

DESIGN AND CONTROL OF A NEW

RECONFIGURABLE ROBOTIC MOBILITY PLATFORM

A Thesis

Presented to

The Academic Faculty

by

Byron Johns

In Partial Fulfillment

of the Requirements for the Degree

Master’s of Science in the

School of Mechanical Engineering

Georgia Institute of Technology

May 2007

DESIGN AND CONTROL OF A NEW

RECONFIGURABLE ROBOTIC MOBILITY PLATFORM

Approved by:

Dr. Ayanna Howard, Co-Advisor

School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. Nader Sadegh, Co-Advisor

School of Mechanical Engineering

Georgia Institute of Technology

Dr. Harvey Lipkin

School of Mechanical Engineering

Georgia Institute of Technology

Date Approved: April 2007

 iii

ACKNOWLEDGEMENTS

 First I would like to thank Dr. Ayanna Howard for the opportunity to work with

her in the Human Automation Systems Lab at Georgia Tech. Dr. Howard was able to

give me the perfect project to bridge my background of both electrical and mechanical

engineering and my interest in robotics, and provided guidance throughout my research.

I wish to acknowledge my fellow HumAnS Lab graduate students who were more than

helpful in aiding me in some of the road blocks that came along in this project. I would

also like to express gratitude to the people at NASA and the United Negro College Fund

Special Programs office, for the generous fellowship, and all of the opportunities that

came with it. A special thanks to Dr. Edward Tunstel, my NASA mentor, and the

scientists and engineers at the NASA Jet Propulsion Lab for assisting me in essential

problem solving in my research during my summer working there. A thank you to Dr.

Nader Sadegh for co-advising me and finding time in his busy schedule to aid me in my

problem solving when needed. Finally, and most importantly, I would like to thank my

parents, who were always there for me and supported me throughout my education.

 iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS AND ABBREVIATIONS x

SUMMARY xii

CHAPTER

1 Introduction 1

1.1 Objective 1

1.2 Legged vs. Wheeled Mobility & Terrains 2

1.3 Past and Present NASA Rover Designs 3

2 Byrobot Hardware 9

2.1 The Chosen Design 9

2.2 CAD Designing – Pro Engineer 9

2.3 Hardware Properties 11

2.4 Leg Joint Torque / Servo Motor Calculations 13

2.5 Mars Shoes 21

3 Byrobot Control 23

3.1 Servo Motors 23

 3.1.1 Servo Motor Control 23

 3.1.2 Pulse Width Modulation 24

 3.1.3 PWM Signal Generation 27

 3.1.4 Controlling the Servos 28

 v

3.2 Byrobot Open-Loop Control 30

3.3 The SSC-32 Servo Controller 31

3.4 The Eyebot Controller 34

3.5 Power 36

 3.5.1 NiMH vs. NiCd Batteries 36

 3.5.2 Servo Power 38

 3.5.3 Current 39

4 Wheeled Kinematics 43

4.1 Robot Orientation 43

4.2 Differential Wheel Drive Kinematics 45

4.3 Robot Radius of Curvature 48

5 Legged Kinematics 49

5.1 Forward Kinematics – Geometrical Method 49

5.2 Forward Kinematics – Denavit Hartenberg Convention 50

5.3 Inverse Kinematics 56

6 Stabilizing Byrobot’s Legged Mobility System 59

6.1 Polygon of Support 59

6.2 Mobility on an Incline / Decline Plane 60

6.3 Hexapod Walking Gaits 62

 6.3.1 Preferred Walking Gaits for Hexapod Robots 62

 6.3.2 Analysis of Walking Gaits 64

 6.3.3 The Chosen Walking Gait 65

7 Results 67

7.1 Verifying Kinematic Equations 67

7.2 Mobility on Flat Surface 68

 vi

7.3 Mobility in Mars Sand Pit 72

7.4 Traversing Up and Down a Slope 74

7.5 Conclusions 76

8 Future Work 79

APPENDIX A: BYROBOT MAIN RECONFIGURATION CODE 84

APPENDIX B: BYROBOT MAIN RECONFIGURATION FLOW CHART 88

APPENDIX C: BYROBOT PARTS LIST AND PRICES 89

APPENDIX D: WEIGHT OF BYROBOT AND COMPONENTS 90

APPENDIX E: WIRE GAUGE CHART 91

APPENDIX F: EYEBOT CONTROLLER SPECIFICATIONS 93

APPENDIX G: SSC-32 SERVO CONTROLLER SPECIFICATIONS 94

APPENDIX H: THE HS-322HD STANDARD DELUXE SERVO 95

APPENDIX I: THE HS-645MG STANDARD DELUXE

 HIGH TORQUE SERVO 96

APPENDIX J: THE HSR-5995TG CORELESS DIGITAL SERVO 97

REFERENCES 98

 vii

LIST OF TABLES

Page

Table 1.1: Pros and Cons of Legged and Wheeled Mobile Robots 3

Table 7.1: Comparison of Foot Position with Measured and Calculated Results 68

Table 7.2: Average Wheeled Linear Velocity of Byrobot at Full Speed 69

Table 7.3: Average Wheeled Linear Velocity of Byrobot at 80% Speed 69

Table 7.4: Average Wheeled Linear Velocity of Byrobot at 50% Speed 70

Table 7.5: Average Angular Velocities of Robot 70

Table 7.6: Walking (wave gait) Speed of Byrobot on Flat Surface 72

Table 7.7: Walking (wave gait) Speed of Byrobot in Mars Sand Pit 73

Table 7.8: Wheeled Speeds of Byrobot Traversing Up a 22° Incline Slope 74

Table 7.9: Wheeled Speeds of Byrobot Traversing Down a 22° Decline Slope 75

Table 7.10: Wheeled Speeds of Byrobot Traversing Up a 35° Incline Slope 75

Table 7.11: Wheeled Speeds of Byrobot Traversing Down a 35° Decline Slope 76

 viii

LIST OF FIGURES

Page

Figure 1.1: Bobby Rover 4

Figure 1.2: Go-For Rover 5

Figure 1.3: Rocker III Micro rover 5

Figure 1.4: MER Rover 6

Figure 1.5: The ATHLETE Rover 7

Figure 1.6: The Lemur Robot 8

Figure 2.1: Pro-Engineer CAD Models 10

Figure 2.2: Actual Photos of Byrobot 12

Figure 2.3: Comparison of CAD model leg mechanism to actual Byrobot hardware 13

Figure 2.4: Front View Diagram of ByroBot (minus the wheels) 14

Figure 2.5: Byrobot torque calculation diagram 15

Figure 2.6: Alternate Byrobot torque calculation diagram 19

Figure 2.7: Top and bottom view of Mars Sand Shoe 21

Figure 2.8: Mars Sand Shoes in place on Byrobot 22

Figure 3.1: Inside of a Servo 24

Figure 3.2: PWM and Average Voltage 26

Figure 3.3: Servo’s High Pulse Width Determines the Angle Position 28

Figure 3.4: Controlling the HS-322HD servo with PWM 29

Figure 3.5: DB9 Serial Cable Null Modem Connection 35

Figure 3.7: Connection of Servo Controller to Battery Pack 40

Figure 4.1: Robot orientation in world frame 43

Figure 4.2: Reduced orientation of robot 44

 ix

Figure 4.3: Fixed Wheel Formation; Wheels on Robot Body 46

Figure 5.1: Kinematic Model of our 3R leg mechanism on Byrobot 49

Figure 5.2: Byrobot’s body diagram 52

Figure 6.1: Byrobot’s polygon of support 60

Figure 6.2: Byrobot’s projected force and COM on an incline/decline plane 61

Figure 6.3: Hexapod gait movements of each leg with respect to time 64

Figure 7.1: Photographs of the Wave Gait sequence of Byrobot 72

Figure 8.1: Future robot Closed Loop Feedback Control 79

Figure 8.2: Possible Future Robot Encoder Add-On 81

 x

LIST OF SYMBOLS AND ABBREVIATIONS

D - total distance robot traveled

dL - distance traveled by left wheel

dR - distance traveled by right wheel

ω - angular velocity of robot

ωL - angular velocity of left robot wheel

ωR - angular velocity of right robot

wheel

V - linear velocity of robot

VL - linear velocity of left robot wheel

VR - linear velocity of right robot wheel

θ - radians robot turns in world frame

θL - radians of left robot wheel

θR - radians of right robot wheel

R - radius of curvature of robot

r - radius of wheel

t - elapsed time

ICR - instantaneous radius of curvature

L - horizontal length between robot

wheels

L/2 – half of horizontal length between

robot wheels

R(θ) - rotation of the robot car about the
z-axis

T – homogeneous transformation matrix

for robot leg mechanism

li – leg number “i”, where “i” is leg

1,2,3,4,5, or 6

lo – perpendicular distance between robot

body x-axis and the x-axis of any robot

leg

do – perpendicular distance between robot

body y-axis and the y-axis of any robot

leg

T
O

G
 - transformation matrix from the

robot body origin (G) to the origin of the

robot legs (O)

d2 – offset length of robot leg from the

first revolute joint (pelvic joint) out of the

origin down to the first leg segment length

L1 – leg segment length between offset

length d2 and hip joint

L2 – leg segment length between hip joint

and knee joint

L3 – leg segment length between knee

joint and foot

θ1 – rotational angle of leg pelvic joint

θ2 – rotational angle of leg hip joint

θ3 – rotational angle of leg knee joint

G – label of origin of robot body in its

respective x, y ,z frame

yG – x position of the origin of the robot

body in its respective x, y, z frame

yG – y position of the origin of the robot

body in its respective x, y, z frame

 xi

Fdown – Force of robot projected parallel

to the incline/decline plane

Fin – Force of robot projected

perpendicular into the incline/decline

plane

Ff – Force of friction of robot feet on a

plane

g – force of gravity

m – robot mass

a – acceleration

µ - coefficient of friction of robot on a

incline/decline plane

J – jacobian matrix

W – wrench vector

P(O,i) – position vector from origin

point “O” to point “i”

Q – robot joint loads (torque)

x – x position of robot in x, y, z

coordinate frame

y – y position of robot in x, y, z

coordinate frame

z – z position of robot in x, y, z

coordinate frame

yG – z position of the origin of the robot

body in its respective x, y, z frame

X3 – final X position of robot foot

Y3 – final y position of robot foot

Z3 – final z position of robot foot

.

x - speed of the robot with respect to the

x-axis

.

y - speed of the robot with respect to the

y-axis

.

θ - rotational speed of the robot (rotating
about the z-axis)

iS -)sin(iθ

iC -)cos(iθ

jiS + -)sin(ji θθ +

jiC + -)cos(ji θθ +

e – error

 xii

SUMMARY

The development of a new family of robotic vehicles for use in the exploration of

Mars and other remote planets is an ongoing process. Current rovers have to traverse

rough terrain and be able to withstand various conditions on Mars. The goal of this

project is to design a new Mars rover mobility system that performs to optimum

capability. This project will involve the design and control of a robot that will use

wheels, as well as legs, allowing the user to control which ever mobility option they

want, and giving the robot the ability to traverse various terrains. Some of the legged-

wheeled robots that currently exist have their wheels attached to an actuator located at the

end of the robot leg. When the robot is commanded to walk, the wheel is stationary and

the robot actually walks on its wheel. This causes a number of problems that hinders

long-term and robust operation in remote environments. For these reasons, a new

reconfigurable robot, Byrobot, was developed. This new hybrid legged-wheeled rover

possesses a six-legged walking system as well as a four-wheeled mobility system. CAD

designing for the hardware of this new robot is first done, and mechanisms and

animations are run to test movement of parts. Thorough kinematic analyses are done for

both the legged and wheeled mobility systems of the robot. This allows for findings such

as the most stable stance and gait for walking the robot, and knowing the location and

orientation of the robot in the world coordinate frame for driving and mapping. This new

robotic mobility platform will facilitate future Mars exploration.

1

CHAPTER 1

INTRODUCTION

 The development of a new family of robotic vehicles for use in the exploration of

remote planetary surfaces, such as Mars, and remote sites on Earth, such as Antarctica, is

an ongoing process [1]. Current robotic vehicles must traverse rough terrain having

various characteristics such as steep slopes, icy surfaces, and cluttered rock distributions,

to name a few. The goal of the Byrobot project is to design a new robotic mobility

system that performs to optimum capability in remote environments, which leads to the

idea of this reconfigurable legged-wheeled robot. In order to guarantee success of

robotic missions for the future, technologies that can enable multi-rover collaboration and

human-robot interaction must be matured. The main hurdle with this focus is the cost and

system complexity associated with deploying multiple robotic vehicles having the

capability to survive long periods of time, as well as possessing multi-tasking capability.

To address this issue, this research focuses on modularizing both hardware and software

components to create a reconfigurable robotic explorer.

1.1 Objective

 Science exploration in unknown and uncharted terrain involves operating in an

unstructured and poorly modeled environment, and there are several robotic designs that

are plausible for operating in these types of environments. The goal of this project was to

design and control a new reconfigurable robotic mobility platform. This new rover, self-

 2

named the Byrobot, will implement both legs and wheels giving it the ability to operate

on various terrains.

 The robot was first modeled on Pro-Engineer, and then the parts were constructed

in the Georgia Tech MRDC Machine Shop. Byrobot is able to drive on its 4 wheels and

roll over obstacles, as well as have the legs retract up, so it can stand and walk in its

legged configuration for operating on rough terrain or navigating over larger obstacles.

Two controllers were used for the robot in order to control the various electronic

components that are used. These two controllers, the Eyebot and the SSC-32 Servo

Controller, will be discusses later in Chapter 3.

 When Byrobot stands, it is primarily supported by the high-torque servos that are

at the "hip joint" and “knee joint” of each leg, which will be discusses in Chapter 2. Joint

torques was calculated to determine the torque needed for theses servos so that Byrobot

could support itself standing. Kinematic analysis is done for the wheels to find velocity

and position data, as well as the radius of curvature of the robot motion using different

linear velocity of the wheel pairs in its differential drive. Forward and inverse kinematic

analysis was done for the legged mobility system to find the joint angles in the robot legs

and the corresponding foot position of each leg. This analysis will be discussed in

Chapters 4 and 5.

1.2 Legged vs. Wheeled Mobility & Terrains

 There are pros and cons to both wheeled and legged robots. Wheels are the

preferred mobility system because they are fast and easy to control. However, if the

robot is on ice, sand, or even some mushy surface, then the wheels may not be able to get

 3

traction to rotate, thus making the legs more desirable to use. Also, depending on the

steepness of an incline, you have a choice of which mobility system to use. This is the

primary reason this reconfigurable design was chosen. A table listing the pros and cons

of legged and wheeled mobility systems is shown below.

Table 1.1: Pros and Cons of Legged and Wheeled Mobile Robots

 Pros Cons

Wheeled

Robots

• Robot can operate at a fast

speed.

• Better at low energy levels.

• Easier to control.

• Speed can be varied with simple

control mechanisms

• Break when necessary, such as

when traversing down an incline.

• Can lose traction on a slippery or

mushy terrain such as ice or mud.

• Not many choices for driving the

robot. A four-wheeled robot can

only be driven by turning two or

four wheels at a time.

• May lose traction on a slope that

is too steep.

