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SUMMARY 

 

The world faces the unprecedented challenge of the need change to a new energy 

era. The introduction of distributed renewable energy and storage together with 

transportation electrification and deployment of electric and hybrid vehicles, allows 

traditional consumers to not only consume, but also to produce, or store energy.  

The active participation of these so called “prosumers”, and their interactions may 

have a significant impact on the operations of the emerging smart grid. However, how 

these capabilities should be integrated with the overall system operation is unclear. 

 Intelligent energy management systems give users the insight they need to make 

informed decisions about energy consumption. Properly implemented, intelligent energy 

management systems can help cut energy use, spending, and emissions.  

This thesis aims to develop a consumer point of view, user-friendly, intelligent 

energy management system that enables vehicle drivers to plan their trips, manage their 

battery pack and under specific circumstances, inject electricity from their plug-in 

vehicles to power the grid, contributing to frequency regulation. 
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CHAPTER 1 

INTRODUCTION 

 

 As energy costs and electricity demand continues to rise, and as more renewable 

energy sources are installed, it becomes necessary to revisit the electricity control 

paradigms. Under the presence of these emerging devices, the present electricity grid is 

not capable of efficiently balancing supply and demand, resulting in frequency 

oscillations, requirements for higher fossil fueled reserve, and risk of blackouts. The 

development of a two-way communication smart grid promises to address electricity 

control problems in the long-term [1].  

 Plug-in electric vehicles (PEV) provide an opportunity for small-scale distributed 

electric-energy storage while they are plugged-in. With large numbers of PEV and the 

communications and sensing associated with the smart grid, PEVs could provide 

ancillary services for the grid. Frequency regulation is an ideal service for PEV because 

the duration of supply is short and it is the highest priced ancillary service on the market 

offering greater financial returns for vehicle owners [2]. 

 These new operation paradigms change the traditional control architecture of 

power systems and make necessary to identify a new approach that can be used to 

overcome the current system limitations. The inclusion of distributed energy generation 

in the form of solar panels, wind turbines, or even fuel cells makes the traditional 

consumer become a new entity that can also produce, store, or transport electricity: the 

prosumer [3]. The electric vehicle is the perfect prosumer because it consumes, produces, 

stores, and transports electricity. Therefore the distributed control architecture 

encompassed by the network of prosumers can be used to address frequency regulation, 

which has traditionally been performed by fast large-scale generating units, and now can 

be assisted by the collectively massive, distributed power electronic sources in PEVs [4]. 
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 Particularly some questions arise related to the incorporation of plug-in electric 

vehicles as a source of frequency regulation: Without knowledge of the entire system, 

what local operating parameters should be used to determine what the PEVs should 

supply? How can the vehicle owners effectively and economically implement solutions 

for managing their energy consumption and costs? How can an electric vehicle system 

maximize its own function while interacting with other owners and the power grid? This 

thesis addresses these questions with the implementation of a simulation software 

prototype that incorporates a reliable, prosumer-based and scalable electric vehicle-

intelligent energy management system simulator for frequency regulation applications.  
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CHAPTER 2 

THE VEHICLE TO GRID CONCEPT 

 

 There are two main types of plug-in electric vehicles: hybrids and battery electric 

vehicles. These vehicles contain power electronics which could generate 60 Hz AC 

power, at power levels from 10kW (for the Honda Insight) to 100kW (for GM’s EV1) 

[5]. The concept of “Vehicle-to-Grid” power or V2G refers to the case when vehicle 

power is fed from the vehicle into the electric grid.  

 Recent research has been conducted to demonstrate that the three types of PEVs 

have potential roles to play as utility resources, and that ancillary services are the most 

lucrative use for vehicle power. Actually, some studies predict that power from electric 

drive vehicles could reduce the global requirement for central station generation capacity 

by up to twenty percent by the year 2050 [6].  

 The following conclusions can be made regarding the use of plug-in electric 

vehicles as a distributed energy resource based on the power and energy characteristics 

[2]: 

 Not suitable for base load power supply, 

 Ideal for short duration services such as frequency regulation, load following, 

or spinning reserve, and 

 Ideal for household scale services such as load smoothing or peak reduction. 

