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As part of the Gulf Coast Aerosol Research Characterization Program (GC-ARCH), 
researchers at the Georgia Institute of Technology conducted a variety of studies and 
experiments to better characterize ozone and particulate matter evolution in the Gulf Coast 
region, including the Houston, TX, area as well as other Gulf Coast states. As documented in the 
attached reports, the studies included conducting field experiments during the TexAQS study, 
analysis of the particulate matter (PM) from coastal and near coastal monitors along the Gulf 
Coast, assessing a statistical approach for estimating control requirements for meeting the PM 
NAAQS and numerical simulation of part of the TexAQS period as well as the same period 
using future emissions. Notable findings and accomplishments from the research include: 

The PILS instrument was used to help calibrate the Aerodyne AMS to help it provide 
quantitative measurements of ionic species. 
Ground level and elevated (top of Williams Tower). . . 
More from field study 
Spatial analysis of PM and ozone along the coast showed significant correlation (by 
species, when available). The correlation decreases inland, suggesting that much of the 
time, the coastal region is impacted by significantly different conditions than inland, and 
that transport tolfrom the coast inland has a less dominant effect. Numerical air quality 
modeling suggests that this is, indeed, the case, and that transport along the coast can be 
insignificant. 
Statistical analysis of daily speciated PM data over three years suggests that there is 
relatively little uncertainty in the necessary level of controls in PM precursors IF one 
assumes a linear and proportional response to controls. That is to say that the data are 
well represented by a log-normal distribution and that the year-to-year variability is 
small. However, more comprehensive mathematical modeling suggests that reductions 
in sulfate will meet with increases in nitrate. 
Numerical modeling of a 10-day period during TexAQS found good results for ozone, 
sulfate, organic carbon and elemental carbon. Surprisingly, the simulations found 
nitrate levels lower than observed, opposite of the findings in most other regions. While 
a new release of CMAQ is expected to address the over-estimates in other regions, those 
same improvements will exacerbate the underestimates found here. It appears as though 
the reason for the underestimate is due to simulated ammonia~ammonium (total 
ammonia) levels being low, suggesting a low bias in the emissions. 



Simulation of future year emissions found relatively little change in air quality in the 
Gulf Coast region, though significant reductions in ozone and some PM species inland. 
The reductions inland are driven by Tier I1 regulations (which also apply to the Gulf 
Coast areas) and both Acid Rain and NOx SIP-Call reductions (which have less impact 
in the Gulf coastal areas). 

Data developed as part of the project includes continuous (1 min) measurements of various 

meteorological parameters, trace gases (NO, NO,, NO,, CO, SO2, and 03), and discrete, 6 to 24 h 

integrated filter-based measurements of PMz,s mass and composition, including aerosol gases 

(NH3, HONO, HN03, HCl, SO2, and light organic acids), were made at the LaPorte municipal 

airport (LP), near the Houston ship channel, during TexAQS2000. These discrete measurements 

were made by means of a three-channel Particle Composition Monitor (PCM) used in previous 

experiments carried out in the Southeastern U.S. within the framework of the Southern Oxidant 

Study (SOS), and described in greater detail by Baumann et al. [2003]. Similar PCM 

measurements supplemented by semi-continuous (30 min) O3 and TEOM mass measurements 

were made on the 62nd floor of the Williams Tower (WT), 254 rn agl, and -12 km west of 

downtown Houston. The exact locations and periods of measurements are summarized in Table 

1. The methods and quality of the measurements is briefly described and assessed first. In the 

second step, the results are compared and investigated for systematic differences induced by the 

difference in sampling height above ground. Lastly, special diurnal features and events are 

presented and discussed. 

Table 1 : Measurement site name, location and period during the TexAQS2000. 

Site name 

LaPorte Airport 
Williams Tower 

Abbr. Coordinates 
latitude longitude elevation 

N W mas1 
29.67 1 95.069 8 
29.750 95.475 284 

Msmt Period 

The School's Air Quality Mobile Laboratory (AQML) was deployed at the LaPorte Municipal 

Airport (29.671 ON, 95.069 OW, 8 masl), collecting high teniporal resolution atmospheric 

chemical and physical data from August 15 to September 14,2000. The parameters sampled 

included 03 ,  CO, SOz, NO, NOx, NOy, PM mass, PM composition, atmospheric pressure, 

surface and near surface temperature, relative humidity, visible and UV-B radiation, wind 



direction, and wind speed. The AQML utilized a standard 10 m meteorological triangular A1 

tower mounted to the rear side of it. The meteorological parameters measured, their units, the 

sensor height in m above ground level (magl), the sensors' specifications and accuracies are 

listed in Table 2. 

Table 2: Meteorological parameters measured with the AQML. 
Parameter unit height sensor specifications 

magl 
barometric p mbar 2.0 Vaisala PTB 1 OOA 800- 1060mbar 
rel. humidity % 10.4 Vaisala HMP45A 0-1 00% 
air temp. "C 1 1.0 aspir. RMYoung RTD -40-+60°C 
air temp. "C 2.8 aspir. RMYoung RTD -40-+60°C 
soil temp. "C -0.1 Omega RTD 1000 -40-+60°C 
visible rad. W m-2 1 1.3 LICOR LI-200SA pyr. 400-1 100nm 
W - B  rad. W m-2 1 1.3 YES UVB-1 pyranom. 280-320 nm 
wind directn. deg N 1 1.6 RM Young 05305AQ 0-360 deg 
wind speed m s-' 11.6 RM Young 05305AQ 0-40 m s-' 

accuracy 

k0.3 mbar 
* 1 %RH (<90%) 
~kO.05~C 
*O.O5"C 
*O.O5"C 
=t5 % 
k5 % (0-60zenith) 
h3 deg 
hO.2 rn s-' 

Further detail can be found in the attached report by Baumann (2003). In addition, data was 

gathered and processed for air quality modeling of ,the region, as well as spatial analysis of the 

PM and ozone in the region. Four sources were utilized: GC-ARCH collaborators, EPA-AQS 

data base (EPA, 2003), the Southeastern Aerosol Research and Characterization (SEARCH) 

Study, and the Assessment of Spatial Aerosol Composition in Atlanta (ASACA) study (Butler et 

al., 2003). 

Quality assurance procedures were followed closely in the conduct of this project. The Quality 

Assurance Project Plan (QAPP) is attached. 

At present, the work has led, in part or in full, to four publications in preparation and three 
conference presentations that have been given. The conference presentations given to date are: 

Baumann K, F Ift, JZ Zhao, MH Bergin, and AG Russell, Measurement of trace gases and 
PM2.5 mass and composition near the ground and at 254 m agl during TexAQS 2000, 
Proceedings of the 4th Conference on Atmospheric Chemistry: Urban, Regional, and 
Global-Scale Impacts of Air Pollutants, Orlando, FL, Amer. Meteor. Soc., 242-247,2002 

Park S, A Sahabi, H Lee, K Kim, A Marmur, J Tong, AG. Russell, The assessment of 
spatial aerosol composition, AEES annual symposium, Atlanta GA, April 7,2003: 



Park SK, AG Russell and E Edgerton, The statistical analysis of PM 2.5 in Atlanta: An 
application to the control strategy, AAAR PM, Pittsburgh PA, March 31-April 3,2003 

A copy of the proceedings document is attached. Also attached are: 1. A comprehensive 
description of the field experimental study, 2. A report describing the spatial analysis of the PM 
and ozone, 3. Results of air quality modeling of a period during the GC-ARCH study, and 4. A 
report describing the analysis of control requirements using probability distributions applied to 
sulfate and organic carbon. 

As noted, many of the analysis projects are still underway, and will proceed with alternative 
funding (e.g., the modeling). Data sets can be supplied to interested individuals and other 
members of the GC-ARCH team. 
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Measurements of trace gases and PM2.5 mass and composition near the ground 

and at 254 m agl during TexAQS2000. 

Final Report 

Karsten Baumann 

EAS-GIT 

1. INTRODUCTION 

Continuous (1 min) measurements of various meteorological parameters, trace gases (NO, 

NOx, NO,, CO, SO2, and 03), and discrete, 6 to 24 h integrated filter-based measurements of 

PM2.5 mass and composition, including aerosol gases (NH3, HONO, HN03, HC1, SO2, and light 

organic acids), were made at the LaPorte municipal airport (LP), near the Houston ship channel, 

during TexAQS2000. These discrete measurements were made by means of a three-channel 

Particle Composition Monitor (PCM) used in previous experiments carried out in .the 

Southeastern U.S. within the fi-amework of the Southern Oxidant Study (SOS), and described in 

greater detail by Baurnann et al. [2003]. Similar PCM measurements supplemented by semi- 

continuous (30 min) O3 and TEOM mass measurements were made on the 62nd floor of the 

Williams Tower (WT), 254 m agl, and -12 km west of downtown Houston. The exact locations 

and periods of measurements are summarized in Table 1. The methods and quality of the 

measurements is briefly described and assessed first. In the second step, the results are 

compared and investigated for systematic differences induced by the difference in sampling 

height above ground. Lastly, special diurnal features and events are presented and discussed. 

Table 1: Measurement site name, location and period during the TexAQS2000. 

Site name Abbr. Coordinates Msmt Period 
latitude longitude elevation 

N W mas1 
LaPorte Airport LP 29.67 1 95.069 8 0811 5 - 09/14 2000 
Williams Tower WT 29.750 95.475 284 08/15 - 09/13 2000 



2. INSTRUMENTATION 

2.1 Air Quality Mobile Laboratory (AQML) 

The School's Air Quality Mobile Laboratory (AQML) was deployed at the LaPorte 

Municipal Airport (29.671 ON, 95.069 OW, 8 mas]), collecting high temporal resolution 

atmospheric chemical and physical data from August 15 to September 14,2000. The parameters 

sampled included Oj, CO, SO2, NO, NOx, NOy, PM mass, PM composition, atmospheric 

pressure, surface and near surface temperature, relative humidity, visible and UV-B radiation, 

wind direction, and wind speed. The AQML utilized a standard 10 m meteorological triangular 

A1 tower mounted to the rear side of it, as depicted in Figure 1. The meteorological parameters 

measured, their units, the sensor height in m above ground level (magl), the sensors' 

specifications and accuracies are listed in Table 2. 
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Figure 1: Top view dimensions and overview arrangements of the AQML. 

Table 2: Meteorological parameters measured with the AQML. 
Parameter unit height sensor specifications 

magl 
barometric p mbar 2.0 Vaisala PTB 1 OOA 800- 1060mbar 
rel. humidity % 10.4 Vaisala HMP45A 0-1 00% 
air temp. "C 11.0 aspir. RMYoung RTD -40-+60°C 
air temp. "C 2.8 aspir. RMYoung RTD 40-+60°C 
soil temp. "C -0.1 Omega RTD1000 -40-+60°C 
visible rad. W m-2 1 1.3 LICOR LI-200SA pyr. 400-1 100nrn 
UV-B rad. W m-2 11.3 YES W B - 1  pyranom. 280-320 nrn 
wind directn. deg N 11.6 RM Young 05305AQ 0-360 deg 
wind speed m s-' 11.6 RM Young 05305AQ 0-40 m s-' 

accuracy 

k0.3 mbar 
* 1 %RH (<go%) 
*0.05"C 
=kO.O5"C 
*0.05"C 
*5 Yo 
k5 % (0-60zenith) 
*3 deg 
k0.2 m s" 



2.2 Particle Composition Monitor (PCM) 

The measurement principle of our PCM is based on successive separation of particles larger 

than 2.5 microns aerodynamic diameter, followed by the separation of gaseous species from the 

particles prior to PM2.5 collection on Teflon membrane and quartz fiber filters backed by 

specifically impregnated filters as backup adsorbers. The sampler operates three channels each 

controlled at a nominal flow rate of 16.7 lpm. P M I . ~  separation is achieved by standard, Teflon 

coated cyclone heads, after the sample air is pulled through 30 crn long, 14 mm ID, Teflon 

coated inlet tubes. Denuders and filter packs are mounted on top of the cyclone heads, the 

sampling occurs from bottom to top, see Figure 2. 

