres-

sion apparatus. The mat thickness under a constant load for 15 min was measured

in the pressure range of the dynamic test.

In a dynamic test, a mat was compressed in a time of the order of

102 ms to a maximum pressure of about 5 X 107 dyne/cm 2 (700 psi). With the

manual manipulation of the air valves, the rate of pressure change could not be

precisely controlled. During the run, the applied load, the hydraulic pressure,

and the mat thickness were traced as functions of time on a linear chart.

After the mat was removed, the zero readings for applied force and

hydraulic pressure were recorded on the same chart. The piston was then lowered

to contact the plate, and the zero reading for thickness was also noted.

Next, a load, usually 100 psi, was applied to the stationary piston,

and calibrated against a pressure gage. Following this step, the piston was

lifted to a certain position from the plate, and the clearance was calibrated

against a micrometer. Finally, the space between the piston and the plate was

confined by a special rig and completely filled with water. A small pressure

was applied to the piston and calibrated against a mercury manometer. All of

these calibrations were noted on the same chart.
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The light-sensitive chart was photographed without appreciable distor-

tion to yield a negative film. By the use of a microcomparator, the traces in

the film were read into digital data at chosen time intervals.

PERMEATION APPARATUS AND TEST

A sketch of the permeability apparatus is shown in Fig. 2. A mechanic-

ally conditioned and water-saturated mat was clamped and sealed between two

permeable septa at a prefixed clearance. Distilled water, deaerated and filtered,

was forced through the compressed mat at a slow rate under a pressure drop amount-

ing to only a small fraction of the compressive stresses sustained by the mat.

The flow rate, pressure drop, and water temperature were measured.
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CORRELATION OF DATA

COMPRESSIBILITY

Ingmanson's work (1) on the compressibility of filtration-formed mats

of synthetic and cellulosic fibers at low pressures (103-105 dyne/cm 2) for rela-

tively long times (103 sec) supported the use of the power law:

N
c - c = Mp (1)

where c is hypothesized as the mat density at zero stress. For the first com--o

pression, c is 0.02-0.04 g/cm 3 , about the sedimentation concentration of a

fiber network, N in the range of 0.22-0.45, and M roughly proportional to

exp(-N).

Kurath's study (2) of dry and wet nylon fiber mats under the first

compression in the pressure range 104-109 confirmed the applicability of the

power law until a maximum pressure was reached, beyond which the mat density

remained constant. The transition from variable to constant density was not

exactly sharp. The wet mat attained a maximum density of.l.O at a pressure of

3.8 x 108, as compared with the nylon density of 1.106. Above a pressure of l07,

fiber damage (permanent set) in contact areas was readily visibleiunder a micro-

scope.

Kurath also found that the dry mat at high pressures showed the same

value of N as the wet mat, but a lower value of M. This reduction of compres-

sibility from the wet to dry.state may be attributed to a decrease of fiber

conformability (flexibility and plasticity) as a result of deswelling (3).
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Wilder (4) investigated the creep of wet wood fiber mats at low pres-

sures. He correlated his data for both freshly formed and mechanically conditioned

mats by

c - cO = (M' + M2 log t)pN (2)

where MI and M2 are both positive for compression. N was found to be independent

of time, and M independent of pressure.

Wilder's analysis of his short-time (<0.1 sec) compression data demon-

strated that the rate of mat deformation was controlled by the resistance of the

mat structure to the flow of water, and dependent little on creep. The current

understanding of wet compression in a transversal-flow press (5) is in general

agreement with this finding.

The static compressibility data for the wet and dry mats of dacron

fibers in this study were correlated by the power law. The smooth curves in

Fig. 3 represent the computed correlations with the values of the parameters

listed in Table I.

TABLE I

STATIC COMPRESSIBILITY FUNCTIONS

Max.
N, Deviation,

Mat c cgs units M +, %

Wet 0.2231 0.2360 0.007291 3.8

Dry 0.1544 0.1701 0.02171 2.5

It is noted that for these mechanically conditioned mats, c is con-
-o

siderably larger and N appreciably smaller than those for the first compression

(cSo 0.03, N _ 0.25). The hypothetical zero-stress mat density is expected to

increase with increasing mechanical work, and a denser initial structure to

respond less sensitively to pressure (3).
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If the maximum mat density-is assumed to be approximately 90% of the

dacron density, the limiting pressure may be estimated from the compressibility

function. The order-of-magnitude of a is compared with Kurath's nylon data

in Table II. It is seen that the higher p for dacron may be a reflection of

its lower fiber conformability involving both elasticity and plasticity.

TABLE II

COMPARISON. OF LIMITING PRESSURE

Dacron Nylon

Pmx109 108
Pmax

E 1011 1010

PERMEABILITY

Slow flow through a porous medium follows the Darcy law:

U, = p (3)
U L

The permeability K is a dynamic characteristic of the porous structure. According

to the Kozeny-Carmen model,

K = - (4)
kSv (1 -l)

in which k, the Kozeny factor, is approximately constant for most incompressible

porous media composed of solid particles in a dense packing (E <0.5). At high

porosities, however, k is a strong function of E for a given porous medium.

A fiber mat may have a very high porosity (>0.95) in an uncompressed

state. It approaches zero porosity as the compacting pressure is increased to

the limit. Ingmanson and coworkers (6) measured the permeability of filtration-

formed mats of cylindrical fibers in the porosity range of 0.67-0.96, from which

the variation of k with e was correlated under the assumption of constant S .
-- ~~~~~~~~~~~~-'V
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In wet pressing the porosity varies over a wide range. The permeability

of a compressed mat with moderate porosities has not been reliably measured on

account of experimental difficulties in septum construction, air entrainment, and

permeability decay.

The permeation data for dacron mats in Fig. 4 indicate that (1) the flow

is in the Darcy range, (2) the septum resistance is negligible, and (3) there is

little permeability decay. From the slopes of these lines the permeability is

evaluated at the known mat porosity and water viscosity. A direct correlation of

K with c is shown in Fig. 5. Within the experimental range the increase of per-

meability with porosity is monotonic at ever accelerated rates. An empirical

expression for the correlation is computed as

K = 6.395 x 10 6 e11 3 + 0.573 x 10-6 E2.34 (5)

where K is in cm2.L

I
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DISCUSSIONOF RESULTS

COMPRESSION OF DRY MAT

Figure 6 shows the recorded chart for the compression of a mechanically

conditioned dry dacron fiber mat. It is apparent at once that the fluid pressure

remains unchanged throughout the test. The rise of applied pressure is continuous,

but not smooth in the initial period, as a consequence of the manual operation

of the air valves.

At this point, the relation of piston motion to compacting pressure

should be discussed. If the thickness reduction is nonlinear, the piston cannot

be in a uniform motion. When the piston is accelerating, the pressure acting on

the mat is less than the measured value. Conversely, the mat experiences a force

larger than the apparent load during piston deceleration. This pressure correc-

tion may be achieved by a graphical evaluation of the derivatives of the thickness

data.

