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SUMMARY

A 6 Degrees of Freedom (DoF) pose estimation network was developed with the long-
term objective to integrate it in an end-to-end solution based on RPNs. The different
network versions were implemented using the open-source TensorFlow framework. The
integration of the pose estimation head on a RPN trunk was attempted by modifying a Ten-
sorFlow implementation of Faster R-CNN, and other options for the end-to-end solution
were proposed.

The development of the pose estimation network was then conducted separately and
considering different variations of the architecture, including orientation and position esti-
mation using a single or two separate regression heads. This development was inspired by
the extensive research in pose estimation from which insights were taken and combined into
a fully connected network capable of leveraging depth information for 6D pose estimation.

An automated data collection process was designed to facilitate the recording of pose
labels, a time consuming process when handled manually. This acquisition method en-
abled the collection of an application specific and novel chicken dataset using an industrial
robotic arm and multiple commercial off-the-shelf cameras. This data was used to evalu-
ate the pose estimation network and served as an initial confirmation of its applicability in

industrial poultry processing.



CHAPTER 1
INTRODUCTION

The pose describes the position and orientation of an object in a particular frame. It is a
useful information in a wide range of applications. As such, the problem of pose estimation
is today a topic of interest in computer vision research. This work focuses on extending
well-known deep learning architectures based on RPNs to provide an estimation of an
object’s pose in the scene.

Fast-growing robotics applications including autonomous vehicles and robotic manip-
ulators rely on this data to build an understanding of the environment. A preliminary step
generally involves the detection of the surrounding objects but this alone is often insuffi-
cient to make an informed decision.

Indeed, a robot car needs not only to know whether or not pedestrians or other vehicles
are nearby, but also what lane they are positioned in and what is their direction of motion,
which can as a first approximation be inferred from their orientation. A robotic arm per-
forming a grasping operation and equipped with accurate information about the pose of the

target object and obstacles is able to achieve efficient motion planning.

1.1 Motivation

Although this work takes a path toward a general approach to the pose estimation problem,
it is supported by the Food Processing Technology Division (FPTD) of the Aerospace,
Transportation and Advanced Systems Laboratory (ATAS) at the Georgia Tech Research
Institute (GTRI). For this reason, the research described in the rest of this thesis is primarily
aimed at poultry processing applications and specifically at carcass grasping scenarios with
robotic arms.

Industrial applications allow the deployment of the robotic systems in environments



where external factors such as lighting or background can be controlled, simplifying the
vision task. However, the processing of poultry products introduces additional constraints
related to the varying shapes of the carcasses and their deformable nature. While those
constraints have a particular impact on the grasping strategy, they also need to be taken into
account in the design of the robot visual perception.

This motivates the exploration of options toward a generalized solution which will
nonetheless be applicable in poultry processing, as part of a larger robotic solution in-
cluding perception, control and grasping. The vision system builds upon the advances in
the field of deep learning for computer vision, using commercial off-the-shelf hardware

coupled with advanced algorithms.

1.2 Outline

Chapter 2 briefly introduces the concepts this work builds upon before Chapter 3 presents
other approaches to the pose estimation problem found in literature. Chapter 4 details the
core of the work conducted toward the writing of this thesis and Chapter 5 describes the
evaluation of the models developed during this project. Finally, Chapter 6 concludes this
thesis and presents possible follow up to this work to further refine the results and move

closer to a fully integrated end-to-end solution.



CHAPTER 2
FUNDAMENTALS

2.1 3D Pose Estimation Problem

The problem studied in this work consists in estimating the pose of an object in the 3-
dimensional space using 2-dimensional color images, eventually supplemented by depth
information. The pose of an object is defined with respect to a reference frame, and it has
2 components that fully constrain its 6-DoF.

The position component is represented using a translation vector ¢ = [t ty t- ]T in R3.
The orientation component is represented by a rotation belonging to the 3D rotation group
SO(3). A rotation matrix R is used for this explanation, but the orientation can be stored
in multiple forms, as described in Section 2.2.

Although orientation and rotation have slightly different meanings, the former describ-
ing a state and the latter a transformation between 2 states, both might be used interchange-
ably throughout this work, since the rotation could be assumed to be relative to a specific
origin. The same reasoning applies to position and translation.

Following computer vision conventions, the camera coordinate frame C' is defined with
the origin at the camera optical center and the z-axis oriented along the camera optical axis.
The reference frame is considered to be the local object frame O. The estimated pose is
thus the transformation (translation and rotation) that brings the object from its local frame
to the camera frame. The resulting frame, once rotated, translated and projected in 2D

using the camera intrinsic matrix, can be visualized as seen in Figure 2.1.



Figure 2.1: Illustration of the local object frames projected in the 2D image space

Let p = [2v=]" represent a point, P = [p1 -~ pm | represents a set of points. P
and P, represent respectively a set of points in camera frame and a set of points in object

frame. The objective is to solve for ¢t and R to satisfy Equation (2.1).

Po=RP,+t 2.1

2.2 Orientation Representation

The orientation information in the 3-dimensional space can be represented under different
forms, with a minimal number of 3 parameters, one for each degree of freedom. Consid-
ering that the object’s position and orientation correspond to the translation and rotation
required to bring the object from its local frame to the camera frame, the orientation is
effectively encoded as a rotation.

4 main methods are commonly used to describe 3D rotations: the rotation matrix, the
Euler angles, the axis-angle and the quaternion [1]. The choice of one method over the

others depends on the application.



2.2.1 Rotation Matrix

The rotation matrix represents the orientation as a 3 x 3 orthogonal matrix R. The opposite
rotation that brings the object from camera space to local space is thus R™! = R”. More
than a simple representation of the orientation, the set of all 3 x 3 orthogonal matrices is a
direct mapping of the SO(3) 3-dimensional rotation group.