1 3 programmable MBC9ed pumps I 

Sample air intake 



Figure 2: Three-channel Particle Composition Monitor (PCM) used during TexAQS2000. The 

phophosous acid channel is also labeled channel 1, the sodium carbonate channel 2, and the 

channel utilizing XAD is 3. 

D1,2 
P.. .  
pa.. . 

Q.. , 
SC ... 

3-channel etched glass sclpa-impregnated denuders in tandem set-up. 
Whatman 41 cellulose [paper] filter. 
phosphorous acid coating solution: 10%/90% DDWIMeOH by volume, with l g  of 
PA per 100ml of solution, yielding a 122 rnM solution. 
Pallflex #2500 QAT-UP Quartz fiber filter, pre-baked for 2 h at 600°C. 
sodium carbonate coating solution: 15.7g of Na2C03 dissolved with 5 mg glycerol in 
400ml DDW, 600 ml methanol added, ylelding a 148 mM solution. 

T.. . ZeflourTM P5PJ047, unringed Teflon membrane, 2,um pore size. 
XAD XAD-4, porous macroreticular, non-polar, polystyrene-divinyl-benzene resin, applied 

to 8-channel etched glass denuders, same type as used in IOGAPS, see Gundel et al. 
[1995]. 

Each PCM sample is analyzed at the AREC (formerly SCISSAP) analytical laboratory at 

Georgia Tech. A thorough QNQC protocol [see Quality Integrated Work Plan submitted to the 

U.S. EPA in August 1998 in fulfillment of requirement for Quality Assurance Plans for 

environmental data operations, and Standard Operating Procedures listed therein] ensures highest 

quality of the suite of species that are analyzed and reported; which are i) gaseous HCl, HONO, 

HN03, SOz, HCOOH, CH3COOH, (COOH)2, NH3; ii) particle-phase (PM2,5) mass concentration, 

and its individual components ~ a ' ,  K', NH~', ~ a + + ,  C1-, F-, NO3-, SO4=, HCOO-, CH3COO-, 

C2O4H-, elemental and organic carbon (EC, OC) with an estimate for semi-volatile OC, as well 

as the water-soluble fraction of the particle-phase OC for a few select samples. Details of the 

underlying assumptions for the calculations arriving at the final ambient concentrations for each 

species are summarized in Appendix A. 

3. METHODS 

3.1 PM2.5 Mass Concentration 

All Teflon filter samples were stored refrigerated at 4-8 "C immediately after collection until 

return to the home laboratory after the field experiment, where their initial gravimetric mass was 

determined. They were subsequently dehydrated in a desiccator located in a temperature- (2 1°C) 

and humidity- (40%) controlled clean room in order to remove humidity artifacts. The samples 

remained in the desiccator for at least 4 days, in most cases longer. The mass loss between the 

intial and final (desiccated) weight is plotted for both channels in Figure 3. The final masses 



were determined gravimetrically from the desiccated channel 1 and 2 Teflon filters using a 

Mettler Toledo MT5 Electronic Balance with an experimentally determined detection limit of 1.2 

f .02 pg and an instrumental precision of 0.37 % for lpg (from repeated weighing of a 1 mg 

standard weight). The MT5 is highly linear in the 1 to 500 mg range and exhibits an accuracy 

better than 0.001 %. 
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Figure 3: Average Teflon sample filter mass loss due to desiccation: The PM2,5 collected 

downstream of the phophorous acid coated denuder pair loses 2 *0.6 % (left), and downstream 

of the sodium carbonate coated denuder pair 5 *0.9 % (right), incl. the * standard error on the 

slopes. The standard error on the intercepts are *1.4 and *2.7, respectively. 

The mass loss induced by desiccation is relatively minor, ranging between 2 and 5 % as 

indicated by the regression slopes in Figure 3. Higher losses were reported in earlier studies, and 

are thought mainly due to the more immediate determination of the intial weight after sample 

collection. Note, that the samples for this study were stored for severe1 weeks, before they were 

weighed for the first time. Also note, that desiccation occurred under ambient pressure, and tests 

proving that none of the lost mass is attributed to any water-solube species quantified and 

detected by the ion chromatopragh are described in Baumann et al. [2003]. 

Figure 4 compares the gravimetric mass concentrations determined from the two channels 

Teflon filter samples collected at both LP and WT during the study. Channel 2 Teflon masses 

were systematically higher by 13 f 5 % (corresponding 2.7 f 2.9 pg m'3) at LaPorte, and by 21 k7 

% (2.6 k2.8 pg m-') at Williams Tower, which is suspected to be due to artifacts caused by the 

glycerol-containing sodium carbonate coating solution used in the channel 2 denuders [Finn et 

al., 20011. Tlierefore, only channel 1 (phophorous acid denuded) Teflon filter mass 

concentrations were considered for any further evaluation. The semi-volatile fractions of NH)' 



NO3-, and the organic acids (from paper backup filters, considering corresponding blank levels 

and denuder efficiencies) are added to the gravimetric mass determined from the channel 1 

Teflon filters. 
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Figure 4: Sodium carbonate denuded (channel 2) Teflon filter PM2.5 mass concentration 

compared with simultaneously collected phophorous acid denuded (channel 2) mass 

concentration, showing a systematic bias towards positive artifact in channel 2, possibly due to 

the use of glycerol in the Na2C03 denuder coating solution [see Finn et al., 20011. 

At both sites, LP and WT, fine particle mass was measured utilizing a Tapered Element 

Oscillating Microbalance (TEOM 1400A, Rupprecht & Patashnick) in a semi-continuous 

fashion, allowing 30 minute time-resolution of the ambient PM2.5 mass concentration 

measurement. Both TEOMs were operated with a commercially available naphion drier 

upstream of the oscillating sensor. The differences were that i) the cap, case and air temperature 

at LP were controlled at 50 OC, and 40 "C at WT; ii) an additional active humidity control was 

employed at the LP site via a heated copper inlet line controlled at 50 OC; and iii) the naphion 

drier sheeth air was supplied by the return flow from the TEOM sensor return at the WT set-up, 

whereas the LP set-up used indoor (trailer) air for tliis. As indicated in Figure 5, the TEOM mass 

concentrations at LP were systematically low relative to the gravimetric filter mass by 7 *6 %, 

most likely attributed to the active, and more rigorous humidity control employed with the LP- 

TEOM. At the WT site, on the other hand, the TEOM averages seemed to be 7 *4 % higher than 

the desiccated filter masses. 



Figure 5: TEOM fine mass concentrations averaged over and compared with the gravimetric 
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3.2 PCM Species 

3.2.1 Reactive Gases 

Separation of the gases is achieved by means of appropriately coated denuders. During 

TexAQS2000 a phosphorous acid coating solution was used in channel 1, which selectively 

removed NH3, while a sodium carbonate solution was used in channel 2 capturing the acidic 

gases FINO3, HONO, SO2, HC1, acetic, formic, and oxalic acids. Denuders were 3-annuli edged 

glass tubes that have a theoretical removal efficiency, based on molecular diffusion assuming 

100% adsorption of 99.9% for NH3, and 99.7% for HN03 at 0.1s residence time [Possanzini et 

al., 19831. The effective denuder efficiencies are actually governed by the adsorption ability and 

sticking coefficient of the individual species, and were experimentally determined by extraction 

and analysis of two identical denuders set-up in series; see Table 3. Atmospheric concentrations 

of all the above gas-phase compounds were determined for each sample collected during the first 

half of the study, considering the listed denuder efficiencies, with exception of HONO and 

HN03, for which the amounts of nitrite and nitrate found on the second denuder were considered 

artifact due to heterogeneous reactions involving NOz, 03, and water vapor according to Ferm 

and Sjodin [1985]; see Baumann et al. [2003] for details. Therefore, HONO and HN03 were 

reported as differences from the amounts found in the extractions of the second from the first 

denuder. Please refer to Appendix A for more details of the calculations arriving at ambient 

concentrations, i.e. mixing ratios (ppbv) for the reactive gases and underlying assumptions, esp. 

for the light organic acids (LOA), acetic, formic and oxalic acids. 

0  10 20 30 40 0  10 20 30 40 

PCM Channel 1 Teflon [pg ma] PCM Channel 1 Teflon [pg m"] 



3.2.2 Water-Soluble Ionic Species 

Correspondingly coated paper filters were placed downstream of the Teflon filters in order to 

capture volatilization losses (as a result of the altered gas-phaselsolid phase equilibrium after 

removal of gaseous species through the denuders) of the Teflon filters. The chemical analysis 

followed ion chromatography (IC) using a Dionex DX-500 with EG-40 eluent generator. Details 

of the calculations arriving at ambient concentrations, i.e. mass per volume ambient air (pg m-3) 

for the PM. species, and underlying assumptions are given in Appendix A. 
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Figure 6: Comparison of main PCM derived compounds with higher resolution Particle-Into- 

Liquid Sampler (PILS) measurements at the LP site. 



The accuracy of the measurement of the major water-soluble fine PM species using the PCM 

was assessed by comparison with higher time-resolved measurements of the Particle-Into-Liquid 

Sampler (PILS) conducted simultaneously during the study at the LP site. The correlations 

depicted in Figure 6 show generally good agreement between sulfate and ammonium, with the 

PCM values being 4 *4 % low, and 9 *6 % high relative to PILS, however, nitrate values were 

more uncertain, mainly due to their generally much lower ambient ambundance, reaching below 

the PCM's detection limit. 

3.2.3 Elemental and Organic Carbon (EC/OC) 

The third channel served the measurement of particulate organic and elemental carbon 

(OCIEC) by the thermal optical transmittance (TOT) [Birch and Cary, 19961. This channel 

minimizes positive artifacts to occur on .the quartz filter by passing the aerosol sample through a 

28.5 cm long 8-annuli XAD coated denuder at 0.8 s residence time. If denuders are used that 

quantitatively remove these gases that are otherwise susceptible to uptake, the positive artifact is 

in principle eliminated. However, the imposed change in equilibrium between particle and gas 

phase species can now cause an increased volatility of semi-volatile species associated with the 

collected particles thus generating a negative artifact and necessitating a backup adsorber 

[Eatough et al., 19851. An XAD coated quartz filter was used as backup adsorber in PCM 

channel 3 on an experimental basis. Results of tests adressing positive and negative artifacts 

associated with quartz filter sampling and subsequent ECIOC analysis, are discussed in Zhao et 

al. [2001]. Since OC represents only pure carbon from the TOT analysis, other organic elements 

(OOE) bound to carbon in the organic species had to be considered. Assuming an average 

organics molecular weight to carbon weight ratio of 0.4 [White and Roberts, 1977; Countess et 

al., 1980; Japar et al., 19841, OOE is typically calculated to be 0.4*OC. However, applying a 

simple mass balance approach, the organic mass to organic carbon ratio (OMIOC) was 

estimated, indicating that an OOE factor larger than 0.4 was needed to achieve mass closure in 

most cases, as discussed later. 

Table 3: Data Quality Indicators (DQI) for gas-phase and particle-phase species measured using 
the Particle Composition Monitor (PCM). 
D (pa). . . phosphorous acid-coated denuder; D (sc). . . sodium carbonate-coated denuder; P.. . 
Whatman 41 cellulose [paper] filter; Q.. . Pallflex #2500 QAT-UP Quartz fiber filter, pre-baked 
at 600°C for 2h; T.. . ZeflourTM P5PJ047, unringed Teflon membrane, 2pm pore size; XAD.. . 
XAD-4, porous macroreticular, non-polar, polystyrene-divinyl-benzene resin (725mZg-'). 