The process of correction is summarized in Table III. The first deriv-

ative representing the piston velocity is evaluated from a plot of thickness vs.

time (Fig. 7). It is seen that the piston accelerates to a maximum velocity at

14 ms, then decelerates to a minimum velocity at 20 msec, and from there acceler-

ates again. The second derivative multiplied by the mass per unit area of the

piston is the amount of pressure correction. The correction at early times is

considerable; it becomes insignificant when the point of the minimum velocity

is well over. Both the measured and corrected pressure schedules are shown in

Fig. 8. It is seen that the correction makes the pressure wiggling more pro-

nounced than the original.
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TABLE III

PRESSURE CORRECTION

L, meas. d~t
cm cm/sec

0.6826

0.6755

0. 673~ 5

0. 6695

0. 6643

0.6558

0.6469

0.6353

0. 6199

0.6o42

0.5846

0.5649

0.5532

0.54o8

0.5356

0.5322

0. 5305

0.5282

0. 5265

0.5204

- 2_69

- 4.0C4

- 5.27

- 6.48

- 8.25

-10.67

-13.12

-18.40

-21.84

-11.95

- 9.05

- 4.74

- 2.48

-0. 743

- 1.42

- 4.45

- 6.48

at2

cm/sec2

-1010

-1170

-14 10

-1640

-1950

-2360

-2440

-2770

...31430

0

+5520

+4430

+366o,

+2860,

+2410

0

-2510

-2000

-1130

P. corr.
dyne/cm 2

x 1o- 

0. 0642 9

0.07133

O. o8168

0.0983 5

O. 1461

0.2056

0.3046

0.3919

0.4728

o,72o8

1.0o96

1.274

1.436

1.537

1.6o2

1. 603

1.621

1.755

1. 991

P, corr.

P, meas.

0.645

0.639

0.636

0.640

0.685

0.697

0.805

0.803

0.803

1.00

1.21

1.14

1.10

1. 07

1.0o6

1.00

0.882

0.955

0.910

sec

0

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

P, meas.
dyne/cm2

x lo-,

0.0o6153

0.0o9968

0.1117

0.1285

0.1535

0.2136

0.2841

0.3785

0. 4878

0.5885

0. 720o8

0. 90418

1.115

1.301

1.438

1.512

1. 603

1.707

1.839

2.100
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Without the complication of flow resistance, the compression of the

dry mat is strictly mechanical. The structure of the mat remains uniform

throughout its thickness. The compression test may be considered in two parts:

the dynamic period of rising pressure and the static period of constant pressure.

The second part is usually referred to as a creep test. The creep of a mechan-

ically conditioned dacron mat is very small, as illustrated in Fig. 9. The

increase of mat density amounts to about 0.5% per decade of seconds. Creep,

therefore, will not be further considered.

If it is assumed that the mat were capable of attaining equilibrium

instantaneously, then its thickness would be the same as that calculated from

the static compressibility. In Table IV, the calculated thickness is based on

the corrected pressure. However, because of the low compressibility of the

dacron mat, the uncorrected pressure, if used, will yield only a small difference

in the result of this calculation.

A direct comparison by the ratio of the calculated to the measured

thickness indicates that dynamic compression with a rising pressure is less

effective than static compression at a constant load. The deviation ranges

from 3 to 10% in the first 23 ms. A more meaningful comparison may be made

in terms of mat deformation. The relative deformation, AL meas./AL calc., is

an indication of how closely the actual deformation approaches the static value.

Figure 10 shows the relative deformation vs. time to be a sigmoid curve. The

implications of this curve remain to be exploited. It is apparent, however,

that the dynamic deformation of a dry mat is a complex function of pressure and

time. No simple rheological model that we have tried fits the data reasonably

well.
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TABLE IV

COMPARISON OF DYNAMIC AND STATIC COMPRESSION

Lo-L, cm

meas. calc.

0.0071

0.0091

0.0131

0.0185

. 0266

0.0357

0.0473

0.0627

0.0786

0.0980

0.1177

0.1295

0.1418

0.1470

0.1504

0.1521

0.1544

0.1561

0.1612

0.0272

0.0328

0.0397

0.0500

0.0712

0.0895

0.1104

0.1238

0.1337

0.1567

0.1776

0.1853

0.1914

0.1949

0.1970

0.1973

0.1998

0.2022

0.2080

t 
sec x 103

0

5

6

7

8

9

10

11

12

15

14

15

16

17

18

19

20

21

22

23

L,
meas.

0.6826

0.6755

0.6735

0.6695

0.6643

0.6558

0.6469

0.6353

0.6199

0.6040

0.5846

0.5649

0.5532

0.5408

0.5356

0.5322

0.5305

0.5282

0.5265

0.5204

cm
calc.

= o
0.6554

0.6498

0.6429

0.6326

0.6114

0.5931

0.5722

0.5588

0.5489

0.5259

0.5050

0.4973

0.4912

0.4877

0.4856

0.4855

0.4828

0.4804

0.4746

L, calc.

L, meas.

0.972

0,.965

0.961

0.953

0.932

0.917

0.902

0.900

0.910

o.900

0.895

0.897

0.906

o.909

0.912

0.914

0.918

0.913

0.911

AL, meas.

AL, calc.

0.260

0.269

0.330

o.366

0.375

0.399

0.427

0.506

0.588

0.625

0.662

0.699

0.727

0.755

0.765

0.771

0.773

0.775

0.778
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COMPRESSION OF WET MAT

Figure 11, the recorded chart of the wet compression test, reveals

the generation and decay of hydraulic pressure. This constitutes the first

direct experimental evidence to support the concept of compression-flow inter-

action which will soon be discussed.

The digitized data were processed in the same manner as in the dry

compression test. The applied pressure was corrected for the piston inertia.

Table V is a summary of the data in the early period of compression.

It is to be noted that the applied pressure data show, after an initial

rise, a decrease between 6 and 12 ms. Experimentally, the pressure can only

rise as the quick-acting air valve is turned open. Moreover, during those early

times both the thickness and hydraulic pressure changes do not show any reversals.

In view of these facts, the applied pressure data are smoothed as shown by the

dashed segment of the corrected pressure curve in Fig. 12.

The measured hydraulic pressure is shown in Fig. 13 by the solid curve.

The shape of the curve calls for some discussion. When a water-saturated mat is

being compressed, the reduction of its volume must be balanced by the expression

of water according to the principle of mass conservation. The instantaneous

superficial velocity of flow out of the mat is approximately proportional to the

rate of mat deformation. For slow flow through a uniform mat, the velocity is

directly proportional to the hydraulic pressure. In the case of a nonuniform

mat, we would expect that the curves of hydraulic pressure and deformation rate

will at least show similar patterns.

The dashed curve in Fig. 13 represents the smoothed rate-of-deformation

data on a vertical scale so chosen that the first peaks of the two curves have



.-I
 -.

1 
-

-.
- 

-
I -

�
�t-

8
 

9 
10

 1
1 

11
2 

0 
1
9
8
6
1
y
e
tt

l 
is

m
s

� .
.4

-.,
 
' -

-
--

4
 

.
.
-
-
-
.
.

I

1-d
 

:4
�i 

(D
0 

0
c-

 
b,

(D
 (

D
0 

F
t

cf
- 

E
n

UY
 0

ro
 

�-
b

\.n OD
 0 (P F-

1
::S C

A
cf Fl

- ci
- Z c-
F

(D 0 f-
d

P Id (D 0 :3
1

(D V
I

E
n

c-
F

1�
1

-
v

..
-

I 
-

.
..
-.

 
.

0
 
-
-
.
-
 4

 
-

, 
, 

.
-

L
 .

-
4 

:
..
. 

� 
I 

.
:-

 
.f

-.
 

.
-
-

-
--

.. 
-

� 
I

.
-

-
..
 
I

ID
 
-

I 
;-

.

-
-
 

.0
 

,

.
.-

--
 

.
-

I 
.
.

-_
 

; 
.
.
 
.

; 
.
.
.

-
-
 
; 

.
� 

� 
o
 .

I 
.
.
 .

4
.

I 
I 
.-

- 
.