This representation is useful for visualization purposes, because it can directly rotate
the points that form an object’s model to camera space. However, rotation matrices contain
redundant information, with 9 values to parameterize 3-DoF. It thus requires that 6 implicit
constraints be enforced to describe a valid 3D orthonormal basis. As such, not all 3 x
3 matrices are valid rotation matrices, and this can lead to difficulties for estimating the
orientation component of the pose by regression, because enforcing those constraints in the

network is difficult.

2.2.2  Euler Angles

Euler angles represent the orientation by a succession of 3 rotations, with each being ap-
plied on the object’s original axes, which change following each rotation (intrinsic rota-
tions). Because any sequence of rotations is valid, the Euler angles representation relies
heavily on conventions. One of the most common convention comes from the aerospace

field and is referred to as yaw-pitch-roll and is illustrated in Figure 2.2.

VY, yaw

f’/ﬁ 9, roll
;

Figure 2.2: Illustration of the yaw-pitch-roll convention for Euler angles [2]



As long as conventions are established correctly, Euler angles are intuitive to use and
do not suffer from over-parameterization. However, while any set of 3 Euler angles form
a valid rotation, angles are not uniquely described unless the angle values are bounded,
typically to £180° for the yaw and roll and £90° for the pitch. Furthermore the Euler
angle representation suffers from a problem known as gimbal lock that arises when 2 of the

rotation axes align.

2.2.3 Acxis-angle

The axis-angle representation encodes the orientation as the combination of a rotation axis
defined in the local object space, and a rotation value. The Euler rotation theorem proves
proves that it is possible to encode any rotation in this form, which although not as ap-
proachable as Euler angles, can still be understood easily.

If the axis of rotation is expressed as its codirectional unit vector n, and if ¢ is the
rotation angle, then the axis-angle can be represented as the vector e = 6n. The axis-
angle can thus be stored in a compact form with 3 values, and the angle of rotation can be
recovered easily as 6 = ||e]|.

The unit vector 72 and rotation angle § could be regressed separately in the network. The
unit norm constraint is easily enforced using an L2 normalization on the vector component,

but the rotation angle, similarly to Euler angles, wraps around [0, 27].

2.2.4 Quaternion

Quaternions can be seen as an extension of the complex numbers in the 4-dimensional
space with the following properties on the units: > = j2 = k* = i-j -k = —1. The
normalized quaternion represents an orientation as a combination of a vector v = [ @ 4= |
and a scalar ¢,. This thesis will only make use of normalized quaternions, also called

versors, described in Equation (2.2).



q=qut+d:t+q]+ k= {qw ”} ’ lall = /a2 + o] =1 (22)

Although quaternions are more difficult to understand than Euler angles or the axis-
angle representation, and require an extra real value to store, the unit norm is the only
constraint that the network needs to enforce in order to ensure that the estimation will
always be a valid rotation. Unit quaternions can also be easily converted to rotation matrices

as shown in Equation (2.3).

1=2(q; +¢2) 2(qy — ¢=qw) 2(q2l + GyGuw)
R=12(qqy + ¢:00) 1-2(¢+a2) 2(¢y2: — uqu) (2.3)
202> — GyGw) 2(q0: + o) 1—2(¢ +q))

Moreover, quaternions have a property called double-cover on the rotation group SO(3)
which is not a useful feature for the pose estimation problem but make them appealing in
other fields. It means however that any single orientation can be represented by two distinct
quaternions, g and —q with —q = —[e v| = [-aw —v]. Luckily, this problem can be
easily solved by negating any quaternion that displays a negative real part, ensuring that

only "positive" quaternions are considered.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) belong to the larger family of Artificial Neural
Networks (ANNSs), a set of algorithms that rely on the concept of artificial neuron, whose
functioning is loosely inspired by biological neural networks. They have been the topic of
increasing interest in computer vision applications in the recent years, and are used in this
thesis to perform feature extraction.

The seminal paper on CNNs [3] in the late 90s presented them as a new kind of Multi-



Layer Perceptrons (MLPs). Both CNNs and MLPs are examples of feedforward networks,
composed of an input layer, multiple internal layers called hidden layers, and an output
layer, through which the data is fed during the forward pass. CNNs were developed to
deal with 2-dimensional data, of which images are a typical example. Compared to fully
connected MLPs, they have a reduced number of trainable parameters which correspond to
the weights of a set of filters. Those filters exploit the spatial correlation of the image infor-
mation to reuse the same weights across all the image space, with each feature map sharing
the same filter weights. Beyond the reduction of the number of DoF in the network, this
has the effect of introducing robustness toward scale and shift in the image, a characteristic
that is not provided by dense layers that do not preserve the spatial information.

A layer in the CNN takes in the output of the preceding layer and convolves it with each
of the learnable filters, effectively transforming an input volume (input image or feature
maps from the previous convolutional layer) and transforms it in an output volume, as
illustrated in Figure 2.3. The convolution is a common mathematical operation used in
image processing that consists in a succession of multiplications between a small matrix
(filter) that slides across the 2-dimensional space, and the local image patches. Each sliding
filter of a layer forms a feature map, with each unit of the filter connected to a corresponding
local unit in the preceding layer. The 3 main characteristics of a convolutional layer are the
number of its filters (also called depth), the size of the filters receptive field (the area they

are connected to in the previous layer) and the stride of the filters.



Figure 2.3: Illustration of a convolutional layer

A convolutional layer is followed by a non-linear activation function and eventually a
pooling layer used to reduce the size of the feature maps by applying spatial averaging,
in effect contributing to regularization. Modern architectures such as AlexNet [4], VGG
[5], ResNet [6] and Inception [7] use Rectified Linear Units (ReLUs) [8] as the activation
function on all convolutional layers and max-pooling layers [9]. CNNs are typically trained

via backpropagation with gradient based optimizers and the batch gradient descent method.