 However, realizing this potential will require some minor design modifications to 

current vehicles and some coordination of vehicle and infrastructure planning. Three 

elements are required for V2G [5]:  

 Power connection for electrical energy flow from vehicle to grid,  
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 Control or logical connection, needed for the grid operator to determine 

available capacity, request ancillary services or power from the vehicle, and to 

meter the result,  

 Precision certified metering on board the vehicle. 

 The first V2G requirement is the power connection. PEVs by definition must be 

connected to the grid in order to recharge their batteries; to add V2G capability requires 

slight modifications to the charging station and no modification to the cables or 

connectors, but on-board power electronics must be designed for this purpose. 

 The second requirement for V2G is control, for the utility or system operator to 

request vehicle power exactly when needed. This is essential because vehicle power has 

value greater than the cost to produce it only if the buyer can determine the precise timing 

of dispatch. 

 The third element of precision, certified, tamper-resistant metering, measures 

exactly how much power or ancillary services a vehicle did provide, and at which times 

[5].  Figure 2.1 shows the vehicle to grid basic scheme. 
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Figure 2.1: Vehicle to Grid Basic Scheme 
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2.1 Vehicle-to-Grid Market Overview and technology drivers 

 The key to realizing economic value from V2G is making the power available 

without compromising the driving requirements of a single vehicle owner, yet meeting 

the time- critical "dispatch" needed by the electric distribution system. The research and 

consulting group Zpryme [7] has estimated that by 2020 the V2G market will exhibit the 

following behavior in their various functional areas: 

2.1.1 V2G Units  

 The global V2G vehicle unit sales are projected to grow from 103900 (year 2015) 

to 1.06 million (year 2020). This growth is projected to have a 59 percent compound 

annual growth rate (CAGR) from 2015 to 2020. Some of the drivers behind this trend are 

gas price volatility, increase in mass production, and improvements in battery technology, 

that will ultimately drive electric vehicles’ prices down. It can be highlighted that the US 

and Japan are attractive markets where V2G related technologies and infrastructure will 

be required at the same increasing rate. 

2.1.2 V2G Technology Market Value 

 The global V2G technology market is projected to grow from $1.5 billion (year 

2015) to $10.5 billion (year 2020). This growth is projected to have a 46.8 percent 

compound annual growth rate (CAGR) from 2015 to 2020. V2G technology is comprised 

of the key components an automobile manufacture must place into a vehicle to produce a 

V2G vehicle. These consist on: 

 Equipment: computers, networking equipment, cabling, processors, and 

circuits that allow for the management, reporting, and processing of V2G 

tasks. 

 Software and communication systems: systems that enable the two-way 

communication between the grid and the vehicle, and that allow monitoring, 
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scheduling, and analysis of charge times and demand response programs 

associated with the vehicles. 

 Power electronics unit: the drive system is the most expensive component 

among the key V2G technology components. The drive system operates as a 

DC-AC inverter and enables bi-directional power to flow from the vehicle to 

the grid. 

2.1.3 V2G Vehicle Market Value 

 The global V2G vehicle market value is projected to grow from $3.2 billion (year 

2015) to $26.6 billion (year 2020). This growth is projected to have a 53.1 percent 

compound annual growth rate (CAGR) from 2015 to 2020. V2G vehicle market value is 

the aggregate of expected annual revenues received by automobile manufactures for the 

sale of V2G vehicles. The United States will lead the way in 2015 with a market value 

around $1.1B followed by Japan at $.5B.  In 2020, however, the US market will grow to 

$8.1B with China now in second place at a market value of $6.5B. 

2.1.4 V2G Total Market Size 

 The global V2G grid revenues are projected to grow from $284.4 million (year 

2015) to $2.9 billion (year 2020). This growth is projected to have a 46.8 percent 

compound annual growth rate (CAGR) from 2015 to 2020. Table I shows the Global 

V2G Market Forecast in year 2020 according to Zprime [7]. 