* 
** from linear regression with cont. SO2 UV absorption measurements. 

*** from NIST standards. 
from linaer regression with TEOM measurements for LP and WT, respectively. 

# from linear regression with PILS measurements at LP [Baumann, 20021. 

Gas Phase 

1 Site I NH3 HN03 CH3CO0 
HoN SO2 HCl HCOOH 

Retrieved 
from 
D-eff [%I 

DL [ppbv] 

LP 

Accuracy 
[%I 

D (pa> D (sc) D (sc) D(sc) D(sc) D(sc) 

91+18 90*22 91+8 87*19 97*6 83*10 81*18 78*17 

WT 

LP 

Particle Phase 

83*11 89+19 73*21 92122 85*23 88*9 91*18 

0.49 0.33 0.03 0.07 0.18 0.08 0.2 1 0.01 

LP 

Accuracy [%] 

3.3 Continuously Measured Meteorological Parameters and Gaseous Tracers 

All meteorological and trace gas quantities were continuously aquired at a rate of 1 Hz, reduced 

to and qafqc'ed for 1 min averages, and reported as 30 min averages. 

3.3.1 Ozone 

-27 * 

NH~'  NO; s0i2 EC OC SVOC Mtot 
T+P T+P T Q Q XAD-Q T 
0.23 0.09 0.06 0.42 0.80 0.51 1.1 
0.22 0.10 0.05 0.59 0.93 0.51 1.1 

Retrieved from 
DL nl-3~ 

Site 

LP 
WT 

WT 
LPIWT 

~ a '  K' ca2' CI- F- HCOO- CH3c00 C204H- 

T T T T T T+P Q Q 

0.15 0.10 0.18 0 .070.02 0.88 1.71 0.18 
0.10 0.07 0.14 0.07 0.02 0.84 0.84 0.16 
20 35 17 17 11 2 5 
22 37 26 17 11 27 

Retrieved 
from 
D L [ ~ ~ ~ - ~ ]  

BIAS [%I 

13 19 3 7 5 2 5 12 
+9' +53# -4# -9 ** +10 ** -7/+7*** 

Site 

LP 
WT 
LP 
WT 



0 3  was measured using a pressure and temperature compensated commercial UV absorption 

instrument (model TEI 49-C, TEI, Inc., Frarklin, MA), being absolutely calibrated by the known 

absorption coefficient of O3 at 254 nm. The linearity and precision of the analyzer at LP was 

checked on average once every 22 hours. Precision check mixing ratios of 0'90, 180,270, and 

360 ppbv were provided by a primary standard calibrator with active feedback control (model 

TEI 49C-PS). The calibrator was supplied with 03-free (zero) air from a cartridge of activated 

carbon that effectively removed O3 from the ambient air. Each precision check resulted in a 5 

point linear regression. Assuming normal distribution of the regressions' intercepts, the O3 

analyzer's detection limit was 1.0 ppbv for the 1 min average; whereas the slopes of the linear 

regressions yielded *4 % precision. The accuracy is estimated to be the same. The same type 

analyzer was deployed at WT and was subjected to the primary standard calibration procedure 

before and after the study yielding a similar level of quality. 

3.3.2 Carbon Monoxide 

CO was measured by gas filter correlation, nondispersive infrared absorption (model TEI 

48C-TL with a hand-selected PbSe detector matched with an optimal preamplifier, and an 

absorption cell with gold-plated mirrors). The signal output was pressure compensated while the 

absorption cell temperature was controlled at 44 k0.1 OC during the entire study. A zero trap of 

0.5 % Pd on alumina catalyst bed (type E221 PID, Degussa Corp.) kept at 180 OC quantitatively 

oxidized CO to C 0 2  at an efficiency greater 99 %, and allowed the switching of zero modes 

every 11 min for 2 min. NIST traceable calibration gas of 405 i 4  ppmv CO in N2 (Scott-Marrin 

Inc., Riverside, CA) was introduced into the sample stream by mass flow controlled standard 

addition and dynamic dilution at the instrument inlet for 2 min approximately every 11 h. The 

detection limit for a 1 min average based on the 1 Hz data was 107 ppbv, and 20 ppbv for a 112 h 

average. The instrument's precision, determined from the standard addition span checks, was k9 

% at -570 ppbv. The accuracy was estimated as the RMS error of uncertainties in the calibration 

tank concentration (2 %), the mass flow controllers (4 % each MFC), the background variation 

(4 %), and potential inaccuracies from interpolation of the measured ambient CO during span 

checks (1 5 %). Thus, the total uncertainty in the CO measurement is estimated at f 17 % for the 

entire measuring range. The instrument's linearity within its 5000 ppbv range was determined 

from all calibrations performed during the study (zero excluded), and revealed an r2 of 0.98. 



3.3.3 Sulfur Dioxide 

SO2 was measured by use of a commercial, pulsed W fluorescence instrument (model TEI 

43C-TL) with pressure and temperature compensated signal output. It's response time was -45 s 

and therefore, required longer zeroing and calibration periods compared to the CO instrument: 

zero for 4 min once every 55 min; calibration - via mass flow controlled standard addition of 

30.6 h0.3 ppmv SO2 in N2 NIST traceable calibration gas (Scott-Marrin Inc.) and dynamic 

dilution at the instrument inlet - was performed for 4 min once every 11 hours. Zero [SOz-free] 

air was produced by passing ambient air through a HEPA glass fiber in-line filter (Balslon) 

impregnated with a 0.15 molar Na2C03 solution. At a flow rate of 0.9 slm, the filter removed 

>99 % of the SO2 in the sample. Calibrations were performed and evaluated analogous to the 

CO measurements resulting in a detection limit of 0.2 ppbv for 112 h averages, and a precision of 

&4 % at 60-130 ppbv. Since the instrument's measurement principle is known to be sensitive to 

organic hydrocarbons (HC), the efficiency of the internal HC removal through a semi-permeable 

wall was enhanced by introducing an activated carbon trap into the flow of the low-[HCI-side of 

the wall, and thereby further increasing the [HC] gradient across the wall. NO is known to be 

another interferent, and its level of interference was examined by standard addition of NO 

calibration gas earlier before the study, resulting in a 2-3 % increase of signal. The reported data 

were not corrected for this relatively small interference. The accuracy was estimated as the RMS 

error of uncertainties in the calibration tank concentration (2 %), the mass flow controllers (4 % 

each MFC), the background variation (12 %), the NO interference (2 %), and potential 

inaccuracies from interpolation of the measured ambient SOz during span checks (10 %). Thus, 

the total uncertainty in the SO2 measurement is estimated at *17 % for the entire measuring 

range. The instrument's linearity within its 200 ppbv range was determined from all calibrations 

during the study, and revealed an r2 of 0.99. 

3.3.4 Reactive Nitrogen Oxides 

Proto-type Air Quality Design (AQD, Golden, Colorado) NO/NO, and NOINOX analyzers 

were deployed for the measurement of NO, NOx, and total reactive nitrogen oxides (NO,) that 

include NO, NO2, NO3, NzOs, HONO, FINO3, aerosol nitrate, PAN and other organic nitrates. 

The NO, measurements were based on the principal method of metal-surface induced reduction 



of the more highly oxidized species to NO, and its subsequent chemiluminescence detection 

(CLD) with excess ozone. The metal surface here was a 35 cm long, 0.48 cm ID MOO tube 

(Rembar Co., Dobbs Feny, NY), temperature controlled at 350 12 "C, and housed inside an inlet 

box mounted to the met tower -9 m above ground. The NOx measurements made 4.5 m agl, 

utilized a XeIHg photolysis system with an average NO2 conversion fraction of 12 f 3 % at 1 s 

s*ample residence time. The data quality of these and the above trace gas measurements are 

summarized on the basis of 30 min averages in Table 4. The accuracy of the nitrogen oxides 

measurements is further assessed below by comparison with measurements made by the NOAA- 

Aeronomy Laboratory on a 15 m walk-up tower adjacent to our MAQL. 

Table 4: Detection limits (DL), precision (P), and accuracy (A) based on 30 min averages of the 
03,  CO, SOZ, NO, NOx, and NOy measuremeiits performed at the LaPorte (LP) site. 

DL P A 
PPb" Yo % 

0 3  0.2 * 4 f 4  
CO 20 * 9 f17 
so2 0.2 * 4  *I 7 
NO 0.0005 *lo 61 5 
NOx 0.02 *15 k25 
No, 0.01 *15 *20 

0 20 40 60 80 1000 50 100 150 200 50 100 150 200 
NOAA-AL NO (ppbv) NOAA-AL NOX (ppbv) NOAA-AL NOy (ppbv) 

Figure 7: Comparison of our NO (left), NOx (center), and NOy (right) measurements made at 

different heights agl on the MAQL tower, with the corresponding measurements made by the 

NOAA AL group (courtesy of Dr. Eric Williams) on a 15 m walk-up tower near-by. 



The NO, NOx, and NOy comparison in Figure 7 shows generally good agreement, esp. 

considering the difference in sample height above ground. It is interesting to note that the NO 

measured closer to the ground (4m) shows average 5% larger concentration levels than the one 

higher above (9m), indicating influences from source near the ground, such as very local traffic 

(vehicle movements of other investigators) but more likely exhalations from the soil of the 

airport compound. Details of the determination of the data quality indicators for the odd nitrogen 

oxides measurements are described in Appendix B. 

4 RESULTS 

4.1 General Overview 

LaPorte was influenced predominantly and in particular during the first half of the study 

period by a strong land-sea breeze circulation with veering wind directions, causing periodic 

short-term impacts of plumes from nearby sources with significantly reduced (titrated) nighttime 

ozone levels. The combination of this air flow pattern and the relative vicinity of various 

emission sources led to vertically confined ozone plumes, which caused the highest ozone 

readings of the study at LaPorte on August 30 and 3 1, with maximum hourly averages of 2 19 

and 196 ppbv, respectively, while .the elevated site at Williams Tower, only saw -50% lower 

ozone maxima, which can be seen in Figures 8a) and b). With exception of this episode, the 

PM2.5 mass and sulfate concentrations generally follow the trends in daily ozone maxima, which 

points to very rapid ozone production in these plumes as suggested by other investigators. The 

occasional deviation from this agreement between [PM2.5] and [O3Imax also indicates that ozone 

is formed much faster than PM2.5 under these specific conditions, which stands in contrast to the 

conditions typically leading to O3 and PM2.5 pollution in the southeastern U.S., where regional 

stagnation leads to simultaneous buildup of these pollutants as in a 'rising tide'. 

While the first half of the study period was characterized by a persistent land-sea-breeze 

pattern and maximum ozone levels on August 30 and 3 1, the second half showed a break in this 

pattern about midway, which was preceeded by maximum fine PM mass concentration on 

September 6. The last week of the study saw the highest wind speeds and daytime humidity 

levels, lowest temperatures and generally lowest pollution levels. 



n 
P - 
0 150 600 , 
$ 0 

s 2 100 400 o, 
2 - c 
2 50 200 
0 
Z 

0 0 
50 

I I I I I I I I I I I I I I 1 I '  
LaPorte OOEcalc 

I OC 
TEOM 

40 - I Oxalate ;-. NH4+ I N03- - 
I Acetate - I Ca++ I CI- 

.-,- I Formate K+ a F- 

811 5 811 7 811 9 8121 8123 8125 8/27 8/29 813 1 
End of 30 rnin (CST) 



50 Williams Tower OOEcalc 

40 r Oxalate NH4+ I N03- 
I Acetate I Ca++ r CI- 

1- rc Formate K t  F- : 30 
I - 
9 20 
0 

10 

0 - 150 s - 100 30 . x 
rr 50 20 

0 

F 200 
P 

800 
P - 
6 150 600 , 
2' 0 

g 100 400 % 
z - < 
X p 50 200 

!2 
0 0 

911 913 915 917 919 911 1 911 3 911 5 
End of 30 min (CST) 



Figure 8: PM2,5 mass and composition (top), meteorological quantities (center), and trace gas 

indicator species (bottom) as measured at both the WT and the LP site, during the first two 

weeks of the study period (a), and the second half (b); the LP wind direction data are color-coded 

for time of day, i.e. red for early afternoon, light blue and green for late night and early morning. 