Legged

Robots

• Can operate on terrain where the

wheels may lose traction, such as

a mushy or slippery surface.

• Different walking patterns can

be chosen for the gait, depending

on the robot load and number of

legs.

• May be able to perform better on

a slope by controlling the leg

joint actuators to position the

robot center of mass in a stable

position.

• Difficult to control due to number

of joint actuators.

• Difficult to stabilize

• May tumble down a slope if it

loses stability.

1.3 Past and Present NASA Rover Designs

 The majority of NASA rovers use only wheeled mobility as a means of

locomotion. Some of these past wheeled mobility robotic systems include the Robby

Rover [2], the Go-For Micro rover [3], and the Rocky III Micro rover [4].

 4

 The Robby Rover, shown in Figure 1.1, enables researchers to develop

techniques for autonomous navigation and manipulation in support of future NASA

missions to Earth’s Moon and Mars. The six-wheeled articulated test bed provides all

necessary onboard computing, sensing, mobility, manipulation, power, and thermal

control resources for autonomous testing. Robby is approximately 4m (13ft) long, 2m

(6.5ft) wide, and has a maximum height of 2.5m (8ft). Weighing about 2,000kg

(4,400lbs), the rover can reach a maximum speed of 1 m/s.

Figure 1.1: Robby Rover

 The Go-For micro rover, shown in Figure 1.2, is able to traverse rough terrain

and climb over very large obstacles because of its novel “fork wheel” design. The

vehicle has four wheels that are mounted on “forks” (pairs of struts that can rotate

together on the ends of an axle through the micro rover body). A control system adjusts

the positions of the forks to keep 80% or more of the weight of the micro rover over the

rear wheels in its normal stance. This gives the rear wheels enough traction to thrust and

lift the front wheels over obstacles as high as 70% of the length of the vehicle in the

 5

stowed or upright position. The forks are even powerful enough to right Go-For if it is

overturned.

Figure1.2: Go-For Rover

 The Rocky III Micro rover, shown in Figure 1.3, was developed for an

autonomous sample acquisition experiment using a computerized navigation system

called “behavior control.” Rocky III is based on a six-wheel design with articulated,

“rocker-bogie” suspension that enables it to traverse obstacles as high as 1.3 times its

wheel diameter. Weighing 15kg (33lbs), the test bed micro rover is 60cm (23.4in) long

and 45cm (17.5in) wide.

Figure 1.3: Rocker III Micro rover

 6

 Currently new generations of NASA rovers are being developed and used which

can solve some of the mobility and manipulation problems that the past rovers had. One

such rover is The Mars Exploration Rover (MER) [5], shown in Figure 1.4. Due to the

design of its mobility system, MER can only traverse 60% of the Mars surface, where the

other 40% are cliff areas that it is unable to navigate.

Figure 1.4: MER Rover

 Some of the legged-wheeled NASA robot prototypes that currently exist have

their wheels attached to an actuator located at the end of the robot leg. One such platform

is the new JPL ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer)

Rover [6], shown in Figure 1.5. ATHLETE is capable of rolling over undulating terrain

and "walking" over extremely rough or steep terrain so that robotic or human missions on

the surface of the Moon can load, transport, manipulate, and deposit payloads essentially

to any desired site of interest. The first version of the ATHLETE vehicle is greater than

4m in diameter and has more than 6m reach, has 6-DOF legs for generalized robotic

manipulation, and has large payload capacity of 450 kg per vehicle, with much more for

multiple ATHLETE vehicles docked together. This system will be able to move at 10

 7

km/h over Apollo-like moon terrain (>100 times faster than Mars Exploration Rover

(MER)), climb vertical steps of at least 70% of the maximum stowed dimension of the

vehicle (>2x MER), and climb slopes of 50° on rock and 25° on soft sand.

 Unfortunately, problems with this type of legged-wheeled design could occur

when the robot is commanded to walk, where the wheel is stationary and the robot

actually walks on its wheel. This causes a number of problems that hinders long-term and

robust operation in remote environments. This can also make the robot less stable when

it rolls on its wheels, since the robot will be at a potential unstable height above the

ground depending on the length of the legs where the wheels are attached.

Figure 1.5: The ATHLETE Rover

 The assembly, inspection, and maintenance requirements of permanent

installations in space demand robots that provide a high level of operational flexibility

relative to mass and volume. For this, the Lemur [7] robot was developed, shown in

Figure 1.6. Lemur explores mechanical-design elements and provides an infrastructure

for the development of algorithms. The physical layout of the system consists of six 4-

degree-of-freedom limbs arranged about a hexagonal body platform. These limbs

 8

incorporate a "quick-connect" end-effector feature that allows the rapid change-out of any

of its tools. Lemur is being used to investigate several aspects of climbing-system design,

including the mechanical system (novel end-effectors, kinematics, joint design), sensing

(force, attitude, vision), low-level control (force-control for tactile sensing and stability

management), and planning (joint trajectories for stability).

Figure 1.6: The Lemur Robot

 These rover systems summarize the state-of-the-art in robotic platforms for space

exploration. Although some of these systems have been deployed in previous NASA

missions, they are not fully able to traverse the entire spectrum of terrain found on remote

planetary surfaces. As such, in order to both capitalize on the benefits provided by

wheeled locomotion, while also taking advantage of the positive attributes provided by

legs, we have developed the Byrobot, our new hybrid reconfigurable legged-wheeled

rover.

 9

CHAPTER 2

BYROBOT HARDWARE

2.1 The Chosen Design

 A legged robot has to have at least two legs in order to walk. The more legs that a

robotic vehicles possesses, the more difficult it becomes to control due to the increase in

the number of actuator variables that need to be commanded [8]. The positive side to this

is that more legs on the robot an increase in stability and a more diverse of walking gaits

becomes available for the robot to implement. The Byrobot was designed to have a

hexapod legged configuration, where having six legs provides maximum robot stability,

with a minimum number of variables to control (as further discussed in chapter 6). Each

leg has 3 joints (pelvic, hip, and knee), similar to a human leg, for a three-revolute (3R)

kinematic chain to give the robot three degrees of freedom (3-DOF). Each of the joints is

actuated by a servo motor, which has 180° of rotation. The wheeled mobility system is a

4 wheel drive with each wheel attached to a DC motor. The legs can retract to lower the

robot onto its wheels, and can also raise the robot to return to a walking configuration in

the case where the wheels aren’t able to function at a desired performance specification,

such as when navigating on a icy or sandy surface.

2.2 CAD Designing – Pro-Engineer

 Byrobot was first designed in Pro-Engineer CAD software. Constructing a CAD

model saves time and money in the manufacturing process. Pro-Engineer allowed us to

virtually design and assemble all of the robot parts, including DC and servo motors, and

 10

run the mechanisms to test for part interference. Once the model is constructed, CAD

drawings can be easily printed out for each of the parts. These drawings were then taken

to the MRDC Machine Shop at Georgia Tech to be used to cut out the actual robot

hardware parts. Figure 2.1 shows some of these CAD drawings.

Top view, legs extracted. The green

box represents where the controllers

and batteries will be located.

Side view, legs extracted. Only

about 4” of ground clearance

between feet and wheels

Front view of robot standing.

A view underneath the robot showing

the wheels and all 18 of the servo

motors.

Legs are retracted so robot can

roll on wheels

Top view of robot with legs

extracted.

Figure 2.1: Pro-Engineer CAD Models

 11

As mentioned earlier, the CAD model can be considered almost an exact virtual replica

of the robot hardware.

 2.3 Hardware Properties

 The robot body material is polycarbonate plastic (which is nice and robust, and

more lightweight than aluminum or some other metal). This plastic was used for the top

robot body platform, the legs, and the structure to hold the legs in place. A thin grade of

aluminum was used for the L-brackets that connect the pelvic and hip servos so that they

can move together. A light weight durable foam tire was used on the wheels of the robot.

These foam tires allow for minimal slippage so that the robot is able to turn in place.

 The robot body frame was designed to accommodate the 18 servo motors required

to operate the robot legs, as well as the two controllers, the Eyebot and SSC-32 (which

are discussed in Chapter 3), and the necessary batteries. A standard push-rod and ball

link joint is used to connect the knee servo to the knee joint, so that the knee will not

rotate but swing in and out like a human knee. Figure 2.2 shows photos of Byrobot both

standing and “sitting” on its wheels on the floor, and in our HumAnS-Lab Mars sand pit.

 In Figure 2.3, we show a comparison of Byrobot’s CAD model and actual

hardware. We can see from the figure all three revolute joints, controlled by the servo

motors, of the 3R leg mechanism on the robot. The pelvic, hip, and knee servos are

labeled.

 12

Byrobot standing on legs.

Byrobot standing on legs in lab Mars sand

pit

A view underneath Byrobot as it stands on

its legs.

Byrobot rolling on wheels in lab Mars sand

pit.

Byrobot walking on its feet in the

HumAnS Lab Mars sand pit.

More of Byrobot navigating on its legged

mobility system.

Figure 2.2: Actual Hardware Photos of Byrobot

 13

Figure 2.3: Comparison of CAD model leg mechanism to actual Byrobot hardware.

2.4 Leg Joint Torque / Servo Motor Calculations

Based on the Byrobot design, the joints at the “hip” and “knee” positions would

experience the largest torque when the robot was standing and walking. As you can see

from Figure 2.3 above, these joints will support the entire robot load when the Byrobot is

utilizing its legged mobility system. So just how much torque will be applied to these

joints? Answering this question also tells us how much torque is needed in the servo

motors at these joints. The robot needs to be in static equilibrium [9] when standing still

on its legs (i.e. the sum of all the forces and moments should equal zero). Depending on

how many legs the robot will have simultaneously positioned on the ground at an

instance of time while walking, there will be a fraction of the robot load (its body weight)

that each leg will have to support. High-torque servos will be needed at these joints to

guarantee stability for the robot. In this section, we calculate the joint torques related to

the minimum torque required for the robot leg servos. A diagram of the front of Byrobot

 14

standing on its legs, minus the wheels, is shown in Figure 2.4. Although there are six legs

in our hexapod design, we assume that the robot’s weight is approximately equally

distributed, so that each leg supports 1/6
th
 of the robot weight. This weight is estimated

by adding up the weight of all the robot parts.

Figure 2.4: Front View Diagram of Byrobot (minus the wheels),

standing on its legs. Only the front 2 legs are shown.

The joint torques is determined by solving a static analysis problem, where the

robot represents a planar case of this problem. In the planar case, the wrench (the

simplest representation of a system made up of forces and couples) will only force

components in the x and y directions, and a moment in the z direction.

 Based on the assumption that the weight of the robot will be evenly distributed

about all the legs in contact with the ground, we use one leg of the robot for our analysis.

We also assume that the robot will be standing on a minimum of three legs at one time,

(the associated three-legged walking gait is discussed in Chapter 6). Since the robot will

have at least three legs down on the ground at an instance of time, and any more legs

down will simply minimize the amount of torque we need in our joint servos, this three-

Robot
Center

Mass

y

x

 15

legs-down assumption provides a good safety factor. As such, the Jacobian [10] matrix

used in our calculation needs to be set up for the rotation points (leg joints) on the robot

leg. In figure 2.5, a diagram of the robot from the front is depicted (only two legs are

shown to minimize complexity of the diagram). The leg joints are rotating about the z-

axis in the diagram (which is coming out of the page). The mass of the robot body when

it is standing on its legs is represented by the box hanging from the center of the picture.

The diagram represents the hip rotational joint (R2) and knee rotational joint (R3), as well

as the foot of the robot, which also can rotate (slip) and is shown in the calculations. The

pelvic joint isn’t needed in this calculation since it rotates perpendicular to the z axis

(about the x axis).

Figure 2.5: Byrobot torque calculation diagram,

where L1, L2, and L3 represent leg segment lengths.

The Jacobian matrix is a 6x3 matrix represented by:









=

321

321),()3,()2,(

ZZZ

ZxFOPZxOPZxOP
J (2.1)

y

R2

L3 =
6.0in

L2 =
5.5in

L1 =
3.0 in

x

Foot

Robot
Center
Mass

R3

Foot

 16

Where P(O,2) is a 3x1 position vector matrix that represents the distance from the robot

center of mass to the R2 revolute joint (hip) in the x, y, and z direction. P(O,3) is the

same using the distance from the robot center of mass to R3 (knee joint), and P(O,F) is

the distance from the center of mass to the Foot. We are including the robot foot as a

“revolute joint” because it can still rotate due to the center of mass load on the robot

body, even though there is no servo motor there to act as an actuator. The 3x1 matrices

Z1, Z2, and Z3 are the unit vectors of the z-direction. With this constraint, Jacobian matrix

becomes:








 −+
=

ooo

ooooooo

ZZZ

ZxYXZxXZxX
J

)65.8()5.50.3(3
 (2.2)

Where Z1, Z2, and Z3 are equal to Zo, which is the unit vector of the Z-axis of the robot

body, extending straight out of the page. Putting the P-distance vectors and Zo -vectors

into matrices, we can compute the Jacobian below:



























−−−

−

=











































































































−

































































=

111

000

000

000

5.85.83

600

1

0

0

1

0

0

1

0

0

1

0

0

0

6

5.8

1

0

0

0

0

5.8

1

0

0

0

0

3

xxx

J (2.3)

For a planar case, such as this, we can remove the 3 rows of zeros in the middle of the

Jacobian to simplify it into a 3x3 matrix.

 17

















−−−

−

=

111

5.85.83

600

J (2.4)

To find the loads in each of the joints, the wrench is needed. A wrench is a 6x1 that

includes a force (x, y, and z components) and a moment (x, y, and z components).



























==

moment

moment

moment

force

force

force

z

y

x

z

y

x

Wwrench (2.5)

For a planar wrench, there are only force components in the x and y directions, and a

moment in the z direction (which is the rotation of the joint about the z-axis). This

simplifies the wrench into a 3x1 matrix.

















=



























=

moment

force

force

moment

moment

moment

force

force

force

z

y

x

z

y

x

z

y

x

W (2.6)

 18

For our robot, the robot will only contain a value of a force in the -y direction, which is

the weight of the robot center of mass. There is no force in the x direction. Since we are

trying to find the torque required in the joints to maintain static equilibrium, we want to

find the torque required in the joints that will counter the rotation being caused by the

robot center of mass. Therefore, we set the value of the moment in the z direction to be

zero, so there will be no rotation about the z-axis for our calculation, maintaining this

static equilibrium.

 The robot mass is approximated at 60oz. For the robot having a minimum of

three legs down, we assume this 60oz mass is evenly distributed among the three legs.

Hence, each leg supports approximately 20oz. This 20oz is the force in the –y direction

that a robot leg will support, so our wrench vector becomes:

















−=
















=



























=

0

20

0

moment

force

force

moment

moment

moment

force

force

force

z

y

x

z

y

x

z

y

x

W (2.7)

We can multiply the Jacobian transposed, times the wrench, and find the joint loads at the

hip and knee revolute joints.

















=

















−

















−−−

−

==

170

170

60

0

20

0

111

5.85.83

600
T

TWJQ (2.8)

 19

This shows us that we will need a torque of at least 60oz-in at the hip revolute joint and at

least 170oz-in at the knee joint.