TABLE 1.1 

V2G Total Market Size [7] 

Country Units Market Infrastructure Technology Revenue 

 Thousands US billions US Billions US Billions US Billions 

Global 1056 $26.6 $6.7 $10.5 $2.9 

US 296 $8.1 $1.8 $2.8 $.654 

China 294 $6.5 $1.8 $2.8 $.521 

Japan 188 $4.4 $1.2 $1.8 $.735 

Germany 62 $1.6 $.377 $.587 $.587 

UK 45 $1.3 $.277 $.432 $.323 

South Korea 30 $.72 $.175 $.283 $.053 
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CHAPTER 3 

THE PROSUMER ARCHITECTURE 

 

 The prosumer concept abstracts the electricity infrastructure as a network of 

intelligent agents (the prosumers) and allows a control paradigm based on networked 

control theory [4]. Prosumers are entities that own or operate an electric power system of 

any scale and may: 

 Consume 

 Produce 

 Store, and 

 Transport electricity. 

 The prosumer conceptualizes a natural progression from centralized control to 

distributed capability (see communications, data processing industries, banking, etc).  

 The electric vehicle is the perfect prosumer because it consumes, produces, stores, 

and transports electricity. As a vehicle–to-grid prosumer, the electric vehicle controls its 

internal processes to maximize its satisfaction function while it interacts with the external 

world. Each prosumer also contributes to the overall system reliability.  

 Frequency control is the most important service that can be achieved in a 

distributed way because each electric vehicle can locally detect changes in the system; 

internal electric vehicle controllers can regulate frequency by adjusting generation, load 

or storage.  
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  The multi-layered prosumer model that implements the control and interactions 

has been adapted from [3] for the PEV case and is illustrated in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: PEV Prosumer-Based Layered Architecture 
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3.2   The Local Control Layer 

  The local control layer corresponds to the hardware and software used for 

controlling stand-alone device actions. In this case the local layer corresponds to the EV 

battery charger/discharger. The EV-IEMS allows setting the charging and discharging 

efficiencies of the system. The default values are set to 90% for both: charging and 

discharging efficiency. 

3.3   The Systems Control & Communication Layers 

 The systems control contains two components, internal and external control. The 

internal system control corresponds to Energy Management System (EMS) -like 

algorithms such as state estimation, and optimization. The external system control 

addresses interactions with the surrounding world, including self-identification, 

recognition, agreement, assignment, and formation protocols.  

 A small number of plug-in electric vehicle (PEV) use cases for connection of 

PEV to accept energy from the grid, and customer enrollment in a demand response 

program were released in 2008 by the Southern California Edison (SCE)  [9]. In addition 

a frequency regulation case is being developed for PEVs. A full repository for smart grid 

use cases is being managed by the Electric Power Research Institute (EPRI) and includes 

the previously discussed SCE studies along with several other PEV use-cases [10].  

 This framework has been considered as a preliminary point in the development of 

this project. Particularly, the system control layer assumes that the electric vehicle owner 

is enrolled in a frequency regulation program that involves PEV-Utility Communication 

& Authentication. In this way it is possible to implement a one level-prosumer interaction 

between the utility and the PEV. The EV-IEMS simulates the frequency communication 

session as shown in Figure 3.2. 
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Figure 3.2: Initial communication Session Diagram [5]. 
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stamp for each metering interval. The EV-IEMS communicates to the Energy Services 

Communication Interface the energy supplied to PEV for each charge/discharge session. 

The Energy Services Communication Interface communicates to the Utility the energy 

supplied to PEV for each charging session. The ESCI transmits the date, time, duration 

and energy delivered to utility or to the Vehicle. Finally the utility records each PEV 

charging/discharging regulation for bill generation and reporting to the customer account 

associated with the charging place and PEV ID [10]. 

 As described in the diagram the customer is attempting to charge or discharge a 

PEV under a selected PEV rate tariff that may provide an incentive to charge or discharge 

according to the frequency regulation program. This also means that the price 

superimposes the frequency regulation needed. Therefore, a lower electricity price will 

mean that no power is needed from the vehicle (incentive to buy electricity, charging 

state) and a higher price will mean that power is needed for frequency regulation 

(incentive to sell electricity, discharge state). 