2.4 Region Proposal Networks

RPNs were introduced as an addition to the Fast Region-based CNN (Fast R-CNN) [10],
an object detection network that takes in the feature maps from a deep CNN and a set of
Region of Interest (Rol) inputs. The Fast R-CNN detector is used to predict classes while
in parallel the RPN predicts the location and shape of multiple boxes across the image and
provides an estimate of the probability that each box contains or does not contain an object.

These predictions are made by 2 separate fully connected layers, which take as an input

a small sliding region of the feature map at the last convolutional layer, as well as a set of



anchor boxes built with different scales and aspect ratios around a central anchor point. This
concept coined as "pyramid of anchors" enables predictions for different shapes of boxes
but using a single scale sliding window on the feature map [11]. The feature extractor and
the RPN constitute the trunk of the network that provide Rol features to the different heads
of the network, in this case a bounding box regression head and a classification head.

This approach has been proven successful and has been extended to create Mask R-
CNN [12], which adds a parallel head to the network for semantic segmentation (pixel-wise
classification) and an evolution of the Rol pooling layer that provides a better alignment
of the pooled features with the input image. The head predicts a mask for each class and
relies on the classification head introduced in Fast R-CNN to have a single mask contribute

to the loss function.
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CHAPTER 3
RELATED WORK

Because of the wide range of its applications, pose estimation has been an active topic
for research in computer vision. Solutions available on the market have mostly relied on
traditional methods such as point cloud registration or feature-based matching. More re-
cently, the democratization of deep learning techniques has opened the doors to new ways

to overcome the challenges of those methods.

3.1 Deep Learning Approaches

The research on deep learning methods for pose estimation is very active and extensive.
This thesis work and thus this review focus on papers presenting some characteristics of

interest:

* color (RGB) or color and depth (RGB-D) data inputs which are available in commer-

cial off-the-shelf sensors ;

* pixel-based approaches rather than voxel-based in order to build upon the extensive

list of available object detection and segmentation networks.

The approach taken in [13] is directly applied to robotics and integrates both the seg-
mentation step using SegNet [14] and the pose estimation using Iterative Closest Point
(ICP) and Kalman filtering to maintain the pose estimate across frames. Although the data
input is RGB-D, segmentation is done on the color channels only, and point clouds are
cropped using the pixel-wise segmentation output of SegNet. The semantic segmentation
and point-cloud cropping proposed in this work seems to be an interesting way to leverage
efficient segmentation networks to extract object point clouds while avoiding a 3D seg-

mentation. However, although the proposed multi-hypothesis registration method provides

11



a coarse estimate of the pose, the complete solution relies on the ICP, thus requiring a
model attached to each example.

The method used in [15] takes a local approach to the pose estimation problem. A
codebook of scale-independent descriptors is regressed from a training set of synthetic
RGB-D images, using a Convolutional Auto-Encoder (CAE). It compresses the data from
the randomly sampled patches into a small feature space, where each descriptor contains
the features and their attached local votes (the pose of the object it was sampled from). At
inference, the input RGB-D image is sampled randomly and a feature is computed for each
sample using the CAE. A k-nearest neighbors algorithm is used to find the closest matches
in the codebook and votes are applied based on the distance to them. One of the main
interest of this approach is that the CAE can leverage training sets of synthetic images and
thus does not necessarily require a huge set of application-specific images to train on.

The solution presented in [16] assumes a bounding boxed RGB input from which it
regresses the camera pose with respect to the object. A pre-trained and beheaded classi-
fication network is used to extract features from the images. Multiple pose networks are
then used (one per class) to regress the orientation component of the object’s pose (3 DoF),
in a quaternion or axis-angle representation. They are composed of a series of fully con-
nected layers with specific non-linearities to model the output space constraints. The paper
introduces a geodesic loss function that applies on the rotation matrices space. It is used to
fine-tune the overall network after an initial training of the pose networks using a standard
mean-squared error. While this paper provides an elegant way to regress the pose of an
object, it is limited to the rotation estimation.

[17] recently presented a completely different approach to the problem revolving around
an augmented autoencoder used to encode solely in-plane rotations and form a codebook
on a dataset of synthetic object views and using domain randomization to allow the net-
work to generalize to real sensor data. At test time, the matching orientation is recovered

by performing a k-nearest neighbors search and the position component is recovered by

12



estimating the distance geometrically and eventually refining it using ICP. Although being
able to train this model without the need to collect a dataset and accurate pose labels is in-
teresting, this approach does not appear easily applicable in this project because Computer-
Aided Design (CAD) models cannot be accurately used to form a codebook for deformable

objects such as poultry.

3.2 Other Approaches

3.2.1 Point Cloud Registration

Registration algorithms align the 3D information obtained from the scene (called reading)
with a known model of the object (called reference) by finding the geometric transformation
necessary to go from one point cloud to the other.

One of the earliest algorithm developed to this end is the ICP [18], [19]. It matches pairs
of points and minimizes the distance between the 2 point clouds. Although it provides a
solution to the registration problem, the number of points is a bottleneck as its complex-
ity is in O(M, N) with M and N the number of points in the reading and reference point
clouds. Furthermore, it does not guaranty the convergence to the optimal minimum and
because it works at the local scale, obtaining satisfying results requires a proper initializa-
tion (overlapping point clouds) that make it practical only in setups where a coarse pose
estimate is available. As such, the ICP is often used to refine the results of a preliminary
estimate. Despite its drawbacks, ICP has been the topic of numerous improvements over
the past 25 years, making it an effective solution in a number of use cases as outlined in a
recent review [20].

Another group of registration algorithms working at the global point cloud scale pro-
vide a solution to the initial estimate problem. The 4-Points Congruent Sets (4PCS) al-
gorithm [21] relies on the invariance of certain geometries under a rigid transformation to
find matching groups of 4 points between two previously unaligned point clouds. While

the original algorithm has a quadratic complexity in the number of points, recent improve-

13



ments taking the form of the Super-4PCS algorithm [22] allow for linear time registration.
These global methods are typically used to get an initial registration that can be further
refined using ICP.