, 
, 

".
..

 
--

- 
-A

 
-

--
 

-
, 
'.
 ..
 .

-.
 -
..

� 4
 -

.
I 

..
 .-
 .

.-
--

..
- V

 
..
, 

--
-

--
- 

-
, 

I 
, 

i

-
-
-
 

' 
' 

-'.
- 7

-J
.. 

" 
7.1

'.'-
 

.-
 

..
 -

-
_ 

I
.

.
.

.
-

."
 I.

 
.
.

.
-
.t 
-

, 
-
1

.
i

.
.. 

I -I
I 

I 
-

� 
� t

.
.

-
-

-
i-

.
.
.
-

.
.

.
.4

-

.
-

._
 

-.
-.

 
.
-

.
.
.
 .A

 
-

.
'Q

 
;

P
t 

-

I

I 
.

.
, 
, 

.
I 
.

� 
.
..
 1

3,
.

, 
.

.
.

I 
.
.

� 
L

.. 
-

1 
.

-
-.-

 ---
 

--
7-

1 
.-..

:. 
--

I 
..-

.-- 
:. 

..
 

.
�-

� .
�-

..
-

.
..
 J

 
, 

..
 

.I
.

.-
-

i 
.-

-
il 

.
I

I 
--

 
I 

: 
.

L
 

-
� 

-

..
 .

.-
 

.-
..
. .

..
 .
-

-
� 

.
I 

.
.

--
-

1-
 

L-
 

:: 
I-

...
 -

1.
. -

.
.-� 

.-
.

--
 

-,
--

 
-.3

 
� 
, 

7:
. 

'.'
..
 
-
-

I.
- 

.
-

4 
-

I-
 

--
--

 
, 

.:
--

 -
:1

::
:7

--
.-

 , 
-:

 -_
 

Z
-

.
,
 -P

.-
 

-
-

� 
-

-
-

� 
-,

 
-'

..
- 

, 
--

. 
-

--
-f--

I:-
 

--
,I

 
-

44
-�

 
-

-
� 

-
I 
--

 
_:

._
 

--
 -
, 

I 
-I

-,-
 

-
--

- 
� 

..-
. 

I

w M Id 0 
Fl

d
�i

 
Po

c+
 

(3
q (D N
)

? 
I

I 
: 
, 
.

.
.-

 
I I

I 
/ 

t
 ,,
 ,
 
--

-
..-

 4
- 

--
- -

.-
.. 

I-
: 

--
+

-.
 -- 

-l..
.-.-

-. 
T

--
l-

I 
.- 

..
..

-- 
-

"I
'--

.
.

-
-

-7
 

--
 

-
--

 -
: 

I 
.-

.-
 .1

 
--

-
-r

- 
-
-t

--
 

-
f-

 -
--

 -
-

r-
 .

I 
I-

--
 

-:
 I

,-
-T

w
 

--.
:

--4
- 

.'
- 

i -
-

1
.

..l
. 

L 
,

.
.-

I 
.
.-

. -
I 

..
-

-
.

.
:

.-
-.

. 
"': 

�-
- 

-

9'
 
to

 It
 1

2-
 6)

 
as

al
le

ta
 I

SM
* 

0 
1
6
9
4
1
,5

1
6
� 

to
 1

9
2
0
2
i 

2
3
2
4
 0

 
0 

1 
2 

3
 

4 
S

F
ig

u
re

 
1
1
. 

W
et

 
C

o
m

p
re

ss
io

n
 

C
h
ar

t



Page 28
Report Two

Members of The Institute of Paper Chemi~ttry
Proj ect 3258

TABLE V

COMPRESSION OF WET MALT

dyne/cm';x 10 6

meas. corr.

0.o688 o.o688

0.o886 0.0711

0.115 .0.0734

0.141 0.0758

0.147 0.0781

cni
mneas. pred.

0. 6222

0. 62 18

0.6215

0. 62 12

C. 620o8

0. 6095

0.6o89

0.678

C. 6064

0.6o49

dyne /CM2 X 1-

meas. pred.

0 0

-- 0.0209

0.0245 0.0339

0.0364 0.412.

0.0552 o.o448

0.

0.

0.

0.

0.

0.

0.

0.

1.

1.

1.

1.

1.

0.

0.

0.

0

0

0

0

0

0

0

0

0577 0.0o463

.0577 0.0467

.671 0.0463

0o671 0.o457

-- 0.0507

.150 0.340

.428 0.742

.678 1.12

.908 1.02

.21 0.776

.38 0.397

.45* - -

.33 0.168

.14 0.185

.821 0.305

.589 0.309

.547 0.291

.587 0.350

.652 0.343

.614 0.267

.515 0.245

.436 0.269

.414 0.228

.408 0.213

.38i4 0.202

sec x 1op

0

1.51

3.03

4.54

6.06

7.57

9.09

10.6

12.1

13.6

15.1.-

16.7

18.2

19.7

21.2

22.7

24.2

25.8

27.3

28.8

30.3

31.8

33.3.

34.8

36.4

37.9

39.4

40.9

42.4

.43.9

0.128

0.102

0.0843

0.0815

0. 0998

0.152

0.235

0.372

0.522

0.663

0.794

0.951

1.13

1.32

1.50

1.69

1. 91

2.22

2.61

2.96

3.29

3.70

4.10

4.50

4.92

0.0804

0.0827

0.0850

0.0873

0. 0902

0.125

0.194

0.320

o.488

0.702

1.78

1.29

1.19

1.29

1.46

1.69

1.92

2.22

2.60

2.96

3.30

3.70

4.11

4.52

4.94

O. 62 05

.0.62o1

0. 6197

C. 6194

0. 6174

0. 6132

0.6054

0. 5930

0.-5804

O. 5646

0.5457

0.5309

0.5121

0.-5104

0.4937

0. 4890

0. 483 1

0.4752

0.4693

0. 4630o

0.4563

0.4515

0. 44 68

0.4424

0.4391

0. 6034

0. 6019

0. 6003

0.5989

0. 5974

0.5893

0.5709

0.5426

0. 5133

0.49oo

0.4398

0.4507

0.4587

0. 4543

0.4481

0.4405

0.4336

0.4262

0.4182

0.4114.

0. 4059

0.4ool

0.3947

0.3901

0.3856
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the same height. It is seen that the two curves have largely the same pattern

of rise and fall, with a constant time difference. The hydraulic pressure lags

behind the deformation rate by 4 ms. Thus, if the deformation curve is shifted

forward, it will coincide with the main portion of the hydraulic pressure

curve between 15 and 30 ms.

This finding seems to imply that the deformation of the dacron mat is

also dependent on the rate of deformation, which is dictated by the applied

pressure schedule. The faster the pressure rise, the less effective may be the

compression at the same pressure.

At this point we digress for a moment to make a brief introduction of

the mathematical model for wet compression.

MATHEMATICAL MODELING OF WET COMPRESSION

The present model deals with the compression of a water-saturated mat

of solid fibers in a piston press such as the experimental apparatus. On a

macroscopic basis, the equations of continuity for water and fiber (7) are related

by
DE au au,£t = u= u, (6)
at ;z - b

where a prime superscript denotes the fluid component.

If the forces required to produce acceleration in water and fiber can

be ignored, the pressure relation between the two components is

Dp = DP, (7)
az az

If the flow is slow, Darcy's law applies:

U' - U = - a | (8)
1-e a az
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or with the aid of the continuity equation,

U' = EU'(o,t) - 1- aE (9)
a az

where a = P/K.