 But how do we know that Figure 2.5 represents the best orientation of the robot

leg? Maybe if we put the foot at a more outward position, we could use servo motors that

supply less torque? Here we considered moving the robot legs more outward and

calculated the torque the same way. We don’t want to have the robot leg moved inward

for a “bow-legged” robot, since this would reduce the stability of robot. In figure 2.6, we

see the robot leg in a different orientation, to see what effect this would have in the joint

loads:

Figure 2.6: Alternate Byrobot torque calculation diagram, assuming we have the foot

expanded in a different position.

We calculate the new Jacobian the same way; only we now have different values in the

last column due to the new position distance vector of the robot foot.

R02

L3 =
6.0in

L2 =
5.5in

L1 =
3.0 in

y

x

Foot

Robot
Center
Mass

R03

5.66in

2.0 in

 20

















−−−

−

=











































































































−

































































=

111

5.105.83

66.500

1

0

0

1

0

0

1

0

0

1

0

0

0

66.5

5.10

1

0

0

0

0

5.8

1

0

0

0

0

3

xxx

J new (2.9)

Using the same wrench vector, we calculate the new robot joint loads:

















=

















−

















−−−

−

==

210

170

60

0

20

0

111

5.105.83

66.500
T

T

newnew WJQ (2.10)

This shows us that more torque load will be applied in the foot of the robot with this new

orientation. The load in the robot foot has increased from 170oz-in to 210oz-in,

concluding that the farther out we place the robot leg, the more load will be placed on the

foot, giving more of a possibility that the foot could slip and the robot would lose

stability. As such, it is best to keep the robot leg at the 90º angle used in our first

calculations to minimize torque.

 To this end we decided to use servos that had torque-ratings that were twice as

high as these values, to ensure stability was maintained when adding additional load

caused by robot sensors, cameras, and other components, as well as ensuring stability

when the robot is walking. Having a bit more than the required torque in our servo

motors at these joints is beneficial, but too little torque provided in the joints would cause

the robot to not be able to stand up and collapse. To this, we chose our knee joint servos

 21

to have a rating of about 130 oz-in at 6.0V, and our hip joint servos to have a rating of

about 333 oz-in at 6.0V.

2.5 Byrobot Mars Shoes

 When Byrobot is put into an unnatural terrain such as mud or sand, the feet on the

robot can easily sink into the sand due to the amount of force put on it by the robot body.

The small surface area of the feet can only sustain so much force before it starts to “dig”

into the surface. As such, a set of “Mars shoes” was needed to prevent this situation from

occurring. The Mars shoes needed to increase the surface area of the robot feet, as well

as increase friction between the shoes and the surface. The Mars shoes were designed

simply by constructing a 3.5” x 3” x 1/16” piece of sheet metal to be used for each of the

six shoes. Sand paper was placed on the bottom for increasing the coefficient of friction

in the sand pit, since the shoes could easily slip while walking in the sand. A rubber

stopper is placed on the top of the sheet metal, and is attached with a screw and nut

through the center, as well as super glue between the stopper and metal for a permanent

fixture. The shoe can now easily be slid on and off the robot feet. A picture of the Mars

Shoes is shown in Figure 2.7.

Figure 2.7: Top and bottom view of Mars Sand Shoe

 22

Figure 2.8 shows the Mars shoes on the feet of Byrobot. Byrobot is now ready to walk

through the Mars sand!

Figure 2.8: Mars Sand Shoes in place on Byrobot

 23

CHAPTER 3

BYROBOT CONTROL

3.1 Servo Motors

 A common motor used in robotics is a servo motor. Instead of providing constant

rotation, like most motors, servos are used for precise angular positioning but are

typically limited to only 180° of maximum rotation. Servos are common in devices such

as radio-controlled cars to control steering, radio-controlled air-planes to control rudders,

or even in the cruise control systems of cars. Servos are ideal for applications requiring

absolute positioning of a motor shaft.

3.1.1 Servo Motor Control

 Microcontrollers are an excellent and inexpensive device for controlling servos

[11]. In order to properly control a servo with a microcontroller, it is necessary to apply a

few techniques, such as properly generating a control signal for a servo. Servos may be

purchased in a prepackaged form, or specialized servos can be built using a few common

components. Internally, a servo can be thought of as a direct current (dc) motor (which

rotates an external motor shaft but provides no process to determine the amount of

rotation) with a built-in controller. The control circuitry compares an angular position,

determined by a control signal, to the current position of the motor shaft (as shown in Fig.

3.1).

 24

Figure 3.1: Inside of a Servo [12]

The motor shaft’s angular position is often determined by a potentiometer, which is

rotated by the motor shaft. A potentiometer is a three-terminal resistor whose center

connection has variable resistance, usually controlled by a slider or dial. The

potentiometer acts as a variable voltage divider. The voltage from the center connection

of the potentiometer represents the angular position the motor shaft is in. Other methods

to determine angular position and rotation exist for larger servos, but a potentiometer is

the most common for small servos. The built-in controller generates an internal signal

from the voltage controlled by the potentiometer, compares it to the control signal, and

then provides power to the dc motor to rotate the shaft in the appropriate direction to

match the two. Servos usually require a pulse-width-modulated control signal.

3.1.2 Pulse Width Modulation (PWM)

 Often, when controlling an analog device, the ability to drive a signal with

variable power (P = I * V) is needed [12]. For example, you may want to adjust the

Potentiometer

Motor Shaft

Internal Signal

Generator

Comparator
Control

Signal

Variable

Voltage

DC Motor

Control

 25

speed of a dc motor or dim a light-emitting diode (LED). This can be a challenge when

the signal is generated by a digital device. Different methods to convert a digital signal

to an analog signal exist, one of which is a digital-to-analog converter. Using a converter

adds complexity to a project, so generating a variable power signal with existing circuitry

is desirable to reduce the number of components.

 A simple method to vary the power using a digital signal, when an analog signal

isn’t available, is by using a method called pulse-width modulation (PWM) [12]. Instead

of controlling the current or voltage of a signal, a pulse-width-modulated signal works by

repeatedly pulsing the digital signal high and low at a fast rate. When sufficiently fast,

the signal creates an effective average voltage. A shorter PWM period (the length

between the rising edges in the signal) will create a cleaner average voltage, because the

signal is effectively less “jittery” (i.e., less discharge from the capacitance in the line is

needed to smooth the signal), but the minimum period will be limited by the speed of the

device generating the signal. The period of the PWM signal is usually constant for a

given application, and the high pulse width (the duration of the signal being driven high

within one period) is usually variable, so that the average voltage of the signal can be

changed. The ratio of high pulse width to period of the signal is called the duty cycle. By

varying the duty cycle, you can vary the average voltage, as shown in Fig. 3.2.

 The power through a device is proportional to the voltage supplied. Therefore, to

decrease the power usage of a device (to dim an LED or to slow a motor); the duty cycle

of the PWM signal should be decreased. A PWM signal can be used to limit the power to

a device to save energy. This technique is used in many portable devices which have

limited battery power.

 26

Figure 3.2: PWM and Average Voltage

 Some devices, such as servos, do not rely on the power of the signal limited by

PWM but instead use the width of the high pulses to transmit information. This is also

used by infrared remote controls to transmit data to control a television or radio. Pulse-

width-modulated signals may be generated from many digital devices, even ones as

simple as an inexpensive timer integrated circuit (such as the 8-pin 555 timer). A

versatile yet inexpensive solution for many robotics hobbyists is to use a microcontroller

for PWM generation. Using a micro controller has the added advantage of containing all

of the control circuitry (needed for analyzing and responding to input) for a simple robot

on a single chip.

Period

High

Low

Pulse

Length

PWM, Duty Cycle = 1/4 Avg. Voltage = 1/4 Vdd

High

Low

Pulse

Length

PWM, Duty Cycle = 3/4 Avg. Voltage =3/4 Vdd

Period

 27

3.1.3 PWM Signal Generation

 Pulse-width-modulated signal generation is easy to implement on

microcontrollers. All microcontrollers will be able to generate a PWM signal, but the

more expensive and elaborate ones provide hardware to make PWM generation easier,

freeing up more processor time to run other tasks.

 The simplest but most processor-intensive method to create a PWM signal is

manually comparing a “count” to a variable that describes how long the high pulse width

should be. When the count is less than the pulse width variable, the PWM signal is

driven high. Otherwise, it is driven low. After the PWM period has elapsed, the count

can be reset and the process started over. The PWM period will be the same as the time it

takes your microprocessor to run your code. To increase the length of the PWM period,

loops can be used to create delay.

 The least processor-intensive method is to use a built-in PWM module if your

microcontroller has one, such as the controllers used on Byrobot. When enabled, the

PWM module will automatically generate a PWM signal with a period and duty cycle

specified in control registers on the chip of your controller, in this case, the ATMEGA8-

16PI chip on the on the SSC-32 Servo Controller [13]. Depending on the microcontroller

being used and the speed it is running at, the built-in PWM module might not support a

large enough period needed for the device you are using, such as for a servo motor

(which commonly has a period of 20ms). In that case one of the previously mentioned

methods must be used to generate a longer PWM signal.

 28

3.1.4 Controlling the Servos

 Most servos, including the Hitec RCD USA, Inc. HS-322HD servo (which is used

to control the knee joint on the Byrobot), which is demonstrated here, have three pins:

power, ground, and a control signal. The control signal is a pulse-width-modulated input

signal whose high pulse width determines the servo’s angular position, shown in Fig. 3.3.

Figure 3.3: Servo’s High Pulse Width Determines the Angle Position

Internally, the servo compares the PWM control signal to an internally generated signal,

whose pulse widths are controlled by the potentiometer (which determines the shaft

angle) and matches the pulse widths by rotating the motor shaft. For the HS-322HD,

power can be between 4.8Vdc and 6.0V. Since the control signal (which draws a

maximum of about 20mA of current) does not drive the motor directly, an additional

benefit of using a servo is that the controller chip can control the signal directly. Most

2.1 ms

High

Low

0.9 ms

PWM

High

Low

1.5 ms

High

Low

20 ms

Servo Position

 29

motors draw more than 25mA of current for operation and, therefore, must be indirectly

connected to the chip through a current amplifying device.

 Typically servos require a PWM signal with a 20-ms period and a pulse width

between 0.9-2.1 ms (0.9 ms corresponds to the minimum angle and 2.1 ms for the

maximum angle); therefore the middle position is 1.5 ms (the average of the min/max

pulse widths). The servo positions its output shaft in proportion to the width of the pulse,

as shown below in Figure 3.4.

Figure 3.4: Controlling the HS-322HD servo with PWM [12]

The HS-322HD servo has a maximum angle of 180°. Servos only move a finite angular

amount per cycle of the signal, so multiple cycles must be sent before the servo arrives at

the correct angle. The speed/power at which the servo moves to a new position is

proportional to the distance it needs to travel. So as the servo approaches the target

angle, it will gradually slow. The servo will resist change away from the designated

 30

angle as long as a signal is applied. Note that the servo’s control mechanism will only

engage when a signal is applied. If there is no signal, the servo’s motor shaft is not

driven by any circuitry and, hence, can be rotated freely, even when power is supplied to

the servo.

 Microcontrollers offer a simple and inexpensive solution for controlling servo

motors for robotics and other electronics projects. Through the use of PWM, the angular

position of the servo motor shaft can be conveniently controlled by a microcontroller for

a variety of projects. PWM is an easy solution for the control of analog devices in other

projects as well. Depending on the features included with the microcontroller used using,

a PWM signal can be generated in a variety of ways.

3.2 Byrobot Open-Loop Control

 Byrobot is not exactly “autonomous” [14], since it does not have feedback sensors

and a vision system to detect the type of terrain it is traversing, the slope of the terrain,

where its center of mass is at all time for stability, nor its pitch and roll to know when its

wheels might be stuck in sand or mud (and not getting the desired output from the wheel

motors). Byrobot executes directed motion commands using open-loop control for

driving and a fixed walking gait. Hence, Byrobot does exactly what it is told in the

program, all actions are scripted. Autonomous capabilities will be improved on in the

future and details are mentioned in the final chapter of this thesis entitled “Future Work”.

 For the programming of Byrobot, two microcontrollers used for hobby robotics

purposes were incorporated, the Eyebot, which serves at the primary controller, and the

SSC-32, which controls the 18 servo motors on the robot.

 31

3.3 The SSC-32 Servo Controller

 The SSC-32 Servo Controller from Lynxmotion [13] is a small preassembled

serial servo controller with a number of relevant features. It allows control of up to 32

servos, which is plenty since we only need to control the 18 servos on our robot. The

pulse width ranges from 0.50mS (milliseconds) to 2.50mS for providing a range of about

180°. A unique "Group Move" allows any combination of servos to begin and end

motion at the same time, even if the servos have to move different distances. This is a

very powerful feature for creating complex walking gaits for multi servo walking robots.

The servo's position or movement can also be queried to provide feedback to the host

computer. More specifications and technical data for the SSC-32 Servo Controller can

be found in Appendix G.

 In radio-control applications, a servo needs no more than a 90° range of motion,

since it is usually driving a crank mechanism that can't move more than 90°. When

pulses are sent within the manufacturer-specified range of 0.9 to 2.1mS, a corresponding

range of motion is achieved. Most servos though have more than 90° of mechanical

range. In fact, most servos can move up to 180° of rotation. The SSC-32 lets you use this

extra range, which is important for walking our robot. A position value of 500

corresponds to 0.50mS pulse, and a position value of 2500 corresponds to a 2.50mS

pulse. There is a linear relationship between the pulse width command sent to the SSC-

32 and the actual servo angle. For instance, if the position values sent to the SSC-32 (500

to 2500) are the x values, and the actual servo angle (0° to 180°) are the y values. The

slope of this linear line will be:

 32

09.0
2000

180

5002500

0180
==

−
−

=
∆

∆

x

y
 (3.3)

And the corresponding linear equation will be:

 y - y1 = m(x – x1) (3.4)

 y - 0 = (0.09)(x-500) (3.5)

 y = 0.09x – 45 (3.6)

y = 0.09x – 45 is the linear equation relating the SSC-32 servo position values x (which is

related to the pulse width) to the resultant servo angle y. A one unit change in position

value produces a 1uS (microsecond) change in pulse width. The positioning resolution is

0.09°/unit (180°/2000). However, on the Byrobot, this equation is somewhat valid for

only the servos at the pelvic and knee. Due to the orientation of the servos, to get them

oriented correctly with the x, y, and z axes, for a smoother forward and inverse kinematic

analysis, a 90° rotation has to be subtracted from the equation. So the resultant equation

for the pelvic (θ1, the HS-645MG Ultra Torque Hitec Servo) and knee (θ3, the HS-322HD

Standard Deluxe Hitec Servo) servos is:

y = 0.09x – 45 – 90 (3.7)

As for the hip servo(θ2, the HSR-5995TG Ultra Torque Hitec Servo), only the pulse

range from 1100 (1.1mS pulse) to 1900 (1.9mS pulse) could be used on the servo

 33

controller. This still corresponds to a range of rotation of 180°. The slope of this linear

line will be:

225.0
800

180

11001900

0180
==

−
−

=
∆

∆

x

y
 (3.8)

And the corresponding linear equation will be:

 y - y1 = m(x – x1) (3.9)

 y - 0 = (0.225)(x-1100) (3.10)

 y = 0.225x – 247.5 (3.11)

So the resultant linear equation for the hip servos on each leg is:

y = 0.225x – 247.5 (3.12)

 The SSC-32 logic voltage, or electronics power input, is normally used with a

9vdc battery connector to provide power to the ICs and anything connected to the 5vdc

lines on the board. There is a Low Dropout regulator onboard that will provide 5Vdc out

with as little as 5.5Vdc coming in. This is important when operating the robot from a

battery supply. It can accept a maximum of 9vdc in. The regulator is rated for 500mA,

but was de-rated by the manufacturer to 250mA to prevent the regulator from

overheating. The SSC-32 Servo Controller has 2 channels for its 32 servo ports (channel

1 has servo ports numbered 0-15, and channel 2 has servo ports numbered 16-31). The

 34

Hitec servos used in the Byrobot operate between 4.8V and 7.4V. There are 3 options for

powering the SSC-32 Servo Controller and the servos:

1. Use one battery, or other power supply, to provide the necessary power to both of

the servo channels, and the logic power for the microprocessor chip.

