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SUMMARY

The process of quantifying the robustness of a given nonlinear system is not

necessarily trivial. If the dynamics of the system in question are not sufficiently in-

volved, then a tight estimate of a bound on system performance may be obtained.

As the dynamics of the system concerned become more and more involved, it is often

found that using the results existing in the literature provides a very conservative

bound on system performance. Therefore, the motivation for this work is to develop

a general method to obtain a less conservative estimate of a bound on system perfor-

mance, compared to the results already available in the literature. The scope of this

work is limited to two dimensions at present. Note that working in a two dimensional

space does not necessarily make the objective easily achievable. This is because quan-

tifying the robustness of a general nonlinear system perturbed by disturbances can

very easily become intractable, even on a space with dimension as low as two.

The primary contribution of this work is a computational algorithm, the points

generated by which are conjectured to lie on the boundary of the smallest robust

forward invariant set for a given nonlinear system. A well known path-planning algo-

rithm, available in existing literature, is leveraged to make the algorithm developed

computationally efficient.

If the system dynamics are not accurately known, then the above computed ap-

proximation of an invariant set may cease to be invariant over the given finite time

interval for which the computed set is expected to be invariant. Therefore, the sec-

ondary contribution of this work is an algorithm monitoring a computed approxima-

tion of an invariant set. It is shown that for a certain type of systems, this secondary
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monitoring algorithm can be used to detect that a computed approximation of an in-

variant set is about to cease to be invariant, even if the primary algorithm computed

the set based on an unsophisticated dynamical model of a system under consideration.

The work related to computing approximations of invariant sets is tested mainly

with the curve tracking problem in two dimensions. The algorithm monitoring

whether a computed approximation of an invariant set is about to cease to be in-

variant is inspired by work related to detecting Lithium-ion (Li-ion) battery terminal

voltage collapse detection.
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CHAPTER I

INTRODUCTION

A dynamical system can be used to model a particular physical phenomenon of inter-

est. To model real-world phenomena, it is common to have systems affected by addi-

tive perturbations. Explicit performance bounds can help evaluate the performance

of such systems affected by disturbances. The concept of input-to-state stability (ISS)

can be used to obtain a performance bound for systems subjected to locally bounded

time-varying disturbances. However, performance bounds established based on ISS

can be very conservative. Compared to results based on ISS, it may be possible to

establish more aggressive bounds on system performance by finding invariant sets.

The shape and size of such an invariant set will depend on the properties of a sys-

tem. However, there may be parametric uncertainties in a system model. Given an

invariant set for a system without any parametric uncertainty, and the magnitude of

the uncertainty, results from perturbation theory can be used to estimate the size of

a set in which system trajectories remain in the presence of parametric uncertainties

(see Figure 1(a)).

If such estimates of the size of an invariant set are only valid over a finite interval

of time, then it is important to know when the estimates of the size of an invariant

set for a given system do not hold. If the estimates of the size of an invariant set are

valid for a given interval of time, then the invariant set may be said to be reliable

over that interval. Similarly, if an invariant set ceases to be invariant within a given

interval of time, then it can be said that the given invariant set is not reliable. Finding

invariant sets that are valid for all time, which may require finding suitable Lyapunov

functions, can be very involved for time varying nonlinear systems. Hence, estimates
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(a) An invariant set for a given system
shown by the solid curve. The dotted curve
shows a system trajectory. The dashed curve
shows an estimate of a set obtained for the
given system when small parametric uncer-
tainties appear in the system. For small
bounded parametric uncertainty, the trajec-
tory of the system with parametric uncer-
tainty may remain within the set shown us-
ing dashes, if initial conditions lie within the
set shown using a solid curve. But large dis-
turbances/uncertainties may cause behavior
as represented in the figure alongside.

(b) The solid black dots show some points
that may need to be monitored to check
if the trajectory gets close to the bound-
ary. The dotted circles show an example of
a region around boundary points which are
monitored. If the number of points moni-
tored is insufficient, or the region monitored
is not large enough then the system trajec-
tory (dotted curve) may leave a computed
set and the monitoring algorithm may fail
to detect it.

Figure 1: An illustration of invariant sets computed algorithmically and the effects
of changes in system behavior on the reliability of a computed set.

of the size of an invariant set that are valid for all time may not always be found. In

such a situation, it may be helpful to know if the estimated size of an invariant set,

which is only valid over a finite interval of time, is about to cease to be reliable. Thus

motivated, this work has the following goals. The first goal is the development of a

computational algorithm to find robust forward invariant sets (RFISs) for a system

with bounded additive disturbances. The second goal is to develop an algorithm for

detecting that a computed robust forward invariant set (RFIS) is about to cease to

be invariant.

The computational load involved in monitoring a computed RFIS can be reduced

if certain knowledge regarding system behavior is taken into account. For example,
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points on the boundary of an RFIS can be monitored to check if system states are

about to breach the boundary (see Figure 1(b)). This approach is computationally

expensive even for monitoring a finite number of points on the boundary, because the

demand on the computational resources grows with every new point on the boundary

that requires monitoring. If there is a way to determine that system behavior has

changed drastically so as to cause an impending system instability, this information

can be useful to reduce the computational load. Monitoring system states is then

enough to determine that a computed RFIS is at risk of ceasing to be invariant.

However, a concern with this approach may be the accuracy of the available system

model. To mitigate such problems, this work leverages research related to detecting

Lithium-ion (Li-ion) battery terminal voltage collapse detection. This approach relies

on tools from adaptive control theory, and relaxes the requirement of a sophisticated

system model for monitoring the validity of a computed RFIS. This allows detecting

that a computed RFIS is about to cease to be invariant, even if the model used to

compute such an RFIS is not very accurate. Another concern may be that as the

number of states to be monitored increases, the above mentioned approach utilizing

tools from adaptive control theory may not be very effective in reducing computational

load. In reality, a system with a finite number of states is usually sufficient to model

a phenomenon of interest, and it is reasonable to expect that the number of system

states is less than the number of distinct points on the boundary of an RFIS which

need monitoring.

The focus of this work is on the development of computational algorithms because

closed form analytical expressions for performance bounds may be unattainable for

complex systems. Systems with fractional dynamics, and nonlinear model predictive

control systems, are some examples of such complex systems. Generalization of the

algorithms developed in this work to higher dimensional systems is left for future

efforts.
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This document is organized as follows. A review of literature related to this

work is presented in Chapter 2, which helps clarify the motivation for this work and

provides the contrast needed to evaluate the results presented. Chapter 3 is focused

on developing a computational algorithm for finding the smallest RFIS for a given

nonlinear system affected by bounded additive disturbances. Chapter 4 presents

some ideas that are related to Li-ion battery terminal voltage collapse. These ideas

serve as a foundation for the material presented in Chapter 5. Chapter 5 shows

that perturbation theory may be used to generate estimates of the size of a set in

which the trajectories of a perturbed system with bounded parametric uncertainty

stay, given initial conditions belonging to an RFIS of a nominal perturbed system

without parametric uncertainty. Further, Chapter 5 uses the strategies presented

in Chapter 4, which were originally developed for detecting Li-ion battery terminal

voltage collapse, to detect if a computed RFIS is about to cease to be invariant in

the event of a loss of system stability. Chapter 6 summarizes the results produced,

and provides a glimpse into future efforts.
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CHAPTER II

BACKGROUND

Finding the least conservative performance bound for the problem of curve tracking

control [85] is a motivation to develop a computational algorithm to find an RFIS. As

mentioned in [43], the dynamics of the interaction between a unit speed mobile robot

and its projection on a curve which the robot is trying to track can be represented

using the following nonlinear system of equations:

ρ̇(t) = − sin(φ(t)) (1)

φ̇(t) =
κ cos(φ(t))

1 + κρ(t)
− u(t). (2)

Here the scalar ρ(t) = ‖ r(t)− r̄(t) ‖2. Vector r represents the position of a mobile

robot on a plane. The two dimensional vector r̄ represents the position of the closest

point on a given curve, with respect to the position of the robot. Scalars φ, κ, and u

are the bearing, the positive curvature, and the control effort, respectively. As shown

in [83], it is possible to design a controller to achieve asymptotic stabilization so the

distance converges to a desired positive constant ρ0, and the bearing converges to

zero. Such controllers have been used in real-world applications involving obstacle

avoidance using wheeled robots and marine sampling [50,83]. The controllers appear

quite robust to real world disturbances. This motivated the authors in [43, 44] to

justify the observed robustness using tools like input-to-state stability (ISS). Suppose

the control u(t) in Equation (2) is perturbed by an additive disturbance δ(t) valued

in an interval [−δ0, δ0], where δ0 is a real positive constant. An analytical method for

constructing robust forward invariant hexagons for such systems is provided in [43,44].

For linear systems, extensive research exists related to problems which are similar to
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the problem finding an RFIS [37, 65, 66]. The problem of finding an RFIS is similar

to the problem of finding invariant sets, or estimating the region of attraction.

The problem of estimating the domain of attraction of an autonomous nonlinear

system having the form ẋ = f(x), with f(0) = 0, has seen a variety of research over an

extended period of time [74]. Quite naturally, there are many ways to find the domain

of attraction for a given system. Zubov’s method [87] consists of solving a partial

differential equation, known as the Zubov equation, for computing the domain of

attraction. Davison [20] provides a numerical method to obtain a quadratic Lyapunov

function so that the volume of the asymptotic stability region is maximized. In [42],

the authors use Carlemann linearizations to get a sequence of sets which converge to

the domain of attraction. This method is applicable to systems where f(·) is analytic.

The authors in [47] use computer generated Lyapunov functions to estimate the region

of attraction. In [55], Luré type Lyapunov functions are constructed using a theorem

of Popov [10]. The Lyapunov function thus obtained is used to estimate the region of

asymptotic stability for a post-fault power system. Similar analysis using Lyapunov

functions is found in [77, 79]. The authors in [75, 76] explore the problem of finite

regions of attraction.

Concepts similar to those reviewed above have been applied to perturbed systems.

However, analytical solutions for perturbed nonlinear systems are not always easily

found [32,46]. Numerical analysis is favored in such situations [8,31]. Some references

in [26] describe topics related to numerical analysis of dynamical systems. Numerical

methods have been used to study objects like invariant manifolds [9], attracting sets

[35], homoclinic orbits [7], and Morse-Smale systems [22]. Any type of numerical

analysis involves discretization. This creates concerns about the closeness of the

numerically achieved results with respect to the true analytical results. Such issues are

studied in [25]. In [12], the authors extend Zubov’s method to perturbed dynamical

systems.
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A large body of literature exists on determining Lyapunov functions whose sub-

level sets can be used to characterize the region of attraction [23]. Research focused

on sum-of-squares relaxations for polynomial optimization [57] has been utilized by

the authors in [71] for estimating the region of attraction. The work of the authors

in [15, 63] uses parameter dependent Lyapunov functions to obtain less conservative

estimates of the region of attraction as compared to approaches using parameter

independent Lyapunov functions. However, the parameter dependent approaches

usually have higher computational complexity compared to parameter independent

approaches. The work [73] follows the work [72] closely. This work uses the sum-of-

squares optimization method together with parameter independent Lyapunov func-

tions, and branch-and-bound [5,82] type refinement algorithms, to estimate the region

of attraction for dynamical systems with bounded parametric uncertainty. However,

this procedure requires a family of candidate Lyapunov functions. Even though there

exist specialized methods for constructing Lyapunov functions [45], obtaining Lya-

punov functions for any given dynamical system can be challenging. Obtaining an

entire family of Lyapunov functions, as required in [73], is not necessarily an easy task.

There has been some work specifically directed toward computing robust control in-

variant sets [2], but this work focuses exclusively on piecewise affine systems. The

authors in [4] use Newton’s method and the secant method to find zeros for set-valued

maps. This requires appropriately redefining a given problem in a Banach space set-

ting, and redefining Fréchet derivatives for set valued maps. Such approaches, as

in [4], have been used to find invariant sets for systems in [3]. However, Newton’s

method does not perform well for ill-behaved problems. If the initial guess is not

sufficiently close to the required solution, an algorithm based on Newton’s method

may not converge.

Regardless of the method used to compute an invariant set, it is important to de-

cide if a computed set is valid when parametric uncertainties affect a system. Bounds
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on the error between solutions of a nominal system and that of a perturbed system

can be established using results from perturbation theory [32]. Detecting that a com-

puted invariant set is valid when subjected to parametric uncertainties is conceptually

similar to monitoring a dynamical system for bifurcations. The qualitative behavior

of a dynamical system may change if a particular parameter changes. Such a change

is known as a bifurcation, and the points at which such changes occur are known as

bifurcation points [30, 70]. When a bifurcation occurs, fixed points may vanish or be

created. Sometimes, fixed points switch from being stable to unstable as a result of

a bifurcation. When such switches occur, a set that is invariant for a nominal system

may no longer be invariant when the system is affected by perturbations. Knowing

when a system is about to undergo a bifurcation is important. For example, the

authors in [6] incorporate information obtained from bifurcation analysis to arrive

at a better estimate of the domain of attraction for a nonlinear system. In [81], the

authors use a probe signal to detect an impending bifurcation for a power system.

In [48], the authors use a frequency domain approach to detect period doubling bifur-

cations. The concept of detecting changes in system behavior near a bifurcation point

can be used to detect if a computed invariant set is at risk of losing its property of

being invariant. This idea is inspired by previous work related to detecting Lithium

ion (Li-ion) battery terminal voltage collapse [51, 52].

High charge densities [40] make Li-ion batteries popular. Thermal failure, loss of

charge, and voltage collapse are some problems associated with batteries. The ter-

minal voltage of a battery drops sharply from its operating value when it is in a low

state of charge (SoC) [40]. The terminal voltage, available capacity, state of charge

(SoC), and state of health (SoH) [62] can be used to determine that the terminal

voltage of a battery is about to collapse. A constant threshold voltage is often used

to determine that a particular battery is discharged [33,62]. The terminal voltage of

8



a battery depends on the discharge current it supplies. Hence, using a constant volt-

age threshold can lead to false alarms in the presence of noise, large spikes, or rapid

changes in the discharge current. A threshold on the battery state of charge (SoC)

can also detect that the terminal voltage of a battery is about to collapse. Determin-

ing the SoC involves integrating the measured discharge current. Measurement errors

can introduce errors in the SoC computation [62]. Incorporating battery models im-

proves the accuracy of detecting an impending terminal voltage collapse. Various

types of battery models [14, 67] and associated identification techniques exist [1, 68].

Run-time models [24], which primarily consist of look up tables providing the battery

terminal voltage, are the simplest battery models. Mathematical models for digital

systems [58] have been considered for maximizing battery life, or reducing switch-

ing latency in digital circuits. Mathematical models do not necessarily translate to

practical applications. Stochastic battery models [16], and detailed electrochemical

models [34], have been investigated to understand the recovery effect in detail. Us-

ing state estimators for such detailed models results in excessively long computation

times. To enable fast computation, some recent efforts have focused on simplifying

models describing battery thermal runaway [69]. However, solving partial differential

equations is still not tractable for small onboard robotic systems.

Therefore, simple dynamic models, which capture essential physical phenomenon,

coupled with filtering algorithms [59–61] for state estimation, are popular methods

used to detect battery terminal voltage collapse. Fault detection strategies like resid-

ual generation [21] can also be used to detect that a battery is about to die. All the

above methods require detailed battery models. Substantial time and effort [18] is

needed to obtain such models. In reality, battery characteristics may differ from the

model used. This may result in voltage collapse before a particular algorithm detects

it. Battery characteristics may also change within a span of a few days or months.

This may necessitate frequent investment of massive amounts of time and effort into
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modeling.

The aim is reducing model dependence, while being able to detect that the ter-

minal voltage of a battery is about to collapse. Reducing the effects of load changes,

temperature changes, discharge current spikes, and measurement noise on terminal

voltage collapse detection, is also desired. Concepts from universal adaptive stabi-

lization (UAS) [28, 49] can be used to extend the work [52] related to Li-ion battery

terminal voltage collapse detection, to detect that an RFIS computed for a nominal

system is invalid for a perturbed system.

When contrasted with existing literature on computing invariant sets, the work in

this document for computing an approximation of an RFIS does not use Newton-type

methods for estimating a region of attraction. Methods used to estimate the entire

domain of attraction are not extended. Inspired by the notion of Hamiltonians in [17],

a new approach is developed to compute an approximation of an RFIS for a given

system. This work does not follow Lyapunov based techniques because the invariant

sets computed may turn out to be the sub-level sets, hence offering conservative re-

sults. An approximation of the smallest RFIS contained in a given domain of interest

may be computed by considering the ensemble of all trajectories of a given system.