 The internal communication from the controlled device (battery pack) is provided 

by the EV-IEMS. The external communications may occur through dedicated protocols 

and network infrastructure or through the internet. 

3.3   The Market Layer 

 The market layer consists of two components: the internal portion addresses the 

economics of the internal world, such as production, storage, demand shift and the 

satisfaction function associated with the objectives of economics, security, and 

sustainability along with the objectives and constraints of consumer preferences and 

comfort. The external function addresses interactions concerning cost and price, such as 

interpretation of price signals, selling and buying services, negotiation, and strategic 

economic decision-making [3]. The functionality of these layers is described in the 

following section. 



 12 

CHAPTER 4 

SYSTEM DESIGN 

 

 In particular, the EV-IEMS: 

 a)  Automates energy management: Based on owner preferences, battery state 

and power system requirements, the system will automatically set 

charging/discharging/hold modes. Also the system allows scalability to incorporate for 

example solar sources and extra battery packs. 

 b)  Allows economic energy management: The system will create economic 

benefit by powering the grid during peak times and shifting charging to off-peak hours. 

This will be allowed by the price forecast download that gives hourly prices of electricity. 

This is essential because vehicle power has value greater than its production cost only if 

the precise timing of dispatch is determined. 

 c)  Predicts energy use and measures results: Based on the information about 

next trip mileage and state of charge of the battery the system is able to communicate to 

the user what will be the state of the battery and the percentage charge consumed. Also 

the system has a precision, metering, that measures how much power for ancillary 

services a vehicle did provide, and at which times.  

 Depending on the connection location four different cases can occur:  

• Owner’s Home 

• Another's Home: Inside the utility’s service territory 

• Another's Home: Outside the utility’s service territory 

• Public: Building parking lot inside the utility’s service territory 

 After enrolling in the frequency regulation program and independently of the 

connection location the EV prosumer objective would be to maximize profits by selling 

the excess power at the times when the market rate is the highest and buying power when 
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the market rate is the lowest. This assumes that the price corresponds to the incentive to 

participate in frequency regulation. In this project only the cases when the connection 

location is inside the utility’s service territory are considered. The optimal time to charge 

and discharge must be determined combined within vehicle owner’s preferences and 

hence an intelligent optimization algorithm is needed to handle nonlinear and 

discontinuous variables.  

4.1  The Internal Systems Control  

4.1.1    Particle Swarm Optimization  

 Particle swarm optimization (PSO) is an iterative stochastic optimization 

algorithm based on the movement patters of flocks of birds or schools of fish [11]. The 

algorithm is able to search a multi-dimensional solution space by collectively searching 

with different particles and communicating the best solutions found to the other particles. 

This communication allows for an intelligent decision to be made where each particle 

should move at each iteration to find the global best possible solution. Random variations 

and weighting factors are also used in the algorithm to prevent early convergence where a 

local minimum is present. 

 Following the analysis in [12] the electric vehicle system parameters are defined 

in Table 4.1. Each parameter is defined by the user in the EV-IEMS. A given day is split 

up into hourly intervals to coincide with the hourly prices taken from the California 

Independent System Operators (CAISO) website [10]. Since power transactions are 

driven by price thresholds it would be costly to buy at the same time when it is 

economical for another vehicle to be selling. This situation can occur however if a 

vehicle is present for a very short period of time and needs to charge. 

 Assuming an efficiency of 1kWh per mile the miles needed for next trip equal the 

desired battery state of charge (SoC) after the transaction. The default value is set to be 
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50 miles or 50 % of the SoC. Once the vehicle reaches this desired departure SoC it can 

never be discharged below this level.  

 

TABLE 4.1 

Vehicle Parameters [7] 

Parameter Minimun Maximun 

Battery Capacity (kWh) 10 25 

Available Capacity (%) 50 100 

Arrive Time 1
st
 hour 23

rd
 hour 

Departure Time 2
nd

 hour 24
th

 hour 

Inverter Discharge Eff. (%) 80 95 

Battery Charge Eff. (%) 80 95 

Next trip miles 1 100 

 

4.1.2 PSO Initialization 

1. Objective: Find the optimal hour to sell or to buy power from the grid. 

 2. Topology: The star configuration of a swarm is used where all particles 

communicate with all other particles. 