This family of algorithms is model-based and thus requires each object to be attached
a 3D CAD model to perform the registration upon. This does not fit well in an end-to-
end setup where the ideal input is a single RGB-D image. What’s more, applying this
type of algorithm requires a proper segmentation of the target object point cloud in the
input data, which is typically done in the color space rather than directly on the point
cloud when using calibrated RGB-D sensors. Although this is another problem that has
seen many solutions using regular computer vision methods, ranging from simple color-
based clustering to graph partitioning, reliable results in non-industrial setup, where the
environment cannot be easily controlled, are difficult to obtain. In general, the performance
of these methods relies heavily on tweaking parameters to obtain good results on a specific

benchmark, but this leads to difficulties when applying them in the real world.

3.2.2 Feature Matching

A different set of algorithms that have been used for pose estimation are feature-based. One
of the most widely known is LINE-MOD [23], which was specifically developed to make
use of RGB-D data, from which it computes modalities (gradients, normals) both on the
color channels and the depth channel, to define local features. The most salient features
extracted from a set of reference images are combined to form templates to be matched
against the images at run time using a nearest neighbor search. Although LINE-MOD can
indeed be used to get an estimation of an object’s pose and performs well on textureless
objects without the need for a large training dataset, it is slow and suffers from false positive
and has a maximum orientation accuracy that depends on the number of views used to form
the codebook, as explained by the same authors [24]. Feature matching approaches are not

easily transferable to real world scenarios, because variance in the objects, environment

14



and lighting tend to have a big impact on their performance. Moreover, their application to
chicken pose estimation is made even more difficult by the fact that a chicken carcass is a

non-rigid and deformable object.
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CHAPTER 4
SOLUTION APPROACH

A step-by-step approach toward solving the 3D pose estimation problem is taken. It builds
upon existing feature extractors and object detection architectures with the end goal of
providing an end-to-end solution for detection and pose estimation. The implementation of
the networks is done purely in Python and using the open-source TensorFlow framework.
This work assumes that color and optionally depth information are available at train and
inference time. CAD models of the objects of interest are also assumed to be available, for

visualization purposes only.

4.1 Feature Extraction

As a first stage in the deep learning architecture, features are extracted using a CNN. The
objective is to use color information and provide the possibility to incorporate depth infor-
mation. Available models are pre-trained on the ImageNet database, consisting of millions
of images of thousands of object categories. The variety of objects used during the initial
training provides their internal layers with enough generalization to be applicable on other
sets of objects. The typical approach is then to take a network developed and pre-trained
on a classification task and to repurpose it by beheading the network and keeping only the
feature extractor and its weights. Although the task at hand is not longer a classification
task, the features extracted by the CNN are nevertheless relevant to the pose estimation
task.

In the recent years some networks have brought important advances and dominated the
ImageNet classification challenge which has been run yearly since 2010 and is based on a
subset of the ImageNet database containing objects in a thousand classes. The VGG archi-

tecture [5] is used for an initial implementation of the orientation regression described in

16



[16]. While VGG has a straightforward architecture and smaller receptive fields than pre-
vious networks, effectively reducing the number of DoF in the network, its medium-sized
version VGG-16 still contains 138 million trainable parameters. As the project moves for-
ward the ResNet architecture is chosen because it provides a deeper network while reducing
both the size of the network and the training time by introducing the residual units [6].

In order to incorporate the depth information in the network, a fourth channel is ini-
tially added at the input of the feature extractor and the weights for the green channel are
copied. At a later step in the project, an approach consisting in combining 2 parallel feature
extractors is considered, one for color data and the other for depth. Similarly to the work
presented in [25] for fusing temporal and spatial CNNs for action recognition, the goal is
to fuse the output of a color feature extractor and a depth feature extractor. The feature
maps of the ResNet network are taken after the 4th residual block and fused as described in
Equation (4.1) and illustrated in Figure 4.1, with a and b respectively the color and depth

feature vectors, o, 3, 0 and ~y the trainable parameters, and K the desired output depth.

M N
cr = (Z Oi; + 'Yk) © (Z 5kjbj + 5k> “4.1)
i=1 j=1

Color Feature Extractor

Conv
_ — Fusion
n ResNet-101
¥
Boxed Image
Feature
Maps
ResNet-101
Boxed Depth

Depth Feature Extractor

Figure 4.1: Fused Resnet feature extraction networks
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Even with a dedicated depth feature extractor, simply adding a parallel CNN and repli-
cating the depth channel across the 2 extra channels does not take full advantage of the
color extraction capabilities of the network. The idea is to map the 1-channel depth image
to a 3-channel color image using the Jet colormap described in [26], which maps grayscale
values in [0, 255] to red, green and blue channels also in [0, 255, where small values are
mapped to blue, mid-range values to green and high values to red. The authors have shown
that this method of depth colorization performs similarly if not better than the popular HHA
method that encodes on 3 channels the height above ground, horizontal disparity and angle
between the surface normal and the gravity [27]. The HHA method requires heavy pre-
processing of the depth information, whereas the colorization approach only performs a
normalization of the data prior to the mapping.

Because the input depth information range and unit depend on the sensor and on the
application, the colorization does not assume any particulars and the normalization step is
parameterized with a maximum threshold above which the depth values are clipped. This
threshold value is determined as the 99th percentile of the original depth value, across
the entire dataset, above which points are considered to be spurious or in the background.
Once the depth is normalized as floating point values in [0, 1] the mapping is then applied as
described in Equation (4.2). The mean value for each colorized depth channel is computed
across the dataset and subtracted from the images at run time, similarly to what is done for

color images from which the ImageNet RGB mean values are subtracted.

r=min(4 x d—15,—-4 x d+4.5)
g=min(4 xd—0.5,—4 x d+ 3.5) (4.2)

b=min(4 x d+0.5,—4 x d+ 2.5)

An example of color image and its associated colorized depth is visible in Figure 4.2.

