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SUMMARY

This research is motivated by the overarching emphasis on increasing Air Traffic Man-

agement (ATM) system efficiency and capacity, while maintaining a high level of safety

as the current systems undergo a transformation in concept of operations under global

ATM system modernization plans. Considering the global modernization efforts’ current

state and future milestones, gaining a comprehensive understanding of both flight-level and

airspace-level operations is required. Though, the complexity of ATM systems restricts the

use of classical physics-based methods for the analysis of new operational concepts. How-

ever, an increased availability of operational data provides several new analysis opportu-

nities. Specifically, Automatic Dependent Surveillance-Broadcast (ADS-B) data provides

the basis for offline data-driven methods to be applied to analyze ATM system operations.

Further, the analysis of ATM system arriving aircraft operations has the highest potential

to impact system safety, capacity, and efficiency levels. Therefore, this research presents

an offline data-driven methodology to be applied to ADS-B data to analyze ATM system

arriving aircraft operations at both the flight level and the airspace level. The proposed

methodology requires three steps: (i) air traffic flow identification, (ii) anomaly detection,

and (iii) airspace-level analysis.

The air traffic flow identification step required a reliable method of clustering trajecto-

ries considering the converging nature of trajectories within the terminal airspace, where the

trajectory clustering algorithm must be able to: (i) determine the optimal number of clus-

ters within the data set, (ii) identify outliers, and (iii) identify clusters of varying densities.

Therefore, the Hierarchical Density-Based Spatial Clustering of Applications with Noise

(HDBSCAN) clustering algorithm was selected. To improve the existing applications of

HDBSCAN, the novel use of the Weighted Euclidean Distance (WED) with HDBSCAN

was demonstrated to more reliably identify air traffic flows.

The anomaly detection step first required the novel distinction between spatial anoma-
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lies and energy anomalies detected in ADS-B data. Next, the anomaly detection step re-

quired the detection of spatial anomalies, the subsequent detection of energy anomalies,

and the computation of an anomaly score to provide a measure of the “degree of anoma-

lousness” of a trajectory with respect to its energy metrics. Spatial anomaly detection was

performed by the more reliable method of identifying air traffic flows considering Hypoth-

esis 1. A clustering algorithm was similarly identified to be most appropriate for energy

anomaly detection. However, the requirements of the clustering algorithm differ compared

with the requirements for spatial anomaly detection. Namely, it is not necessary for an al-

gorithm to have the capability to identify clusters of varying densities; therefore, Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) was selected to perform

energy anomaly detection. Once spatial and energy anomalies have been detected, it is rel-

evant to statistically investigate whether: (i) if trajectories detected as spatial anomalies are

more likely to be detected as energy anomalies, (ii) when considering only energy-nominal

trajectories, if spatially anomalous trajectories are “relatively more anomalous” than spa-

tially nominal trajectories, and (iii) when considering only energy-anomalous trajectories,

if there are distinct differences in the statistical properties of a quantitative measure of

the “degree of anomalousness” of trajectories that are spatially anomalous versus spatially

nominal.

Finally, related to the development of the outline of the airspace-level analysis step in

the proposed methodology required a method to identify operational patterns, characterize

whether an operational state is nominal, anomalous, or transition, and predict operational

patterns. It was determined that a clustering algorithm capable of identifying outliers and

requiring no a priori specification of the number of clusters is most appropriate to simul-

taneously identify operational patterns and characterize operational states. Due to meeting

the aforementioned criteria and considering the effectiveness of DBSCAN in other aviation

applications, DBSCAN was selected. However, the presence of transitional operational

states within the data set may result in skewed results. Therefore, a recursive DBSCAN
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procedure was proposed such that transitional operational states are removed from the data

set and the clustering repeats until no new transitional operational states are characterized.

Considering the need for the capability to predict operational patterns and that the few ex-

isting methods related to prediction of what may be considered operational patterns have

leveraged features derived from recorded weather measurements, a set of classification al-

gorithms is trained to predict operational pattern provided derived weather metric features.

An artificial neural network, gradient-boosted decision tree (XGBoost), and support vector

machine (SVM) were trained, where XGBoost was found to provide the best prediction

accuracy.
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CHAPTER 1

BACKGROUND AND MOTIVATION

This research is motivated by an overarching emphasis on increasing Air Traffic Manage-

ment (ATM) system efficiency and capacity, while maintaining a high level of safety as

current systems undergo a transformation in concept of operations. An overview of the

anticipated trends in air traffic volume is presented. Next, a description of the functions of

ATM systems is provided. Additionally, a review of the global modernization efforts that

place the emphasis on increasing ATM system safety, capacity, and efficiency is provided.

Finally, the operations of aviation systems in the context of the global modernization efforts

are described.

1.1 Air Traffic Volume

Aviation systems are considered fundamental for the development of modern societies as

they have become enablers of global business [1]. While, currently, the aviation industry

is emerging from the most severe aviation crisis in its history: the COVID-19 pandemic,

the industry had previously been experiencing large increases in the volume of operations.

Figure 1.1 displays the decline in number of passengers carried since 1945, providing con-

text related to the declines experienced as a result of other aviation and world crises [2].

An unprecedented decline is observed as COVID-19 is declared a pandemic in March of

2020 [2]. The pandemic resulted in a 60% reduction in total world passengers in 2020

compared to the same time period in 2019 and an approximate 371 billion USD loss of

gross passenger operating revenues of airlines [2]. Thus far, in 2021, a 49-50% decline in

world total passengers has been observed [2]. Though, despite other crises in history, the

aviation industry has experienced recovery and subsequent growth.
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Figure 1.1: World Passenger Traffic Evolution, 1945-2021 [2]

Air traffic demand is driven by economic activity, where the growing U.S. and world

economies provide the foundation for long term growth [3]. Further, long-term drivers for

expanded air traffic demand remain in existence as populous emerging markets are still

anticipated to desire more air services [4]. For instance, the global economic growth pro-

vides support for growing air cargo demand, with current levels above that observed in

2019 [5]. While recovery in air traffic demand has been slow in 2021 due to international

travel restrictions, there is an expectation that vaccines will enable governments to relax

restrictions, which supports global travel reaching 61% of 2019 levels in 2022 [6]. It is

anticipated that domestic travel will continue to be strong [5]. Figure 1.2 displays the re-

covery growth that is expected to occur, including both international and domestic, through

quarter four in 2021 [5]. According to Figure 1.2, by the end of 2022 it is expected that

domestic travel demand will rise above pre-COVID-19 levels.
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Figure 1.2: Return to Growth Through Quarter Four of 2021 [4]

While much is still uncertain regarding the impacts of the pandemic as the impacts

depend on variables such as duration and magnitude of the outbreak, containment mea-

sures, the degree of consumer confidence for air travel, economic conditions, etc., there is

high confidence air traffic growth will ultimately resume [2]. Further, the Federal Aviation

Administration (FAA) had predicts U.S. airline passenger volume would increase by 400

million passengers to carry just under 1.3 billion passengers in 2038 [7]. The FAA pre-

dicts even faster growth for U.S. airline cargo traffic [7]. In contrast to the sharp decrease

in passenger air travel, a surge in cargo flights was observed in 2020, with an increase in

cargo-only operations utilizing passenger aircraft [2], as displayed in Figure 1.3.
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Figure 1.3: Cargo Flights in Early 2020 Months [2]

As the economy recovers from the impact of the COVID-19 pandemic, the economic

growth coupled with technological advances, market liberalization, oil prices, and other

trends will continue to affect worldwide commercial aviation [8]. For instance, the FAA

projects that system traffic in revenue passenger miles will increase by 5.5% a year between

2021 and 2041 [3]. Further, the FAA anticipates robust travel demand growth between

2022 and 2026 due to U.S. economic recovery, which has the potential increase controller

workload; thus, operations at FAA and contract towers are projected to grow 1.9% a year

between 2021 and 2041 [3]. Considering the historical growth in air traffic volume, and in

preparation for forecast growth and an increase in complexity of aviation systems, changes

to the existing concept of operations are necessary.

1.2 Air Traffic Management Systems

ATM systems are tasked with managing the operations of some of the world’s most com-

plex system-of-systems as they are responsible for the operations of all aircraft. ATM

systems consist of numerous interacting systems and subsystems that are further compli-

cated by human-in-the-loop decisions. The vast complexity of ATM systems will continue

to increase as air traffic volume increases and Advanced Air Mobility (AAM) concepts are
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introduced in the airspace.

Formally, ATM systems are those generally responsible for managing aviation airspace

operations, where an ATM system is defined by International Civil Aviation Organiza-

tion (ICAO) as “a system that provides ATM through the collaborative integration of hu-

mans, information, technology, facilities and services, supported by air and ground- and/or

space-based communications, navigation and surveillance” [9]. The term ATM is defined

as “the dynamic, integrated management of air traffic and airspace including Air Traffic

Services (ATS), Airspace Management (ASM) and Air Traffic Flow Management (ATFM) -

safely, economically and efficiently - through the provision of facilities and seamless ser-

vices in collaboration with all parties and involving airborne and ground-based functions”

[9]. Figure 1.4 provides a visual breakdown of the primary services within the ATM sys-

tem.

Figure 1.4: Air Traffic Management Services Breakdown [9]

The three primary services, or functions, within the ATM system are described in more

detail, as defined by [9]:

• Air Traffic Services (ATS): ATS is “a generic term meaning variously, flight in-

formation service, alerting service, air traffic advisory service, Air Traffic Control

(ATC) service (area control service, approach control service or aerodrome control
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service)” [9]. Specifically, the flight information service enables the safe and effi-

cient conduct of flights by providing advice and information, such as weather reports

or airport conditions. The alerting service exists to provide notification to the appro-

priate organizations with regards to aircraft in need of search and rescue aid and to

assist these organizations in such efforts. The air traffic advisory service exists to

ensure appropriate separation between aircraft operating on Instrument Flight Rules

flight plans within an advisory airspace. Finally, the ATC service is critical to pre-

vent collisions between aircraft as well as between aircraft and any obstructions on

the manoeuvring area. Additionally, the ATC service exists to expedite and maintain

an orderly flow of air traffic. Ground-based air traffic controllers direct aircraft both

on the ground and through controlled airspace.

• Airspace Management (ASM): ASM “means a planning function with the primary

objective of maximising the utilisation of available airspace by dynamic time-sharing

and, at times, the segregation of airspace among various categories of airspace users

on the basis of short-term needs” [10]. The overall objective of ASM is to ensure

airspace resources are allocated to system users such that each is able to success-

fully complete assigned tasks. ASM is generally accomplished by Air Navigation

Service Providers (ANSPs). ANSPs strategically design the airspace and operational

procedures.

• Air Traffic Flow Management ATFM: ATFM is “a service established with the

objective of contributing to a safe, orderly and expeditious flow of air traffic by en-

suring that ATC capacity is utilized to the maximum extent possible, and that the

traffic volume is compatible with the capacities declared by the appropriate ATS au-

thority” [9]. At times during which traffic demand exceeds defined ATC capacity, an

ATFM service is implemented. Specifically, in the National Airspace System (NAS),

ATFM is accomplished through Traffic Management Initiatives (TMIs), where TMIs
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are implemented within strategic time frames (planning two to eight hours out) and

tactical time frames (procedures carried out in less than two hours). ATFM enables

demand to be matched with available capacity.

It is evident the three primary ATM services operate interdependently to ensure the

safe and efficient operation of all aircraft within an airspace. For instance, ATFM focuses

more on the broader systems approach (airspace-level) to managing air traffic and supports

ATC, which provides flight-level instructions, in achieving the most efficient utilization of

airspace/airport capacity, considering imposed safety constraints. Therefore, ATM systems

undoubtedly impact operations at both the flight level and the airspace level. In this context,

the flight level refers to the operations of a single flight within an airspace, whereas the

airspace level refers to the operations of multiple flights within an airspace.

Considering the flight level, ATC may instruct an aircraft to follow a specific arrival

procedure, perform a go-around, or enter into a holding pattern. On the other hand, con-

sidering the airspace level, an ATFM program, such as a Ground Delay Program, may be

implemented through a TMI that results in the alteration of operations within an entire

airspace. However, ATFM programs similarly impact several flight-level operations within

the affected airspace. Therefore, this underscores the importance of an assessment of the

relationship between flight-level and airspace-level operations.

Though, existing ATM systems continue to be limited by outdated technologies and op-

erational procedures [11]. Specifically, ATM challenges include: (i) high volume and het-

erogeneous demand, (ii) dynamic system capacity, and (iii) fragmented, multi-stakeholder

and human-based decision-making [11]. Of important consideration in improving the oper-

ations of ATM systems is the challenge of high volume and heterogeneous demand, which

is anticipated to worsen as the forecast growth in air traffic volume is realized and AAM

are introduced.
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1.3 Global Modernization Efforts

In the past two decades, in response to current ATM challenges, as well as future chal-

lenges, global efforts have been underway to modernize ATM systems. The global mod-

ernization efforts include the FAA’s Next Generation Air Transportation System (NextGen)

[12] portfolio in the U.S., the Single European Sky ATM Research (SESAR)’s [13] pro-

gram in Europe, and other country-specific programs [14, 15, 16]. NextGen is focused

on modernization of the U.S. NAS, while SESAR is focused on the European ATM sys-

tem. Currently, the U.S. operates the safest, largest, and most complex ATM system in

the world [17], where the FAA’s NextGen program aims to retain this leadership position

in global aviation [18]. All global modernization efforts are long-term plans motivated by

concerns that current ATM systems will not be able to accommodate forecast air traffic

flow. NextGen, and other global modernization efforts, are not simply comprised of one

technology, product, or goal. Instead, the modernization efforts are a composition of sev-

eral diverse and interlinked portfolios of technologies, systems, policies, and procedures.

The long-term objectives of the global modernization efforts are formulated based upon

the ICAO Global Air Traffic Management Operational Concept, which has the vision “to

achieve an inter-operable global air traffic management system, for all users during all

phases of flight, that meets agreed levels of safety, provides for optimum economic opera-

tions, is environmentally sustainable and meets national security requirements” [19]. Fur-

ther, ICAO has established five Strategic Objectives: (i) Safety, (ii) Air Navigation Capacity

and Efficiency, (iii) Security and Facilitation, (iv) Economic Development of Air Transport,

and (v) Environmental Protection [20]. The FAA describes NextGen as an “evolution of

air traffic management”. As displayed in Figure 1.5, the ATM system has evolved from

a procedural-based system, to a surveillance-based system, to, finally, a trajectory-based

system, which is enabled by the implementation of NextGen concepts [17]. The ultimate

objective of the global modernization efforts is a transition to Trajectory Based Operations
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(TBO), as implementation of new technologies and concepts enables a transition from a

traffic-controlled ground-based ATM system to a traffic-managed satellite-based ATM sys-

tem. This transition to TBO is anticipated to enable management of four-dimensional (4D)

aircraft trajectories (latitude, longitude, altitude, and time) such that aircraft operations be-

come more efficient and predictable, while maintaining operational flexibility [21].

Figure 1.5: Air Traffic Management System Evolution [17]

In the context of the successful introduction of TBO, much emphasis has been placed

on the “Safety” and “Air Navigation Capacity and Efficiency” Strategic Objectives. Thus,

common among all of the global modernization efforts are long-term overarching objec-

tives of increasing ATM system efficiency and capacity, while also maintaining safety,

where development and implementation of new technologies are necessary to meet these

objectives. ICAO’s “Safety” and “Air Navigation Capacity and Efficiency” Strategic Ob-

jectives are necessarily functionally and organizationally interdependent [20], where ICAO

identifies the attainment of a safe system as the highest priority in managing aviation opera-

tions [19]. Therefore, to successfully transform air traffic management systems worldwide,

holistic consideration of both safety and capacity and efficiency is required.

An brief overview of both safety and capacity and efficiency in the context of the ATM

system is provided. Additionally, due to implementation of TBO concepts being a large

component of objectives to increase ATM system safety, capacity, and efficiency, a discus-

sion on TBO is provided.
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1.3.1 Safety

ICAO defines safety as “the state in which risks associated with aviation activities, related

to, or in direct support of the operation of aircraft, are reduced and controlled to an ac-

ceptable level”, where aviation safety management is defined as the activity that “seeks

to proactively mitigate safety risks before they result in aviation accidents and incidents”

[22]. However, aviation safety management did not always emphasize mitigating safety

risks before they result in aviation accidents or incidents.

The first aviation accident with causalities occurred in 1908, and since this time many

countless efforts have been made to improve aviation safety [23]. Prior to 1995, aviation

safety was reactive in that after an accident or incident occurred, a mitigation strategy was

then developed and implemented [24]. A reactive approach requires an accident or incident

to have previously occurred such that a “working-backwards” approach may subsequently

be taken to identify and address the underlying problem. A reactive approach is not capable

of maintaining safety at adequate levels as air traffic increases and aviation systems are

modernized. Thus, the aviation industry realized novel approaches were required [24].

For instance, in the past 25 years, the industry began a shift toward proactive and pre-

dictive approaches to safety. A proactive approach to safety involves identifying potential

unsafe events in advance of their manifestation as accidents or incidents. This approach

aims to enable mitigation strategies to be developed to prevent the occurrence of accidents

or incidents related to any unsafe events [25]. However, to successfully implement a proac-

tive approach to safety, records must exist of the current operational states. Taking safety

analysis a step further, a predictive approach to safety involves monitoring data obtained

from routine operations in addition to accidents and incident data and reports to detect

potential negative future outcomes. Figure 1.6 summarizes the three approaches to safety.

10



Figure 1.6: Different Approaches to Safety Management (adapted from [25])

A reactive approach to safety focuses on prevention of accident or incident recurrence,

while proactive and predictive approaches to safety focus on prevention of accident or inci-

dent occurrence. The shift toward proactive and predictive safety approaches has enabled

air transportation to remain the safest mode of transportation. Further, this shift is key to

maintaining aviation safety in the future as aviation systems modernize and become more

complex. Thus, today’s aviation safety programs place a strong emphasis on proactive and

predictive safety approaches. In the U.S., these safety programs include:

• Aviation Safety Action Program (ASAP), which encourages voluntary reporting of

safety issues and events that come to the attention of employees and certain certificate

holders [26].

• Aviation Safety Reporting System (ASRS), which enables anonymous reporting of

aviation incidents from pilots, air traffic controllers, flight attendants, maintenance

staff, and eye witnesses [27].

• Flight Operational Quality Assurance (FOQA), also known as Flight Data Moni-

toring (FDM), which involves collection and analysis of routine flight data, where it

is widely encouraged and utilized in commercial operations [28].

• Aviation Safety Information Analysis and Sharing (ASIAS), which connects ap-

proximately 185 data and information sources across government and industry, in-

cluding voluntarily provided safety data [29].
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• System Approach for Safety Oversight (SASO), which was established to develop

and implement a comprehensive system safety approach to the oversight of aviation

entities [30].

• Safety Assurance System (SAS), which is the FAA’s oversight tool to perform cer-

tification, surveillance, and continued operational safety [31].

Additionally, to facilitate proactive and predictive approaches to safety, one of National

Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate

(ARMD)’s Strategic Thrusts for research is In-time System-wide Safety Assurance [32,

33, 34]. The vision of this Strategic Thrust is “the ability to predict, detect, and mitigate

emergent safety risks throughout aviation systems and operations” [32]. “System-wide”

alludes to encompassing multiple sources for NAS data, including a wide array of systems

and system levels [34].

1.3.2 Capacity and Efficiency

Capacity and efficiency are necessarily intertwined. From an individual-flight perspective,

efficiency addresses the operational effectiveness of gate-to-gate flight operations [17]. As

exceeding capacity often results in air traffic flow restrictions, there is often an impact

to a flight’s efficiency. On the other hand, increasing the efficiency of the flights within an

airspace system results in capacity increases. Capacity may be measured at the airport level

(arrival rate), within the terminal airspace (maximum number of flights operating within the

terminal airspace), en-route level (maximum number of flights in a sector), or at the system

level (maximum number of flights that can be handled from gate to gate) [35].

Capacity is often uncertain, as it is dependent on several factors, where these factors in-

clude the ATC route structure, navigation accuracy of aircraft using the airspace, weather,

and air traffic controller workload [9]. The most significant factor impacting airspace ca-

pacity is often identified as being weather [11]. The specific ATM configuration is often
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heavily influenced by the weather conditions. Further, weather conditions directly impact

the throughput performance of the selected ATM configuration [11].

In the context of the strategic planning of an airspace system, capacity to meet airspace

demands during peak times and at peak locations is of the utmost importance [17]. Addi-

tionally, it is desirable to minimize restrictions on overall traffic flow such that the efficiency

of individual flights is not negatively impacted [17]. Current FAA concepts and initiatives

to increase ATM system capacity and efficiency include:

• Performance Based Navigation (PBN), which represents a shift from sensor-based

to performance-based navigation [36]. PBN enables aircraft to fly shorter, and, there-

fore, more efficient, flight paths [17].

• Standard Terminal Automation Replacement System (STARS) and En Route

Automation Modernization (ERAM), which enable air traffic controllers to work

more effectively [17].

• Automatic Dependent Surveillance-Broadcast (ADS-B), where of specific rele-

vance is ADS-B Out technology, which allows messages including position, ground

speed, and other surveillance information to be broadcast by aircraft at a rate of 1

Hz. As of January 1st, 2020, all aircraft flying within most controlled airspace are

required to be equipped with ADS-B Out. This transition to the use of satellite-

based technology, which provides more accurate position measurements, enables

controllers to separate aircraft closer to minimum separation standard, increasing

capacity [37].

• Decision Support System (DSS) Automation, which includes three decision sup-

port hardware and software systems (Traffic Flow Management System, Time Based

Flow Management System, and Terminal Flight Data Manager) that enable ATM

system operators to quickly and efficiently respond to dynamic traffic and weather

conditions [17].
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• System Wide Information Management (SWIM), which aggregates ATM system

data from multiple sources. This aggregation of data enables faster information-

sharing as multiple computer interfaces are no longer required to access data from

various sources [17].

Finally, improvements in ATM system efficiency, and therefore capacity, are strongly

related to the global strides towards implementation of TBO. For instance, TBO is expected

to enable decisions to be made more strategically, which improves both flight and airspace

level efficiency [38]. In addition, more accurate trajectories result in observed demand

being more closely matched to capacity [38].

1.3.3 Trajectory Based Operations

As introduced, TBO is intended to efficiently manage aircraft trajectories in 4D (latitude,

longitude, altitude, and time). TBO enables strategic planning, management, and optimiza-

tion of trajectories operating within and across various airspace by leveraging time-based

management, information exchange between air and ground systems, and an aircraft’s abil-

ity to fly precise paths in time and space [21]. The FAA describes TBO as “a collection of

systems, capabilities, processes, and people working together to achieve operational objec-

tives” [39].

The amalgamation of Time Based Management (TBM), PBN, and technologies that

enable the distribution and sharing of trajectory information support efforts to introduce

TBO into the NAS [39]. TBO is intended to enable airspace users to “negotiate” trajectories

with the ANSPs such that a trajectory that is a result of collaboration and information-

sharing is agreed upon. This trajectory, known as the “agreed trajectory”, includes a route

between an origin and destination pair with predicted cross time estimates at key points

[21]. TBO is expected to enable collaborative decisions that consider the entire airspace

system, providing routes optimized at both theflight level and the airspace level. In this

context, flight-level refers to the operations of a single flight, while airspace-level refers to
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the aggregated operations of all flights within an airspace.

As a new concept of operations is deployed with TBO, it is of paramount importance

to develop methods to assess a flight’s trajectory in the context of the other flights’ tra-

jectories operating within an airspace. Further, that the envisioned TBO is anticipated to

result in a less structured airspace as a result of more flexible trajectory planning, which

further underscores the importance of assessment of airspace-level operations. Addition-

ally, acquiring an understanding of how operations at the two levels are related is relevant

to support ATM system modernization efforts to increase safety, capacity, and efficiency.

To enable successful introduction of new TBO concepts, robust ATM system analyses are

required that consider operations at both the flight and airspace levels, where the relation-

ship between operations at the two levels is likewise considered and assessed. This leads

to Observation 1:

Observation 1

Gaining a comprehensive understanding of both flight-level and airspace-level op-

erations enables Air Traffic Management system operators, planners, and decision-

makers to make better-informed and more robust decisions related to the implemen-

tation of future operational concepts.

1.4 Aviation System Operations

Aviation systems are complex systems-of-systems, where these systems will continue to

experience an increase in complexity as a result of the concurrent impact of the forecast

rise in volume of air traffic and the transformation of ATM systems in response to the

global modernization efforts. A brief overview of the significant challenges posed by the

complexity of aviation systems in the context of the global transformation of ATM systems

is presented. Additionally, an introduction to the aviation system operational data recorded

and its importance in the transformation of ATM systems is provided. Finally, while all
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aviation systems are incredibly complex systems of systems, the aviation system that often

experiences one of the highest levels of complexity in the context of ATM system opera-

tions is the terminal airspace system. Therefore, the complexity of terminal airspace ATM

system operations and their relevance in the context of broader ATM system operations are

discussed.

1.4.1 System Complexity

As introduced, aviation systems are complex systems-of-systems that will continue to

evolve and transform as air traffic volume increases and initiatives and programs related

to the global modernization efforts are implemented. Moreover, the complexity of aviation

systems is further anticipated to increase with the introduction of AAM concepts. The oper-

ations, or behaviors, of a “high-level” aviation system, such as an airspace, are the product

of an aggregation of the operations, or behaviors, of the flights (“lower-level” aviation sys-

tems) within the airspace of interest. In this context, behaviors refer to the operations of a

system that are visible to other systems, including other systems at the same level and the

higher-level system-of-interest. Related to an airspace and the flights operating within it,

the behavior of a flight may refer to its trajectory. Thus, the higher-level system behavior of

entire airspace is dependent upon the lower-level system behavior of flights, or trajectories,

observed to be operating within the airspace bounds. Both flight-level and airspace-level

behaviors/operations are impacted by an increase in aviation system complexity and are rel-

evant in the context of the holistic consideration of both safety and capacity and efficiency

as ATM systems are transformed. Further, as introduced, the relationship between behav-

iors observed at the flight level and the airspace level must be assessed and understood.

Analysis of operations at both the flight level and the airspace level as well as the relation-

ship between operations at the two levels is paramount to support ATM system planners

and decision-makers.

Specifically, in complex systems-of-systems theory, a property of emergence originates
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from the idea that when a physical, higher-level system reaches some level of complexity

in its organization, it may begin to exhibit genuinely novel properties or behaviors not

possessed by its simpler, lower-level components, or systems [40]. Emergence is said to

“occur when an entity is observed to have properties that its parts do not have on their

own such that these properties or behaviors emerge only when the parts interact as a wider

whole” [41]. As defined by the INCOSE Systems Engineering Handbook, an emergent

behavior is “a behavior of the system that cannot be understood exclusively in terms of the

individual system elements” [42].

To improve levels of ATM system capacity and efficiency, considering increases in

complexity, a comprehensive understanding of current ATM system operations is neces-

sary in addition to the ability to recognize and perform timely mitigation of potentially

undesirable emergent behavior. Moreover, it is of paramount importance to discover new,

or emergent, safety risks in existing ATM systems, including safety risks that did not exist

in ATM systems previously, i.e. those safety risks that are a result of the implementation

of new a concept of operations related to the modernization efforts [43]. There is increased

difficulty in developing the ability to analyze and predict threats posed by emergent safety

risks as the threats could increase in frequency and severity as ATM systems evolve [33].

ATM approaches to assess the behavior of flights operating within an airspace most

commonly rely on monitoring trajectory data for exceedance of a priori Subject Matter

Expert (SME)-set thresholds in a specified set of parameters [44, 45, 46]. In this context, an

exceedance is the deviation of a metric or multiple metrics beyond an established threshold

within a specified time interval [44]. This approach has a number of limitations, with a

primary limitation being reliance on a predefined criteria to detect anomalies, which leaves

emergent, or previously unknown, risks or issues undetected [47]. Further, current methods

to assess airspace behavior rely on human experience, where air traffic controllers form

mental models and create abstractions of the behavior in a local region to inform their

decisions [11]. The reliance on air traffic controller experience/intuition may introduce
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inefficiencies as the decisions are based more on observations of a local region rather than

an analysis from a systems perspective [11].

Thus, to assess the impact of new technologies and a new concept of operations at

both the flight and airspace levels, novel, more automated, analysis methods are required

that enable detection of emergent behavior in aviation systems [12, 13, 14, 15, 16, 32,

43]. However, the large scale and complexity of aviation systems make it challenging to

use classical dynamical or physics-based methods for the necessary analyses [46, 48, 49,

50]. Fortunately, as a product of the modernization efforts, new data-generating technolo-

gies and programs have been introduced in aviation systems, which has resulted in more

sources, volume, and availability of operational data than ever before [12]. This leads to

Observation 2:

Observation 2

The complexity of Air Traffic Management systems restricts the use of classical

physics-based methods for the analysis of new operational concepts, yet increased

availability of operational data provides new analysis opportunities.

1.4.2 Operational Data

The efficient use and management of ATM system operational data is key to facilitate the

modernization efforts [11]. The types of operational data recorded and stored include nu-

merical (continuous and discrete numbers), textual (characters and strings), and multime-

dia (audio and video) data. The multitude of operational data sources may include data

sources related to environmental conditions (e.g. weather reports), traffic conditions (e.g.

airline schedules, flight plans, delays), or flight tracks (e.g. surveillance data). Arguably

the highest-fidelity operational data source, the Flight Data Recorder (FDR) on-board an

aircraft, records massive amounts of operational data for each flight. This data is collected

as part of the structured FOQA program. The amount of operational data recorded includes
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anywhere between 80 to 2,000 metrics at a sampling rate of 0.25 to 8 Hz [51]. As opera-

tional data collection technologies continue to advance, it is predicted that the global fleet

of aircraft could generate upwards of 98 million terabytes of data by 2026 [52]. Though,

access to FOQA data is highly restricted.

On the other hand, the expansion of ADS-B technology has enabled open-source trajec-

tory data to become publicly available and much more accessible, which makes large-scale

analyses more feasible [53]. As mentioned, ADS-B technology has been deployed to en-

hance ATM system capacity, efficiency, and safety by enabling operators to more precisely

determine aircraft position, as well as enabling aircraft to determine their position with

respect to similarly-equipped aircraft, using satellite, inertial, and radio navigation [54].

ADS-B Out periodically emits (at approximately 1 Hz) an aircraft’s position (latitude and

longitude), altitude, heading, horizontal (ground) and vertical speed, along with other rele-

vant metrics to ground stations and other equipped aircraft [54]. A decent ADS-B receiver

may receive messages from cruising aircraft located up to 200 miles away. The trajectory

data available in ADS-B messages is the core information that is used by ATM systems as

a basis for activities such as:

• Distributing flight information to relevant airlines and ATC units

• Facilitating timely coordination between sectors and units

• Correlating flight data with tracks

• Monitoring the adherence of an aircraft to its assigned route

• Detecting and resolving conflicts

The explosion in volume and availability of operational data recorded may be exploited

to provide many new opportunities for analysis of ATM systems [46, 48, 50, 55]. Specifi-

cally, as the volume of operational data recorded grows, data-driven analysis methods are

fitting to address the challenge of improving capacity and efficiency, while maintaining
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safety, in increasingly complex systems. The vast amount of operational data recorded

provides unprecedented opportunities regarding understanding the intricacies of ATM sys-

tems. Additionally, a need has been identified to understand and monitor higher system-

level phenomena in the context of leveraging the vast amount of recorded aviation data

[48]. If managed well, the operational data recorded may provide novel insights into the

complex dynamic problems related to ATM systems [48]. These novel insights may be ex-

tracted related to operations at both the flight and airspace levels. Moreover, the importance

of a data analyst perspective is emphasized, which is the ability to shift attention from the

focus of the dynamics of single events to the emerging statistical characteristics of large

data sets [48].

The discovery of previously unknown safety risks or efficiency issues in aviation op-

erational data falls under the scope of knowledge discovery and information extraction.

Efforts to mine the operational data support the aviation safety life cycle and strategies for

safety improvement, as identified by NASA, [56]. Data mining is defined, formally, as

“the process of applying computational methods to large amount of data in order to reveal

new non-trivial and relevant information” [57]. Data mining methods are generally split

into two categories: statistical models and machine learning models. Data mining methods

have been identified to play a significant role in understanding the NAS [46]. Their signifi-

cance is related to developing capabilities to both mitigate current inefficient and/or unsafe

operations and anticipate future inefficient and/or unsafe operations.