 3. Particle Definition: In this case the particles can be defined as follows: 

                          (1) 

where h represents the optimal hour to sell or to buy. 

 4. Fitness Function: the equations to be minimized- maximized are the cost and 

revenue incurred because of the power transaction, respectively: 

  
 ( ) (                       )

         
                            (2) 

   ( )  (                       )                                     (3)                  

where, 

   the resulting cost of charging that vehicle 

   the revenue made by selling from that vehicle 

 ( )= the price at instant   

   the optimal buy/sell time instant 

              killowatt*Hrs in the battery 
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        maximum battery capacity 

     desired departure battery state of charge 

           charging efficiency 

              inverter discharge efficiency 

 5. Search space (constraints): The constraint for this problem is that the hour must 

be strictly a positive real number which is limited by the arriving and departure time. 

                                                                           (4) 

    6. PSO Parameters. - The tested PSO parameters are shown on Table 4.2. 

 

TABLE 4.2 

Tested PSO Parameters 

Parameters Tested 

Maximun 

Number of Particles {10,20,40} 

Number of Iterations {10,50,100} 

Inertia weight {0.3,1,1.5} 

Individual Acceleration Constant {0.1,1.5,2.5,4} 

Social Acceleration Constant {0.1,2.5,4} 

 

  

4.1.3 PSO Implementation 

 The PSO was implemented using a Graphical User Interface (GUI) in MATLAB. 

The PSO algorithm implemented by the program is described by the following steps: 

 1. Particle initialization: The first step was to initialize a population of particles, 

each representing a possible solution, by assigning random solutions within the given 

solution space to the problem’s variable. To make the optimization converge faster, a 

random value inside the range [Arriving time, Departing Time] is chosen    

   ( )             (                        )      (   )         (5) 

 2. Swarm definition: In this step the swarm is defined as a set of particles 

according to the number of particles specified. 

      ( )     ( )   ( )   ( )                             (6) 
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 3. Fitness function evaluation: The fitness function assigned to the problem is 

evaluated for each particle. Therefore the set   of fitness functions is: 

  ( )     ( )   ( )   ( )                                          (7) 

where the fitness function for each particle every iteration is: 

   ( )  {
                        

                    
              (8) 

 4. Feasibility check: Also, the constraint for this problem is checked to see if the 

random hour values are strictly positive real numbers inside the grid connection interval. 

                ( )                              where   is the number of 

particles. 

If this doesn’t hold then   

   (         )                  (9) 

 5. Calculate initial best particle positions Pbest and Gbest: For each particle, the 

fitness at the current iteration is compared with the particle’s best previous fitness. The 

best previous solution for a particle is known as its personal best or Pbest solution. At the 

first iteration, the randomly initialized particles are assigned as the respectively particle’s 

best positions. Therefore 

   ( )     ( )   ( )   ( )                 (10) 

 Also the best solution of all the Pbest solutions is selected to be the global best or 

Gbest solution. This global best position is chosen between the particles, according to the 

smallest Fitness value  : 

   ( )      ( ( ))      (   ( )   ( )   ( )   )                                        (11) 

 6. Update each particle’s velocity and position. Since each individual possible 

solution can be modeled as a particle that moves through the problem hyperspace. The 

position of each particle is determined by the vector       
 and its movement by the 

velocity of the particle       
 , as shown in (12). 

  ⃗ ( )   ⃗ (   )   ⃗ ( )             (12) 
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 The information available for each individual is based on its own experience (the 

decisions that it has made so far and the success of each decision) and the knowledge of 

the performance of other individuals in its neighborhood [11]. Since the relative 

importance of these two factors can vary from one decision to another, it is reasonable to 

apply random weights to each particle, and therefore the velocity will be determined by   

  ⃗ ( )       ⃗ (   )           ( ⃗   ⃗ (   ))           ( ⃗   ⃗ (   ))           (13)                                                             

where   ,     are two positive numbers and      ,       are two random numbers with 

uniform distribution in the range of [0.0, 1.0].  