System trajectories can be obtained by solving differential equations modeling a given

system, with initial conditions at every point in the domain of interest. The smallest

region in the domain of interest in which system trajectories remain for all time, may

be one way to find an approximation of the smallest RFIS. With such an approach,

the computation time increases as the number of different initial conditions to be

tried increase. This work uses an approach which does not require solving for system

trajectories. The novelty of the approach developed in this work is that the problem

of finding the boundary of an approximation of the smallest RFIS is formulated as

a path planning problem [53], and it is hypothesized that the optimal path will be

a good approximation of the desired boundary. Path planning algorithms such as

10



the A∗ [27] algorithm, are well known to reduce the amount of computation required

to find optimal paths for robot navigation. Conditions are derived under which the

proposed algorithm terminates. Previous results related to Li-ion battery terminal

voltage collapse detection [52] are used to develop an algorithm for monitoring the

validity of the computed result, when the original system is subjected to parametric

uncertainty.
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CHAPTER III

COMPUTING APPROXIMATIONS OF THE SMALLEST

ROBUST FORWARD INVARIANT SETS

Robustness of nonlinear systems can be analyzed by computing robust forward in-

variant sets (RFISs). The smallest RFIS provides the least conservative estimate of

system performance under perturbations. In this chapter, a novel algorithm is de-

veloped to find an approximation of the smallest RFIS for two-dimensional systems

subjected to a bounded additive disturbance. The algorithm developed leverages a

path planning algorithm. The required notations and definitions are presented first,

followed by a formulation which transforms the problem of computing an RFIS into

a path planning problem. Further, the algorithm is mathematically justified, and

simulation results are provided showing that the algorithm developed can be used to

find an approximation of the smallest RFIS. Since efficient path planning algorithms

are used, the amount of computation is effectively reduced. Hence it may be feasible

to generalize the algorithm to higher dimensional systems in future.

3.1 Mathematical preliminaries

This section provides the definitions required to describe the problem setup.

Consider the system ẋ(t) = ϑ(x(t), δ(t)). Here ϑ : R2 ×R
2 → R

2, and δ : R → R
2

is a time varying bounded disturbance such that standard conditions for existence

and uniqueness of solutions are met. Let x̄ ∈ R
2, and ϑ(x̄, 0) = 0. For this work, it is

assumed that the dynamics can be written in the form ϑ(x(t), δ(t)) = f(x(t)) + δ(t),

where f : R2 → R
2, and the disturbance function δ : [0,+∞) → U . The set U

is defined as [−δ0, δ0] × [−δ0, δ0], for some known value δ0 ∈ [0,+∞). The set U is

12



therefore a bounded box in two-dimensions. Let MU denote the set of all measurable,

and locally essentially bounded functions δ : [0,+∞) → U . If the dynamics under a

different disturbance function belonging to MU are desired to be studied, then the

function δ(t) can be replaced with such a desired function from the set MU . Such

notation is used because it may help extend this work to find an approximation of an

RFIS for a differential inclusion [17].

As per [44], an RFIS can be defined for an undelayed system in R
2 as follows.

Take any open subset X of R2, and any point E ∈ X . Consider a forward complete

system ẋ(t) = F(x(t), δ(t)) with state space X and perturbations δ ∈ MU such that

standard existence and uniqueness properties of solutions are satisfied for all initial

conditions in X and all perturbations δ ∈ MU . Let F(E , 0) = 0. Let S ⊆ X be

any neighborhood of E . The set S is an RFIS for the system ẋ(t) = F(x(t), δ(t))

with perturbations valued in U if all trajectories of the above system, for all initial

conditions valued in S and all perturbations δ ∈ MU remain in S for all positive

times. Furthermore, if all trajectories of the above system ẋ(t) = F(x(t), δ(t)), for all

initial conditions x(t0) valued in S and all perturbations δ ∈ MU remain in S for all

time t ∈ [t0, t1] where t1 > t0 ≥ 0, then it is said that S is an RFIS for the interval

[t0, t1].

Let D ⊆ R
2 be a region of interest, and let all simple closed curves in D be

positively oriented. Let P and Q be two sequences of equal length consisting of

points pi, and qj respectively from Euclidean space. Define the distance between

sequences P and Q as d2(P,Q) =
∑n

l=1 ‖ pl − ql ‖2, where pl ∈ P , and ql ∈ Q.

Given two points a and b belonging to Euclidean space, let seg (a; b) denote the

segment joining points a, and b. The following definitions common to convex analysis

are presented from [19], [56]. A cone C ∈ R
n is defined as a set of points x ∈ R

n such

that, if x ∈ C , then for all non-negative λ ∈ R, λx ∈ C . A cone C ∈ R
n is a convex

cone if and only if, (a) for x ∈ C , λx ∈ C for all non-negative λ ∈ R; (b) if x1, x2 ∈ C ,

13



ν1 ν2

ν3

ν4

(a)

ν1

ν2
ν3

ν4

ν5

(b)
Figure 2: Types of convex cones: (a) A pointed convex cone. For any given vector,
a pointed convex cone does not contain the entire line passing through the origin and
the given vector. (b) A convex cone which is not pointed since it contains the entire
line formed by vector ν1 or ν5.

then x1+x2 ∈ C . A convex cone C is said to be pointed if, given any arbitrary vector

ā ∈ R
n it contains no line L = {x : x = λā for all λ ∈ R, x ∈ R

n}. A non-zero

vector a in a pointed-convex cone C is an extreme ray if and only if αν1 + βν2 6= a

for all α, β ≥ 0, for all ν1, ν2 ∈ C \ {λa|λ ≥ 0}. In other words, an extreme ray of

a pointed convex cone is a vector that cannot be expressed as a non-negative linear

combination of vectors in the cone which are distinct from it. The extreme ray can

be thought of as a boundary vector of a pointed convex cone.

The following definitions are related to path planning on directed graphs [27]. A

graph is defined to be a set {pij} of elements called nodes and a set {(pij , pkl)} of pairs

called arcs. Here i, j, k, and l belong to some bounded subset of {0} ∪ N (the set of

natural numbers along with the number zero), and each arc is directed from node pij

to node pkl. Each node pij has two indices i, j representing the physical location of a

node pij ∈ R
2. Given an arc (pij , pkl), node pkl is a successor node of node pij , and

the nodes pij, and pkl are connected. Node pkl is said to be accessible from pij . The

cost of an arc (pij , pkl) is represented by the scalar c(pij , pkl). The exact definition of

the quantity c(·, ·) is provided later. A path is an ordered set of nodes with each node

p(i+1)k a successor node of node pij . Indices j, and k do not depend on each other or

on index i. Every path has a cost obtained by adding the individual costs for each

arc in the path. An optimal path from pij to pkl is a path having the smallest cost
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over the set of all paths from pij to pkl. Some specified non-empty set S ⊂ {pij} is

known as the source set. A single specified node pij belonging to a given source set S

is known as the source node. Given a graph formed by a set of nodes {pij} and a set

of arcs {(pij, pkl)}, a goal set T is a non-empty set of nodes T ⊂ {pij} accessible from

some specified source node in {pij}. Let the node pkl belong to a particular goal set.

The node pkl is a preferred goal node of a particular source node pij if the cost of an

optimal path from pij to pkl does not exceed the cost of any other path from pij to

any other member of the chosen goal set.

3.2 Formulating the problem of computing an invariant set

In this section the problem of finding the smallest RFIS is formulated as an optimiza-

tion problem that may be solved by applying path planning algorithms.

3.2.1 Problem statement

Using the notations and definitions in Section 3.1 the problem of interest to this

work is stated as follows. Consider a system of the form ẋ(t) = ϑ(x(t), δ(t)) with

a unique asymptotically stable equilibrium x̄ i.e. ϑ(x̄, 0) = 0, and a given constant

δ0 ∈ [0,+∞). The disturbance δ(·) is allowed to vary over the set MU , where MU is

as defined in Section 3.1. Time t ∈ [0, Tmax], where Tmax ∈ R and Tmax > 0. Starting

from an invariant set B ⊆ D which contains the equilibrium x̄, find a set contained in

B which is an RFIS for all time t ∈ [0, Tmax], which contains the equilibrium x̄, and

whose boundary is a positively oriented simple closed curve. Additionally, the length

of a ray beginning at x̄ and terminating at a point on the boundary (simple closed

curve) is minimized for all angles θ ∈ [0, 2π], where θ represents the angle between

a ray beginning at x̄ and the x-axis. Such a set is referred to as a smallest RFIS

in this work. Here Tmax is introduced because the computational approach developed

in this work samples the vector field at discrete points in time and space. Given a

general time varying vector field of the form ẋ(t) = ϑ(x(t), δ(t)), since the algorithm
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developed in this work does not have any additional knowledge about the behavior of

a given system, the algorithm can only be used to comment on invariance within the

finite time interval in which the vector field is sampled. Also, the reason to introduce

the set B is that the algorithm developed will have to start from a initial guess of the

smallest RFIS, which is represented by the set B.

Expected solutions to the above problem are shown in Figure 3(a), where the

dashed square box represents an initial guess, the small dotted ellipse shows the true

smallest RFIS, the simple closed curve (solid boundary) enclosing the ellipse repre-

sents an optimal solution, and the simple closed curve (dashed) enclosing the optimal

solution, represents a possible sub-optimal solution (a more conservative estimate of

an invariant set). If the exact shape of the smallest RFIS is to be found using com-

putational techniques, then an infinitely high spatial and temporal resolution may be

necessary. Hence, the goal is to find the closest approximation of the boundary of

the smallest RFIS.

Smallest RFIS

Optimal

Sub optimal

Initial

x̄

(a) (b)

A curve

Tangent

ν1

ν2

N(x)

x

ν3

cos−1(α ◦ Cϑ(x))

❄

Figure 3: Illustrations: (a) Types of solutions to the problem of finding an RFIS. (b)
The quantity α ◦ Cϑ(x) for a pointed convex cone at a point x.
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3.2.2 Conversion into an optimization problem

Suppose the vector field ϑ : R2 × R
2 → R

2 and a pointed convex cone C (x) with

vertex at particular point x ∈ R
2 are given. Let Cϑ(x) denote a pointed convex cone

with vertex at a given point x ∈ R
2 such that, for all ν ∈ Cϑ(x), ν ∈ Image(ϑ(x, ·)).

Let a vector N(x) be given at the point x. The quantity α for a given pointed convex

cone Cϑ(x), at the point x ∈ R
2 is written as α ◦ Cϑ(x), and defined as

α ◦ Cϑ(x) =
〈N(x), ν⋆〉

‖N(x) ‖ ‖ ν⋆ ‖
, where

ν⋆ = argmin
ν∈Cϑ(x)

〈N(x), ν〉

‖N(x) ‖ ‖ ν ‖
.

(3)

Here cos−1(α) ∈ [−π, π]. If α ◦Cϑ(x) ≥ 0, then it is straightforward to see that ν⋆ is

one of the extreme rays of a cone Cϑ(x). Before proceeding further, it is worthwhile

to consider the usage of the set U = [−δ0, δ0]× [−δ0, δ0]. The set U is used as follows

for computing an RFIS. The set U is discretized, and at every point x ∈ D a convex

cone formed by vectors belonging to a given vector field ϑ(·, ·) is considered for every

discrete value of disturbance in U . Then the angles between the extreme rays of such

a cone and a given candidate normal vector N(x) are computed. An illustration of

the above discussion is provided in Figure 3(b), where the cosine of the angle between

vectors ν1, andN(x) is the least when compared with the angle between N(x) and the

other extreme ray (vector) ν3. The idea is that the vector N(x) is a normal vector to

some curve at the given point x. One such curve may be the boundary of the smallest

RFIS.

Consider Figure 3(b) and the definition of the quantity α◦Cϑ(x). Further consider

a positively oriented simple closed curve R such that all points in R are contained

in the domain of interest D ⊆ R
2. Let N(x) represent the normal vector at a point

x belonging to R such that at every point x ∈ R, vector N(x) points towards the

interior of the region enclosed by R. Suppose at every point x ∈ R and for all

time t ∈ [0, Tmax], the quantity α ◦ Cϑ(x) ≥ 0 for all vectors ν ∈ Cϑ(x) such that
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ν ∈ Image(ϑ(x, ·)). This means that for all t ∈ [0, Tmax], at all points x belonging

to R, all vectors ν ∈ Cϑ(x) such that ν ∈ Image(ϑ(x, ·)) either point inside the

closed region enclosed by R, or point along a tangent to R. This further means

that solutions to ẋ(t) = ϑ(x(t), δ(t)) will stay in the region enclosed by R for all

t ∈ [0, Tmax]. This is because for a solution to leave the region enclosed by R, there

must exist at least one point x ∈ R with at least one vector ν ∈ Cϑ(x) such that

ν ∈ Image(ϑ(x, ·)), and an instant of time t ∈ [0, Tmax] such that ν does not point

into the interior region enclosed by R, and ν does not point along a tangent to R.

However no such vectors ν exist, if for all t ∈ [0, Tmax] the quantity α ◦ Cϑ(x) ≥ 0

for all vectors ν ∈ Cϑ(x) such that ν ∈ Image(ϑ(x, ·)). All points x ∈ R form the

boundary of an RFIS, and therefore the problem of finding an RFIS (which is not

necessarily the smallest RFIS) can now be formulated as the following problem. Find

all x⋆ ∈ D satisfying

x⋆ = argmin
x∈D

α ◦ Cϑ(x), s.t. α ◦ Cϑ(x)>0. (4)

The above is a constrained optimization problem because solutions x are desired to

minimize the quantity α ◦ Cϑ(x) subject to certain constraints. The strict inequality

constraint α ◦ Cϑ(x) > 0 is used due to the following reason. If the constraint α ◦

Cϑ(x) ≥ 0 is used, then it is possible that a solution x⋆ to Equation (4) is obtained

on the boundary of an RFIS, and α◦Cϑ(x) = 0. This implies that solutions to ẋ(t) =

ϑ(x(t), δ(t)) are tangential to the boundary of an RFIS. Hence, if the initial conditions

of ẋ(t) = ϑ(x(t), δ(t)) equal x⋆, then solutions may leave the RFIS. Solutions to

Equation (4) may be obtained by trying all points x ∈ D and then picking x which

minimize α ◦ Cϑ(x) subject to the constraints in Equation (4). Such a brute force

approach, which involves trying every point, is inefficient.

Hence the following formulation is used to transform the constrained optimization

problem in Equation (4) into an equivalent unconstrained one. Pick a positive con-

stant g̃ that is sufficiently large (e.g. satisfying the conditions in Lemma 3.4.1 that
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will be derived later), and consider the function η : [−1, 1] → (0, 1] ∪ g̃ defined as

below.

η(x) =





x, x ∈ (0, 1]

g̃, x ∈ [−1, 0]

(5)

Now, the problem in Equation (4) can be reformulated as,

x⋆ = argmin
x∈D

(η ◦ α ◦ Cϑ)(x). (6)

The resulting problem in Equation (6) is not necessarily convex, but assigning in-

feasible solutions a high cost g̃ using the function η(·) helps recast the problem in

Equation (6) into a path planning problem. Since the smallest RFIS around an equi-

librium point x̄ is desired, the problem in Equation (6) is modified to include a cost

related to the size of the solution set, which accounts for the distance of a point x ∈ D

to the equilibrium point x̄, as follows

x⋆ = argmin
x∈D

((η ◦ α ◦ Cϑ)(x) + λ1 ‖ x− x̄ ‖2). (7)

Here λ1 > 0 is a real weight which is fixed to be a desired number.

3.2.3 A path planning problem

We wish to find a solution to the problem in Equation (7) that is a closed path going

around the equilibrium, and forming a positively oriented simple closed curve which

approximates the boundary of an RFIS. To enable the algorithm to search for the

required shape of the boundary of the smallest RFIS, we start from a convex set B

with a simple closed curve as its boundary such that the equilibrium x̄ belongs to

the interior of B. We use B as an initial guess for the desired RFIS, so the set B

must itself be invariant. It is also assumed that such a set B exists. Sub-level sets of

strict Lyapunov functions serve as good choices for B, so techniques from [45] may

be helpful to initialize the algorithm presented in this work. The following sections

describe the setup required to apply the A∗ path planning algorithms to compute a

solution to the problem in Equation (7).
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3.2.3.1 Discretization of the search space

The first step is to discretize the state space in the interior of set B into radial grid

points. Select a collection of N + 1 distinct points from the boundary of B denoted

by {b0, b1, · · · , bN}. Then connect the equilibrium point x̄ to each of these points

b0, b1, · · · , bN . Let the index i ∈ {0, 1, · · · , N}. For simplicity, choose bi so that

the angle between each segment seg (bi; x̄) and the x-axis is
2πi

N + 1
. This way, the

angle between each segment seg (bi; x̄) and the x-axis belongs to the interval [0, 2π]

by construction. The points b0, b1, b2, and bN are indicated on the boundary of a

square set in Figure 4(a). The set B is convex by choice, and x̄ is in the interior of B.