Note, that the trace gases shown for WT were measured by the Batelle National Lab aid are 

courtesy of Drs. Chet Spicer and Carl Berkowitz. 

Comparison of the 30 min ozone and fine PM (TEOM) data between LP and WT reveals a 

systematically higher 0 3  concentration during middays at LP relative to WT, while nighttime 

concentrations are significantly higher at WT, pointing to a decoupling of the lower atmosphere 

and the penetration of more regional background ozone down to the high rise WT site, but not as 

far down to the ground reaching the LP site. Figure 9 shows the average diurnal gradient from 

the difference in the 30 min ozone data measured simu.ltaneously at LP and WT. Negative 

gradients represent higher values closer to the ground, i.e. at LP relative to WT. The PM2.5 

seems more homogeneously mixed, although the mean gradient shows the similar trend. Lastly, 

the ambient temperature difference between LP and WT is minor compared to the near surface 

gradient measured between 2.8 and 11 m agl at LP, which indicates very strong near-surface 

nocturnal inversions, and well-mixed convective surface layer during daytime . 

0O:OO 06 :OO 12:OO 18:OO 00 :OO 0O:OO 06:OO 12:OO 18 :OO 00:OO 00 :OO 06 :OO 12 :OO 18:OO 0O:OO 
Time (CST) Time (CST) Time (CST) 

Figure 9: Vertical gradients of temperature (left), ozone (middle), and fine PM (right) from 30 

min differences between WT (284 rnasl) and LP (19 masl) data; the red temperature trace is a 

true vertical gradient, since it has been measured on the LP tower between 2.8 and 11 magl. 



A charge balance based on the sulfate-nitrate-ammonium system indicates slightly acidic 

conditions with 16 +17 ne m-3 at LaPorte and 25 f 4 7  ne m" at Williams Tower, as illustrated in 

Figure 10. In the context of aerosol acidity, it  is important to note that [m], the only 

neutralizing species measured during the first half of the study, averaged 3.2 k1.5 ppbv at 

LaPorte, and 2.9 +1.9 ppbv at Williams Tower. 
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Figure 10: Charge balance within the SO~=/NO~-/NH~+ system for PCM samples collected at LP 

(top) and WT (bottom). 



La Porte 
4% 6% 

Williams Tower 
0 01 4% 

Avg M = 17.1 +-9.2 pg mJ 

Figure 11 : Average mass composition for LP (left) and WT (right); LOA are the combined 

lightorganic acids acetic, formic and oxalic in their PM phase; Others include ~ a " ,  K+, ~ a " ,  C1-, 

and F-. OOEcalc denotes the other organic elements as calculated from mass closure. 

Adding the other organic elements (00Ecalc from Fig. 11) to the light organics (LOA) and 

organic carbon (OC), the sum of all organics in the particle-phase comprises 48 % and 50 % of 

the total PM2.5 mass measured at LP and WT, respectively. While the average fine PM mass 

concentration at WT is insignificantly higher (see Fig. 1 I), the OCIEC ratio is equal at 4.4 at 

both sites, with slightly higher variability (*3.2 vs 2.4) at the WT site. The OMIOC ratio derived 

with OOE from mass closure is higher also at WT with 2.6 *1.5, versus 2.4 *1.3 at the LP site. 
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APPENDIX A 

Measurements of reactive gas species and PM compounds using the Particle Composition 

Monitor (PCM) 

GIT's Particle Composition Monitor (PCM) is equipped with 3 separate mass flow controlled 

channels for the sampling of airborne PM2.5 on discrete time scales between 24 and 6 hours, 

depending on pollution level. Prior to collection of PMz.5 on filter media, important inorganic 

and organic gas species such as NH3, SO2 and HN03 , as well as semi-volatile polycyclic 

aromatic compounds (PAH), pesticides, and halogenated species are effectively removed from 

the sample stream by means of specially coated diffusion tubes (denuders). The following 

species are quantitated and reported: 

Gaseous: NH3, HN03, HONO, SO2, HCI, HF, acetic, formic, and oxalic acids. 

PM2.5 : N H ~ ,  ~ a ' ,  K', ca2+, NO3-, acetate, fonnate, oxalate,  SO^^-, C1-, F', 

elemental, organic, and "semi-volatile" organic carbon (EC, OC, svOC). 

PCM channel set up 

ch 1 : flow direction 3 Dpa-Dpa-T-Ppa 3 to pump 

ch 2: flow direction 3 Dsc-Dsc-T-Psc 3 to pump 

ch 3: flow direction 3 Dxad-Q-Qxad 3 to pump 

D.. . triple-annuli etched quartz glass denuders, 15/24 cm long (0.06/0.1 s res time at 16.7 lpm) 

Eight annuli D used for xad channel, 28.5 cm long (0.8 s res time at 16.7 lpm) 

P.. . Whatman 41 cellulose [paper] filter 

pa ... phosphorous acid coating solution: 10%/90% DDW/MeOH by volume, with I g of PA 

per 100ml of solution, yielding a 122 mM solution. 

Q..  . Pallflex #2500 QAT-UP Quartz fiber filter, pre-baked at 600°C for 2h. 

sc.. . sodium carbonate coating solution: 15.7g of Na2C03 dissolved with 5 mg glycerol in 

400ml DDW, 600 ml methanol added, yielding a 148 mM solution. 

T.. . ZeflourTM P5PJ047, unringed Teflon membrane, 2pm pore size. 

xad.. . XAD-4, porous macroreticular, non-polar, polystyrene-divinyl-benzene resin (725m2g-'). 



The use of glycerol in the sc coating solution has demonstrated to introduce a mass artifact on 

the T downstream; we therefore report only channel 1 T-masses. The final gravimetric mass 

reported includes the semi-volatile contributions from the backup absorbers. Only ammonium, 

nitrate, and the light organic acids are considered 'semi-volatile'. We assume an effective artifact 

from heterogeneous N02+03 reactions on sc denuder walls, therefore subtract nitrite and nitrate 

found on second from first for HONO and HN03, respectively. Nevertheless, a denuder 

efficiency is calculated and reported for all species, but is taken into account only for the light 

organic acids; for all other species, it is assumed to be one. We carried one field blank (B) of 

each medium for each set of -3 PCM loadings, which serves two purposes, a) the determination 

of detection limits, and b) the correction of the reported data for systematic artifacts. 

Calculation of Gas and PM2,-7 Concentrations 

Field Blanks were carried for each sample medium type (DB/TB@B) about once a day; averages 

of all the blanks were applied to each individual sampling period. 

All gases (except for HONO and HN03) 

where 

C~,~,,(DI/D~/DB): concentration of species n from Denuder 1,2,  Blank, resp. 

M ,  
mass correction factor = - 

with Mg,s,io,: molar mass of gaseous/conjugated ionic species, resp. 



Note: Denuder efficiencies are only considered for the light organic acids (acetic, formic, 

and oxalic acids). For all other species, they are assumed to be 1. 

HONO and HN03 

1 'HONO 1 HNOl = {'Nitrite I Nitrate - ' ~ i l r i t e  1 Nitrate ( D2)l * M ( ~ ~ ~ ~  I Nitrite) l(HNOl I Nitrate 

assuming equal denuder efficiency for NOz and 100% denuder efficiency for HONO; subtraction 

of NOz' artifact due to reaction 2 NOz + H 2 0  + HN03 + HONO (Ferm and Sjodin, 1 9 8 5 )  

~ a + ,  K+, ca2+, C1-, F, sod2- (considered non-volatile) 

where 

cn, ion (T/T')  : concentration of species n from Teflon filterhlank, resp. 

NH~', NO;, Acetate, Formate, Oxalate (considered semi-volatile) 

appropriately coated paper backup filter applied 

Cn = 'n,ion ( T )  + cn,ion ('1 - ',,ion (''1 - ',,ion (PB)  - (1 - )* 

where 

~n,ion(P/PB) concentration of species n from paper filterhlank, resp. 

Again, efficiencies are only considered for the light organic acids. 



Total Mass, M,,, 

All Teflon sample filters were dehydrated in a desiccator located in a temperature- (21°C) and 

humidity- (35%) controlled clean room in order to remove humidity artifacts. The samples 

remained in the desiccator for at least 4 days, in most cases longer. 

The final mass was determined gravimetrically from the desiccated channel 1 Teflon filters. 

Channel 2 Teflon masses are systematically higher, which is suspected to be due to artifacts 

caused by the glycerol-containing sodium carbonate coating solution used in the channel 2 

denuders (Finn et al., 2001). 

The semivolatile fractions of NH~', NO3-, and the organic acids (from paper filterslblanks and 

denuder efficiencies) are added to the gravimetric mass detemiined from .the Teflon filter and 

blank. 

ElementaVOrganic Carbonlother Organic Elements (ECIOCIOOE) 

Calculated from the quartz filtershlanks in the same fashion as ~ a " ,  ca2+, etc. 

OC concentrations from XAD-Q are not taken into account here. 

Since OC represents only pure carbon from TOT analysis, other organic elements (OOE) bound 

to carbon in the organic species have to be considered. Assuming an average organics molecular 

weight to carbon weight ratio of 0.4 (White and Roberts, 1977; Countess et al., 1980; Japar et 

al., 1984), OOE is calculated to be 0.4"OC. 



APPENDIX B 

Determination of data quality indicators for the reactive odd nitrogen measurements 

The sample air was drawn continuously through a 15 cm long 0.64 cm OD SS tube, which 

extended -5 cm to the outside bottom of the box and was coupled to two SS crosses, where the 

flow was diverted to a MOO converter tube for the NOy and a bypass PFA tube of same length 

for the NO measurement, at 1 slm respectively. All SS components were Teflon coated and 

temperature controlled at 40 OC. A stream selector assembly with mass flow controllers (MFC) 

housed inside the inlet box, which reduced the sample residence time inside the PFA tubing 

between the inlet box on the tower and the CLD unit inside the mobile lab at the ground to < 0.2 

s. NO and NOy measure modes were switched every 2 minutes. Automated calibrations were 

performed via a programmed set of NO, NO2, 11-propyl nitrate (NPN), and HN03 standard 

additioiis to the sample inlet on average 2 times per day in ambient air, and about once per day in 

zero air. The calibrations allowed the determination of specific parameters that are relevant for 

the assessment of the overall instrument performance, such as sensitivity, artifacts, detection 

limits, and conversion efficiencies of the MOO tube. 