Human operators and analysts are simply not able to properly analyze ATM system

operational data for emergent safety risks or efficiency issues due to the high volume and

dimensionality of the data they are presented with. Additionally, as introduced, current

methods in place to narrow the scope of operations to review, such as exceedance-based

methods, have a number of limitations. Thus, data mining methods are better equipped

to provide operational insights related to interdependencies in high-dimensional trajectory

time series data and detect potentially undesirable emergent behavior. Recently, advances
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in modern machine learning techniques have significantly contributed to the use of data-

driven techniques to gain insights from the operational data, specifically ADS-B trajectory

data. There is consensus that data analytic methods applied to ATM syste, operational data

can significantly contribute to improving future operations [58]. Specifically, monitoring

ATM system behavior to identify successful practices and inefficiencies or safety risks to

provide guidance in offline system adjustments is necessary [58]. In this context, offline

refers to analysis of stored historical data as opposed to online analysis of streamed data

in real time or near-real time. Offline analysis provides the opportunity to discover some-

thing novel in the data as well as to perform data exploration, which enables an analyst to

obtain a more comprehensive understanding of a system’s operations [46]. This leads to

Observation 3:

Observation 3

ADS-B data provides the basis for offline data-driven methods to be applied to an-

alyze Air Traffic Management system operations at both the flight level and the

airspace level.

1.4.3 Terminal Airspace Systems

The terminal airspace is a general term describing the airspace surrounding an airport.

The terminal airspace system refers to the complex system of systems related to all oper-

ations that occur within the terminal airspace area. The terminal airspace system expe-

riences a high density of converging and diverging aircraft, the interdependent utilization

of both airspace and airport resources, and is, generally, a more constrained airspace fea-

turing complex traffic dynamics [53]. Overall, the terminal airspace system is a decidedly

complex system that is highly sensitive to traffic conditions and environmental conditions

[59].

The size and shape of a terminal airspace system depends on the number of airports
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contained within it, the airway configurations, and the number and length of arrival and

departure trajectories [59]. A terminal airspace system does not necessarily correspond to

only one airport location as there may exist a number of airport locations within one termi-

nal airspace system, such as in metroplex terminal airspace systems. Metroplex terminal

airspace systems serve large metropolitan regions and encompass two or more airports

[11, 60]. Metroplex terminal airspace systems containing more than one major commer-

cial airport feature more complex traffic dynamics and significant interactions and inter-

dependencies, which further complicates already very complex terminal airspace systems

[11].

In the context of system-wide efficiency and safety, the terminal airspace is of great

significance. Operations within the terminal airspace, in particular, are known to greatly

impact both flight-level and airspace-level capacity and efficiency [53]. Further, most ac-

cidents and incidents occur within the terminal airspace, so it is a safety-critical airspace.

Figure 1.7 displays the relative frequency of accidents between 2001 and 2020 with respect

to the flight phase in which they occur. All phases, with the exception of the en-route phase,

occur when aircraft are operating within the terminal airspace. The en-route phase makes

up less than 10% of total both fatal and non-fatal hull loss accidents; hence, over 90% of all

accidents and incidents occur within the terminal airspace [61]. In addition, the majority

of both fatal and non-fatal hull loss incidents and accidents occur during the operations of

arriving aircraft, during the approach or landing phases of flight.
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Figure 1.7: Distribution of Accidents per Flight Phase, 2001-2020 [61]

Therefore, considering the global ATM system modernization objectives of increasing

safety, capacity, and efficiency, it is important to focus on operations within the terminal

airspace. Specifically, due to the higher rate of incidents and accidents during the operations

of arriving aircraft, a focus on arriving aircraft operations within the terminal airspace is of

paramount importance. This leads to Observation 4:

Observation 4

Analysis of Air Traffic Management system operations of arriving aircraft has the

highest potential to impact system safety, capacity, and efficiency levels.

1.5 Summary

The background concepts and observations are summarized. Prior to the onset of the

COVID-19 Pandemic, air traffic was experiencing steady, long-term growth with signifi-

cant anticipated growth over the next 20 years. Despite the drastic reduction in air travel,

the aviation industry is expected to make a recovery and continue the trend of significant
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growth. Thus, in response to the past and predicted air traffic growth, within the past two

decades, global efforts, such as NextGen in the U.S., have emerged to support the modern-

ization of ATM systems with the objectives of introducing new technologies and concepts

of operation to improve efficiency and capacity, while also maintaining high levels of ATM

safety.

Current aviation systems are decidedly complex systems-of-systems, where both the

forecast rise in air traffic volume and implementation of a new concept of operations related

to ATM transformation efforts will increase this complexity. Specifically, this complexity

will result in modifications to the concepts of operations at the flight-level and, conse-

quently, the airspace-level, where analysis of the current state of operations and proposed

future state of operations is paramount to inform planning and decision-making as ATM

systems are transformed. Thus, novel analysis methods are required to assess the impact

of the new technologies and concept of operations. Due to system complexity, classical

dynamical or physics-based models are difficult to utilize. However, new data-generating

technologies, such as ADS-B, have been introduced, which has made development of of-

fline data-driven methods for ATM system analysis more feasible and prevalent. Opera-

tions within the terminal airspace, specifically operations of arriving flights, are the most

safety-/capacity-/efficiency-critical. Considering all observations leads to the following

Overarching Research Question:

Overarching Research Question

How can the offline application of data-driven methods to ADS-B data be leveraged

to analyze Air Traffic Management system arriving aircraft operations at both the

flight level and the airspace level?

The remainder of this thesis adheres to the following structure:

• chapter 2 reviews the literature on current data-driven approaches that leverage ADS-

B data to analyze ATM system arriving aircraft operations, both at the flight and
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airspace levels, such that gaps are identified.

• chapter 3 details the formulation of pertinent research questions and associated hy-

potheses.

• chapter 4 provides an in-depth overview of the design of the experimental approaches

required to test the hypotheses formulated in chapter 3.

• chapter 5 details the implementation of each of the experimental approaches designed

in chapter 4 and presents and discusses the results of each implementation.

• chapter 6 concludes the thesis, presenting the contributions and offering recommen-

dations for future work.
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CHAPTER 2

LITERATURE REVIEW

As introduced in chapter 1, this research is motivated by developing capabilities to support

the global modernization efforts to improve ATM system safety, capacity, and efficiency.

Specifically, this research seeks to determine how offline application of data-driven meth-

ods to ADS-B data extracted for arriving aircraft may be leveraged to obtain actionable

insights pertaining to the analysis ATM system operations at both the flight and airspace

levels. The literature review is subsequently motivated by gaining an understanding of the

existing data-driven methods and approaches to analyzing ATM system arriving aircraft

operations.

As data-driven approaches to analyze operational data, specifically ADS-B data, have

gained traction among researchers, several methods have been developed motivated by

gaining increased understanding of ATM systems as well as the global modernization ef-

fort objectives of increasing safety, capacity, and efficiency. The existing aviation literature

related to applying data-driven methods to ADS-B data is often concerned with two pri-

mary, sometimes inter-related tasks: air traffic flow identification and anomaly detection.

Generally, air traffic flow identification and anomaly detection are leveraged to support a

flight-level analysis. Air traffic flow identification and anomaly detection may be consid-

ered two relevant research areas related to the analysis of ATM system arriving aircraft

operations at the flight level. With respect to an airspace-level analysis, the aviation litera-

ture is fairly limited with no clearly defined tasks. However, the need for an airspace-level

analysis component in the analysis of ATM system arriving aircraft operations has been

established. Therefore, a broader third research area may be identified as overall airspace-

level analysis. Considering the three research areas identified the following Overarching

Hypothesis is formulated:
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Overarching Hypothesis

If an offline data-driven methodology to be applied to ADS-B data for arriving air-

craft is developed that performs (i) Air Traffic Flow Identification, (ii) Anomaly

Detection, and (iii) an Airspace-Level Analysis, then Air Traffic Management sys-

tem arriving aircraft operations are analyzed at both the flight level and the airspace

level.

An outline of the three steps in the proposed methodology are displayed in Figure 2.1.

Figure 2.1: Outline of Proposed Offline Data-Driven Methodology to be Applied to ADS-B
data for Arriving Aircraft

Air traffic flow identification is sometimes completed as a data pre-processing step for

flight-level anomaly detection, resulting in the inter-related nature of these two tasks. How-

ever, air traffic flow identification may also be the primary method leveraged for the flight-

level anomaly detection task. Methods for anomaly detection are undoubtedly diverse and

no investigation into any interdependencies or relationship that may exist between different

types of anomalies detected in ADS-B data, such as those detected leveraging air traffic

flow identification methods or those detected in additional distinct sets of ADS-B data and

associated derived metrics. On the other hand, related to airspace-level analysis, there has

been some adoption of the output from the air traffic flow identification task to support

airspace-level operational pattern analysis. However, overall, the aviation literature related

to the development of methods to support airspace-level analyses is sparse.

The objective of this literature review is to identify any gaps related to the three out-
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lined steps in the proposed offline data-driven methodology to be applied to arriving aircraft

ADS-B trajectory data. The literature review begins with a review of air traffic flow identi-

fication methods. Next, a review of and distinction between the various anomaly detection

methods available in the literature is presented. Finally, an overview of the limited methods

that support airspace-level analysis is provided.

2.1 Air Traffic Flow Identification

Trajectories following a similar spatial path, or belonging to the same air traffic flow tend

to correspond to a specific structured operation within an airspace, as defined by ATC. For-

mally, a trajectory may be defined as “a mathematical object used to describe the evolution

of a moving object” [62], where a time-ordered list of state vectors may be used to represent

this evolution. Typically, the states of interest related to aircraft trajectories include: longi-

tude, latitude, altitude, speed (typically ground speed), and track angle or heading. While

the precise definition of an air traffic flow depends on the application, it is generally con-

sidered a pattern of air traffic in the spatial and, in some applications, temporal dimensions.

A large portion of aviation research focuses on the spatial dimension of air traffic flows,

considering the longitude and latitude trajectory states [50, 63, 64, 65, 66, 67, 68, 69]. To

provide a visual reference for the appearance of air traffic flows, Figure 2.2 displays the

air traffic flows identified at San Francisco International Airport (KSFO) considering four

months of operations in 2019. Air traffic flow identification is often performed to support

a more in-depth analysis of the efficiency of airspace operations. Specifically, air traffic

flow identification techniques have been developed to support performance assessments,

airspace monitoring efforts, more effective ATFM, and ATM system decision-making [11].

Moreover, air traffic flow identification algorithms may be leveraged to support airspace

redesign [58], conflict detection [70], and environmental impact assessment [71, 72]. For

instance, to determine optimal sector partitioning with respect to workload measures, it is

useful to be aware of the actual location of major traffic patterns [58]. Further, several ana-
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lytical models for tactical ATFM rely on crude airspace capacity estimates and abstractions

that do not correspond to the air traffic flows observed [58]. Thus, knowledge of the ac-

tual locations of air traffic flows supports the development of data-driven airspace capacity

models that are able to provide more accurate estimates [58]. Additionally, techniques to

identify and understand air traffic flows become increasingly important as the global mod-

ernization effort concepts move away from fixed routes that structure the air traffic [73].

Finally, air traffic flow identification may be implemented as a pre-processing step prior to

applying anomaly detection methods, discussed in greater detail in section 2.2.

Figure 2.2: Air Traffic Flows Identified at San Francisco International Airport within Four
Months of Operations in 2019

Typically, air traffic flows are identified through application of trajectory clustering

methods. Clustering may be defined as “the task of dividing the population or data points

into a number of groups such that data points in the same groups are more similar” [74].

Customarily, the trajectory clustering task is formulated as an unsupervised machine learn-

ing problem, where the task involves partitioning a data set containing individual flight tra-

jectories into similar groups to define air traffic flows [75]. The key distinction between
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supervised and unsupervised machine learning problems is the presence of ground-truth

labels within the data set. The input to these methods typically includes a feature vector

matrix, where each row represents a single flight and each column represents a trajectory

state (such as longitude and latitude coordinates) at a specified trajectory point.

Numerous diverse trajectory clustering methods have been applied to identify air traf-

fic flows in previous works. Eckstein [76] presents an automated flight track taxonomy

to identify air traffic flows within a terminal airspace by combining Principal Component

Analysis (PCA) [77] and k-Means clustering [78]. PCA is a technique commonly leveraged

for dimensionality reduction, where information loss is minimized. However, a potential

limitation of the usage of PCA to reduce the dimension of a complex, high-dimensional

data set is that it is a linear method, and may not perform well on a data set in which corre-

lations are non-linear. Further, a limitation of the k-Means clustering algorithm leveraged

by Eckstein [76] is that the algorithm does not identify nor exclude any outliers during the

clustering process, which may skew results. Rehm [79] leverages a single linkage hierar-

chical clustering technique to identify prevalent airport arrivals routes automatically. To

deal with the “outlier issue”, a grid-based approach to outlier detection is used prior to

applying the clustering algorithm [79]. However, implementation of this method requires

setting, a priori, the number of air traffic flows to detect [79], which may not always be

feasible, or desirable.

Gariel et al. [63] propose two methods for air traffic flow identication: (1) trajectory

clustering based on way points and (2) clustering based on trajectory states via PCA. Both

of these proposed methods leverage the Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) algorithm. DBSCAN is robust to noise such that outliers that do not

appear to belong to an air traffic flow are officially designated as outliers by the algorithm

[80]. Additionally, DBSCAN does not require any a priori specification of the number

of clusters to form [80]. Simply put, density-based clustering algorithms operate on the

assumption that clusters exist in high-density regions in the data space, with low-density
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regions existing between the clusters. While Gariel et al. [63] do augment the feature

matrix with additional derived features, usage of the PCA dimensionality technique is an

inherent limitation of this method, as explained previously, due to potentially significant

non-linear data relationships not being able to be preserved. Finally, Gariel et al. [63]

find that way-point-based trajectory clustering performs sub-optimally compared with the

application of the trajectory state-based clustering method.

Enriquez & Kurcz [81] aim to avoid the shortcomings associated with the application

of PCA to trajectory state data by developing an air traffic flow identification algorithm

based on spectral clustering. This algorithm is demonstrated on both en-route and terminal

airspace trajectories [81]. However, the parameters specified related to the spectral clus-

tering algorithm developed include a local scale parameter used to construct the similarity

matrix, which effectively pre-determines the “width” of each cluster [81]. Due to differ-

ing specifications for the diverse procedures within a terminal airspace, the definition of a

uniform “width” across all clusters may be considered a limitation of this method.

Marzuoli et al. [82] build upon the method introduced by Gariel et al. [63] and present

clustering of en-route trajectories within an airspace. In the same procedure as [63], the

data set is augmented with additional features, PCA is applied, and then DBSCAN is ap-

plied to identify the air traffic flows. Murça et al. [11, 58, 83] present a framework for air

traffic flow characterization, which begins with the identification of air traffic flows leverag-

ing DBSCAN. Delahaye et al. [84] present the usage of a novel distance metric formulated

to measure the similarity of trajectories to one another considering entire airspace opera-

tions. This distance metric is utilized with a hierarchical clustering algorithm to cluster

trajectories operating within the French airspace during a single day [84].

Basora et al. [73] introduce a trajectory clustering framework utilizing the Hierarchical

Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm [85]

to identify air traffic flows. HDBSCAN is essentially an improved hierarchical version of

the popular DBSCAN algorithm. The primary benefit of applying HDBSCAN is that it is
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capable of managing clusters of varying densities [85]. Additionally, HDBSCAN requires

only a single input parameter, which indicates the minimum number of data samples that

are required to form a cluster [85]. Basora et al. [73] demonstrate the use of two differ-

ent distance functions for the application of HDBSCAN: the Euclidean Distance (ED) and

Symmetrized Segment-Path Distance (SSPD). Olive & Morio [54] propose a method in-

tended specifically to identify air traffic flows within the terminal airspace. This method

recursively applies DBSCAN to cluster “significant trajectory points”, and then builds a

dependency tree that is ultimately used to label a trajectory as belonging to an air traffic

flow or as an outlier [54]. The significant trajectory points identified are those returned af-

ter the application of the Douglas-Peucker [86] algorithm. The Douglas-Peucker algorithm

reduces a curve composed of line segments into fewer line segments, based on a sensitivity

parameter [86]. Effectively, the Douglas-Peucker algorithm identifies trajectory “turning

points”, or way points. Though, Gariel et al. [63] explored a way-point-based clustering

method and did not observe good performance.

Olive & Basora [87] demonstrate the use of DBSCAN and a Gaussian Mixture Model

(GMM) for trajectory clustering. In this application, DBSCAN is applied to both the full

data set as well as a data set that results from the application of the t-Distributed Stochastic

Neighbor Embedding (t-SNE) [88] dimensionality reduction technique [87]. The GMM

clustering does not allow for consideration or detection of outliers [87]. In other work,

Olive & Barsora [66] introduce a recursive implementation of DBSCAN to identify air

traffic flows and outliers for en-route trajectories. Recently, Olive et al. [67] demonstrated

the use of autoencoder-based deep clustering techniques to identify and characterize air

traffic flows. Specifically, Olive et al. [67] present two deep clustering techniques, both

of which embed trajectories into latent spaces to facilitate the air traffic flow identification

task. Finally, as mentioned, air traffic flow identification is often implemented as a data

pre-processing step prior to the application of anomaly detection methods to prevent overly-

conservative anomaly detection models from being developed [50]. For instance, Puranik
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[25], Deshmukh [50], and Olive & Basora [68] applied DBSCAN to identify air traffic

flows and outliers prior to applying anomaly detection methods.

To perform any of the methods of trajectory clustering presented, similar data instances

are grouped into clusters according to a defined similarity function or distance function.

A distance function is a function defined to compute the similarity, or distance, between

two data instances. It has previously been noted that one of the most critical components

of the trajectory clustering task is the definition of an appropriate distance function [54].

Trajectories are functional in nature, not independent data points, so the selection of an ap-

propriate distance function is often not straightforward [67]. The ED is the most commonly

implemented to compute the distance between two n-dimensional trajectories [68].

Due to the convergence/divergence of trajectories within the terminal airspace, the ED

computed between trajectory points closest to the airport is relatively small, regardless

of the air traffic flows to the two trajectories of interest belong. This is primarily due to

airport runway configuration and the runways assigned for arrivals and departures. On the

other hand, the ED computed between trajectory points at the terminal airspace’s defined

analysis border may be relatively large, even for two trajectories-of-interest belonging to

the same air traffic flow. The ED between these trajectory points depends on the density

of the air traffic flows and the defined terminal airspace radius around the airport. The

uneven distribution of distances as aircraft arrive at or depart from the airport may skew the

classification of trajectories. This skew may result in the misclassification of trajectories

and, therefore, inadequate identification of air traffic flows. Therefore, the use of the ED to

cluster trajectories may not be adequate [54, 89].

Other distance functions have been proposed to address the issues related to the limita-

tions of the ED, such as the SSPD [89], as implemented by Basora et al. [73]. Basora et

al. [73] compares the use of the ED versus the SSPD to cluster en-route trajectories and

determined that the use of the SSPD results in more precise air traffic flow identification.

However, there exists a significant trade-off in terms of computation time, where a large
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computation time is likely to prevent subsequent applications of an algorithm in real-time.

Gariel et al. [63] and Olive & Morio [54] present air traffic flow identification methods

that are iterative and point-based. Although, the clustering of entire trajectory records or

multi-point segments at once is often a requirement to enable the extension of methods

to real-time applications. While the real-time application of methods is not the focus of

this work, aviation organizations have set goals to ultimately deploy methods enabling the

characterization of the ATM systems in real-time or near-real-time [33]. This leads to the

identification of Gap 1:

Gap 1

A reliable method to identify air traffic flows that considers the converging nature of

arrival trajectories and may ultimately be extensible to real-time applications.

2.2 Anomaly Detection

Anomaly detection may be defined broadly as the process of detecting rare instances or

sets of instances in a data set that may be of concern due to behaviors or characteristics

that differ from the rest of the data set. An anomaly is defined, formally, by the Merriam-

Webster dictionary, as “something different, abnormal, peculiar, or not easily classified”

[90]. However, more in the context of data mining, an anomaly may be defined as “data

deviating from or not being in agreement with what is considered normal, expected, or

likely in terms of data probability distributions or the shape and amplitude of a signal

in a time-series” [49] or, more simply, “patterns in data that do not conform to a well-

defined notion of normal behavior” [91]. In general, the terms anomaly and outlier are

interchangeable when referring to the use of anomaly detection methods. Anomalies are

often classified into three categories: point, contextual (also referred to as conditional), and

collective anomalies, where a brief overview of each is presented [49, 91]:

• A point anomaly is a data instance that differs by a measure of significance from
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the rest of the data instances in a data set [49]. The detection of point anomalies has

been the focus of most research related to anomaly detection as it is considered the

simplest type of anomaly. A visual representation of point anomalies in a data set of

two-dimensional data points is displayed in Figure 2.3.

Figure 2.3: Point Anomaly [91]

• A contextual, or conditional, anomaly is a data instance that is an anomaly only in

a particular context within a data set [49]. Context is ascertained by the structure of

the data set and typically must be specified as part of the problem formulation [91].

Each data instance is said to be defined using contextual attributes and behavioral at-

tributes [91]. Context attributes determine the context, i.e. neighborhood, for the data

instance [91]. Behavioral attributes define the non-contextual characteristics of the

data instance [91]. A visual representation of a contextual anomaly in a time-series

data set of monthly temperature is displayed in Figure 2.4. In this monthly temper-

ature plot, a contextual attribute would be the month the temperature is recorded in

and a behavioral attribute would be the recorded temperature. Though, recorded tem-

perature t2 is not a temperature that differs significantly from the rest of the data set,

as recorded temperature t1 is the same value. However, the recorded temperature t2 is
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an anomaly, as it is much lower than the previous June recorded temperature, where

the recorded temperature t1 is associated with December, a usually low-temperature

month.

Figure 2.4: Contextual (Conditional) Anomaly [91]

• A collective anomaly is a data instance that may be a set of data points, or data

object, such as a time-series sub-sequence, that is an anomaly as a whole, yet subsets

of the data instance may not be anomalies on their own [49], i.e. the “collective” of

the data instance, or data sub-sequence, is an anomaly. Collective anomalies are only

able to be detected in data sets in which data instances are related in some way, such

as sequential time-series data, spatial data, or graph data [49]. A representation of a

collective anomaly in time-series data is displayed in Figure 2.5. In this time-series

plot, there is an identifiable pattern, and it is evident that the anomalous sequence

does not exceed the data set typical range in values; however, the repeated mid-range

values that do not follow the typical pattern of the time-series data set cause the data

instance to be identified as an anomaly. A point anomaly or a collective anomaly

may also be a contextual anomaly if contextual information is specified [91].
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Figure 2.5: Collective Anomaly [92]

Development of methods to detect all three types of anomalies have been presented

within the aviation literature related to detecting anomalies leveraging the ADS-B trajec-

tory data. Related to aviation, anomalies have been defined as “uncommon events with a

potential for a meaningful operational or safety-related risk” [64, 93]. While an anomaly

does not inherently indicate an issue, it may point to a potential issue or emergent behavior

that may be of interest to an analyst for further evaluation [25, 94, 95]. Due to less knowl-

edge regarding potential consequences of anomalies, there is more risk, in the context of

both efficiency and safety, associated with the non-standard operations. There exists much

data and experience regarding the evolution of the standard, or normal, operations, yet there

is little information regarding the evolution of non-standard operations.

In the context of ATM systems, model-based anomaly detection methods are gener-

ally difficult to implement due to the use of models with insufficient fidelity [49]. The

insufficient fidelity results from over-simplified assumptions that are often made due to the

complexity of the system. Generally, the purpose of the application of anomaly detection

methods to ATM system operational data is to support operators, planners, and decision-

makers in facilitating an efficient and safe airspace. Currently, exceedance detection is

one of the most common methods of analyzing ATM system operational data to detect

anomalies [44, 45, 46]. An exceedance is the deviation of a metric or multiple metrics

beyond a pre-established threshold within a specific time interval [44]. The exceedance

detection method has a number of limitations, with a primary limitation being reliance

on a pre-defined criteria to detect anomalies, which leaves emergent behavior undetected
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[47]. Therefore, leveraging machine learning techniques to detect anomalies in ATM sys-

tem operational data has become common in the aviation literature. Utilization of machine

learning techniques to detect anomalies has many benefits over methods that rely on de-

tecting exceedances in a specified set of metrics. Thus, in recent years, the development

of machine learning-based methods to detect anomalies in ATM system operational data,

specifically ADS-B data, has significantly increased, as evidenced by a recent increase in

the literature on this topic. Basora & Olive [49] publish a review of the recent advanced

anomaly detection methods applied to aviation.

Basora & Olive’s [49] review includes an overview of five identified anomaly detec-

tion method categories, which include: distance-based, ensemble-based, statistics-based,

domain-based, and reconstruction-based [49]. Ultimately, the choice of an anomaly de-

tection method is dependent on the type, dimensionality, and heterogeneity of the data set.

Further, the desired output of the anomaly detection method is an important considera-

tion in selecting a specific method to apply. Typically, the output of an anomaly detection

method is either an anomaly score, which indicates how anomalous a data instance is, or the

output is a label indicating whether a data instance is classified as an anomaly or nominal.

For techniques in which only a label is output, there may exist additional computational

steps that may be taken to obtain anomaly scores to indicate a level of anomalousness for

the data instances. An anomaly score may be taken as a measure of abnormality of a data

instance. Often anomaly detection methods that output an anomaly score require some

threshold to be set to ultimately detect the anomalies. As one of the primary objectives in

applying anomaly detection methods to ATM system operational data sets is discovering

non-standard operations to be further analyzed by SMEs, often a label is a sufficient output.

Moreover, there exist supervised, semi-supervised, and unsupervised machine learn-

ing algorithms that may be leveraged for anomaly detection. The key distinction between

supervised and unsupervised machine learning methods is the presence of labels within

the data set. Supervised anomaly detection methods are utilized when the data set is la-
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beled such that the anomalous data instances have been previously identified. Supervised

anomaly detection techniques are often leveraged in the case where an online anomaly de-

tection algorithm implementation is desired. In this case, a classifier may be trained with

the labeled data set, then the trained model is applied to streaming data to detect anoma-

lous data instances in real time. Semi-supervised anomaly detection methods are utilized

in cases in which it is known that the entire training data set contains data instances that

all have the same label (often nominal). The premise is that the model is trained on a

nominally-labeled data set such that when the model is fed new, or previously unseen,

data instances, such as in the case of an online application, then the model is able to de-

tect anomalies in the new instances. Unsupervised anomaly detection methods are utilized

when no labels are present in the data set, i.e. it is not known which data instances are

nominal or anomalous. Unsupervised learning methods are leveraged to “draw interference

from data sets consisting of input data without labeled responses” [96]. There is typically

some measure of similarity or distance that is evaluated to detect data instances that are

outlying or anomalous. ATM system operational data is typically unlabeled with respect to

anomalies, i.e. there does not typically exist a parameter in the data sets that explicitly indi-

cates whether a data instance is an anomaly or not. Accordingly, the ATM system anomaly

detection task is often formulated as an unsupervised anomaly detection problem. Thus,

in this research, the term anomaly detection is intended to refer to unsupervised anomaly

detection.

Applying any type of anomaly detection method relies on the selection and specification

of relevant metrics of interest. A wide variety of anomaly detection methods exist within

the aviation literature, where each may select differing metrics on which to perform the

anomaly detection. These metrics may either be those directly extracted from the data set

or associated derived metrics. A prominent issue arriving aircraft face is the management

of energy states [97]. For instance, an aircraft may possess excess energy due to it being

too high on glide slope (high potential energy) or in instances in which a high tail wind

39



is experienced (high kinetic energy) [97]. Thus, as proper energy management plays a

significant role in the success and safety of aviation approaches, energy metrics are often

derived from trajectory data to support analysis. Puranik et al. [98] complete a survey of

the existing literature on energy management in aviation operations and identifies energy

metrics that are most relevant. These energy metrics include Specific Potential Energy

(SPE), Specific Kinetic Energy (SKE), Specific Total Energy (STE), and their respective

rates - Specific Potential Energy Rate (SPER), Specific Kinetic Energy Rate (SKER), and

Specific Total Energy Rate (STER).

Due to the importance of aircraft position (spatial states) and aircraft energy state(s),

metrics indicating an aircraft’s position and/or energy state are most often selected to be

included in an analysis, where this research refers to these metrics as spatial metrics and

energy metrics, respectively. Spatial metrics are those that describe an aircraft’s position,

which may include longitude, latitude, altitude, or heading/track angle. Energy metrics

are those that may be derived from the position and speed data. These metrics indicate the

energy state of the aircraft, such as SPE, SKE, STE, and their respective rates. However, the

anomaly detection methods presented within the aviation literature to detect anomalies in

ADS-B data and associated derived metrics typically detect anomalies in either the spatial

metrics or energy metrics. Therefore, this research (including Corrado et al. [99]), makes

a distinction between anomalies detected in spatial metrics and those detected in energy

metrics.

The detection of anomalies in trajectories’ spatial metrics typically occurs through the

identification of air traffic flows. This detection occurs as it is occassionally observed (de-

pending on method employed) that there exist trajectories that do not appear to entirely

align with an air traffic flow. Much of the air traffic flow identification literature report a

certain percentage of the trajectories that have been detected as outliers, where these trajec-

tories may be considered spatial anomalies. As defined by Corrado et al. [99], the concept

of a spatial anomaly is defined as “a trajectory whose spatial metrics do not conform to
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an identified set of air traffic flows representing standard spatial operations”. On the other

hand, as defined by Corrado et al. [99], the concept of an energy anomaly is defined as “a

trajectory within an air traffic flow whose energy metrics do not conform to standard en-

ergy operations”. Figure Figure 2.6 displays a notional representation of spatial and energy

anomalies per the definitions provided. The notional spatial anomaly does not conform to

any of the identified air traffic flows (indicated by the different colors). Similarly, the no-

tional energy anomaly presents an unusual STE profile compared to the other trajectories

within the flow, according to both the 25th to 75th and 5th to 95th percentile bounds.

Figure 2.6: Notional Depiction of Spatial and Energy Anomalies Among ADS-B Trajec-
tory Data for Arriving Aircraft at San Francisco International Airport within Four Months
of 2019 [99]

As communicated, spatial anomalies are typically detected as a byproduct of the air

traffic flow identification exercise, where section 2.1 details these methods. Though, not

all methods presented in section 2.1 provide the ability to detect anomalies, such as those

leveraging the k-Means clustering algorithm. However, nearly all recent air traffic flow

identification methods provide the capability to identify outliers.

The majority of methods reviewed in Basora & Olive’s [49] up-to-date review of the

recent advances in anomaly detection methods applied to aviation may be classified as

energy anomaly detection methods. Generally, when anomaly detection is referred to in

aviation literature, the implication is that the anomaly detection methods are applied to

either energy metrics derived from trajectory data or non-trajectory metrics that exist within

FOQA data sets. While anomaly detection in FOQA data sets is not the focus of this
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work, it is important to introduce a few relevant and prominent methods as ADS-B data

energy anomaly detection methods are inspired by these methods. Subsequently, anomaly

detection methods applied to ADS-B trajectory data are reviewed.

Das et al. [100] present one of the first and most prominent anomaly detection methods,

multiple kernal anomaly detection (MKAD). MKAD detects anomalies in heterogeneous

sequences of both continue and discrete FOQA data metrics. The novelty of MKAD is

the ability to successfully and simultaneously examine both continue and discrete metrics

[100]. Li et al. [101] introduce another prominent anomaly detection method, ClusterAD,

which is a clustering-based method that leverages the DBSCAN algorithm to detect anoma-

lies in FOQA data metrics. The fraction of outliers (anomalie) returned by ClusterAD is

specified a priori such that the DBSCAN input parameters are systematically varied such

that the specified fraction of outliers is attained [101]. Li et al. [102] present an extension

of ClusterAD, ClusterAD-DataSample, which aims to detect instantaneous anomalies in

FOQA data leveraging a GMM. Sheridan et al. [47] present a DBSCAN-based method for

anomaly detection in the approach phase.