Therefore B contains all line segments joining x̄ to each point bi by construction. Next,

discretize each segment seg (bi; x̄) into n + 1 grid points pij where i ∈ {0, 1, · · · , N}

and j ∈ {0, 1, · · · , n} where pij = bi +
j(x̄− bi)

n
. Notice that a point pi0 = bi (on

the boundary of B), and pin = x̄ by construction. Let a set Ai be a set of grid

points {pij ∈ seg (bi; x̄)} where i ∈ {0, 1, · · · , N} and j ∈ {0, 1, · · · , n}. The sets

A0 to AN are illustrated by dashed line segments in Figure 4. The grid points pij

where i ∈ {0, 1, · · · , N} and j ∈ {0, 1, · · · , n} belonging to each set Ai are marked

by circles. Discretizing the search space as above allows converting the problem in

p00,
b1

pN0,
bN

p10,
b1p11p22

p21

p20, b2p40, b4

p01
p02

pN1 x̄

pN0

pN1

pN2

p00
p02

p10

p01

p11

p12

p20

B ⊆ D

✛
A2

✛A1

A0
AN

❄

❄

(a) (b)

Figure 4: (a) Discretizing the search space to find the smallest RFIS (dotted ellipse)
contained within a given invariant set B. The shaded circle is the equilibrium x̄. (b)
Embedding a directed graph structure.
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Equation (7) into the following N +1 separate unconstrained optimization problems:

for all i ∈ {0, 1, · · · , N}, find an x⋆ satisfying

x⋆ = argmin
x∈Ai

((η ◦ α ◦ Cϑ)(x) + λ1 ‖x− x̄ ‖2), λ1 > 0. (8)

Definition 3.2.1. A path is said to be the closest approximation of the boundary of

the smallest RFIS if all nodes on this path are solutions to Equation (8). Here a path,

as defined in Section 3.1, is an ordered set of nodes with each node p(i+1)k a successor

node of node pij where i ∈ {0, 1, · · · , N} and j, k ∈ {0, 1, · · · , n}. Also j, k do not

depend on each other or on i.

3.2.3.2 A tie-breaker rule

For each i ∈ {0, 1, · · · , N}, solutions to Equation (8) are grid points pij ∈ Ai where

i ∈ {0, 1, · · · , N} and j ∈ {0, 1, · · · , n}. For each i ∈ {0, 1, · · · , N} there may exist

multiple different j ∈ {0, 1, · · · , n} such that each point pij is a solution to Equation

(8). This situation is known as a tie, and if a tie occurs for any i ∈ {0, 1, · · · , N} then

the point pij ∈ Ai with the smallest index j ∈ {0, 1, · · · , n} is selected as a solution

to Equation (8). Such a tie-breaker rule guarantees a unique solution to Equation

(8) for all i ∈ {0, 1, · · · , N}. This claim of uniqueness is easily verified as follows.

By construction, given an i ∈ {0, 1, · · · , N} there exists exactly one unique point

pij corresponding to each j ∈ {0, 1, · · · , n}. To see why, pick an i ∈ {0, 1, · · · , N}

and suppose that there exist points pij ∈ Ai, and pij′ ∈ Ai such that pij = pij′ but

j 6= j′, where j, j′ ∈ {0, 1, · · · , n}. By construction, pij = pij′ implies bi +
j(x̄− bi)

n
=

bi+
j′(x̄− bi)

n
, which yields j = j′ on simplification. Therefore, in case of a tie, picking

the smallest j from the finite set {0, 1, · · · , n} produces a unique solution pij ∈ Ai to

Equation (8), for each i ∈ {0, 1, · · · , N}. The set of problems given by Equation (8)

can then be solved using path planning algorithms.
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3.2.3.3 Embedding a directed graph structure

To use path planning algorithms for producing positively oriented simple closed curves

around the equilibrium point as solutions to Equation (8), the following graph struc-

ture (shown in Figure 4(b)) is proposed. Excluding the equilibrium point x̄, connect

every grid point in set Ai to every grid point in set Ai+1. We do not connect any

grid point in a set Ai to any other grid point in the same set, or to any grid point

in set Ai−1, i.e. paths cannot go backward (or clockwise around the equilibrium x̄).

To produce closed paths, the index i is made to wrap around i.e. i+ 1 = 0 if i = N ,

and i − 1 = N if i = 0. This connects grid points (excluding the equilibrium) in set

AN to grid points in set A0. An illustration of this graph structure, which is named

G′ for convenience, is seen in Figure 4(b). Paths exist from each of the grid points

p00, p01, p02 ∈ A0 directed to each of the grid points p10, p11, p12 ∈ A1. Similarly, given

a grid point pN2 ∈ AN , directed paths exist to grid points p00, p01, p02 ∈ A0.

The following reasons motivate embedding the directed graph structure described

above. By construction, if a set of paths is chosen from among the paths belonging

to the graph G′ shown in Figure 4(b) to form a directed simple closed curve, then the

set formed by the region enclosed by such a curve contains the equilibrium point x̄.

This is due to the fact that every grid point pij belongs to a set Ai.

To form the required directed simple closed curve, a path planning algorithm can

aid in picking the right subset of paths from paths belonging to the graph G′. To plan

an optimal path which provides an approximation of the boundary of the smallest

RFIS, the graph G′ is used with the A∗ path planning algorithm from [27].

3.3 Leveraging the A∗ path planning algorithm

3.3.1 Setting up sources, goals, and cost functions

Path planning algorithms generally require a source node, a goal set and an evaluation

function used to estimate the cost of a path planned. Finding the smallest RFIS
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requires the set of source nodes and goal nodes to be the same, i.e. set A0. The A∗

algorithm [27] cannot start if the source node belongs to the goal set. To separate

the source nodes from the goal set, a path which provides a boundary of the smallest

RFIS must be planned in at least two halves. The first half originating at a source

node belonging to the set A0 and terminating in the set AN ′ , where N ′ = ⌊N/2⌋. The

second half originates at the node where the first half of the path terminated in the

set AN ′, and the goal set is the set A0.

Let f(pij) be the actual cost of an optimal path constrained to go through node pij

from a given source node to a preferred goal node. The cost f(pij) can be expressed

as the sum f(pij) = g(pij) + h(pij), where g(pij) is the actual cost of an optimal

path from a source node to the node pij, and h(pij) is the actual cost of an optimal

path from pij to a preferred goal node. An evaluation function f̂(pij) is required

so the proposed path planning algorithm eventually makes the estimated cost f̂(pij)

converge to the optimal cost f(pij). To construct the cost functions, define

N(pij) = Γπ/2(pij − p(i−1)k), (9)

for a given point p(i−1)k. Vector N(·) depends only on pij since p(i−1)k is a given point.

Hence p(i−1)k does not appear on the left hand side of the definition in Equation (9).

In Equation (9), and in the following Equations (11),(12), and (13) points pij , and

p(i−1)k belong to the sets Ai, and Ai−1 respectively. The symbol Γπ/2 in Equation (9)

represents the standard rotation matrix in R
2, i.e.

Γπ/2 =



cos(π/2) − sin(π/2)

sin(π/2) cos(π/2)


 =



0 −1

1 0


 (10)

The vector N(pij) in Equation (9) is the vector pij − p(i−1)k rotated counterclockwise

by 90◦. Given a point p(i−1)k, the cost c(·, ·) which measures the angle between the

extreme ray of the pointed convex cone Cϑ(pij) and vector N(pij), and the distance
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between point pij and the equilibrium x̄ is defined as,

c(p(i−1)k, pij) = (η ◦ α ◦ Cϑ)(pij) + λ1 ‖ pij − x̄ ‖2 . (11)

The following evaluation functions will be used for A∗.

f̂(pij) = ĝ(pij) + ĥ(pij) (12)

ĝ(pij) = min
0≤k≤n−1

(c(p(i−1)k, pij) + ĝ(p(i−1)k)), (13)

where j, k ∈ {0, 1, · · · , n−1}, i ∈ {1, · · · , N}, and the initial cost is zero, i.e. ĝ(p0k) =

0 for all k ∈ {0, 1, . . . , n− 1}. Note that the term initial cost signifies the cost at the

start of a new path being planned beginning from a source node belonging to the set

A0. The constant λ1 in Equation (11) is non-negative and is already chosen during

formulation in Equation (7). Equations (9)-(13) also work for the case of going from

set AN to set A0. For the case of going from set AN to set A0 the index i = 0 and

i− 1 = N , since the index i wraps around. For this case it is important to note that

substituting i = 0 in Equation (13) produces

ĝ(p0j) = min
0≤k≤n−1

(c(pNk, p0j) + ĝ(pNk)). (14)

For the case of going from set AN to set A0 this cost ĝ(p0j) must not be confused for

the zero initial cost, and must not be set equal to zero. The following facts from [27]

about the function ĥ(·) used in Equation (12), are important from the point of view

of reducing computational effort. As long as ĥ(·) ≤ h(·), the A∗ algorithm produces

an optimal path [27]. Here ĥ(·) is the estimated cost to get to a goal node from a

current node, and h(·) is the actual cost to get to a goal node from a current node.

If ĥ(·) > 0 and ĥ(·) is also a lower bound for h(·), then A∗ provides an optimal path

by searching fewer nodes compared to the case of using ĥ(·) = 0. For details see [27].

The functions ĥ(·) and h(·) are known as heuristic costs. The function ĥ(·) is usually

chosen based on prior knowledge available to a system designer by way of experience,

or from familiarity with a particular system. For instance, a system designer may have
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a heuristic estimate for a lower bound of the length of the boundary of an RFIS. Such

an estimate is represented by ĥ(·), and it may be based on the designer’s knowledge

of the properties of a particular vector field. The actual length of the boundary of

the smallest RFIS may be thought of as the cost h(·). It is usually not possible to

pick h(·), as it depends on the properties of a system.

Recall that the proposed algorithm requires planning a circular path in two halves.

The first half originates at a source node belonging to the set A0 and terminates at

a preferred goal node on the set AN ′, where N ′ = ⌊N/2⌋. The second half originates

at the node where the first half of the path terminated in the set AN ′, and the goal

set for the second half is the set A0. Thus, the second half path begins at a node

pN ′k′ belonging to set AN ′. This node pN ′k′ is where the first half path planned by A∗

terminates. For planning the second half of the required circular path beginning at

the point pN ′k′ and going to the goal set A0, the initial cost ĝ(pN ′k′) should not be set

to zero, but set equal to the cost to get to point pN ′k′. This is because the point pN ′k′

is a pseudo-initial point. This point is required to be the initial point on the second

half so a circular path can be planned. However, in terms of the entire circular path,

this point does not represent any initial condition at all, therefore the cost to get to

point pN ′k′ must be accounted for when planning the second half of the circular path

beginning at a point pN ′k′.

3.3.2 The proposed algorithm for finding an approximation of the small-
est RFIS

Algorithm 1 presents the pseudo code proposed to find an approximation of the

smallest RFIS. The quantity r in Algorithm 1 is the iteration count with the initial

value 1. The sequence P0 is initialized to contain the points {b0, b1, · · · , bN} belonging

to the boundary of the initial guess B. Algorithm 1 generates the sequence Pr which

iteratively approaches the desired boundary. The variable σ decides when Algorithm
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Algorithm 1: Compute an approximation of a robust forward invariant set

Data: Sets A0 to AN , graph G′, f̂(·), p0j ∈ A0, ǫ, g̃ ∈ R, and n,N ∈ N.
Result: Pr

1 Let r = 1, N ′ = ⌊N/2⌋ , σ = 2ǫ, P0 = {b0, b1, · · · , bN};
2 Let p̃r,0 = p0j ∈ A0;
3 while σ > ǫ do
4 Use A∗ to find an optimal path from p̃r,0 ∈ A0 to the goal set AN ′;
5 Let p̃r,N ′ represent the point picked by A∗ in line 4 from the set AN ′;
6 Store the points obtained above as the sequence

Pr = {p̃r,0,∈ A0, p̃r,1 ∈ A1, · · · , p̃r,N ′ ∈ AN ′};
7 Use A∗ to find an optimal path from p̃r,N ′ ∈ AN ′ to the goal set A0;
8 Let p̃r,N represent the point picked by A∗ in line 7 from the set AN ;
9 Let p̃r+1,0 represent the point picked by A∗ in line 7 from the set A0;

10 Update sequence Pr as
Pr = {p̃r,0 ∈ A0, · · · , p̃r,N ′ ∈ AN ′, p̃r,N ′+1 ∈ AN ′+1, · · · , p̃r,N ∈ AN};

11 Compute σr = d2(Pr, Pr−1);
12 Let σ = σr, p̃r,0 = p̃r+1,0 ∈ A0;
13 r = r + 1;

14 return Pr;

1 terminates. It is initialized at a value greater than ǫ, where ǫ is a small non-

zero positive constant chosen by a user. Let p̃r,0 represent some initial source node

p0j ∈ A0. During every iteration r, the first half of the resulting path is planned

starting from the point p̃r,0 to the goal set AN ′ , where N ′ = ⌊N/2⌋. The points

(nodes) picked by A∗ from the sets A0, · · · ,AN ′ are stored into the sequence Pr in

the order {p̃r,0, p̃r,1, p̃r,2, · · · , p̃r,N ′}. Here a point p̃r,i belongs to the set Ai, 0 ≤ i ≤ N ′.

The second half of the resulting path is planned starting from the point p̃r,N ′ ∈ AN ′

to the goal set A0. The sequence Pr is updated with the points picked by A∗ from

the sets AN ′+1, · · · ,AN as

Pr = {p̃r,0, p̃r,1, · · · , p̃r,N ′, p̃r,(N ′+1), · · · , p̃r,(N−1), p̃r,N}. (15)

To start the next iteration, the point p̃r+1,0 is selected to be the point picked by A∗

from the set A0 at the end of the previous iteration. The variable σ is then updated

to be the value of the distance d2(Pr, Pr−1). If σ is greater than the tolerance ǫ, the
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iterations continue. Otherwise the algorithm terminates. The hypothesis is that under

certain conditions, the simple closed curve formed by the segments seg (p̃r,0; p̃r,1),

seg (p̃r,1; p̃r,2) , · · · , seg (p̃r,N−1; p̃r,N) , seg (p̃r,N ; p̃r,0) is the closest approximation to the

boundary of the smallest RFIS. A pictorial representation of the algorithmic process

of picking feasible points p̃r,i along a path being planned is shown in Figure 5.

3.3.3 An interpretation of the cost functions used

The definition of vector N(pij) can be understood as follows. The goal is to construct

a positively oriented simple closed curve, which forms the boundary of the smallest

RFIS. The segment seg
(
pij ; p(i−1)k

)
joining points pij and p(i−1)k can be thought of as

a small segment of some curve. This segment seg
(
pij; p(i−1)k

)
is to be tested to find

if it qualifies to be a part of the boundary of the required smallest RFIS. For such

a test, the angle between the normal N(pij) and vectors ν ∈ Cϑ(pij) are required.

This motivates the definition in Equation (9), and also the definitions in Equations

(11),(12), and (13).

The choices made for the cost functions in section 3.3.1 may be interpreted as

follows. Note that ĥ(pij) is an estimate of the cost of an optimal path from node

A0

p̃r,0

A1A2A3

A4

A5

AN ′=6

A7

A8 A9 A10

A11

AN=12

p̃r,1

p̃r,2
p̃r,3

p̃r,4

p̃r,5

p̃r,6

p̃r,7 p̃r,8 p̃r,9
p̃r,10

p̃r,11

p̃r,12

p̃r+1,0
x̄

Figure 5: An illustration of planning the required path in two halves, first from A0

to AN ′, and then from AN ′ back to A0. Note that the set A0 is shown to not lie on
a horizontal line segment because any set can be chosen to be the set A0 as desired.
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pij to a preferred goal node. As per [27, Theorem 1], for A∗ to produce an optimal

path from a given source node to a preferred goal node, ĥ(·) is required to be any

lower bound of h(·), i.e. ĥ(pij) < h(pij). This is achieved by setting ĥ(pij) = 0

(which corresponds to the extreme case of the goal node being infinitesimally close to

a current node), and assuming h(pij) > 0. From the definition of c(·, ·) in Equation

(11) it is easy to see that the optimal cost to reach a preferred goal node from a given

source node is positive as the function η(·) is positively valued, and the second term

in the definition of c(·, ·) is positive. Therefore the assumption that h(pij) > 0, is

reasonable.

Picking the function η(·) as in Equation (5) achieves the following two objectives.

First, if g̃ is picked to be sufficiently large, then points at which the constraint in

Equation (4) is violated are never picked by the Algorithm 1. This is shown in Lemma

3.4.1. Second, the function definition η(·) ensures that the path cost c(p(i−1)k, pij) is

positive. This is required for using the A∗ path planning algorithm.