2. Use one battery for the chip logic power supply, and another battery to control

both servo channels.

3. Use one battery for the chip logic, another battery for the channel 1 servos, and

another battery for the channel 2 servos.

Option 2 was chosen for this application, for it was determined to isolate the logic from

the Servo Power Input, since when trying to power the microcontroller chip and the

servos from the same power supply, the microcontroller may reset when many servos are

moving simultaneously. Also, since we wanted to limit the load on the robot, we were

concerned with the additional weight added when having two power supplies for the two

channels.

3.4 The Eyebot Controller

 The Eyebot [11] was used as the primary controller on the robot. It can be used

for mobile robots with wheels, walking robots or flying robots. It consists of a powerful

32-Bit microcontroller board with a graphics display and a digital color camera allowing

it to perform on-board image processing. The specifications of the Eyebot controller can

be found in Appendix F.

 Since there are only 2 motor driver ports on the Eyebot, and there are 4 motors

(one on each wheel) on the Byrobot robot, the issue becomes how can we drive all 4

 35

motors? To overcome this issue, the inputs were tied together to control two motors

simultaneously from each motor port on the Eyebot. The front and back wheel motors on

the left side of the robot were tied together, as well as the front and back wheel motors on

the right side of the robot. Now all four motors can be driven from the two motor drivers

on the controller! In order for the robot to turn, the right pair of wheels are commanded

at one speed, and the left pair of wheels at another speed. The speed and direction of

each wheel pair affects the radius of curvature that the robot turns, as described in the

Wheeled Kinematics section of this thesis. Turning each pair of wheels at equal speeds

and opposite directions will turn the robot in place, just as turning each pair of wheels at

equal speeds and directions will drive the robot in a straight line.

 In order to communicate between the Eyebot and the SSC-32 controller, a null

modem was used to connect the serial DB9 communication ports on the controllers. This

null modem simply crosses the transmit and receive lines in the DB9 communication line,

so that each controller can send and receive data to and from the other controller, shown

in Figure 3.6.

Figure 3.5: DB9 Serial Cable Null Modem Connection

DB9 Serial Cable pin

layout of Eyebot

DB9 Serial Cable

pin layout of SSC-

transmit

receive

ground

 36

This factor was important since the SSC-32 is used to operate the servos, while the

Eyebot is needed to run the wheel motors, control future sensors and cameras on the

robot, and for its clock for timing and delays. The Eyebot functions as the primary

controller and all of the programs, done in C, are compiled and downloaded into it. The

C code for the programs has commands that sends data out through the serial DB9 port

into the SSC-32 Servo Controller, to control each of the Byrobot servos as desired.

3.5 Power

 Powering the Byrobot involves selecting the correct battery type, the correct

voltage, and ensuring that the right amount of current is flowing at all times. Here we

will discuss the process undertaken to power the robot.

3.5.1 NiMH vs. NiCd Batteries

 When you plug a battery of X volts into any device, the actual volts the device

sees is some fraction of X and depends on how high the current is, and what kind of

batteries it is. So what is the best type of battery needed for optimal performance? For

the Byrobot, the pros and cons were weighed against the two popular battery types NiCd

and NiMH.

 The advantage of NiMH cells is that for a given cell size, they have a higher

capacity compared to NiCd cells. This means that the powered devices will work longer

using NiMH cells. In addition, because they do not contain cadmium, NiMH batteries are

more environmentally friendly. The disadvantage of NiMH cells is that they usually have

much higher internal impedance. This means that if you try to draw a lot of current from

 37

NiMH cells, they will drop excessively in voltage which can cause poor performance or

cause the device they are powering to shut down. NiMH cells are also a little heavier

than the same physical size NiCd cell.

 However, the same life span can not be expected from a NiMH cell as compared

to a NiCd cell. NiMH packs need to be replaced about twice as often as NiCd packs

regardless of the manufacturer of the packs. Also, temperature extremes cause NiMH

cells to lose their charge much more quickly than NiCd cells in very hot or cold climates.

NiMH cells lose their charge two or three times faster than NiCd cells do. Also, NiMH

cells shouldn’t be charged at as high of a charge rate as a NiCd cell due to its higher

internal impedance. So, if the device demands the highest possible capacity, NiMH cells

and packs will work fine in most applications.

 The big advantage of NiCd packs and cells is reliability. This is a mature

technology that is practically "bullet proof." Thus, in critical applications, NiCds are the

most reliable. In addition, NiCd cells have extremely low internal impedance which

means a lot of current can be drawn without a corresponding excessive voltage drop. The

NiCad batteries are less sensitive to a voltage drop caused by a large load. This makes

them perfect for high current draw applications, such as the Byrobot. The down side to

NiCd cells and packs is that they contain cadmium which is not environmentally friendly.

 As an example, let’s say we have a robot with a camera and a couple of servos

attached to the controller. The camera requires 5 volts to work, and the servos can

operate between 5V and 6V. The servos are drawing 1.5 amps of current from the

batteries. In the NiMH case, instead of the servos seeing the 5V from the batteries, they

may see about 4V, which means the camera is also seeing 4V and not able to function. It

 38

also means that there is less power available for the servos to operate. With the NiCd

batteries, which aren't as sensitive to this load, we can have 6V worth of batteries, and

when the servos draw 1.5 amps of current, it still reads about 6V, which is much less of a

voltage drop. Now, we are getting near-best performance from the servos, and the

camera can operate in that range. The only drawback is that while you get less voltage

drop of the batteries, the NiCd batteries last less than half as long as the NiMH batteries.

3.5.2 Servo Power

 For the SSC-32 Servo Controller, which controls the servo joints on the robot legs

on the Byrobot, both NiMH and NiCd batteries were tested. First we used five 1.2V

batteries to give a 6.0V input to the servos, which is the maximum servo operating

voltage. However when we turned on all 18 of the servos in the control programs (such

as when the robot stands on its legs, the legs retract, the robot walks, etc.), we measured

the output voltage on a multimeter at only 3.8V! This was not the ideal condition.

When the robot is walking, all of the servos will be used. Thus, the servos were only

getting 3.4V from a 6.0V supply. The 2.6V drop was due to the higher internal

impedance of the cells. Since the Byrobot draws a lot of current, these NiMH cells

dropped excessively in voltage which caused poor performance of the servo device. One

option we therefore decided to try was to add another battery, for a 7.2V input. We

actually overcharged the batteries, so the initial input voltage was actually read at 7.9V.

However, the output voltage with all the servo turned on was only 5.3V.

 So the switch was made to NiCd batteries. We used six of the 1.2V batteries

again, which were still overcharged to 7.9V. Then we turned on all eighteen of the robot

 39

servos. The output voltage was 7.1V – less than one volt of a drop! The fact that the

servos were all getting 7.1V, which is more than the 6.0V maximum operating voltage of

some of the servos, was not a problem. It simply meant that the servos will rotate at a

slightly greater speed.

3.5.3 Current

 The current drawn by the 18 servos in Byrobot was a big issue that had to be

addressed. The SSC-32 controller has two channels for servos, as previously mentioned.

Each of these two channels can control 16 servos each, for a total of 32 servos that can be

controlled by the SSC-32 controller. Each channel is capable of dealing with 15 amps of

current. The Byrobot has 9 servos on each of these channels. Hence, channel 1 controls

the 9 servos that control legs 1, 2, and 3, and channel 2 controls the 9 servos on legs 4, 5,

and 6. There are three types of servos on the Byrobot. The pelvic, hip, and knee joint of

each leg has a different type of servo. Here are a few of the specifications for the three

servo types used:

1. Hitec HSR-5995TG Ultra Torque Servo (hip joint)

i. Operating voltage range : 4.8V – 7.4V

ii. Stall Torque at 7.4V (max voltage) : 416.61 oz-in

iii. Current drain at 7.4V: 380mA/idle, 5.2A at lock/stall

2. Hitec HS-645MG Ultra Torque Servo (pelvic joint)

i. Operating voltage range : 4.8V – 6.0V

ii. Stall Torque at 6.0V (max voltage) : 133.31 oz-in

iii. Current drain at 6.0V: 9.1mA/idle, 450mA at no load operating

 40

3. Hitec HS-322HD Standard Deluxe Servo (knee joint)

i. Operating voltage range : 4.8V - 6.0V

ii. Stall Torque at 6.0V (max voltage) : 52 oz-in

iii. Current drain at 6.0V: 7.7mA/idle, 180mA at no load operating

The Hitec HSR-5995TG Ultra Torque Servo at the hip joint draws the most current

when it is operating. An amp-meter was also placed in series with the power supply

output of the SSC-32 to measure the current being drawn by the batteries. The

reading was 5 Amps of current when all the servos were operating. So what does this

mean? One of the initial problems was determining which wires were used to

connect the servo battery pack to the switch to the servo power ports on the SSC-32.

To sufficiently provide enough current, the proper gauge wire must be used to

connect from the “Battery Quick Connect” that you see in the Figure 3.7, to the

switch, and into the servo power port.

Figure 3.7: Connection of Servo Controller to Battery Pack[13]

 41

A wire has a resistance based on:

Α
=

L
R

*ρ
 (3.13)

where ρ is the resistivity of the wire material, L is the wire length, and A is the

cross-sectional area [15]. This resistance will limit how much current can flow

through the wire, based on Ohm’s Law, V=IR. Initially a thin 26-guage wire was

used which couldn’t handle the 5 Amps of current being drawn as Byrobot operated

while walking, and thus, the robot wouldn’t run for very long. The solution was to

use a thicker 16-guage wire can handle up to 22 Amps of current, which is more than

enough for the Byrobot.

 The 5 amps of current is still a lot of current, and it will drain out the batteries!

Since the batteries and the battery pack options used on Byrobot were all

rechargeable, it was a matter of determining how long they will last. Our first choice

was to use a series of six 1.2V AA batteries in plastic battery holders to give the 7.2V

power supply to the servos on the SSC-32 controller. The NiCd batteries, which was

the first battery choice, have 1000 mAh (milli-amp hours) of battery life. So with 5A

of current drawn we would have:

min122.0
5

1

5

1000
=== hours

A

Ah

A

mAh
 (3.14)

 42

With the NiMH batteries, which have 2800 mAh of battery life, we would have:

min6.3356.0
5

8.2

5

2800
=== hours

A

Ah

A

mAh
 (3.15)

So even though the NiCd batteries last a shorter period of time, they were well worth

it since they have less of a voltage drop than the NiMH batteries, and there is no point

of having long lasting batteries if they don’t supply enough power to operate the

robot. In the end, a Ni-Cd Vex battery pack with a capacitance of 2000mAh was used

for Byrobot. As shown from calculation (3.16), a maximum of 24 minutes can

therefore be extracted from the batteries during walking:

min2440.0
5

.2

5

2000
=== hours

A

Ah

A

mAh
 (3.16)

 43

CHAPTER 4

WHEELED KINEMATICS

 The wheeled kinematics are based on the parameters of linear and rotational

speed, time, distance, and degrees the robot has rotated in the world coordinate frame.

Based on this information, we will be able to know where the robot is, and direct it to go

to any point in a plane.

4.1 Robot Orientation

 When the Byrobot is in its wheeled configuration, it can be defined as a

nonholonomic system [16]. This generally means that Byrobot can not slide directly to

the left or the right without slipping, due to its fixed wheel formation shown, as we see

later in section 4.2. For a holonomic system, the wheels on the robot would have to be

designed and/or oriented so that the robot can easily move to the side, and in all other

directions without any slipping. Figure 4.1 shows what the 4-wheeled system looks like

turned in the real world coordinate frame, with θ being the number of radians turned.

Figure 4.1: Robot orientation in world frame

θ

x
y

X

Y

robot
wheels

 44

Relation between reference (world) frame is through standard orthogonal rotation

transformation [17].















 −

=

100

0)cos()sin(

0)sin()cos(

)(θθ

θθ

θR (4.1)

This is a standard rotation of the robot car around the z-axis (which is coming out of page

in Figure 4.1).

 The robot however, is actually controlling the front and rear wheel located on one

side of the robot simultaneously. With this being the case, the robot reduces to Fig. 4.2,

where the speed of the left and right wheels can be taken as one variable each. Here the

Byrobot is differentially steered, in the two-dimensional (x, y) frame.

Figure 4.2: Reduced orientation of robot.

θ

V
VR

VL Y

X
2

L

2

L

VL R

 45

In figure 4.2, the linear velocity of the left and right wheels is represented by VL and VR

respectively, V is the average linear velocity of the robot, θ represents the degrees the

robot has turned in the world frame, R is the radius of curvature of the robot, and
2

L
 is

half the horizontal distance between the right and left wheels. As the robot is rolls

around on the floor or ground, it simply moves along the x and y axes in the world frame,

and rotates about the z-axis as it turns.

4.2 Differential Wheeled Drive Kinematics

 The steering is done in this 4 wheel differential drive by simultaneously rotating

the left pair of wheels in one direction at one speed, and the right pair of wheels at a

different speed and/or direction [18].

 The states are given as:

















θ
y

x

, where x is the position of the robot along the x-axis,

y is the position of the robot along the y-axis, and θ is the radians the robot has turned in

the coordinate frame (hence, rotation about the z-axis). The Byrobot uses a fixed wheel

formation for the four wheels on its body. The velocity of a point p on the fixed wheel is

given by:

∧

×= xrVp)(ω (4.2)

Where r is the radius of the wheel, VP is the linear velocity of the wheel, ω is the

rotational speed of the wheel, and
∧

x is the unit vector to the x-axis. A restriction to the

 46

robot mobility is that the point p cannot move to the direction perpendicular to the plane

of the wheel, shown in Figure 4.3.

Figure 4.3: Fixed wheel formation, wheels on robot body

By taking the derivatives of our state variables,

















θ
y

x

, we can find the robot velocity in the

x direction given by
dt

dx
, the velocity in the y direction given by

dt

dy
, and the rotational

speed given by
dt

dθ
. Here we take the derivative of the state variables to find:

θθ
ωω

θ cos
2

cos*
2

cos 







=








== LRLR VV

rV
dt

dx
 (4.3)

θθ
ωω

θ sin
2

sin*
2

sin 






=






== LRLR VV
rV

dt

dy
 (4.4)

Where R and L labels the right and left wheels respectively. We can put this into matrix

form using combining the right and left wheel equations:

ω

r

X

Y

P

v

 47

[] 







































−










































=







=



















L

R

L

R

L

r

L

r

rr

rr

VVy

x

θ
θ

θθ

θθ

θ
θ

θθ

θ

sin
2

1
sin*

2

1

cos*
2

1
cos*

2

1

*sincos
.