     7. Calculate new values for the fitness function and Update individual and global 

best positions: For each particle the following is applied: 

      ( )    (   ) then    ( )     (   ) 

      ( )    (   ) then    ( )    ( ) 

  ( )      ( ( ))      (   ( )   ( )    ( )   )                                (14) 

 Finally this procedure is repeated from step (5), until the stopping criterion is 

accomplished. In this analysis the PSO continued until the maximum number of iterations 

was reached. This means that a global solution was found within a predefined number of 

iterations. The program produces a set of plots showing the optimal time to sell or to buy 

based on the PEV parameters. 
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4.1.4  PSO Flowchart 

 

 

 

 

 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Particle Initialization 

  ( )   ( ) 

Start 

     ( )     ( )   ( )   ( )    

Swarm Definition 

 

  ( )   

  
 ( )  (                       )

         

    

Fitness function evaluation 

 ⃗⃗ ( )       ⃗⃗ (   )           ( ⃗⃗   ⃗⃗ (   ))           ( ⃗⃗   ⃗⃗ (   )) 

Particles Velocity Updating 

 

Is the fitness value 

better than pbest  

 

Initialization of Pbest and Gbest 

 ⃗⃗ ( )   ⃗⃗ (   )   ⃗⃗ ( ) 

Particles Position Updating 

Is the fitness value 

better than gbest  

 

Iteration < Max Iteration? 

 

        ( )    ( ) 

Set it as the new Pbest 

Initialization of vehicles 

parameters in parking lot 

Number of vehicles=1 

Stop 

  ( )     ( )  (                       )               

Fitness function evaluation 

                 

Set it as the new Gbest 

 

yes 

no 

no 

yes 

yes 

no 

Vehicle Number < Max Vehicle Number? 

 

no 

      

Update Iteration 

no 

yes 

      

Update vehicle 



 19 

4.2 The External Systems Control  

4.2.1    Distributed Power Agreement Protocol 

 The decentralized control is based on the model developed in [14].  The model 

has been adapted to the plug-in electric vehicle case. The model defines each electric 

vehicle prosumer’s desired power need ( ̂ ) and agreed upon power need ( ̃  ), and actual 

power need (  ). In this case, it is assumed that due automation actual and agreed upon 

power will be the same. The power need can also be power imbalance as it is the 

difference between generated power and load. Figure 4.1 shows the basic relationships 

between the model parameters. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

Figure 4.1: External Controls Basic Scheme 
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 Equation (15) shows the distributed agreement protocol where    represents a 

desired weigh that determines the “importance” of each prosumer. 

     ̃ ∑   ‖ ̃   ̂ ‖
  

                                                                                        (15) 

 A variable load profile was determined for 24 hours. Then the agreement protocol 

was run in Matlab and the resulted solution was displayed in PowerWorld. Figure 4.2 

shows the time-step implementation of the agreement protocol in PowerWorld for the 

case of 50 generators (that can be considered as the EV’S) divided in 10 prosumers. The 

simulation shows a contour of the line congestion for the specific agreed power. It is 

possible to see that while some areas have higher power congestion, the agreed upon 

power does not overload the lines. 

 

Figure 4.2: PowerWorld Simulation of the Agreement Protocol 
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CHAPTER 5 

SIMULATIONS 

 

When implementing the particle swarm algorithm, several considerations must be 

taken into account to facilitate the convergence and prevent an “explosion” of the swarm. 

These considerations include selecting acceleration constants, the number of particles, the 

number of iterations and the inertia constant. First, the best-selling/buying hour for one 

vehicle was analyzed. In order to have consistency in the results all the trials were run 

based on the same parameters. The battery capacity was chosen to be 25 KWh, the 

available capacity was 80%, the arriving time was at 7 am and the departure time was at 5 

pm. The charge and discharge efficiencies were selected to be 90 %.The best parameters 

were determined after various sets of simulations and are summarized at the end of the 

following section. 

5.1  Effect of the number of iterations on the PSO. 

5.1.1 Results with inertia = 1, individual acceleration constant = 1.5, social 

acceleration constant=2.5, number of particles = 10, number of iterations=10. 