3.4 Mathematical justification

The results in the following subsections justify that Algorithm 1 can be used to obtain

an approximation of the smallest RFIS. A result is provided to establish conditions

required to be satisfied by g̃ so the constraint in Equation (4) is not violated. Further,

a result is provided showing that if during an iteration r Algorithm 1 finds a grid

point which lies on a unique optimal path, then Algorithm 1 terminates after two

more iterations. The final result provides guidance on picking the right source node

p0j ∈ A0 so that Algorithm 1 provides an approximation of the boundary of the

smallest RFIS on termination.

3.4.1 Picking g̃ correctly

Lemma 3.4.1 specifies conditions that g̃ must satisfy so the constraint in Equation

(4) is not violated. The assumptions i ∈ {0, 1, · · · , N}, j ∈ {0, 1, · · · , n− 1}, pij ∈ Ai
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and h(pij) > 0 for all i, j are made for all following results in Section 3.4.

Lemma 3.4.1. Let a graph G′, a point p(i−1)k ∈ Ai−1, and a non-zero positive con-

stant λ1 be given. Let the cost to reach node p(i−1)k, which lies on a path from a

given source node belonging to graph G′ be ĝ(p(i−1)k), and ĝ(·) ≥ 0. Suppose for

all i there exists at least one j such that α ◦ Cϑ(pij) ∈ (0, 1], where pij ∈ Ai. Let

pij∗ be a node chosen by A∗. If the constant g̃ > 1 + maxi,j
(
λ1 ‖ pij − x̄ ‖2

)
, then

α ◦ Cϑ(pij∗) ∈ (0, 1].

Proof. Let L be the cost of picking a point pij such that α ◦ Cϑ(pij) ∈ (0, 1]. By

the definition of η(·) in Equation (5), and the cost c(·, ·) in Equation (11), L ≤

1 + maxi,j
(
λ1 ‖ pij − x̄ ‖2

)
. Since i ∈ {0, 1, · · · , N}, and j ∈ {0, 1, · · · , n− 1}, there

exist a finite number of points pij. Therefore the quantity maxi,j
(
λ1 ‖ pij − x̄ ‖2

)

exists. If g̃ > 1 + maxi,j
(
λ1 ‖ pij − x̄ ‖2

)
, then g̃ > L. The A∗ algorithm picks

points pij having the least cost [27]. Since for all i there exists at least one j such

that α ◦ Cϑ(pij) ∈ (0, 1] and g̃ is larger than the cost L, it follows from the above

discussion that for any point pij∗ chosen by A∗ the quantity α ◦ Cϑ(pij∗) ∈ (0, 1].

Therefore, as long as g̃ satisfies the conditions in Lemma 3.4.1, Algorithm 1 picks

points which do not violate the constraints in Equation (4).

3.4.2 Algorithm initialization and termination.

The following result is concerning the termination of Algorithm 1. The following

result holds for any estimated cost ĥ(·) to reach a goal node from any current node,

as long as ĥ(·) is a lower bound for the actual cost h(·) to reach a goal node from any

current node.

Claim 3.4.2. Let the iteration count r ≥ 1, and let there exist a unique simple closed

path f̄ from the set A0 to the set A0 formed by directed paths belonging to the graph

G′ such that f̂(·) is minimized. If there exists i such that p̃r,i ∈ f̄ where p̃r,i ∈ Pr
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given in Equation (15), and the point p̃r,i+1 ∈ Pr is chosen by the A∗ algorithm to

go from p̃r,i ∈ Pr on the set Ai to the set Ai+1 as shown in Algorithm 1. Then

d2(Pr+1, Pr+2) < ǫ, where ǫ is a positive constant chosen by the user of Algorithm 1.

Proof. Let there exist i such that a point p̃r,i ∈ Pr is on the unique optimal closed

path f̄ . Suppose the point p̃r,i+1 ∈ Pr is chosen by the A∗ algorithm to go from

p̃r,i ∈ Pr on the set Ai to the set Ai+1 as shown in Algorithm 1. From [27], it is

known that A∗ selects a point p̃r,i+1 ∈ Ai+1 such that the estimated total cost f̂(·) to

go from p̃r,i ∈ Ai to p̃r,i+1 ∈ Ai+1 is minimized. But there exists only a single optimal

closed path f̄ . This implies that the point p̃r,i+1 ∈ f̄ . Similarly, each subsequent

point picked by the A∗ algorithm will lie on the optimal closed path f̄ . Therefore,

the points p̃r+1,i ∈ Pr+1 picked by A∗ during iteration r+1 are identical to the points

p̃r+2,i ∈ Pr+2 picked by A∗ during iteration r + 2 . Thus d2(Pr+1, Pr+2) = 0 which is

less than any non-zero positive ǫ, therefore completing the proof.

The above result implies the following. If during iteration r the A∗ algorithm

arrives at a point on the optimal path as it searches for a least cost path, and if

there is only one such optimal path, then the Algorithm 1 will quickly terminate

after completing the next two iterations, i.e. Algorithm 1 terminates at the end of

iteration number r + 2. Using the above result, the following proposition provides

the conditions under which Algorithm 1 terminates to provide an approximation of

the smallest RFIS. The following result does not provide an explicit proof, it only

provides evidence that Algorithm 1 may produce points which lie on the boundary

of the closest approximation of the smallest RFIS. The following proposition can also

be used to speed up computation by searching for the appropriate source node for

starting Algorithm 1.

Proposition 3.4.3. Suppose that there exists a unique simple closed path f̄ from the

set A0 to the set A0 formed by directed paths belonging to the graph G′ such that f̂(·)
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is minimized. Suppose g̃ satisfies Lemma 3.4.1. Assume that there exists at least one

set Ai such that a unique point pij ∈ Ai also belongs to f̄ , and such a point pij is

the source node for Algorithm 1. Then the points p̃r,i ∈ Pr produced by Algorithm 1

lie on the boundary of the closest approximation of the smallest RFIS as defined in

Definition 3.2.1.

Proof. Since pij belongs to the unique optimal path f̄ , and it is the source node,

applying Claim 3.4.2 allows us to say that Algorithm 1 terminates. Further since

g̃ satisfies Lemma 3.4.1, it implies that the constraint of the problem in Equation

(4) is not violated by the points p̃r,i ∈ Pr. From the formulation in Equation (8)-

Equation (12), these points provide an optimal solution to the problem of finding

an approximation of the boundary of the smallest RFIS. However, from assumptions

only a single optimal path exists, hence the points p̃r,i ∈ Pr produced by Algorithm

1 lie on the closest approximation of the boundary of the smallest RFIS, where the

closest approximation of the boundary of the smallest RFIS is as given by Definition

3.2.1.

If the conditions for the above proposition are satisfied, then it is worthwhile to invest

computing time to find such a source node belonging to f̄ along some set A0 so that

less time is spent finding the boundary of the closest approximation of the smallest

RFIS. As noted earlier, the above Proposition 3.4.3 does not provide an explicit

proof. It only provides evidence that Algorithm 1 may produce points which lie on

the boundary of the closest approximation of the smallest RFIS. This is because the

the domain of interest is discretized. Hence Algorithm 1 can only pick discrete points

which may lie on the boundary of the closest approximation of the smallest RFIS

and therefore Algorithm 1 cannot guarantee the behavior of system trajectories in

the space between two points. Algorithm 1 solves Equation 8. It is not necessary

that Equation 8 always has a unique solution for each i ∈ {0, 1, · · · , N}. The tie-

breaker rule in Section 3.2.3.2 helps us decide which solution to pick in case multiple
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solutions exist. Therefore, the size of the region enclosed by the boundary produced

by using Algorithm 1 is not necessarily the true size of the smallest RFIS, but only

an approximate estimate of the size of the smallest RFIS.

3.5 Simulations

3.5.1 Testing the RFIS computation algorithm

Algorithm 1 is tested with three different problems and the results are presented in

this section. The first test is carried out on a relatively simpler version of the curve

tracking problem as used in [50]. The second test of Algorithm 1 is conducted on

a slightly modified version of the curve tracking problem as used in [44]. Effects of

using λ1 ∈ (0, 1] are observed in this test. The third test is carried out on a simple

problem where system trajectories go around the equilibrium in circles. This test is

used to verify that Algorithm 1 produces valid shapes.

The constant ǫ, length of time Tmax, and the constant g̃ are used in every test. The

values used are ǫ = 0.1, Tmax = 6.29, and g̃ is assigned the large value 4.5036× 1015

hence the conditions required for Lemma 3.4.1 are satisfied. Such a large value for g̃

is not necessary and is only chosen for convenience. A value like 100 may also work

for g̃ if it satisfies Lemma 3.4.1. The unit used for time is seconds. The length of time

Tmax aids the generation a cone at a given point in the domain of interest. A cone

is generated by considering vectors at the given point in the domain of interest, at

discrete time instances belonging to the interval [0, Tmax]. This is done to be able to

compute an approximation of an RFIS, and it is conjectured that system trajectories

stay in the computed approximation of an RFIS for the interval [0, Tmax]. For the

exact definition of an RFIS which is invariant for a finite interval of time, see Section

3.1. Both versions of the curve tracking problem require the constants ρ0, µ and a

disturbance δ(t). The values chosen are ρ0 = 1, and µ = 6.42, and the disturbance

used is δ(t) = δ0 sin(t) with δ0 = 0.15. Note that these values agree with those used
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in [44]. The details of each individual simulation run are provided further. Consider

the following,

ρ̇ = − sin(φ) (16)

φ̇ = (ρ− ρ0) cos(φ)− µ sin(φ) + δ(t). (17)

The first test of Algorithm 1 is on the version of the curve-tracking problem used

in [50], and is presented using Equations (16) and (17). Figure 6 shows the results

obtained. Here ρ represents the distance of a robot from the closest point on a curve

that the robot is trying to track, and φ is the difference in orientation between the

robots heading direction and the tangent to the curve at the point closest to the

robot. For this problem the values chosen for N, n, λ1, and ∆t are 56, 100, 1, and 0.01

respectively. The square with blue circular markers is the initial guess B. Algorithm

1 terminates in four iterations and 11.15 minutes producing the sequence P4 shown by

the curve with red square markers. This is an approximation of the smallest RFIS for

the system given by Equations (16) and (17), as per Algorithm 1. The black dotted

curves (and the arrows) represent a few sample trajectories. The trajectories move
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Figure 6: Results of using Algorithm 1 with the curve tracking problem given by
Equations (16) and (17).
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from the boundary of B to the inside of the region enclosed by points in P4.

The second test was conducted on the following version of the curve tracking

problem as used in [44]. The results obtained are shown in Figure 7.

ρ̇ = − sin(φ) (18)

φ̇ =

(
1−

ρ20
ρ2

)
cos(φ)− µ sin(φ) + δ(t). (19)

For this problem the values chosen for N, n, and ∆t are 57, 100, and 0.1. Two tests

were then carried out using Algorithm 1, one with λ1 = 1, the other with λ1 = 0.9.

For both tests, Algorithm 1 requires approximately 47 seconds and terminates in three

iterations. The square with blue circular markers is the initial guess B. The curve

with red square markers is the set obtained for λ1 = 1, and the dashed purple curve

is the set obtained for λ1 = 0.9. Reducing λ1 from 1 to 0.9 produces a slightly larger

estimate. The black dotted curves (and the arrows) show a few sample trajectories.

The third test was carried out to test that Algorithm 1 produces valid shapes.

The results of this test are shown in Figure 8. For this test, Algorithm 1 is tested
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ρ
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Figure 7: The effects of using λ1 ∈ (0, 1] in Algorithm 1 with the curve tracking
problem given by Equations (18) and (19).
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Figure 8: Using Algorithm 1 with the simple problem in Equation (20). The dashed
black line shows set A0, the diamond shaped markers are the points p0j .

with the following simple system.
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+ δ(t), (20)

where δ(t) = [0 0]T . The values chosen for N, n, and λ1 are 26, 4 and 27. The curve

with blue circular markers is the initial guess B. The curve with red square markers is

the set produced by Algorithm 1 in four iterations and about 0.2 seconds. The result

agrees with the system dynamics in Equation (20) as the trajectories of the system

in Equation (20) are concentric circles. This verifies that Algorithm 1 produces the

correct shape. The computation times reported for all above tests are obtained using

a server grade desktop computer.

In summary, this chapter presented an algorithm and simulation results using the

algorithm developed. From simulations, it is conjectured that the algorithm developed

produces points which lie on the boundary of the closest approximation of the smallest

RFIS for two dimensional systems subjected to bounded additive perturbations.
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CHAPTER IV

DETECTING A LOSS OF SYSTEM STABILITY

Chapter 3 presented an algorithm for computing the smallest RFIS. However, the

algorithm presented in Chapter 3 relies on measuring the vector field at distinct

points, at discrete instants of time. Given a time varying nonlinear system, sampling

a given vector field in a region of interest around an equilibrium point over a fixed

interval of time may not be enough to guarantee that a computed invariant set is

invariant for all time. This is because the stability of a time varying system can

change abruptly. A given time-varying system may become unstable. This may cause

a computed invariant set to not be invariant for all time. For example, a system may

bifurcate, but a sophisticated model capturing such a phenomenon may not have been

used for computing the smallest RFIS. In such a situation, detecting trend changes

in the states of a given system may help decide if a system has become unstable and

therefore if a computed RFIS is about to cease to be invariant. Detecting that a

time-varying system is about to become unstable is the theme of this chapter.

As mentioned in Chapter 1, a method for monitoring a computed RFIS based on

detecting trend changes in system states has computational advantages over monitor-

ing points on the boundary of an RFIS. Prior work based on detecting Li-ion battery

terminal voltage collapse, which does not need sophisticated models, can be useful

for developing a strategy based on detecting trend changes in system states. This

can further be used for monitoring a computed RFIS to detect that a given RFIS is

about to cease to be invariant. This chapter focuses on the problem of Li-ion battery

terminal voltage collapse. The material presented here is extended in Chapter 5 to

algorithms for monitoring computed approximations of an RFIS.
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4.1 Li-ion battery terminal voltage collapse detection; an
inspiration

This chapter presents a general method for detecting Li-ion battery voltage collapses,

without the requirement of a detailed model. Inspired by universal adaptive stabi-

lization (UAS) [28, 49] a high-gain adaptive observer is developed, which is further

used to detect changes in trend of the transient states of a Li-ion battery. The change

in trend helps decide whether the terminal voltage of a battery is about to collapse.

This novel approach, which only requires the measurement of the terminal voltage

of a battery, works in the presence of measurement noise or voltage spikes due to

non-smooth current discharges. It is not necessary to measure the discharge current.

Thus, the cost of accurate current measurement and associated errors are eliminated.

This method does not estimate the state of charge (SoC) of a battery and does not set

a static threshold on the SoC or terminal voltage, so it is considerably robust to vari-

ations in the SoC and the terminal voltage. At first, this chapter introduces battery

models and results concerning battery stability. A formulation of the voltage collapse

detection problem, and the high-gain adaptive observer used along with a proof of

convergence, are provided next. Further, a trend detection algorithm is introduced

for detecting terminal voltage collapse. Simulations and experimental results form

the end of this chapter, and show that the proposed approach is feasible.

4.1.1 Li-ion battery model and stability

Chen and Mora’s (CM) model [14], shown in Figure 9, is an equivalent circuit repre-

sentation of a Li-ion battery showing two coupled circuits. The left half models the

variation of the SoC ρ (commonly known as the capacity remaining) and the right half

models the variation of battery output voltage y as a function of the charge/discharge

current i(t). Knauff et.al. [36] derived the following state space realization for the
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CM model

ρ̇(t) = −
1

Cc
i(t) (21)

ẋ1(t) = −
x1

Rts(ρ)Cts(ρ)
+

i(t)

Cts(ρ)
(22)

ẋ2(t) = −
x2

Rtl(ρ)Ctl(ρ)
+

i(t)

Ctl(ρ)
(23)

y(t) = Eo(ρ)− x1(t)− x2(t)− i(t)Rs(ρ), (24)

where y represents the voltage output from the battery, x1 represents the voltage

drop across Rts||Cts and x2 represents the voltage drop across Rtl||Ctl. The symbol

|| represents a parallel combination of electrical components. The state ρ ∈ [0, 1]

represents the SoC. It has an initial value of 1. The states x1, and x2 ∈ [0,∞)

have initial values set to 0. The circuit components Cts, Ctl, Rs, Rts, Rtl, and Eo are

nonlinear functions of the SoC ρ given as follows:

Cts(ρ) = −k4e
−k1ρ + k3 (25)

Ctl(ρ) = −k6e
−k2ρ + k5 (26)

Rs(ρ) = k7e
−k8ρ + k9 (27)

Rts(ρ) = k10e
−k11ρ + k12 (28)

Figure 9: Chen and Mora’s battery model
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Rtl(ρ) = k13e
−k14ρ + k15 (29)

Eo(ρ) = −k16e
−k17ρ + k18 + k19ρ− k20ρ

2 + k21ρ
3 (30)

Cc = 3600Cf1f2. (31)

where ki > 0 for i = 1, 2, ..., 21 are constants satisfying 0 < k1 < k2 < k3 < k4 <

k5 < k6. In Equation (31) f1, f2 ∈ [0, 1] are factors accounting for the effects of

temperature and charge-discharge cycles respectively. By default, f1 = f2 = 1, but

their values will decrease after each charge-discharge cycle. C is the Ampere-hour

capacity and Eo is the open-circuit voltage of a battery. The process of determining

the constants k1-k21 in Equations (25)-(30) takes considerable experimental effort as

shown in [1, 14], and [18, 68], and the constants may be different for each battery.