.

.

 (4.5)

Where LR rrx θθθθ 














+














= cos*
2

1
cos*

2

1.

 , gives you the speed of the robot with

respect to the x-axis,

LR rry θθθθ 














+














= sin*
2

1
sin*

2

1.

, gives you the speed of the robot with respect to

the y-axis,

LR
L

r

L

r
θθθ 






−






=
.

, gives you the rotational speed of the robot (about the z-axis)

 Since the robot is in a differential drive configuration, where we can simply vary

the speed of each individual wheel, we can find general kinematic values for the robot,

based on knowing other values, such as distance the robot traveled (d), its average linear

velocity (v), angular velocity of the wheels (ω), or degrees turned in world coordinate

frame (θ). Using the measured elapsed time (t), the radius of the robot wheels (r), and the

horizontal distance between the left and right wheels (L), and depending on which of the

previously mentioned variables that we know, we can find our kinematic values for the

robot using a few differential equations:

rtVtd ω== (4.6)

 48

2

LR VV
V

+
= (4.7)

L

rr

L

trr

L

tVV

L

dd LRLRLRLR)()()(θθωω
θ

−
=

−
=

−
=

−
= (4.8)








 −=






 +=
2

,
2

L
RV

L
RV LR ωω (4.9)

L

VV

dt

d LR −==
θ

ω (4.10)

.

4.3 Radius of Curvature of Robot

 The Radius of Curvature of the robot, R, can be found by looking at the previous

figures and equation:










−

+







=
LR

LR

VV

VVL
R

2
 (4.11)

We see that when LR VV = , then R=∞ meaning there is infinite radius of curvature and the

robot goes in straight motion. When LR VV −= , R = 0 meaning there is no radius of

curvature and the robot rotates in place (spins on a dime). The radius of curvature can be

used for the robot to drive around obstacles. For example, if there was a crater ahead of

the robot and we knew its radius or diameter, we could set the velocities of the robot

wheels accordingly so that the robot would avoid the crater by circling around it.

 49

CHAPTER 5

LEGGED KINEMATICS

 The forward and reverse kinematic analysis is formulated for each 3-DOF 3R leg

mechanism in order to develop the overall kinematic model of a six-legged walking

robot.

5.1 Forward Kinematics – Geometrical Method

 The Geometrical Method of the Forward Kinematics [19] is the easiest method

when dealing with small degrees of freedom such as our 3R legged mechanisms. We can

simply look at the legs in the x, y, z coordinate frame and be able to determine the final

foot position based on leg segment lengths and angles. Figure 5.1 shows this kinematic

model of one of the robot legs:

Figure 5.1: Kinematic Model of our 3R leg mechanism on Byrobot

z

y

x

end effector position (foot)
(xp, yp, zp)

θ1

θ2

θ3

L1

L2

L3

knee

hip

pelvic joint
(robot leg origin) d2

 50

From the model in figure 5.1, we can determine the following equations for the position

of the robot hip, knee, and foot:

Hip Position

)cos(111 θLX = (5.1)

)sin(111 θLY = (5.2)

01 =Z (5.3)

Knee Position

)sin()cos()cos(122112 θθθ LLX += (5.4)

)cos()cos()sin(122112 θθθ LLY += (5.5)

2222)sin(dLZ −= θ (5.6)

Foot Position (End Effector)

)cos()cos()sin()cos()cos(1323122113 θθθθθθ +++= LLLX (5.7)

)sin()cos()cos()cos()sin(1323122113 θθθθθθ +++= LLLY (5.8)

2323223)sin()sin(dLLZ −+−= θθθ (5.9)

5.2 Forward Kinematics – Denavit-Hartenberg Convention

The standard method for the forward and reverse kinematics of mechanisms is by using

what is known as the Denavit-Hartenberg Parameters [20]. Denavit and Hartenberg (DH)

proposed a matrix method of systematically assigning coordinate systems to each link of

an articulated chain. These are a way to define the lengths of your mechanism segments,

distances, and joint angles, commonly used for robot manipulators. The axis of revolute

joint i is aligned with Zi-1. The Zi-1 axis is directed along the normal from Zi-1 to Zi and for

intersecting axes is parallel to Zi-1 crossed with Zi. The link and joint parameters may be

summarized as:

• ai = the distance from Zi to Zi+1 measured along Xi

• αi = the angle between Zi and Zi+1 measured about Xi

 51

• di = the distance from Xi-1 to Xi measured along Zi

• θi = the angle between Xi-1 and Xi measured about Zi

For a revolution axis θi is the joint variable and di is constant, while for a prismatic joint

di is variable, and θi is constant. The Denavit-Hartenberg (DH) representation results in a

4x4 homogeneous transformation matrix, T:


















−

−

=−

1000

cossin0

sinsincoscoscossin

cossinsincossincos

1

iii

iiiiiii

iiiiiii

i

i
d

a

a

T
αα

θαθαθθ
θαθαθθ

 (5.10)

TTT
i

i

ii

1

1

00 −

−
= (5.11)

In this 4x4 matrices, the last column represents the position vector, in the x, y, and z

position respectively. The upper left 3 rows and 3 columns of this transformation matrix

[21], T, is the rotational matrix, which rotates the joints from their respective coordinate

frame, i-1, to the new coordinate frame, i.

 52

Figure 5.2: Byrobot’s body diagram; only left 3 legs are shown for simplicity

So to transform from the robot body origin (G) to the origin of the robot legs (O), we use

the transformation matrix T
G

O
:

3,2,1#

1000

0100

010

001

legsi
li

do

T
O

G
=→





























 −

= (5.12)

6,5,4#

1000

0100

010

001

legsi
li

do

T
O

G
=→































= (5.13)

Where li is the distance from the robot body origin, to the origin of leg i.

From figure 5.2, we can see the following:

L1

do

-lo

lo

L2

L3

X4

Y4

Z4

ZG

YG

XG
G

Robot Front

6

5

3

2

1 4

 53

 For leg 1 and leg 4 (l1 and l4), l1 = l4 = lo

 For leg 2 and leg 5 (l2 and l5), l2 = l5 = 0

 For leg 3 and leg 6 (l3 and l6), l3 = l6 = -lo

Now, using the DH Convention, we can determine our transformation matrices for the

legs of Byrobot. Transforming from the leg origin, to joint 1 (pelvic joint), to joint 2 (hip

joint), to joint 3 (knee joint), and finally to the final foot position (we will call this joint

position 4), which will give us the location of the foot based on the robot leg origin. The

angles in our matrices are controlled by the servo motor angles that operate the joints in

the robot legs. Each leg has 3 servo motors which corresponds to 3 revolute joints,

hence, rotation about the z-axis for each respective joint.

 For clarity, we use iS and iC to denote)sin(iθ and)cos(iθ , and we use jiS + and

jiC + to denote)sin(ji θθ + and)cos(ji θθ + , respectively. Also, we denote iL as the

length of leg segment i on each robot leg.

















 −

=

1000

0100

00

00

11

11

1 CS

SC

T O
 (5.14)



















−

−

−

=

1000

0

0100

0

222

122

2

1 dCS

LSC

T (5.15)

















 −

=

1000

0100

00

0

33

233

3

2

CS

LSC

T (5.16)

 54

















 −

=

1000

0100

0010

001 3

4

3

L

T (5.17)

The transformation matrix for a joint with respect to another joint, is found by simply

multiplying all the transformation matrices used sequentially [22]. So if we want to

know the transformation matrix to the hip joint (joint 2), with respect to the leg origin, we

would have:



















−

−−

−

==

1000

0 222

1112121

1112121

2

1

1

0

2

0 dCS

SLCSSCS

CLSSCCC

TTT (5.18)

And likewise for the knee joint (joint 3):



















−

+−−

+−

==
++

++

++

1000

0 2223232

122111321321

122111321321

3

2

2

1

1

0

3

0 dSLCS

CCLSLCSSCS

SCLCLSSCCC

TTTT (5.19)

And finally, the transformation matrix going from the leg origin to the final foot position

(known as the end-effector for robot manipulators), is:

 55



















−−

++−−

++−

==
+++

+++

+++

1000

0 2323223232

3213122111321321

3213122111321321

4

3

3

2

2

1

1

0

4

0 dSLSLCS

CSLCCLSLCSSCS

CCLSCLCLSSCCC

TTTTT (5.20)

Hence, to find the transformation matrix, T G

4
, going from the robot body origin (G)down

to the final foot location for a robot leg (position 4), we multiply the matrix T
O

G
 by the

matrix T
4

0
 (or by all four of the smaller T matrices that transform the entire leg). In

other words:



















−−

+++−−

±++−

=

==

+++

+++

+++

1000

0 2323223232

3213122111321321

3213122111321321

4

4

3

3

2

2

1

1

0

04

0

04

dSLSLCS

lCSLSCLSLCSSCS

dCCLCCLCLSSCCC

i

o

G

GGG

T

TTTTTTTT
 (5.21)

Where the od± term depends on which set of legs that we are referring to (which side of

the robot, legs 1-3 or legs 4-6), where the sign for od would change, as shown

previously. Note that we are still using the same naming convention as previously for the

il term. Remember that in each of these 4x4 matrices, the last column represents the

position vector, in the x, y, and z position respectively [23]. Here we can see that the

final position vectors from each transformation (to the hip, knee, and foot), are equivalent

to the position found from the geometrical method above!

 56

5.3 Inverse Kinematics

The inverse kinematics can be used to find what the joint angles should be in the legs

given the position of the foot [23]. This is important for the walking gait of Byrobot. For

one of the robot legs to take one step, it does a sequence of:

1. leg lifts up in the air a certain distance (Z direction)

2. leg moves forward (Y direction)

3. leg comes back down (Z direction)

If the legs need to swing out, this movement is done in the Y-direction for the robot. The

three servo motors in each leg control the joint actuation for the knee, hip, and pelvic

joint. We want to know what the angles are in these servo motors (our θ’s). At the end

of each walking sequence, the robot returns to its original stable stance, where all six legs

are down on the ground. By determining the foot positions for this stable stance, we can

program the servo angles accordingly as well. By knowing the position of the foot at

each moment (in the X, Y, and Z direction), we can find the corresponding joint angles

and use this information for the chosen walking gait.

 A single set of three joint angles produces a single foot position; however, there is

more than one set of joint angles that will result in a given foot position (as you can see

by planting your foot on the floor and moving your hip and knee). This fact makes the

inverse kinematics much more interesting, and difficult to solve, than the forward

kinematics. In order to obtain the inverse kinematics equations analytically (using algebra

and trigonometry to invert the forward kinematic equations), the joint angles must be

constrained, because of the multiple solutions problem described above. If the joint angle

possibilities are constrained, there will be only one set of angles available to reach the

 57

given point. For the knee joint, movement is restricted to be between 0º and 90º, where

0º is with the L3 leg segment lined up on the x-axis, and 90º has L3 on the z-axis.

 Given these constraints, and the forward kinematic foot position equations, the

inverse kinematic equations can be derived. This process can be difficult in itself due to

the fact we are dealing with polynomials of trigonometric equations. There are generally

three different approaches to solve the inverse kinematics problem. The first approach is

to solve the direct kinematics equations algebraically. The second approach is the

geometric approach, where one can relate some important point of the structure to the end

effector’s position. The first two approaches are called the closed-form solution. The last

approach is the numerical approach, in which the solution of the inverse kinematics

problem is estimated, compared, and recalculated until the error falls below a certain

threshold. This approach is generally computationally demanding, but can be applied to

any manipulator structure and is guaranteed to have the same accuracy of the solution. In

this research, an inverse kinematics algorithm was used that was previously introduced in

[24], for a similar 3R-3DOF robot leg mechanism, and those equations are shown here:















+
= −

2

3

2

3

31

1 cos
YX

X
θ (5.22)

()















−+
+



















+




 −+

+−+




 −





 ++

= −−

1

2

3

2

3

31

2

3

2

1

2

3

2

32

2

23

2

3

2

1

2

3

2

3

2

2
1

2 tan

**2

cos
LYX

Z

ZLYXL

dLZLYXL

θ (5.23)

 58

()














−+
+


















+−−+





 −+

= −−

1

2

3

2

3

31

32

2

32

2

2

2

3

2

1

2

3

2

3
1

3 tan
**2

cos
LYX

Z

LL

LdLZLYX
θ (5.24)

 59

CHAPTER 6

STABILIZING BYROBOT’S LEGGED MOBILITY SYSTEM

6.1 Polygon of Support

 For a hexapod robot, at least 3 legs have to be down at all times for the robot to be

stable [25]. Therefore it is possible to have three, four, five, or six legs down at all times,

with the latter meaning that the robot is stationary. In order to remain stable at any given

moment, the robot’s center of mass (COM) should be located within the “Polygon of

Support”, meaning that the center of mass is as far away from the edges of the polygon

that covers the area defined by the feet in contact with the ground. This polygon is

basically the projection between all of its support points onto the surface.

 But what happens when a statically stable robot lifts a leg and tries to move?

Does its COM stay within the polygon of support? If the COM comes too close to one of

the edges of this polygon, the robot will tip over in that direction. This was essential for

us because we needed our robot to remain stable as each leg lifts and moves for a walking

gait. A basic assumption of a statically stable gait is that the weight of a leg is negligible

compared to that of the body, so that the total center COM of the robot is not affected by

the leg swing. Based on this assumption, the conventional walking gait for a robot is

designed so as to maintain the COM of the robot inside of the support polygon, which is

outlined by each support leg's tip position. Figure 6.1 shows the configuration of the

Polygon of support for the Byrobot with 3, 4, 5, and 6 legs down, respectively.

 60

Figure 6.1: Byrobot’s polygon of support shown for robot with 3, 4, 5, and 6 legs down

respectively.

6.2 Mobility on an Incline / Decline Plane

In the case when the robot is on an incline or decline, the projected center of mass (COM)

is into the surface plane, just as the force of the robot weight is [26]. The robot’s force is

projected parallel (Fdown) and perpendicular (Fin) to the incline or decline plane as shown

in Figure 6.2.

COM

y

x

1

2

4

5

3 6

COM

y

x

1

2

4

5

3 6

COM

y

x

1

2

4

5

3 6

COM

y

x

1

2

4

5

3 6

 61

Figure 6.2: Byrobot’s projected force and COM on an incline/decline plane.

Where m is the mass of the robot and a is the acceleration of the robot due to gravity.

The COM is projected into the plane at cos(θ), where θ is the angle of the incline. In this

situation, the walking gait needs to be modified so that the COM doesn’t cause the robot

to tip over. This modification can be done by adjusting the joint angles in the robot legs

to correspond to the incline angle.

We can also find the coefficient of friction, µ, for the robot standing on its legs.

We want the robot to be able to walk up the incline without sliding, so the friction

between the robot “feet” and the surface of the incline must be greater than the force of

gravity pulling the robot down the plane, in order for the robot to remain stable.