As introduced, Puranik et al. [25] define energy metrics to be computed from trajectory

data. Puranik et al. [103], Puranik & Mavris [44, 94], and Puranik [25] derive the defined

energy metrics and implement procedures to detect flight-level and instantaneous anoma-

lies in general aviation operational trajectory data. Specifically, Puranik [25] leverages

DBSCAN and support vector machines (SVMs) to detect anomalies in both departing and

arriving general aviation aircraft trajectories. Considering commercial aviation operations,

Kim & Hwang [104], Deshmukh & Hwang [64], and Deshmukh [50] propose TempAD,

which designed to provide human-readable and easily interpreted formulas related to the

bounds of normality. TempAD leverages DBSCAN as a data processing step to identify

air traffic flows [50]. TempAD is applied to detect anomalies in the vertical dimension

(altitude), the speed dimension (ground speed), and energy metrics such as STE and SPER

[50, 64].
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Jarry et al. [105] detect energy anomalies through application of a Functional Principal

Components Analysis (FPCA)-based approach which is combined with a sliding window

and an outlier scoring capability. Jarry et al. [97] expand on [105] by leveraging FPCA

combined with HDBSCAN and Global-Local Outlier Score from Hierarchies (GLOSH) to

detect energy anomalies within the terminal airspace. The usage of DBSCAN-based meth-

ods is commonplace within the aviation anomaly detection literature. Finally, Corrado et

al. [106] present a deep learning-based framework to detect anomalies within the terminal

airspace considering a plethora of metrics in ADS-B data and associated derived metrics

as well as including weather and traffic/congestion data. Specifically, Corrado et al. [106]

leverage autoencoders to detect anomalies in the fused data set.

Similar to the air traffic flow identification/spatial anomaly detection methods that lever-

age clustering-based methods, the clustering-based energy anomaly detection methods re-

viewed similarly rely on re-sampling variable-length trajectories to be n-dimensional vec-

tors of trajectory points. However, the scope of the data considered in energy anomaly

detection applications often differs. The data processing typically depends on a distance-

or time-based threshold for cutting off the full trajectory data before re-sampling. For in-

stance, Das et al. [100] used the FOQA data recorded below 10,000 ft mean sea level and

Li et al. [101] used the FOQA data recorded during the final six nautical miles of the ap-

proach. Additionally, Deshmukh & Hwang considered trajectory data 20 nautical miles

from touchdown [64] and Jarry et al. [105] considered trajectory data 25 nautical miles

from touchdown, both establishing distance-based thresholds to process the data set.

In reviewing the literature, it is observed that there is a relative shortage of approaches

that consider both spatial and energy metrics in the same analysis. As mentioned, air traffic

flow identification is sometimes performed as a data processing step to identify groups of

trajectories following a similar spatial path to create smaller data sets on which to perform

energy anomaly detection. Trajectories belonging to the same air traffic flow tend to corre-

spond to a specified structured operation defined by ATC, i.e. specified headings, altitudes,
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speeds, and/or waypoints. For each structured operation, the approach and climb paths

mandated by ATC often have distinct energy profiles. To illustrate this concept, Figure 2.7

displays the STE profiles (25th to 75th percentile values) of three different air traffic flows

identified at KSFO in 2019. While there exists some overlap, it is evident these profiles

generally differ. Accordingly, the additional spatial context (i.e. air traffic flow to which a

trajectory belongs) enables an energy anomaly detection algorithm to yield less “conserva-

tive” results. For instance, as noted by Deshmukh [50], applying energy anomaly detection

methods to an entire arriving aircraft data set without contextual spatial information may

result in anomalous trajectories remaining undetected as their states are embedded within

the entire data set. Referring to Figure 2.7, while the energy states of Flow 1 and Flow 2

overlap, there are regions where they, distinctly, do not intersect, whereas Flow 3 tends to

exist more in the overlap region between Flow 1 and Flow 2. Thus, an energy anomaly for

a trajectory associated with Flow 1 in the lower STE range of Flow 2 would likely remain

undetected if the entire data set were considered in the application of an anomaly detection

method.

Figure 2.7: Distinct Energy Profiles of Different Air Traffic Flows Considering Four
Months of Operations at San Francisco International Airport in 2019
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The literature does not make it clear whether whether trajectories detected as spatial

anomalies (in the air traffic flow identification data processing step) are of any further con-

sequence with respect to their energy management. Similarly, there is no consensus on

the spatial trajectories of aircraft experiencing poor energy management. It is relevant to

analyze the energy states of all trajectories, even those that have previously been detected

as being spatially anomalous, due to the paramount importance of proper energy man-

agement. Moreover, if spatial anomalies are, in fact, considered with respect to energy

anomaly detection, it is unclear how they are considered, which is relevant with respect

to evaluating the energy anomalies ultimately detected. For instance, it is of interest to

ATC and other ATM system operators to know whether a trajectory not conforming to the

identified standard spatial operations has a higher likelihood of experiencing energy states

that are off-nominal, as this could pose a safety risk. An exploration of the relationship

between spatial and energy anomalies is currently lacking in the literature, yet offers op-

portunities to obtain actionable ATM system insights that may be useful in planning and

decision-making efforts. It is ideal for ATM system operators to understand the context in

which spatial anomalies should be placed such that the potential risks or impacts of certain

instructions that may result in an aircraft deviating from a standard spatial path may be

assessed.

Additionally, in the context of the ATFM, the relationship and any interdependencies

between spatial and energy anomalies may be significant. Further, knowledge of any rela-

tionships and/pr interdependencies is especially relevant as the ATM system is modernized,

and a shift toward the more efficient TBO occurs. Therefore, a quantitative analysis of the

relationship between spatial and energy anomalies is required to support current and future

ATM system planning and decision-making However, current methods to energy detect

anomalies in metrics derived from ADS-B data either do not consider or do not elaborate

on their consideration of spatial anomalies and, therefore, no knowledge of the relationship

between spatial and energy anomalies exists. Considering these observations leads to the
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identification of Gap 2:

Gap 2

A quantitative analysis of the relationship between spatial and energy anomalies

detected in arriving aircraft ADS-B data.

2.3 Airspace-Level Analysis

As mentioned, the aviation literature related to airspace-level analysis, considering that

airspace-level refers to the aggregation of the operations of all aircraft within an airspace,

is limited. However, it is asserted that the development of a method to perform an airspace-

level analysis is of equal importance to the development of flight-level analysis methods.

While analysis at the flight level (i.e. analysis of single trajectories) provides crucial knowl-

edge to ATM system operators, planners, and decision-makers, it is important to put into

context that each individual trajectory is a product of a larger airspace system, i.e. the

individual trajectories are not independent. As discussed in chapter 1, it is not possible

to improve the safety, capacity, and efficiency of ATM systems without analyzing ATM

systems at the airspace level.

To adequately identify opportunities for ATM system safety, capacity, and efficiency

improvement requires an understanding of the current airspace-level operational patterns.

An airspace-level operational pattern, or, simply, operational pattern, may be a combina-

tion of air traffic flows, or an airspace configuration, that is observed regularly. Therefore,

the identification of operational patterns is an important task in an airspace-level analy-

sis. Specifically, due to the constrained nature of the terminal airspace, identification of

operational patterns is of paramount importance.

Unlike an analysis at the flight level, where there exists time-series trajectory data as-

sociated with each flight that may be directly analyzed, an analysis of airspace-level oper-

ations requires that some time interval be specified over which to aggregate the time-series
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trajectory data of all flights operating within the airspace. The aggregation of the time-

series trajectory data of all aircraft operating within an airspace during a specified time

interval comprises what may be referred to as an airspace-level operational state, or, sim-

ply, operational state. It is important to identify which operational pattern an operational

state belongs to. However, there are inevitability time intervals in which the operational

state either is in transition between operational patterns or is not in transition between op-

erational patterns, yet does not conform to any of the identified operational patterns, i.e.

may be considered to be anomalous. In the context of performing an airspace-level anal-

ysis to inform the improvement of safety, capacity, and efficiency of ATM systems, these

operational states are likely the ones of most interest for further analysis by SMEs, plan-

ners, and decision-makers. Therefore, the characterization of operational states is an

additional important task in an airspace-level analysis.

Thus, identification of the operational patterns for arriving aircraft and characterization

of operational states during specified time intervals for arriving aircraft is required to obtain

actionable insights useful in the context of broader ATM system planning and decision-

making. The aviation literature is reviewed regarding the current state of airspace-level

analysis in the context of airspace safety, capacity, and efficiency. Additionally, a dis-

cussion on the aviation literature related to the identification of operational patterns and

characterization of operational states is presented.

In the context of capacity and efficiency related to airspace-level analysis, there exist

some data sources containing metrics that attempt to quantify/characterize some “opera-

tional states” within the entire terminal airspace system. For instance, the FAA’s Aviation

System Performance Metrics (ASPM) database includes traffic condition information for

terminal airspace systems such as the number of arrivals, percentage of on-time airport

arrivals, etc. for a specified time interval [107]. However, these metrics are quite simple.

The ASPM metrics are more so aggregations of flight-level metadata than aggregations

of aircraft trajectories’ time-series metrics, hence the previous placement of “operational
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states” in quotations. In the context of safety analysis, there similarly exist very limited

data sources containing aggregated metrics. While is often possible to ascertain informa-

tion related to accident or incident rates for a specified time interval, these metrics are not

especially useful in the context of assessing the impact of flight-level operations on the

operational patterns or characterization of operational states at the airspace level as inci-

dents and accidents are typically rare events. Some airlines, airports, or ANSPs gather

statistics regarding less severe events on one fleet of one airline [108], yet these statistics

are ,similarly, more-so aggregated flight-level metadata. Several system “safety metrics”,

such as Safety Performance Indicators, Safety Indexes, the Aerospace Performance Factor,

etc., have been defined for various airspace systems [109, 110, 111, 112]. Though, most of

these metrics lack a comprehensive method to aggregate the time-series data of all aircraft

trajectories’ within an airspace and rely heavily on the input of SMEs. Therefore, existing

metrics related to capacity, efficiency, and safety of an airspace system are not comprehen-

sive enough to identify operational patterns nor characterize operational states that are an

aggregation of all flight-level operations within an airspace.

Mangortey et al. [113] present a method to cluster daily operations at an airport, where

metrics such as the number of diversions, Ground Stops, departure delays, etc. are lever-

aged to characterize terminal airspace “operational states” as belonging to a specific cate-

gory on a daily basis. However, the metrics used are not an aggregation of the operations

of all aircraft within a terminal airspace during a specified time interval, i.e. an aggrega-

tion of all aircraft trajectories’ time-series metrics. Rather, these metrics are more-so an

aggregation of flight-level metadata. Hence, again, the placement of “operational states”

in quotations. Moreover, the time scale (entire day) of this characterization is quite large,

as operations may vary significantly throughout a single day, and it is important to be able

to identify specific time intervals through a day that may be abnormal for further analysis.

To conclude Mangortey et al.’s [113] systematic approach, a prediction model is presented.

This prediction model is leveraged to predict the category (cluster), or “operational state”,
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that a daily operation belongs to. Despite the limitations noted, it is important to note

the potential benefits the development of a prediction models have, namely, the ability to

improve tactical decision-making.

On the other hand, a few methods do exist that attempt to aggregate the time-series

behavior of multiple aircraft within a terminal airspace into operational states from which

to draw airspace-level conclusions. For instance, Enriquez [75] builds on the work of

Enriquez & Kurcz [81] and presents a method to identify temporally persistent flows in

the terminal airspace using spectral clustering methods. For each time period in a set of

time intervals, the spectral clustering procedure presented in [81] is leveraged to cluster

trajectories and identify air traffic flows, where a “nominal line” is computed for each air

traffic flow as the point-wise median of all trajectories assigned to the air traffic flow [75].

Across all time intervals, the nominal lines for all air traffic flows are added to a feature

vector matrix for the spectral clustering algorithm presented in [81] to again be applied.

Thus, air traffic flows that are persistent in time are able to be identified [75]. However,

despite being concerned with time intervals initially, the time intervals have little meaning

in the output of the method as demonstrated applications include identification of irregular

terminal airspace traffic (groups of trajectories) and identification of the required number of

RNAV procedures in the NAS [75]. Further, while this work does implement a computation

of the nominal lines, the nominal lines do not represent an aggregation of the behavior of all

aircraft operating within a terminal airspace during a specified time interval, nor all aircraft

either arriving or departing. Rather, nominal lines represent an aggregation of multiple

aircraft operations within only a single air traffic flow during some time interval. Thus, this

work does not present the identification of operational patterns nor the characterization of

operational states.

Murça et al. [58] introduce the concept of a Resource Use Matrix, which is a compact

representation of the air traffic flows throughout a day of operations intended to enable

comprehensive statistical analyses of airspace use for very large data sets. The Resource
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Use Matrix’s rows correspond to the air traffic flow identified and columns correspond to a

time interval, where the entries of the matrix indicate how many trajectories were associated

with an air traffic flow during a time interval [58]. The Resource Use Matrix is leveraged to

identify “Resource Use Patterns”, or recurrent modes of operations (operational patterns),

by clustering the columns of the Resource Use Matrix with the k-Means clustering algo-

rithm [58]. However, as indicated previously, the use of the k-Means clustering inherently

has limitations. Specifically, this algorithm is unable to identify outliers, which may be

operationally significant (in the context of characterizing operational states), and requires

the number of clusters to be set a priori. Further, there may be those time intervals in which

the terminal airspace system is transitioning between two distinct operational patterns (a

transition operational state) that may be of interest to ATM system operators, planners, and

decision-makers.

Murça [11] and Murça & Hansman [83] build on [58]. Murça [11] and Murça & Hans-

man [83] apply a hierarchical clustering algorithm to a set of “flow vectors”, which are the

columns of a “flow matrix”, which is similar to the Resource Use Matrix in that it indicates

which air traffic flows are active during specified time intervals. In these efforts, a hierar-

chical clustering algorithm is applied to reveal primary operational patterns (analogous to

the recurrent modes of operation in [58]) in metroplex terminal airspace systems [11, 83].

However, time intervals in which a terminal airspace operational state does not align with

a primary pattern, such as a transition or anomalous operational state, are not considered.

In addition to the identification of the primary operational patterns, the methods pre-

sented in [83] and [11] further enable prediction of the these operational patterns. Specif-

ically, Murça & Hansman [83] assess the prediction accuracy of three different machine

learning classification algorithms: random forests, support vectors machines, and multi-

nominal logistic regression. These predictions were made at various points within an eight-

hour planning horizon [83], where the one-hour planning horizon resulted in the highest

average prediction accuracy. Due to slightly better predictive performance, Murça & Hans-
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man [83] selected the random forest algorithm to predict operational patterns.

Additionally, Murça [114] presents a method to identify air traffic flows and subse-

quently predict which air traffic flows within a terminal airspace are active using weather

data. Murça [114] leverages a GMM for the prediction of active air traffic flows. However,

this method is motivated by identifying and predicting sections of the airspace that may be

available for AAM operations by assessing the activity of individual air traffic flows [114],

rather than identifying the overall operational pattern of the entire terminal airspace system

and/or characterizing operational states.

Additionally, an overarching limitation of the common operational pattern identification

methods presented by Murça [11], Murça & Hansman [83], and Murça [114] is that the

threshold for declaring an air traffic flow as being “active” is set at one flight. Therefore,

these works do not consider the distribution or density of aircraft trajectories, which may be

relevant in ATM system operation, planning, and decision-making. However, the relevance

of the ultimate capability to predict operational patterns is noted.

Finally, Zhong et al. [115] present a clustering-based method to analyze terminal

airspace “operation status” based on spatial trajectory “characteristic points”. However,

this method does not provide insight into distinct operational patterns nor operational states

of the entire terminal airspace system during specified time intervals. Further, unlike the

methods presented by Mangortey et al. [113], Murça & Hansman [83], Murça [11], and

Murça [114], no ability to predict the operation status is included [115]. Therefore, this

leads to the identification of Gap 3:

Gap 3

An airspace-level method to identify operational patterns, characterize operational

states (such as those that are nominal, transitional, or anomalous in nature), and

predict operational patterns considering the operations of arriving aircraft.

51



2.4 Summary

The literature review was motivated by gaining an understanding of the existing data-driven

methods and approaches to analyze ATM system operations at both the flight and airspace

levels, related to the three steps of the proposed methodology, such that gaps may be identi-

fied. First, a review of methods to identify air traffic flows was completed. It was identified

that there exists a gap related to the existence of a reliable method to identify air traffic

flows within the terminal airspace that takes the converging nature of air traffic flows into

account and is extensible to real-time applications (Gap 1). Next, a review of anomaly de-

tection methods was presented, where an important distinction was made between spatial

anomalies and energy anomalies detected in ADS-B data. Additionally, a gap was iden-

tified related to the existence of a quantitative analysis of the relationship between spatial

and energy anomalies (Gap 2). Finally, a review of methods to analyze airspace-level oper-

ational patterns and operational states was completed. It was noted that much less aviation

literature exists related to this topic, where the methods that are presented have several lim-

itations. Therefore, a gap was identified related to the existence of an airspace-level method

to identify operational patterns, characterize operational states (as nominal, transitional, or

anomalous in nature), and predict operational patterns considering arriving aircraft (Gap

3). Consideration of the Overarching Research Question and the review of the relevant

existing aviation literature leads to the formulation of the following Overarching Research

Objective:
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Overarching Research Objective

Contribute to the development of an offline data-driven methodology to be applied

to ADS-B data for arriving aircraft that enables and performs:

• The reliable identification of air traffic flows

• A quantitative investigation of the relationship between spatial and energy

anomalies

• At the airspace level, the identification of operational patterns, characterization

of operational states, and prediction of operational patterns

The specific contributions to each step in the proposed methodology with respect to the

existing approaches related to each step are specified in Figure 2.8 as well as the overall

collective contribution of implementation of the three steps.

Figure 2.8: Contributions to the Proposed Offline Data-Driven Methodology to be Applied
to ADS-B data for Arriving Aircraft with Respect to the Existing Approaches
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An overview of the structure of this thesis presented thus far is displayed in Figure 2.9.

The four observations made in chapter 1 lead to the formulation of the Motivating Re-

search Question, where an Overarching Hypothesis is formulated. A literature review

inspired by reviewing the state-of-the-art with respect to the three outlined steps in the pro-

posed methodology leads to the identification of three gaps, and, ultimately, the formulation

of the Overarching Research Objective of this thesis.

Figure 2.9: Thesis Structure: Literature Review
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CHAPTER 3

FORMULATION

An offline data-driven methodology to be applied to ADS-B data is proposed that is com-

prised of three steps, where a specific gap to be filled is identified related to each of the

three steps. The first step in the proposed methodology is Air Traffic Flow Identification,

where the primary contribution of filling the gap associated with this step is a more reli-

able method of identifying air traffic flows considering the converging nature of arriving

aircraft trajectories. Next, is the Anomaly Detection step, where filling the gap associated

with this step contributes knowledge of the relationship and interdependencies, if any exist,

between spatial and energy anomalies detected in arriving aircraft ADS-B data. Finally,

the Airspace-Level Analysis step concludes the proposed methodology, where filling the

gap associated with this step contributes an airspace-level method to identify operational

patterns, characterize whether an operational state is nominal, anomalous, or transitional,

and predict operational patterns considering arriving aircraft operating during a specified

time interval. This chapter details the formulation of the appropriate research questions and

hypotheses related to filling the gaps identified.

3.1 Air Traffic Flow Identification

The objective to fill Gap 1 leads directly to the formulation of Research Question 1:

Research Question 1

How can existing air traffic flow identification methods be modified to consider the

converging nature of arriving aircraft trajectories and the requirement of being exten-

sible to real-time applications such that air traffic flows are more reliably identified?

First, the objective of being extensible to real-time applications is addressed. Perform-
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ing a recursive clustering of full trajectories or trajectory segments or points is not con-

ducive to an extension to a real-time application. Therefore, methods that require recursive

clustering (for instance, [54, 63, 66]) are not considered. Additionally, applying a clus-

tering algorithm and implementing a computationally expensive distance function is not

conducive to an extension to a real-time application. Thus, distance functions such as the

SSPD, used by Basora et al. in [73], are not considered.

In the aviation literature, the application of DBSCAN or HDBSCAN with the ED

function is most commonly presented. Provided two n-dimensional trajectory vectors,

T i and T j containing x and y features, where T i = [(xi
1, y

i
1), (x

i
2, y

i
2), ..., (x

i
n, y

i
n)] and

T j = [(xj
1, y

j
1), (x

j
2, y

j
2), ..., (x

j
n, y

j
n)] the ED computation proceeds as:

Di,j
ED =

√√√√ n∑
k=1

[(xi
k − xj

k)2 + (yik − yjk)2],

where xk and yk indicate an aircraft’s horizontal position relative to longitude and latitude

measurements, respectively, at point k in the sequence of points comprising the aircraft’s

trajectory.

As a major limitation related to using the ED function is the standard length require-

ment, several other distance functions have been developed to overcome this limitation.

Warping-based distance functions such as Dynamic Time Warping [116], Longest Com-

mon Subsequence [117], Edit Distance on Real Sequence [118], and Edit distance with

Real Penalty [118], enable the comparison of trajectories of different lengths; however,

they are based on a one-to-one comparison between sequences, so a choice of a particular

series to be used as a reference to match all others must be selected [89]. The selection

of a reference trajectory is not straightforward for the air traffic flow identification task.

There also exist shape-based distance functions to enable the comparison of trajectories

with different lengths such as the Hausdorff distance [119], Fréchet distance [120], and the

previously-introduced SSPD [89]. The Hausdorff and Fréchet distances are limited as they
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may fail to compare trajectories as a whole [89], while the SSPD is computationally expen-

sive to evaluate, as mentioned [54]. Therefore, despite the limitation of the standard length

requirement, currently, the ED is best-suited for the air traffic flow identification task.

However, the challenge of taking into account the converging nature of arriving aircraft

trajectories persists with the current use of the ED. Recall, a dominant limitation in the use

of the ED is the potential for an uneven distribution of distances as aircraft both enter the ra-

dius of a terminal airspace and as aircraft approach the airport in their final approach, which

may result in inadequate identification of air traffic flows. Therefore, a distance function

placing more emphasis on specified trajectory points (such as those in the “center” of the

trajectory) in the sequence of re-sampled trajectory points could mitigate this limitation of

the ED. The Weighted Euclidean Distance (WED) is an ED-based function that provides

the ability to place more emphasis on specific trajectory points.

The WED slightly modifies the ED computation such that an extra multiplicative factor

is added. The addition of this multiplicative factor does not significantly increase computa-

tion time nor does it prevent the extension to real-time applications. Considering the same

two n-dimensional trajectory vectors introduced in section 2.1, T i and T j , and a weight

vector, W , where W = [w1, w2, ..., wn], the WED computation proceeds as:

Di,j
WED =

√√√√ n∑
k=1

wk[(xi
k − xj

k)2 + (yik − yjk)2]

The WED introduces an additional trajectory-point weighting term, wk, which enables

a weight, or “importance”, to be assigned to each trajectory point. According to the rela-

tive position in the sequences of trajectory with respect to the airport location or terminal

airspace radius bounds, a weight may be assigned. For instance, Figure 3.1 displays an

example of how weights on trajectory points of arriving aircraft within one air traffic flow

could be distributed if a WED were applied, where any number of weighting schemes may

be ultimately implemented. Considering the weighting scheme displayed, generally, for all
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trajectories, the trajectory points are weighted closer to zero beyond the convergence of all

trajectories approaching the touchdown point. Additionally, trajectory points are weighted

less as aircraft enter the bounds outlined for the terminal airspace. For comparison, Fig-

ure 3.2 indicates the “weighting” of points applying the ED, i.e. uniform weighting on all

points. Thus, the modification of existing, commonly-applied clustering algorithms, such

as DBSCAN or HDBSCAN, with the WED is proposed to consider the converging nature

of arrival trajectories within the terminal airspace and the requirement of being extensible

to real-time applications.

Figure 3.1: Sample Depiction of Weights Assigned to Trajectory Points If The Weighted
Euclidean Distance is Applied
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Figure 3.2: Sample Depiction of Weights Assigned to Trajectory Points If The Euclidean
Distance is Applied

The selection of the DBSCAN algorithm or the HDBSCAN algorithm to perform the

trajectory clustering with the WED requires a review of the core DBSCAN algorithm and

how the hierarchical nature of HDBSCAN modifies the DBSCAN clustering output. Fig-

ure 3.3 displays a visualization of the key concepts related to DBSCAN implementation.

Figure 3.3: DBSCAN Key Concepts Visualization [47]
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DBSCAN relies on two input parameters: 1) MinPts, which is a minimum number

of samples, i.e. trajectories, which is dependent on the homogeneity of operations [47]

and 2) ε, which is a distance threshold. The distance between data samples is computed

using the specified distance function. DBSCAN locates core samples having high density

and expands clusters from them. A prominent advantage of DBSCAN is that the number

of clusters k in the data set does not require a priori specification, which is in contrast

to algorithms such as k-Means or k-Mediods [80, 121]. DBSCAN enables identification

of the air traffic flows despite the presence of outliers, or anomalies [11]. The algorithm

is robust to the noise such that outliers not belonging to any of the identified clusters are

“allowed” [80], and, in Figure 3.3, are labeled with a -1.

Recently, the application of HDBSCAN [85] in aviation literature in various cluster-

ing applications has become more prevalent [73, 97, 122]. Naively, HDBSCAN “extends”

DBSCAN by converting it to a hierarchical clustering algorithm, where a technique is then

used to extract a flat clustering (set of clusters within any explicit structure that relates the

clusters to each other) based on the stability of the clusters [85]. HDBSCAN is an agglom-

erative hierarchical clustering algorithm. In this way, each data point is first considered

as its own cluster, then, at each iteration, similar clusters merge with other clusters until

one or k clusters are formed [123]. The primary strength of HDBSCAN is the ability to

identify clusters of different densities, unlike DBSCAN in which all clusters have relatively

the same density. This strength is particularly relevant for applications within the terminal

airspace in which air traffic flows often have varying densities, i.e. some flows appear very

“tight”, while others appear more “spread out” (Figure 2.2 displays this characteristic of air

traffic flows of arriving aircraft trajectories). Further, an advantage of HDBSCAN is that it

requires only a single input parameter that sets the minimum cluster size (minimum number

of samples within a cluster, analogous to the MinPts parameter set when applying DB-

SCAN) [122]. However, it is also possible to set an optional “smoothing” parameter that

is intended to be a measure of how “conservative” the clustering should be [124], where
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conservative refers to the fraction of outliers detected. Due to the ability of HDBSCAN to

identify clusters (air traffic flows) of varying densities, it is asserted that HDBSCAN is the

most appropriate previously-applied clustering algorithm to select to apply with the WED.

Thus, the application of HDBSCAN with the identified current best-suited distance

function, the ED, is the proposed existing method to be modified. The modification in-

cludes the use of the WED as opposed to the ED as the implemented distance function

within the HDBSCAN algorithm. Therefore, Hypothesis 1 is formulated as:

Hypothesis 1

If HDBSCAN is implemented with the Weighted Euclidean Distance, then air traffic

flows are more reliably identified considering the converging nature of arriving air-

craft trajectories when compared with the implementation of HDBSCAN with the

Euclidean Distance and the procedure is extensible to real-time applications.

The testing and acceptance of Hypothesis 1 fill the identified Gap 1.

3.2 Anomaly Detection

The objective to fill Gap 2 leads directly to the formulation of Research Question 2:

Research Question 2

What relationship exists between spatial and energy anomalies detected in arriving

aircraft trajectories?

To enable an analysis of the relationship between spatial and energy anomalies, an

approach is required to detect the two types of anomalies. As introduced in section 2.2,

specifically Figure 2.7, there generally exists observable differences in the energy profiles

of different structured operations, or air traffic flows, of arriving aircraft. Further, it is men-

tioned in both section 2.1 and section 2.2 that air traffic flow identification is commonly
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performed prior to the application of energy anomaly detection methods as a data process-

ing step, i.e. to segment the full data set into smaller data sets on which to separately apply

an energy anomaly detection method. Air traffic flow identification methods are also typ-

ically those leveraged to perform spatial anomaly detection. Therefore, in an approach to

detect spatial and energy anomalies in arriving aircraft trajectories, spatial anomaly detec-

tion should be performed leveraging an air traffic flow identification method prior to energy

anomaly detection, where the spatial anomaly detection step also enables the segmenting

of the full data set into smaller data sets corresponding to each identified air traffic flow.

The successive detection of spatial and energy anomalies should result in trajectories

being assigned one of four labels to indicate the “category” of trajectory to which they

belong. These categories include:

• Nominal (N), i.e. the trajectory is not detected as anomalous in either the spatial or

energy dimension

• Only-Spatial-Anomaly (S), i.e. the trajectory is detected as anomalous in the spatial

dimension, yet is not detected as anomalous in the energy dimension

• Only-Energy-Anomaly (E), i.e. the trajectory is not detected as anomalous in the

spatial dimension, yet is detected as anomalous in the energy dimension

• Both-Spatial-And-Energy-Anomaly (B), i.e. the trajectory is detected as anomalous

in both the spatial and energy dimensions

Of interest is a comparison between rates of occurrences of the four categories of

anomalies. Specifically, it is of interest whether any interdependencies exist between spatial

and energy anomalies. Therefore, a quantitative investigation into the rates of occurrences

of spatial and energy anomalies must be assessed, and Hypothesis 2.1 is formulated as:
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Hypothesis 2.1

If a trajectory is detected as a spatial anomaly, then it is more likely to be detected

as an energy anomaly.

In addition, to further understand and continue with analyzing the relationship between

spatial and energy anomalies detect in arriving aircraft trajectories an energy anomaly

score, or simply, anomaly score, may be computed for each trajectory within an air traffic

flow data set. Computation of an anomaly score provides more context to the “relative

anomalousness” of arriving aircraft trajectories. The anomaly score may be computed as

the mean ED from a given trajectory’s energy metrics to all others in the data set:

Scorei =
1

n

n∑
j=1,j 6=i

Di,j
ED,

where Di,j
ED is the ED between trajectory i’s energy metrics and trajectory j’s energy met-

rics.

Considering only energy-nominal trajectories, it is of interest whether those trajectories

in the only-spatial-anomaly category have, on average, greater anomaly scores than those

trajectories in the nominal category. For instance, it is important for ATC and/or air crews

to understand the consequence of non-conformance to standard spatial operations with re-

spect to energy metrics, even if a trajectory is not necessarily an energy-anomaly. The

closeness to the “border” of energy-anomalousness is of interest. Therefore, Hypothesis

2.2 is formulated as:

Hypothesis 2.2

If only energy-nominal trajectories are considered, then only-spatial-anomaly trajec-

tories have, on average, greater anomaly scores than nominal trajectories.

Finally, if the trajectories are separated by category to which they belong, the distribu-

tion of anomaly scores corresponding to each category may be evaluated. Specifically, it
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is of interest whether the distribution of the anomaly scores of only-energy-anomalies and

anomaly score of both-spatial-and-energy-anomalies have different statistical properties.

Investigating this relationship provides insight into whether there should be a distinction

between only-energy-anomalies and both-spatial-and-energy-anomalies in the context of

“severity” of the anomalies such that these situations may require different mitigation ef-

forts. Therefore, Hypothesis 2.3 is formulated as:

Hypothesis 2.3

If the statistical properties of the distribution of anomaly scores associated with only-

energy-anomaly trajectories and both-spatial-and-energy-anomaly trajectories, then

a distinct difference in statistical properties of the distribution is observed.

The testing and acceptance of Hypothesis 2.1, Hypothesis 2.2, and Hypothesis 2.3 fill

Gap 2.

3.3 Airspace-Level Analysis

The first consideration in developing a comprehensive method to identify operational pat-

terns, characterize operational states, and predict operational patterns is the representation

of operational states. As introduced in section 2.3, an operational state is an aggregation of

the flight-level operations, or time series trajectory data, for all arriving aircraft operating

during a specified time interval. Therefore, prior to any identification, characterization, or

prediction, an approach to aggregating the ADS-B data for all arriving aircraft operations is

required. Specifically, previous work related to airspace-level analyses considers the spatial

metrics in ADS-B data [11, 75, 83, 114, 115]. However, in [75], [11], [83], and [114], to

perform the analysis at the airspace level, trajectories are first aggregated at the air traffic

flow-level, where an air traffic flow centroid trajectory is produced or simply an assignment

of trajectories to an air traffic flow to indicate “activity” of an air traffic flow. Thus, there

is a loss of information related to the distribution of trajectories within the airspace as the
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trajectories that comprise the air traffic flow may be very “tight” or “spread out”. Further,

flight-level spatial anomalies appear to not be considered in the analysis, yet their inclu-

sion and consideration may be valuable in terms of assessing ATM system arriving aircraft

operations at the airspace level. These spatial anomalies may also include arriving aircraft

that perform a go-around, where an air traffic flow centroid or assigned to an air traffic flow

would not provide any information on these occurrences. Therefore, a data processing step

to properly represent operational states for arriving aircraft operating during specified time

intervals is required.