Expressing porosity in terms of mat density, E = 1-c/pf, we obtain,

by combining Equations (6), (7), and (9),

ac a + c a (cat - '(o,t) az ( (10)

which indicates the interaction of compression and flow.

To avoid the complication of a moving boundary, we may convert the

equation of dynamic compression to a system of coordinates in which the independ-

ent variables are w and t, w being the cumulative mass of fiber per unit area:

w = fZ c(z',t) dz', o < w < W (11)
o 

The equation which results is

- =- t 2a )c (- w/(12)at a -w/,' \ac a aw,

The experimental conditions are that the boundary at z = o is imper-

meable to either component, U'(o,t) = o, and that the mat is confined at z = L,

by a piston which offers no resistance to fluid flow. Thus, the initial condi-

'tion is that c(z,o) or p(z,o) have assigned values, and the boundary conditions

turn out to be

() : o (13)
a=o

and

p(L,t) = P(t) (14.)
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The required information is compressibility, c(p,t), and permeability,

K(e,S_ ), of the mat. At present we assume that the experimentally determined

compressibility function in a static test and permeability function in a steady

state are applicable to dynamic compression. Then, given an applied pressure

schedule, P(t), the model will predict p(w,t) and, in particular, the mat thick-

ness, L(t), as well as the fluid pressure, p'(o,t), at the impermeable boundary.

The last two predictions may be directly compared with the data. The numerical

treatment of the model is discussed in the appendix.

COMPARISON OF PREDICTIONS WITH EXPERIMENT

The results of prediction for the wet compression test are tabulated in

Table V. The predicted thickness is 2-13% smaller than the measured values. This

discrepancy arises mainly from the use of the static compressibility function. To

improve the predictions we must seek an appropriate dynamic function, c(p,t) for

use in the model.

Of much more interest is a comparison of the predicted and measured

hydraulic pressure which is an essential feature of flow-influenced wet pressing.

Such a comparison is shown in Fig. 14. The discussion follows:

1. The slow rise - The predictions in this beginning period are

based on the smoothed pressure rise. They agree quite well

with the data. It should be mentioned that when the digitized

data of applied pressure were used, the model predicted a rise

of hydraulic pressure in the first 6 ms and a fall to a vacuum

in the next 6 ms. The generation of a vacuum would indicate a

rapid expansion of the mat in contradiction to the experimental

facts, as previously pointed out. The predicted vacuum arises
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from a fall of the applied pressure. -The'predictions are

further exaggerated by the assumption of equilibrium compres-

sibility. 

2. The first hump - In the next period of a fast rise to the

first peak and a fast drop to the first valley, the two curves

look very similar. Again, the experimental curve lags behind

the predictions. By shifting the predicted curve along the

time axis until the two peaks fall on the same vertical line,

the correspondence of the two curves is more clearly demonstrated.

The time lag is about 5 ms. This lag may be attributed largely

to the use of the static compressibility in the model, and is

probably related to the previous finding in connection with the

rate of deformation. The predicted peak is about 30% lower than

the measured value. This discrepancy may be partly due to the errors

accumulated in the model up to that time. The model is very

sensitive to the details of the applied pressure schedule.

3. The second hump - The predicted second hump corresponds satis-

factorily to the measured one on the shifted time scale, but the

magnitude of discrepancy is getting much larger. Further comparison

and interpretation do not appear to be justified until the matter

of dynamic compressibility is clarified.

In conclusion, wet pressing of a fiber mat involves the interaction of

mechanical compression and water flow. This interaction is experimentally demon-

strated by the generation and decay of hydraulic pressure, and can be simulated

by the proposed mathematical model. A reliable account for the compression-flow

phase of wet pressing requires a knowledge of the load-deformation-time behavior
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of the fiber structure. Even without such knowledge, the use of the model aided

by some controlled experiments is still an advantageous way to investigate the

relative effects of the parameters important in pressing.
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.NOMENCLATURE

a = viscous resistance, dynes,.x sec/cm2 . .

c = mat density, g/cm 3. .

c = compressibility parameter, g/cm 3

k = Kozeny factor, dimensionless

K = permeability, cm2

L = mat thickness, cm

M = compressibility parameter,.(g/cm3)/(dyne/cm 2)N

Ml and Mz '= creep parameters, (g/cm3)/(dyne/cm2 )N

ms = milliseconds ..

PI = compacting pressure, dyne/cm2 

p' = fluid pressure, dyne/cm 2
-

P = applied pressure, dyne/cm2 . .

S = specific surface, 1/cm

t = time, second

U = fiber velocity, cm/sec

U' = water velocity, cm/sec

w = mass coordinate, g/cm 2

W = basis weight, g/cm2

z = thickness coordinate, cm

Greek Symbols:

A = finite difference

= porosity, dimensionless

p = viscosity, g/(cm)(sec)

pf = density of fiber, g/cm 3
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APPENDIX I

COMPRESSION OF A SATURATED MAT: MATHEMATICAL MODELS'

In the outline which follows, we present a simplified but realistic

description of the effects of an applied stress on a saturated mat, considered

as an interacting system (a liquid and a porous solid). The model involves a

stratified structure - properties depend upon only one spatial variable. Although

we do not dismiss other possibilities as irrelevant, the model (a) neglects time-

dependent phenomena in mat compressibility, (b) omits the consequences of inertia

in the mat and in the fluid, and (c) utilizes a linear relation connecting fluid

pressure gradient and flow rate. These limitations lead to a formulation of the

problem which consists of a nonlinear partial differential equation with easily

stated initial and boundary conditions, and is amenable to numerical solution.

In the choice of method, and of computational procedure, we have attempted

to anticipate subsequent changes in the hypotheses, and to provide enough flexi-

bility where it is likely to be needed.

We assume that the solids concentration c(z,t) and the stress in the

solid phase p(z,t) are directly connected, as in

N
c = c + Mp .

0

For use in the numerical solutions, the parameters :c , Ma, ahn. 1 were deter-

mined by a least-squares adjustment, from measurements on the mat to be used in

the pressure-impulse experiment. Omission of the parameter c gave a less satis-

factory correlation.

Our procedure, however, is in no way limited to this empirical relation-

ship, and will admit any appropriate connection, even if it is available only in

terms of tabular information.
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As will be noted presently, we have also considered the possibility that

the local and current value of c might depend on the history of the local solid-

phase stress p; but in the absence of experimental information we have not attempted

to develop a numerical treatment.

The theory will permit an approximate account of effects due to inertia

in the fluid and in the solid phases, should this become necessary.

The model, as elaborated, assumes that the fluid pressure gradient and

the flow rates are connected as in

U'(z,t) - [E/(l - c)] U(z,t) = - a 1 (ap'/az) , (15)

where p' is the fluid pressure, and a is a function of the porosity and character-

istics of the solid component of the system. The present assumption of essentially

percolative flow is not a necessary limitation of the theory, but is considered to

be adequate.

When inertial effects within the system are omitted, the description of

the linked solid- and liquid-phase system, as shown by Nelson (j) and Emmons (9),

is contained in such equations as

- (Oc/at) = U'(O,t) (ac/3z) -1(./~zi)[c/a[l(p/az)] . (16)

The independent variables are z and t, where z is the spatial coordinate, and the

system extends from z = 0 to z = L; and U'(O,t) is the superficial velocity of the

fluid at z = 0.