In summary, the NO detection limit for a 1 min integration time was 3 k0.5 pptv in ambient 

air and 2 k0.1 pptv in zero air at a signal-to-noise ratio of 2, respectively. The instrument's 

overall sensitivity to ambient NO (S - NO) averaged to 3.57 k0.6 Hz pptv" in ambient air and 

4.39 k0.15 Hz pptv-l in zero air. A difference in signal was present when sampling zero air in 

NO measure mode versus NO zero mode, displaying a NO artifact (A-NO), which was 28 %4 

pptv. A - NO was interpolated between calibrations and subtracted from the ambient NO 

measurements. Since the zero volume efficiency was less than 100 %, i.e. on average 97 +3 %, 

the instrument's zero varied with ambient NO and NO, levels, respectively. Thus, during low 

level periods sporadically occurring at night, the NO-zero signal counts typically averaged 1300 

Hz =k2 %. The accuracy of the NO measurements had uncertainty due to variations in instrument 

zeroes, sensitivities, MFC calibrations, and the level of calibration standard used. The MFC 

calibrations before and after the study were within 2 %. The biggest contributor to the overall 

uncertainty was the variable level of ambient NO before and after the standard addition and the 

interpolation necessary for the S - NO determination, which is estimated here at +13 %. 



Therefore, the overall uncertainty of the NO measurement is estimated at *15 % as RMS error of 

all the above poteiltial inaccuracies. 

Each calibration cycle allowed the determination of the instrument's sensitivity to NO2, 

NPN, and m O 3 .  The NO2 sensitivity (S-NO2) in ambient air averaged 3.72 f0.44 Hz pptv" 

revealing a NO2 conversion efficiency Q-NO2 of 94 *8 %. With each calibration cycle the 

conversion efficiencies for NPN and HN03, species that are typically harder to convert than 

NO2, were also determined via standard addition. NPN cal gas was delivered mass flow 

controlled to the converter inlet fi-om a NIST traceable compressed air tank of 3.88 *0.19 ppmv 

NPN in 02-free N2 (Scott-Marrin Inc.). HN03 was supplied from a permeation tube (Kin-Tek) 

inside an oven controlled at 40 *0.1 "C via a critical orifice controlled zero air flow of -10 sccm. 

The permeation rate was verified before and after the study via dissolution of HN03 using a 

small scale impinger and subsequent IC analysis of No3-. The conversion efficiencies for both 

NPN and HN03 in ambient air were 87 k18 % and 80 +53 %, respectively, suggesting that NO2 

is typically converted the easiest and HN03 the hardest. The variability and relative differences 

in conversion efficiencies of these three NOy species add uncertainty to the NOy measurement as 

considered below. The NO, zeroes averaged 1450 Hz k10 %, and an artifact A N O y  was 

present when sampling zero air. This artifact varied with time and level of converter decay, and 

was therefore considered in a time-dependent manner; it averaged 0.39 f 0.17 ppbv. Based on 

measured variations in NO, over 2 - 3 h periods, the precision of our NOy measurements ranged 

between f 10 and *I5 %. Ln addition to the potential uncertainties that contributed to the NO 

inaccuracies described above, our estimate for the overall accuracy of the NO, measurements 

include the uncertainties in the GPT derived NO;! calibration gas, and the unequal MOO 

converter efficiencies for NO2, NPN, and HN03 resulting in an RMS error of *20 %. 
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1. INTRODUCTION 

Continuous (1 min) measurements of various meteorological parameters, trace gases (NO, NO,, NO,, 

CO, SO2, and 03), and discrete, 6 to 24 h integrated filter-based measurements of PM2.5 mass and 

composition, including aerosol gases (NH3, HONO, HN03, HCI, S02, and light organic acids), were made at 

the LaPorte municipal airport (LP), near the Houston ship channel, during TexAQS2000. These discrete 

measuremnts were made by means of a three-channel Particle Composition Monitor (PCM) used in 

previous experiments carried out in the Southeastern U.S. within the framework of the Southern Oxidant 

Study (SOS), and described in greater detail by Baumann et al. (2001). Similar PCM measurements 

supplemented by semi-continuous (30 min) 0 3  and TEOM mass measurements were made on the 62" floor 

of the Williams Tower (WT), 254 m agl, and -12 km west of downtown Houston. The quality of the 

measurements is briefly assessed here, and the results are compared and investigated for systematic 

differences induced by the difference in sampling height above ground. 

2. METHODS 

The measurement principle of our PCM is based on successive separation of particles larger than 2.5 

microns aerodynamic diameter, followed by the separation of gaseous species from the particles prior to 

PM2.5 collection on Teflon membrane and quartz fiber filters backed by specifically impregnated filters 

as 

* Corresponding author address: Karsten Baumann, Georgia Tech, School of Earth and Atmospheric 

Sciences, Atlanta, GA 30332-0340; 

e-mail: kb@eas.qatech.edu 

backup adsorbers. The sampler operates three channels each controlled at a nominal flow rate of 16.7 Ipm. 

PM2.5 separation is achieved by standard, Teflon coated cyclone heads, after the sample air is pulled 

through 30 cm long, 14 mm ID, Teflon coated inlet tubes. Separation of the gases is achieved by means of 

appropriately coated denuders. During TexAQS2000 a phosphorous acid coating solution was used in 

channel 1, which selectively removed NH3, while a sodium carbonate solution was used in channel 2 

capturing the acidic gases HN03, HONO, SO2, HCI, acetic, formic, and oxalic acids. Denuders were 3-annuli 

edged glass tubes that have a theoretical removal efficiency, based on molecular diffusion assuming 100% 

adsorption of 99.9% for NH3, and 99.7% for HN03 at 0.1s residence time (Possanzini et al., 1983). The 

effective denuder efficiencies are actually governed by ttie adsorption ability and sticking coefficient of the 

individual species, and were experimentally determined by extraction and analysis of two identical denuders 

set-up in series; see Table 1. Atmospheric concentrations of all the above gas-phase compounds were 

determined for each sample collected during the first half of the study, considering the listed denuder 

efficiencies, with exception of HONO and HN03, for which the amounts of nitrite and nitrate found on the 

second denuder were considered artifact due to heterogeneous reactions involving NOz, 03,  and water 

vapor according to Ferm and Sjodin (1985); see Baumann et al. (2001) for details. Therefore, HONO and 

HN03 were reported as differences from the amounts found in the extractions of the second from the first 



denuder. Correspondingly coated paper filters were placed downstream of the Teflon filters in order to 

capture volatilization losses 

Table I a: PCM data quality indicators for gaseous species, as retrieved from phosphorous acid and sodium 
carbonate coated denuders @(pa) and D(sc), resp): denuder efficiencies (D-eff), detection limits (DL) from blank 
analysis, bias (precision estimate based on side-by-side runs). SO2 accuracy has been determined from linear 
regression with continuous SO2 UV fluorescence measurements. 

Site NH3 
Medium D ( P ~ )  
D-eff [%I LP 91218 

WT 92f22 
DL [ppbv] LP 0.49 

WT 1.40 
Bias [%I nla 10 
Accuracy [%I LP 

HNOJ HONO SOz 
D(sc) D(sc) D(sc) 
90f22 9128 87f I 9  
8 5 e 3  88+9 91+18 
0.33 0.03 0.07 
0.36 0.04 0.20 
11 6 

-27 

HCI HCOOH CH3COOH (COOH);! 
D(sc) D(sc) D(sc) D(sc) 
97f6 83+10 81+18 78f 17 

96+17 83f11 89f 19 73+21 
0.18 0.08 0.21 0.01 
0.15 0.1 1 0.28 0.02 
14 6 12 20 

Table Ib: Same as Table l a  for particulate species. ECIOC accuracy has been determined from NlST standards, 
total mass (Mtol) accuracy from linear regression with TEOM measurements. 

Site NH~+ NO; s0i2 EC OC SVOC 
Medium T+P T+P T Q Q XAD-Q 
DL [ug mJ1 LP 0.23 0.09 0.06 0.42 0.80 0.51 

WT 0.22 0.10 0.05 0.59 0.93 0.51 
BIAS [%I LP 12 33 13 7 5 25 

WT 13 19 3 7 5 25 
Accuracy [%] nla -9 + I  0 

Site 
Medium 
DL [ug m-3] LP 

WT 
BIAS [%] LP 

WT 

Mtot 
T 

1 .I 
1.1 
12 
12 

+51+11 

HCOO' CH3COO' Cz04H' 
T+ P Q Q 
0.88 1.71 0.18 
0.84 0.84 0.16 
17 I 1  2 5 
17 11 27 

(as a result of the altered gas-phaselsolid phase equilibrium after removal of gaseous species through the 

denuders) of the Teflon filters. The chemical analysis followed ion chromatography (IC) using a Dionex DX- 

500 with EG-40 eluent generator. 

The third channel served the measurement of particulate organic and elemental carbon (OCIEC) by the 

thermal optical transmittance (TOT) (Birch and Cary, 1996). This channel minimizes positive artifacts to 

occur on the quartz filter by passing the aerosol sample through a 28.5 cm long 8-annuli XAD coated 

denuder at 0.8 s residence time. If denuders are used that quantitatively remove these gases that are 

otherwise susceptible to uptake, the positive artifact is in principle eliminated. However, the imposed 

change in equilibrium between particle and gas phase species can now cause an increased volatility of 

semi-volatile species associated with the collected particles thus generating a negative artifact and 

necessitating a backup adsorber (Eatough et al., 1985). An XAD coated quartz filter was used as backup 

adsorber in PCM channel 3 on an experimental basis. Results of tests adressing positive and negative 

artifacts associated with quartz filter sampling and subsequent ECIOC analysis, are discussed in Zhao et al. 

(2001). Since OC represents only pure carbon from the TOT analysis, other organic elements (OOE) bound 

to carbon in the organic species had to be considered. Assuming an average organics molecular weight to 

carbon weight ratio of 0.4 (White and Roberts, 1977; Countess et al., 1980; Japar et al., 19841, OOE is 

calculated to be 0.4*OC. 



0 3  was measured using a pressure and temperature compensated commercial UV absorption 

instrument (model TEI 49-C, TEI, Inc., Franklin, MA), being absolutely calibrated by the known absorption 

coefficient of 0 3  at 254 nm. The linearity and precision of the analyzer at LP was checked on average once 

every 22 hours by comparison with a primary standard. The 0 3  analyzer's detection limit was 1.0 ppbv; and 

the precision determined from the linear regressions was *4%. The accuracy is estimated to be the same. 

The same type analyzer was deployed at WT and was subjected to the primary standard calibration 

procedure before and after the study yielding similar quality. 

CO was measured by gas filter correlation, nondispersive infrared absorption (model TEI 48C-TL with a 

hand-selected PbSe detector matched with an optimal preamplifier, and an absorption cell with gold-plated 

mirrors). The absorption cell temperature was controlled at 44 k0.1 O C  during the entire study. A catalytic 

zero trap kept at 180 O C  quantitatively oxidized CO to C02 at an efficiency greater 99 %, and allowed the 

switching of zero modes every 1 1  min for 2 min. NISr traceable calibration gas of 405 k4 ppmv CO in N2 

(Scott-Marrin Inc., Riverside, CA) was introduced into the sample stream by mass flow controlled standard 

addition and dynamic dilution at the instrument inlet for 2 min approximately every 1 1  h. The detection limit 

for a 1 min average based on the 1 Hz data was -107 ppbv, and -23 ppbv for a 1 h average. The 

instrument's precision, determined from the standard addition span checks, was +9 % at -570 ppbv. The 

accuracy was estimated at +I7 % for the entire measuring range based on the RMS error of uncertainties in 

the individual system components. The instrument's linearity within its 5000 ppbv range was determined 

from all calibrations performed during the study (zero excluded), and revealed an ? of 0.98. 