The use of air traffic flows as the representations of operational states does not enable

consideration of the distribution of trajectories within air traffic flows or the airspace as

a whole, including lack of consideration of the operational states of time intervals that

may be characterized as anomalous or transitional. Moreover, a limitation of the previous

works that leverage air traffic flows as a representation of the terminal airspace operational

patterns is that an air traffic flow is considered to be “active” if at least one trajectory is

associated with the air traffic flow during the specified time interval. This definition of

“active” may result in an operational pattern being identified in which only a negligible

fraction of trajectories ever are associated with that flow. Considering the threshold for an

air traffic flow to be “active” as one essentially results in air traffic flows containing only

one trajectory to have a “weight” equal to an air traffic flow containing ten trajectories.

Therefore, it is important when evaluating the validity of the representation of the opera-

tional state as the airspace density matrix for the “weight” of different trajectory patterns

to be considered as well as the distribution of the trajectories within the terminal airspace.

While it may be possible to consider the boundaries of air traffic flows as well when

identifying operational patterns in an attempt to get a better picture of the distribution of the

trajectories within an airspace, this approach still would neglect the occurrence of spatial

anomalies. Therefore, an approach not reliant on identified air traffic flows is advantageous.

Spatial metrics in ADS-B data often refer to the latitude and longitude coordinates, which
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are two-dimensional (2D) pairs of coordinates. Derived spatial metrics may also be relevant

depending on the application, where the derived spatial metrics may be those resulting

from a projection of the latitude and longitude coordinate system onto a specified Cartesian

coordinate system. Regardless of the choice of spatial metrics or derived spatial metrics,

the coordinate pairs representing a trajectory in the spatial dimension are 2D.

Thus, it is possible to consider a trajectory’s spatial metrics coordinate pairs as points

on a 2D grid representing an airspace. For each trajectory, it is possible to “fill” in the

spaces on a 2D grid that the trajectory passes through. Expressed mathematically, the 2D

grid may be considered to be a 2D matrix of zeros, where the “filling” of a grid space, if a

trajectory passes through it, could be represented by inserting a 1 into the matrix element

corresponding to the grid space. This matrix may be referred to as a trajectory matrix.

Figure 3.4 displays this concept for a simple sample trajectory (in the slightly darker gray),

entering the airspace in the top right and directly arriving at the airport location, which is

at the center of the matrix in this example.

Figure 3.4: Trajectory Matrix

It is possible to create trajectory matrices for each arriving aircraft trajectory within the

terminal airspace. Further, it is possible to then sum the trajectory matrices for all flights
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operating within a specified time interval. This matrix may be referred to as the airspace

matrix. The airspace matrix enables the information for all flights operating within an

airspace during a specified time interval to have some representation in the aggregation as

well as provides more of an indication of the distribution of trajectories within the airspace

as opposed to the basic air traffic flow centroids representation of the aggregation of flights.

However, the number of flights arriving at an airport varies throughout the day. Therefore,

some time intervals would experience higher maximum values for airspace matrix entries.

This could result in the identification of operational patterns being skewed towards identi-

fying groupings of time intervals with a similar number of flights. Thus, a normalization

step is proposed in which the airspace matrix entries are divided by the total number of

trajectory matrices that were summed to create the airspace matrix. This normalization

effectively provides a measure of the density of trajectories within an airspace during a

specified time interval. This normalized matrix may be referred to as an airspace den-

sity matrix. This data processing step in generating airspace density matrices to represent

operational states is outlined in Figure 3.5.

Figure 3.5: Generation of an Airspace Density Matrix for Three Trajectories within a Spec-
ified Time Interval

Once the operational states have been represented by the airspace density matrices, a

procedure, or procedures, to perform the identification and/or characterization is required.

Due to the relationship between operational patterns and operational states, i.e. the charac-

terization of an operational state is dependent upon the conformance of the operational state

to the operational patterns identified from the set of all operational states within some time
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period comprised of multiple, smaller, time intervals, it is advantageous to develop a single

procedure that can both identify operational patterns and characterize operational states.

Therefore, considering the objective to fill Gap 3, Research Question 3.1 is formulated

as:

Research Question 3.1

What procedure can be implemented to both identify operational patterns and char-

acterize operational states at the airspace level for arriving aircraft operations during

specified time intervals?

In previous work, what may broadly be considered to be operational patterns or op-

erational states have been identified or characterized, respectively, leveraging clustering

algorithms. For instance, Mangortey et al. [113] leverage and compare the performance of

various clustering algorithms, including k-Means. Enriquez [75] applies the spectral clus-

tering method presented in [81]. Murça et al. [58] apply the k-Means clustering algorithm.

Finally, Murça [11] and Murça et al. [83] apply a hierarchical clustering algorithm. The

identification of operational patterns may be formulated as an unsupervised classification

problem, as the objective is to identify the prominent operational patterns from a set of

operational states for a defined time period, containing multiple, smaller, time intervals for

which the operational states are determined. Clustering algorithms lend themselves well to

unsupervised classification tasks.

In the context of characterizing operational states, specifically as nominal or anomalous,

the implementation of a clustering algorithm may similarly be appropriate. For instance,

leveraging those clustering algorithms that provide the capability to detect outliers, such

as DBSCAN or HDBSCAN, may provide insight into characterizing operational states as

nominal or anomalous. Therefore, it is assumed that application of the DBSCAN or HDB-

SCAN algorithm to the airspace density matrix data set of operational states enables both

the identification of operational patterns, taken as the clusters identified by the algorithm,
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and the characterization of operational states, taken as either nominal (strictly belonging to

a cluster) or outlying (either transitional or anomalous). The selection of either DBSCAN

or HDBSCAN to perform the clustering task is dependent on the expected uniformity of

the density of operational states associated with the identified operational patterns. For the

air traffic flow identification task, HDBSCAN was identified as being most appropriate due

to the potential for trajectories to be either very “tight” or “spread out” within an air traffic

flow. However, the airspace density matrix representation of the operational states inher-

ently contains information regarding density within an airspace. Thus, it is proposed that

the DBSCAN algorithm be leveraged in a procedure to both identify operational patterns

and characterize operational states.

Though, the challenge of characterizing operational states as being transitional remains.

An assumption is made that a robust application of DBSCAN to identify operational pat-

terns would detect the operational states of those time intervals that are experiencing a

transition of airspace-level operations from one operational pattern to another as being an

outlier, or anomalous. Therefore, by comparing the operational patterns assigned to the

operational states corresponding to time intervals directly before and after an operational

state that has been detected as being an outlier, it is possible to determine if the time interval

has been detected as being an outlier due to having an operational state that may be char-

acterized as transitional. Explicitly, if the operational patterns identified for the operational

states corresponding to the time intervals directly before and after an operational state that

has been detected as being an outlier are different, then the time interval’s operational state

may be characterized as being transitional.

However, once transitional operational states have been discovered, it is preferable to

remove them from consideration of being either nominal, i.e. strictly belonging to an op-

erational pattern, or outlying, i.e. not conforming to an operational pattern. Thus, it is

proposed that a recursive DBSCAN approach be taken to identify operational patterns and

simultaneously characterize operational states. Therefore, Hypothesis 3.1 is formulated
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as:

Hypothesis 3.1

If a recursive DBSCAN procedure is implemented such that the clusters indicate

identified operational patterns and outlying operational states are characterized as

being either anomalous or transitional, where the recursion proceeds until no new

transitional operational states are characterized, then operational patterns are identi-

fied and operational states are characterized.

Finally, it is important to consider that within the aviation literature, exploration of the

ability to predict operational patterns or operational states has often occurred once the op-

erational patterns or operational states have been identified or characterized, respectively

[11, 83, 113, 114]. Mangortey et al. [113] leverage a boosting ensemble algorithm to per-

form the prediction task. Murça & Hansman [83] assess the prediction accuracy of three

different machine learning classification algorithms (random forests, SVM, and multinom-

inal logistic regression), where the random forest algorithm is ultimately selected for the

prediction task due to slightly superior performance.

Prediction models are typically trained on features not leveraged to perform the classi-

fication of operational patterns or operational states. Moreover, while would be valuable to

predict anomalous and/or transitional operational states, it is noted that anomalous and/or

transitional states correspond to a small percentage of the overall data set. Therefore, pre-

diction of the anomalous and/or transition operational states would be more appropriate

potentially as a semi-supervised anomaly detection exercise, which is not the focus of this

airspace-level analysis. Thus, the focus in the development of a prediction model is to

provide the capability to predict operational patterns.

The ability to train a reasonably accurate prediction model with features derived from

certain metric measurements provides insight into the metrics, or features, most related to

the observation of a certain operational pattern. Knowledge of the importance of certain
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features in the context of predicting operational pattern occurrence may provide valuable

insight and/or be a useful capability for ATM system operators, planners, and decision-

makers. Further, as presented by Murça [114], as AAM vehicles and concepts are intro-

duced into the NAS, there exists value in predicting airspace availability for AAM. There-

fore, considering the objective to fill Gap 3, Research Question 3.2 is formulated as:

Research Question 3.2

How can the operational pattern of arriving aircraft operations during a specified

time interval be predicted?

The task of predicting the operational pattern of arriving aircraft operations during a

specified time interval may be considered to be a semi-supervised learning problem. A su-

pervised learning classification algorithm is to be trained to predict the operational pattern

during a specified time interval, where the labels associated with each set of input features

are an output of the unsupervised operational pattern identification procedure.

Before any classification algorithm is trained, the selection of appropriate metrics (fea-

tures) on which to train a prediction algorithm is critical. The metrics to be used should

be derived from recorded data in the time intervals prior to the time interval for which the

operational pattern is to be predicted. This is because, in a real-time scenario, the metrics

for the time interval to be forecast would not have been observed yet. Traffic and/or con-

gestion metrics, such as those recorded in the FAA’s ASPM database may provide diverse

airspace-level information. However, it is unlikely there is a strong relationship between

metrics such as the number of arrivals/departures, the average delay time, the percent of

on-time arrivals/departures, etc. in a previous time interval to the operational pattern of

the time interval to be forecast. Murça et al. [53], Murça [11], and Murça [114] spec-

ify weather conditions as being observed to affect the conformance of trajectories to their

assigned routes. Therefore, features derived from recorded weather measurements are pro-

posed to be leveraged to train a model to predict operational patterns.
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This prediction problem is assumed to be a multi-class problem, as there are likely

to be more than two operational patterns identified for arriving aircraft within a terminal

airspace. Therefore, a multi-class classification algorithm is required. Several algorithms

enable multi-class classification, such as artificial neural networks, k-nearest neighbors,

naive Bayes, decision trees, and SVMs, to name a few. Often, it is not immediately obvi-

ous which classification algorithm will provide the highest testing prediction accuracy. For

this reason, for any given classification task, several different algorithms are often trained,

and the one resulting in the highest prediction accuracy is selected. For instance, as men-

tioned, Murça & Hansman [83] compared the performance of three different classification

algorithms (random forests, SVMs, and multinominal logistic regression) before ultimately

selecting random forests as the appropriate algorithm for the problem. Therefore, Hypoth-

esis 3.2 is formulated as:

Hypothesis 3.2

If a set of multi-class classification algorithms are trained to predict operational pat-

terns with input features derived from recorded weather measurements and the al-

gorithm providing the most desirable performance is selected, then the operational

patterns of a testing data set are able to be predicted with reasonable accuracy.

The testing and acceptance of Hypothesis 3.1 and Hypothesis 3.2 fill Gap 3.

3.4 Summary

The three steps in the proposed methodology include Air Traffic Flow Identification,

Anomaly Detection, and Airspace-Level Analysis, where a gap has been identified related

to each step in chapter 2. This chapter detailed the formulation of the appropriate research

questions and hypotheses related to the gaps identified. An overview of the mapping of

gaps, to research questions, to hypotheses is displayed in Figure 3.6.
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Figure 3.6: Thesis Structure: Formulation

Additionally, an extracted and cleaned ADS-B data set, augmented with appropriate

derived metrics, is required to test and validate each of the formulated hypotheses.
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CHAPTER 4

EXPERIMENTAL APPROACH

This chapter details the development of three experimental approaches to test and accept

each of the hypotheses presented in chapter 3 such that the gaps identified in chapter 2 are

filled.

4.1 Air Traffic Flow Identification

Gap 1, which is associated with the Air Traffic Flow Identification step in the proposed

methodology, is mapped to Research Question 1, where Hypothesis 1 is formulated in

response.

Considering Research Question 1 and Hypothesis 1, the objective of Experiment 1

is stated as:

Experiment 1

Identify air traffic flows in arriving aircraft ADS-B data implementing both HDB-

SCAN with the Weighted Euclidean Distance and HDBSCAN with the Euclidean

Distance.

An experimental approach to identify air traffic flows in arriving aircraft ADS-B data

implementing both HDBSCAN with the WED and HDBSCAN with the ED requires two

main steps: (i) data processing and (ii) trajectory clustering. Both the data processing and

trajectory clustering steps are detailed. Additionally, the acceptance of Hypothesis 1 is

discussed.
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4.1.1 Data Processing

To implement an experimental approach, a cleaned and augmented set of ADS-B data and

associated derived metrics must be provided. The exact data cleaning procedure employed

is dependent upon the source of the ADS-B data leveraged. However, regardless of the data

source, specific derived metrics must be computed to augment the data set. In the context

of the Air Traffic Flow Identification step, two derived additional metrics are relevant.

These two metrics are discussed as well as the primary data processing task of re-sampling

the data set.

Additional Metrics

As introduced, within the aviation literature, air traffic flow identification is typically per-

formed considering the spatial metrics in ADS-B data. The spatial metrics relevant to the

air traffic flow identification task are longitude and latitude states. However, the scales of

longitude and latitude differ, i.e. longitude and latitude measurements belong to a spherical

coordinate system rather than a Cartesian coordinate system. Because both the WED and

ED are sensitive to differing magnitudes in feature dimensions, it is desirable to project

the measured longitude and latitude coordinates onto an (x, y) Cartesian coordinate sys-

tem. Therefore, longitude and latitude coordinates are projected onto an (x, y) Cartesian

coordinate system according to some specified map projection.

Re-Sampling

It is recalled that implementation of both the WED and ED require n-dimensional trajec-

tory vectors, T i and T j to compute a distance between two trajectories. In practice, n-

dimensional trajectory vectors are not readily available. Rather, n-dimensional trajectory

vectors are often the product of re-sampling trajectories of various lengths. In the context of

air traffic flow identification, it is typical to consider the trajectories of all aircraft operating

within some radius of the airport location. In other words, the record of a single arriving
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aircraft trajectory initiates once the aircraft enters the specified radius around the airport lo-

cation and ends once the aircraft touches down. Therefore, all trajectories within a data set

to be used for air traffic flow identification have differing values for the maximum ground

track distance from touchdown. Moreover, each trajectory will have a different temporal

length.

The primary methods that exist to perform re-sampling are either distance-based or

time-based. Distance-based and time-based re-sampling methods tend to generate the same

set of points in the case that the aircraft maintains a relatively constant velocity. However,

during the approach phase, aircraft velocity is almost never constant. Rather, aircraft ve-

locity tends to monotonically and gradually decrease. Re-sampling based on time is likely

to produce an uneven distribution of trajectory points such that many more exist closer

to the airport location. Thus, distance-based re-sampling is preferred in which a uniform

re-sampling of trajectory points occurs based on an aircraft’s ground track distance from

touchdown. Implementing a distance-based re-sampling of trajectory points produces tra-

jectory points that are spatially distributed more evenly. Once trajectory points have been

re-sampled based on the ground track distance, the trajectory clustering step may proceed.

4.1.2 Trajectory Clustering

As indicated by the objective of Experiment 1, air traffic flows must be identified both

by implementing HDBSCAN with the WED and by implementing HDBSCAN with the

ED. Therefore, this requires that the trajectory clustering step involve the clustering of

the (x, y) coordinates that have been re-sampled based on the ground track distance of

an aircraft from its touchdown point for all arriving aircraft by applying the HDBSCAN

algorithm separately with both the WED and ED.

Additionally, the experimental approach, specifically the trajectory clustering step, must

also enable comparison of the implementation of HDBSCAN with the WED versus the

state-of-the-art implementation of HDBSCAN with the ED in the context of “more reli-
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ably” identifying air traffic flows. However, first, it is important to define what is meant

by identifying air traffic flows “more reliably”. While visual inspection of plots of the air

traffic flows identified by the implementation of HDBSCAN with the two different distance

functions provides insight into the performance of the WED versus the ED, a metric to en-

able a quantitative comparison of the implementation of HDBSCAN with the WED versus

the implementation of HDBSCAN with the ED is required.

Considering the aviation literature reviewed in section 2.1, a primary issue with the

state-of-the-art methods that are inherently extensible to real-time applications, such as

HDBSCAN with the ED, is the lack of consideration of the converging nature of arrival

trajectories. Specifically, the distances computed between trajectory points closest to the

airport are relatively small, regardless of the air traffic flow to which they belong and the

distances between trajectory points at the terminal airspace’s defined border may be rel-

atively large, regardless of the air traffic flow to which they belong. Thus, the uneven

distribution of distances as aircraft arrive at the airport may skew classification, resulting in

the misclassification of trajectories and a “less reliable” identification of air traffic flows.

If a trajectory is misclassified, likely the trajectory is further (distance-wise) from the

centroid of the set of trajectories that the misclassified trajectory is assigned to then from the

centroid of the set of trajectories to which it should belong. Hence, the mean of the distance

between a trajectory assigned to a cluster and its respective cluster centroid computed over

the set of trajectories that have been assigned to a cluster is expected to be lower in the

case of a “more reliable” air traffic flow identification. Therefore, the mean of the distance

between a trajectory assigned to a cluster and its respective cluster centroid computed over

the set of trajectories that have been assigned to a cluster, or, simply, the mean distance

from the assigned cluster centroid, may be considered the quantitative metric to compare

the utilization of the WED versus the ED in the air traffic flow identification task. Due to

the common use of the ED in the aviation literature, the mean distance from the assigned

cluster centroid is computed using the ED.
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Though, it is important to note an important consideration: the fraction of outliers, or

anomalies, detected by the HDBSCAN algorithm. It is intuitive that if the implementation

of the HDBSCAN algorithm results in a higher fraction of outliers, the mean ED from the

assigned cluster centroid will likely be lower. On the other hand, if the implementation

of the HDBSCAN algorithm results in a lower fraction of outliers, the mean ED from the

assigned cluster centroid will likely be higher. Therefore, when comparing the implemen-

tation of HDBSCAN with the WED to the implementation of HDBSCAN with the ED,

it is important to ensure the fraction of outliers detected in each implementation is within

a similar range. The setting of HDBSCAN parameters is the driver of the resulting frac-

tion of outliers detected for a given distance function. However, implementation of the

HDBSCAN algorithm with the same setting parameter settings for the two different dis-

tance functions, the WED and the ED, will likely result in differing fractions of outliers

detected. Therefore, it is important to consider this in the comparison of the mean ED from

the assigned cluster centroid metric.

As mentioned in section 2.1, the implementation of HDBSCAN requires one input

parameter indicating the minimum cluster size. Though, there also exists the capability

to specify an optional “smoothing” parameter that provides input into how “conservative”

the clutsering should be [124]. The larger the setting of th smoothing parameter value,

the more samples detected as outliers, and the clusters are restricted to a more dense area

[124]. Therefore, setting the value of the minimum cluster size parameter to the same

value for both the implementation of HDBSCAN with the WED and the implementation of

HDBSCAN with the ED, the optional smoothing parameter may be leveraged to “control”

the fraction of outliers detected. Specifically, the HDBSCAN clustering may be performed

iteratively for both implementations of HDBSCAN such that some value of the minimum

cluster size parameter is set and the smoothing parameter is varied until an acceptable

fraction of outliers detected is attained.

“Controlling” the fraction of outliers detected for both the implementation of HDB-
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SCAN with the WED and the implementation of HDBSCAN with the ED requires some

specification of the range of the fraction of outliers detected in which the returned fraction

of outliers from the HDBSCAN implementation may be deemed acceptable. Thus, an iter-

ative clustering may be required for both the implementation of HDBSCAN with the WED

and the implementation of HDBSCAN with the ED to ensure the fraction of outliers for

the same minimum cluster size parameter setting is within a pre-determined range for each

implementation.

An overview of the experimental approach to support the filling of Gap 1 is presented

in Figure 4.1.

Figure 4.1: Experimental Approach: Gap 1

4.1.3 Hypothesis 1 Acceptance

Hypothesis 1 is accepted if the implementation of the experimental approach described

corresponding to Experiment 1 results in more reliable identification of air traffic flows
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in the case in which HDBSCAN is implemented with the WED as opposed to the case in

which HDBSCAN is implemented with the ED. As described, a direct comparison of the

“reliability” of the two implementations of HDBSCAN may be made by considering the

computed mean ED from the assigned cluster centroid metric in the trajectory clustering

step of the experimental approach. However, this direct comparison of the mean ED from

the assigned cluster centroid is only valid if the fractions of outliers detected for both the

implementation of HDBSCAN with the WED and the implementation of HDBSCAN with

the ED are within a specified range. Thus, the Hypothesis 1 Acceptance may be expressed

as:

Hypothesis 1 Acceptance

If the mean Euclidean Distance from the assigned cluster centroid is lower in the

case in which HDBSCAN is implemented with the Weighted Euclidean Distance

than in which HDBSCAN is implemented with the Euclidean Distance, where each

implementation results in the fraction of outliers detected within a specified range,

then Hypothesis 1 is accepted.

4.2 Anomaly Detection

Gap 2, which is associated with the Anomaly Detection step in the proposed method-

ology, is mapped to Research Question 2, where a set of hypotheses (Hypothesis 2.1,

Hypothesis 2.2, and Hypothesis 2.3) are formulated in response.

Considering Research Question 2 and the associated set of hypotheses, to investi-

gate and quantify the relationship between spatial and energy anomalies in arriving aircraft

ADS-B data and associated derived metrics, spatial and energy anomalies must first be de-

tected. Therefore, an experimental approach enable acceptance of the set of hypotheses

associated with Research Question 2 is primarily reliant on a procedure to detect spatial

and energy anomalies in arriving aircraft ADS-B data and associated derived metrics within
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the terminal airspace. Upon detection of spatial and energy anomalies, it is straightforward

to test the set of hypotheses associated with Research Question 2 through statistical anal-

ysis. Therefore, the objective of Experiment 2 is stated as:

Experiment 2

Detect spatial and energy anomalies in arriving aircraft ADS-B data and associated

derived metrics and perform subsequent statistical analysis.

An experimental approach to detect spatial and energy anomalies in arriving aircraft

ADS-B data and associated derived metrics and perform subsequent statistical tests and

visual comparison requires four steps: (i) data processing, (ii) spatial anomaly detection,

(iii) energy anomaly detection, (iv) statistical analysis set-up. Each of the required steps is

detailed. Additionally, acceptance of the set of hypotheses (Hypothesis 2.1, Hypothesis

2.2, and Hypothesis 2.3) is discussed.

4.2.1 Data Processing

Similar to the experimental approach described in section 4.1, a cleaned and augmented

set of ADS-B data for arriving aircraft during a specified time period is required. In the

context of the Anomaly Detection step of the proposed offline data-driven methodology

to be applied to ADS-B data for arriving aircraft within the terminal airspace, two sets of

derived additional metrics are relevant: (i) the (x, y) coordinates introduced in section 4.1

for the spatial anomaly detection step and (ii) the relevant energy metrics. The two sets of

derived additional metrics are discussed as well as the data processing tasks of re-sampling

the data set and identifying go-arounds.

Additional Metrics

Recall, section 3.2 introduces that spatial anomaly detection is typically performed leverag-

ing air traffic flow identification techniques. Therefore, the spatial anomaly detection step
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requires that each longitude and latitude coordinate pair has been projected onto Cartesian

coordinate system for trajectory clustering. On the other hand, energy anomaly detection

requires appropriate energy metrics. This research proposes to place the focus on three

primary energy metrics in which to detect anomalies: SPE, SKE, and STER. These energy

metrics are contained in the set of energy metrics relevant to aviation anomaly detection

presented by Puranik [25] and Puranik et al. [98]. Further, these metrics are contained

in the set of metrics presented by Deshmukh [50] as candidates for performing energy

anomaly detection.

The SPE may be taken as simply the height above ground level of the aircraft. The

specific kinetic energy may be computed as:

SKE =
V 2

2g
,

where V is the velocity of the aircraft and g is the gravity constant. Computation of the

STER requires the computation of the STE, which may be simply the sum of the SPE and

SKE:

STE = SPE + SKE

The STER may then be computed as:

STER =
STEi+1 − STEi

∆t

∆t is the time difference between two consecutive records, i + 1 and i.

Re-Sampling

As noted in section 2.2, the “scope” of the ADS-B data used for spatial and energy anomaly

detection typically is different. Spatial anomaly detection is generally performed consider-

ing all trajectories within some radius of the airport. On the other hand, energy anomaly
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detection is generally performed considering trajectories whose records have been cut off

at some distance- or time-based threshold, i.e. 20 nautical miles cumulative ground track

distance from the touchdown point or the final 15 minutes of approach. In this research, a

distance-based cutoff is selected for the energy anomaly detection data set to mitigate any

effect of the potentially differing approach velocities for the differing aircraft types.

Moreover, similar to the requirement for spatial anomaly detection, a re-sampling of

the data is a necessary processing step before performing energy anomaly detection. The

selection of a distance-based cutoff is justified for the spatial anomaly detect step, and,

similarly, that justification may be applied to the selection of a distance-based cutoff for

the energy anomaly detection step. Therefore, two re-sampled data set are produced to

be used to anomaly detection: (i) a data set containing all trajectory records within some

radius of the airport location and (ii) a data set containing all trajectory records cut off

at a specified ground track distance from the touchdown point. Both data sets are of the

same size and contain the same aircraft trajectories, yet the data set containing records cut

off at a specified ground track distance from touchdown are thought of as having a higher

“resolution”.

Go-Around Identification

The final data processing step involves go-around identification. Go-arounds are a well-

practiced, yet relatively rare procedure, often undertaken due to approach stability or ATC

considerations [108]. Go-arounds are generally easily detected in historical data using

logic-based assessments of metrics such as vertical rate, altitude, and ground track distance

from touchdown [108, 125]. Several studies have focused on identifying, predicting, and/or

classifying go-arounds [108, 125, 126, 127].

Go-arounds are almost always either excluded from energy anomaly detection analysis

and/or detected as being anomalous by an air traffic flow identification/spatial anomaly

detection method. This is because go-arounds are, inherently, non-standard operations and
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the association to a specific air traffic flow is often not possible. In this research, go-

arounds may be cursorily identified as trajectories in which, at a ground track distance

from touchdown greater than 25 nautical miles, an aircraft’s height above ground level

reaches below 2,500 ft and its vertical rate reaches above 5 ft/min. This criteria does not

accurately detect all possible go-arounds, yet is sufficient. Kumar et al. [125] provide more

robust go-around detection criteria in ADS-B data. Therefore, the go-arounds are identified

within the provided cleaned and augmented ADS-B data set such that only trajectories

remain for which no spatial anomaly label has been specified a priori. The removal of go-

arounds enables a spatial anomaly detection method to discover previously unknown spatial

anomalies. Kumar et al. [125] perform a detailed assessment on the characterization of go-

arounds, specifically. After the removal of go-arounds from the data sets used for spatial

and energy anomaly detection, the data processing step is complete, where two data sets

are returned: (i) radius data (used for spatial anomaly detection) and (ii) distance cutoff

data (used for energy anomaly detection).

4.2.2 Spatial Anomaly Detection

As introduced in section 2.2, spatial anomaly detection generally occurs as a byproduct of

applying trajectory clustering algorithms to perform air traffic flow identification. There-

fore, the proposed more reliable method of identifying air traffic flows is leveraged to per-

form spatial anomaly detection. Specifically, spatial anomaly detection is performed by

applying the HDBSCAN algorithm with the WED (as presented in Corrado et al. [128]).

Identifying air traffic flows is an important step in segmenting the overall data set to pro-

duce the data sets required for energy anomaly detection. As mentioned in section 2.2,

performing energy anomaly detection on a data set containing all aircraft trajectories be-

longing to all of the different air traffic flows may result in energy anomalies remaining

undetected.

As Research Question 2 is concerned with a quantitative investigation into the rela-
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tionship between spatial and energy anomalies, it is necessary to assign detected spatial

anomalies to an air traffic flow such that they may remain in the analysis. It is recalled that

the lack of clarity on further consideration of spatial anomalies in the application of energy

anomaly detection methods lead to the identification of Gap 2. Therefore, if a trajectory

is detected as anomalous, the “closest” air traffic flow is also computed and recorded. The

closest air traffic flow is considered to be the air traffic flow whose centroid is the shortest

distance (with respect to the WED) from the spatially anomlaous trajectory. Thus, spatial

anomaly detection assigned two labels to each trajectory: (i) a cluster label (-1 for anoma-

lous trajectories and any cluster number greater than or equal to 0 for nominal trajectories)

and (ii) an air traffic flow label (any number greater than or equal to 0, corresponding to the

nominal cluster labels).

4.2.3 Energy Anomaly Detection

As specified, for each of the air traffic flows identified, a selected energy anomaly detection

method is applied separately. Thus, the entire distance cutoff data set may be separated

into several smaller data sets sets based on the air traffic flow to which the trajectory most

closely belongs. Hence, each data set containing some fraction of the detected spatial

anomalies. An energy anomaly detection algorithm is subsequently applied to each smaller

distance cutoff data set to detect some fixed portion of energy anomalies.

With respect to clustering the energy metrics, there generally exists one cluster of nom-

inal operations that is identified for each air traffic flow data set [98]. Consequently, a

clustering algorithm is required that is capable of returning only one cluster and detecting

outliers, or anomalies. The density-based algorithms such as DBSCAN or HDBSCAN are

appropriate. Specifically, as only one cluster is expected, there is assumed to be no benefit

of applying HDBSCAN because multiple clusters of varying densities are not anticipated.

Further, the DBSCAN algorithm has been widely-utilized for the energy anomaly detec-

tion task in the aviation literature. Thus, to perform energy anomaly detection, DBSCAN
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is selected. While the WED is leveraged for spatial anomaly detection, the ED is more

appropriate for the energy anomaly detection application. Selection of the ED as the dis-

tance function stems from the relatively equal importance of an aircraft’s energy profile

the entirity of the way through the touchdown. For instance, high or low energy landings

are operational events of interest to be detected an anomalous. As indicated, the metrics

selected for energy anomaly detection include SPE, SKE, and STER, as combinations of

these metrics are used in several energy anomaly detection studies [25, 50, 64, 93, 98, 103,

129].

In the context of performing a standardized statistical analysis of the results, it is re-

quired that a fixed fraction of outliers (anomalies) is detected for each air traffic flow data

set. The parameters of DBSCAN enable straightforward iteration to a pre-defined value of

the fraction of anomalies detected. For instance, there typically exists a monotonic rela-

tionship between ε and the detected fraction of anomalies for a fixed value of the MinPts

parameter. Specifically, as ε is increased, the detected fraction of anomalies is decreased. A

standard practice within the aviation literature related to the application of DBSCAN does

set a constant value of MinPts and varies ε to reach a specified fraction of anomalies [47,

101, 102]. After application of DBSCAN with the ED separately to each air traffic flow

distance cutoff data set, energy anomaly detection assigns a single label to each trajectory,

-1 (energy anomaly) or 0 (energy-nominal).

4.2.4 Statistical Analysis Set-Up

As introduced in section 3.2, the successive detection of spatial and energy anomalies re-

sults in trajectories being placed in one of four categories, including: (i) nominal (N), (ii)

only-spatial-anomaly (S), (iii) only-energy-anomaly (E), and (iv) both-spatial-and-energy-

anomaly (B). Hypothesis 2.1 states that if a trajectory is detected as a spatial anomaly, then

it is more likely to also be detected as an energy anomaly. In other words, it is of interest

to compute the ratio between the fraction of spatial anomaly trajectories detected as energy
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anomalies and the fraction of spatially nominal trajectories detected as energy anomalies.

This ratio may be referred to as the likelihood ratio, which is computed in terms of the

trajectory categories as:
B

B+S
E

E+N

where, in this case, N , S, E, and B indicate the number of trajectories assigned to each

category. Therefore, the statistical analysis set-up step requires the computation of the

likelihood ratio.