The following facts regarding the stability of the CM model are known from [84].

There exist two constants δ2 and δ1 which are thresholds for the SoC ρ and satisfy

δ2 > δ1 > 0. If the SoC satisfies δ2 < ρ ≤ 1 then the subsystem in Equations (22) and

(23) is asymptotically stable. If δ1 ≤ ρ ≤ δ2 then the subsystem is not asymptotically

stable, and if 0 < ρ < δ1, then the subsystem is unstable. Then from Equation (24)

it is observed that the terminal voltage y drops very fast to 0, i.e. it collapses as the

subsystem loses stability and x1, and x2 → ∞ exponentially fast. The mathematical

proofs for the above results related to Li-ion battery stability are provided below.

Considering the SoC ρ as a parameter and temporarily disregarding the input i,

the system in Equations (21)-(24) can be rewritten as follows,



ẋ1

ẋ2


 = A(ρ)



x1

x2


 where A(ρ) =




−1

Cts(ρ)Rts(ρ)
0

0
−1

Ctl(ρ)Rtl(ρ)


 . (32)

The above representation simplifies the nonlinear model of a battery to a parametri-

cally varying linear system. In the proofs for battery stability provided further, the

discharge current i = 0. If for a given value of the parameter ρ ∈ [0, 1] the system in

Equation (32) is asymptotically stable, then from results on linear system theory [13]
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it can be said that the system in Equation (32) is bounded-input bounded-output

(BIBO) stable. For any battery, the discharge current i (which is the input in Equa-

tions (21)-(23)) is always bounded. Hence, even if the following stability results deal

with the zero input case with i = 0, in the case with non-zero bounded input i the

terminal voltage y of the battery remains bounded. This follows from the fact that

if A(ρ) has eigenvalues with negative real parts and the input i is bounded, then the

states x1 and x2 of the linear parametrically varying battery system remain bounded,

and the quantities Eo(ρ), and Rs(ρ) in Equation (24) are bounded by definition.

Therefore, the simplification obtained using i = 0 is not necessarily very restrictive.

Consider Equation (32). The first stability result is based on the following candi-

date Lyapunov function and its time derivative:

V1 =
1

2
(x2

1 + x2
2) (33)

V̇1 = −

(
x2
1

Rts(ρ)Cts(ρ)
+

x2
2

Rtl(ρ)Ctl(ρ)

)
. (34)

Lemma 4.1.1. Consider Cts, Ctl, Rts, Rtl, V1, and V̇1 as given in Equations (25)-(29),

(33), and (34) respectively. Assuming that
1

k1
ln

(
k3
k4

)
>

1

k2
ln

(
k5
k6

)
, for all SoC

ρ ∈ [0, 1], there exist small positive numbers {(δ1, δ2)|0 < δ1 < δ2} such that V̇1 > 0

for ρ ∈ (0, δ1) and V̇1 ≤ 0 for ρ ∈ (δ2, 1].

Proof. Observe that V1 > 0, for all x1, and x2 6= 0. Since Rts(ρ), and Rtl(ρ) have

the form ae−bρ + c, where a, b, c > 0, then Rts(ρ), and Rtl(ρ) > 0 for all ρ ∈ [0, 1].

Consider the case when Cts(ρ) < 0. Solving Equation (25) for ρ gives,

ρ < −
1

k1
ln

(
k3
k4

)
. (35)

Similarly, considering Ctl(ρ) < 0 and solving Equation (26) for ρ gives

ρ < −
1

k2
ln

(
k5
k6

)
. (36)

40



Define δ1 and δ2 as follows:

δ1 = −
1

k1
ln

(
k3
k4

)
, (37)

δ2 = −
1

k2
ln

(
k5
k6

)
. (38)

Since k3 < k4 and k5 < k6, this implies δ1, and δ2 > 0. By our assumptions we get

0 < δ1 < δ2. Therefore, if ρ < δ1 then Cts, and Ctl < 0. That makes V̇1 positive.

Similarly if ρ > δ2 then Cts, Ctl > 0 and V̇1 is negative. The existence of the required

constants δ1 and δ2 has thus been proved.

From the above proof, it is observed that the battery is unstable (in the Lyapunov

sense [32]) when ρ ∈ (0, δ1). When ρ ∈ (δ2, 1] the battery is asymptotically stable.

The constant δ1 thus provides the worst case limit for the SoC of a battery. If the

SoC ρ falls below δ1, then the Li-ion battery is unstable. This means if the SoC ρ falls

below δ1 and i > 0, then the states x1, and x2 of the Li-ion battery will tend to infinity

very quickly. The open circuit voltage E0(ρ), and the resistance Rs(ρ) are bounded

and positive. The discharge current i(t) is positive, and in any real-life situation i(t)

is bounded. From the above discussion, and from Equation (24) it can be seen that

the output voltage y(t) will soon drop below any specified positive bound if ρ < δ1,

and i > 0. Therefore, if the SoC falls below δ1, one must switch a battery out of

service. Note that the representation in Equation (32) simply aids in establishing the

stability limits, and is not used to explicitly replicate the dynamics. Hence it does

not introduce any error. These limits are applicable even to the system in Equations

(21)-(24). The following claim can be made based on the previous lemma.

Claim 4.1.2. Let δ2 be obtained from Lemma 4.1.1, and suppose a value for the SoC

ρ is given. If ρ < δ2, then the Li-ion battery system represented by equation (32) is

not asymptotically stable.
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Proof. Approach the proof by contradiction. Suppose ρ < δ2 but the Li-ion battery

system represented by equation (32) is asymptotically stable. Note that Rts(ρ), Rtl(ρ)

have the form ae−bρ + c, where a, b, c > 0. This means that Rts(ρ), Rtl(ρ) > 0 for all

ρ ∈ [0, 1]. For a given ρ, both Cts(ρ) and Ctl(ρ) must be greater than zero for the

system in Equation (32) to be stable. Let Ctl(ρ) > 0. By the definition of Ctl(ρ), this

means

−k6e
−k2ρ > −k5. (39)

Now since ρ < δ2, Equations (36) and (38) imply the following,

ρ < −
1

k2
ln

(
k5
k6

)
(40)

−k2ρ > ln

(
k5
k6

)
(41)

−k6e
−k2ρ < −k5. (42)

Equation (42) contradicts Equation (39). By this contradiction, the system in Equa-

tion (32) is not asymptotically stable.

In Equation (21), Cc > 0 and the discharge current i(t) ≥ 0 for all time. From

Equation (21) it can therefore be concluded that if the discharge current i(t) = 0

then the SoC ρ does not change, and for non-zero values of the discharge current i(t)

the SoC ρ decreases towards zero. Therefore, given an initial value for ρ < δ2, the SoC

ρ always has a value less than δ2. Intuitively, the above discussion and Lemma 4.1.1

indicate that removing a battery from service when ρ < δ2 is safer than removing

the battery from service at a later instant of time when ρ < δ1. This is because if

ρ < δ2, then the parameters of a Li-ion battery system are about to progress to a

region where an impending terminal voltage collapse is expected.
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4.2 A method for detecting Li-ion battery terminal voltage
collapse

As a battery is gradually discharged, the value of its SoC ρ will decrease until the

terminal voltage collapses. The goal is to detect when a Li-ion battery makes a

transition from its stable region of operation (i.e. ρ ∈ (δ2, 1]) to the unstable region

(i.e. ρ ∈ (0, δ1)) based on the measurements of its terminal voltage y. On the other

hand, a temporary drop in terminal voltage does not imply that a battery is unstable.

Such temporary drops in terminal voltage make it difficult to detect when a battery is

about to die (i.e., that the terminal voltage is about to collapse soon). Any algorithm

for detecting battery voltage collapse needs to avoid false alarms caused by temporary

voltage drops, yet still be sensitive enough to detect when ρ moves out of the stability

region.

An observer (or filter) can be designed to estimate the SoC ρ, and then one can

use the thresholds δ1 and δ2 to determine whether the battery is stable or not. This

approach has been taken by many in the literature [41, 61]. The challenge with this

approach is that it requires the measurement of the input current i. In addition, it

relies on the use of an accurate model such as the CM model for the observer, which

may not always be available for all applications. The approach used in this work does

not require measuring the discharge current i. Therefore, an estimate of the SoC is

not produced. Instead, the states x1 and x2 of a Li-ion battery are estimated, and

battery voltage collapse is detected based on the trend of these two states. It will

also be shown that this approach does not require an accurate battery model for the

observer to work satisfactorily.

4.2.1 The high-gain adaptive observer

Figure 10 shows the high-gain adaptive observer proposed for detecting the terminal

voltage collapse of a Li-ion battery. It consists of three main blocks. The first block
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Figure 10: Battery output voltage tracking using universal adaptive stabilization
(UAS).

on the left with input i and output y represents the real Li-ion battery, which is

assumed to be represented by a CM model that is unknown to the observer. The

block shown using a dashed rectangle is a high gain observer and consists of a low

pass filtering block which is described in Section 4.2.1.1. The block in the middle

represents the adaptive high gain, which is described in Section 4.2.1.2. Convergence

analysis is provided in Section 4.2.1.3.

4.2.1.1 Lowpass filtering

The lowpass filtering block is a second order system with states x̂1, x̂2, input u, and

output ŷ as follows

˙̂x1(t) = −cx̂1(t) + u(t), (43)

˙̂x2(t) = −cx̂2(t) + u(t), c > 0 (44)

ŷ(t) = −x̂1(t)− x̂2(t), (45)

where c is a positive constant chosen by the designer. The reason for using a second

order system is to capture the dynamics of the states x1 and x2 of the CM model

representing the Li-ion battery. Define e(t) = y(t) − ŷ(t) as the difference between

the measured terminal voltage y and the output of the filter. Designing an observer

will require a feedback law of the form u(t) = −G(·)e(t). The observer gain G(·) is

designed to be either a simple increasing function of the error e(t), or a particular

function is chosen from a special class of functions called Nussbaum functions.
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4.2.1.2 The adaptive gain

Nussbaum functions [54, 64, 78] are often used in the design of universal adaptive

stabilizers (UAS) [28].

Definition 4.2.1. Let k′ ∈ R. A piecewise right continuous function N(·) : [k′,∞) →

R is called a Nussbaum function if it satisfies

sup
k>k0

1

k − k0

∫ k

k0

N(τ)dτ = +∞ and

inf
k>k0

1

k − k0

∫ k

k0

N(τ)dτ = −∞ (46)

for some k0 ∈ (k′,∞).

Consider the Mittag-Leffler function Eα : R → R given by

Eα(z) =
∞∑

k=0

zk

Γ(kα + 1)
, (47)

where α is a parameter, z ∈ R, and Γ(z + 1) = zΓ(z), z > 0 is the standard Gamma

function. It is shown in [38], [39] that Eα(−λtα), t ∈ R is a Nussbaum function for λ >

0 and α ∈ (2, 3]. Inspired by the UAS designs [28], the input u(t) is selected as u(t) =

−G(k(t))e(t) where G(·) is the adaptive gain and e(·) is the error between the terminal

voltage of a physical Li-ion battery and the output of the lowpass filter. One of the

following choices are used for the adaptive gain function. Either a simple adaptive gain

given by G(k(t)) = k(t), or a Nussbaum type switching gain i.e. G(k(t)) = N(k(t))

where N(·) is of the form

N(k(t)) = Eα (−λk(t)α) , λ > 0, α ∈ (2, 3). (48)

Thus, the adaptive high-gain observer shown in Figure 10 has the following nonlinear
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closed-loop dynamics

˙̂x1(t) = −cx̂1(t)−G(k(t))e(t)

˙̂x2(t) = −cx̂2(t)−G(k(t))e(t)

k̇(t) = e2(t)

e(t) = y(t) + x̂1(t) + x̂2(t).





(49)

The above design is structurally a high-gain observer [11, 29] with G(k(t)) as the

adaptive high-gain. However, the goal of this work is different from the classical

high-gain observer designs. The states of the observer x̂1, and x̂2 are not necessarily

close to the actual states of the physical Li-ion battery. It is further shown that

inaccuracy in state estimates will not prevent detecting battery instability under

certain technical assumptions. This means accurate battery models are not necessary

for observer design. The error dynamics of the system shown in Figure 10 are analyzed

next.

4.2.1.3 Convergence Analysis

Lemma 4.2.2. Consider the closed-loop dynamics in Equation (49). Let c > 1
2
be

a real positive constant. Let d(t) = cy(t) + ẏ(t), and let the initial condition k(t0)

be an arbitrary real number where t0 ≥ 0. Assume that
(∫∞

t0
|d(τ)|2 dτ

) 1

2

< ∞. If

either (i) G(k(t)) = k(t) and e2(t) is uniformly continuous for all t ∈ [t0,∞) or (ii)

G(k(t)) = N(k(t)), then limt→∞ k(t) = k∞ and limt→∞ e(t) = 0, where k∞ is a finite

real constant. The constant k∞ depends on the initial error e(t0).

Proof. By (49),

ė(t) = ẏ(t) + ˙̂x1(t) + ˙̂x2(t) (50)

ė(t) = ẏ(t)− cx̂1(t)− cx̂2(t)− 2G(k(t))e(t). (51)

Add and subtract cy(t) to the right hand side of Equation (51) to get

ė(t) = ẏ(t) + cy(t)− c(y(t) + x̂1(t) + x̂2(t))− 2G(k(t))e(t). (52)
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Using the fact that d(t) = cy(t) + ẏ(t), and e(t) = y(t) − ŷ(t), the following system

in the error e(t) and state k(t) is obtained.

ė(t) = − (c+ 2G(k(t))) e(t) + d(t)

k̇(t) = e2(t)





(53)

(i) Suppose the adaptive gainG(k(t)) = k(t) is used, and e2(t) is uniformly continuous

for all t ∈ [t0,∞). Consider the function V1 =
1
2
e2(t) + k2(t) with its time derivative

as V̇1 = −ce2(t) + d(t)e(t). Therefore,

V̇1 ≤ −

(
c−

1

2

)
e2(t) +

1

2
d2(t). (54)

For notational convenience let a = c− 1
2
. Integrating on both sides and letting t → ∞

gives

lim
t→∞

V1(t)− V1(t0) ≤ −a

∫ ∞

t0

e2(τ)dτ +
1

2

∫ ∞

t0

d2(τ)dτ. (55)

The initial disturbance d(t0) is bounded as it depends on initial the values for y(t0),

and ẏ(t0). The initial error e(t0) is bounded as it depends on the choice of initial states

for the high-gain observer, and V1(t0) is bounded. Since
∫∞

t0
d2(τ)dτ is bounded by

assumption and the first term on the right hand side of Equation (55) is non-positive,

it is concluded that V1(·) is bounded i.e. limt→∞ V1(t) < +∞. Also V1(·) is bounded

below by 0. Therefore, the term
∫∞

t0
e2(τ)dτ must be bounded. By assumption, e2(t)

is uniformly continuous for all t ∈ [t0,∞). This means that e2(t) has no spikes of

arbitrarily large magnitude for all t ∈ [t0,∞). Further, since
∫∞

t0
e2(τ)dτ is bounded,

it follows that e(t) → 0 as t → ∞. This is because if there existed spikes in e2(t), or if

e(t) converged to any value other than zero, integrating e2(t) for infinite time would

not lead to a bounded quantity. Thus from Equation (53), the integral
∫∞

t0
k̇(t)dt

converges. Therefore, k(t) tends to some constant k∞ as t → ∞. By Equation (53),

k̇(t) depends on e(t0), therefore the constant k∞ depends on the initial error e(t0).