We know that the force of friction opposes the initial motion, and is a force

normal to the surface plane. Hence, the force of friction (fF) is:

)cos(θµmaF f = , (6.1)

and the force down the plane is still:

)sin(θmaFdown = , (6.2)

COM

)sin(θmaFin =

gravity

θ

θ

)cos(θmaFdown =

 62

so the final total force will be:

)cos()sin(θµθ mamaFFF fdownTotal −=−= (6.3)

Now, at the instantaneous time where there is just enough friction for the robot to stand,

and it will begin to slide if any less friction is present, then:

fdown

Total

FF

F

=

= 0

meaning that,)cos()sin(θµθ mama =

and solving for µ gives

)tan(
)cos(

)sin(

)cos(

)sin(
θ

θ
θ

θ
θ

µ ===
ma

ma
 (6.4)

Meaning, for Byrobot to be able to stand and walk up the incline, the coefficient of

friction between the feet and the plane surface, µ, must be greater than tan(θ). This is

also the friction required so that rotation, when Byrobot is on its wheels, is possible to

roll up the incline without slippage:)tan(θµ ≥

6.3 Hexapod Walking Gaits

There are three distinct walking gaits used for hexapod robots; the Tripod Gait,

the Ripple Gait, and the Wave Gait [27]. Here we will analyze these three common gaits

and explain why we chose our selected gait.

6.3.1 Preferred Walking Gaits for Hexapod Robots

The Tripod Gait is the best-known hexapod gait. The tripod is defined by the

front and back legs on one side and the middle leg on the opposite side. For each tripod,

 63

the legs are lifted, lowered, and moved forwards and backwards in unison. During

walking, the weight of the hexapod is simply shifted alternately from one tripod to the

other. The tripod gait is used for fast speed with a small amount of load, weight of robot

components, on the robot. With rising load, it is best to use a different gait where more

legs are on the ground at all times to better distribute the robot load for more stability.

In the Wave Gait, all legs on one side are moved forward in succession, in the

order of the front leg, the rear leg, then the middle leg. This order is then repeated on the

opposite side of the robot with the other three legs. This order is used to maintain robot

stability. Since only 1 leg is ever lifted at a time, with the other 5 being down, the robot

is always in a highly-stable posture.

The final stride is the Ripple Gait. At least four legs are touching the ground

simultaneously. In this gait two legs, one leg on each side of the robot, are moved

forward at a time. The name “ripple” was chosen because there are different variations of

this gait. The user can vary which two legs are moving based on where the center of

mass is located on the robot. Keep in mind that the four legs that are down must form a

stable polygon of support controlling COM position for stability. One ripple gait pattern

could be the robot moving the front left and right leg on the robot, then the middle left

and right leg, and finally the rear left and right legs. However the robot could also move

the front right leg and the rear left leg for its first step, or some other combination of left

and right legs.

Figure 6.3 shows the square wave plot of each of these gaits with respect to time.

In the figure, “Hi” means the leg is lifted off the ground at that time and “Lo” means the

leg is down.

 64

Figure 6.3: Hexapod gait movements of each leg with respect to time.

6.3.2 Analysis of the Walking Gaits

For each of these robot gaits, we assume the step size is held constant, and the

robot legs move in a forward succession. The tripod gait will be fastest, completing a

Hi

Lo

Hi

Lo

Hi

Lo

1

Byrobot

front

2

3 6

4

5

Ripple (tetrapod) Gait – lift 2 legs at a time (4 legs down)

Hi

Lo

Hi

Lo

Hi

Lo

Tripod Gait – lift 3 legs at a time (3 legs down)

Hi

Lo

Hi

Lo

1

Byrobot

front

2

3 6

4

5

Wave Gait – lift 1 leg at a time (5 legs down)

Hi

Lo

Hi

Lo

Hi

Lo

Hi

Lo

1

Byrobot

front

2

3 6

4

5 Hi

Lo

Hi

Lo

Hi

Lo

Hi

Lo

Hi

Lo

Hi

Lo

 65

cycle in 2 leg movements, which is the complete up-forward-down movement of one of

the robot legs. The Tripod, although fastest, will also be the least stable, since it always

has 3 legs in suspension. The Wave will be most stable, since it keeps the most legs on

the ground at all phases of the stride. It will also be the easiest to adjust the wave gait

during movement over uneven terrain. This gait, however, is the slowest of the three

since it takes 6 leg movements to complete one cycle. The Ripple is second most-stable

and second fastest. Only 2 legs are ever off the ground at the same time. The cycle for

this gait is completed in 4 leg movements. Only 1 leg per side is ever lifted at a time, and

when it is, the leg on the other side directly opposite of it is down.

6.3.3 The Chosen Walking Gait

Due to the large load that is on the Byrobot (approximately 2kg), with all the

batteries, servos, wheels, motors, etc.; the initial tripod gait was ineffective. Byrobot

simply would collapse under its own weight as soon as the three legs would lift off of the

ground, despite the leg position. The wave gait, however, is slow, but remains stable

throughout its entire walk, which is most important when the robot is traversing in remote

environments. The wave gait therefore became our preferred walking gait. A program

was written for Byrobot, which would move the corresponding servo motors in the legs

to take small steps at the top servo motor speed. The program loop was set to run eight

times. This allowed Byrobot to walk with the wave gait for a total of 8 gaits (one gait

equals one step of each leg, for a total of 6x8=48 steps). Since the servo motors are

moving as fast as possible, the only other variable factor was the position of the robot

legs during each step. Because of the design of Byrobot, too large of a step will result in

 66

interference of parts and components on the robot, hence, smaller steps are more

efficient. The wave gait was successful and was used in all of our testing results, as

explained in the next chapter.

 67

CHAPTER 7

RESULTS

7.1 Verifying Kinematic Equations

 With the derivation of the leg kinematics for the robot, we wanted to verify the

placement of the rover feet and the joint angles in the legs. To do this, we chose to first

look at the robot during its stable stance. We can physically measure where the foot is

positioned approximately based on the origin of the respective leg’s coordinate frame,

and use the servo motor joint angles from the program as our θ’s. We looked at each leg

in a stable stance and compare the values of our physical measurements to those from our

forward kinematic equations. We then calculated the error in the measurements, and

could see that most of the error came from the x-position of the legs. All of the legs have

the same y-position being the exact length of leg segment L3. This data is shown in Table

7.1.

 The inverse kinematics is very important not only during the robot’s standing

phase, but also for walking. If we want to move each robot foot two inches forward for a

particular walking gait, we can calculate the position of the robot foot and use the inverse

kinematics to find the servo joint angles. However, when we compared our solutions of

our inverse kinematic equations (equations 5.22, 5.23, and 5.24) to the actual angles we

used in our program, our error was immensely large. This could be attributed to an error

in our inverse kinematics, which is much more complicated to solve than the forward

kinematics. We decided that it was best to use more of a “guess and check” method to

program our walking gaits. Hence, to move each robot leg forward, we would just

slightly adjust the joint angles to get our desired output distance to move the robot foot

 68

position. By using the forward kinematics, we were able to successfully program our

walking gait into the robot.

Table 7.1: Comparison of Foot Position with Measured and Calculated Results

Leg

Number

Position

(x, y, z)

Measured

(inches)

Calculated

(inches)

Error (e)

%100x
calculated

calulatedmeasured
e

−
=

1

X

Y

Z

-3.69

4.52

-7.50

-3.57

4.44

-7.50

3.36%

1.80%

0%

2

X

Y

Z

-5.25

-0.50

-7.50

-5.50

0

-7.50

4.55%

Undefined

0%

3

X

Y

Z

-3.75

-4.55

-7.50

-3.12

-4.77

-7.50

20.2%

4.61%

0%

4

X

Y

Z

3.12

4.50

-7.50

3.16

4.60

-7.50

18.0%

-2.0%

0%

5

X

Y

Z

5.25

-0.50

-7.50

5.50

0

-7.50

4.55%

undefined

0%

6

X

Y

Z

3.10

-4.75

-7.50

3.12

-4.69

-7.50

0.64%

1.28%

0%

7.2 Mobility on Flat Surface

 We tested the speeds of both the legged and wheeled mobility systems of Byrobot

on a flat surface. For the wheeled system, we measured the robot speed at 100%, 80%,

and 50% of the motor speeds. To measure the linear velocity of the robot at full speed,

 69

we programmed the robot to travel straight forward for 5 seconds and then measured the

distance traveled with a tape measure. In Table 7.2, we see the average distance traveled

and linear velocity of the robot at full speed.

Table 7.2: Average Wheeled Linear Velocity of Byrobot at Full Speed

Rolls – Full (100%) Speed

time

(seconds)

distance

(cm)

velocity

(cm/s)

5.00 345.44 69.09

5.00 346.71 69.34

5.00 342.90 68.58

5.00 344.81 68.96

5.00 345.44 69.09

Average 69.01

We noticed that at less than full speed, the robot would have a slight pull to the left,

which can be fixed in the future with wheel encoders to ensure that the output motor

speeds stay the same for a more precise wheel alignment. Due to the slight pull to the left

of the robot when traveling at less than full speed, we cut the time down to 4 seconds so

that the pull wouldn’t have as much as an effect on our straight-line distance. In Tables

7.3 and 7.4, we see the average linear velocity of the robot at 80% and 50% speed.

Table 7.3: Average Wheeled Linear Velocity of Byrobot at 80% Speed

Rolls - 80% Speed

time

(seconds)

distance

(cm)

velocity

(cm/s)

4.00 190.50 47.63

4.00 200.66 50.17

4.00 192.41 48.10

 70

Table 7.3 Continued

4.00 194.95 48.74

4.00 196.22 49.05

Average 48.74

Table 7.4: Average Wheeled Linear Velocity of Byrobot at 50% Speed

Rolls - 50% Speed

time

(seconds)

distance

(cm)

velocity

(cm/s)

4.00 172.72 43.18

4.00 165.10 41.28

4.00 168.91 42.23

4.00 170.18 42.55

4.00 167.64 41.91

Average 42.23

 Using these robot velocities, we calculated the average angular (rotational speed)

of the robot wheels in revolutions per second (rev/s), using equation 4.6, rtVtd ω== .

Where rV ω= or
r

V
=ω . The radius of the robot wheels, r, is 3.175 cm. The average

angular velocities are shown in table 7.5:

Table 7.5: Average Angular Velocities of Robot

% of robot full

speed

Average Linear

Velocity of Robot

Wheels

(cm/s)

Angular

(Rotational)

Velocity of Robot

Wheels

(rev/s)

100% 69.01 21.74

80% 48.74 15.35

50% 42.23 13.30

 71

 We can see how reducing the robot’s motor speed in the program is not directly

proportional to the robot’s reduction in its linear and angular velocity. At 80% and 50%

speed, the robot’s linear and angular velocities should be 80% and 50% of its velocity at

100% speed. However, our test show that this is not the case.

 As mentioned previously in chapter 6, we initially tried to walk Byrobot using the

tripod gait, where three legs would move at time, however having only three legs down at

a time could not support the large robot load, and the robot would collapse under its own

weight before it could walk one step. Therefore, the wave gait was chosen; even though

it was the slowest gait, it was the most stable. For the walking wave gait, a program was

written for Byrobot, which would move the corresponding servo motors in the legs to

take small steps at the top servo motor speed. Each leg made the sequence of lifting up 3

inches (in z-direction), moving forward 2 inches (in y-direction), and the leg comes back

down. With this information, the correct servo joint angles were found using the inverse

kinematics, for each step in the gait. This sequence is done for each leg on the robot in

the order: leg 1, leg 3, leg 2, then leg 4, leg 6, and leg 5. This order was chosen to move

one side of the legs before the other side, so that there was always a stable polygon. At

the end of the first gait when all three legs had moved a few inches forward, a “forward

scoot” is done to move the robot body forward as well. At this point, all legs are then

returned to their original standing position.

 We tested the robot walking its wave gait for ten test trials, as shown in Table 7.6

and the distance of travel for the robot was measured.

 72

Table 7.6: Walking (wave gait) Speed of Byrobot on Flat Surface

 Walking on Flat Surface

Full Speed (8 sequences, 48 steps)

Trail time

(sec)

distance

(cm)

velocity

(cm/sec)

1 66.00 83.82 1.27

2 66.00 81.28 1.23

3 66.00 80.98 1.23

4 66.00 78.10 1.18

5 65.00 80.10 1.23

6 66.00 75.56 1.14

7 66.00 76.88 1.16

8 65.00 73.66 1.13

9 65.00 71.12 1.09

10 65.00 60.96 0.94

Averages 65.60 76.25 1.16

The average distance walked by Byrobot with the wave gait is 76.25cm in 65.6 seconds,

for an average walking speed of 1.16 cm/s. Below in Figure 7.1, we see photographs of

the successful Wave Gait sequence of Byrobot.

Figure 7.1: Photographs of the Wave Gait sequence of Byrobot

7.3 Mobility in Mars Sand Pit

Snow shoes were placed on Byrobot for better mobility in the Mars sand pit, as discussed

in Chapter 2 and shown in figures 2.7 and 2.8. If the robot was traversing on its wheels

in the sand pit, it would easily get stuck when it came to an uneven area such as a clump

 73

of sand, therefore the legs were the desired system to use. Below in Table 7.7, we

measured the speed of the robot walking in the sand pit, using our same wave gait

program:

Table 7.7: Walking (wave gait) Speed of Byrobot in Mars Sand Pit

 Walking in Mars Sand Pit

Full Speed (8 sequences, 48 steps)

Trail time

(sec)

distance

(cm)

velocity

(cm/sec)

1 66.00 34.00 0.52

2 68.00 40.00 0.59

3 66.00 35.00 0.53

4 67.00 35.00 0.52

5 69.00 36.00 0.52

6 68.00 41.00 0.60

7 67.00 37.00 0.55

8 68.00 38.00 0.56

9 67.00 33.00 0.49

10 67.00 35.00 0.52

Averages 67.30 36.40 0.54

We see here that the average walking speed of Byrobot in the sandy terrain is 0.54 cm/s;

this is approximately half the speed of the robot when walking on the flat surface. From

watching the robot walk in both of these terrains, we determined that the slipping of the

feet on the robot is the reason for this difference. On the sandy terrain, the robot’s mars

shoes will slip with each step, so as the robot is moving forward, it is also slipping and

sliding backward. When on the flat floor surface, the rubber feet on the robot supply

enough grip so that the slipping is significantly reduced and the robot can have full

forward progress.

 74

7.4 Traversing Up and Down a Slope

 We wanted to see if Byrobot could traverse up and down a sloped terrain

smoothly, on both its wheeled and legged mobility systems. Unfortunately, the robot was

unsuccessful at this using its legs. On the adjustable ramp that we had in the lab, the legs

would lose balance and tumble over when trying to traverse up or down the ramp. The

reason for this was because the same flat-surface walking gait was used on the ramp. We

can solve this stability problem in the future by simply changing the configuration of the

legs to control the center of mass, keeping it within the new polygon of support during

the gait on the incline.

 We were able to test the wheeled mobility system at a couple different angles.