In addition, the anomaly score is computed for each trajectory to provide more con-

text to the “relative anomalousness” of the arriving aircraft trajectories within the terminal

airspace with respect to their energy metrics. Hypothesis 2.2 states that if only energy-

nominal trajectories are considered, then only-spatial-anomaly trajectories have, on aver-

age, greater anomaly scores than nominal trajectories. In other words, it is of interest to

compare the average anomaly score for only-spatial-anomaly trajectories and the average

anomaly score for nominal trajectories. Therefore, the statistical analysis set-up step re-

quires the computation of the mean of the anomaly scores of the only-spatial-anomaly

trajectories and nominal trajectories.

Finally, Hypothesis 2.3 states that if the statistical properties of the distribution of

anomaly scores associated with only-energy-anomaly trajectories and both-spatial-and-

energy-anomaly trajectories, then a distinct difference in statistical properties of the dis-

tribution is observed. In other words, statistical properties such as the mean, median, stan-

dard deviation, 25th percentile and 75th values are dissimilar for the only-energy-anomaly

trajectories and both-spatial-and-energy-anomaly trajectories.

An overview of the experimental approach to support the Anomaly Detection step is

presented in Figure 4.2.
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Figure 4.2: Experimental Approach: Gap 2

4.2.5 Hypothesis Validation

The requirements for validation of each of the hypotheses associated with Research Ques-

tion 2 (Hypothesis 2.1, Hypothesis 2.2, and Hypothesis 2.3) are discussed. Accepting

each of the hypotheses associated with Research Question 2 enables Gap 2 to be suc-

cessfully filled, where Gap 2 corresponds to the Anomaly Detection step of the proposed

methodology.
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Hypothesis 2.1 Acceptance

Hypothesis 2.1 is accepted if the implementation of the experimental approach described

corresponding to Experiment 2 results in trajectories that are spatially anomalous being

more likely to also be detected as energy-anomalous. A direct evaluation of the likelihood

of spatial anomalies being more likely to be detected as energy anomalies may be made

by evaluating the computed likelihood ratio. The numerator of the likelihood ratio is the

fraction of spatially anomalous trajectories that also get detected as energy anomalies, while

the denominator of the likelihood ratio is the fraction of spatially nominal trajectories that

get detected as energy anomalies. These fractions can be thought of as probabilities of the

trajectories from the spatially anomalous versus spatially nominal groups being detected

as energy anomalies. Therefore, if the likelihood ratio is greater than 1, then it may be

stated that spatial anomalies are more likely to be detected as energy anomalous. Thus,

Hypothesis 2.1 Acceptance may be expressed as:

Hypothesis 2.1 Acceptance

If the likelihood ratio is greater than 1 for all air traffic flows, then Hypothesis 2.1 is

accepted.

Hypothesis 2.2 Acceptance

Hypothesis 2.2 is accepted if the average anomaly score for only-spatial-anomaly trajec-

tories is greater than the average anomaly score for nominal trajectories. While evaluating

solely the mean anomaly scores for only-spatial-anomaly trajectories and nominal trajec-

tories provides a reasonable starting point to accept Hypothesis 2.2, it is important to con-

sider whether the comparison is statistically significant. Therefore, a one-sided Welch’s

t-test [130] may be conducted to determine whether the mean anomaly score for only-

spatial anomaly trajectories is statistically significantly greater than the mean anomaly

score for nominal trajectories. To consider the results statistically significant, a 0.05 p-
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value threshold is used such that p-values below 0.05 indicate that the null hypothesis (the

mean only-spatial-anomaly trajectory anomaly score is greater than the mean nominal tra-

jectory anomaly score) is rejected. Thus, Hypothesis 2.2 Acceptance may be expressed

as:

Hypothesis 2.2 Acceptance

If a one-sided Welch’s t-test is conducted to determine whether the mean anomaly

score for only-spatial-anomaly trajectories is statistically significantly greater than

the mean anomaly score for nominal trajectories and the p-value returned for all air

traffic flows is less than 0.05, then Hypothesis 2.2 is accepted.

Hypothesis 2.3 Acceptance

Hypothesis 2.3 is accepted if the statistical properties of the distributions of only-energy-

anomaly trajectories’ anomaly scores and both-spatial-and-energy-anomaly trajectories’

anomaly scores are distinctly different. The statistical properties considered include mean,

median, standard deviation, 25th percentile and 75th values. Each of these values must be

different when comparing the two distributions. In this analysis, all anomaly scores from

all air traffic flows may be considered jointly. Thus, Hypothesis 2.3 Acceptance may be

expressed as:

Hypothesis 2.3 Acceptance

If the mean, median, standard deviation, 25th percentile and 75th values computed

for the distributions of anomaly scores for only-energy-anomaly trajectories and

both-spatial-and-energy-anomaly trajectories are different, then Hypothesis 2.3 is

accepted.
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4.3 Airspace-Level Analysis

Gap 3, which is associated with the Airspace-Level Analysis step in the proposed method-

ology, is mapped to two inter-related research questions, Research Question 3.1 and Re-

search Question 3.2, where Hypothesis 3.1 and Hypothesis 3.2 are formulated in re-

sponse, respectively. The two research questions and associated hypotheses are reviewed

such that an experiment is designed for each research question/hypothesis pair, where these

experiments are connected as steps in an overall experimental approach that supports filling

Gap 3.

Specifically, Research Question 3.1 and the associated Hypothesis 3.1 are related to

an identification and characterization step of the overall experimental approach. Research

Question 3.2 and the associated Hypothesis 3.2 are related to the prediction step of the

overall experimental approach. It is recalled that a data processing step was discussed

in section 3.3, which must occur before any experiments are performed. Therefore, the

overall experimental approach that supports filling Gap 3 requires three main steps: (i)

data processing, (ii) identification and characterization, and (iii) prediction. Each of the

three steps is detailed. Additionally, the acceptances of Hypothesis 3.1 and Hypothesis

3.2 are discussed.

4.3.1 Data Processing

To generate the airspace density matrix requires a set of cleaned and augmented data.

Specifically of interest in the generation of the airspace density matrix are the (x, y) co-

ordinates of all arriving aircraft operating that touch down during a defined time interval.

Thus, the data set for an entire analysis time period is broken up into smaller data sets

containing only the trajectories of arriving aircraft that touch down during specified shorter

time intervals of equal length. For instance, time intervals may be selected as one hour, two

hours, etc. within a broader time period of one month, six months, one year, etc.
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Recall section 3.3 describes the general approach to generating an airspace trajectory

matrix. For each time interval, an airspace matrix is initially generated as an N ×N matrix

of zeros, where N is the number of spaces within the 2D grid representing the terminal

airspace’s x and y coordinates. For each trajectory within the set of trajectories of arriving

aircraft that touch down during the specified time interval, a second matrix, the trajectory

matrix, is generated. The trajectory matrix is initially generated as an N × N matrix of

zeros. Subsequently, for each set of (x, y) coordinates making up the trajectory, it is deter-

mined which grid space this point falls within. If there does not already exist a 1 within this

grid space, a 1 is added to replace the 0 value. The restriction on a grid space being filled

more than once per trajectory is instituted to consider situations in which the grid may be of

very low resolution, i.e. N is small, and/or trajectory measurements are available at a very

high resolution, as it is undesirable to skew the distribution of trajectory points towards

these grid spaces if trajectories were to be counted more than once per grid space. The

restriction on a grid space being filled more than once per trajectory may be a limitation in

the case of holding patterns and/or go-arounds. However, holding patterns and go-arounds

are not the norm, making up a relatively small percentage of the data set, so this limitation

is deemed acceptable. After generation of each trajectory matrix, the trajectory matrix is

added element-wise to the airspace matrix. Finally, the airspace density matrix is gener-

ated by dividing the airspace matrix by the number of trajectories represented within the

airspace matrix. The final data set of airspace density matrices are the required representa-

tions of operational states required to proceed with the subsequent steps of the prescribed

experimental approach.

4.3.2 Identification and Characterization

Considering Research Question 3.1 and Hypothesis 3.1 related to the identification and

characterization step of the experimental approach, the objective of Experiment 3.1 is

stated as:
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Experiment 3.1

Implement a recursive DBSCAN procedure such that the clusters identified corre-

spond to the operational patterns and the outlying operational states are character-

ized as being either anomalous or transitional, where the recursion proceeds until no

new transitional operational states are characterized.

However, the airspace density matrices are 2D (the set of airspace density matrices is

3D), whereas the DBSCAN clustering algorithm requires a 2D feature vector matrix as an

input. Thus, the airspace density matrices should be flattened, i.e., stack the rows and/or

columns of the matrix into a 1D vector. This results in a vector of length N×N , where each

element in the vector may be considered to be a feature to be considered in the DBSCAN

clustering. Therefore, depending on the size of N , there may be a very large number of

features to consider. There are a few potential issues that may arise with a large number

of features. For instance, there may be an issue with the increase in computation time of

the DBSCAN algorithm. Therefore, it is advantageous to reduce the dimensionality of the

feature vectors.

Dimensionality reduction involves mathematically transforming data from a high-dimensional

space into a lower-dimensional space such that the transformation preserves the defining

characteristics of the high-dimensional data set. There exist a few commonly-utilized di-

mensionality reduction techniques within the literature, such as PCA [77], t-SNE [88], and

Uniform Manifold Approximation and Projection (UMAP) [131]. PCA involves comput-

ing the principal components of a matrix and using them to perform a change of basis on

the data set. Typically, only the first few principal components are considered. PCA is con-

sidered to be a linear dimensionality reduction technique, where only linear relationships

are preserved in the transformation. The inability to preserve non-linear relationships in

the data set is an inherent limitation of PCA. t-SNE, on the other hand, may be considered

a non-linear dimensionality reduction technique. t-SNE operates by first computing the
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pairwise distances between all points in the high-dimensional data set, subsequently con-

structing a probability distribution over pairs of high-dimensional points such that the more

similar points are, the higher probability they will be assigned, and, finally, the algorithm

defines a similar probability distribution over the lower-dimensional points with the objec-

tive of minimizing the Kullback-Leibler divergence (KL divergence) between the two prob-

ability distributions. A limitation associated with t-SNE is high computation time, which

may make the tuning of appropriate parameters difficult. In addition, the distance between

clusters of points in the reduced-dimension space does not have any physical meaning.

Finally, UMAP may similarly be considered a non-linear dimensionality reduction tech-

nique, where UMAP was developed to overcome limitations that persist in using t-SNE.

Similar to t-SNE, UMAP first computes the pairwise distances between points and sub-

sequently attempts to preserve the distribution of those distances in a lower-dimensional

space. However, UMAP is observed to require significantly less computation time and is

said to preserve more of the global structure of a data set. Due to the ability to preserve

non-linear relationships and the reduced computation time compared with t-SNE, UMAP

is selected to perform the dimensionality reduction.

Once the dimensionality of the data set has been reduced, it is then possible to computa-

tionally efficiently implement the recursive DBSCAN procedure. The operational patterns

are identified as the clusters identified by DBSCAN, and outlying operational states are

characterized as either being anomalous operational state time intervals or transitional op-

erational state time intervals. Transitional time intervals are characterized as such if the

operational patterns of the time intervals before and after the time interval detected as

outlying differ. Once a time interval’s operational state has been characterized as being

transitional, that time interval is removed from the data set, and the DBSCAN clustering

and operational state characterization loop repeats until no new outlying time intervals are

characterized as transitional.

Though, it is important to determine whether the operational patterns identified and
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operational states characterized are consistent. First, considering the identification of op-

erational patterns, it is important to determine whether the operational patterns identified

are truly distinct and whether the operational patterns identified align with any official

operational plans published for the terminal airspace of interest. To “summarize” the op-

erational patterns identified, it is proposed to identify the prominent air traffic flows, and,

subsequently, the centroids of the prominent air traffic flows, observed for each operational

pattern. In this context, summarizing an operational pattern involves representing all the

trajectories that were aggregated to represent all airspace-level operational states associ-

ated with an operational pattern. Identifying air traffic flows and their respective centroids

to summarize the operational patterns after their identification, where each identified oper-

ational pattern is considered separately, has many benefits as opposed to identifying the air

traffic flows prior to identifying operational patterns.

To adequately summarize operational patterns as identified air traffic flow centroids

such that they are comparable, it is important to note that the fraction of outliers should be

set to fall within a specified range, as described related to the Air Traffic Flow Identifi-

cation step. DBSCAN provides greater “control” over the fraction of outliers detected as

opposed to HDBSCAN, as the relationship between ε and the fraction of outliers detected

is generally monotonic for a set value of MinPts, whereas the relationship between the

optional HDBSCAN smoothing parameter and the fraction of outliers detected for a set

value of the minimum cluster size parameter is often not monotonic. Varying the values of

the HDBSCAN smoothing parameter does not guarantee that a specified fraction of out-

liers will ultimately be achieved. Considering there may be several operational patterns

that are all required to have air traffic flow identified with a similar fraction of outliers

detected, leveraging an algorithm for air traffic flow identification that provides greater

control over the detected fraction of outliers is advantageous. Further, performing air traf-

fic flow identification on a data set containing only arriving aircraft trajectories operating

under a specified operational pattern may mitigate the impact of air traffic flows being of

95



varying densities. Therefore, DBSCAN is selected to perform the air traffic flow identifi-

cation. Additionally, considering Hypothesis 1, the distance function selected to be used

in the implementation of DBSCAN is the WED.

The resulting summary of the identified operational patterns as air traffic flow centroids

enables a comparison of the distinctness of operational patterns with respect to each other

and a comparison of the alignment of operational patterns with the distinct official arriving

aircraft operational plans for a terminal airspace of interest. Specifically, to assess the

distinctness of operational patterns with respect to each other, the alignment of the air

traffic flow centroids identified for each operational pattern should be considered. The

air traffic flow centroids may also be leveraged to assess the alignment of the operational

patterns with the distinct official arriving aircraft operational plans for the terminal airspace

of interest.

On the other hand, it is similarly important to consider the effectiveness of the char-

acterization of operational states. Specifically, it is important to determine whether the

operational states characterized as anomalous appear truly anomalous in the context of

other operational states and, similarly, if the operational states characterized as transitional

appear truly transition in nature. Related to appearing truly transitional, evidence of the

presence of two or more distinct air traffic flows that are associated with one operational

pattern and not the other and vice versa is required. However, determining truly anomalous

operational states is more subjective, requiring assessment of the collective behavior of the

individual trajectories. However, it can be assumed that the arriving aircraft trajectories

operating within the terminal airspace during time intervals whose operational states have

been characterized as anomalous should have little correspondence to or conformance with

air traffic flows that have been identified for any of the operational patterns or contain many

trajectories that appear to be spatially anomalous. Overall, completion of the identification

of operational patterns and characterization of operational states enables the prediction step

in the experimental approach to proceed.
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4.3.3 Prediction

Considering Research Question 3.2 and Hypothesis 3.2 related to the prediction step of

the experimental approach, the objective of Experiment 3.2 is stated as:

Experiment 3.2

Train a set of multi-class classification algorithms to predict operational patterns with

input features derived from recorded weather measurements and compute a classifi-

cation performance metric for each multi-class classification algorithm trained.

To perform the prediction step of the experimental approach, the set of multi-class clas-

sification algorithms must be defined. While there are several options available within the

literature (k-nearest neighbors, naive Bayes, decision trees, artificial neural networks, gra-

dient boosted decision trees (XGBoost), SVMs, etc.), it is not necessary to test each one.

Similar to [83], three classification algorithms are selected for the task of predicting opera-

tional patterns with input features derived from recorded weather metrics. In this research,

the three classification algorithms selected are artificial neural networks, XGBoost, and

SVMs. A brief description of each is presented:

• Artificial Neural Networks: Comprised of an input layer, various numbers of hid-

den layers with various numbers of nodes, and an output layer. Each node is typically

connected to one or more other nodes and has an associated weight. In the training

phase, the weights are initialized to random numbers and, subsequently, are refined

according to the minimizing of some specified objective function.

• XGBoost: The XGBoost algorithm was developed as a scalable tree boosting system

[132] and implements the gradient boosting decision tree algorithm. Decision trees

operate by continuously splitting data according to a selected input feature, whereas

boosting is an ensemble machine learning technique where new models are added

to an ensemble to correct any errors made by models already in the ensemble. Gra-
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dient boosting, specifically, involves creating new models that predict the residuals

of the prior models and adding them together to generate the final prediction, where

the gradient descent algorithm is leveraged to minimize the objective function when

adding new models.

• Support Vector Machines: SVMs aim to identify a hyper-plane (decision boundary)

in an n-dimensional space, where n is the number of input features. This hyper-plane

should separate the prediction classes with the greatest space, or margin, between

the points within the different prediction classes. Therefore, the decision boundary

theoretically separates the classes “best”.

Considering that each of the three classification algorithms will be leveraged to train

different prediction models, it is important to determine which quantitative classification

metric is appropriate to evaluate the performance of the algorithms. Murça & Hansman

[83] compute an accuracy metric to compare three classification algorithms, where accu-

racy is defined as the percentage of correctly classified samples. In [83], the “best” pre-

diction model achieved an accuracy of approximately 83% when forecasting operational

patterns one hour ahead. Therefore, in this research, the threshold above which the accu-

racy of the “best” prediction is set at 85% to provide the “reasonable accuracy” specified in

Hypothesis 3.2. Other classification performance metrics may be computed as well, such

as precision, recall, and F1-score.

An overview of the experimental approach (containing Experiment 3.1 and Experi-

ment 3.2) to support filling Gap 3 is presented in Figure 4.3.
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Figure 4.3: Experimental Approach: Gap 3

4.3.4 Hypothesis Acceptance

The requirements for acceptance of Hypothesis 3.1 associated with Research Question

3.1 and Hypothesis 3.2 associated with Research Question 3.2 are discussed, respectively.

Acceptance of both of the hypotheses requires distinct experiments to be performed, where

each of these experiments are connected to formulate an overall experimental approach

aimed at successfully filling Gap 3, which corresponds to the Airspace-Level Analysis

step of the proposed methodology.
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Hypothesis 3.1 Acceptance

Hypothesis 3.1 is accepted if the implementation of the prescribed recursive DBSCAN

procedure on the operational state representations in a reduced-dimensional space success-

fully identifies operational patterns and characterizes operational states as nominal, anoma-

lous, or transitional in nature. As mentioned, the operational patterns may be summarized

by identifying the prominent air traffic flows corresponding to the operational pattern and

taking the air traffic flow centroids. These air traffic flow centroids for each operational

pattern are able to be compared among the different operational patterns identified as well

as to official operational plans published for the terminal airspace of interest. Further, an

assessment of the characterization of operational states as either transitional or anomalous

relies on the plotting of all trajectories occurring within the operational states characterized

as such, respectively. For instance, a plot of the arriving aircraft trajectories operating dur-

ing time interval whose operational states have been characterized as transitional should

reveal evidence of a mix of air traffic flows distinct to each of the operational patterns on

either side of the transition period. In contrast, a plot of the arriving aircraft trajectories op-

erating during time interval whose operational states have been characterized as anomalous

should reveal little evidence of trajectories corresponding to or conforming with air traffic

flows that have been identified for any of the operational patterns. Thus, Hypothesis 3.1

Acceptance may be expressed as:

Hypothesis 3.1 Acceptance

If the dimension of the representations of the operational states as airspace density

matrices is reduced and a recursive DBSCAN procedure is implemented such that

operational patterns are identified that are distinct and align with distinct arriving

aircraft official operational plans for the terminal airspace of interest and operational

states are identified that are both transitional and anomalous in nature are character-

ized, then Hypothesis 3.1 is accepted.
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Hypothesis 3.2 Acceptance

Hypothesis 3.2 is accepted if the highest-accuracy prediction model is selected from a

set of three multi-class classification algorithms trained on input features derived from

recorded weather measurements and the accuracy of the selected prediction model is “rea-

sonable”, i.e. above 85% considering the accuracy attained in other similar works, such as

the work presented by Murça & Hansman [83]. In addition, the set of multi-class classifica-

tion algorithms selected includes an artificial neural network, a gradient-boosted decision

tree (XGBoost), and a SVM. Thus, Hypothesis 3.2 Acceptance may be expressed as:

Hypothesis 3.2 Acceptance

If an artificial neural network, gradient-boosted decision tree (XGBoost), and sup-

port vector machine are trained to predict operational patterns provided input fea-

tures derived from recorded weather measurements and the algorithm providing the

highest accuracy reaches or exceeds an 85% accuracy threshold, then Hypothesis

3.2 is accepted.

4.4 Summary

This chapter detailed the design of three experimental approaches, each corresponding to

one of the gaps related to the steps in the proposed methodology. An overview of the

mapping of gaps, to research questions, to hypotheses is displayed in Figure 4.4.

101



Figure 4.4: Thesis Structure: Experimental Approach

Implementation of the prescribed steps for each experimental approach requires the

availability of an extracted and cleaned ADS-B data set, augmented with appropriate de-

rived metrics, for all arriving aircraft operating within a terminal airspace of interest during

a specified time period of interest.

102



CHAPTER 5

IMPLEMENTATION AND RESULTS

This chapter begins with a discussion on the data extraction, cleaning and augmentation

process for a selected terminal airspace and time period of interest. Subsequently, the im-

plementations of the experimental approaches corresponding to filling the gaps associated

with each step in the proposed methodology are detailed, and the results that are obtained

are presented and discussed.

5.1 Data Extraction, Cleaning, and Augmentation

The KSFO terminal airspace is selected as the terminal airspace of interest in this research,

where the time period of interest is selected as being the full year of 2019. The time period

of 2019 is selected as it is the most recent complete year that did not experience a major

disruption in operations, such as due to the COVID-19 pandemic. KSFO is selected as it

is a major U.S. airport, though not one of the top-five busiest. KSFO tends to experience a

relatively stable Mediterranean climate throughout the year, compared to other airports in

the U.S. Further, KSFO’s intersecting parallel runway configuration is of interest, as KSFO

has been the focus of other research efforts focusing on air traffic flow identification, such

as [63]. The intersecting parallel runway configuration is displayed in Figure 5.1.
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Figure 5.1: San Francisco International Airport Runway Configuration [133]

KSFO is a part of the SFO metroplex, which additionally contains Oakland Interna-

tional Airport (KOAK) and San Jose International Airport (KSJC). KSFO, KOAK, and

KSJC collectively operate under three published official operational plans [134]: (i) west

plan, (ii) south east plan, and (iii) nighttime operations. The west plan, displayed in Fig-
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ure 5.2, is the dominant official operational plan due to the tendency of the winds to blow

from the west 95-98% of the time. The south east plan, displayed in Figure 5.3, is observed

less than 5% of the time. Finally, nighttime operations, displayed in Figure 5.4, is in place

at night such that aircraft avoid populated residential areas. However, there is no difference

in the flight patterns included in the official operational plans for KSFO between the west

plan and the nighttime operations, as evidenced by Figure 5.2 and Figure 5.4.
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To implement the designed experimental approaches, it was required that ADS-B data

be extracted, cleaned and augmented for arriving aircraft operating within the KSFO termi-

nal airspace in 2019. Specifically, arriving commercial aircraft operations were considered

as the operations of general aviation aircraft are often distinct from commercial operations.

The source of the ADS-B data considered in this work was the OpenSky Network’s histor-

ical database [135]. From a global network of sensors, the non-profit OpenSky Network

processes and archives ADS-B data [135]. Starting with the deployment of 11 sensor nodes

in Central Europe [135], the OpenSky Network now contains over 3,000 crowd-sourced

sensors located all over the world [136]. Figure 5.5 presents an overview of the Open-

Sky Network crowd-sourcing process, including a map of all active receivers on July 1st,

2020 [136], where it is evident most receivers are concentrated in Europe and the U.S. The

OpenSky Network provides full access to the historical database of aircraft state vectors,
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broadcast by ADS-B, to researchers, where over 100 academic groups in the past five years

have leveraged the OpenSky Network for a diverse range of research endeavors [136].

Figure 5.5: OpenSky Network Crowd-Sourcing Process (including map of active receivers
on July 1st, 2020) [136]

The aircraft state vectors generally include the following metrics [135]:

• icao24: the ICAO code (the transponders unique 24-bit address assigned by ICAO)

• callsign: a space-filled eight-character string typically assigned by the operating

airline

• time: the epoch time stamp (added on the receiver side)

• lon: longitude

• lat: latitude

• alt: barometric altitude with respect to the standard atmosphere

• track: track angle as the clockwise angle from geographic north
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• vel: east-west velocity (ground speed)

• vrate: north-south velocity (vertical rate)

In the OpenSky Network’s historical database, the track metric is referred to as “head-

ing” [137]. The online documentation of this metric does indicate that the term “heading” is

not entirely correct [137], yet it is common to (incorrectly) interchange these terms [138].

Heading may be said to be the direction in which the aircraft is pointed (simply, the di-

rection in which the aircraft nose is pointed) [138], whereas track is the actual direction

the aircraft is tracking across the ground (simply, the direction of the aircraft’s path at any

point) [138]. The heading of an aircraft may be different than its track is due to wind and/or

magnetic variation/deviation.

A subset of state vectors may make up an individual flight or flight segment’s trajectory,

where each individual flight or flight segment represents a contiguous set of position reports

from a given icao24 aircraft address. Table 5.1 displays the structure and format of the

information stored in the state vector:

Table 5.1: Example Structure and Format of the State Vectors Obtained from the OpenSky
Network Historical Database

icao24 callsign time lon lat alt track vel vrate

a1a9f4 SKW5385 1546301514 -122.690 37.957 15250 167.28 413.15 -1664

a1a9f4 SKW5385 1546301515 -122.689 37.955 15200 167.28 413.15 -1728

a1a9f4 SKW5385 1546301516 -122.689 37.953 15175 167.24 412.17 -1920

a1a9f4 SKW5385 1546301517 -122.688 37.951 15150 167.21 411.20 -2112

While an incredibly rich source of data, due to the crowd-sourced nature of the state

vectors provided by the OpenSky Network, it is possible data errors exist. Thus, an ex-

tensive data cleaning procedure is required. The extraction of the state vectors for aircraft

arriving at KSFO in 2019 is detailed. Additionally, the subsequent cleaning and augmen-

tation of the data is discussed, where the data is augmented with those derived metrics
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discussed in chapter 4, such as Universal Transverse Mercator (UTM) coordinates and en-

ergy metrics. Finally, the properties and statistics related to the extracted, cleaned, and

augmented ADS-B data are presented.

5.1.1 Data Extraction

The state vectors available within the OpenSky Network’s historical database were ex-

tracted leveraging the traffic [139] Python library. The traffic Python library enables the

direct querying of the OpenSky Network’s historical database using explicit SQL queries

by specifying the range of parameters such as time, longitude, latitude, altitude, etc. Ac-

cordingly, the ADS-B data for aircraft operating within a 20 nautical mile bounding box

(longitude and latitude bounds) around the KSFO terminal airspace in 2019 was requested

via the traffic Python library with a maximum altitude of 25,000 ft. Extracted state vec-

tors were not in the form of “flight segments” or “trajectories”, but are rather a large data

set of mixed state vectors, generally ordered by time. Further, due to this, arrival/departure

flights were not directly query-able; therefore, extracting all state vectors meeting the listed

conditions resulted in state vectors corresponding to departing aircraft operating within the

20 nautical mile bounding box of the KSFO airport as well. Thus, the data cleaning pro-

cedure provided the ability to agglomerate state vectors as trajectories as well as filter out

departures.

Additionally, the OpenSky Network state vectors provide measurements of barometric

altitude with respect to the standard atmosphere, where this measurement may vary no-

ticeably throughout the day based on the current atmospheric temperature and pressure.

Thus, to compute a more accurate height above ground level of an aircraft at all trajectory

points, the atmospheric pressure data for 2019 was also extracted. This data was extracted

from the Iowa Environmental Mesonet [140], which collects historical Automated Surface

Observing System (ASOS) observations at most airports across the U.S. The collection

of ASOS observations arises as a result of a collaborative program between the National
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Weather Service, the FAA, and the Department of Defense. Widely used by meteorologists,

hydrologists, climatologists, and aviation weather experts, ASOS units are automated sen-

sor suites designed to serve meteorological and aviation observing need and service as

the U.S.’s primary surface weather observing network. Definitions of each of the weather

metrics contained in the ASOS data set are presented [140]:

• time: epoch time

• alti: pressure altimeter in inches

• drct: wind direction in degrees from “true” north

• dwpf : dew point temperature in Fahrenheit, typically at two meters

• gust: wind gust in knots

• mslp: sea level pressure in millibar

• relh: relative humidity as a percentage

• sknt: wind speed in knots

• tmpf : air temperature in Fahrenheit, typically at two meters

• vsby: visibility in miles

A sample of the data extracted from the Iowa Environmental Mesonet is provided in

Table 5.2.
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Table 5.2: Example Structure and Format of the ASOS Data Extracted from the Iowa
Environmental Mesonet

time alti drct dwpf gust mslp relh sknt tmpf vsby

1546300800 30.02 350 30.9 30 1016.5 41.11 17 54.0 10

1546304400 30.02 340 30.9 30 1016.5 41.11 17 54.0 10

1546308000 30.03 350 32.0 30 1016.7 42.98 20 54.0 10

1546311600 30.05 350 30.0 30 1017.4 40.96 23 53.1 10

5.1.2 Data Cleaning and Augmentation

To clean the extracted ASOS data required a fairly straightforward procedure to both fill

and interpolate missing values. On the other hand, the OpenSky Network data required a

more comprehensive cleaning procedure. The overall data cleaning and augmentation steps

are summarized in Figure 5.6. The data cleaning and augmentation procedure contains five

primary steps: (i) initial cleaning, (ii) segment identification, (iii) intermediate cleaning,

(iv) augmentation, and (v) final cleaning. Each step is discussed in further detail.
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Figure 5.6: Data Cleaning and Augmentation Procedure

Initial Cleaning

The objective of the initial cleaning step is primarily to discard state vectors that are not

complete, are redundant, or are not associated with commercial operations. State vectors

that contained empty values or were redundant for lon, lat, alt, or vel were discarded.

The callsign metric enabled determination of whether the state vector was associated with

a commerical flight such that state vectors not associated with a commercial flight were

discarded.
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Segment Identification

The objective of the segment identification step is to separate the subsets of state vectors

that may be associated with each other as “flight segments” or “trajectories”, characterize

the flight segments are departure or arrival segments, and, finally, identify a touchdown

point for each arriving aircraft trajectory. State vectors were split by value of the callsign

metric. Since it is possible that several flights operate under the same callsign throughout

one day, if the time difference between two time-ordered state vectors was greater than five

minutes, the state vectors were split into separate flight segments. To distinguish between

the different identified flight segments (trajectories) within the data set, a unique identifier

was assigned to each.

Subsequently, based on the medians of the first and last five altitude measurements,

the flight segments were characterized as either being arrival or departure segments. The

median of the altitude measurements were taken due to the possibility of data errors (large

outliers that are undoubtedly erroneous) that may exist within the crowd-sourced data set.

If the median of the first five altitude measurements was greater than the median of the

last five altitude measurements, then the slight segment was characterized as an arrival.

Otherwise, the trajectory segment was characterized as a departure and disregarded for the

purpose of this work.

Finally, the state vector associated with the touchdown point was identified. The first

state vector in which the ground speed reached below 100 knots was taken as the touchdown

point state vector. However, if no point was recorded to reach below 100 knots, then the last

point (time-wise) was taken as the touchdown point state vector. This is an approximate

method to identify the touchdown point state vector, which may introduce some error.

Though, this method was observed to be the most effective considering this data set.
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Intermediate Cleaning

The objective of the intermediate cleaning is to discard state vectors containing outliers

or erroneous state vector measurements that may exist due to the crowd-sourced and “un-

clean” nature of the OpenSky Network ADS-B data. Specifically, outliers in the more un-

certain metrics, such as barometric altitude and ground speed, were considered. A coarse

strategy to discarding state vectors due to outlying measurements in barometric altitude

and/or ground speed was employed. The difference between successive state vector mea-

surements was computed. If the difference between successive state vector measurements

was greater than 1,000 ft with respect to barometric altitude and/or greater than 150 knots

with respect to ground speed, then the state vector that caused the threshold to be exceeded

was removed. These thresholds were selected due to the ADS-B data having a frequency

of roughly 1 Hz, where it is unrealistic to assume these large changes occurring with that

time frame or even a slightly larger time frame.

Augmentation

The objective of the augmentation step is to augment the ADS-B data set with relevant

derived metrics. Additionally, in this step, the ASOS weather data metrics are considered.