SO2 was measured by use of a commercial, pulsed UV fluorescence instrument (model TEI 43C-TL) 

with pressure and temperature compensated signal output. Its response time was -45 s and therefore, 

required longer zeroing and calibration periods compared to the CO instrument: zero for 4 min once every 

55 min; calibration - via mass flow controlled standard addition of 30.6 k0.3 ppmv SO2 in N2 NlST traceable 

calibration gas (Scott-Marrin Inc.) and dynamic dilution at the instrument inlet - was performed for 4 min 

once every 1 1  hours. Zero [SO~free] air was produced by passing ambient air through a HEPA glass fiber 

in-line filter (Balston) impregnated with a 0.15 molar NazC03 solution. At a flow rate of 0.9 slm, the filter 

removed >99 % of the SOz in the sample. Calibrations were performed and evaluated analogous to the CO 

measurements resulting in a detection limit of 4.3 ppbv for 1 min, and 0.08 ppbv for 1 h averages, and a 

precision of *4 % at 60-130 ppbv. Since the instrument's measurement principle is known to be sensitive to 

organic hydrocarbons (HC), the efficiency of the internal HC removal through a semi-permeable wall was 

enhanced by introducing an activated carbon trap into the flow of the low-[HCI-side of the wall, and thereby 

further increasing the [HC] gradient across the wall. NO is known to be another interferent. and its level of 

interference was examined by standard addition of NO calibration gas earlier before the study, resulting in a 

2-3 % increase of signal. The reported data were not corrected for this relatively small interference. The 

accuracy was estimated as the RMS error of uncertainties in the individual system components, yielding +I7 

% for the entire measuring range. The instrument's linearity within its 200 ppbv range was determined from 

all calibrations during the study, and revealed an 8 of 0.99. 

Proto-type Air Quality Design (AQD, Golden, Colorado) NOINO, and NOINOX analyzers were deployed 

for the measurement of NO, NO,, and total reactive nitrogen oxides (NO,) that include NO, N02, NOS, N205, 

HONO, HN03, aerosol nitrate, PAN and other organic nitrates. The NO, measurements were based on the 

principal method of metal-surface induced reduction of the more highly oxidized species to NO, and its 

subsequent chemiluminescence detection (CLD) with excess ozone. The metal surface here was a 35 cm 



long, 0.48 cm ID MOO tube (Rembar Co., Dobbs Ferry, NY), temperature controlled at 350 +2 OC, and 

housed inside an inlet box mounted to the met tower -9 m above ground. The NOx measurements made 

4.5 m agl, utilized a XeIHg photolysis system with an average NO2 conversion fraction of 12 k3 % at 1 s 

sample residence time. The data quality of these measurements are summarized on the basis of 1 min 

averages in Table 2. 

Table 2: Detection limits (DL), precision (P), and accuracy (A) of the NO, NOx, and NO, measurements. 

DL ( P P ~ V )  P (%) A (%) 

0.003 10 15 

0.5 15 25 

0.4 15 20 

3. RESULTS 

At both the LaPorte and the Williams Tower site, semi-continuous PM2.5 mass measurements were 

made using a Tapered Element Oscillating Microbalance 

(TEOM) in addition to and much higher resolved than the discrete filter measurements. The TEOM mass 

concentrations were systematically low relative to the gravimetric filter mass by 5 amd 11 %, respectively, 

which is attributed to the active humidity control employed with both TEOM. All Teflon sample filters were 

dehydrated in a desiccator located in a temperature- (2I0C) and humidity- (40%) controlled clean room in 

order to remove humidity artifacts. The samples remained in the desiccator for at least 4 days, in most 

cases longer. The final mass was determined gravimetrically from the desiccated channel 1 Teflon filters. 

Channel 2 Teflon masses were systematically higher by 15 ? I3  % (corresponding 3.2 +4 pg ma) at LaPorte, 

and by 17 516 % (4.4 +6 pg ma) at Williams Tower, which is suspected to be due to artifacts caused by the 

glycerol-containing sodium carbonate coating solution used in the channel 2 denuders (Finn et al., 2001). 

The semi-volatile fractions of NHI', NO;, and the organic acids (from paper backup filters, considering 

corresponding blank levels and denuder efficiencies) are added to the gravimetric mass determined from the 

Teflon filters. 

LaPorte was influenced predominantly by a strong land-sea breeze circulation with veering wind 

directions, causing periodic short-term impacts of plumes from nearby sources with significantly reduced 

(titrated) nighttime ozone levels. The combination of this air flow pattern and the relative vicinity of various 

emission sources led to vertically confined ozone plumes, which caused the highest ozone readings of the 

study at LaPorte on August 30 and 31, with maximum hourly averages of 219 and 196 ppbv, respectively, 

while the elevated site at Williams Tower, only saw -50% lower ozone maxima, which can be seen in Figure 

1. With exception of this episode, the PM2.5 mass and sulfate concentrations generally followed the trends 

in daily ozone maxima, which points to very rapid ozone production in these plumes as suggested by other 

investigators. The occasional deviation from this agreement between [PMz.~] and [03]max also indicates that 

ozone is formed much faster than PM2.5 under these specific conditions, which stands in contrast to the 

conditions typically leading to 0 3  and PM2.5 pollution in the southeastern U.S., where regional stagnation 

leads to simultaneous buildup of these pollutants as in a 'rising tide'. 



A charge balance based on the sulfate-nitrate-ammonium system indicates slightly acidic conditionswith 

16 k17 ne m'3 at LaPorte and 25 k47 ne ma at Williams Tower, as illustrated in Figure 2. In the context of 

aerosol acidity, it is important to note that [NH3], the only neutralizing species measured during the first half 

of the study, averaged 3.2 +I .5 ppbv at LaPorte, and 2.9 + I  .9 ppbv at Williams Tower. Figure 2 compares 

the PM2.5 mass and charge balances from LaPorte and Williams Tower with previous measurements made 

in the southeastern U.S. within the framework of SOS, at sub-urban and rural sites in TN, and at 

metropolitan Atlanta, GA, during the Atlanta Supersite Experiment in August 1999. 
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I. INTRODUCTION 

A Clean Air Act requires EPA to set National Ambient Air Quality Standards for 

pollutants considered harmful to public health and the environment. Those pollutants are 

Carbon Monoxide (CO), Nitrogen Dioxide (N02), Ozone (03), Lead (Pb), Particulate 

Matter with size less than 10 mm (PM lo), Particulate Matter with size less than 2.5 mm 

(PM 2.5) and Sulfur Dioxide (S02). Among the above pollutants, especially, ozone and 

PM 2.5 had been increasingly studied due to the epidemiological importance of those 

species. Ozone inhaled by human can inflame and damage cells that line lungs. PM 2.5 

can also damage respiratory tissues because these particles are so tiny that they can be 

drawn into lungs. The adverse health effects of those pollutants initiated the regional 

studies of the ozone and the PM 2.5 levels. Studies showed that Houston and Atlanta 

areas were non-attainment areas for the ozone and the PM 2.5, where the pollutant levels 

are higher than the National Ambient Air Quality Standard (NAAQS). Thus, we analyzed 

ozone and the PM 2.5 levels in those two cities in detail. 

We analyzed ozone and PM 2.5 total mass and species over the southeastern United 

States focusing on Atlanta and Houston from August 12,2000 to September 15, 2000 

Figure 1 shows locations of measurement sites. Stations marked with blue circles in 

Figure 1 are built for the Assessment of Spatial Aerosol Composition in Atlanta 

(ASACA) project in the Department of the Environmental Engineering at Georgia Tech, 

those in green are stations for the Interagency Monitoring of Protected Visual 

Environments (IMPROVE) program, those in purple are stations of Dr. Karsten Baumann 



in the Department of the Earth and Atmospheric Sciences at Georgia Tech, and red 

circled stations are for the South Eastern Aerosol Research and Characterization 

(SEARCH) study. 

Each station was maintained by different projects; hence each station measured 

pollutants in different interval. The La Porte (1,P) and Williams Tower (WT) stations 

measured 30-minute average ozone, PM 2.5 total mass and PM 2.5 species 

concentrations. The North Birmingham (BHM), Centreville (CTR), Gulfport (GFP), 

Jefferson Street (JST), Oak Grove (OAK), Pensacola (OLE), Pensacola (PNS), and 

Yorkville (YRK) stations monitored 1-hour average ozone, 24-hour average PM 2.5 total 

mass, and PM 2.5 species concentrations. The Fort McPherson (FTM), South Dekalb 

(SDK), and Tucker (TUC) stations measured 24-hour average PM 2.5 total mass and 

species concentrations. The Breton (BRETl), Chassahowitzka National Wildlife 

(CHAS I), Cohutta (COHUl), Everglades National Park (EVERI), Okefenokee National 

Wildlife Refuge (OKEFl), St. Marks (SAMAl), and Sipsy Wilderness (SIPS1) stations 

also measured 24-hour average PM 2.5 total mass and species concentrations, but those 

stations did not measure ammonium, one of the major PM 2.5 species. 



2. CHARACTERISTICS OF OZONE 

An important part of this project was to examine the characteristics of ozone, which 

we analyzed by comparing the ozone concentrations measured in each station. Ozone is 

regulated by the National Ambient Air Quality Standard (NAAQS). The standard 

regulated I-hour and 8-hour average ozone concentrations as 120 ppbv and 80 ppbv, 

respectively. According to a Table 2, the measured ozone concentrations in every station 

exceeded 8-hour standard at least twice during the measured period, and seven out of ten 

stations exceeded 1-hour standard at least 3 times throughout the period. 

Measured ozone concentrations in each station were compared in a Figure 2. 

Average ozone concentrations from August 12 to September 15,2000 were between 33 

ppbv (JST station) - 5 1 ppbv (YRK station). The average concentrations were relatively 

high in CTR, OAK, OLE and YRK stations, and relatively low in LP, WT, BHM and JST 

stations. In general, stations of high ozone concentrations were located in rural areas, 

whereas those of low ozone concentrations were in urban area. This result can be 

explained as follows: An ozone concentration increases or decreases as a Volatile 

Organic Compound (VOC) and a Nitrogen Oxide (NO,) concentrations change. When a 

ratio of the VOC to the NOx concentrations is smaller than a threshold value (5.5:1), as 

the NO, concentration increases, the ozone concentration decreases. Thus, low ozone 

concentrations in JST and BHM stations suggest a high NO, emission in those areas 

during the period. 



Ozone concentrations were highly correlated between each station. Correlation 

coefficients of I -hour average ozone concentrations are in a Table 3.1. High correlation 

coefficients of 1 -hour average concentrations are mainly due to consistent diurnal 

variations represented in a Figure 3. In general, ozone concentrations were high between 

noon to 3:00pm, and they were low early in the morning (between 5:OOam to 8:OOam). A 

Table 3.2 represents correlation coefficients of 24-hour average ozone concentrations. 24- 

hour ozone concentrations were also highly correlated each other. Figures 4 and 5 

illustrate 30-minute average ozone concentrations in LP and WT stations. Figures 6, 7, 8, 

9, 10, 11, 12, and 13 illustrate 1-hour average ozone concentrations in BHM, CTR, GFP, 

JST, OAK, OLE, and PNS stations, respectively. 



3. CHARACTERISTICS OF PM2.5 TOTAL MASS AND SPECIES 

One of the most important pollutants is PM 2.5 because of its health impact. PM 2.5 

is regulated by the National Ambient Air Quality Standard (NAAQS). The standard 

regulated daily and annual average concentrations as 65 pg/m3 and 15 pg/m3, 

respectively. According to Figure 14, average concentrations from August 12 through 

September 15,2000 were relatively high in urban area such as BHM, JST and TU 

stations. A maximum 24-hour average PM 2.5 concentration was highest in BHM station 

as 50.4 pg/m3. Therefore, during the above period, 24-hour average PM 2.5 

concentrations in all stations met the standard Figure 15 exhibits the regional comparison 

of PM 2.5 mass and species concentration averages. 

We also calculated a correlation coefficient of PM 2.5 between each station. PM 2.5 

concentrations were highly correlated between geographically closely located stations. 