Blue corresponds to the closest objects and red to the farthest, and it is noticeable that the
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object’s edges constitute salient features in the depth image.

Figure 4.2: Color and jet mapped depth images

The input image and depth are resized to 224 pixels in height and width, with padding
to preserve their aspect ratio. Augmentation is applied randomly to the input images, with
rotations in {0, 90, 180,270} degrees and scale in {1.0,1.1,1.2,1.3,1.4,1.5}. This aug-

mentation step is illustrated in Figure 4.3.

Figure 4.3: Example of augmentation on a chicken color image
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4.2 Pose Estimation Network

The objective of this work is to ultimately perform a full 6-D pose regression. As an initial
step, the goal is set to develop a network to perform a pure orientation regression, while

translation estimation is studied at a later stage.

4.2.1 Orientation Estimation

As described in Section 2.2, the quaternion representation seems best suited for this appli-
cation and has been successfully used in the past [15], [28]-[30].

Similarly to the approach taken in [16], at an initial stage, the focus is put solely on the
pose estimation while the classification and bounding box regression tasks are considered
done outside the network. This approach is consistent with the goal of incorporating the
pose estimation in an end-to-end solution with a RPN, presented in Section 4.3. The feature
extractor input thus consists in bounding boxed images of the objects and the corresponding
class.

The pose estimation network consists in a set of fully connected layers that take as input
the feature maps from the feature extractor. Several variations of the network using a single
or 2 inner fully connected layers have been compared, with different number of neurons.
The estimation is class specific and inspired by the work presented in [16], but the approach
is different. Whereas the solution presented in the paper proposes a completely separate
pose regression branch per class, the pose network here outputs a vector of 4 x K, one
quaternion regressed for each class, as illustrated in Figure 4.4. This approach is similar
to the one taken for semantic segmentation in Mask R-CNN [12], where the pose head

regresses K masks using a fully convolutional network.
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]

Figure 4.4: Orientation network

Several loss functions are considered for quaternion regression. Because normalized
quaternions lie on the unit sphere, a geodesic distance is primarily used as the error function
(Equation (4.3)). It represents the shortest arc between 2 unit quaternions and can serve
as the loss function, as successfully done in [16] and explained in more details in [31].
Because of rounding errors in the L2 normalization, the dot product of the 2 normalized
quaternions may end up exceeding 1, but the arccosine is restricted to [—1, 1]. To prevent
spurious NaN values appearing in the loss, the dot product is clipped. Alternatively, a more

numerically stable log loss (Equation (4.4)) is also considered.

=2cos (|G- q|) 4.3)

L,
L, =1log(1+107* —|§ - q|) (4.4)

ReL.U activations are used on the inner fully connected layers and an L2 normalization

(Equation (4.5)) is added with ¢ = 1072 to enforce the versor’s unit norm constraint and
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thus ensure that the estimation is always a valid rotation. Experimentations with a leaky
ReL.U are conducted, to avoid the death of neurons when instabilities in geodesic distance
cause the gradients to explode. The leak consists in a small gradient introduced for negative

activations, effectively offering a path for the neuron to recover.

g= Y (4.5)

max(y/ Zle Y2, €)

Based on standard guidelines for deep learning and experimental results, several other

modifications are added in the implementation, and can be enabled or disabled in order to
compare network performances. Batch normalization is applied in order to reduce training
time by normalizing the outputs of each internal fully connected layer across the mini-
batch, with ¢ = 1073, as shown in Equation (4.6). Batch normalization is applied before
the activation function, as suggested in the original paper [32]. The bias term in the dense
layer is omitted because the batch normalization applies a shift § that will be learned.
Furthermore, the scaling is not performed by batch normalization but by the following

linear activation, and thus Equation (4.7) shows only the shift.

BN(z)=2+p (4.7)

Despite the small regularization effect introduced by the batch normalization which
adds a small batch noise, dropout [33] is also used to reduce overfitting by randomly drop-
ping neurons with a probability p = 0.5, reduced to p = 0.1 if batch normalization is

activated, as suggested in [32].
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4.2.2 Position Estimation

Regressing the translation representing the object’s orientation in the 3-dimensional camera
space appears to be the most elegant solution. However, this translation is difficult to
describe and constrain in a way that can be enforced in the network, because the values on
each axis can vary greatly depending on the application and the field of view of the camera.
Indeed images do not convey the full information on the 3-dimensional camera space, as
opposed to colored point clouds. However, standard convolutional neural networks cannot
be used directly on 3D point clouds and 2D color and depth images are thus used in most
pose estimation approaches.

Furthermore, because this work assumes the availability of color and depth informa-
tion, as well as the camera intrinsic matrix, it is possible, for scenarios where there is no
occlusion, to reduce the problem to an estimation of the 2-dimensional translation in the
image space. The translation values are normalized to the [0, 1] range with the origin at the
top left corner of the image. It is then possible to recover the 3-dimensional translation by
remapping the estimated 2D coordinates in pixel coordinates and subsequently using the
camera intrinsic matrix and depth value at those coordinates to uniquely define the point in
the 3D camera space. This function is described in Equation (4.8), where (¢, t,) are the es-
timated position coordinates in pixels, D the depth image, K the camera intrinsics, (c,, ¢;)
and (f,, f,) are respectively the coordinates of the principal point and focal lengths of the
camera. Alternatively, if occlusions are an issue, geometrical estimation of the distance can

be used, such as the projective distance estimation in [17].

(ta—K1,3)X Dyt (te—ca) XDty to t/
K1 fa x
(taty, D, K) — | WK2aDryte | — | () Dyt | = |y (4.8)
Koo Iy Y
/
Dty,ta; Dty7ta: tZ

Several options are then studied to perform a complete 6D pose estimation combining

3D orientation and 2D position regressions. The last fully connected layer of the existing
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orientation estimator can be extended to have an output of 6 x /K, with the regressed vector
defined as [q t]. This is similar to the approach taken in [34] for regressing a complete
7-dimensional vector containing 3D translation and quaternion for camera relocalization
applications. In that case, the output vector is split after the hyperbolic tangent activation
in order to apply the L2 normalization solely on the quaternion. This solution is illustrated
in Figure 4.5. The first fully connected layer always has a size of 2048, while the second
fully connected layer, if used, has a size of 512.