(ii) When the Nussbaum gain is used, let G(k(t)) = N(k(t)). Let the function

V2 =
1
2
e2(t)+2

∫ k(t)

k(t0)
N(τ)dτ . The time derivative of V2(·) gives V̇2 = −ce2(t)+d(t)e(t).
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Similar to the previous case let a = c− 1
2
, so that

V̇2 ≤ −ae2(t) +
1

2
d2(t). (56)

Integrating Equation (56) on both sides provides

V2(t)− V2(t0) ≤ −a

∫ t

t0

e2(τ)dτ +
1

2

∫ t

t0

d2(τ)dτ. (57)

From (53),
∫ t

t0
e2(τ)dτ=k(t) − k(t0). Dividing both sides by k(t) − k(t0), letting

k(t)− k(t0) = b(t) for convenience and re-arranging the terms gives

1

b(t)
V2(t) ≤

1

b(t)
V2(t0)− a+

1

2b(t)

∫ t

t0

d2(τ)dτ. (58)

The following is obtained by substituting V2 = 1
2
e2(t) + 2

∫ k(t)

k(t0)
N(τ)dτ in Equation

(58).

e2(t)

2b(t)
+

2

b(t)

∫ k(t)

k(t0)

N(τ)dτ ≤
V2(t0)

b(t)
− a +

1

2b(t)

∫ t

t0

d2(τ)dτ. (59)

Re-arranging terms in Equation (59) gives the following,

e2(t)

2b(t)
≤

V2(t0)

b(t)
− a+

1

2b(t)

∫ t

t0

d2(τ)dτ −
2

b(t)

∫ k(t)

k(t0)

N(τ)dτ. (60)

Similar to the proof in the first case V2(t0) is bounded. The quantity k(t0) is known

and bounded and
∫∞

t0
d2(τ)dτ is bounded by assumption. The L.H.S. in (60) is non-

negative for all time t > t0. Suppose k(t) → ∞ as t → ∞. Then b(t) = k(t)−k(t0) →

∞ as t → ∞, and as a result the following inequality holds as k(t) → ∞:

e2(t)

4b(t)
≤ −

a

2
−

1

b(t)

∫ k(t)

k(t0)

N(τ)dτ. (61)

But if k(t) → ∞ as t → ∞ then by definition of a Nussbaum function the term

1
b(t)

∫ k(t)

k(t0)
N(τ)dτ can assume values that approach +∞. This violates the fact that

e2(t)
4b(t)

≥ 0. Therefore k(t) must be bounded. Also from Equation (53) it is known that

k(·) is a non-decreasing function. Hence, there exists some constant k∞ such that

k(t) → k∞ as t → ∞. This implies that k̇(t) → 0 as t → ∞. Thus from Equation

(53), e(t) → 0 as t → ∞. This completes the proof.
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Remark 4.2.3. The assumption
(∫∞

t0
|d(τ)|2

) 1

2

< ∞, is reasonable for detecting Li-

ion battery voltage collapse. By definition, the disturbance d(t) = cy(t) + ẏ(t). Here

c > 1
2
is a constant and y is the terminal voltage of a Li-ion battery. For any battery,

the terminal voltage y has some initial value at time t0 = 0. After some time T > t0

the terminal voltage y(t) = 0 for all time t > T , because every battery can supply

a load for a limited time after which a battery dies. Therefore the first term cy(t)

is bounded by physics and goes to zero after time t > T . Even though spikes in the

terminal voltage may occur, in reality it is not possible to have a spike of infinite

magnitude. Also after time t > T we know that y(t) = 0. Therefore ẏ(t) = 0 for all

t > T . Hence ẏ(t) is bounded by physics and goes to zero after time t > T as well.

Hence the assumption is valid.

4.2.2 An algorithm for detecting Li-ion battery terminal voltage collapse
detection

Inspired by the Razumikhin theorem [86] and its use in [80], an algorithm to detect

terminal voltage collapses for Li-ion batteries by monitoring trends in the states x̂1

and x̂2 is now proposed.

Algorithm 2: Algorithm For Battery Voltage Collapse Detection

Data: j ∈ {1, 2}, x̂j, σ, r, β, γ, t, ǫ, e
Result: S = {0, 1}

1 x̂jmin
= min

(
x̂j(τ)τ∈[0,t]

)
;

2 q = x̂j − x̂jmin
+ σ;

3 p = 1
q
;

4 pmax = max(p(τ)τ∈[t−r,t]);

5 if max
(
|e(τ)|τ∈[t−r,t]

)
≤ ǫ then

6 if (ṗ(t) < −βp(t)) and (γp(t) ≥ pmax) then
7 S = 1;

8 else
9 S = 0;

10 return S;
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In Algorithm 2, the user picks a value for j from the set {1, 2}. For monitoring both

the states x̂1 and x̂2 two copies of the Algorithm 2 must be run in parallel, with j = 1, 2

respectively for each copy. Let x̂jmin
= minτ∈[0,t] (x̂j(τ)) i.e. the running minimum

for state x̂j . Let q = x̂j − x̂jmin
+ σ, σ be a positive constant, and p = 1

q
. Also pmax is

the maximum value of p in a time window with length r prior to t. If the error guard

condition maxτ∈[t−r,t] (|e(τ)|) ≤ ǫ is satisfied, then Algorithm 2 checks if ṗ(t) < −βp(t)

at time t. The discrete time approximation ṗ(t) ≈
(p(t + h)− p(t))

h
, with time step

h 6= 0 is used to calculate the time derivative of p at time t. When the time derivative

of p is less than βp(t) at time t and γp(t) ≥ pmax, where γ > 1, the indicator

variable S is set equal to unity. The choices for the variables β, r, γ, and ǫ depend

on a particular application and must be experimentally tuned. From experiments

performed using real Li-ion batteries with Algorithm 2, values for β ∈ [0, 1), larger

window sizes (r), values for γ very close to one (i.e. say 1.001), and a choice of ǫ on

the order of 0.001 have been observed to provide good performance in the presence

of noise/discontinuities. From Lemma 4.2.2 the constant c for the low pass filter

in Equations (43)-(45) must be chosen to be greater than 0.5. The following result

proves that Algorithm 2 can be used to detect that the terminal voltage of a Li-ion

battery is about to collapse.

Theorem 4.2.4. Assume that the conditions required for Lemma 4.2.2 to hold are

satisfied. Let j ∈ {1, 2}, β > 0, γ > 1, and σ be a small positive constant. For

all j ∈ {1, 2} let q = x̂j − x̂jmin
+ σ and p = 1

q
. Let x̂jmin

= min
(
x̂j(τ)τ∈[0,t]

)
, and

pmax = max
(
p(τ)τ∈[t−r,t]

)
, 0 < r < t. Assuming x̂jmin

is bounded for all j ∈ {1, 2},

and p(t) is continuously differentiable for all t ∈ [0,∞), if ṗ(t) ≤ −βp(t) whenever

γp(t) ≥ pmax then y(t) → −∞ as t → ∞.

Proof. By definition x̂j ≥ x̂jmin
and σ is a positive number. Therefore q = x̂j−x̂jmin

+

σ is positive, and hence p = 1
q
is also positive. Let V (p(t)) = p(t) and g(l) = γl,

where l ∈ R, and γ > 1. By definition pmax = max
(
p(τ)τ∈[t−r,t]

)
, 0 < r < t.
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Therefore, 0 < p(τ) ≤ pmax for τ ∈ [t − r, t], where 0 < r < t. Notice that g(l)

is non-decreasing, and from our assumptions V (p(t)) is continuously differentiable.

Therefore the condition V (·) ≤ g(V (·)) in the Razumikhin theorem [80, Theorem

5.1] holds if pmax ≤ γp(t). Let w(p(t)) = βp(t) where β > 0. The function w(·)

is positively valued for non-zero p. Further V̇ (p(t)) = ṗ(t). Using the Razumikhin

theorem [80, Theorem 5.1] we get that if ṗ(t) ≤ −βp(t) whenever γp(t) ≥ pmax then

p(t) → 0 as t → ∞ for all j ∈ {1, 2}. Since q = 1
p
, this gives q → ∞ as t → ∞ for all

j ∈ {1, 2}. However q = x̂j − x̂jmin
+ σ, σ is a constant, and for all j ∈ {1, 2} x̂jmin

is

bounded by assumption. From the above discussion it follows that for all j ∈ {1, 2},

x̂j → ∞ as t → ∞. From the assumptions, Lemma 4.2.2 holds, i.e. as time tends to

infinity, the error e(t) = y(t)− ŷ(t) → 0. Since ŷ = −x̂1 − x̂2, and for all j ∈ {1, 2},

x̂j → ∞ as t → ∞, therefore, y(t) → −∞ as t → ∞. This completes the proof.

The above result suggests that Algorithm 2 can be used to detect that the terminal

voltage of a physical battery is about to collapse by monitoring the states x̂1 or x̂2

of the simplified system. In any real life scenario the discharge current (even for a

short circuit) is bounded, so it is not necessary to explicitly measure the discharge

current i(t) to verify that i(t) is bounded while using Algorithm 2. It may appear that

Algorithm 2 can be used directly with the terminal voltage to test for voltage collapse.

Such use is prone to false alarms, because if Algorithm 2 detects a momentary terminal

voltage drop (due to noise or disturbance) it does not always mean the battery is

unstable. Also, using Algorithm 2 to monitor the states x̂1 or x̂2 of the low-pass filter

provides an added layer of disturbance protection.

The condition maxτ∈[t−r,t] (|e(τ)|) ≤ ǫ is a guarding condition. It is used so that

stability is judged when the output ŷ of the observer is sufficiently close to the terminal

voltage y. This ensures that the algorithm is unaffected by transients. Algorithm 2

is a monitoring algorithm which stops running when a battery dies. The variable S

in Algorithm 2 provides an indication of the estimated condition of a Li-ion battery
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at a particular time instant. If the indicator variable S = 1, then the user can decide

to take appropriate actions.

4.3 Simulations and experimental results

To investigate the performance of the high-gain adaptive observer and the trend detec-

tion algorithm in real-life, the following simulations and experiments were performed.

4.3.1 Pitfalls of threshold based detection

Figure 11 shows the terminal voltage curve vs. capacity used, i.e. (1−ρ), for a battery

under different discharge currents. The horizontal black dashed line in Figure 11

represents a terminal voltage threshold of 3.5V. It correctly detects that the terminal

voltage is about to collapse when the load current i = 0.5A, and 1A. However, when

i = 2A, using this threshold results in an incorrect detection as the battery still has

a SoC = 50%. Also spikes may appear in the voltage due to sudden large current

discharges causing an incorrect detection. Now consider preset thresholds on the

capacity used. The vertical black dashed line in Figure 11 represents a threshold of

Figure 11: Terminal voltage vs. capacity used for a Li-ion battery supplying different
discharge currents.
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90%. For a load of i = 0.5A the battery terminal voltage is above the previously used

voltage threshold of 3.5V but using a threshold of 90% on the capacity used would

remove the battery from service earlier than necessary.

4.3.2 Comparison of different classes of high gains

The upper half of Figure 12 shows a part of the terminal voltage curves obtained

from a simulation run using the CM model in Equations (21)-(24) and the output ŷ

of the high gain observer with different gains G(k(t)) = k(t), and G(k(t)) = N(k(t)).

The lower half of Figure 12 shows the tracking error in both cases. The simulation

is carried out with a square wave discharge at 0.5 Hz, and 1A (peak to peak) with a

DC offset of 3A. Battery capacity is assumed to be 100 mAh and the constant c = 2.

Parameters for the CM model can be found in [14]. From Figure 12, the adaptive

high-gain observer performs better with the Nussbaum type switching gain G(k(t)) =

N(k(t)) as it tracks with lower error compared to the simple gain function G(k(t)) =

k(t). Thus the Nussbaum type switching gain is used further for simulations and

experiments.

Figure 12: Comparison of Li-ion battery terminal voltage tracking performance with
different adaptive high gains.
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4.3.3 Voltage collapse detection

Figure 13 shows the results of using Algorithm 2, where the adaptive high-gain ob-

server uses the gain G(k(t)) = N(k(t)) for detecting terminal voltage collapse. The

values 2, 2.1, 200(samples), 1×10−3, and 2.9×10−3 are used for the variables c, γ, r, β,

and ǫ respectively. The discharge current used is a square wave at 0.25 Hz in the pres-

ence of Gaussian noise with a covariance of 0.2. Algorithm 1 detects an impending

voltage collapse at around t = 98s when S = 1. At this time the terminal voltage is

around 3.3V and is about to drop quickly and a sharp rise is seen in the state x̂1.

Figure 14 is plotted to verify that Algorithm 2 detects that the terminal voltage

of a Li-ion battery is about to collapse before the stability limit δ2 is breached, i.e.

before ρ ≤ δ2. The upper half of Figure 14 shows the entire voltage curve, as opposed

to the small portion of it shown in Figure 13. In both the upper and lower halves

of Figure 14, the red solid vertical lines correspond to the instants at which S = 1.

As in Figure 13, it is seen that S = 1 around t = 98s, 110s, and 120s. The black

dotted vertical line (superimposed on a red solid vertical line) represents the time

instant t ≈ 119.08s at which ρ(t) = δ2. Note that this black dotted vertical line is
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Figure 13: Falling y, ŷ. Rising x̂1 and the indicator variable S: square wave discharge
with measurement noise, with G(k(t)) = N(k(t)).
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coincident with the third vertical solid red line (another instant at which Algorithm

2 detects that the terminal voltage is about to collapse). The dashed black vertical

line (superimposed on another red solid vertical line) corresponds to the time instant

t ≈ 119.63s at which ρ(t) = δ1. The lower half of Figure 14 is a zoomed in version of

the upper half so that the separation between the two distinct time instants at which

ρ(t) equals δ2, and δ1 is distinctly visible. Note that for the CM model [14], which is

used here, δ2 = 0.0112 and δ1 = 0.005. From the simulation results it is found that at

the time instant near 98s when Algorithm 2 detects that the terminal voltage is about

to collapse, the value of ρ = 0.1742. Therefore, from the above discussion, and from

Figures 13 and 14 it is verified that Algorithm 2 detects that the terminal voltage of

Li-ion battery is about to collapse before a given battery becomes unstable.

4.3.4 Experiments

Figure 15 shows a schematic of the setup used to test Algorithm 2 on a Li-ion battery.

Algorithm 2 runs on a computer running Matlab and Simulink. The battery tester

board discharges the battery according to commands received from the computer.

The Quanser Q2-USB AD/DA board interfaces the computer with the battery tester

board. The tester board consists of a Li-ion battery ‘B’ connected in series with a relay
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Figure 14: Verifying that Algorithm 2 detects terminal voltage collapse before ρ ≤ δ2.
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unit ‘R’, a light-emitting diode (LED) ‘L’, one of the resistors R1, · · · , R4 depending

upon the position of the selector switch ‘N’ and the current measurement unit ‘I’.

Terminals V1, and V2 are used to measure the terminal voltage of the Li-ion battery.

Terminals I1, and I2 are used to measure the current flowing through the circuit for

diagnostic purposes only. The terminals T1, and T2 are the power and trigger signal

terminals of the relay unit ‘R’. The physical circuit board is seen interfaced with the

Quanser AD/DA board in Figure 16. For experiments a 3.0V RCR-123a rechargeable

Figure 15: Schematic of the experimental setup used to detect voltage collapse for a
Li-ion battery using Algorithm 2.

Figure 16: A simple prototype of the battery tester board connected to the Quanser
Q2-USB board. (Thanks to Phillip Cheng for developing this board).
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Li-ion battery is used. The relay unit is an IXYS CPC1709J. The resistors seen in

Figure 16 are fitted with heat-sinks. The selector switch ‘N’ is formed by making the

resistors individually removable. The current measurement unit is a LEM CAS-6NP

current transducer. Terminal voltage measurements are obtained by connecting the

battery directly to the AD/DA board. Current measurements are used to monitor

proper operation of the battery tester board. An output channel on the AD/DA board

is connected directly to the relay unit for providing trigger signals. The cooling fan

seen in Figure 16 is an auxiliary unit for preventing the battery from heating up.

Depending on the value of the trigger signals, the relay is either open or closed.

This causes one (or a combination) of the load resistors R1, · · · , R4 selected using the

selection switch to be connected to the battery ‘B’. Varying the timing, and width of

trigger pulses sent to the relay unit ‘R’ provides variable discharge frequencies and

duty cycles. This allows Algorithm 2 to be tested in the presence of loads that switch

on/off rapidly or very slowly. The LED ‘L’ acts as an indicator of proper circuit

operation as it turns on when the load is connected to the battery, and off otherwise.

Experimental results obtained using the above setup are presented next.

Figure 17 shows the results of one of several successful experimental runs. For
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Figure 17: Results of using Algorithm 2 in a real experimental run.
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this run a single 3V Li-ion battery supplies a 4Ω, 1W resistive load and the discharge

current is pulsed with a period of 80 seconds and duty ratio 0.9. For the duration

that the load is being supplied, the terminal voltage is seen to drop (first panel of

Figure 17) and then it rises back up again when the load is not drawing any current.

The peak discharge current supplied was of the order of 1A as the initial terminal

voltage of the battery used was 4V. The UAS strategy forces the high-gain observer

to track the output voltage of a real Li-ion battery, as seen in the leftmost panel of

Figure 17, where the output of the high-gain observer is plotted using a red solid line

and the terminal voltage of the real Li-ion battery is plotted using a blue dashed line.