 First in order to see the effect of the number of iterations, the PSO was 

implemented using 10 particles and 10 iterations. Figure 5.1 shows the position of the 

particles for different times. The optimal hour to sell is the 14
th

 hour. Figure 5.2 shows 

the car revenue vs hours, the maximum revenue in the time interval is 0.44 $. 
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Figure 5.1: Positions of the particles for different times 

 

Figure 5.2: Car Revenue Curve vs Number of Hours 
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5.1.2 Results with inertia = 1, individual acceleration constant = 1.5, social 

acceleration constant=2.5, number of particles = 10, number of iterations=50. 

 In this case the number of iterations was increased to 50. Figure 5.3 shows the 

position of the particles for different times. The optimal hour to sell is the 14
th

 hour. 

Figure 5.4 shows the car revenue vs hours, the maximum revenue in the time interval is 

0.44 $. 

 

Figure 5.3: Positions of the particles for different times 
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Figure 5.4: Car Revenue Curve vs Number of Hours 
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Figure 5.5: Positions of the particles for different times 

 

 

Figure 5.6: Car Revenue Curve vs Number of Hours 
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5.2   Effect of the number of particles on the PSO. 

5.2.1 Results with inertia = 1, individual acceleration constant = 1.5, social 

acceleration constant=2.5, number of particles = 20, number of iterations=100. 

 In this case the number of particles was increased to 20. Figure 5.7 shows the 

position of the particles for different number of iterations, where it is possible to see that 

the initial random values converge to 14 which is exactly the same value obtained as in 

the previous section. Figure 5.8 shows the revenue vs the number of hours, the maximum 

revenue achieved is 0.44$.  

 

  

Figure 5.7: Positions of the particles for different times 
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Figure 5.8: Car Revenue Curve vs Number of Hours 
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Figure 5.9: Positions of the particles for different times 

 

 

Figure 5.10: Car Revenue Curve vs Number of Hours 
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5.3   Effect of the selection of acceleration constants. 

5.3.1 Results with inertia = 1, individual acceleration constant = 0.1, social 

acceleration constant=2.5, number of particles = 40, number of iterations=100. 

 In this case a small number of individual acceleration constant was used. Figure 

5.11 shows the position of the particles for different number of iterations, where it is 

possible to see that the initial random values converge to 14 which is exactly the same 

value obtained in the previous section. Figure 5.12 shows the revenue vs the number of 

hours, the maximum revenue achieved is 0.44$. It is possible to see that there are not 

oscillations. With a very low value of individual acceleration the convergence was faster, 

in less than 33 iterations the surface area didn’t oscillate like in the previous examples 

  

  

Figure 5.11: Positions of the particles for different times 
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Figure 5.12: Car Revenue Curve vs Number of Hours 
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Figure 5.13: Positions of the particles for different times 

 

Figure 5.14: Car Revenue Curve vs Number of Hours 
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the optimal value 14. Also it is possible to see in Figure 5.16  shows the shows the 

revenue vs the number of hours, the maximum revenue achieved is 0.44$. 

  

  

Figure 5.15: Positions of the particles for different times 

 

Figure 5.16: Car Revenue Curve vs Number of Hours 
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5.3.4 Results with inertia = 1, individual acceleration constant = 4, social 

acceleration constant=4, number of particles = 40, number of iterations=100. 

 In this case each of the acceleration constants was increased to 4. Figure 5.17 

shows that the response diverges for these values. In fact for different sets of acceleration 

constant it was possible to find that the results diverge if the addition of the acceleration 

constants is greater than 4. 

 

 

Figure 5.17: Positions of the particles for different times 

 

 

Figure 5.18: Car Revenue Curve vs Number of Hours 
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5.4   Effect of the selection of inertia constant. 

5.4.1 Results with inertia = 0.3, individual acceleration constant = 1.5, social 

acceleration constant=2.5, number of particles = 20, number of iterations=100. 

 In this case a small number of inertia was used. Figure 5.19 shows the position of 

the particles for different times, where it is possible to see that the initial random values 

converge to 14. Figure 5.20 shows the revenue vs number of hours. It is possible to see 

that there are some oscillations. Therefore it is possible to conclude that if the inertia 

weight is small the search is narrowed, this means that the mode is basically exploitative. 