Feature Maps

¢ 2xK
or3xK
4 x K

Figure 4.5: Single branch pose estimation network

A second option is to have a separate set of fully connected layers for translation re-
gression. The layer structure and hyperparameters are the same as the quaternion regression

branch.
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Feature Maps

Figure 4.6: Split branches pose estimation network

A simple Euclidean distance (Equation (4.9)) is used as the loss and error function
for translation regression. The overall loss (Equation (4.10)), combining quaternion and
translation losses, is defined with an additional ~y coefficient, as suggested in [34]. This is
necessary because the losses are not expressed in the same units or scales and thus need to

be balanced. v = 1 if the geodesic loss is used, and v = 102 if the log loss is chosen.

L= |[t-t],= \/<t;—tx)2+<t;—ty>2 (4.9)

L=rLy+ Ly (4.10)

4.2.3 Evaluation Metrics

During the initial phase when only the orientation component is estimated, the metric is

limited to the mean geodesic distance and the accuracy is measured based on 2 thresholds:

the distance is considered best if under 14 degrees, good if between 14 and 34 degrees.
Later, the Average Distance (ADD) metric is used. Presented in [24] and recently used

in [30] as a benchmark for the Yale-CMU-Berkeley Dataset (YCB), it is defined as the
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average distance between the points of a CAD model rotated by the groundtruth pose on
one side, and the estimated pose on the other. For symmetrical objects, where a one-to-one
point matching is ambiguous, the metric computes the average distance between the closest
points. An estimated pose is considered accurate if the distance is below a threshold, set to
10% of the CAD model diameter in [30].

The quaternions are transformed into rotation matrices R and R following Equation (2.3),
and it is applied with the translation vector on the set M of points, before computing the

appropriate average distance, described in Equation (4.11) and Equation (4.12).

1

ADD:WZ H(Rp+£)—(Rp+t)H @.11)
peEM
ADD - § = - 3" min “(Rp1+f)—(Rp2+t)“ (4.12)

|M’ p1€Mp2€M

4.3 End-to-end Solution

The overall objective of the project conducted at FPTD is to provide an end-to-end solution
for object detection, classification and pose estimation. The option chosen early on is to
extend the well known RPN architectures, presented in Section 2.4, and specifically the
Faster R-CNN model.

The objective is to add a third head for pose estimation, positioned at a second stage
and thus exploiting both the features from the Rol pooling layer and the estimation from
the classification head, to select the appropriate pose estimate at the output. This approach
is similar to the one taken in [12] to append a semantic segmentation head to the Faster R-
CNN RPN trunk, as illustrated in Figure 4.7. Mask R-CNN also replaces the Rol pooling
layer introduced in Faster R-CNN [11] to allow single pass computation on multiple Rols
with the Rol align layer. This new pooling layer does not apply any quantization when

computing the Rol corners and uses bi-linear interpolation during Rol sampling to produce
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more accurate max pooled features.

Mask R-CNN
Kl ROI -~ Semantic
Allgn “7| Segmentation
Feature Extractor Faster R-CNN
Ry BBox
\0; 1 Regression
L »| ResNet-101 >RPN
Classification

Figure 4.7: Mask R-CNN semantic segmentation head on Faster R-CNN trunk

While the Rol align layer aims at improving the accuracy on the semantic segmentation
task, the authors show that it also leads to a significant improvement on the bounding box
regression task. The integration of the pose head can thus be done using either a Faster
R-CNN or a Mask R-CNN trunk, for which the only difference is the Rol pooling layer.
To simplify the block diagram, the pose estimation integration is illustrated with a Faster
R-CNN trunk in Figure 4.8. A ResNet feature extractor is used in this diagram to draw a
connection with what was done in Figure 4.1, but other feature extractors could be used, as

explained in Section 4.1.

Pose R-CNN

Pose
Estimation

Faster R-CNN

Feature Extractor

- BBox
Regression
Rol

Pool

:?5 ResNet-101 P> RPN P>

Classification

Figure 4.8: RPN with pose estimation head on Faster R-CNN trunk

The initial implementation is an attempt to modify the TensorFlow Object Detection
Application Programming Interface (API), available under an Apache license in Tensor-

Flow’s research models [35], and add the pose estimation head to the Faster R-CNN trunk.
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The trunk is defined as a meta architecture in the API and also provides Rol align and se-

mantic segmentation features of Mask R-CNN. These have been omitted in Figure 4.9 for

simplification.

First Stage
Feature Extractor

Crop
and Resize

RPN

Y

First Stage
Box Predictor

Max Pooling

Box Predictor

Class Predictor

Y

Second Stage
Feature Extractor

Y

Postprocess
RPN

Second Stage
Pose Estimator

Second Stage
Box Predictor

Bbox

Box Predictor

Class Predictor

Figure 4.9: Illustration of TensorFlow’s Faster R-CNN meta architecture

The repository is forked and the meta architecture is modified in depth because the
API does not have a readily available method to extend the existing meta architectures
with an additional head. The new groundtruth pose labels must be carried through the
input pipeline and made accessible to the pose head, and additional parameters have to be
included in the configuration files, which implies modifications to the protocol buffers that
provide the configuration definitions, and generally to the entire codebase. The complexity
of the architecture and the fact that training and evaluation loops are handled through the
higher level TensorFlow Slim library makes debugging more difficult. After numerous

attempts, the choice is made at this point to pursue the development of the pose estimation
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network separately, as described in Section 4.2. This makes sense considering that the
classification and bounding box regression are considered solved problems, and the focus
is thus put specifically on the pose estimation task.