For the present purpose, the basis weight is assumed to be constant,

but the applied pressure schedule will decrease the mat thickness L. To avoid

the complication of a moving boundary, we may convert to a system of coordinates

in which the independent variables are w and t, where w is the cumulative mass:
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w = / ' c:(z',t) -dz' .' "'' '"' " ' ' ' z' (17)
0

The equation which results is

- (ac/at) = c 2 a-l (3p/aw) (8c/3w)

- c (/aw) [c2 a-1 ('p/aw)] . (18)

Scrutiny of the argument leading to Equation (18) shows that it applies

not only to the situation represented by Equation (1) 'or an alternative connection,

but also when c is the outcome of present and previous values of the local solid-

phase stress; an observation which includes (but is not limited to) a solids con-

centration which can be calculated as an integral transform of the record of the

local stress as a function of t.

In the cases which we have reduced to computational procedures, however,

c is a point function which depends only on the local and current value of p. For

these, we arrange Equation (18) in the form

- (Dp/Dt) = c 2 a- 1 (;p/gw) 2

- c 1 (9/3w) [c2 a- , (Dp/w)] , (19)

where

C (p) = (dc/dp) . (20)

In Equations (18) and (19), the range of w is fixed:

0 < w < W = L c(z',t) dz' . (21)
0

The experimental conditions are that the boundary at z = 0 is imperme-

able to either component, so that, in particular, U'(O,t) = 0; and that the mat

is confined at z = L by a piston which offers negligible resistance to fluid flow.

Thus, the initial condition is that c(z,0) or p(z,0) have assigned values, and the
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boundary conditions turn out to be that, for z = 0 and all values of t,

(ap/az) = 0 , (22)

and

p(L,t) = P(t) = applied load per unit area. (23)

We have completed and tested numerical treatments of this problem under

three different assumptions as to the form of the function a. In the first of

these, the chosen form is

a = yp S2 (1 - ) 3 2 [1 + b (1 - £)3] , (24)

in which we have inserted the numerical values recommended by Ingmanson (6) for

use in Davies' correlation (8),

1/2
k = yE3 (1 - E)- [1 + b (1 - £)3 ] . (25)

The details appear in Appendix II.

In the second numerical treatment, we have taken

a = p Sv2 [(1 - E)2/E3] {5.0 + exp[l3.5 (E - 0.8)]} , (26)

a form proposed by Carroll (13), with the further assumption that

S = Sv, [1 - (e - E)] . (27)v v,0 0

where so = 0.88. In the notation of Appendix II, we now have

6 = R E3 [1 - (E0 - .)] - 2 {5.0 + exp[l3.5 (E - 0.8)]}- , (28)

with R = pf2/(S 2) and the formula for i is unchanged. The expressions for

the first and second derivatives of 8 become quite complicated. The program

(CN2:3258/8=880A) also embodies the Crank-Nicolson method and differs from that
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reported in Appendix II (CN1:3258/2=874A) only-in the systematic modification of a

few details. ' .

In the third numerical treatment, the flow resistance is accounted for

in terms of (separately) measured values of a. as a function of e. We represent 6

as a function of p by a least-squares adjustment of an empirical formula, where,

again in the notation of Appendix II,

=-pf2 (1 - )2/a , (29)

and p is calculated from

co + MpN = p (1 - 6) . (30)

The resulting program (CN3:3258/9=881A) applies the Crank-Nicolson method and

differs from the preceding examples (CN1 and CN2) only in details.

Richard W. Nelson
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APPENDIX II

COMPRESSION OF A SATURATED MAT: NUMERICAL SOLUTIONS

We consider numerical methods and program design for the solution of a

nonlinear partial differential equation, having a general resemblance to the para-

bolic type of equation familiar in the formulation of heat-conduction problems

(10-12). There is only one spatial independent variable. The equation and auxil-

iary conditions, which are to be discussed, arise in the description of fluid flow

through a deformable porous medium, under certain simplifying assumptions. Two

possibilities were selected and programmed: the 'explicit' method, which has the

advantage of simplicity and the disadvantage of an inconvenient time step limita-

tion; and an 'implicit' method (the Crank-Nicolson procedure). The latter intro-

duces a novelty, in that one must solve a system of nonlinear equations (of special

form) in completing each time step.

The solution is defined by the equation

ut = A(u) (ux) + B(u) uxx (31)

together with a given initial state

u(x,O+) = f(x) , (32)

and the boundary conditions

u x(0+, t) = 0 and u(X-, t) = g(t) . (33)

For convenience, the notation uses subscripts to indicate the construction of

partial derivatives; thus ut means (Ou/at), and uxx means (W2u/Dx2 ).
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In the application at hand, u is the stress in the solid portion of the

system, and the independent variable x is the cumulative mass per unit area (in

the solid portion). Then

A(u) = i9' - 0 , (34)

B(u) = ie , (35)

where

E = (c + M u )/(N M uN- ) , (36)'

1/2
and 0e = [p 2(l - e) ]/{y [1 + b (1 - e)3]} ,

in which

1 - E = (cO + M uN)/pf 

(37)

(38)

EXPLICIT METHOD (EXPL:3258/1=873A)

With the space index p taking on values from 1 through n, the transcrip-

tion of the equation becomes

v(l, q+l) = X B[v(l, q)] [2 v(2, q) - 2 v(1, q)] , (39)

and, for 2 < n-l,

v(p, q+l) = (X/4) A[v(p, q)] [v(p+l, q) - v(p-l, q)]2

+ X B[v(p, q)] [v(p+l, q) - 2 v(p, q) + v(p-l, q)] ,

while

v(n, q+l) = g(t+ )

The time step parameter is X = (At)/(Ax)2; and the construction of Equations

and (41) accounts for the boundary conditions.

(40)

(41)

(39)
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Program 873A mechanizes the process represented by Equations (39), (40),

and (41). Tests confirm the presence of the expected and inherent time step limi-

tation, the effect of which is to set a maximum value for the product AB. Further,

one may question the ability of this method to respond correctly to rapid changes

in E(t), since the procedure imports a dubious propagation-time effect, which is

not in harmony with the structure of Equation (1).

CRANK-NICOLSON METHOD (CNl:3258/2=874A)

The Crank-Nicolson method introduces central-difference approximations

for the space derivatives. We have chosen the following as appropriate to the

generalization required here:

ut is replaced by [v(p, q+l) - v(p, q)]/(At) , as usual; (42)

A(u) (u )2 is replaced by

(1/2) A[v(p, q+l)] {[v(p+l, q+l) - v(p-l, q+l)]/(2Ax)} 2

+ (1/2) A[v(p, q)] {[v(p+l, q) - v(p-l, q)]/(2Ax)}2 ; (43)

B(u) u is replaced by
--XX

(1/2) B[v(p, q+l)] [v(p+l, q+l) - 2 v(p, q+l) + v(p-l, q+l)]/(Ax) 2

+ (1/2) B[v(p, q)] [v(p+l, q) - 2 v(p, q) + v(p-l, q)]/(Ax)2 . (44)

With cases distinguished as before, the difference equation becomes

- {2 + 2 XB[v(l, q+l)]} v(l, q+l) + 2 XB[v(l, q+l)] v(2, q+l) =

- {2 - 2 AB[v(l, q)]} v(l, q) - 2 XB[v(l, q)] v(2, q) , (45)

and, for 2 p < n-l,
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AB[v(p, q+l)] v(p-l, q+l) - {2 + 2 AB[v(p, q+l)]} v(p, q+l)

+ AB[v(p, q+l)] v(p+l, q+l)

+ (1/4) XA[v(p, q+l)] [v(p+l, q+l) - v(p-l, q+l)] 2 =

- XB[v(p, q)] v(p-l, q) - {2 - 2 XB[v(p, q)]} v(p, q)

- XB[v(p, q)] v(p+l, q)

- (1/4) XA[v(p, q)] [v(p+l, q) - v(p-l, q)] 2 , (46)

while

v(n, q+l) = g(tq+) . (47)

We solve this system of simultaneous equations (once per time step) by

an iterative method, computing the correction at each stage of iteration from a

linearized version of the system of equations. The initial approximation is always

taken to be the current state of the system [except for the introduction of the up-

dated value of v(n, a+l), as given by Equation (47)]. The linearized version has

the familiar form of a tridiagonal set of linear equations, and to this we apply a

convenient recursive procedure [Reference (10), p. 441-2]. A listing of the sub-

program for this procedure (TRI:3258/3=875A) appears separately, following the

other programs.