First, a corrected airport barometric altitude, or reference altitude (ref alt), was computed

for each trajectory leveraging the mean sea level pressure. Specifically, the recorded mean

sea level pressure (mslp) from the ASOS data set associated with a trajectory’s touchdown

point’s time stamp was leveraged to perform this correction, which proceeded as:

ref alt = (145366.45 ∗ (1 − (
mslp

1013.25
)0.190284)) ∗ airport alt

where airport alt is the altitude of the airport considering standard atmospheric condi-

tions.

Next, for each trajectory, the touchdown point state vector’s barometric altitude mea-
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surement was subtracted from all other state vectors’ barometric altitude measurements

such that a height above ground level (hagl) is computed. Additionally, for each trajectory,

the ground track distance between each state vector was computed such that the ground

track distance from the touchdown point was able to be computed for each trajectory point.

Additionally, the longitude and latitude coordinates were projected onto an (x, y) Cartesian

coordinate system.

There are several options available regarding projecting the measured longitude and lat-

itude coordinates onto an (xy) Cartesian coordinate system. A “perfect” projection would

preserve area, shape, direction, bearing, and distance. However, preserving all of these

properties is not feasible. Conformal map projections preserve angles locally, which en-

ables the local scale in every direction around any one point to be constant, meaning that the

ratio of two lengths in the local domain are preserved [141]. In the context of clustering tra-

jectories within a terminal airspace radius, a conformal map projection is most appropriate

as local distances are preserved. Two of the most widely-used conformal map projections

are the UTM projection and the Lambert conformal conic projection. The UTM projection

divides the earth into 60 segments, or “zones”, where each of these zones are then flattened

out with a transverse cylinder. The UTM projection is not appropriate in cases in which

the area of interest spans multiple UTM zones. On the other hand, the Lambert conformal

conic projection seats a cone over the sphere of the Earth and projects the surface confor-

mally onto the cone, where the cone is then unrolled such that the parallel that was touching

the sphere is assigned unit scale [141]. While no projection is necessarily more “accurate”

than another, the preservation of different properties and differing levels of distortion are

of consideration. Considering that KSFO is located nearly in the center (east-west-wise) of

UTM Zone 10, and distortion is least closest to the center, a UTM projection was selected

to project longitude and latitude coordinates onto an (x, y) Cartesian coordinate system.

Finally, section 4.2 introduced the need for augmentation of the data set with derived en-

ergy metrics. Related to Experiment 2, the SPE (SPE), SKE (SKE), and STER (STER)
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were computed, where the SPE was simply considered to be the height above ground level.

The velocity of the aircraft leveraged to compute the SKE was the ground speed of the

aircraft available in ADS-B data. The choice of speed (true airspeed, ground speed, etc.) to

use to compute the energy metrics of interest is not straightforward. Ground speed was se-

lected due to relevance in certain ATM situations and data limitations. For instance, runway

excursions, which are considered anomalies, occur in instances of excess ground speed on

touchdown. Further, estimates related to time an aircraft reaches a specific point, whether

it be touchdown or a specific point related to separation of two aircraft, are calculated us-

ing an aircraft’s ground speed. The selection of other speeds, such as true airspeed, may

be more relevant and necessary when aerodynamic effects, such as stall, are considered,

which was not the focus of this work. Finally, other speed measurements were not readily

available within the OpenSky Network historical database. The extracted ASOS data did

include wind speed and direction, which could be leveraged to approximate an airspeed

value. However, the ASOS data is measured at a ground station, which would require

an assumption of homogeneous atmosphere within the 20 nautical mile radius of KSFO,

which is not realistic. Accordingly, the ground speed was selected to compute the selected

energy metrics.

Final Cleaning

The objective of the final cleaning step is to discard any trajectories that may be deemed

incomplete. For instance, a trajectory was discarded if the difference between the touch-

down point barometric altitude and the corrected airport altitude (ref alt) was greater than

a certain threshold, i.e. the trajectory did not reach within a certain hagl threshold. These

segments were discarded as not enough data exists to consider the approach trajectory as

being complete. The setting of the hagl threshold may be varied depending on the required

application. For instance, in the context of the flight-level analysis (the Air Traffic Flow

Identification and Anomaly Detection steps in the proposed methodology), it is advanta-
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geous to have higher-fidelity, more complete ADS-B data and associated derived metrics

due to the consideration of the individual flight trajectories. Therefore, to generate the data

sets used to perform Experiment 1 and Experiment 2 a threshold of 100 ft was set. On the

other hand, in the context of the Airspace-Level Analysis step of the proposed methodol-

ogy, it is not as important that each individual trajectory reach exactly the airport location.

Thus, to generate the data set used to perform Experiment 3.1 and Experiment 3.2, a

threshold of 1,000 ft was set. The discarding of trajectories based on hagl accounts for

trajectory records that do not reach the airport location.

However, it was also considered that trajectory data may not be available at the borders

of the airspace, i.e. the trajectory state vectors exist only beginning somewhere in the

center of the 20 nautical mile radius. Therefore, trajectories were discarded if the maximum

ground track distance from touchdown was less than 20 nautical miles. The threshold of 20

nautical miles was selected as if an aircraft had entered the terminal airspace and followed

a direct, straight path to the airport location, the minimum ground track distance from

touchdown that could have been observed was 20 nautical miles.

5.1.3 Data Set Properties and Statistics

At the conclusion of these processing steps, two cleaned and augmented ADS-B data sets

are generated: one to be used in the experimental approaches associated with the Air Traf-

fic Flow Identification and Anomaly Detection steps and one to be used in the experi-

mental approach associated with the Airspace-Level Analysis step. Both data sets con-

tain arriving aircraft ADS-B data for both domestic and international flights. While the

airspace-level analysis data set contains slightly more trajectories than the flight-level anal-

ysis data set due to a less stringent threshold value set for discarding trajectories based on

hagl, both data sets contain arriving aircraft trajectories for around 180,000 both domestic

and international flights. The flights were operated by 190 unique airlines, where United

Airlines operated approximately one-third of the flights. Further, the data set contained 110
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unique aircraft types, where the A320 aircraft was the most commonly operated aircraft.

A bar char of the top five most common airlines and aircraft types for the approximately

180,000 flights in the two data sets is displayed in Figure 5.7.

Figure 5.7: Top Five Most Common Airlines and Aircraft Types for Flight-Level and
Airspace-Level Data Sets

5.2 Air Traffic Flow Identification

Executing the experimental approach designed in section 4.1 that is associated with filling

Gap 1 provides results that may be interpreted to enable the assessment of Hypothesis 1

Acceptance. Thus, the implementation of the experimental approach is detailed and the

corresponding results are presented and discussed.

5.2.1 Implementation

The Air Traffic Flow Identification experimental approach involves Experiment 1 and

includes two main steps: (i) data processing and (ii) trajectory clustering. Thus, the imple-

mentations of both the data processing and trajectory clustering steps of the experimental

approach to accomplish the objective of Experiment 1 are described.

119



Data Processing

The flight-level analysis data set of all arriving aircraft operating within the KSFO terminal

airspace in 2019 was leveraged to implement the experimental approach. This cleaned and

augmented data set contained 178,890 trajectories.

A distance-based re-sampling method created the n-dimensional feature vectors for

clustering, where the ground track distance from touchdown is the distance-based metric

that the re-sampling was performed on. Each trajectory was re-sampled on 50 uniform in-

tervals between 0 ground track distance from touchdown and the maximum ground track

distance from touchdown associated with that trajectory. The average maximum ground

track distance from touchdown value over all trajectories within the data set was approxi-

mately 32.7 nautical miles. The average distance between trajectory points over all trajec-

tories within the data set was approximately 0.67 nautical miles.

While the trajectory clustering step may theoretically be implemented on the entire data

set of 178,890 flights, this would only provide one “data point” from which to draw conclu-

sions. Therefore, full-year data set was split into smaller data sets corresponding to smaller

time intervals such that an adequate assessment of performance of the implementation of

HDBSCAN with the WED may be performed. Specifically, the full-year data set was split

into both daily and weekly data sets. Each daily data set contained around 500 trajectories,

on average, whereas each weekly data set contained around 3,500 trajectories, on average.

Trajectory Clustering

For each data set in the data groups (daily and weekly),HDBSCAN was implemented with

both the WED and ED, separately. The hdbscan [124] Python library was leveraged to

perform the trajectory clustering with the two distance functions. The ED is the default

distance function implemented by the hdbscan Python library. Therefore, a method of us-

ing the WED was required. The hdbscan Python library is capable of implementing any

distance function that exists within the sklearn [142] Python library as well as a custom
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distance function. Within the sklearn Python library there exists the implementation of a

Standardized Euclidean Distance (SED). The SED is intended to scale the different fea-

tures by their respective variances, represented by a variance vector V = [v1, v2, ...vk].

Computing the SED between trajectories T i and T j proceeds as:

Di,j
SED =

√√√√ n∑
k=1

[
(xi

k − xj
k)2 + (yik − yjk)2

vk
]

To produce the desired WED effect, the values of 1
wk

, where wk are the values of the

weight vector, W , were assigned to V such that an effective weighting results. Selecting

the “optimal” values of the weight vector is not straightforward and may require iteration.

Therefore, to assess the performance of the WED compared with the ED, several different

weight vectors, or weighting schemes, were evaluated. These different weight vectors were

created by varying the values of wk according to functions inspired by the shapes of the

normal and beta distribution probability density and cumulative distribution functions. Four

different weighting schemes were selected, where these weighting schemes are displayed

in Figure 5.8. The point 0 is the touchdown point, whereas point 49 is the first point in

which the aircraft enters the terminal airspace radius.
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Figure 5.8: Weighting Schemes Evaluated

TO explore the method’s robustness and underscore the importance of selecting an ap-

propriate weighting scheme, Weighting 2 was included. Considering Weighting 2, only the

trajectory points in the “center” of the trajectory are given any significant weight, whereas

the majority of the points are weighted near zero. It was anticipated that a “less reliable”

clustering results from usage of Weighting 2 when compared with the performance of the

other weighting schemes due to the emphasis on a limited sub-sequence of trajectory points.

The parameter minimum cluster size parameter was set to 2% of the total number of

trajectories within each data set. On average, for the daily data sets, this was an average

of 10, whereas, for the weekly data sets, this was an average of 70. These values were

relatively consistent with other values set for the minimum cluster size parameter (analo-

gous to the DBSCAN MinPts parameter) for other studies’ applications of DBSCAN or

HDBSCAN [73, 87]. The optional HDBSCAN smoothing parameter is varied to provide

some “control” over the fraction of outliers detected. For context on the scale of this frac-

tion, Gariel et al. [63] find typical fractions of outlying trajectories per day to be between

0.02 to 0.16. As this range is too broad to enable a fair comparison between the two imple-

mentations of HDBSCAN, a tighter range of fraction of outliers detected between 0.10 to
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0.15 was selected to remove the outlier bias. In this research, for each data set, an iterative

loop was implemented to adjust the smoothing parameter such that the fraction of outlying

trajectories was restricted to between 0.10 and 0.15.

Finally, as introduced in section 4.1, to compare the WED weighting schemes’ perfor-

mance with that of the ED, the mean ED from the assigned cluster centroid was computed

for each data set within the daily and weekly data groups for the multiple implementations

of HDBSCAN with the WED considering the different weighting schemes and the imple-

mentation of HDBSCAN with the ED. Computation of the mean ED from the assigned

cluster centroid for each HDBSCAN implementation enabled a direct comparison of per-

formance of the different WED weighting schemes with respect to the ED as well as the

performance of each of the weighting schemes with respect to each other.

5.2.2 Results and Discussion

Leveraging the hdbscan Python library to cluster both the daily and weekly data set using

the various WED weighting schemes and the ED, the computation time difference between

using the WED versus the ED was negligible. The results are presented for both the daily

and weekly data groups separately. Only 139 daily data sets and 30 weekly data sets were

ultimately available for comparison due to an inability to reach a fraction of outliers be-

tween 0.10 and 0.15 for all WED weighting schemes and/or the ED. For each data group,

for each data set, value of the mean ED from the assigned cluster centroid for was com-

pared for each WED weighting scheme to the value of the mean ED from the assigned

cluster centroid for the ED. For each data group, the percentage of data sets for which a

weighting scheme performed “better” than the ED with respect to the mean ED from the

assigned cluster centroid is presented in a bar chart. Results for the daily and weekly data

groups are presented.
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Daily Data Group

Figure 5.9 displays the percentage of time the mean ED from the assigned cluster centroid is

greater for the implementation of HDBSCAN with the ED as compared to the implementa-

tion of HDBSCAN with the WED, for each weighting scheme. With respect to Figure 5.9,

three of the weighting schemes, Weighting 1, Weighting 3, and Weighting 4, appear to

identify air traffic flows more reliably (perform better) than the ED on the majority of data

sets in the daily data group. Specifically, Weighting 1 notably performs the “best”, followed

by Weighting 3, where both of these weighting schemes have a similar skewed shape, with

the primary difference being in the weighting values of the ten trajectory points closest to

the terminal airspace border. As expected, Weighting 2 does not perform well compared

to the other weighting schemes. Weighting 4 does not perform as well as Weighting 1 and

Weighting 3, yet still performs better than the ED.

Figure 5.9: Daily Data Group, Percentage of Time the Mean Euclidean Distance from
Assigned Cluster Centroid is Greater for the Implementation of HDBSCAN with the Eu-
clidean Distance as Compared to the Implementation of HDBSCAN with the Weighted
Euclidean Distance
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Weighting 1 was selected as the weighting scheme best-suited to identify air traffic

flows for arriving aircraft at KSFO. To further assess results for individual daily data sets,

clusters identified for a single daily data set are graphically presented in Figure 5.10 and

Figure 5.11 for the HDBSCAN implementation with the WED Weighting 1 and the HDB-

SCAN implementation with the ED, respectively. Both the implementation of HDBSCAN

with the WED Weighting 1 and implementation of HDBSCAN with the ED identified five

distinct clusters.

Figure 5.10: Clusters Identified Implementing HDBSCAN with the Weighted Euclidean
Distance Weighting 1 for a Single Day, Jun 10th, 2019
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Figure 5.11: Clusters Identified Implementing HDBSCAN with the Euclidean Distance for
a Single Day, June 10th, 2019

Considering the implementation of HDBSCAN with the ED, some trajectories were

assigned to clusters that, visually, appear as likely outliers. On the other hand, considering

the implementation of HDBSCAN with the WED Weighting 1, these trajectories were

identified as outliers. MAny of the clusters (representative of the basis of air traffic flows)

identified implementing HDBSCAN with WED Weighting 1 appeared to be “tighter”, or

more reliable, which was one of the primary objectives in implementing HDBSCAN with

the WED. Figure 5.12 and Figure 5.13 display Cluster 0 and Cluster 4, respectively, in

more detail such that the differences may be further evaluated.
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Figure 5.12: Cluster 0 Identified Implementing HDBSCAN with the Weighted Euclidean
Distance Weighting 1 versus Implementing HDBSCAN with the Euclidean Distance for
the Single Day, June 10th, 2019

Figure 5.13: Cluster 4 Identified Implementing HDBSCAN with the Weighted Euclidean
Distance Weighting 1 versus Implementing HDBSCAN with the Euclidean Distance for
the Single Day, June 10th, 2019

The dark gray lines in Figure 5.12 and Figure 5.13 represent trajectories that were not

identified as outliers implementing HDBSCAN with the ED, yet were identified as outliers

implementing HDBSCAN with the WED Weighting 1. In Figure 5.12 and Figure 5.13, the

trajectories represented by the dark gray lines were not as nominally conforming with the

dominant air traffic flow paths or other trajectories within the cluster, and, therefore, should

have been flagged as outliers (anomalies). However, implementation of HDBSCAN with
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the ED was unable to detect these trajectories appropriately as outliers, which potentially

results in the skewing of the overall air traffic flows identified. Overall, the quantitative

results obtained through assessment of the mean ED from the assigned cluster centroid

(displayed in Figure 5.9) are further supported by a visual inspection of Figure 5.10, Fig-

ure 5.11, Figure 5.12, and Figure 5.13.

Weekly Data Group

Figure 5.14 displays the overall results for all 30 data sets included in the weekly data

group. Two of the weighting schemes, Weighting 1 and Weighting 3, appear to identify

air traffic flows much more reliably than the ED. Notably, Weighting 2 performs worse

than the ED, where its undesirable performance, again, is expected. For the weekly data

group data sets, Weighting 4 does not perform better for a majority of the weeks considered,

which is likely due to the inferior performance of symmetric weighting schemes being more

pronounced when clustering data sets including many more trajectories and, potentially,

more air traffic flows.
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Figure 5.14: Weekly Data Group, Percentage of Time the Mean Euclidean Distance from
Assigned Cluster Centroid is Greater for the Implementation of HDBSCAN with the Eu-
clidean Distance as Compared to the Implementation of HDBSCAN with the Weighted
Euclidean Distance

Similar to the analysis of the daily data set results, an individual weekly data set is visu-

ally assessed to further support the quantitative results. Figure 5.15 and Figure 5.16 display

the clusters identified through implementation of HDBSCAN with the WED Weighting 1

and the implementation of HDBSCAN with the ED, respectively. Both the implementation

of HDBSCAN with the WED Weighting 1 and the implementation of HDBSCAN with

the ED identify seven distinct clusters. Again, it is observed that considering the imple-

mentation of HDBSCAN with the ED that some trajectories were assigned to clusters that,

visually, appear as likely outliers. On the other hand, considering the implementation of

HDBSCAN with the WED Weighting 1, these trajectories were identified as outliers. Addi-

tionally, visually, some clusters identified implementing HDBSCAN with WED Weighting

1 appear to be “tighter”, or more reliable. Therefore, results for the weekly data group were

similar to those for the daily data group.
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Figure 5.15: Clusters Identified Implementing HDBSCAN with the Weighted Euclidean
Distance Weighting 1 for a Single Week, Week of June 11th, 2019

Figure 5.16: Clusters Identified Implementing HDBSCAN with the Euclidean Distance for
a Single Week, Week of June 11th, 2019

The results of the execution of the experimental approach involving Experiment 1 out-

lined in section 4.1 indicate that, in the majority of cases, there does exist a weighting

scheme for implementation of HDBSCAN with the WED that out-performs the implemen-

tation of HDBSCAN with the ED. This indicates a more reliable identification of air traffic

flows. Quantitatively, the mean ED from the assigned cluster centroid was lower in the

majority of cases in which HDBSCAN was implemented with the WED than in which

HDBSCAN was implemented with the ED, where each implementation results in the frac-

tion of outliers detected between 0.10 and 0.15. Therefore, Hypothesis 1 is accepted.

It is observed that the weighting schemes that placed more weight on the trajectory

points between the middle of the trajectory point sequence and those approaching the bor-
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der of the airspace, yet not necessarily at the border, performed better when considering

aircraft arriving at KSFO. However, the most appropriate weighting scheme, or type of

weighting scheme, may be different for different airports depending on the runway config-

uration and other terminal airspace-specific factors. Further, the more reliable identification

of air traffic flows inherently involves a more robust identification of outlying, or spatially

anomalous, trajectories, which is relevant in the context of the Anomaly Detection step in

the proposed methodology.

The acceptance of Hypothesis 1 fills Gap 1. The primary contribution of filling Gap 1

is a more reliable method of identifying air traffic flows considering the converging nature

of arriving aircraft trajectories.

5.3 Anomaly Detection

Executing the experimental approach designed in section 4.2 that is associated with filling

Gap 2 provides results that may be evaluated to enable the assessment of Hypothesis 2.1

Acceptance, Hypothesis 2.2 Acceptance, and Hypothesis 2.3 Acceptance. Thus, the

implementation of the experimental approach is detailed and the corresponding results are

presented and discussed.

5.3.1 Implementation

The Gap 2 experimental approach involves Experiment 2 and includes four main steps: (i)

data processing, (ii) spatial anomaly detection, (iii) energy anomaly detection, and (iv) sta-

tistical analysis set-up. Thus, the implementations of the data processing, spatial anomaly

detection, energy anomaly detection, and statistical analysis set-up steps of the experimen-

tal approach to accomplish the objective of Experiment 2 are described.
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Data Processing

A subset of the flight-level analysis data set of all arriving aircraft operating within the

KSFO terminal airspace in 2019 was selected to implement the experimental approach due

to computational limitations, i.e. a smaller number of trajectories were considered. The

time period considered was four months of 2019 in that trajectories of aircraft arriving at

KSFO between June 1st, 2019 and September 30th, 2019 were considered. This data set

contained 63,630 total flights.

As introduced in section 4.2, two data sets were required: (i) radius data for spatial

anomaly detection and (ii) distance cutoff data for energy anomaly detection. Re-sampling

the trajectories within the 20 nautical mile radius of KSFO to 50 uniformly-spaced points

generated the radius data set, whereas re-sampling the trajectories cutoff at the last 20

nautical miles of flight to 50 uniformly-spaced points generated the distance cutoff data set.

The radius data set contains trajectories an average of around 0.65 nautical miles ground

track distance between trajectory points. The distance cutoff data set contains trajectories

with approximately 0.4 nautical miles ground track distance between trajectory points.

Go-arounds were identified such that within the data set, 337 of the 63,360 flights were

classified as go-arounds, making up only about 0.53% of the data set. Therefore, a higher

go-around rate than the 0.29% presented in [143] was observed. The go-around trajectories

were removed from the data set leaving each data set (radius data and distance cutoff data)

containing 63,023 trajectories.

Spatial Anomaly Detection

As prescribed in section 4.2 and considering the acceptance of Hypothesis 1, the trajectory

clustering supporting the spatial anomaly detection step was performed by implementing

HDBSCAN with the WED. Specifically, the Weighting 1 weighting scheme (displayed in

Figure 5.8) was selected due to its superior performance observed in Experiment 1. Recall,

a beta probability distribution inspired the Weighting 1 weighting scheme.
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Similar to Experiment 1, the HDBSCAN Python library was leveraged to implement

HDBSCAN with the WED such that air traffic flows were identified and spatial anoma-

lies were detected. The selection of the required minimum cluster size parameter is not

straightforward and is dependent somewhat on operational intuition as well as the evalu-

ation of the fraction of anomalies HDBSCAN detects at differing parameter settings. In

the context of operational intuition, it is relevant to consider the fraction of trajectories that

could comprise a single air traffic flow. During the analysis period, approximately 525

trajectory records exist per day, where, within a single day, it is possible to observe mul-

tiple air traffic flows. It is introduced that SFO’s most prominent official operational plan,

the west plan (Figure 5.2, is observed 95-98% of the time. The west plan contains five

flight arrival patterns, which may generally represent possible air traffic flows. If all five

possible “air traffic flows” are active, it is unlikely the average of 525 trajectories would

be distributed evenly among them and some portion of the trajectories will likely be spa-

tial anomalies. Despite these considerations, the average number of trajectories per “air

traffic flow” was considered to be 105. Therefore, it was asserted to the be considered an

air traffic flow over the entire 120-day time period, the minimum value for the minimum

cluster size parameter should be no lower than the average number of trajectories per “air

traffic flow” for a 6-day period (5% of 120 days). Hence, a minimum value of the mini-

mum cluster size parameter was set at 630, which is equivalent to approximately 1% of the

total number of trajectories within the data set. An HDBSCAN hyper-parameter sensitivity

analysis was performed for minimum cluster size parameter values of approximately 1%

of the total number of trajectories to approximately 3% of the total number of trajectories,

in 0.5% increments. The results of this sensitivity analysis are presented in Figure 5.17.

Further, it was relevant to consider that anomalies are, by definition, rare event and should

not make up a large fraction of the data set. Because the number of clusters identified re-

mains constant for the minimum cluster size parameter values evaluated, the selected value

of the minimum cluster size parameter was 630 (1% of the total number of trajectories) as
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this was the value producing the lowest fraction of outliers (0.128).

Figure 5.17: HDBSCAN Sensitivity to Percent of Total Number of Trajectories Taken as
the Minimum Cluster Size Parameter

After implementing HDBSCAN with the WED Weighting 1 and minimum cluster size

parameter equal to 630, 8,082 trajectories were detected as spatial anomalies. Additionally,

seven distinct clusters were identified, where these cluster are displayed in Figure 5.18.

Figure 5.19 presents the percentages of trajectories assigned to one of the seven clusters,

assigned a spatial anomaly label by HDBSCAN, or assigned a go-around label a priori.

The cluster sizes are not uniform. For instance, Cluster 4 contained almost 30% of the

total number of trajectories, while Cluster 5 contained only about 4% of the total number

of trajectories.
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Figure 5.18: Clusters Identified by Implementing HDBSCAN with the Weighted Euclidean
Distance Weighting 1

Figure 5.19: Distribution of Trajectories

135



The clusters identified by the implementation of HDBSCAN with the WED Weighting

1 are representative of seven distinct air traffic flows. Spatially anomalous trajectories were

subsequently associated with the clusters to which they most closely belong to form air

traffic flows and to enable robust energy anomaly detection. Thus, air traffic flow, in this

context, refers to all spatially nominal trajectories belonging to a specific cluster as well

as all spatially anomalous trajectories closest (according to the WED Weighting 1) to the

specific cluster’s centroid compared with all other air traffic flow centroids. Figure 5.20 dis-

plays the air traffic flows identified by implementing HDBSCAN with the WED Weighting

1.

Figure 5.20: Air Traffic Flows Identified by Implementing HDBSCAN with the Weighted
Euclidean Distance Weighting 1

Energy Anomaly Detection

The entire distance cutoff data set was separated into smaller air traffic flow data sets.

The number of trajectories assigned to each energy anomaly detection data set and the

percentage of trajectories detected as spatial anomalies associated with each air traffic flow

are presented in Table 5.3.

136



Table 5.3: Composition of Distance Cutoff Air Traffic Flow Data Sets

Data Set # Total Trajectories % Spatial Anomalies

Flow 0 12,764 4.8

Flow 1 4,953 4.1

Flow 2 5,078 42.0

Flow 3 15,217 20.2

Flow 4 18,059 4.2

Flow 5 3,075 23.2

Flow 6 3,877 15.1

To prevent feature bias in the implementation of DBSCAN with the ED due to varying

magnitudes of the features (SPE, SKE, STER), a normalization was performed on each

air traffic flow data set prior to the clustering. Specifically, a z-normalization was conducted

for each feature xi within each data set, which is computed as:

xi
norm =

xi − xi

sxi

where sxi is the standard deviation associated with feature xi and xi is the mean associ-

ated with feature xi. The sklearn Python library provided the module necessary for the

z-normalization of the energy metrics.

DBSCAN is implemented leveraging the sklearn Python library’s DBSCAN module.

The MinPts parameter was set at approximately 1% of the total number of trajectories

within each air traffic flow data set, which was consistent with the minimum number of

samples setting in [66]. The exact value for each air traffic flow data set was dependent on

the number trajectories associated with each identified air traffic flow in the spatial anomaly

detection step. The ε parameter was varied until approximately a fraction of 0.10 (between

0.09 and 0.11) of all trajectories in each data set were detected as energy anomalies. This
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fraction was consistent with the fraction of anomalies detected in previous studies [47, 100].

As anticipated, for all air traffic flows, DBSCAN did identify only one cluster of nominal

operations. Finally, the anomaly score for each trajectory was computed, as specified in

section 3.2.

Statistical Analysis Set-Up

The statistical analysis set-up step in the experimental approach is relatively straightfor-

ward. First, within each data set, the trajectories were assigned to one of the four cat-

egories: (i) nominal (N), (ii) only-spatial-anomaly (S), (iii) only-energy-anomaly (E), or

(iv) both-spatial-and-energy-anomaly (B). The distribution of these categories for each air

traffic flow is displayed in Figure 5.21. These distributions do differ between air traffic

flows; although, the sum of the proportions of the both-energy-and-spatial-anomaly (B)

category and only-energy-anomaly (E) category were constant and equal to approximately

0.10 (the specified fraction of energy anomalies detected).

Figure 5.21: Trajectory Category Distributions within Each Air Traffic Flow Data Set

For each air traffic flow, the fraction of energy anomalies detected considering only spa-

tial anomalous trajectories and the fraction of energy anomalies considering only spatially

138



nominal trajectories are plotted in Figure 5.22. The likelihood ratio was then computed as

the ratio of these two values for each air traffic flow.

Figure 5.22: Fraction of Energy Anomalies Detected Among Spatially Anomalous Trajec-
tories and the Fraction of Energy Anomalies Detected Among Spatially Nominal Trajecto-
ries

In addition, for each air traffic flow, the mean value of the anomaly scores with respect

to trajectory category were computed. Further considering all trajectories across all air

traffic flows, the mean, median, standard deviation, 25th percentile, and 75th percentile

values of anomaly scores with respect to trajectory category were computed, where hese

values are displayed in Table 5.4. Finally, Figure 5.23 displays the distributions of the base-

10 logarithm of aforementioned grouping of anomaly scores. The base-10 logarithm of the

anomaly scores is presented such that distinctions between the anomaly score distributions

are more readily observable.
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Table 5.4: Anomaly Score Statistical Properties by Trajectory Category

Category Mean Median Std 25th 75th

N 13.67 13.43 1.56 12.53 14.56

S 13.96 13.73 1.64 12.72 14.93

E 21.43 18.95 9.41 17.01 22.05

B 34.28 27.21 21.64 19.39 42.71

Figure 5.23: Trajectory Category Anomaly Score Distributions with the Base-10 Logarithm
of the Anomaly Score Presented on the Y-Axis

5.3.2 Results and Discussion

Figure 5.22 reveals that, generally, the fraction of spatial anomalies detected as energy

anomalies is greater than the fraction of spatially nominal trajectories detected as energy

anomalies. For example, within the Flow 4 data set, 65.6% of spatial anomalies were

detected as energy anomalies, whereas only 8.2% of spatially nominal trajectories were

detected as energy anomalies. In general, for all air traffic flows flows, with the exception
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of Flow 2, the fraction of energy anomalies detected is noticeably higher in the group of

spatial anomalies than it is in the group of spatially nominal trajectories. Due to the unique

results associated with Flow 2, a further investigation proceeded.

Both Table 5.3 and Figure 5.21 indicate the Flow 2 consists of an usually large percent-

age of spatial anomalies (42.0%). Therefore, the trajectories associated with Flow 2 were

plotted. It was evident that the majority of the spatial anomalies detected that were asso-

ciated with Flow 2 should have been initially assigned by HDBSCAN to strictly belong to

Flow 2 (rather than be detected as anomalies). All other air traffic flows were plotted to

assess if similar issues were present, yet no issues were observed. Because the large ma-

jority of detected spatial anomalies do not appear to be actual spatial anomalies associated

with Flow 2, the results were skewed and conclusions were difficult to draw. It is likely that

the fraction of spatial anomalies detected as energy anomalies was driven down for Flow

2, whereas the fraction of spatially nominal trajectories detected as energy anomalies was

driven up. Thus, this explained the lack of alignment of the Flow 2 results with the other

air traffic flow results and the results for Flow 2 are generally disregarded.

Figure 5.22 indicates that spatial anomalies were more likely to be detected as energy

anomalies than spatially nominal trajectories. While the discovery of this relationship is

significant, it is equally relevant to note that not all spatial anomalies are subsequently

detected as energy anomalies. Table 5.5 displays the likelihood ratio, where this metric

provides a quantitative measure of how much more or less likely it was for a trajectory

to be detected as an energy anomaly provided that the trajectory was detected as a spatial

anomaly. Considering Flow 4, the likelihood ratio was 8.01, which indicates that spatial

anomalies associated with Flow 4 are just over eight times more likely to be subsequently

detected as energy anomalies than the spatially nominal trajectories.
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Table 5.5: Spatial Anomaly Detection and Energy Anomaly Detection Relationship Explo-
ration

Data Set Likelihood Ratio (S Mean)/(N Mean) Welch’s t-test p-value

Flow 0 2.77 1.02 0.000

Flow 1 5.24 1.02 0.024

Flow 2 0.84 0.99 1.000

Flow 3 1.61 1.02 0.000

Flow 4 8.01 1.03 0.001

Flow 5 5.15 1.02 0.000

Flow 6 3.10 1.04 0.000

The results of the execution of the experimental approach involving Experiment 2,

indicate that, on average, across all flows, excluding the Flow 2 data set due to skewed

results,spatial anomalies trajectories are between 1.6 to 8 times more likely to be identi-

fied as energy anomalies than spatially nominal trajectories. Therefore, Hypothesis 2.1 is

accepted.