Essentially, once the pose estimation network is operational on its own, appending the
head to a Faster R-CNN trunk consists in adding the pose regression layers to an exist-
ing implementation and registering the new loss functions and metrics. The features are
no longer extracted by a feature extractor dedicated to pose estimation, as shown in Sec-
tion 4.2, but by the feature extractor common to all regression heads. The pooled features
are taken at the output of the RPN and the classification estimate provides the information
necessary to select the appropriate pose estimate for the loss computation, similarly to what
is done by Mask R-CNN and as shown in Figure 4.8.

Before integrating the end-to-end solution as described above, and if computer re-
sources are available, an instance of Faster R-CNN can be loaded in memory along with an
instance of the ResNet and pose estimation network. The bounding box prediction is used
to crop the input image before feeding it to the ResNet feature extractor which performs
pose estimation in conditions similar to what is described in Section 4.2. While inefficient
and unsatisfactory as a final solution, this provides an intermediate step after the develop-
ment of the pose estimation network and before taking on the end-to-end training of the

new Pose R-CNN architecture.

4.4 Robotic Application

The project conducted at the FPTD, while aiming in the long term at solving the general
problem of pose estimation for industrial applications, has a specific focus on poultry pro-
cessing. However, no public dataset is available to train the network and thus the objective
is set to gather an initial chicken dataset.

The biggest challenge in collecting a dataset suiting the requirements of this project is to

get accurate pose information. Although hand labeling the pictures after the acquisition is
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an option, this is time consuming and accuracy is limited by human error. The deformable
nature and varying appearance of the chickens in this case increases the difficulty of the
task.

The availability in the division of a Universal Robots URS robotic arm and its control
stack with inverse kinematics as well as multiple Intel RealSense cameras provide a way to
design a method to acquire automatically color and depth data and their associated poses
at no extra cost. Indeed, the robot arm’s odometry data and forward kinematics gives an
accurate pose information. Furthermore, multiple cameras allow to capture different view-
points for a single robot pose, augmenting the dataset and enabling future experimentation
of multiview pose estimation.

A support for the chicken carcass, visible in Figure 4.10 is mounted on the end effector
joint of the robot using a rigid plate (in red). An ArUco marker [36] stand is installed on
the support (in yellow) and a cone is attached perpendicularly to the end effector rotation

axis (in green).

Figure 4.10: Chicken carcass support

A set of ROS nodes is developed to wrap the whole acquisition system. The first phase
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consists in calibrating the cameras with the ArUco marker. The detection node is run
separately on each camera and the transform from the fiducial frame to the camera optical
frame is published using the tf library [37]. Static transforms from the robot’s end effector
joint to the center of the cone and to the center of the ArUco marker are measured directly
on the chicken support (Figure 4.10) and published. This allows to construct the tf tree
shown simplified in Figure 4.11, effectively allowing to recover the chicken pose in the

camera frame.

Robot Base

End Effector

N

Aruco Tag Cone

e

Cameral Camera 2 Camera 3

Figure 4.11: Simplified ROS tf tree

The final acquisition setup visible in Figure 4.12 comprises a URS arm (in red) with a
cone mounted as its end effector to support the chicken carcass (in green) and a set of 3

RealSense cameras mounted on articulated arms with camera brackets (in blue).
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Figure 4.12: Chicken dataset acquisition setup

A ROS service takes in a file containing a set of randomly generated poses around a
predefined point located in the field of view of the cameras. A request to the service is
translated in a command through the URS driver and the service responds once the target
is reached, triggering the acquisition. A node running for each camera collects the color
and depth images and the object to camera transform. During the initial frame recording,
the intrinsic matrix for each camera and the camera to camera transforms are also saved. A
total of 11 birds is used for the acquisition with roughly a 100 pose per chicken for a total
of 1,200 robot poses or 3,600 available examples. An example of the 3 views for one of the

robot pose is shown in Figure 4.13.
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Figure 4.13: Chicken acquisition example

After the acquisition, the bounding boxes are generated for each image by projecting
the recorded 3D position to the image plane and taking a simple square around it with a side
of 300 pixels. Although not directly useful to the pose estimation, all the color pointclouds
are generated. The alignment of the data is checked by republishing the camera to camera
transforms in ROS and visualizing the 3 pointclouds in Rviz [38].

While this setup is limited to recording the pose of a single object, and to do so in a
very specific setup, with the robot arm visible in the images, it enables the rapid collection
of precise data with multiple cameras, and could be adapted to other classes of objects.
Another and more versatile variation, bearing some similarities to the approach taken in

[30] to collect YCB, would see the camera mounted on the arm and taking successively
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different random views of the target object or group of objects. By recording an initial pose
of the objects in the camera frame using fiducial markers or manually after the acquisition,

and by tracking the camera motion, an accurate dataset could be collected.
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CHAPTER §
EVALUATION

The evaluation is conducted on the application dataset collected using the method described
in Section 4.4. The pose estimation network is evaluated on its own, using a ResNet feature
extractor, or a pair of identical feature extractors with a multiplicative fusion layer when
depth input is enabled, as explained in Section 4.1.

Because the input data consists in bounding boxed images, and the bounding box labels
in the data are located exactly at the object’s center, a noise sampled uniformly in the
+30 pixel range is applied on each of the coordinates of the box corners before resizing
and padding the images to the 224 pixel size. This randomization is performed once on
the entire dataset, before starting the training. As a result, a variety of aspect ratios are
introduced and the objects are no longer perfectly centered, which would have been trivial
for the network to learn, and they are no longer always entirely visible in the image frame.

2 different train and validation splits are used for evaluation. In the first split method,
data on all birds is merged and the 3 views of the same object’s pose are included in the
same part of the split, with 70 % of the data in training and 30 % in validation. In the second
method, the data is split by bird, with the data for 8 birds in training, and 3 remaining
birds in validation. The initial trainings are conducted using the first split method, but
for comparison some results on the second method are reported for reference in italic in
Table 5.1 and Table 5.2.