The panel in the middle shows the state x̂1 of the high-gain observer. As the terminal

voltage of the battery begins collapsing the state x̂1 begins increasing. The last panel

of Figure 17 shows that Algorithm 2 detects that the terminal voltage of the battery

is about to start declining sharply at t = 1040s when the indicator variable S = 1.

The values used for c, r, γ, β, and ǫ for this experiment are 2, 25000, 5, 1×10−3 and

0.01 respectively. The window size (r) is in terms of the number of samples and the

sampling interval is 0.001 seconds.

By conducting various experimental runs, it has been confirmed that this method

can be used to detect that the terminal voltage of a Li-ion battery is about to collapse

regardless of the magnitude of the load current, the frequency, the duty ratio or the

initial conditions of a battery. The algorithm can also be tuned to detect that the

terminal voltage is about to drop slightly before the Li-ion battery becomes unstable,

i.e. slightly before the terminal voltage starts declining sharply. Note that for the

experimental run, the SoC ρ is never estimated as it is not required.

In conclusion, a high-gain adaptive observer and a trend filter have been used

to detect changes in trend of the states of a physical Li-ion battery, which is used

to detect Li-ion battery terminal voltage collapse. The method is based on classical

techniques like UAS. The method presented has been theoretically justified, and also
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verified by simulations and experiments. This method only requires measurements

of the terminal voltage, and does not require measurements of the discharge current.

The method is less susceptible to false alarms which are a concern to static threshold

based systems. Since the method does not require a detailed battery model, it may be

robust to temperature variations, aging effects, changes in loading or other nonlinear

disturbances. Since the key idea behind this method is to detect abrupt change in

system behavior (which causes instability) even in the absence of a sophisticated

model, it is conjectured that this method can be useful to detect that a computed

RFIS is about to cease to be invariant, for systems which may bifurcate, and where

a simple model fails to capture such a phenomenon.
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CHAPTER V

ROBUST FORWARD INVARIANT SETS UNDER

PARAMETER UNCERTAINTY

This chapter focuses on instability detection for parameter dependent systems. Recall

that Chapter 3 focuses on a system of the form ẋ(t) = ϑ(x(t), δ(t)). In reality, there

may exist parametric uncertainties in a system model. Such parametric uncertainties

may arise out of a failure to obtain a highly accurate model for a system, or may

be thought of as uncertainties arising out of discretization for computation purposes.

Suppose an approximation of an invariant set is computed for a nominal system using

the algorithm developed in Chapter 3. Further, suppose that this set is invariant over

a given time interval. If parametric uncertainties are present in the system model,

and an updated RFIS is not computed by correctly accounting for the effects of the

parametric uncertainties, then a computed RFIS may not be invariant over the given

time interval.

Suppose an RFIS is computed for a given system, and it is invariant for time

t ∈ [t0, t1] where t1 > t0 ≥ 0. Changes in system dynamics may cause an RFIS,

which is expected to be invariant over the interval [t0, t1], to cease to be invariant.

A computed RFIS may cease to be invariant within a given time interval [t0, t1] due

to system instability caused by parametric uncertainty. In this case it may not be

possible to obtain a revised estimate for an RFIS. If the parametric uncertainty is

bounded, and does not cause system instability, then the following case may occur.

Suppose an RFIS is given which was expected to remain invariant over the interval

[t0, t1]. However, it is not invariant due to the effects of parametric uncertainty,

then results from perturbation theory may be used to compute a set in which the
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trajectories of the system with parametric uncertainty may remain for the interval

[t0, t1], if the initial conditions of the system with parametric uncertainty belong to

the RFIS computed for the nominal system without parametric uncertainty. In this

chapter it is shown that for a special case of a system satisfying certain conditions, if

variations of the parametric uncertainty ε causes system instability, then the results

developed in Chapter 4 can be used to detect such an instability. This can lead to

the conclusion that a computed RFIS will soon cease to be invariant. The material

presented in this chapter requires some of the notation and definitions presented

in Chapter 3. The notations reused from Chapter 3 and a few new definitions are

presented in the following section.

5.1 Notation and definitions

Consider the nominal system ẋ0(t) = ϑ(x(t), δ(t), 0). Here ϑ : R2×R
2×R

2 → R
2, and

δ : R → R
2 is a time varying bounded disturbance such that standard conditions for

existence and uniqueness of solutions are met. Let x̄ ∈ R
2, and ϑ(x̄, 0, 0) = 0. Assume

the dynamics can be written as ϑ(x(t), δ(t), 0) = f(x(t)) + δ(t), where f : R2 → R
2,

and the disturbance function δ : [0,+∞) → U . The set U is defined as [−δ0, δ0] ×

[−δ0, δ0], for some known value δ0 ∈ [0,+∞). Let D ∈ R
2 represent the domain of

interest. Let ẋ(t) = ϑ(x(t), δ(t), ε) represent a parametrically perturbed version of

the system given by ẋ0(t) = ϑ(x(t), δ(t), 0), where ϑ : D×U×[−ε0, ε0] → R
2 and time

t ∈ [t0, t1]. Here ε0 is a real positive constant and t0, and t1 represent time instants

such that 0 ≤ t0 < t1 ≤ Tmax, where Tmax is a real positive constant. The constant

Tmax used here is the same as that in Chapter 3. The constant Tmax is used because

an RFIS computed for the system ẋ(t) = ϑ(x(t), δ(t), 0) may not necessarily remain

invariant over the entire interval [0, Tmax] in the presence of parametric uncertainties

which cause the system dynamics to be given by ẋ(t) = ϑ(x(t), δ(t), ε). Given ε ∈ R

and p ∈ R
2, let the ball Bε(p) = {x ∈ R

2 : ‖x− p ‖2 ≤ |ε|}. Further, let δ1(ε) ∈ R
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and δ2(ε) ∈ R represent two quantities. Then as in [32], δ1(ε) is said to be of the order

of δ2(ε), which is represented as δ1(ε) = O(δ2(ε)), if there exist positive constants k

and c such that |δ1(ε)| ≤ k |δ2(ε)| for all |ε| < c.

5.2 Detecting a loss of system stability due to parameter

uncertainty

Given a system of the form ẋ(t) = ϑ(x(t), δ(t), ε), it is possible that a perturbation

causes a fundamental behavioral change in a system. For example, a bifurcation

may occur such that a parametric uncertainty makes the system unstable. In such

situations it is important to identify that an RFIS, which was computed earlier and

was invariant for a given interval of time, is about to cease to be invariant. This

is because system trajectories may leave the computed RFIS within the given time

interval. For a particular type of systems, the techniques developed for detecting

Li-ion battery terminal voltage collapse, which were developed in Chapter 4, can be

useful for detecting that a given system is approaching instability and therefore an

RFIS computed earlier is about to cease to be invariant. The details of the high-gain

adaptive observer shown in Figure 18, which is proposed to be used to detect that an

RFIS is about to cease to be invariant, are similar to the one used in Chapter 4 and

are presented further.

ẋ(t) = ϑ(x(t), δ(t), ε)

y(t) = −zTx(t)

y(t) e(t)

−x̂1(t)− x̂2(t)

−N(k(t))

Figure 18: Monitoring system states using a high-gain observer based on universal
adaptive stabilization (UAS).
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5.2.1 A high gain adaptive observer for monitoring the reliability of an
RFIS

An observer is considered for monitoring an RFIS for the following reasons. The

RFIS being monitored may be computed based on a nominal system model. Such

a model may account for perturbations, but may not necessarily have accounted

for parametric uncertainties. An accurate model of how the parametric uncertainty

enters a system may not be available. In such a situation, relying on the states of

the nominal system model may not necessarily show that an RFIS computed using a

nominal system model is about to cease to be invariant. This is because the nominal

system model may be very different from the actual perturbed system with parametric

uncertainties. Constructing an observer by assuming a simple model for the system

being monitored, so that the states of the observer provide a reliable indication of

system behavior even in the presence of modeling errors is the motivation behind the

observer design presented further.

5.2.1.1 A perturbed system model, with a specific type of output equation

Consider the following system,

ẋ(t) = ϑ(x(t), δ(t), ε) (62)

y(t) = −zTx(t), (63)

here x(t) ∈ R
2 and z = [z1 z2]

T where z1, z2 are positive real numbers, and ϑ(·, ·, ·)

is as defined in Section 5.1.

5.2.1.2 Developing a high-gain adaptive observer

Along the lines of the material in Chapter 4, consider the Mittag-Leffler function

Eα: R → R, given by

Eα(z) =
∞∑

k=0

zk

Γ(kα + 1)
, (64)
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where α is a parameter, z ∈ R, and Γ(z + 1) = zΓ(z), z > 0 is the standard Gamma

function. It is shown in [38], [39] that Eα(−λtα), t ∈ R is a Nussbaum function for

λ > 0 and α ∈ (2, 3]. Now consider the following Nussbaum function N(k(t)) given

by,

N(k(t)) = Eα (−λk(t)α) , λ > 0, α ∈ (2, 3). (65)

The definitions in Equations (64) and (65) can be utilized to formulate the following

high-gain adaptive observer

˙̂x1(t) = −cx̂1(t)−N(k(t))e(t)

˙̂x2(t) = −cx̂2(t)−N(k(t))e(t)

k̇(t) = e2(t)

e(t) = y(t) + x̂1(t) + x̂2(t).





(66)

Note that here y(t) is as given in Equation (63).

5.2.1.3 Convergence analysis

Note that the following result, which is related to the convergence of the high-gain

adaptive observer presented in Equation (66), is similar to that presented in Lemma

4.2.2. The only difference is that here the dynamics of the system being monitored

are of the form ẋ(t) = ϑ(x(t), δ(t), ε) with the output y(t) given by Equation (63). In

Lemma 4.2.2, the dynamics represent the real Li-ion battery being monitored, and

the output y(t) represents the battery terminal voltage.

Lemma 5.2.1. Consider the closed-loop dynamics in Equation (66). Let c > 1
2
be a

real positive constant. Let d(t) = cy(t)+ ẏ(t), and let the initial condition k(t0) be an

arbitrary real number where t0 ≥ 0. If
(∫∞

t0
|d(τ)|2 dτ

) 1

2

< ∞, then limt→∞ k(t) = k∞

and limt→∞ e(t) = 0, where k∞ is a finite real constant. The constant k∞ depends on

the initial error e(t0).
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Proof. By (66),

ė(t) = ẏ(t) + ˙̂x1(t) + ˙̂x2(t) (67)

ė(t) = ẏ(t)− cx̂1(t)− cx̂2(t)− 2N(k(t))e(t). (68)

Add and subtract cy(t) to the right hand side of Equation (68) to get,

ė(t) = ẏ(t) + cy(t)− c(y(t) + x̂1(t) + x̂2(t))− 2N(k(t))e(t) (69)

Using the fact that d(t) = cy(t) + ẏ(t), and e(t) = y(t) + x̂1(t) + x̂2(t) the following

system in the error e(t) and state k(t) is obtained.

ė(t) = − (c+ 2N(k(t))) e(t) + d(t)

k̇(t) = e2(t)





(70)

The remainder of this proof is identical to the proof of the second result in Lemma

4.2.2, and therefore the details have not been repeated. For the steps of the proof,

readers are requested to refer to Lemma 4.2.2.

The above result shows that if
(∫∞

t0
|d(τ)|2 dτ

) 1

2

< ∞, then k(t) → k∞, and

e(t) → 0 as t → ∞. In general the condition
(∫∞

t0
|d(τ)|2 dτ

) 1

2

< ∞ may not be true

for a given system, therefore the requirement of such a condition makes the above

result restrictive.

5.2.1.4 Detecting system instability

The following result is similar to Theorem 4.2.4. While Theorem 4.2.4 is related to

detecting Li-ion battery terminal voltage collapse using Algorithm 2, the following

result aims at detecting system instability for the type of system shown in Equations

(62) and (63) using Algorithm 2. The variables β, r, γ, and ǫ are required to be chosen

for using Algorithm 2. As described in Section 4.2.2, choices for the variables β, r, γ,

and ǫ depend on a particular application and must be experimentally tuned.
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Theorem 5.2.2. Assume that the conditions required for Lemma 5.2.1 to hold are

satisfied. Let z ∈ R
2, and x(t) be a solution to the system ẋ(t) = ϑ(x(t), δ(t), ε). Let

j ∈ {1, 2}, β > 0, γ > 1, and σ be a small positive constant. For all j ∈ {1, 2} let q =

x̂j−x̂jmin
+σ and p = 1

q
. Let x̂jmin

= min
(
x̂j(τ)τ∈[0,t]

)
, and pmax = max

(
p(τ)τ∈[t−r,t]

)
,

0 < r < t. Assuming x̂jmin
is bounded for all j ∈ {1, 2}, ‖ z ‖2 is bounded, and p(t) is

continuously differentiable for all t ∈ [0,∞), if ṗ(t) ≤ −βp(t) whenever γp(t) ≥ pmax,

then ‖x(t) ‖2 → ∞ as t → ∞.

Proof. By definition x̂j ≥ x̂jmin
and σ is a positive number. Therefore q = x̂j−x̂jmin

+

σ is positive, and hence p = 1
q
is also positive. Let V (p(t)) = p(t) and g(l) = γl,

where l ∈ R, and γ > 1. By definition pmax = max
(
p(τ)τ∈[t−r,t]

)
, 0 < r < t.

Therefore, 0 < p(τ) ≤ pmax for τ ∈ [t − r, t], where 0 < r < t. Notice that g(l)

is non-decreasing, and from our assumptions V (p(t)) is continuously differentiable.

Therefore the condition V (·) ≤ g(V (·)) in the Razumikhin theorem [80, Theorem

5.1] holds if pmax ≤ γp(t). Let w(p(t)) = βp(t) where β > 0. The function w(·)

is positively valued for non-zero p. Further V̇ (p(t)) = ṗ(t). Using the Razumikhin

theorem [80, Theorem 5.1] we get that if ṗ(t) ≤ −βp(t) whenever γp(t) ≥ pmax then

p(t) → 0 as t → ∞ for all j ∈ {1, 2}. Since q = 1
p
, this gives q → ∞ as t → ∞ for

all j ∈ {1, 2}. However q = x̂j − x̂jmin
+ σ, σ is a constant, and for all j ∈ {1, 2}

x̂jmin
is bounded by assumption. From the above discussion it follows that for all

j ∈ {1, 2}, x̂j → ∞ as t → ∞. From the assumptions, Lemma 5.2.1 holds, i.e. as

time tends to infinity, the error e(t) = y(t)+x̂1(t)+x̂2(t) → 0. Therefore, y(t) → −∞

as t → ∞. From Equation (63) y(t) = −zTx(t), where x(t) ≡ [x1(t) x2(t)]
T . By the

Cauchy-Schwarz inequality we have that ‖ y(t) ‖2 ≤ ‖ z ‖2 ‖ x(t) ‖2. Since y(t) → −∞,

therefore ‖ y(t) ‖2 → ∞ with time. Further since ‖ z ‖2 is bounded by assumption,

this implies that ‖x(t) ‖2 → ∞ as t → ∞. This completes the proof.

Suppose a bounded RFIS S is computed based on a nominal model of a perturbed

system without parametric uncertainties given by ẋ(t) = ϑ(x(t), δ(t), 0), and it is
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known that S is invariant for the time interval [t0, t1]. Suppose the original system

given by ẋ(t) = ϑ(x(t), δ(t), 0) is no longer valid, but the system has evolved into

a perturbed system with parametric uncertainties of the form ẋ(t) = ϑ(x(t), δ(t), ε)

given by Equations (62) and (63). Further suppose that monitoring the states x̂1

and x̂2 of the high-gain adaptive observer in Equation (66) using Algorithm 2 from

Chapter 4 causes the indicator variable S to be set to 1 at some time instant within

the interval [t0, t1]. This means that x1(t) and x2(t) tend to infinity as t → ∞. Since

S is a bounded set and x1(t) and x2(t) tend to infinity as t → ∞, therefore Algorithm

2 has detected that states x1(t) and x2(t) will eventually leave the RFIS S. Therefore,

for a specific type of systems given by Equations (62) and (63), Algorithm 2 can be

used to detect that an RFIS S is about to cease to be invariant.

If parametric uncertainty does not cause instability, but is bounded, then it is

possible to compute an updated set which may provide an estimate of the region in

which trajectories of a perturbed system with parametric uncertainty may stay for a

given time interval. The following section discusses such a case.

5.3 Estimating an RFIS in the presence of bounded para-

metric perturbations

Consider a system of the form

ẋ(t) = ϑ(x(t), δ(t), ε), x(t0) = η(ε) (71)

where δ(·) represents a perturbation term affecting the system and ε is an unknown

parametric uncertainty, and η : R → R
2 and is C 1 in ε. Suppose an RFIS is computed

for the system ẋ0(t) = ϑ(x(t), δ(t), 0). An estimate of the region (i.e. a set) in

which trajectories of the perturbed system with parametric uncertainties given by

ẋ(t) = ϑ(x(t), δ(t), ε) lie, is desired. Note that the system ẋ0(t) = ϑ(x(t), δ(t), 0) =

f(x(t)) + δ(t) is identical to the system used in Chapter 3.