We first measured the speed of the robot on a 22° ramp with a distance of 132 cm, as the

robot moved up and down the ramp, and the time and speed are recorded below in tables

7.8 and 7.9:

Table 7.8: Wheeled Speeds of Byrobot Traversing Up a 22° Incline Slope

Rolls Up 22° Incline

time

(seconds)

distance

 (cm)

velocity

(cm/s)

3.66 132.00 36.07

3.50 132.00 37.71

3.44 132.00 38.37

3.47 132.00 38.04

3.51 132.00 37.61

Average 37.56

 75

Table 7.9: Wheeled Speeds of Byrobot Traversing Down a 22° Decline Slope

Rolls Down 22° Incline

time

(seconds)

distance

(cm)

velocity

(cm/s)

1.31 132.00 100.76

1.44 132.00 91.67

1.40 132.00 94.29

1.36 132.00 97.06

1.41 132.00 93.62

Average 95.48

Next we put the robot on slope with an angle of 35°. Table 7.10 shows the speed of the

robot rolling up the incline. What we noticed was the robot struggled to make it up this

steep slope. After a certain distance, the robot wheels started to lose power and slip, and

roll backwards down the ramp. The distance shown is the farthest distance the robot

made it up the ramp, right before it began to slip and roll backward.

Table 7.10: Wheeled Speeds of Byrobot Traversing Up a 35° Incline Slope

Rolls Up 35° Incline *

time

(seconds)

distance

(cm)

velocity

(cm/s)

5.35 72.00 13.46

5.07 69.00 13.61

4.78 71.00 14.85

5.07 71.00 14.00

5.11 70.00 13.70

Average 13.92

 76

Table 7.11 below shows the speed of the robot traversing down this incline. No slippage

of the wheels was noticed as the robot rolled rapidly down this slope, assuming the

wheels kept their traction throughout the movement.

Table 7.11: Wheeled Speeds of Byrobot Traversing Down a 35° Decline Slope

Rolls Down 35° Incline

time

(seconds)

distance

 (cm)

velocity

(cm/s)

1.19 122.00 102.52

1.18 122.00 103.39

1.18 122.00 103.39

1.16 122.00 105.17

1.20 122.00 101.67

Average 103.23

We can see that the robot can move much faster on its wheels when going down an

incline. We tried to increase the angle of the incline slightly to test the robot speed at a

steeper slope, but the robot didn’t have enough power to make it up at a measurable

distance, as it immediately started slipping.

7.5 Conclusions

 In this thesis, we have shown the kinematic model of the six-legged and four-

wheeled reconfigurable Byrobot rover. The proposed kinematic models can be extended

for analyzing the mobility performances of the four-wheeled six-legged robot in other

operating conditions, as turning left and right on both mobility systems, avoiding

obstacles with future sensors, and ascending and descending slopes and stairs. Our

results show that our derived kinematic equations for the wheels and legs can be

 77

implemented in the hardware of the actual robot and yield accurate measurements. We

were able to use forward and reverse kinematics to give us exact values to find the stable

polygon of support for the six-legged mobility system. We have also explained the

common walking gaits used on hexapod robots and why we chose the wave gait for this

robot. Testing of both the tripod and the wave gait on our actual hardware proved to us

that the wave gait was the correct choice, for it remained the most stable. Our speed test

showed that the walking gait, at an average speed of 1.16 cm/s, is much slower than when

the robot rolls on its wheels at an average full speed of 69.01 cm/s, when operating on a

flat surface. This can be expected since wheeled mobility systems generally have more

speed than legged mobility systems. When the robot is in uneven terrain that causes its

wheels to lose traction, such as in Mars the sand pit, we were able to see from the

hardware that the legs were desirable to use to be able to traverse the robot through the

sandy terrain. The average walking speed in the sandy terrain was 0.54 cm/s, less than

half the walking speed on a flat surface. We contribute this speed reduction to the feet on

the robot slipping backward in the sand pit slightly as it the robot body moves forward.

We also saw how inefficient the legs operate currently on a slope. Without being able to

change the center of mass location on the robot body, the slightest change in the slope of

the terrain caused the robot to tip over on its legs. However the robot on its wheeled

system was able to successfully traverse up a 35° incline at an approximate distance of 70

cm, before it began to slip backward. Any larger angle caused the robot to slip

immediately.

 Having a robot that can both walk and roll would be beneficial to planetary

exploration since it can transition from the use of its legs or wheels based on the terrain

 78

conditions [28]. When the robot is on rough terrain, the ability for it to reconfigure its

mobility system from legs to wheels and vice versa will help it to successfully navigate

[29]. For Byrobot to navigate on an incline, future research will allow the center of mass

location to be known at all times, so the robot can adjust the joint angles in its legs

accordingly to remain stable. We will also implement sensors and wheel encoders for a

feedback control systems, which we will discuss in Chapter 8. This will facilitate

additional future autonomous capabilities of the robot.

 79

CHAPTER 8

FUTURE WORK

 The Byrobot project has developed a basic platform that will be able to maneuver

on multiple terrains. However, there is much further research that can be done to

improve on the robotic system. The common NASA Rocker-Bogie[30] suspension

system that is used on the Mars rovers could also be placed on Byrobot. This system

would allow Byrobot to be able to roll over rough and uneven surfaces more smoothly.

Current Rocker-Bogie systems allow traversability over obstacles up to twice its wheel

diameter [31]. However, by replacing the current wheeled mobility system with this

Rocker-Bogie system, there will be less of a clearance between the ground and the wheel

when the robot is standing on its legs. In this situation, the Byrobot will not be able to

walk over larger obstacles.

 There are a number of sensors that should be used for the robot that would

improve the precision and autonomous transition between its two mobility systems.

Using sensor feedback, so that the robot will “know” what it is actually doing at all times,

will transform the robot into a closed-loop feedback control system, shown in Figure 8.1.

Closed loop control is needed for autonomous capabilities in mobile robots [32].

Figure 8.1: Future robot Closed Loop Feedback Control

Plant

(robot system)

Robot
Motion

Controller

Input

control

signal

Feedback

 80

For this closed loop control system, the input is simply the voltage sent into the

controller. The controller converts this voltage to signal that will drive the motors on the

robot, making the robot move forward. The feedback will be any sensors, encoders, or

vision system that will let the robot know of its surroundings including the constant

angular velocity of the wheels. Byrobot is currently being executed without any feedback

making it an open loop control system [32].

 Currently the Byrobot is unable to self measure its angular speed on its wheeled

platform. This would be done by the constant measurement of the output rotations of the

motor shafts, on each of the four DC motors that are directly attached to the wheels of the

robot. The best method for this would be to use encoders for each of the wheels. One of

the simple methods for a wheel encoder involves using a sensor in the shape of a “U” that

sends an infrared beam across it. This U-sensor can be placed on the same axle that a

robot wheel would be on, and have a disk that rotates through it. This disk can contain

holes or alternating black and white colors, positioned in a circular pattern about the disk

center. The robot controller can count each time the infrared beam on the U-sensor

detects a hole, or a new color, to count one full rotation of the axle, which is equivalent to

one full rotation of the wheel. A picture of this encoder sensor is shown in figure 8.2

[33].

 This encoder, which should be used for each of the robot wheels, would keep a

constant count on how many rotations the wheel has made and with the robot controller’s

clock measuring elapsed time, can give you the rotational speed. This rotational speed

will be useful if each of the motors isn’t outputting the same shaft speed, which would

 81

cause each of the wheels to rotate at different speeds and throw off the wheel alignment

on the robot.

Model of the shaft encoder.

U-shaped so that it

constantly transmits and

receives an infrared beam

when turned on.

Works best with a 6-hole

LEGO wheel attached to the

robot axle.

Figure 8.2: Possible Future Robot Encoder Add-On [33]

 Contact sensors should also be placed on the feet of the robot. This would let the

robot know when its “feet” have touched the ground when walking on its legged mobility

systems. Currently, Byrobot is depending on the exact position of its servo motors,

which control the leg joints, to keep the legs stable and off the ground. However, if the

leg position was slightly off, it may not touch the ground at the position which we specify

for the servo motors, hence, making the robot unstable. A simple digital switch could be

used for this ground detection. With contact sensors used in the walking gait, the next leg

won’t move into position until the previous leg has touched the ground.

 For autonomous transition between the mobility systems, Byrobot will need some

sort of vision system, such as camera. It will need to be able to detect when there is a

change in terrain so that it can switch from one mobility system to the other. For

example, Byrobot could be rolling fast on the Mars surface on its wheels, until it comes

to a sandy area where the wheels lose traction. In this situation, the vision on the robot

 82

would see the hazardous sandy area before the wheels encounter it. When the robot sees

this, it could stop rolling, have the legs extract out, stand up on its legs, and walk its way

through the sand to freedom! And at the same time, when the robot sees that it is no

longer in the sand and back on a normal surface, it could lower back down on its wheels

and continue rolling.

 Another useful device for this autonomous transaction is a feedback control loop

or feedback sensors. These would be used so that the robot would be able to know the

status of its electronic instruments during the operation. For example, when the wheels

get stuck in the sandy terrain as mentioned above, they will stop rotating at their normal

speed, even though the motors are still outputting the same speed. But the robot doesn’t

know that the wheels are stuck. If the roll/pitch of the wheels could be constantly

measured, the robot will know when it isn’t getting the output it should. With feedback

sensors, which the encoders could count as these, the robot will know that the wheels

have stopped rotating at the output speed of the motor shafts, and are now rotating at a

slower relative speed, if not stopped completely.

 Also, if the legs were to get stuck while walking, the robot needs to know that the

leg position is not what it should be due to this. This would require getting feedback

from the servo motors that control the leg joints, hence, getting constant feedback about

the exact position of the servos. If the servo motors were supposed to reach position X in

Y time, and after Y time elapses, the servos are stuck in position W (not yet attained

position X), and after Z time (time after Y), they are still in this W position, that means

there is a problem and that the legs are probably stuck. By having this feedback control,

the robot will be able to handle problems encountered during its operation, and react

 83

accordingly. This feedback will enable the robot to think, sense, and act, thus making it

fully autonomous.

 84

APPENDIX A

BYROBOT MAIN SELF-RECONFIGURATION CODE

This program was written in C and was downloaded into the Eyebot, the primary

controller on Byrobot. The Eyebot is connected with the SSC-32 Servo Controller as

mentioned in this thesis, thus, allowing one program to fully operate the robot. This

program is the main demo program used to show Byrobot’s self-reconfiguration. The

program was designed to make Byrobot roll on its wheeled mobility system backward for

a few seconds, then forward for a few seconds, then stand up on its legs, walk forward

(taking 48 total steps), lower back down on its wheels, and roll off again before stopping.

The program sends character strings out through the null modem connecting the serial

ports of the Eyebot and the SSC-32 to move the servo motors connected on the SSC-32.

//this program makes the Byrobot roll backward and forward, stand, walk, sit, and roll again!

#include "eyebot.h"

char newline = '\n';

char term = 4;

char str1[] =

"#31P1600#30P1600#29P2500#27P1650#26P1600#25P2500#23P1650#22P1600#21P2500#15P1500#14P

1500#13P500#11P1500#10P1500#9P500#7P1500#6P1500#5P500T3000\r";

//legs retract slowly (process takes 3 seconds)

char str2[] =

"#31P1600#30P1600#29P500#27P1650#26P1600#25P500#23P1650#22P1600#21P500#15P1500#14P150

0#13P2500#11P1500#10P1500#9P2500#7P1500#6P1500#5P2500T1000\r";

//knees extract (stand up 2)

char str3[] =

"#31P1675#30P1600#29P500#27P1675#26P1600#25P500#23P1675#22P1600#21P500#15P1400#14P150

0#13P2500#11P1400#10P1500#9P2500#7P1400#6P1500#5P2500T1000\r";

//legs lower a little bit (stand up 3)

char str4[] =

"#31P1675#30P1100#29P500#27P1675#26P1800#25P500#23P1675#22P2250#21P500#15P1400#14P190

0#13P2500#11P1400#10P1200#9P2500#7P1400#6P750#5P2500T1000\r";

//legs move into standing position (stand up 4)

char str5[] =

"#31P1900#30P1100#29P500#27P1900#26P1800#25P500#23P1900#22P2250#21P500#15P1150#14P190

0#13P2500#11P1150#10P1200#9P2500#7P1150#6P750#5P2500T1000\r";

//robot stands robot up, takes 1second

char str31[] = "#31P1725T500\r"; /*leg1 lifts*/ char str15[] = "#15P1325T500\r"; /*leg4

lifts*/

char str30[] = "#30P1350T500\r"; /*leg1 backward*/ char str14[] = "#14P1650T500\r"; /*leg4 backward*/

 85

char str27[] = "#27P1725T500\r"; /*leg2 lifts*/ char str11[] = "#11P1325T500\r"; /*leg5 lifts*/

char str26[] = "#26P2000T500\r"; /*leg2 backward*/ char str10[] = "#10P1000T500\r"; /*leg5 backward*/

char str23[] = "#23P1725T500\r"; /*leg3 lifts*/ char str7[] = "#7P1325T500\r"; /*leg6 lifts*/

char str22[] = "#22P2500T500\r"; /*leg3 backward*/ char str6[] = "#6P500T500\r"; /*leg6 backward*/

//these functions will lower the robot legs back to their original stand up position

char str312[] = "#31P1850T500\r"; /*leg1 lowers*/ char str152[] = "#15P1150T500\r"; /*leg4 lowers*/

char str272[] = "#27P1850T500\r"; /*leg2 lowers*/ char str112[] = "#11P1150T500\r"; /*leg5 lowers*/

char str232[] = "#23P1850T500\r"; /*leg3 lowers*/ char str72[] = "#7P1150T500\r"; /*leg6 lowers*/

MotorHandle rightmotor;

MotorHandle leftmotor;

void sendstr(char s[])

{ int i;

 i = 0;

 while (s[i] != 0)

 { OSSendRS232(&s[i], SERIAL1);

 LCDPrintf("%c",s[i]);

 i++;

 }

}

int main ()

{

 int x;

 LCDPrintf("ByroBot is Alive!\n");

 LCDMenu(" "," "," ","END");

 OSInitRS232(SER115200, NONE, SERIAL1);

 leftmotor = MOTORInit(-101);

 rightmotor = MOTORInit(-100);

 OSWait(500);//wait 5 seconds before program starts

 sendstr(str1);

 OSWait(100); //robot legs in retracted position

 OSWait(200);

 MOTORDrive (rightmotor,-100);

 MOTORDrive (leftmotor,-100);

 OSWait(200);

 MOTORDrive (rightmotor,0);

 MOTORDrive (leftmotor,0);

 OSWait(200);

 MOTORDrive (rightmotor,-100);

 MOTORDrive (leftmotor,100);

 OSWait(150);

 MOTORDrive (rightmotor,0);

 MOTORDrive (leftmotor,0);

 86

 OSWait(150);

 MOTORDrive (rightmotor,100);

 MOTORDrive (leftmotor,-100);

 OSWait(150);

 MOTORDrive (rightmotor,0);

 MOTORDrive (leftmotor,0);

 OSWait(150);

 MOTORDrive (rightmotor,100);

 MOTORDrive (leftmotor,100);

 OSWait(200);

 MOTORDrive (rightmotor,0);

 MOTORDrive (leftmotor,0);

 OSWait(200);

 sendstr(str1);

 OSWait(100); //robot legs in retracted position

 sendstr(str2);

 OSWait(100); //knee extend

 sendstr(str3);

 OSWait(100); //legs lower slightly

 sendstr(str4);

 OSWait(100); //legs move into position before standing

 sendstr(str5);

 OSWait(300); //robot stands up, gait will start in 3 seconds

//the following FOR loop will run this backward walk wavegait, with robot taking 8 steps total (one step

per leg)

for (x=0; x<8; x++)

{

//leg 3 lift, backward, and down (0.4 second wait between movements)

sendstr(str23);

OSWait(40);

sendstr(str22);

OSWait(40);

sendstr(str232);

OSWait(40);

//leg 1 lift, backward, and down

sendstr(str31);

OSWait(40);

sendstr(str30);

OSWait(40);

sendstr(str312);

OSWait(40);

//leg 2 lift, backward, and down

 87

sendstr(str27);

OSWait(40);

sendstr(str26);

OSWait(40);

sendstr(str272);

OSWait(40);

//leg 6 lift, backward, and down

sendstr(str7);

OSWait(40);

sendstr(str6);

OSWait(40);

sendstr(str72);

OSWait(40);

//leg 4 lift, backward, and down

sendstr(str15);

OSWait(40);

sendstr(str14);

OSWait(40);

sendstr(str152);

OSWait(40);

//leg 5 lift, backward, and down

sendstr(str11);

OSWait(40);

sendstr(str10);

OSWait(40);

sendstr(str112);

OSWait(40);

//return to original standing position (forward scoot)

sendstr(str5);

OSWait(100);

}//end for loop

OSWait(100);

sendstr(str1);

OSWait(300); //robot legs retract, wait 3 seconds

MOTORDrive (rightmotor,100);

MOTORDrive (leftmotor,100);

OSWait(100);

//robot drives backward for 1 second

MOTORRelease (rightmotor|leftmotor);

//release motors and end program

return 0;

} //end main program

 88

APPENDIX B

SELF-RECONFIGURATION PROGRAM FLOW CHART

This is the flow chart for the main demo used to show Byrobot’s self-reconfiguration.