Correlations between LP and WT stations was as high as 0.91 (Table 4). Correlation 

coefficients of PM 2.5 between BHM, CTR, GFP and JST stations, and OAK, OLE and 

PNS stations were also high. Correlation coefficient of PM 2.5 between CHASl and 

EVER1 stations were high even though these stations are not close each other. However 

both stations are located in Florida coast. BRETI, COHUl and SAMAl stations did not 

have enough PM 2.5 data available during the analysis period. Therefore, we did not 

calculate statistics of PM 2.5 concentrations for these stations. Figures 16 and 17 

illustrate 30-minute PM 2.5 concentration averages in LP and WT stations. Figures 18- 

34 depict 24-hour PM 2.5 concentration averages in the other stations. 



PM 2.5 contains five major species: sulfate, ammonium, nitrate, organic carbon and 

elemental carbon. We will analyze each of those species. 

Average sulfate concentrations in a Figure 35 were between 1.8 pg/ni3 (EVER1 

station) to 7.5 pg/m3 (PNS station). Sulfate concentrations were relatively high in urban 

area such as BHM, CTR, JST, PNS and FT stations. A maximum 24-hour average sulfate 

concentration was observed in Fort McPherson station (16.1 pg/m3) on August 16,2000. 

Mass percentage of sulfate is plotted in a Figure 36. Sulfate occupied 23 % (TUC station) 

to 44 % (PNS station) of total PM 2.5 mass. Sulfate concentrations were also higly 

correlated between closely located stations such as LP and WT stations, CTR, GFP, JST, 

OAK, OLE and PNS stations, and FTM, JST, SDK, TUC and YRK stations. In a Table 5 

also represents correlation coefficients between SIPS 1 station and BHM, CTR, GFP, 

OAK, OLE, PNS and YRK stations were specified as one. However, these high 

correlation coefficients do not necessarily mean that sulfate concentrations in SIPS11 

station are highly correlated with those of other stations rather these results are because 

only two or three data points were available for calculating these correlation coefficients. 

Figures 37 - 38 illustrate 30-minute average sulfate concentrations in LP and WT 

stations. Figures 39 - 56 are 24-hour average sulfate concentrations in the other stations. 

Ammonium concentrations were analyzed. Average ammonium concentrations in a 

Figure 57 were lowest in SDK station as 1.5 pg/m3 and highest in BHM station as 3.4 

pg/m3. Figure 58 depicts mass percentage of ammonium in PM 2.5 total mass. Like the 

case of sulfate, the highest mass percentage of nitrate was observed in PNS station (13.7 



%) and the lowest mass percentage was observed TUC station (7.3 5%). A Table 6 showed 

that ammonium concentrations were highly correlated between LP and WT stations, 

BHM, CTR, GFP, OAK, OLE and PNS stations, and FTM, JST, SDK, TUC and YRK 

stations. Figures 59 - 60 show 30-minute average ammonium concentrations in LP and 

WT stations, and Figures 61 - 71 represent 24-hour average ammonium concentrations in 

the other stations. 

Average nitrate concentrations were between 0.2 pg/m3 (CTR station) 0.6 pg/m3 

(YRK station) (Figure 72). The nitrate concentration occupied less than 5 % of the total 

mass of the PM 2.5 (Figure 73). Average nitrate concentrations were relatively high in 

LP, WT, BHM, JST, YRK and FT stations. Correlation coefficients of nitrate 

concentrations were relatively high between CTR, GFP, OAK, OLE and PNS stations, 

FTM, JST, SDK and TUC stations, CHASI, and EVERl stations (Table 7). Figures 74 - 
75 depict 30-minute average nitrate concentrations in LP and WT stations. Figures 76 - 

93 are 24-hour average nitrate concentrations in the other stations. 

Average organic carbon concentrations were from 1.3 pg/rn3 (EVER1 station) to 7.1 

g / m 3  (BHM station) during the above period (Figure 94). A Figure 95 represents that 

organic carbon occupied 15 % (TUC station) - 32 % (GFP station) of the total mass of 

the PM 2.5. Organic carbon concentrations were not highly correlated each other 

compared with sulfate, and ammonium. However correlation coefficients between LP and 

WT stations, and BHM, CTR, FTM, GFP, JS'T, OAK and PNS stations were relatively 

high. Figures 96 - 97 illustrated 30-minute organic carbon concentrations in LP and WT 



stations. 24-hour average organic carbon concentrations in the other stations were 

depicted in Figures 98 - 11 5. 

Average elemental carbon concentration ranged between 0.2 pg/m3 (EVER1 station) 

and 2.8 p.g/m3 (BHM station) (Figure 116). Mass percentage averages of elemental 

carbon in PM 2.5 varied from 2.6 % (OAK station) to 11 % (BHM station) (Figure 11.7). 

Elemental carbon concentrations were highly correlated in BHM, CTR, JST, OAK, OLE 

and PNS stations. However, the correlation coefficient of nitrate between LP and WT 

stations, other species of which stations were highly correlated, was only 0.13. Figures 

1 18 - 1 19 illustrate 30-minute average elemental carbon concentrations in LP and WT 

stations. Figures 120 - 136 represent 24-hour average elemental carbon concentrations in 

the other stations. 



4. CONCLUSION 

We analyzed characteristics of ozone and PM 2.5 concentrations in Texas, Louisiana, 

Mississippi, Alabama, Georgia, and Florida. Average ozone concentrations from August 

12 to September 15,2000, were lowest in Jefferson street, Georgia (33 ppbv) and highest 

in Yorkville, Georgia (5 1 ppbv). In general, ozone concentrations were relatively low in 

urban areas and high in rural areas. Ozone concentrations showed consistent diurnal 

variations in measured stations. The consistent diurnal pattern resulted in high correlation 

coefficients of 1-hour average ozone concentrations. 24-hour average ozone 

concentrations were also highly correlated. 

We compared measured 1-hour and 8-hour average ozone concentrations with the 

National Ambient Air Quality Standard (NAAQS). Ozone concentrations in every station 

exceeded 8-hour standard more .than once during the analysis period, and seven out of ten 

stations exceeded I -hour standard at least three times. 

We examined the regional trend of PM 2.5 concentrations. PM 2.5 concentrations 

were highest in Jefferson Street station and lowest I Everglades National Park station. In 

general, average PM 2.5 concentrations were high in urban areas and low in rural areas. 

However no station exceeded the daily PM 2.5 standard during the analysis period. 

We also examined five major species concentrations of PM 2.5: sulfate, nitrate, 

ammonium, organic carbon and elemental carbon. On average, sulfate represented 23 % 



to 44 % of total PM 2.5 mass depending on the measured locations. Ammonium and 

organic carbon explained around 10 % and 25 % of total PM 2.5 mass, respectively. Sum 

of ammonium and elemental carbon concentrations occupied less than 15 % of the total 

PM 2.5 mass. PM 2.5 mass concentrations were highly correlated between closely 

located stations, such as LP and WT stations, BHM, CTR, GFP and JST stations, OAK, 

OLE and PNS stations. PM 2.5 species concerltrations were also highly correlated 

between geographically close stations. 



Figure 1. Locations of PM 2.5 Monitoring Sites 
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Figure 2. Maximums, minimums and averages of ozone concentrations 24-hour averages 

(ppbv) from August 12 to September 15,2000 
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Figure 3. Diurnal ozone concentration (ppbv) averages from August 12 - September 15, 

2000. 



Figure 4. Ozone concentration 30-minute averages (ppbv) in La Porte. 

Figure 5. Ozone concentration 30-minute averages (ppbv) in Williams Tower. 



BHM 

Figure 6. Ozone concentration 1 -hour averages (ppbv) in North Birmingham. 

CTR 

Figure 7. Ozone concentration 1 -hour averages (ppbv) in Centreville. 



GFP 

Figure 8. Ozone concentration 1-hour averages (ppbv) in Gulfport. 

JST 

Figure 9. Ozone concentration 1-hour averages (ppbv) in Jefferson Street. 



I OAK I 

Figure 10. Ozone concentration 1 -hour averages (ppbv) in Oak Grove. 
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Figure 1 1. Ozone concentration 1 -hour averages (ppbv) in Pensacola (OLE). 
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Figure 12. Ozone concentration 1-hour averages (ppbv) in Pensacola (PNS). 

Figure 13. Ozone concentration 1 -hour averages (ppbv) in Yorkville. 



Figure 14. Maximums, minimums and averages of PM 2.5 concentrations 24-hour 

averages (pg/m) from August 12 to September 15,2000 



Figure 15. The regional comparison of PM 2.5 mass and species concentration averages. 

The same period as in Figure 14 



Figure 16. PM 2.5 concentration 30-minute averages @dm3) in La Porte 

Figure 17. PM 2.5 concentration 30-minute averages @dm3) in Williams Tower 



Figure 18. PM 2.5 concentration 24-hour averages @dm3) in North Birmingham. 

Figure 19. PM 2.5 concentration 24-hour averages (pg/rn3) in North Birmingham. 



Figure 20. PM 2.5 concentration 24-hour averages (pg/m3) in Gulfjport. 

Figure 21. PM 2.5 concentration 24-hour averages (pg/m3) in Jefferson Street. 



Figure 22. PM 2.5 concentration 24-hour averages @dm3) in Oak Grove. 
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Figure 23. PM 2.5 concentration 24-hour averages (pg/m3) in Pensacola (OLE). 



Figure 24. PM 2.5 concentration 24-hour averages ( j ~ ~ l r n ~ )  in Pensacola (PNS). 

Figure 25. PM 2.5 concentration 24-hour averages @dm3) in Yorkville. 



Figure 26. PM 2.5 concentration 24-hour averages (p.g/m3) in South Dekalb. 

Figure 27. PM 2.5 concentration 24-hour averages (p.g/m3) in Tucker. 



Figure 28. PM 2.5 concentration 24-hour averages (pg/m3) in Brento. 

Figure 29. PM 2.5 concentration 24-hour averages (pg/m3) in Chassahowitzka National 

Wildlife. 



Figure 30. PM 2.5 concentration 24-hour averages (pg/rn3) in Cohutta. 

Figure 3 1. PM 2.5 concentration 24-hour averages (pg/rn3) in Everglades National Park. 



Figure 32. PM 2.5 concentration 24-hour averages (pg/m3) in Okefenokee National 

Wildlife Refige. 

Figure 33. PM 2.5 concentration 24-hour averages @dm3) in St. Marks. 



Figure 34. PM 2.5 concentration 24-hour averages (CLg/m3) in Sipsy Wilderness. 
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Figure 35. Maximums, minimums and averages of sulfate concentrations 24-hour 

averages (pg/m3) from August 12 to September 15,2000 

Figure 36. Mass percentage averages of sulfate in PM 2.5. 



Figure 37. Sulfate concentration 30-minute averages (pg/rn3) in La Porte. 

Figure 38. Sulfate concentration 30-minute averages (pgirn3) in Williams Tower. 



Figure 39. Sulfate concentration 24-hout averages @dm3) in Nonh Birmingham. 

Figure 40. Sulfate concentration 24-hour averages @dm3) in Centreville. 



Figure 41. Sulfate concentration 24-hour averages (p.g/m3) in Gulfport. 

Figure 42. Sulfate concentration 24-hour averages in Jefferson Street. 



Figure 43. Sulfate concentration 24-hour averages (pg/m3) in South Dekalb. 

Figure 44. Sulfate concentration 24-hour averages (pg/m3) in Pensacola (OLE). 
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Figure 45. Sulfate concentration 24-hour averages @ & I ~ )  in Pensacola (PNS). 

Figure 46. Sulfate concentration 24-hour averages (pgim3) in Pensacola (YRK). 