Let w(p, .+1; i) be the approximate solution, at stage J of the process

just described. In this notation, w(p, q+l; 0) = v(p, ~) for 1 _ P _ n-l,

w(n, a+1; .1) = g(t+) for 0 < I; and with the abbreviation 6w = w(p, a+1; j+l) -

w(p., q+l; i) the linearized version is

G1 6wl + H1 6w2 = KI , (48)

F 6w + G 6w + H 6w =- K , 2 < r < n-2 ,
r r-1 r r r r+l r = =

(49)
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Fn- 6wn2 + Gn 6wn1 Kn- (50)

where

G, - 2 - 2 XBI~w(l, q+l; ,J)]

-2 X[w(l, q+l; J1) -w(2, q.+l; .1)] B'[w(l, q+l; j)] (51)

H, = 2 XBI~w(i, q+l; j)] ,(52)

K1 = - 2 XB[w(l, q.+l; j)] w(2, q+l; J)

+ {2 + 2 XBj~w(l, q+l; j)]} w(l, q+l; J)

- 2 XB[v(l, q)] v(2, q) - {2 -2 XBI~v(l, q)]} v(l, q) (53)

F =XB[w(r, q+l; j)]
r

- (1/2) XA[w(r, q+l; j)] [w(r+l, q+l; .J) - w(r-1, q+l; J)] (54)

Gr= - 2 - 2 AB[w(r, q+l; j)]

+ X[w(r+l, q+l; J) - 2 w(r, q+l; ,J) + w(r-1, q+l; j)] B'[w(r, q.+l; j)]

+F (1/4) Xfw(r+l, q+l; .j) - w(r-1, q+l; J)]2 A'[w(r, q-il; j)] (55)

Hr= XB[w(r, q+l; j)]

t.(1/2) XA(w(r, q4-1; ,j)] I w(r+l, 4+1;. j) -.wr-,q1 ) (56)

K )L. B[w(r, q.+l; j)] [w(r+l, q+l; j) + w(r-1, q+l;j)
r

+ {2 + 2 XB[w(r, q+l; J)]} w(r, q+l; J)

- (1/4) XAI~w(r, q-il; ,j)] [w(r-'l, q+l; j) - w(r-1 , q+1; j)]
2

- XB[v(r, q)] [v(r+l, q) + v(r-1, q)]

- {2 - 2 XBlv(r, q)]} v(r, q)

- (1/4) XA[v(r, q)] [v(r+l, q) - v(r-1, q)]2 (57)
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As it happens, Equations (54), (55), and (57) also give the coefficients

which appear in the last equation of the linearized set, Equation (50), when one

takes r = n-1.

In the percolative flow problem, we have

A(u) = 9' - e , (58)

B(u) = i9 , (59)

A'(u) = 59" + ( 1' - 1) 8' , (60)

B'(u) = 89' + 'e9 , (61)

with the definitions of 5 and 0 given in Equations (36) and (37), respectively.

Formulas for i', 9', and 0" appear separately, on the following page.

TESTS

The programs (EXPL and CN1) have been compared under circumstances accept-

able to both, with satisfactory agreement. The latter (CN1) has the stability which

would be expected; it has been noted, however, that very rapid variation in Y(t)

can lead to failure of convergence in the iterative cycle. Although the problem

has not been encountered often enough to justify immediate attention, it should be

possible to remove or defer this complication through such improvements in the

design as a more tractable initial state for each time step, and devices to diminish

oscillations.

Further comparisons (CN1, with progressively larger values for the time

step parameter) have confirmed the capacity of this approach to lessen the volume

of calculation required in tracing the evolution of the system.



(
D
 
P

O
C
(
D

C
 V

=
1
 

-
(
c
 
+
 
M
u
 N
)
 

(N
 

1)
,1
(N
 
M
u
 N
)
 

(6
2)

0~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~0

(
D

e
"
 

= 
[M

 
N
 
(
N
 -

i
)
 
O/
, 

1 '
{
(
1
/
2
)
/
(
l
 

~ 
3
 b
(
i
-
)
/
[
 

+
 
b
 
(
i
-
s
 

u
}
~
z
i

0

)2
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
I.

+
 
(
M
 N
/
p
f
)
2
e
{
 

(1
/h

)/
(l

 
-

)
2
-
 

9
 b
 
(
1
 -

)
/
[
l
 
+
 
b
 
(
1
 

_ 
C
)
3
]
 

3

+
 
1
8
 
b2

(
-
E
)
/
[
 

+
 
b
 
(
1
 -

)
]
}
 
u
 

(6
~4

) 
C P
.

C
f. 0 I'
d

P
C
D

0

C
fa

Lo
 c
o-

,R
J 
C
I
F

0



Members of The Institute of Paper Chemistry' Page 51
Project 3258 Report Two

PROGRAM LISTINGS

(1) Program for the Explicit Method (EXPL:3258/1=873A)

(2) Program for the Crank-Nicolson Method (CN1:3258/2=874A)

(3) Subprogram for Solution of Tridiagonal System

(TRI:3258/3=875A)

Richard W. Nelson
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TEMP = FRACT * FRACT
SAVE = TEMP * FRACT
STORE = O 1. B * SAVE
01; =COEFF *SQRI(FRACT) I STORE
QK = R<EGA / IEGf
S =ALPHA O K *OH

PiJST(1) =2.0 * (H -G) + G
D0 201 1 = 2, L
F = STIEP(1-1)

G=STEPCI)
H = STEP(1+1)
TEMP =ALOG(G)
U = EXP(ON * TFMP)
V = EXP(QNMl * TEMP)
RFGA = CN + Cu U
REGB CU * QN * V
FRACT =REGA /RHO
T EMP = FRACT FRACT
SAVE =TEMP *FRACT
STORE =. 1.0 + 8 * SAVE
OH = COEFF * SQRT(FRACT / STORE
OK = REGA / REG8

HP= PARAM * OH * (0.5/ FRACT - 3.0 * 3 TEMP/ STORE)* V
P. = ALPHA * (OK* QHP - UH) / 4.u
S =ALPHA * OK * H
T EMP = H - F
SAVE = F - 2.0 G + H

201 PO0ST( I) = R * TEMP * TEMP + S SAVE + S7
C PART C, OUTPUf

KTR= KTR~ +0 j
IF (KTR - IND) 220, 2219 221

221 KTR =0

MARK MARK + IND
TEMP MARK
TIME TEMP * DELT
TEMP =0.0

00 701 1 = 2, L
701 TEMP = TEMP + 1.0 I (CN + CU * (PCST(I) * ON))

TEMP= TEMP + 0.5 / (CN + CU * (POSTU) ** N))
I + 0.5 / (CN + CU * (P'JST(LPl) ** ON))