The 2 evaluation metrics described in Section 4.2 are used to evaluate the different
versions of the network. The geodesic distance and euclidean distance metric, for which
the results are reported in Table 5.1 is a custom metric that is useful during the development
of the network because it provides a separate estimate of the performance on orientation and

position estimation. Orientation estimation accuracy is given in 3 bins for great predictions
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(under 14 degrees), good predictions (between 14 and 34 degrees) and bad predictions
(above 34 degrees).

The ADD gives a measure of the distance between the projected points in meters, and it
is generally considered that a distance under 10 % of the object’s diameter corresponds to
an estimation that looks visually correct. However, while this metric is used throughout the
literature, it is designed for non-deformable objects, which the chickens are not. As such,
no single CAD model can be used as a perfect substitute to all birds, and unless a 3D scan
of each chicken is available, which is not the case for this initial dataset, the ADD results
given here are imperfect. They are nonetheless reported in Table 5.2 as they provide an idea
of the impact of the orientation and position estimation interaction on the overall quality of
the pose estimation. In order to compute the average distance, the estimated image space
translation (u, v) is used to compute the 3D translation as described in Equation (4.8) using
the depth data.

The models are named based on the number of fully connected layers, whether they use
the split (2-branch) or combined (1-branch) network structure described in Section 4.2, and
if the depth information is used or not.

Table 5.1: Results on the geodesic distance and euclidean distance metric (italics show
results for bird split)

Model Mean d; (px) | Mean d, (deg) | Great Good Bad
2FC,2BR+D 8.51 10.41 0.82 0.17 0.01
2 FC,2BR 7.83 11.29 0.80 0.16 0.03
2FC, 2BR 7.90 11.98 0.73 026 0.01
3FC,2BR+D 10.57 8.61 0.89 0.10 0.01
3FC,2BR 7.59 11.57 0.80 0.17 0.03
2FC,1BR+D 9.64 9.56 0.88 0.11 0.01
2FC,1BR 11.88 10.13 0.88 0.10 0.02
3FC,1BR+D 9.58 9.84 0.82 0.17 0.01
3FC,1BR 9.38 12.68 0.79 0.16 0.05

The results in Table 5.1 clearly show that the depth information is useful to the orienta-
tion estimation, with a consistent improvement across the different variations but that it also

appears to have a negative impact on the translation estimation, which might be explained
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Table 5.2: Results on the average distance (ADD) metric

Model Mean(cm) | Mgy My My M;; Mp, Mz My, Mg
2FC,2BR+D 5.96 0.71 0.75 0.80 0.83 0.86 0.88 0.89 0.90
2 FC,2BR 6.37 0.72 0.76 0.79 0.83 0.85 0.87 0.88 0.89
2FC,2BR 6.12 0.70 0.75 0.79 0.83 0.85 0.87 0.88 0.90
3FC,2BR+D 5.79 059 068 0.75 0.79 0.83 0.86 0.88 0.89
3FC,2BR 5.81 0.71 0.77 081 0.85 0.87 0.89 0.90 0.91
2FC,1BR+D 5.38 0.65 0.72 0.77 0.81 0.83 0.85 0.88 0.89
2FC,1BR 6.08 049 059 068 0.74 0.78 0.83 0.86 0.88
3FC,1BR+D 6.27 0.65 0.71 0.76 0.80 0.83 0.84 0.85 0.87
3FC,1BR 6.06 0.65 0.72 0.77 0.81 0.83 0.85 0.87 0.88

by a slight misalignment of the color and depth information. As a result, Table 5.2 suggests
that the interactions between the poorer translation estimation and improved orientation
estimation do not lead to an increase in matching at 10 % of the model’s size.

Overall, it appears that the 2-branch network with 3 fully connected layers and without
depth performs best. Further study is necessary in order to improve the depth and color
fusion, which could realistically lead to improved pose estimation, and a better approach
regarding the chicken CAD model will need to be put in place in order to obtain more
meaningful ADD metric results. An example of the pose estimates obtained with this
network on the validation set is visible in Figure 5.1.

In a scenario where the robot arm is equipped with a gripper, which is the objective
of the project conducted at FPTD, the quality of the predictions informs the choice of the
gripping strategy. Whereas a finger-based gripper requires a very accurate orientation and
position prediction, which this architecture does not achieve, it is currently not considered
as the option of choice for chicken carcass grasping. Indeed, the deformable nature of
the chicken carcass and its slippery surface make finger-based grippers difficult to use.
Suction-based grippers and soft-robotic approaches are the most likely candidates in this
project and generally do not have as strong requirements on the pose estimation in order
to perform a successful grasp on the object. As such, although this has to be confirmed

at a later stage in the project, the results described here are promising, particularly on
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orientation estimation, with under 10 degrees average distance with the ground truth in
validation. Initial inference testing using a different bird moved by hand shows interesting

results on the orientation estimate, as shown on the point clouds in Figure 5.2.

e

==

.

Figure 5.1: Chicken results on validation set
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Figure 5.2: Chicken inference test
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CHAPTER 6
CONCLUSION AND FUTURE WORK

This work presents a 6D pose regression architecture based on standard feature extractors
and building upon previous research in pose estimation. It explores different network struc-
tures that allow for the fusion of depth information from commercial off-the-shelf sensors.
It focuses on the pose estimation head development, but the integration as an end-to-end
solution using a RPN trunk is initiated and a path toward this goal is described for future
developments.

It also proposes an approach for the automated collection of a multi-camera color
and depth dataset with pose labels, and demonstrates its application for the acquisition
of chicken data. This novel dataset is used to evaluate the network as part of an ongoing
research effort on poultry processing conducted at FPTD. The multi-view data opens the
way to further research on pose estimation using multiple cameras, as a mechanism to re-
fine the pose estimation where ICP cannot be used because of the deformable nature of the

objects.
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