 

Figure 5.19: Positions of the particles for different times 
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Figure 5.20: Car Revenue Curve vs Number of Hours 

5.4.2 Results with inertia = 1.5, individual acceleration constant = 1.5, social 
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Figure 5.21: Positions of the particles for different times 

 

Figure 5.22: Car Revenue Curve vs Number of Hours 
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Table 5.1 

PSO parameters 

Parameter Tested Values Best Values 

Number of particles {10, 20, 40} 40 

Number of Iterations {10, 50, 100} 100 

Inertia weight 0.3, 1, 1.5 1 

Individual acceleration 

constant 

{0.1, 1.5, 2.5,4} 1.5 

Social acceleration constant {0.1, 2.5,4} 2.5 

Optimal Hour to sell (arrive time =7, departure time=17)      14 

Maximun Revenue  0.44 $
 

 

 Table 5.1 shows the Best Values determined for the PSO parameters. The results 

show that better results are achieved if a bigger number of iterations is used. However 

this increases the amount of computation. Also, increasing the number of particles makes 

the PSO converge faster. However, the results show that when a very big number of 

particles is used, there are more oscillations of the particles around the optimal value. If 

small numbers are used for both acceleration constants then the solutions oscillate around 

the optimal value. On the other side, if the acceleration constants are too big then the PSO 

diverges. In fact, for different sets of acceleration constant it was possible to find that the 

results diverge if the addition of the acceleration constants is greater than 4. This 

corresponds to general results where it is stated that the trajectory goes to infinity for 

values of acceleration constants whose addition is greater than 4.0.  In the case where 

each particle was selected to have two variables when a small individual acceleration was 

selected, the solutions converged faster. In this case, the minimum of the function is also 

a global minimum. However when a small social acceleration constant was selected, the 

solutions oscillated and the solutions hardly converged. 

 A higher value of inertia constant allows the particles to move freely in order to 

find the global optimum neighborhood. On the other side, when a small inertia constant 

was used (0.1) the search was narrowed and therefore the mode was exploitative which 

actually made the convergence to be faster. Therefore it is possible to conclude that if the 
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inertia weight is small the search is narrowed, this means that the mode is basically 

exploitative and if the inertia weight is big the search is expanded, this means that the 

mode is basically explorative. In general the performance of the PSO with one-variable 

particles was better in terms of convergence.  

 The proposed PSO algorithm to determining buying and selling times throughout 

a day successfully found very profitable solutions.  

 

5.4   Graphical user Interphase  

 Particle swarm optimization (PSO) results are shown in Figure 5.23. It is possible 

to see that the optimal hour is determined correctly according to the user preferences. 

 

 

Figure 5.23: Car Revenue Curve 

 

 The system User Interface is shown in Figure 5.24 It is constituted by the 
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Figure 5.24: EV-IEMS Graphical User Interphase 

 

 While the purpose of this thesis has not been to evaluate the performance of a 

specific computer–intelligence algorithm related to Electric Vehicle Management 

Systems, some “best” PSO parameters for finding the optimal time to sell/buy electricity 

using Particle Swarm optimization have been recommended. The objective has been to 

offer a perspective about the integration of different resources that could advance the 

implementation of Vehicle-to-Grid programs for frequency regulation applications based 

on the prosumer architecture. The topic of Intelligent Energy Management System and 

Genetic algorithm has been addressed in prior literature. For details about other 

optimization algorithms and comparisons, the reader is referred to [11]. 
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CHAPTER 6 

CONCLUSIONS 

 

 An electric vehicle intelligent energy management system for frequency 

regulation application has been proposed. The system is designed based on the prosumer-

architecture that allows implementing the scheme as a one-level interaction between the 

utility and the PEV owner. 

 Based on the owner preferences about next trip mileage, the system is able to 

automate the energy management of the battery pack. Also the system uses particle 

swarm optimization to create economic benefit by powering the grid during peak times 

and shifting charging to off-peak hours. 

 The results show that the prosumer based architecture provides the adequate 

framework to address this difficult distributed control problem. 
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