SV =L
TEMP = TEMP * OMT/ SAVE
STORE TEMP - QMT/ RHO
WRITE (6,325) MARK, TIME, TEMP, STORE
WRITE (6,306)
Ot' 2s51 1 =1, L PI
S TEP (I)= POS T (I )

251 WRITE (b,325) 19 POST(I)
WRITE (6,315)
IF (MARK- MAX) 253, 407, 407

407 CALL EXIT
220 00 2U2 I le, LPI
202 STEP(I) =POST(1)
253 TEMP = KTR + MARK * I

T = TEMP * DELT
CALL FNCT
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POSTILPI) =P
GO TO 211

301 FORMAT
302 FORMAT
306 FORMAT
310 FORMAT
311 FORMAT
312 FnRMAT
315. FORMAT
325 FORMAT
335 FORMAT
336 FORMAT

END

PART Do, i/O ARRANGEMENTS
(4E15.7)
(315).
(11* )
(lH , 4Xv 'DATA FOR MAIN PROGRAM', I
(IM 9 4X9 E15.7v 5X9 E15.79 5X9 EL5.7, 5X9 E15.7)
(IIH 4X9 15, 5X9 15, 5X, 154,
(IHO)
(IH v 4X, 15, 5X, E15.79 5K, E15.7, 5K, E15.7)
(lH , 4X, 'INITIAL STATE', I)
(1H 9 4X, 'REPORTS AT EQUAL INTERVALS', ~

SUBROUTINE FNCT
COMMON T, P, NR
GO TO (5, 15), NR

5 READ (5,303) TX, PX
WRITE (6,307)
WRITE (6,310) TX, PX
SLOPE PX / TX
RETURN

15 IF (T- TX) 25, 26, 26
25 p SLOPE * T

RFTURN
26 p =P

RETURN
303 FORMAT (4El5.7)
.307 FORMAT (JH , 4X9 'DATA FOR SUBPROGRAM FNCT', I
310 FORMAT (IH , 4X, E15.7, 5X, E15.7)

END

C

9
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C PROJECT 3258 R W NELSON APRIL 25 1975
C DEWATERING PROBLEM CN METHOD (CN1L3258/2=874A)
C VERSION I
C PART A, PRELIMINARIES

DIMENSION POST( ICU), STEPI1OL) i DSCN(I101)
DIMI-NSION A(100), B(ICO)t C(100)9 OMEGA(100), OZ(100)
COMMON Lo LM1, A, Kg C, OMEGA, DI
COMMON T, P
CQMMON X, OA, Q63, QAP, QBP9 CN, CU, QN, RHO, NR
READ (5,301) Lq,IND, MAX
WRITE (6,310)
WRITE (6,3C2) Lo IND, MAX
WRITE (6,306)
LPI. = L + 1
LM1 L - I
READ (5,303) PREV, QLAM, QMT, TEST
WRITE (6,311) PREy, QLAM, OMI, TEST
WRITE (69307)
NR =1.

CALL SWIFT
WR ITE ( 6,307)
CALL FNCT
WRITE (69,307)
NR =2

KTR =0

DO 5 1= 1, LP1
POSTII) = PREV

5 STEP(I1) = PREV
TEMP = L
SAVL- =QMT /TEMP
OELF =SAVE *SAVE *QLAM

T =DELT
CALL FN4CT
POST(LPI) = P
MARK( = 0
WkITE (69,335)
T IMtE = 0.0
TEMP = 0.0
DC 3 1 = 2, L
SAVE = CN + CU * (STEPtI) **QN)

DSCN(I) =SAVE
3 TEMP =TEMP + 1.C / SAVE

SAe= CN + U * (STEP(l) **ON)

OSCN~l) .=SAVE
TEMP =TEMP + 0.5 / SAVE
SAVE = N *CU *(STEP(LP1) * QN)
DSCN(LP1) =SAVE

TEMP = TEMP + 0.5 /SAVE
15 SAVE = L,

TEMP = TEMP * QMT /SAVE
STORE = TEMP - QMT IRHO
WRITE (6,325) MARK, TIME, TEMP, STORE
WRITE (6,306)
DO 4 I - 1, LPI
S AV E =DSCN( I / RHO

4 WRITE (69325) 1, SAVE, STEP(I)
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WRITIE (6,307)
WRITE (69336)

C PART 8, CYCLE
408 X POST(I

CALL SWIFT
B(1) = - 2.0 * (1.0 0c'*QLAM *(Qb *(PCSTHI) - PCST(2)) QBP)
CU) = 2.0 G LAM * Q
OMEGAM1 2.0 ~ (OLAM OB0 * PCST(2) - (1.0 * QLAM * O)

1 POST1))
X STEPM1
CALL SWIFT
OMEGA(l) U MEGAIII 2.0 *(QLAM QS8 STEP12)

+ (10-C QLAM QB0) * STEPl))
00 405 I 29 L
X = POST(I
eZALL SWIFT
TEMP = POST(L+1) -PCOST.(.lI-.1.)
SAVE = TEMP * TEMP
AU) = OLAM * (QB - 0.5 * QA * TEMP)
BRU) = - 2.0 * (1.0 + OLAM * QB) * 0.25 QLAM * SAVE* QAP

I +QIAM * (PCST(1+1)- 2.0 * P'JST(I) + POST(I-1)) * QBP
CU) QLAM * (08 o+ 0.5 *QA * IEMP)
STORE - QLAM (QB * (POST(1+1) + POSTH1-1)) + 0.25* QA SAVE)

1 + 2.0 * ( 1.0 + QLAM * Q8) * POST (II
X STEP(I
CALL SWIFT
TEMP =STEP(1+1) -STEP(I-1)

SAVE = TEMP * TEMP
STORE = STORE - ,0LAM *B 0 (STE-Ptll) + STEP(I-1))
STORE = STORE - 2.0 (1.0- QLAM * 08) * STEP(I)
OMEGA(I) = STORE - 0.25 * OLAM QA* SAVE

405 CONTINUE
CALL TRI
S = 0.3
00 406 1 = 1, 1
TEMP = DZ(I)
SAVE = POST(I)
POST(I = SAVE + TEMP
TEMP = TEMP /SAVE

406 5 = S + TEMP *TEMP
IF (S - TEST) 4079 408, 408

C PART C, OUTPUT
407 KTR = KTR + 1

IF (KTR - IND) 220, 221, 221
221 KTR =0

MARK =MARK +IND

TEMP =MARK

TIME =TEMP *DELT

TEMP =0.0

D0 701 1 = 29 L
SAVE = CN o+ C U * (Po0ST( I I QN)
DSCNUI) = SAVE

701 TEMP- TEMP o0 100 / SAVE
SAVE = CN + CU * (POST(1) ** N)
OSCNI1) = SAVE
TEMP = TEMP + 0.5 / SAVE



Members o f Thie Institute o~ Paper Chemistry Page 57
Project 3258 Report Two

SAVE a CN + CU * (POST(LPI) ** QN)
DSCN(LPI) =SAVE
TEMP = TEMP * o.s / SAVE
SAVE = L
TEMP = TEMP * QMT / SAVE
STORE = TEMP - (JMT I RHO
WRITE (6,325) MARX, TIME, TEMP, STORE
WRITE (6,306)
D0 251 I =1, LPI.
STEP(I) =POST(I)
SAVE = DSCN(I) / RHO