Considering trajectories belonging to Flow 3, the horizontal speed (ground speed) pro-

file and the vertical speed (vertical rate) profile for spatially nominal trajectories and spa-

tially anomalous trajectories are displayed in Figure 5.24. These profiles represent the

interquartile range of the ground speed and vertical rate, respectively. It is expected that

both the spatial profiles and speed profiles of the spatially nominal trajectories and spatially

anomalous trajectories would converge for the final five nautical miles of flight in the case

that a successful touchdown occurs. Therefore, if the final five nautical miles of flight are

neglected, it is evident that the interquartile range of both the ground speed and vertical rate

were not aligned. For instance, spatially nominal trajectories typically experienced ground

speeds that were higher than those of spatially anomalous trajectories, where the converse

was true considering vertical rate. Necessarily, several factors may impact this observa-

tion; however, it is possible that aircraft experience spatially anomalous conditions were
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provided different instructions regarding ground speed and vertical rate than those aircraft

that experience spatially nominal conditions. Thus, ATC and other ATM system opera-

tors should be aware of the potential for non-alignment of the speed profiles and, hence,

off-nominal energy management, to manifest in situations in which aircraft are experienc-

ing off-nominal spatial operations, regardless of whether the off-nominal spatial operations

are a result of ATC instructions or pilot actions. Moreover, the prediction of aircraft ar-

rival times could be less accurate when the more rare spatially anomalous trajectories are

observed., which may have efficiency implications.

Figure 5.24: Flow 3, Speed Profiles of Spatially Nominal Trajectories versus Spatially
Anomalous Trajectories

Further, the ratios between the mean anomaly score of each three categories containing

trajectories (S, E, and B) identified as anomalous and the mean anomaly score of nominal

(N) trajectories, respectively, were computed. Figure 5.25 displays these ratios of mean

anomaly scores for each air traffic flow. Neglecting Flow 2, the ratios between the mean

anomaly scores of only-spatial-anomaly (S) trajectories and the mean anomaly scores of

nominal (N) trajectories were greater than 1. A value greater than 1 indicates that the

anomaly scores of only-spatial-anomaly trajectories were, on average, greater than the
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anomaly scores of nominal trajectories. Hence, this implies that, despite not being detected

as energy-anomalous, only-spatial-anomaly trajectories were “relatively more anomalous”

than nominal trajectories. Therefore, a higher degree of caution should still be exercised

with respect to aircraft experiencing off-nominal spatial operations, even if their energy

profiles appear to conform to nominal operations.

However, due to the closeness of the ratios between the mean anomaly scores of only-

spatial-anomaly (S) trajectories and the mean anomaly scores of nominal (N) trajectories,

it is advantageous to assess the statistical significance of the observation. Accordingly, the

one-sided Welch’s t-test was conducted to determine whether the mean anomaly scores of

only-spatial-anomaly (S) trajectories were statistically significantly greater than the mean

anomaly scores of nominal (N) trajectories. The scipy [144] Python library was leveraged

to perform the one-sided Welch’s t-test, which tests for the null hypothesis that the two

samples (S and N) have identical mean values [130].

Figure 5.25: Anomaly Scores Mean Ratios by Air Traffic Flow

The computed p-values for the one-sided Welch’s t-test are displayed in Table 5.5.

Again, neglected Flow 2, the p-values computed were less than the commonly-applied

0.05 statistical significance threshold, which indicated that the null hypothesis (the mean
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anomaly scores of the only-spatial-anomaly trajectories were greater, in fact, greater than

the mean anomaly scores of nominal trajectories) was rejected. Therefore, Hypothesis 2.2

is accepted.

Figure 5.25 also implies that both-spatial-and-energy-anomaly (B) trajectories experi-

ence more “severe” energy anomalies compared with only-energy-anomaly (E) trajectories.

Comparing the severity of the energy anomalies detected in the both-spatial-and-energy-

anomaly category and only-energy-anomaly category provides insight into whether a dis-

tinction should be made between the two categories, which would imply that these two

categories of trajectories should be considered independently in the context of decision-

making.

Considering Table 5.4 and Figure 5.23 it is evident the statistical properties of the dis-

tributions of the anomaly scores of the both-spatial-and-energy-anomaly (B) trajectories

and only-energy-anomaly (E) trajectories were distinct. Specifically, the distribution of the

anomaly scores for the both-spatial-and-energy-anomaly trajectories was skewed toward

much higher anomaly scores. Breaking the distributions down by individual air traffic

flows provided similar results. Therefore, Hypothesis 2.3 is accepted. Therefore, the un-

derlying mechanisms may be dissimilar for both-spatial-and-energy-anomaly (B) and only-

energy-anomaly (E) trajectories. Moreover, it appeared that more severe energy anomalies

occurred if an aircraft was observed to experience off-nominal spatial states, which is of in-

terest for ATM system operators to consider to facilitate the safe and efficient management

of air traffic in all situations.

However, it is important to note that the proportion of trajectories labeled as spatial

anomalies was significantly less than the proportion of trajectories labeled as spatially nom-

inal. Therefore, the range of nominal energy metrics was likely skewed more towards those

are experienced by spatially nominal trajectories, which may have resulted in the assess-

ment of energy anomalies being more severe (with respect to anomaly score) for both-

spatial-and-energy-anomaly trajectories when compared with only-energy-anomaly trajec-
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tories. An investigation into the rate of unable approaches for the both-spatial-and-energy-

anomaly and only-energy-anomaly categories could shed more light on the relationship.

However, this research is limited by a lack of availability of aircraft weight information in

ADS-B data, which supports the full evaluation of stabilized approach criteria.

Considering all the statistical evaluation metrics, Flow 5 produced metrics that were

often in the “middle” of the metric ranges. As such, Flow 5 is selected to present a more

in-depth analysis. Considering the three anomaly categories (S, E, and B), an individual

trajectory was selected belonging to each category. Figure 5.26 displays the spatial profiles

of the selected trajectories overlaid on the spatial profiles of all spatially nominal trajec-

tories. Analogously, Figure 5.27 displays the energy profiles (with respect to SPE, SKE,

STER) of the selected trajectories overlaid on the bounds of energy-nominal trajectories.

The selected only-spatial-anomaly trajectory (in blue) clearly deviated from the nominal

trajectories’ spatial profiles (in green). Although, despite the readily observable spatial

deviation, the energy profiles of this trajectory remained nominal throughout the entire

approach. This supports the concept that an aircraft experiencing off-nominal spatial oper-

ations does not necessarily experience poor energy management. The complement was true

considering the selected only-energy-anomaly trajectory in that the trajectory (in orange)

was in near-perfect alignment with the other spatially nominal trajectories, yet experienced

large deviations in its energy profiles. Finally, considering the selected both-spatial-and-

energy-anomaly trajectory, both its spatial and energy profiles deviated significantly from

observed nominal operations. Additionally, evaluation of the trajectory’s spatial and energy

profiles appeared to indicate the that the deviations seemed more severe than the deviations

observed in the only-spatial-anomaly trajectory and only-energy-anomaly trajectory with

respect to spatial and energy metrics, respectively.
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Figure 5.26: Flow 5, Spatial Profiles and Selected Anomalous Trajectories
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Figure 5.27: Flow 5, Energy Profiles and Selected Anomalous Trajectories

The acceptance of Hypothesis 2.1, Hypothesis 2.2, and Hypothesis 2.3 fills Gap 2.

The primary contribution of filling Gap 2 is knowledge of the relationship between spatial

and energy anomalies for arriving aircraft.
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5.4 Airspace-Level Analysis

Executing the experimental approach designed in section 4.3 that is associated with filling

Gap 3 provides results that may be interpreted to enable the assessment of Hypothesis 3.1

Acceptance and Hypothesis 3.2 Acceptance. Thus, the implementation of the experimen-

tal approach is detailed and the corresponding results are presented and discussed.

5.4.1 Implementation

The Gap 3 experimental approach involves Experiment 3.1 and Experiment 3.2 and in-

cludes three main steps: (i) data processing, (ii) identification and characterization (Experiment

3.1), and (iii) prediction (Experiment 3.2). Thus, the implementations of each step of the

experimental approach to accomplish the objectives of Experiment 3.1 and Experiment

3.2 are described.

Data Processing

The entire airspace-level analysis data set of all arriving aircraft operating within the KSFO

terminal airspace in 2019 was leveraged to implement the experimental approach. There-

fore, the time period is the full year of 2019. One hour was selected as length of the time

intervals to consider within the time period. Thus, an operational state is an aggregation

of the flight-level operations, or time series trajectory data, for all arriving aircraft arriving

within the KSFO terminal airspace during one hour. One hour was selected due to the ten-

dency of some airspace-level metrics to be computed on an hourly basis. For instance, the

FAA’s ASPM database contains flight metadata information, such as number of scheduled

arrivals, percentage of on-time arrivals, average arrival delay time, etc., on an hourly ba-

sis [107]. Therefore, the data set was split into hourly data sets containing all trajectories

observed during the hour, resulting in 8,760 time intervals. However, most airports do not

operate 24 hours per day. Hence, some hourly data sets do not contain any trajectories

149



(approximately 5% of the hourly data sets are empty). Therefore, these hourly data sets

were discarded, leaving 8,283 time intervals in which the corresponding data set contains

at least one trajectory.

Though, it is asserted that a single trajectory record does not contain sufficient infor-

mation to perform an airspace-level analysis as no aggregation of multiple flight-level op-

erations occurs. For the full year of 2019, all available metrics provided on an hourly basis

within the FAA’s ASPM database were extracted, where the number of scheduled arrivals

was specifically of interest. Figure 5.28 displays a histogram of the number of scheduled

arrivals per hour at KSFO for all hours in 2019, excluding hours containing zero scheduled

arrivals. The distribution of number of scheduled arrivals per hour is bi-modal. Specifi-

cally, there is a peak in the distribution of number of scheduled arrivals per hour at two to

four scheduled arrivals per hour as well as around 29 to 31 scheduled arrivals per hour. Ex-

cluding number of scheduled arrivals per hour below around 15, the distribution of number

of scheduled arrivals per hour appeared relatively normal.

Figure 5.28: Histogram of Number of Scheduled Arrivals per Hour at San Francisco In-
ternational Airport for All Hours in 2019, Excluding Hours Containing Zero Scheduled
Arrivals
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It is important to consider the potential outcomes of generating an airspace density ma-

trix for an hour in which a relatively small number of aircraft arrive at an airport. For

instance, considering a relatively small number of arriving aircraft trajectories, it is diffi-

cult to discern the distribution of the trajectories as the sample size is so small. Further,

the impact of spatially anomalous trajectories on the representation of the terminal airspace

operational states may be much more pronounced if only a few trajectories are considered.

For instance, if only three trajectories are contained within an hourly data set, and one is

spatially anomalous, that spatially anomalous trajectory’s path within the terminal airspace

will have a density of one-third, which is a density that should more realistically be ex-

pected of a true air traffic flow. Consequently, the generation of several airspace density

matrices containing a relatively small number of flights may skew results of the operational

pattern identification and/or operational state characterization. It is undesirable to have a

single trajectory significantly impact the representation of the terminal operational states.

Recall the limitations of current approaches discussed in section 2.3, which include spec-

ifying an air traffic flow as being active if only one trajectory is observed to be associated

with that air traffic flow. Thus, it is asserted that a reasonable sample size of trajectories

must be aggregated to adequately represent the distribution of arriving aircraft trajectories

to enable proper identification of operational patterns and characterization of operational

states. Moreover, in the context of the ATM system modernization goal of increasing ca-

pacity, the operational patterns of time intervals in which a small number of aircraft arrive

are more relevant than those with fewer arrivals.

Therefore, a threshold was set below which time intervals were discarded if the time

interval data set did not contain at least this many trajectories. While this threshold may

be variable depending upon the configuration of and operations within a specific terminal

airspace, for the KSFO terminal airspace this threshold was set at 15. A threshold of 15 was

selected considering Figure 5.28, where 15 was approximately the mid-point between the

two modes of the distribution of the number of scheduled arrivals per hour. After discarding
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all hourly data sets that did not contain at least 15 trajectories 5,861 data sets remained for

analysis.

To generate an N × N airspace density matrix requires the specification of N , which

is dependent upon the resolution of the airspace density matrix desired. The resolution

should enable corresponding trajectory points along a similar, yet not exactly the same,

spatial path to be grouped in the same grid spaces, while placing those that are divergent

in different spaces. Too high a resolution may result in all corresponding trajectory point

being placed in a separate grid space, while too low a resolution may result in all cor-

responding trajectory points being placed in a single grid space. A sensitivity study was

performed to determine an appropriate value for N . The sensitivity study involved generat-

ing an airspace density matrix considering the trajectories within all 5,861 hourly data sets

for different values of N . The airspace density matrix was plotted as a heatmap and the

value of N for which the “spread” of the trajectories appeared to be best represented was

selected. A value of N equal to 50 was selected, where the heatmap of the airspace density

matrix values for N equal to 50 is displayed in Figure 5.29.
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Figure 5.29: Airspace Density Matrix Generated Considering Trajectories within All 5,861
Hourly Data Sets

It is evident the dominant air traffic flows identified in the Anomaly Detection step and

plotted in Figure 5.20 (corresponding with the official SFO west plan) are visible within

Figure 5.29 with the addition of at least one air traffic flow that may be associated with the

official SFO south east plan.

Identification and Characterization

The generated airspace density matrices provided the basis for the input into the recursive

DBSCAN procedure. The airspace density matrices were flattened, resulting in vectors of

length 2,500 (50 ∗ 50 = 2500). The vectors generated as a result of the flattening of the

airspace density matrix were subsequently stacked to generate a feature vector matrix of

size 5861 × 2500. Additionally, following the steps of the experimental approach outlined

in section 4.3, the dimensionality of the feature vector matrix was reduced by applying the
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UMAP dimensionality reduction technique. UMAP was implemented leveraging the umap

[145] Python library such that two components were returned, i.e. the dimension of the

feature vectors was reduced from 2,500 to 2. A plot of each of the operational states in

the reduced-dimensional space is presented in Figure 5.30. Figure 5.30 appears to indicate

three very distinct clusters, or operational patterns.

Figure 5.30: Operational States After UMAP Dimension Reduction

Before implementing DBSCAN, the UMAP components were normalized leveraging

the sklearn Python library’s z-normalization module. Then, the recursive DBSCAN pro-

cedure was implemented leveraging the sklearn Python library’s DBSCAN module. The

MinPts parameter was set at 2% of the total number of time intervals. The value of 2%

of the total number of time intervals was selected considering that the official SFO west

plan is observed 98-95% of the time, which would leave, potentially, approximately 2%

of the time that the official SFO south east plan may occur. Therefore, setting a value of

MinPts greater than 2% of the total number of time intervals could result in operational

states corresponding to operational patterns associated with the official SFO south east plan

being identified as being outliers by DBSCAN.
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As introduced, there exists monotonic relationship between fraction of outliers identi-

fied and the ε parameter for a fixed value of MinPts. Therefore, the value of ε was varied

until the fraction of outliers identified was between 0.01 and 0.02 for each recursion step

in the recursive DBSCAN procedure. The fraction of outliers identified was specified as

between 0.01 and 0.02 due to the property of the outlying operational states being char-

acterized as anomalous in the final recursion step, after no more transitional operational

states are characterized. Anomalies are, inherently, rare events. Thus, it is desirable to de-

tect only a small portion of a data set as anomalies, especially when there exists no ground

truth or prior work related to detection of airspace-level anomalous operational states. An

objective in detecting anomalous operational states is to narrow down the set of time in-

tervals for SMEs, operators, planners, and decision-makers to place the most emphasis on

understanding due to their abnormal characteristics. Accordingly, it is desirable to begin

with a smaller set of anomalous operational states.

An outlying operational state may only be characterized as transitional if the time in-

tervals directly before and after the outlying time interval are available in the data set. For

instance, it was possible, due to the threshold requiring least 15 trajectories to exist within

an hourly data set, that the time intervals directly before or after the outlying time interval

were not available. In the reduced-dimensional space, the results of the implementation

of the recursive DBSCAN procedure in terms of the identified operational patterns and

characterized operational states are displayed in Figure 5.31.
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Figure 5.31: Identified Operational Patterns and Characterized Operational States in
UMAP Reduced-Dimension Space

Table 5.6 presents the number of time intervals (hours) assigned to each class of opera-

tional state: transitional, anomalous, or specific operational pattern if the operational state

was classified as nominal. Additionally, the percentage of the total number of time intervals

(5,861 hours) assigned to each operational state is displayed in Table 5.6.

Table 5.6: Operational State Characterization Including Specific Operational Pattern Iden-
tified If Operational State Is Nominal

Operational State Assignment Number of Hours Percentage of Hours

Transitional Operational State 45 0.77%

Anomalous Operational State 76 1.30

Operational Pattern 0 4,086 69.72%

Operational Pattern 1 353 6.02%

Operational Pattern 2 1,301 22.20%
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Prediction

Before the training of any of the selected multi-class classification algorithms, the input

features were specified and derived. The features were able to be derived from the ex-

tracted ASOS data. The ASOS data was aggregated by hour such that the means of each

metric over the hour were computed if the ASOS data for the hour contained multiple mea-

surements. As a prediction capability is not especially valuable if the prediction is not able

to occur in advance of the prediction time interval of interest, ASOS data measurements

associated with the prediction time interval of interest were not leveraged.

The features used to train the prediction models included the ASOS data aggregated

by hour for the hour prior to the prediction time interval of interest. Additionally, derived

features from the recorded weather measurements included the mean of the ASOS data

aggregated by hour for the two hour prior to the prediction time interval of interest. The

ASOS metrics considered included: alti, drct, dwpf , gust, mslp, relh, sknt, tmpf , vsby.

Finally, categorical features indicating the month (month) and hour of day (hour) of the

time interval of interest were included in the input feature vector. Therefore, 20 total fea-

tures were included in the input feature vector matrix used to train the prediction models.

The set of multi-class classification algorithms trained included an artificial neural net-

work, a gradient-boosted decision tree (XGBoost), and an SVM, as specified in section 4.3.

The artificial neural network and SVM were trained leveraging the sklearn Python library

modules, whereas the gradient-boosted decision tree was trained leveraging the xgboost

Python library [132]. The primary classification performance metric of interest was accu-

racy, i.e. the percentage of correctly classified samples. However, other metrics such as

precision, recall, and F1-score were also computed as assessing at all of these measures to-

gether may enable a more complete evaluation of the performance of the prediction models,

especially considering that the classes were not completely balanced.

The data set of the labels (assigned operational pattern, if operational state is nominal)

for the time intervals and their corresponding input features were split into training and
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testing data sets to assess the various algorithms’ classification performance metrics. The

training data set contained 80% of the time intervals assigned to an operational pattern

(4,592 time intervals), whereas the testing data set contained the remaining 20% of the

time intervals assigned to an operational pattern (1,148 time intervals). A breakdown of

the number of time intervals associated with each operational pattern for the training and

testing data sets is displayed in Table 5.7.

Table 5.7: Operational Pattern Breakdown in Training and Testing Data Sets

Operational Pattern Training Samples Testing Samples

Operational Pattern 0 3,264 822

Operational Pattern 1 283 70

Operational Pattern 2 1,045 256

5.4.2 Results and Discussion

The results are presented and discussed separately for each step in the experimental ap-

proach associated with filling Gap 3 related to the Airspace-Level Analysis step in the

proposed methodology.

Data Processing

For each identified operational pattern, time intervals observed to have differing trajectory

densities were plotted. Both a plot of the arriving aircraft trajectories within the terminal

airspace and a heatmap of the airspace density matrix values are displayed side-by-side

such that it was evident how the trajectories were aggregated to generate an airspace den-

sity matrix. Airspace density matrices corresponding to operational states associated with

Operational Pattern 0, Operational Pattern 1, and Operational Pattern 2 are presented and

discussed.
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Figure 5.32 and Figure 5.33 both display a plot of the arriving aircraft trajectories op-

erating during a specified time interval and a corresponding heatmap of airspace density

matrix values for time intervals associated with the identified Operational Pattern 0. The

same few air traffic flows would have been considered “active” if existing methods for

airspace-level analysis were applied, as there exists at least one trajectory corresponding to

the paths that would likely be identified as air traffic flows. However, the airspace density

matrix was able to make a distinction between the density of the different air traffic flows.

For instance, the highest density of trajectories displayed within Figure 5.32 appeared to be

those trajectories approaching from the south, whereas the highest density of trajectories

displayed within Figure 5.33 appeared to be those approaching from the south east. These

density differences were accounted for in the generation of the airspace density matrix by

the values of the grid spaces corresponding to those trajectories approaching from the south

in Figure 5.32 being highest and by the values of the grid spaces corresponding to those

trajectories approaching from the south east in Figure 5.33 being lower.

Figure 5.32: Operational Pattern 0, Jan 21st, 2019, 16:00
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Figure 5.33: Operational Pattern 0, Jan 30th, 2019, 04:00

Figure 5.34 and Figure 5.35 both display a plot of the arriving aircraft trajectories op-

erating during a specified time interval and a corresponding heatmap of airspace density

matrix values for time intervals associated with the identified Operational Pattern 1. Again,

it is noted that the same couple of air traffic flow would have been considered “active” if ex-

isting methods for airspace-level analysis were employed. The primary difference between

the two time intervals displayed in Figure 5.34 and Figure 5.35 is that Figure 5.34 displays

a plot in which the density of the trajectories approaching from the south/west was higher

than the density of trajectories approaching from the south/west in Figure 5.35. The trajec-

tories approaching from the south/west displayed in Figure 5.35 were much more “spread

out” than those displayed in Figure 5.34. The differing “spreads”, or densities, of the tra-

jectories approaching from the south/west was captured in the generation of the airspace

density matrix as in Figure 5.35 many more grid spaces appeared to have non-zero values,

while in Figure 5.34 the values in the south/west grid spaces were higher when they were

non-zero, yet many more values in these grid spaces were equal to zero.
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Figure 5.34: Operational Pattern 1, Feb 27th, 2019, 07:00

Figure 5.35: Operational Pattern 1, Mar 23rd, 2019, 03:00

Finally, Figure 5.36 and Figure 5.37 both display a plot of the arriving aircraft trajec-

tories operating during a specified time interval and a corresponding heatmap of airspace

density matrix values for time intervals associated with the identified Operational Pattern

2. Considering Figure 5.36 and Figure 5.37, there were distinct differences in the arriving

aircraft trajectories observed. Specifically, a go-around appeared to occur within the time

interval corresponding to Figure 5.37. Further, the trajectories displayed in Figure 5.37

were much more scattered than the relatively “tight” nature of the trajectories displayed
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in Figure 5.36. This difference in densities of the trajectories was evident in the airspace

density matrix values, as the heatmap displayed in Figure 5.36 indicates that there are sev-

eral more spaces within the terminal airspace that were equal to zero than in the heatmap

displayed in Figure 5.37.

Figure 5.36: Operational Pattern 2, Jun 11th, 2019, 07:00

Figure 5.37: Operational Pattern 2, Jun 16th, 2019, 05:00
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Identification and Characterization

The three identified operational patterns were summarized by leveraging DBSCAN with

the WED to identify air traffic flow centroids considering all individual trajectories asso-

ciated with time intervals that had been identified to belong to the operational pattern of

interest. Figure 5.38, Figure 5.39, and Figure 5.40 display the summaries of the identified

Operational Pattern 0, Operational Pattern 1, and Operational Pattern 2, respectively.

Figure 5.38: Operational Pattern 0, Identified Air Traffic Flow Centroids
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Figure 5.39: Operational Pattern 1, Identified Air Traffic Flow Centroids

Figure 5.40: Operational Pattern 2, Identified Air Traffic Flow Centroids

Operational Pattern 0 and Operational Pattern 2 appeared to conform with the official

SFO west plan, while Operational Pattern 1 conformed with the official SFO south east
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plan. While Operational Pattern 0 and Operational Pattern 2 both conformed with the

official SFO west plan, there existed important distinctions between the two operational

patterns. For instance, while both Operational Pattern 0 and Operational Pattern 2 contained

a prominent air traffic flow approaching from the south east, the air traffic flow centroids

are distinct for Operational Pattern 0 and Operational Pattern 2. Figure 5.38 displays an

air traffic flow approaching from the south east (Flow Centroid 0 in Figure 5.38) that was

slightly “above” the air traffic flow approaching from the south east in Figure 5.40 (Flow

Centroid 0 in Figure 5.40), where the Operational Pattern 0 air traffic flow approaching

from the south east made a slight adjustment towards the end of the approach to align with

the runway rather than being aligned throughout the approach as in Operational Pattern 2.

Further, Figure 5.38 for Operational Pattern 0 displays two air traffic flows (Flow Cen-

troid 1 and Flow Centroid 3) that originated from the northwest, whereas Figure 5.40 dis-

plays only one air traffic flow (Flow Centroid 1) that originated from the northwest. More-

over, the loop present for Flow Centroid 1 in Figure 5.38 was “tighter” than the loop present

for Flow Centroid 1 in Figure 5.40. Finally, Operational Pattern 0 and Operational Pattern

2 had two distinct remaining prominent air traffic flows observed. Flow Centroid 2 in Fig-

ure 5.38 approached from the south, whereas Flow Centroid 2 in Figure 5.40 approached

from the southwest. Thus, despite the conformance of Operational Pattern 0 and Opera-

tional Pattern 2 to the official SFO west plan, there existed important differences revealed in

the structure of the airspace in the two operational patterns, which the recursive DBSCAN

procedure was able to uncover. Additionally, this recursive DBSCAN procedure was able

to separate and identify time intervals corresponding to Operational Pattern 1, which con-

forms with the official SFO south east plan. Therefore, distinct operational patterns were

identified that align with the arriving aircraft official SFO west plan and official SFO south

east plan.

Moreover, assessing the relative positions of the clusters within Figure 5.31, Opera-

tional Pattern 0 and Operational Pattern 2 were “closer”, and appeared to have more overlap
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and transition periods between them. Considering both Operational Pattern 0 and Opera-

tional Pattern 2 both conformed to the official SFO west plan, it is reasonable to assert that

these operational patterns were, actually, “closer”, whereas Operational Pattern 1, which

conformed to the official SFO south east plan and had a significantly different structure was

much “further” as displayed in Figure 5.31. Additionally, there was at least one air traffic

flow that was relatively similar in position between the two operational patterns. There-

fore, it was anticipated that the higher-dimension airspace density matrix representation of

the operational states would display more global similarities between Operational Pattern 0

and Operational Pattern 2, which the UMAP dimensionality reduction technique preserved,

where the global structure of the data set being preserved in the reduced-dimensional space

is a specific benefit of leveraging the UMAP dimensionality reduction technique [131].

Additionally, the recursive DBSCAN procedure sought to characterize operational states

that were not associated with a cluster (operational pattern) as transitional or anomalous.

With respect to operational states being characterized as transitional, Figure 5.41 and Fig-

ure 5.42 display the sequence of operational states surrounding an operational state charac-

terized as transitional for a transition between Operational Pattern 0 to Operational Pattern

1 and Operational Pattern 2 to Operational Pattern 0, respectively.

Figure 5.41: Operational Pattern 0 to Operational Pattern 1 Sequence, Mar 25th, 2019,
16:00, 17:00, 18:00
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Figure 5.42: Operational Pattern 2 to Operational Pattern 0 Sequence, Jan 30th, 2019,
19:00, 20:00, 21:00

Figure 5.41 displays a transition between Operational Pattern 0 and Operational Pattern

1. The operational state was observably characterized as having been transitional due to the

existence of trajectories that align with both the prominent air traffic flows associated with

Operational Pattern 0 and Operational Pattern 1. Further, it appeared the arriving aircraft

operations were experiencing a transition from the official SFO west plan to the official

SFO south east plan. Figure 5.42 displays a transition between Operational Pattern 2 and

Operational Pattern 0. The time interval of the operational state characterized as having

been transitional contains trajectories that align with the most prominent air traffic flows

associated with Operational Pattern 0 and for Operational Pattern 2. Both Operational

Pattern 0 and Operational Pattern 2 conformed to the official SFO west plan. However,

if the official SFO west plan and official SFO south east plan were considered to be the

only operational patterns, the transitional nature of the terminal airspace from two distinct

operational structures (operational patterns) would have been neglected. Overall, the re-

cursive DBSCAN procedure appeared to be capable of characterizing obvious transitional

operational states as such.

Finally, with respect to operational states having been characterized as anomalous, Fig-

ure 5.43 and Figure 5.44 display plots of two operational states that were characterized as

anomalous by the recursive DBSCAN procedure. Both of the operational states displayed

in Figure 5.43 and Figure 5.44 observably contain one or more trajectories that do not align
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with the identified prominent air traffic flows associated with the identified operational pat-

terns and/or were potentially experiencing either a go-around or holding pattern. Further,

the time interval displayed in Figure 5.43 contained no trajectories approaching from the

northwest, which was abnormal, and likely contributing to the time interval’s operational

state representation having been detected as anomalous. One trajectory alone experiencing

a go-around or holding pattern should not result in an operational state being character-

ized as anomalous. However, in Figure 5.44 it appears there may have been more than

one or two trajectories that experienced go-around or holding patterns; thus, resulting in

the operational state having been detected as anomalous. Overall, the recursive DBSCAN

procedure appeared to be capable of characterizing obvious anomalous operational states

as such in that multiple trajectories observed within the anomalous operational state time

interval appeared to be abnormal.

Figure 5.43: Anomalous Operational State, May 16th, 2019, 06:00
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Figure 5.44: Transition Operational State, August 30th, 2019, 15:00

An evaluation of the summaries of the operational patterns through their associated air

traffic flow centroids indicated that the operational patterns identified are both distinct and

align with the distinct official SFO operational plans. Additionally, Figure 5.41 and Fig-

ure 5.42 that corresponded to two differing operational patterns as transitional. Finally,

Figure 5.43 and Figure 5.44 indicate the robust characterization of operational states con-

taining multiple trajectory operations that corresponded to off-nominal spatial behavior as

anomalous. Therefore, Hypothesis 3.1 is accepted.

A time series of the either the operational pattern identified or operational state char-

acterization, if it does not belong to an identified operational pattern, is displayed in Fig-

ure 5.45. This time series displays each hour within a day on the Y-axis and each day

within the year on the X-axis. It is evident that Operational Pattern 2 tended to dominate

for early morning flights and those later in the evening. If flights were occurring very

late into the night/early morning (00:00 to 02:00), Operational Pattern 0 was generally not

identified. Thus, despite all the trajectory patterns in the official SFO nighttime operations

being a replicate of the trajectory patterns in the official SFO west plan, it actually did not

appear that during the night time that the full official SFO nighttime operations were ever

observed.
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Figure 5.45: Full Year of 2019 Time Series of Operational State Classification By Hour of
Day and Day of Year

The typical distribution of operational patterns that were identified by hour of the day

within the KSFO terminal airspace is presented in Figure 5.46. As observed in Figure 5.45,

Operational Pattern 0 was most commonly observed during the day, while Operational

Pattern 1 and Operational Pattern 2 appeared to have been more prominent in the night

time/early morning.

Figure 5.46: Frequency of Operational Patterns Identified by Hour of Day
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Further, the distribution of operational states characterized as either anomalous or tran-

sitional by hour of the day within the KSFO terminal airspace is presented in Figure 5.47.

By definition, transitional and anomalous operational states occurred much less frequently

than nominal operational states that were assigned to an identified operational pattern.

However, out of the few time intervals that existed corresponding to 04:00 and 05:00, a rel-

atively larger portion of those operational states were identified as being anomalous. This

may have been due to extenuating circumstances that lead aircraft to have had to arrive at

the airport within those hours. Further, the highest portion of time intervals experiencing

transitional operational states occurred around 08:00 and 09:00, which may indicate that a

structural change in the terminal airspace somewhat-regularly occurred during one of those

hours.

Figure 5.47: Frequency of Operational State Characterized by Hour of Day, If Not Charac-
terized as Nominal

Moreover, Table 5.8 displays the number and percentage of time intervals transition-

ing between different operational patterns. There were no transitional operational states

that appeared to transition from Operational Pattern 1 to either Operational Pattern 0 nor

Operational Pattern 2. However, there were five time intervals in which Operational Pat-
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tern 0 or Operational Pattern 2 transitioned to Operational Pattern 1. Hence, a transition

to Operational Pattern 1 comprised 11.11% of the transitional operational states character-

ized, while the remaining 88.89% of the transitional operational states characterized were

between Operational Pattern 0 and Operational Pattern 2 and vice-versa.