If the parametric perturbation is bounded, then ideally we desire to use results
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from perturbation theory [32] to quickly estimate the shape/size of a new RFIS, given

an RFIS for the nominal system ẋ0(t) = ϑ(x(t), δ(t), 0). This has not been achieved

in this work yet and remains an open problem. Suppose ϑ : D × U × [−ε0, ε0] → R
2

is continuous in (t, x, ε), and locally Lipschitz in (x, ε), uniformly in t. Suppose η is

continuous, and locally Lipschitz in ε. Let x(t) ∈ D ⊂ R
2 be a solution to Equation

(71). Suppose the nominal system

ẋ0(t) = ϑ(x(t), δ(t), 0), x(t0) = η0, (72)

has a unique solution x0(t) ∈ D for all initial conditions x0(t0) ∈ D, and all t ∈ [t0, t1].

Here η0 = η(0). An approximation of the solution x(t) for the system in Equation

(71) can be constructed using a finite Taylor series expansion as follows,

x(t) =
L−1∑

l=0

xl(t)ε
l + εlRx(t, ε). (73)

For finding the coefficients for the terms εl, and to determine the remainder term

εlRx(t, ε), take the time derivative of terms in Equation (73) and use Equation (71)

to get

L−1∑

l=0

ẋl(t)ε
l + εlṘx(t, ε) = ϑ(x(t), δ(t), ε). (74)

Let L = 1, and then set ε = 0. This gives the following

ẋ0(t) = ϑ(x(t), δ(t), 0), (75)

which is the nominal system in Equation (72). Now let S ⊂ R
2, with a simple closed

curve ∂S as its boundary, represent an RFIS for the system in Equation (75). Given

positive real numbers k and ε⋆, let the set S ′ = S
⋃

p∈∂S Bkε⋆(p), for all p ∈ ∂S.

Letting N = 1 in [32, Theorem 10.1] it can be shown that x(t)− x0(t) = O(ε). This

leads to the conclusion that the set S ′ may not be an RFIS because the trajectories of

a perturbed system with parametric uncertainty stay in the set S ′, only if the initial

conditions are in S.
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Suppose ε⋆ and the constant k can be known and a set S ′ is found as shown above.

This provides a straightforward way to find the size of a set in which the solutions of

a perturbed system with parametric uncertainty stay, given an RFIS for a nominal

perturbed system without parametric uncertainty, provided initial conditions of the

perturbed system with parametric uncertainty are in the given RFIS.

5.4 Simulations

Consider the following perturbed system with parametric uncertainties where δ(t) =

(δ0 + ε) sin(t) is the perturbation with δ0 = 0.15 and the parametric uncertainty

ε = 0.05.

ρ̇ = − sin(φ) (76)

φ̇ = (ρ− ρ0) cos(φ)− µ sin(φ) + (δ0 + ε) sin(t), ρ0 = 1, µ = 6.42. (77)

Note that for ε = 0, the system in Equations (76) and (77) is identical to the nominal

perturbed system without parametric uncertainties in Equations (16) and (17), which

is shown below for convenience.

ρ̇ = − sin(φ) (78)

φ̇ = (ρ− ρ0) cos(φ)− µ sin(φ) + δ(t), ρ0 = 1, µ = 6.42, (79)

where δ(t) = δ0 sin(t) and δ0 = 0.15. For the system in Equations (76) and (77),

Figure 19 shows the results obtained based on the application of [32, Theorem 10.1]

to find an approximation of the set S ′ as discussed in Section 5.3.

In Figure 19 the red curve with square markers represents an approximation of

the smallest RFIS computed using Algorithm 1 for the nominal system in Equations

(78) and (79). The black curve with circular markers represents an approximation

of the smallest RFIS computed using Algorithm 1 for the perturbed system with

parametric uncertainty in Equations (76) and (77). The blue solid curve shows an

estimated set in which trajectories of the system in Equations (76) and (77) remain, if
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Figure 19: Using perturbation theory to estimate the size of a set in which tra-
jectories of a perturbed system with parametric uncertainty may remain, given an
approximation of the smallest RFIS for the nominal system.

initial conditions the system in Equations (76) and (77) belong to the region enclosed

by the red curve with square markers. The convex hull (blue solid curve) is obtained

by considering the convex hull of the set formed by the union of all the balls (circles

represented by dashed blue curves) centered at points on the boundary of the red

curve with square markers. The red curve with square markers is the set S and

the blue solid curve is the set S ′. The values for k and ε∗ used are 0.9 and 0.05

respectively.

Figure 20 shows the results in Figure 19 overlaid with a trajectory of the nominal

perturbed system without parametric uncertainty, and a trajectory of the perturbed

system with parametric uncertainty. In Figure 20, the dashed red curve is a trajectory

of the nominal perturbed system without parametric uncertainty given in Equations

(78) and (79). The dotted black curve in Figure 20, is a trajectory of the perturbed

system with parametric uncertainty in Equations (76) and (77). From Figure 20

it is seen that the trajectory of the perturbed system with parametric uncertainty

stays within the approximation of the smallest RFIS for the perturbed system with

parametric uncertainty (black curve with circular markers). Similarly, the trajectory
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Figure 20: Comparing sizes of approximations smallest RFISs for a perturbed system
with parametric uncertainty and a perturbed system without parametric uncertainty
to a set computed based on perturbation theory, in which trajectories of a perturbed
system with parametric uncertainty are expected to belong.

for the nominal perturbed system without parametric uncertainty stays within the

approximation of the smallest RFIS for the nominal perturbed system without para-

metric uncertainty (red curve with square markers). Both trajectories remain within

the set with boundary given by the solid blue curve, which is the estimate obtained

using perturbation theory. Note that the size of this estimate depends on the choices

of k, and ε∗, and as visible in Figures 19 and 20 the estimate obtained using methods

based on perturbation theory is much more conservative compared to the results ob-

tained using Algorithm 1. This can be attributed to the fact that an estimate based

on perturbation theory is developed based on the zeroth order term of the Taylor

expansion of the solution x(t) for the perturbed system with parametric uncertainty.

5.4.1 Detecting that a computed approximation of an RFIS is about to
cease to be invariant

The problem used in this section is the nominal curve tracking problem as given

in Equations (78) and (79), with a few changes. For notational consistency with

the material presented in Section 5.2.1, the states of a system being monitored are
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represented using x1, and x2. The version of the curve tracking problem including

perturbations and parametric uncertainty, which is used for the simulations in this

section, is as follows.

ẋ1 = −ε(t) sin(x2) (80)

ẋ2 = (x1 − x̄1) cos(x2)− µ sin(x2) + δ(t), x̄1 = 1, µ = 6.42, (81)

where δ(t) = δ0 sin(t) and δ0 = 0.15. The parametric uncertainty ε is defined as,

ε̇(t) =





0, t ≤ τ, τ ∈ R, and τ > t0 > 0

−t, t > τ

(82)

with ε(t0) = 1.

As long as the time t ≤ τ , the problem in Equation (80) and (81) is almost similar

to the nominal problem in Equations (78) and (79). The parametric uncertainty ε(t)

does not appear in Equation (78). Equation (80) and Equation (78) are identical at

time t0 when ε = 1.

Suppose that the model used to calculate an approximation of the smallest RFIS

considered the parametric uncertainty ε to be added to δ0 as in Equations (76) and

(77). Then the approximation of the smallest RFIS obtained using Algorithm 1 is

shown using the red curve with square markers in Figure 21. However, suppose

that the parametric uncertainty ε is not constant but is given by Equation (82), and

enters the system as given in Equations (80) and (81). The trajectory for the system

in Equations (80) and (81) is shown in Figure 21 using the black dashed curve for

t ≤ τ , and using black circular markers when t > τ . It is seen that when t < τ ,

the system trajectory enters the approximation of the smallest RFIS (red curve with

square markers), inside which the trajectory keeps circling until t = τ . When t > τ ,

x1 is seen to increase rapidly causing the system trajectory to leave the computed

approximation of the smallest RFIS. The aim of the simulation results presented in

this section is to detect that the behavior of the system in Equations (80) and (81)
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Figure 21: An illustration showing that modeling errors can cause a computed
approximation of the smallest RFIS to cease to be invariant. Here τ = 950 and
t ∈ [0, 1000] seconds.

is about to change before t = τ . This is desired, because such knowledge may be

useful in updating other decision algorithms which may rely on a system trajectory

staying within a computed approximation of the smallest RFIS. To achieve this, the

high-gain adaptive observer in Equation (66), which is shown in Figure 18, is used

with the system in Equations (80) and (81) and the following output equation:

y(t) = −zTx(t), where zT = [1 1]T . (83)

The results are presented in Figure 22 and Figure 23. Figure 22 shows a comparison of

the trajectories of the high-gain adaptive observer in Equation (66), and the perturbed

version of the curve tracking problem with parametric uncertainty, given in Equations

(80) and (81). The dash-dotted blue curve shows the trajectory of the high-gain

adaptive observer, i.e. x̂1 vs x̂2 . The dashed red curve shows the trajectory x1 vs x2

of the system in Equations (80) and (81). The portions of both trajectories for time

t > τ is plotted using circular markers. When t ≤ τ the trajectory x1 vs x2 is seen

to circle around the point (1, 0). The adaptive high-gain observer tries to mimic such

behavior, which is why a portion of the trajectory x̂1 vs x̂2 near t = τ appears solid.
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Figure 22: Comparing the trajectory of the high-gain adaptive observer with the
trajectory of a perturbed version of the curve tracking problem with parametric un-
certainty given in Equations (80) and (81), where τ = 950 and t ∈ [0, 1000] seconds.
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Figure 23: An illustration examining the states of the high-gain adaptive observer,
and the states of a perturbed version of the curve tracking problem with parametric
uncertainty given in Equations (80) and (81), where τ = 950 and t ∈ [0, 1000] seconds.

This is because the states x̂1, and x̂2 oscillate around (0.45, 0.45) as seen in Figures

22 and 23. From Figure 23 it is obvious that the lack of a sophisticated model used in

the high-gain adaptive observer causes some discrepancy between the real states x1,

and x2 and the estimated states x̂1, and x̂2. However this does not prevent detecting
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that the computed approximation of an RFIS (which may not always necessarily be

an RFIS) shown in Figure 21 is at risk of ceasing to be invariant due to a change in

behavior near time t = τ . Figure 22 clearly shows that the states of the high-gain

adaptive observer experience a sudden increase after time t = τ .

This effect is examined more clearly in Figure 24. The state x̂1 of the high-gain

adaptive observer is used with Algorithm 2 to detect if the computed approximation of

an RFIS (which may not always necessarily be an RFIS) for the system in Equations

(76) and (77) is about to cease to be invariant in the time interval [0, 1000] due to

modeling errors, given that the actual system dynamics are represented by Equations

(80) and (81) where ε is given by Equation (82). The leftmost panel of Figure 24

shows the state x1 of the system in Equations (80) and (81) by a solid red curve. The

state x̂1 of the high-gain adaptive observer given by Equation (66) is shown in this

panel by the blue dashed curve with square markers. After t = 950s both x1, and x̂1

appear to go to infinity with time. The middle panel in Figure 24 shows the tracking

error e(t) of the high-gain adaptive observer in Equation (66). For this simulation,

the value 0.09 is used for ǫ in the error guard condition max
(
|e(τ)|τ∈[t−r,t]

)
≤ ǫ in
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Figure 24: The states x1, x̂1, tracking error e(t) and the indicator variable S used in
Algorithm 2.
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Algorithm 2. The solid black horizontal line in the middle panel of Figure 24 shows the

lower bound of acceptable values for e(t) satisfying the error guard condition. After

approximately time t = 720s there exist many time instances at which the error e(t)

satisfies the error guard condition. Further, from the right most panel of Figure 24,

it is observed that at time t = 737.7s, Algorithm 2 detects that the behavior of the

system in Equations (80) and (81) has changed drastically so that x̂1 and therefore

x1 will go to infinity with time (for justification as to why x1 will go to infinity with

time, the readers are requested to refer to the proof of Theorem 5.2.2). Therefore

Algorithm 2, sets the indicator variable S = 1. The values used for the constants

r, γ, β, and ǫ for use in Algorithm 2 are 50s, 1.0001, 0.5 and 0.09 respectively. Also,

the value c = 2 is used for the high-gain adaptive observer in Equation (66).

This (the indicator variable S being set to 1) can alert a system designer who

computed the approximation of the smallest RFIS for the system in Equations (76)

and (77) with limited model information (the actual model for which obeys Equations

(80) and (81) with ε given by Equation (82)) that the computed approximation of the

smallest RFIS is about to cease to be invariant. Note from the right most panel in

Figure 24, Algorithm 2 detects that a computed approximation of the smallest RFIS

is about to cease to be invariant at time t = 737.7s. This is before time t = 950s, i.e.,

before system behavior changes and the states leave the computed approximation of

the smallest RFIS. This indicator variable S produced by Algorithm 2 can therefore

be used by a higher-level monitoring algorithm to shut down appropriate devices or

processes, which may be jeopardized by such an abrupt change in system behavior.

As a summary, this chapter presented methods for monitoring RFISs (or approx-

imations of RFISs) computed for systems with bounded additive perturbations, in

the presence of parametric uncertainties. If such uncertainties are bounded, then a

method based on perturbation theory may be used to generate an estimate of the size
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of a region in which trajectories of a given perturbed system with parametric uncer-

tainties may stay, if the initial conditions belong to an RFIS of a nominal perturbed

system without parametric uncertainties.

If an RFIS (or an approximation of an RFIS) has been computed for a system with

limited model information, it is possible that some critical aspects of system behavior

have gone undetected. For example, an unsophisticated model may not be able to

tell that parametric uncertainties may cause system instability. If a system designer

relies solely on an approximation of the smallest RFIS computed using Algorithm

1, and is unaware of such an impending loss in system stability, then the system

under consideration can experience adverse effects. The high-gain adaptive observer,

coupled with the change in trend detection algorithm developed in Chapter 4, has

been successfully used to detect such a loss in system stability, for a particular type

of systems. In the event of a loss of stability for such types of systems, it is possible

to detect that a computed RFIS (or an approximation of an RFIS) is about to cease

to be invariant, by using Algorithm 2 along with the high-gain adaptive observer in

Equation (66), even if a sophisticated system model is unavailable.
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CHAPTER VI

CONCLUSION AND FUTURE DIRECTION

The main contribution of this work is a formulation of the problem of computing an

approximation of the smallest robust forward invariant sets (RFISs) for two dimen-

sional systems subjected to bounded additive perturbations, and using path planning

algorithms for solving the problem. Leveraging a path planning algorithm for com-

puting an approximation of the smallest RFIS for a given nonlinear system is a key

idea utilized in this work.

The secondary contribution of this work includes an algorithm to monitor the

validity of an approximation of an RFIS. Inspiration for this comes from a high-gain

adaptive observer and a trend filter used to detect changes in trend in the states

of a physical Li-ion battery. This method is used to detect Li-ion battery terminal

voltage collapse. The method is based on classical techniques like universal adaptive

stabilization. The method presented has been theoretically justified, and also verified

by simulations and experiments. This method only requires measurements of the

terminal voltage, and does not require measurements of the discharge current. The

method is less susceptible to false alarms which are a concern to static threshold

based systems. Since the method does not require a detailed battery model, it may be

robust to temperature variations, aging effects, changes in loading or other nonlinear

disturbances.

The idea behind the above method is to detect abrupt changes in system behavior,

which causes instability, even in the absence of a sophisticated model. This method

has been successfully used, with a particular type of perturbed systems with para-

metric uncertainty, to detect that a computed approximation of an RFIS is about
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to cease to be invariant. This work focuses on parametric uncertainties which cause

system instability. If such an instability can be detected, then it can be said that

an RFIS (or an approximation of an RFIS) computed at an earlier instant of time is

not reliable anymore and should not be trusted, because detecting system instability

implies that a computed RFIS (or an approximation of an RFIS) is about to cease to

be invariant. The method presented in Chapter 5 detects such an instability even in

the absence of a sophisticated model.

6.1 Future work

The ideas developed in this work may be applied to compute approximations of the

smallest RFIS for higher dimensional systems in future.

The terminal voltage collapse detection algorithm for Li-ion batteries, which is

used to detect that a computed approximation of an RFIS is about to become un-

reliable, may be generalized further to detect abrupt changes in system behavior for

a wider class of systems. It may be specialized to detect specific types of failures

studied in different fields of engineering. For example detecting a bridge collapse

may require a fundamentally different type of system model/algorithm compared to

a model/algorithm used for detecting that wireless network connectivity is soon to

be lost. It is conjectured that the idea of terminal voltage collapse detection based

on limited model information can be extended to deal with such situations.
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