251 WRITE (6,325) It SAVE, POSTUl)
WRITE (6,307)
IF (MARK- MAX) 253, 432, 432

432 CALL EXIT
220 DO 202 1 1, LPI
202 STEP(I) =POSTU[)

253 TEMP = KTR + MARK + 1
T =TEMP *DELI

CALL FNCT
POST(LPI) =P

GO TO 408
C PART 0, 1/0 ARRANGEMENFS

301 FORMAT (315)
302 FORMAT (IH , 4X, 15, 5X, 15, 5X, 15)
303 FORMAT (4E15.7)
306 FORmAT (1h- )
307 FORMAT (IHO)
310 FORMAT (lH , 4X, 'DATA FOR MAIN PROGRAM', I
311 FORMAT U1H , 4X, E15.7# 5X, E15.7, 5X, E15.79 5X9 E15.7)
325 FORMAT (IH , 4X, 15, 5X# E15.7, 5Xg E15.7, 5X, E15.7)
335 FORMAT (1H , 4X, 'INITIAL STATE', 1)
336 FORMAT (1H * 4Xv 'REPORTS AT EQUAL INTERVALS',I

END

SUBROUTINE SWIFT
DIMENSION BLANKA(100)%, BLANKB(100), BLAN~KCtI00), $LANKD( 100)
.DIMENSION BLANKE1100)
COMMON KLANKI, KLANK2, BLANKA, BLANKB, BLANKC, B3LANKD, BLANIVE
COMMON BLANKF, BLANKG
COMMON X, QA, QB, JAPv QJBP, CNP CU, ON, RHOl, NR
GU TO (7, 1). NRP

7 READ (5l,301) QN, CN9 CU, RHO
READ (5,301) 3, COEFF9 PARAM,
WRITE (6,302)
WRITE (6,303) ON, CN, CU, RHO
WRITE (6,303) 3, COEFF, PARAM
QNM1 = ON - 1.0
QNM2 - N - 2.0
RETURN

1 TEMP - ALOG(X)
U = EXP(QN * TEMP)
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V = E)XP(QNM1 * TEMPD
W = EXP(QNM2 4' TEMP)
REGA CN o. CU 4' U
REGC REGA * QNM1 IO(N CU * U)
FRACT =REGA /RHO
TEMP =FRACT *FRACT

SAVE =TEMP 4' FRACI
STORE 100 '2 B * SAVE
OH. = COEFF *SQRrIFRACTD STORE
QK= REGA/ (ON CU * V)
REGD = 8 TEMP/ STORE
REGE = PARAM * OH* IC.5 FRACI - 3.0* REGO)
REGF = PARAM * V
REGF --REGF 4' qEGf- QO4

QHP =.REGE * V
QKV 1.0 - REGC
QHPP REGE 4' NMI 4 h + REGF* (-0.25/ TEMP + 18.0 * R

-900 * B FRACT I STORE)
QA QK* 4'QHP Q H

QE OK * QH
QAP = K * QHPP- REGC * QHP
09P = )K * QHP+ QKP * OH
RETURN
FORMAT (4EI5.7)
FORMAT (IH 9 4X9

0OATA FOR SUBPROGRAM SWIFT', I
FORMAT (IH , 4X9 E15.7, 5X9 E-15.7, SX, F15.71, 5X, E15.7)
END

EGO * REGO

0p

SUBROUTINE TRI
DIMENSION A(1001, B(I.CO)q C(100)9 R(100)
DIMENSION BETAIlCO), GAMMA(130)O, OZ(100)
COMMON L, LM1, A, B, C, R, DZ
COMMON BLANKF, BLANKG
COMMON BLANK1, BLANK2, BLANK3v, BLANK4, BLANK5, BLANK6,, BLANK7,

1 BLANK8, BLANK9, KLANKH
BETA(1) 13(l)
GAMMA( 1 R I ) / BU(I
CD 505 I =29 L
BETA( ) BCE') - AUl) *CUI-1) / bETA(I-1)

505 GAMMA(I)= (RUl) -AUl) * GAMMA(I-1)) / BETAUl)
01(L) =GAMMACL)

00 506 1 = 19 LM1
J = L I

506 01(J) GAMMA+(J).- C(J) * DZ(J+1) / BETA(J)
R ET URN
END
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C ALTERNATIVE ARRANGEMENT OF SUBPROGRAM FNCT
C FOR CARD INPUT OF APPLI:ED LOAD SCHEDULE

SUBROUTINE F-NCT
DIMENSION BLANKA(1001, BLANK8(100), BLANKC(100), BLANKOD 100)
DIMENSION IBLANKE(100)
COMMON kLANKI, KLANKZ, -BLANKA, BLANKB, BLANKC,, BLANKO, BLANKE
COMMON T, P
COMMON BLANKI, B3LANK29 'BLANK3, bLANK4, BLANK5, BLANK6, BLANK7?,
I BLANK8,P BLANK9, NR
GO TO (5, 15), NR

5 READ (59303) TINIT, PINIT
READ (5,3C3) TX, PX
SLOPE ( PX - PINIT) / (TX - TINIT)
RETURN

15 IF (T T X) 35, 36v 37
35 P PINIT + SLOPE * (T - TINIT)

R TR
36 P =PX

RETURN
37 TIN IT =TX

PINIT = PX
READ (5,303) TX, PX
SLOPE = (PX - PINIT) I (TX - TINII)
GO FO 15

303 FORMAT (E15.7, 15X, E15.7)
END
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C TEMPORARY MAIN PkOGR AM
DIMFNSION A4100), 8(100)v C1100), R(100)-
DIMF.NSION BETA(ICC), GAMMA(1001, Dl(100)
CO.MMON4 L, LM~,v A, 8, C, R, DZ
COMM[JN BLANXF 9 BLANKG
COMMON BLANK1, BLANK2, BLANK3t BL.ANK4, BLANK5, BLANK6* BLANK7,

1 BLANK8, BLANK9, KLANKH
L =7
LMI L - 1
R(L) =1.0

C(1) =5.0

RUl) =6.0

tA(2) = 2.0
B(2) =100
C(2)= - 4.0
R(2) = - 1.0
A(3) =1.0
.B(3) = 1.0
C(3) = 1.0
R(3) = 3.0
A(4) = 2.0
8(4) = 3.C
C(4)= - 2.0
R(4) = 3.0
A(51 = - 1.0
Ft( 5) =2.0

C(5) = 5.0
R(5) = 6.0
A(6) = 0.0
B(6) = 4.0
'0(6) = 7.0
R(6) = 11.0
A(7) = 6.0
B(7) = 1.0
R(7) =7.0
CALL TRI
DO 7 I = 19 L

7 WRITE (6,301) DI(1)
CALL EXIT

301 FORMAT (IH , 4X9 E15.7)
E- ,! D
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C SUBPROGRAM FOR SOLUTION OF TRIDIAGONAL SYSTEIA
C, (TRI 3258/3=875A)

SUBROUTINE TRI
DIMENSION A(100), B(ICO), C(100), R(100)
DTMFNSION BETA(ICC)v GAMMA(130), OZ(100)
COMMON L, LMI, At IB, C, RI, 0?
COMMON BLANKF, HLANKG
COMMON BLANKI, BLANK2, BLANK3, 8LANK4, BLANK5, BLANK6, t3LANK7,

I BLANKB, BLANK9, KLANKH
HtTrA(l) 13(l)
GAMMAtI) =RUl) / 13(l)
DO 505 1 2, L
BETA(I) = 1(I) - AUl) * C(I-1) / BETA('I-1)

505 GAMMAUI) (R(I) - A(1) * GAMMA(I-1)) / BETA(I)
Dl(L) GAMMAIL)
DO 506 1 = 1, LMI
J =L-I

506 DZ(J) GAMMAWJ - CIJ) * DI(J*1) / BETA(J)
RETURN
END
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