The program was designed to make Byrobot roll on its wheeled mobility system

backward for a few seconds, then forward for a few seconds, then stand up on its legs,

walk forward (taking 48 total steps, using our wave gait), lower back down on its wheels,

and roll off again before stopping. There are no sensors or other feedback devices in this

open-loop controlled program.

Process done 48 times for a total of 48 steps.

End Program

Turn on robot.

Stop. Wait 3

seconds.

Legs retract up & in

to place robot on its

wheels.

Turn on motors.

Robot rolls

backward.

Turn left. Turn right Robot rolls forward.

Take one step

forward using wave

gait.

Roll forward.

Stand up on legs.

Legs retract in

slowly, lowering

robot onto wheels.

Robot takes a

pause

Robot takes a

pause

 89

APPENDIX C

PRICES OF BYROBOT PARTS

 90

APPENDIX D

WEIGHT OF BYROBOT PARTS

 91

APPENDIX E

AMERICAN WIRE GUAGE CHART

The following chart is a guideline of maximum current carrying capacity for copper wire,

following the Handbook of Electronic Tables and Formulas for American Wire Gauge

[34].

AWG

gauge

Diameter

(inches)

Diameter

(mm)

Ohms per

1000 ft

Ohms per

km

Maximum

amps for

chassis

wiring

Maximum

amps for

power

transmission

OOOO 0.46 11.684 0.049 0.16072 380 302

OOO 0.4096 10.40384 0.0618 0.202704 328 239

OO 0.3648 9.26592 0.0779 0.255512 283 190

0 0.3249 8.25246 0.0983 0.322424 245 150

1 0.2893 7.34822 0.1239 0.406392 211 119

2 0.2576 6.54304 0.1563 0.512664 181 94

3 0.2294 5.82676 0.197 0.64616 158 75

4 0.2043 5.18922 0.2485 0.81508 135 60

5 0.1819 4.62026 0.3133 1.027624 118 47

6 0.162 4.1148 0.3951 1.295928 101 37

7 0.1443 3.66522 0.4982 1.634096 89 30

8 0.1285 3.2639 0.6282 2.060496 73 24

9 0.1144 2.90576 0.7921 2.598088 64 19

10 0.1019 2.58826 0.9989 3.276392 55 15

11 0.0907 2.30378 1.26 4.1328 47 12

12 0.0808 2.05232 1.588 5.20864 41 9.3

13 0.072 1.8288 2.003 6.56984 35 7.4

14 0.0641 1.62814 2.525 8.282 32 5.9

15 0.0571 1.45034 3.184 10.44352 28 4.7

16 0.0508 1.29032 4.016 13.17248 22 3.7

17 0.0453 1.15062 5.064 16.60992 19 2.9

18 0.0403 1.02362 6.385 20.9428 16 2.3

19 0.0359 0.91186 8.051 26.40728 14 1.8

20 0.032 0.8128 10.15 33.292 11 1.5

21 0.0285 0.7239 12.8 41.984 9 1.2

22 0.0254 0.64516 16.14 52.9392 7 0.92

23 0.0226 0.57404 20.36 66.7808 4.7 0.729

24 0.0201 0.51054 25.67 84.1976 3.5 0.577

25 0.0179 0.45466 32.37 106.1736 2.7 0.457

26 0.0159 0.40386 40.81 133.8568 2.2 0.361

27 0.0142 0.36068 51.47 168.8216 1.7 0.288

28 0.0126 0.32004 64.9 212.872 1.4 0.226

29 0.0113 0.28702 81.83 268.4024 1.2 0.182

 92

30 0.01 0.254 103.2 338.496 0.86 0.142

31 0.0089 0.22606 130.1 426.728 0.7 0.113

32 0.008 0.2032 164.1 538.248 0.53 0.091

Metric

2.0

0.00787 0.200 169.39 555.61 0.51 0.088

33 0.0071 0.18034 206.9 678.632 0.43 0.072

Metric

1.8

0.00709 0.180 207.5 680.55 0.43 0.072

34 0.0063 0.16002 260.9 855.752 0.33 0.056

Metric

1.6

0.0063 0.16002 260.9 855.752 0.33 0.056

35 0.0056 0.14224 329 1079.12 0.27 0.044

Metric

1.4

.00551 .140 339 1114 0.26 0.043

36 0.005 0.127 414.8 1360 0.21 0.035

Metric

1.25

.00492 0.125 428.2 1404 0.20 0.034

37 0.0045 0.1143 523.1 1715 0.17 0.0289

Metric

1.12

.00441 0.112 533.8 1750 0.163 0.0277

38 0.004 0.1016 659.6 2163 0.13 0.0228

Metric 1 .00394 0.1000 670.2 2198 0.126 0.0225

39 0.0035 0.0889 831.8 2728 0.11 0.0175

40 0.0031 0.07874 1049 3440 0.09 0.0137

 93

APPENDIX F

THE EYEBOT CONTROLLER

• 25MHz 32bit Controller (Motorola 68332)

• 1MB RAM, to download programs to run immediately and/or store in ROM

• 512KB ROM (for system + user programs!) extendible to 2MB, which allows

• permanent storage of up to 3 programs. - 1 parallel port

• 8 digital inputs and 8 digital outputs

• 8 analog inputs

• 2 motor drivers

• interface for color camera

• large graphics LCD to display messages, including displaying elapsed system

• time (128x64 pixels)

• 4 input buttons

• reset button, power switch

• battery level indicator

• Programming in C or assembly language

• Free simulation system available.

• Operating RoBIOS is freely available

• Large number of sample programs

Dimensions: width x height x depth: 8.8 cm x 10.5 cm x 2.0 cm (+0.8 cm for connectors)

Weight: 186 g

 94

APPENDIX G

THE SSC-32 SERVO CONTROLLER

PC board size = 3.0" x 2.3"

• Microcontroller = Atmel ATMEGA8-16PI

• EEPROM = 24LC32P

• Speed = 14.75 MHz

• Internal Sequencer = 12 Servo Hexapod (Alternating Tripod)

• Serial input = True RS-232 or TTL, 2400, 9600, 38.4k, 115.2k, N81

• Outputs = 32 (Servo or TTL)

• Inputs = 4 (Static or Latching)

• Current requirements = 31mA

• PC interface = DB9F

• Microcontroller interface = Header posts

• Servo control = Up to 32 servos plug in directly

• Servo travel range = ~170°

• Servo resolution = 1uS, .09°

• Servo speed resolution = 1uS / Second

• Servo motion control = Immediate, Timed, Speed or Synchronized.

PC board size = 3.0" x 2.3"

 95

APPENDIX H

THE HS-322HD STANDARD DELUXE SERVO

 96

APPENDIX I

THE HS-645MG STANDARD DELUXE HIGH TORQUE SERVO

 97

APPENDIX J

THE HSR-5995TG CORELESS DIGITAL SERVO

 98

REFERENCES

[1]. Howard, A. & Tunstel, E. “Intelligence for Space Robotics”. TSI Press, 2006

[2]. Dulay, N. “Planetary Exploration: Navigation Methods and a Generation of

Robots”. Imperial College London, SURPRISE Journal Vol. 2 Article 2, 1995

[3]. Powell, M. “Targeting and Localization for Mars Rover Operations”. 2006

IEEE Conference on Information Reuse and Integration, 2006.

[4]. Desai, R., Miller, D., “A Simple Reactive Architecture for Robust Robots”.

Jet Propulsion Lab, International Conference in Robotics & Automation, 1998

[5]. Schenker, P.S., Huntsberger T. L., Pirjanian, P., Baumgartner, E. T., Tunstel,

E. "Planetary Rover Developments Supporting Mars Exploration, Sample

Return and Future Human-Robotic Colonization," Autonomous Robots, Vol.

14, pp. 103-126, 2003.

[6]. Ch. Grand, F. BenAmar, F. Plumet, Ph. Bidaud. “Stability and Traction

Optimization of a Reconfigurable Wheel-Legged Robot”. The International

Journal of Robotics Research, 2004.

[7]. Kennedy, B., Agazarian, H., Cheng, Y., Garrett, M., Hickey, G., Huntsberger,

T., Magnone, L., Mahoney, C., Meyer, A., Knight, J. "LEMUR: Legged

Excursion Mechanical Utility Rover," Autonomous Robots, Vol. 11, No. 11,

pp. 201-205, 2001.

[8]. Ferrell, C. "Robust and Adaptive Locomotion of an Autonomous Hexapod".

Perception to Action Conference, Lausanne, Switzerland, 66-77, 1994.

[9]. Jun, S. “Kinetostatic Design of an Articulated Leg-Wheel Locomotion

Subsystem”. Master’s of Science Thesis, Dept. of Mechanical and Aerospace

Engineering, University of New York at Buffalo, 2004

[10]. Craig J.J. “Introduction to Robotics, Mechanics and Control, 3rd ed”. Addison

Wesley, 1986, 1989, 2005.

[11]. Braunl, T. “Embedded Robotics”. Springer-Verlag Berlin Heidelberg New

York, 2003.

[12]. IEEE Potentials Magazine: Vol. 25, No. 1, January/February 2006.

[13]. Lynxmotion, Inc. “SSC-32 Servo Controller Manual, Version 2.0”, Pekin, IL,

2005.

 99

[14]. Fiorini, P. “Ground Mobility Systems for Planetary Exploration”. IEEE

International Conference on Robotics and Automation, 2000.

[15]. Gullayanon, R. “Motion Control of a 3 Degree-of-Freedom Direct-Drive

Robot”. Master’s Thesis, School of Electrical and Computer Engineering,

Georgia Institute of Technology, 2005.

[16]. Hiller, M., German, D. “Maneuverability of the Legged and Wheeled Vehicle

ALDURO in Uneven Terrain with Consideration of Nonholonomic

Constraints”. International Conference on Control Automation Robotics and

Vision 2002,

[17]. Mireles Jr., J. “Kinematic Models of Mobile Robots”. Automation and

Robotics Research Institute, University of Texas at Austin, 2004.

[18]. Endo, G., Hirose, S. “Study on Roller-Walker Multi-Mode Steering Control

and Self-Contained Locomotion”. IEEE International Conference on Robotics

& Automation, 2000.

[19]. Sciavicco, L. and Siciliano, B. “Modeling and Control of Robot

Manipulators”. McGraw-Hill Co., Inc. 2000.

[20]. Barreto, J., Trigo, A., Menezes, P., Dias, J., Almeida, A.T. “Kinematic and

Dynamic Modeling of a Six Legged Robot”. Dept. of Electrical Engineering,

University of Coimbra, 2004.

[21]. Krovi, B. “Modeling and Control of a Hybrid Locomotion System”. Master’s

Thesis, School of Engineering and Applied Science, University of

Pennsylvania, 1995.

[22]. Sciavicco, L., Siciliano, B., “A Solution Algorithm to the Inverse Kinematic

Problem for Redundant Manipulator”. IEEE Journal of Robotics and

Automation, vol. 4,pp. 403–410, 1988.

[23]. G. Figliolini, V. “Kinematic Model and Absolute Gait Simulation of a Six-

Legged Walking Robot”. CLAWAR (Climbing and Walking Robots) 889-

896, 2004

[24]. J. Lento, Z. Huson , J. A. Haass, M. Reilley, and J. Shrestha. “Development

of Leg Control Mechanisms for A Radially Symmetric Octopedal Robot”.

The National Conference on Undergraduate Research (NCUR), 2005.

[25]. Quinn, R., Nelson, G., Bachmann, R., Kingsley, D., Offi, J., Ritzmann, Roy.

“Insect Designs for Improved Robot Mobility”. 4
th
 International Conference

on Climbing and Walking Robots, 2001.

 100

[26]. Giancoli, D. C. “Physics for Scientists and Engineers”, Prentice Hall, 3
rd

Edition, 2000.

[27]. Ferrell, C., “Robust and Adaptive Locomotion of an Autonomous Hexapod”,

IEEE Perception to Action Conference, 1994.

[28]. Howard, A., Nesnas, I., Werger, B., Helmick, D., “A Reconfigurable Robotic

Exploratory Vehicle For Extreme Environments”. Jet Propulsion Laboratory,

TU Office NPO-20944, 2000.

[29]. K. Iagnemma, A. Rzepniewskia, S. Dubowsky, P. Pirjanianb, T.

Huntsbergerb, and P. Schenker, “Mobile robot kinematic reconfigurability for

rough-terrain," in Proceedings SPIE's International Symposium on Intelligent

Systems and Advanced Manufacturing, August 2000.

[30]. Chottiner, J. “Simulation of a Six Wheeled Martian Rover Called the Rocker

Bogie”. Master’s Thesis, Department of Mechanical Engineering, Ohio State

University, 1992.

[31]. Hacot, H. "Analysis and Traction Control of a Rocker-Bogie Planetary

Rover," Master's Thesis, Department of Mechanical Engineering, MIT, 1998.

[32]. Howell, A., Way, E., McGrann, R., Woods, R. “Autonomous Robots as a

Generic Teaching Tool”. 36
th
 ASEE/IEEE Frontiers in Education Conference,

2006.

[33]. Ferrari, M., Ferrari, G., Hempel, R. “Building and Programming LEGO

Mindstorms Robots Kit”. Syngress Publishing, 2002.

[34]. Clifford, M. “Master Handbook of Electronic Tables and Formulas”, TAB

Books; 5
th
 edition, 1992.