Table 5.8: Number and Percentage of the Time Intervals Transitioning Between Different
Operational Pattern

Time Interval Before Time Interval After # Intervals % Intervals

Operational Pattern 0 Operational Pattern 1 4 8.89%

Operational Pattern 0 Operational Pattern 2 14 31.11%

Operational Pattern 1 Operational Pattern 0 0 0.00%

Operational Pattern 1 Operational Pattern 2 0 0.00%

Operational Pattern 2 Operational Pattern 0 26 57.78%

Operational Pattern 2 Operational Pattern 1 1 2.22%

To further expand upon the acceptance of Hypothesis 3.1, the output of the experimen-

tal approach associated with filling Gap 2, related to the Anomaly Detection step, was

considered. The execution of the Gap 2 experimental approach resulted in a total of five

labels having been assigned to each trajectory. The data processing step resulted in a label

having been assigned to a trajectory indicating whether a go-around was performed. Re-

lated to the spatial anomaly detection step, the second label indicated whether the trajectory

was a spatial anomaly, or not and the third label specified the air traffic flow to which the

trajectory was assigned. The fourth label was related to the energy anomaly detection step

and indicated whether the trajectory was an energy anomaly, or not. Finally, the fifth label

was the label indicating the category to which the trajectory belonged (N, S, E, or B). Each

operational state classification (transitional, anomalous, Operational Pattern 0, Operational

Pattern 1, and Operational Pattern 2) was considered such that an additional label was

added to each trajectory to indicate the operational state classification for the time interval
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in which the trajectory occurred.

For each operational state classification, the trajectories associated with the particular

operational state classification were divided into sets based upon the air traffic flow to

which the trajectory was assigned. The percentage of trajectories belonging to each air

traffic flow within the operational classification sets of trajectories was computed, where

Table 5.9 displays these percentages.

Table 5.9: Percentage of Trajectories Belonging to Each Air Traffic Flow Considering the
Operational State Class to Which the Time Interval in Which a Trajectory Operates Belongs

Air Traffic Flow Transitional Anomalous Pattern 0 Pattern 1 Pattern 2

0 16.69% 23.89% 19.45% 0.00% 23.11%

1 3.51% 2.78% 9.54% 0.00% 3.26%

2 11.02% 11.39% 6.14% 0.00% 10.93%

3 20.70% 19.72% 25.49% 0.00% 20.38%

4 21.70% 15.56% 37.08% 0.00% 1.82%

5 11.85% 6.11% 1.02% 0.00% 18.50%

6 14.02% 18.61% 0.69% 0.00% 21.60%

During the time period of June 1st, 2019 through September 30th, 2019, Operational

Pattern 1 did not occur, which was also evident when assessing Figure 5.45. Evaluating

Figure 5.20, it was possible to associate the air traffic flows identified in the execution of

the spatial anomaly detection step with the air traffic flows identified to summarize the op-

erational patterns identified. Considering the Operational Pattern 0 air traffic flow centroids

summary in Figure 5.38, the associations were as follows:

• Figure 5.38 Flow Centroid 0 was associated Figure 5.20 Flow 4.

• Figure 5.38 Flow Centroid 1 was associated Figure 5.20 Flow 0.

• Figure 5.38 Flow Centroid 2 was associated Figure 5.20 Flow 3.
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• Figure 5.38 Flow Centroid 3 was associated Figure 5.20 Flow 1.

Considering the Operational Pattern 2 air traffic flows centroids summary in Figure 5.39,

the associations were as follows:

• Figure 5.40 Flow Centroid 0 was associated Figure 5.20 Flow 5 and Flow 6.

• Figure 5.40 Flow Centroid 1 was associated Figure 5.20 Flow 0.

• Figure 5.40 Flow Centroid 2 was associated Figure 5.20 Flow 2.

Thus, Operational Pattern 0 was generally associated with Flow 0, Flow 1, Flow 3, and

Flow 4 displayed in Figure 5.20 and Operational Pattern 2 was generally associated with

Flow 0, Flow 2, Flow 5, and Flow 6. The percentages of trajectories belonging to each

air traffic flow displayed in Table 5.9 generally supported these associations. Further, the

percentage of trajectories belonging to each air traffic flow displayed in Table 5.9 generally

supported the notion that there was an important operational distinction between Opera-

tional Pattern 0 and Operational Pattern 2 that is not captured in the specification of the

official SFO operational plans. For instance, considering only trajectories in the Opera-

tional Pattern 0 data set, the percentage of trajectories belonging to Flow 5 and Flow 6 was

relatively negligible at 1.02% and 0.69%, respectively, whereas, considering only trajecto-

ries in the Operational Pattern 2 data set, the percentage of trajectories belonging to Flow 5

and Flow 6 was substantial, at 18.50% and 21.60%, respectively. Further, considering only

trajectories in the Operational Pattern 0 data set, the percentage of trajectories belonging

to Flow 4 was very substantial at 37.08%, whereas, considering only trajectories in the

Operational Pattern 2 data set, the percentage of trajectories belonging to Flow 4 was rel-

atively negligible at 1.82%. Knowledge of the distinction in the distribution of trajectories

among air traffic flows depending on the observation of certain operational patterns may be

relevant in ATM system operation and planning activities.
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Further, for each operational state classification, the trajectories associated with the par-

ticular operational state classification were divided into sets based upon the trajectory cate-

gory label (N, S, E, or B), where trajectories that were identified as having been go-arounds

were also considered as a category. The percentage of trajectories that belonged to each

trajectory category within the operational classification sets of trajectories was computed,

where Table 5.10 displays these percentages.

Table 5.10: Percentage of Trajectories Associated with Each Operational Classification
Belonging to One of the Four Trajectory Categories or Having Been Identified as a Go-
Around

Category Transitional Anomalous Pattern 0 Pattern 2

N 62.94% 66.94% 81.26% 71.78%

S 22.54% 17.50% 6.98% 21.43%

E 7.18% 7.50% 8.49% 3.93%

B 6.84% 6.11% 2.69% 2.47%

Go-Around 0.50% 1.94% 0.58% 0.39%

Overall, the trajectories within the nominal operational state data sets (Operational Pat-

tern 0 and Operational Pattern 2) tended belong to the nominal (N) trajectory category with

a higher frequency. Further, the trajectories within the nominal operational state data sets

tended belong to the both-spatial-and-energy-anomaly (B) trajectory category with a no-

ticeably lower frequency. It was observed that the Operational Pattern 0 data set had the

highest proportion of trajectories in the only-energy-anomaly (E) category. Therefore, it

may be important for ATM system operators to pay more attention to aircraft energy state

management in the case that the spatial metrics of trajectories appear normal both at the

flight level and the airspace level during time intervals conforming to Operational Pattern

0. Moreover, trajectories within the transitional operational state data set had the highest

proportion of trajectories in the only-spatial-anomaly (S) category. This may have been
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due to the fact that transitions between distinct airspace structures results in some adjust-

ment to individual trajectories that may have caused them to appear spatially anomalous.

Thus, ATM system operators should be aware of the potential consequences to multiple

trajectories’ spatial metrics conformance during transitional time intervals. Though, it was

observed that trajectories within the Operational Pattern 2 data set also had a high propor-

tion of only-spatial-anomaly (S) trajectories, which may be of interest to further investigate

in the context of developing new ATM concepts of operation at KSFO. Finally, trajecto-

ries associated with the anomalous operational state data set had the highest proportion of

trajectories experiencing go-arounds, where the proportion was nearly four times higher

than for the remaining operational state classification data sets. As the airspace density ma-

trix was generated as an aggregation of the trajectories spatial metrics’ during a specified

time interval, it was expected that those time intervals experiencing a higher proportion of

go-arounds would have been detected as having anomalous operational states. The results

of the flight-level analysis that occurred in the experimental approach related to the Gap

2 in the context of the airspace-level analysis performed enables additional acceptance of

the analysis at the airspace level to occur as well as provides new insights that may be of

interest to ATM system operators, planners, and decision-makers.

Prediction

The accuracy, overall precision, overall recall, and overall F1-score computed on the testing

data set for each multi-class classification algorithm (artificial neural network, XGBoost,

and SVM) are summarized in Table 5.11.
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Table 5.11: Summary of Classification Performance Metrics

Algorithm Accuracy Precision Recall F1-Score

Artificial Neural Network 85.63% 0.86 0.76 0.80

XGBoost 89.02% 0.89 0.84 0.87

SVM 85.45% 0.86 0.77 0.81

All prediction models provided a testing accuracy that exceeded the 85% accuracy

threshold specified. However, the XGBoost algorithm performed the best on the testing

data set across all trained multi-class classification algorithms according to all classifica-

tion performance metrics computed.

As an XGBoost prediction model was trained to produce a testing accuracy of 89.02%,

Hypothesis 3.2 is accepted. Though, it was further of interest which features derived

from the ASOS weather metrics were most significant in predicting the operational pattern

for a time interval one hour ahead. The importance of each feature in the trained predic-

tion model, as determined by the XGBoost algorithm [132] is displayed in Figure 5.48.

The most important feature was the average relatively humidity over the past two hours,

followed by the average wind speed over the past two hours, and wind direction in the

previous hour.
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Figure 5.48: XGBoost Feature Importance

The acceptance of Hypothesis 3.1 and Hypothesis 3.2 fills Gap 3. The primary con-

tribution of filling Gap 3 is an airspace-level method to identify operational patterns, char-

acterize whether the operational state is nominal, anomalous, or transitional, and predict

operational patterns considering arriving aircraft operating during specified time intervals.
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5.5 Summary

Three experimental approaches were implemented to test and accept the sets of hypotheses

formulated in response to the three sets of research questions associated with the three

gaps identified, where each gap was associated with a step in the proposed methodology.

Each experimental approach was implemented considering ADS-B data that was extracted,

cleaned, processed, and augmented for arriving aircraft at KSFO during the full year of

2019 in addition to the corresponding extracted and processed ASOS weather data.

The primary contribution of filling Gap 1 is a more reliable method of identifying air

traffic flows considering the converging nature of arriving aircraft trajectories. Additionally,

the primary contribution of filling Gap 2 is knowledge of the relationship between spatial

and energy anomalies for arriving aircraft. Finally, the primary contribution of filling Gap

3 is an airspace-level method to identify operational patterns, characterize whether the

operational state is nominal, anomalous, or transitional, and predict operational patterns

considering arriving aircraft operating during specified time intervals. The implementation

of the experimental approaches outlined supports the adequacy of the steps in the proposed

methodology. Therefore, the Overarching Hypothesis is accepted. For arriving aircraft

at KSFO in 2019, an analysis of ATM system operations at the flight level and the airspace

level was completed.
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CHAPTER 6

CONCLUSION

This research was motivated by the overarching emphasis on increasing ATM system effi-

ciency and capacity, while maintaining a high level of safety as the current systems undergo

a transformation in concept of operations under global ATM system modernization plans.

Considering the global modernization efforts’ current state and future milestones, gaining

a comprehensive understanding of both flight-level and airspace-level operations enables

ATM system operators, planners, and decision-makers to make better-informed and more

robust decisions related to the implementation of future operational concepts. Though, the

complexity of ATM systems restricts the use of classical physics-based methods for the

analysis of new operational concepts. However, an increased availability of operational

data provides several new analysis opportunities. Specifically, ADS-B data provides the

basis for offline data-driven methods to be applied to analyze ATM system operations at

both the flight level and the airspace levels. Further, the analysis of ATM system arriving

aircraft operations has the highest potential to impact system safety, capacity, and efficiency

levels. Therefore, the Overarching Research Question was formulated as:

Overarching Research Question

How can the offline application of data-driven methods to ADS-B data be leveraged

to analyze Air Traffic Management system arriving aircraft operations at both the

flight level and the airspace level?

Through an initial literature survey, three relevant research areas were identified that

may be considered steps in a proposed offline data-driven methodology to be applied to

ADS-B data to analyze ATM system arriving aircraft operations at botht the flight level and

the airspace level. Therefore, the Overarching Hypothesis was formulated as:
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Overarching Hypothesis

If an offline data-driven methodology to be applied to ADS-B data for arriving air-

craft is developed that performs (i) Air Traffic Flow Identification, (ii) Anomaly

Detection, and (iii) an Airspace-Level Analysis, then Air Traffic Management sys-

tem arriving aircraft operations are analyzed at both the flight level and the airspace

level.

Subsequently, an in-depth literature review of the methods related to each step of the

proposed methodology was performed in which three gaps were identified, each associated

with a step in the proposed methodology. The gaps identified are expressed as follows:

Gap 1

A reliable method to identify air traffic flows that considers the converging nature of

arrival trajectories and may ultimately be extensible to real-time applications.

Gap 2

A quantitative analysis of the relationship between spatial and energy anomalies

detected in arriving aircraft ADS-B data.

Gap 3

An airspace-level method to identify operational patterns, characterize operational

states (such as those that are nominal, transitional, or anomalous in nature), and

predict operational patterns considering the operations of arriving aircraft.

Considering the three gaps, an Overarching Research Objective was formulated as:
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Overarching Research Objective

Contribute to the development of an offline data-driven methodology to be applied

to ADS-B data for arriving aircraft that enables and performs:

• The reliable identification of air traffic flows

• A quantitative investigation of the relationship between spatial and energy

anomalies

• At the airspace level, the identification of operational patterns, characterization

of operational states, and prediction of operational patterns

Three sets of research questions and associated hypotheses were formulated related to

filling the three gaps and fulfilling the Overarching Research Objective. To answer the

research questions an experimental approach was designed to test the associated hypothe-

sis/hypotheses such that they were accepted and each gap was filled. Inductively, the filling

of each gap to fulfill the Overarching Research Objective enabled the acceptance of the

Overarching Hypothesis.

Research Question 1 was posed due to the identification of Gap 1 related to the Air

Traffic Flow Identification step of the proposed methodology. Gap 1 specified the need

for a more reliable method of identifying air traffic flows of arriving aircraft such that the

converging nature of arriving aircraft trajectories is considered and the method could be

extensible for use in real-time in the future. Therefore, Research Question 1 inquired

how an existing air traffic flow identification could be modified to meet the aforementioned

requirements. After evaluating the existing air traffic flow identification methods, the im-

plementation of HDBSCAN with the ED was determined to be the best-suited, where the

ED is limited when applied to trajectories that are converging in nature, such as arriving

aircraft trajectories, in that there exists an uneven distribution of distances closer to both

the airport location and the defined terminal airspace border, which may skew the classifi-
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cation of trajectories. HDBSCAN was selected as the clustering algorithm to perform air

traffic flow identification due the following three properties: (i) requires no a priori spec-

ification of the number of clusters to be identified, (ii) is capable of identifying outliers,

and (iii) is capable of identifying clusters of varying densities. However, to overcome the

limitation of the use of the ED, the use of the WED was proposed, where Hypothesis 1

was formulated accordingly. Specifically, it was proposed to use a WED weighting scheme

that weight trajectory points less closest to the airport location and closest to the defined

terminal airspace border. Experiment 1 was designed to test whether implementation of

HDBSCAN with the ED or the implementation of HDBSCAN with the WED identified air

traffic flows “more reliably”, where a quantitative metric was derived to evaluate reliability.

Results of the implementation of Experiment 1 lead to Hypothesis 1 being accepted.

Research Question 2 was posed due to the identification of Gap 2 related to the

Anomaly Detection step of the proposed methodology. Gap 2 specified the need for a

quantitative analysis to be performed to determine the relationship, if any, between spa-

tial and energy anomalies detected in arriving aircraft ADS-B data. Related to Gap 2 was

the prior novel distinction between spatial and energy anomalies detected in ADS-B data.

However, while air traffic flow identification (spatial anomaly detection) appeared to oc-

cur in some instances prior to energy anomaly detection, the manner in which the spatial

anomalies were considered was unclear. Therefore, Research Question 2 inquired what

the relationship was between spatial and energy anomalies detected in ADS-B data. Three

hypotheses were formulated related to the relationship between spatial and energy anoma-

lies. Hypothesis 2.1 stated that if a trajectory is detected as being a spatial anomaly, then

it is more likely to be detected as an energy anomaly. Hypothesis 2.2 stated that if only

energy-nominal trajectories are considered, then trajectories that have been detected only

as spatial anomalies (not energy anomalies) have a higher “degree of anomalousness” in

their energy metrics than those trajectories not detected as spatial anomalies. Finally, Hy-

pothesis 2.3 stated that if only energy-anomalous trajectories are considered then, when
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separated into groups based on whether the trajectory has previously been detected as a

spatial anomaly or not, the distributions of a measure of the “degree of anomalousness”

in energy metrics for the two groups are dissimilar (upon evaluation of statistical proper-

ties). Experiment 2 was designed to test the three hypotheses, which required a procedure

to perform spatial anomaly detection, then energy anomaly detection, and, finally, com-

pute an anomaly score as a measure of the “degree of anomalousness” of a trajectory’s

energy profile such that a statistical analysis of the results could be performed. Spatial

anomaly detection was performed by the more reliable method of identifying air traffic

flows considering Hypothesis 1. A clustering algorithm was similarly identified to be most

appropriate for energy anomaly detection. However, the requirements of the clustering al-

gorithm differ compared with the requirements for spatial anomaly detection. Namely, it

is not necessary for an algorithm to have the capability to identify clusters of varying den-

sities; therefore, DBSCAN was selected to perform energy anomaly detection. Results of

the implementation of Experiment 2 lead to Hypothesis 2.1 being accepted, Hypothesis

2.2 being accepted, and Hypothesis 2.3 being accepted.

Research Question 3.1 and Research Question 3.2 were posed due to the identifica-

tion of Gap 3 related to the Airspace-Level Analysis step of the proposed methodology.

Gap 3 specified the need for an airspace-level method to identify operational patterns, char-

acterize whether the operational state is nominal, anomalous, or transitional, and predict

operational patterns considering arriving aircraft operating during specified time intervals.

Specifically, Research Question 3.1 inquired how a data set of operational state repre-

sentations could be analyzed such that operational patterns are identified and operational

states are characterized as either nominal, anomalous, or transitional. The small number

of existing methods were observed to have a number of limitations, where several of the

methods were not truly “airspace-level”. However, it was determined that a clustering al-

gorithm capable of identifying outliers and requiring no a priori specification of the number

of clusters is most appropriate. Due to meeting the aforementioned criteria and consider-
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ing the effectiveness of DBSCAN in other aviation applications, DBSCAN was selected.

However, the presence of transitional operational states within the data set may result in

skewed results. Therefore, a recursive DBSCAN procedure was proposed such that tran-

sitional operational states are removed from the data set and the clustering repeats until

no new transitional operational states are characterized, and Hypothesis 3.1 is formulated

accordingly. Experiment 3.1 was designed to test Hypothesis 3.1. Though, to perform

Experiment 3.1, the operational state representations were required. Therefore, grid-based

matrices representing the density of trajectories within the terminal airspace during spec-

ified time intervals were generated. After assembling the entire set of matrices (airspace

density matrices), the matrices were flattened and their dimension was reduced (leveraging

UMAP) to provide a suitable input to apply DBSCAN. Results of the implementation of

Experiment 3.1 indicated that distinct operational patterns that aligned with distinct offi-

cial operational patterns were identified and it appeared as though noticeable transitional

and anomalous operational states were characterized, which lead to Hypothesis 3.1 being

accepted. Considering the need for the capability to predict operational patterns specified

in Gap 3, Research Question 3.2 inquired how operational patterns could be predicted.

The few existing methods related to prediction of what may be considered operational

patterns leveraged features derived from recorded weather measurements. Further, these

methods tended to investigate the performance of a handful of classification algorithms.

Therefore, it was proposed to train a set of classification algorithms with features derived

from recorded weather measurements and select the best performing model with respect

to accuracy, where Hypothesis 3.2 was formulated accordingly. Experiment 3.2 was de-

signed to test Hypothesis 3.2 in which artifical neural network, gradient-boosted decision

tree (XGBoost), and SVM algorithms were trained considering weather metrics as input

features. Results of the implementation of Experiment 3.2 indicated that the XGBoost

model performed the best with a reasonable accuracy, which lead to Hypothesis 3.2 being

accepted.
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KSFO was selected as the terminal airspace for which data was extracted, cleaned, and

augmented to enable the testing of the hypotheses. ADS-B data was extracted for the full

year of 2019 from the OpenSky Network historical database [135] and ASOS weather data

was extracted from the Iowa Environmemtal Mesonet [140]. In testing the hypotheses,

a demonstration implementation of the steps proposed methodology was simultaneously

performed. The complete offline data-driven methodology to be applied to ADS-B data

for arriving aircraft to perform analysis at both the flight level and the airspace level is

presented in Figure 6.1.

Figure 6.1: A Data-Driven Methodology to Analyze Air Traffic Management System Op-
erations within the Terminal Airspace
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6.1 Contributions

The filling of each of the three gaps produces significant contributions to the state-of-the-art

terminal airspace ATM system analysis methods within the aviation literature. Further, the

uniting of the three steps in a comprehensive methodology to analyze ATM system arriving

aircraft operations at both the flight level and the airspace level exists as a contribution. The

proposed methodology is intended to be applied prior to exploring new ATM system oper-

ational concepts and to support future capacity, efficiency, and safety gains. It is important

to understand the current status of ATM system operations within a terminal airspace prior

to making changes and also to inform the changes that are made.

The primary contribution related to filling Gap 1 is a more reliable method of identi-

fying air traffic flows that considers the converging nature of arriving aircraft trajectories

and is possible to extend to a real-time application. Air traffic flow identification is relevant

both as a stand-alone analysis and as a data processing step for other ATM system analysis

methods. Therefore, a more reliable method for the identification of air traffic flows has

far-reaching implications. Completion of the air traffic flow identification step in the pro-

posed methodology enables ATM system operators, planners, and decision-makers to gain

a baseline understanding of the dominant patterns of air traffic, i.e. where, spatially, air-

craft tend to operate and with what density. Further, in the context of developing trajectory

prediction algorithms, developing algorithms with knowledge of standard air traffic flow

operations is common such that the air traffic flow information is leveraged to make better

predictions.

The primary contribution related to filling Gap 2 is a procedure to explore the relation-

ship between spatial and energy anomalies. Further, the novel distinction between spatial

anomalies and energy anomalies detected in ADS-B data is important. Overall, the results

stemming from the completion of the Anomaly Detection step in the proposed method-

ology may be of great interest to ATM system operators, decision-makers, and planners,
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specifically as ATM systems are modernized, new technologies are deployed, a new con-

cept of operations is implemented. It is necessary to understand the current dynamics in the

spatial and energy dimensions, and their potential interdependencies, such that these may

be considered when evaluating the deployment of a new technology or the implementation

of a new concept of operation. Moreover, if completion of the Anomaly Detection step re-

veals that, generally, if a trajectory is detected as a spatial anomaly, it is more likely to also

be detected as an energy anomaly, then actionable insights may be derived. For instance,

it would be advantageous to alert pilots that an increased emphasis should be placed on

management the aircraft’s energy state, whether a trajectory is experiencing off-nominal

spatial operations due to pilot actions or instructions from ATC. This could aid in preven-

tion of potentially risky or unsafe situations associated with poor energy management, such

as unstable approaches, runway excursions, etc.

The primary contribution related to filling Gap 3 is a method to identify operational pat-

terns, characterize whether an operational state is nominal, anomalous, or transitional, and

predict operational patterns for arriving aircraft operating during specified time intervals.

Notably, an airspace-level analysis method had not previously been presented within the

literature that analyzes the aggregation of the trajectory time-series data of all arriving air-

craft operating during specified time intervals. The characterization of operational states as

being transitional enables additional insights to be obtained regarding the terminal airspace

structure. For instance, knowledge of the time intervals in which the operational pattern

transitions from one to another may be valuable for ATM system planners and decision-

makers as new operational concepts are developed and implemented. Further, the confor-

mance of flight-level operations to standard operations may be evaluated for transitional

operational states. The characterization of operational states as being transitional has many

benefits over considering these transitional operational states to be a distinct operational

pattern or grouped in with an existing identified pattern, as may occur applying existing

methods. Finally, while the ability to predict is not especially relevant in the context of
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an offline analysis to be performed to support decision-making, the “decision boundaries”

that may be derived from the prediction model are relevant. This derived output from the

prediction models may be leveraged to further understand the circumstances related to the

observation of any of the distinct operational patterns. Therefore, when considering future

planning for implementation of a new concept of operations, these circumstances may be

considered.

6.1.1 Observations: San Francisco International Airport

Application of the proposed methodology to analyze ATM system arriving aircraft oper-

ations at KSFO in 2019 resulted in several KSFO-specific observations being made. For

instance, the identification of air traffic flows revealed that there typically exists very little

air traffic towards the west side of the terminal airspace within 20 nautical miles of the air-

port location. This may be important to be aware of as plans to integrate AAM operations

into the NAS are developed.

Further, the exploration of the relationship between spatial and energy anomalies de-

tected in ADS-B data revealed that, generally, if a trajectory was detected as a spatial

anomaly, it was more likely to also be detected as an energy anomaly. Additionally, the

average anomaly score for trajectories detected as only spatial anomalies was generally

higher than the average anomaly score for nominal trajectories. ATM system operators,

such as ATC, may benefit from this observation, as it may factor into decision-making in

instances where there is the potential to instruct an aircraft to spatially deviate from stan-

dard operations. Moreover, it was revealed that there appeared to be underlying differences

in energy metrics sequences of trajectories detected only as energy anomalies and trajec-

tories detected as both spatial and energy anomalies, which should be considered when

making decisions on actions that air traffic controllers or pilots should take as well as in

development of other analysis methods.

With respect to an airspace-level analysis of ATM system arriving aircraft operations,
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it was revealed that there existed three distinct operational patterns that were observed

in 2019. However, the official SFO operational plans only indicate two distinct plans: the

official SFO west plan and the official SFO south east plan. The identification of operational

patterns reveals that the official SFO west plan actually manifests as two distinct sets of air

traffic flows that are observed. This may be of interest to ATM system operators. Further,

the typical time intervals in which the operational patterns transition between one another

may be of interest.

6.1.2 Publications

At the time of writing, two published works accompany this thesis:

• Corrado, S.J., Puranik, T.G., Pinon, O.J., & Mavris, D.N. (2021). A clustering-

based quantitative analysis of the interdependent relationship between spatial and

energy anomalies in ADS-B trajectory data. Transportation Research Part C: Emerg-

ing Technologies, 131. https://doi.org/10.1016/j.trc.2021.103331.

• Corrado, S.J., Puranik, T.G., Pinon, O.J., & Mavris, D.N. (2020). Trajectory Clus-

tering within the Terminal Airspace Utilizing a Weighted Distance Function. Pro-

ceedings, 59(1), 7. MDPI A, https://doi.org/10.3390/proceedings2020059007

It is noted these published works are associated with the first two steps in the proposed

methodology (Air Traffic Flow Identification and Anomaly Detection). Two published

works associated with the final step in the proposed methodology (Airspace-Level Analy-

sis) are forthcoming, though are not completed at the time of writing.

Undoubtedly, an additional major contribution of this thesis is the curation of a cleaned,

processed, and augmented ADS-B trajectory data set of arriving aircraft within the KSFO

terminal airspace in 2019. Additional published work leveraging the cleaned, processed,

and augmented ADS-B trajectory data set of arriving aircraft within the KSFO terminal

airspace in 2019 includes:
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• Kumar, S.G., Corrado, S.J., Puranik, T.G., Mavris, D.N.. Classification and Anal-

ysis of Go-Arounds in Commercial Aviation Using ADS-B Data. Aerospace. 2021;

8(10):291. https://doi.org/10.3390/aerospace8100291

• Samantha J. Corrado, Tejas G. Puranik, Olivia J. Pinon-Fischer, Dimitri Mavris,

Rodrigo Rose, Jesse Williams and Roohollah Heidary. ”Deep Autoencoder for Anomaly

Detection in Terminal Airspace Operations,” AIAA 2021-2405. AIAA AVIATION

2021 FORUM. August 2021. https://doi.org/10.2514/6.2021-2405

6.2 Limitations and Recommendations for Future Work

The potential limitations of the proposed methodology are discussed. Addressing some of

these potential limitations offer opportunities for future work. Thus, recommendations for

future work are presented.

6.2.1 Limitations

A few limitations related to the application of the proposed methodology may exist. For

instance, no inherent capability exists to take into account potential dynamics and inter-

dependencies related to metroplex operations, i.e. the operations of aircraft within the

overlapping terminal airspace areas associated with multiple airports. For certain complex

and high-traffic metroplex systems, such as the New York City metroplex, application of the

proposed methodology separately to each airport’s ATM system arriving aircraft operations

may be insufficient to provide meaningful insights to ATM system operators, planners, and

decision-makers. Additionally, limitations related to the specific application of each of the

steps in the proposed methodology are discussed.

Air Traffic Flow Identification

Considering the Air Traffic Flow Identification step, despite the more reliable identi-

fication of air traffic flows by implementing HDBSCAN with the WED, the WED does
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suffer from one primary limitation in common with the ED. This limitation is the poten-

tial for “misalignment” of trajectory points, i.e. trajectory points may not be ordered after

re-sampling such that each successive trajectory point is closest to its corresponding trajec-

tory point with respect to all other trajectory points. The impact of the misalignment may

become more pronounced when considering air traffic flows that are more “spread out”.

Anomaly Detection

The Anomaly Detection step suffers primarily from the limitation of the quality/quantity of

information available within the ADS-B data. For instance, data errors, especially in open-

source ADS-B data, are common and may impact results for specific trajectories. Though,

more relevant is that the energy metrics computed do not take into account aircraft weight,

which very significant in the context of energy management. However, ADS-B data does

not include weight information nor precise information from which weight information

may be reliably derived. Instantaneous metrics that either directly or indirectly provides

aircraft weight information are often readily available in FOQA data. Further, availability

of this information would enable stabilized approach criteria to be fully assessed, which

would enable some “labels” to be assigned to certain trajectories.

Airspace-Level Analysis

The Airspace-Level Analysis step suffers from the limitation that the airspace density ma-

trix may not be the “best” method of representing the aggregation of the time-series trajec-

tory data for all arriving aircraft operating during a specified time interval. For instance, a

threshold is required to be set such that time intervals that do not contain at least a specified

number of trajectories are discarded. This may result in loss of information, Specifically,

removal of certain time intervals either before or after true transitional operational states

may result in the transitional operational states not being able to be characterized.
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6.2.2 Recommendations for Future Work

Several avenues for future work related to the proposed offline data-driven methodology

to be applied to ADS-B data to analyze ATM system arriving aircraft operations exist.

For instance, considering the potential limitation of the proposed methodology to be ap-

plied to complex and high-capacity metroplex systems, the proposed methodology may be

expanded to consider metroplex systems. Specifically, the most significant modification

would occur to the Airspace-Level Analysis step of the proposed methodology to enable

an expansion to metroplex systems.

In the context of future applications, while the current applications of the proposed

methodology do include analysis to support integration of AAM concepts, further specifi-

cation of the proposed methodology to include returning an analysis of the most appropriate

heliport location(s) within a terminal airspace may be beneficial. Moreover, the proposed

methodology may be augmented with a step to provide an analysis of airspace availability

for AAM operations within specified time intervals.

With respect to enhancing the Anomaly Detection step of the proposed methodology,

it is of interest to analyze the anomalies detected (both spatial and energy) in the context of

a reduced set of stabilized approach criteria. As mentioned, the evaluation of the full set of

stabilized approach criteria is not possible without aircraft weight information. However,

a reduced set may be evaluated with respect to the ADS-B data metrics, which may pro-

vide some sort of guidance related to the assessment of the spatial and energy anomalies

detected. It would also be advantageous to augment the evaluation of the anomalies de-

tected with an assessment of ATC recordings. Recently, the OpenSky Network [135] has

announced plans to provide ATC recordings to researchers for analysis [137].

In addition, it may be desirable to explore the re-ordering of the proposed methodology

steps such that the Airspace-Level Analysis step occurs before and informs all other steps.

For instance, air traffic flows may be identified “within” operational patterns, analogous

to how energy anomalies are detected “within” air traffic flows. Performing subsequent
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analyses based upon the operational pattern observed for arriving aircraft operating during

a specified time interval may shed more light on potential airspace-level behavior and flight-

level behavior interdependencies.

Finally, with respect to application of the proposed methodology, this thesis research

focused solely on arriving aircraft with the KSFO terminal airspace in 2019. An avenue

for extension and further testing of the proposed methodology includes the application to

more diverse terminal airspace areas. For instance, the KSFO terminal airspace is actu-

ally rather unique in the relatively dominant use of the official SFO west plan as well as

its relatively constant weather patterns/variation throughout the year. Therefore, applying

the proposed methodology to data extracted for one or more different terminal airspace is

recommended.
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