Figure 47. Sulfate concentration 24-hour averages (pg/m3) in Fort McPherson. 

Figure 48. Sulfate concentration 24-hour averages ( J L ~ I ~ ~ )  in South Dekalb. 



Figure 49. Sulfate concentratioi124-hour averages (CLg/rn3) in Tucker. 

Figure 50. Sulfate concentration 24-hour averages (pg/m3) in Breton. 



Figure 5 1. Sulfate concentration 24-hour averages (yg/m3) in Chassahowitzka National 

Wildlife. 

Figure 52. Sulfate concentration 24-hour averages (pg/m3) in Cohutta. 



Figure 53. Sulfate concentration 24-hour averages (pg/m3) in Everglades National Park. 

Figure 54. Sulfate concentration 24-hour averages @g/rn3) in Okefenokee National 

Wildlife Refuge. 



Figure 55. Sulfate concentration 24-hour averages (pg/rn3) in St. Marks. 

Figure 56. Sulfate concentration 24-hour averages (pg/rn3) in Sipsy Wilderness. 



1 Ammonium 

Figure 57. Maximums, minimums and averages of ammonium concentration 24-hour 

averages (pg/m3) from August 12 to September 15,2000 

Figure 58. Mass percentage averages of ammonium in PM 2.5. 



Figure 59. Ammonium concentration 30-minute averages (pg/m3) in Sipsy Wilderness 

Figure 60. Ammonium concentration 30-minute averages @dm3) in Sipsy Wilderness 



Figure 6 1. Ammonium concentration 24-hour averages (pg/m3) in North Birmingham 

Figure 62 Ammonium concentration 24-hour averages ( ~ ~ ~ l r n ~ )  in Centreville 



Figure 63. Ammonium concentration 24-hour averages (pg/m3) in Gulfport 

Figure 64. Ammonium concentration 24-hour averages (&m3) in Jefferson Street 



Figure 65. Ammonium concentration 24-hour averages (&rn3) in Oak Grove 

Figure 66. Ammonium concentration 24-hour averages (uglm3) in Pensacola (OLE) 



Figure 67. Ammonium concentration 24-hour averages (pg/m3) in Pensacola (PNS) 

Figure 68. Ammonium concentration 24-hour averages (pg/m3) in Yorkville 



Figure 69. Amnlonium concentration 24-hour averages (pg/m3) in Fort McPherson 

Figure 70. Ammonium concentration 24-hour averages (pg/m3) in South Dekalb 



Figure 7 1. Ammonium concentration 24-hour averages (pg/m3) in Tucker 



Nitrate 

Figure 72. Maximums, minimums and averages of nitrate concentrations 24-hour 

averages (@m3) from August 12 to September 15,2000 

Figure 73. Mass percentage averages of nitrate in PM 2.5. 



Figure 74. Nitrate concentration 30-minute averages (pg/m3) in La Porte 

Figure 75. Nitrate concentration 30-minute averages (@rn3) in Williams Tower 



Figure 76. Nitrate concentration 24-hour averages (pg/m3) in North Birmingham 

Figure 77. Nitrate concentration 24-hour averages (pg/rn3) in Centreville 



Figure 78. Nitrate concentration 24-hour averages (uglrn3) in Gulfport 

Figure 79. Nitrate concentration 24-hour averages (pg/m3) in Jefferson Street 



Figure 80. Nitrate concentration 24-hour averages ( j ~ ~ / r n ~ )  in Oak Grove 

Figure 81. Nitrate concentration 24-hour averages @dm3) in Pensacola (OLE) 



Figure 82. Nitrate concentration 24-hour averages (pg/rn3) in Pensacola (PNS) 

Figure 83. Nitrate concentration 24-hour averages (pg/m3) in Yorkville 



Figure 84. Nitrate concentration 24-hour averages @dm3) in Fort McPherson 

Figure 85. Nitrate concentration 24-hour averages (pg/m3) in South Dekalb 



Figure 86. Nitrate concentration 24-hour averages (pg/rn3) in Tucker 

Figure 87. Nitrate concentration 24-hour averages (pg/m3) in Breton 



Figure 88. Nitrate concentration 24-hour averages (pgim3) in Chassahowitzka National 

Wildlife 

Figure 89. Nitrate concentration 24-hour averages (pg/rn3) in Cohutta 



Figure 90. Nitrate concentration 24-hour averages @dm3) in Everglades National Park 

Figure 91. Nitrate concentration 24-hour averages (pg/m3) in Okefenokee National 

Wildlife Refuge 



Figure 92. Nitrate concentration 24-hour averages (pg/rn3) in St Marks 

Figure 93. Nitrate concentration 24-hour averages (pg/m3) in Sipsy Wilderness 
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Figure 94. Maximums, minimums and averages of organic carbon concentrations 24-hour 

averages (pg/m3) from August 12 to September 15,2000 

Figure 95. Mass percentage averages of organic carbon in PM 2.5. 



Figure 96. Organic carbon concentration 30-minute averages (p.g/m3) in La Porte 
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Figure 97. Organic carbon concentration 30-minute averages (pg/m3) in Williams Tower 
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Figure 98. Organic carbon concentration 24-hour averages (pg/rn3) in North Birmingham 

Figure 99. Organic carbon concentration 24-hour averages (CLg/rn3) in Centreville 



Figure 100. Organic carbon concentration 24-hour averages (pg/rn3) in GulQort 

Figure 101. Organic carbon concentration 24-hour averages (pg/m3) in Jefferson Street 



Figure 102. Organic carbon concentration 24-hour averages (pg/m3) in Oak Grove 

Figure 103. Organic carbon concentration 24-hour averages tPg/m3) in Pensacola (OLE) 



Figure 104. Organic carbon concentration 24-hour averages (p.g/rn3) in Pensacola (PNS) 

Figure 105. Organic carbon concentration 24-hour averages (pg/rn3) in Yorkville 



Figure 106. Organic carbon concentration 24-hour averages @dm3) in Fort McPherson 

Figure 107. Organic carbon concentration 24-hour averages (&m3) in South Dekalb 
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Figure 108. Organic carbon concentration 24-hour averages (pg/m3) in Tucker 

Figure 109. Organic carbon concentration 24-hour averages (pg/m3) in Breton 



Figure 110. Organic carbon concentration 24-hour averages (pg/m3) in Chassahowitzka 

National Wildlife 

Figure 1 11. Organic carbon concentration 24-hour averages (pg/m3) in Cohutta 



Figure 1 12. Organic carbon concentration 24-hour averages (pg/m3) in Everglades 

National Park 

Figure 1 13. Organic carbon concentration 24-hour averages (pg/m3) in Okefenokee 

National Wildlife Refuge 
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Figure 114. Organic carbon concentration 24-hour averages (&m3) in St. Marks 

Figure 1 15. Organic carbon concentration 24-hour averages tPg/m3) in Sipsy Wilderness 
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Figure 116. Maximums, minimums and averages of elemental carbon concentrations 24- 

hour averages (CLg/m3) from August 12 to September 15,2000 

Figure 1 17. Mass percentage averages of elemental carbon in PM 2.5. 



Figure 118. Elemental carbon concentration 30-minute averages (pg/m3) in La Porte 

Figure 11 9. Elemental carbon concentration 30-minute averages (pg/m3) in Williams 
Tower 



Figure 120. Elemental carbon concentration 24-hour averages (Irg/m3) in North 
Birmingham 

Figure 121. Elemental carbon concentration 24-hour averages (&m3) in Centreville 



Figure 122. Elemental carbon concentration 24-hour averages (yglm3) in GulQort 

Figure 123. Elemental carbon concentration 24-hour averages (p.g/m3) in Jefferson Street 



Figure 124. Elemental carbon concentration 24-hour averages (pg/m)) in Oak Grove 

Figure 125. Elemental carbon concentration 24-hour averages (pg/m3) in Pensacola 
(OLE) 



Figure 126. Elemental carbon concentration 24-hour averages (pg/m3) in Pensacola 
(PNS) 

Figure 126. Elemental carbon concentration 24-.hour averages (pg/m3) in Yorkville 



Figure 127. Elemental carbon concentration 24-hour averages (pg/m3) in Fort McPherson 

Figure 128. Elemental carbon concentration 24-hour averages (pg/rn3) in South Dekalb 



Figure 129. Elemental carbon concentration 24-hour averages (pg/m3) in Tucker 

Figure 130. Elemental carbon concentration 24-hour averages ( .~~/rn ')  in Breton 



Figure 13 1. Elemental carbon concentration 24-hour averages (pg/rn3) in Chassahowitzka 
National Wildlife 

Figure 132. Elemental carbon concentration 24-hour averages (pg/m3) in Cohutta 



Figure 133. Elemental carbon concentration 24-hour averages (pg/m3) in Everglades 
National Park 

Figure 134. Elemental carbon concentration 24-hour averages &g/m3) in Okefenokee 
National Wildlife Rehge 



Figure 135. Elemental carbon concentration 24-hour averages (pg/rn3) in St. Marks 

EC-S IPS 1 

Figure 136. Elemental carbon concentration 24-hour averages @g/rn3) in Sipsy 
Wilderness 



Table 1. Measurement stations 

ID Source x-lon y-lat NAME 

LP Kl3 -95.069 29.671 La-Porte(TX) 

WT Kl3 -95.475 29.750 Will-Tower(TX) 

BHM SEARCH -86.815 33.553 North-Birmingham(AL) 

CTR SEARCH -87.250 32.902 Centreville(AL) 

GFP SEARCH -89.050 30.391 Gulfport(MS) 

JST SEARCH -84.413 33.776 Jefferson-St(At1anta-GA) 

OAK SEARCH -88.932 30.985 Oak-Grove(MS) 

OLE SEARCH -87.376 30.550 Pensacola(FL)-OLE 

PNS SEARCH -87.257 30.437 Pensacola(FL)-PNS 

YRK SEARCH -85.046 33.931 Yorkville(GA) 

FTM ASACA -84.443 33.699 Fort-McPherson(At1anta-GA) 

SDK ASACA -84.290 33.688 South-Dekalb(At1anta-GA) 

TUC ASACA -84.214 33.848 Tucker(At1anta-GA) 

BRETl IMPROVE -89.207 29.1 19 Breton(LA) 

CHASl IMPROVE -82.555 28.748 Chassahowitzka-National-Wildlife(FL) 

COHUl IMPROVE -84.626 34.785 Cohutta(GA) 

EVER1 IMPROVE -80.68 1 25.391 EvergladesNational-Park(FL) 

OKEFl IMPROVE -82.128 30.740 Okefenokee-National-Wildlife-Refuge(GA) 

SAMAl IMPROVE -84.161 30.093 St-Marks(FL) 

SIPS1 IMPROVE -87.339 34.343 Sipsy Wilderness(AL) 

Table 2. Number of exceeding the ozone standard for each station from August 12 to 
September 1 5,2000 

Sample Size LP WT BHM CTR GFP JST OAK OLF PNS YRK 

1-hour standard 840 1 9 4 4 3 0 9 0 3 3 0  

8-hour standard 105 7 2 3 8 3 4 6 1 4 1 2 8  



Table 3.1. Correlation coefficients (r ) of ozone concentrations 1-hour averages 

Ozone(lhr1 LP WT BHM CTR GFP JST OAK OLE PNS YRK 

WT 1.00 0.41 0.42 0.48 0.41 0.48 0.42 0.33 0.25 

BHM 1.00 0.77 0.56 0.69 0.73 0.61 0.68 0.71 

CTR 1.00 0.67 0.68 0.76 0.70 0.72 0.71 

GFP 1.00 0.55 0.81 0.72 0.71 0.40 

JST 1.00 0.60 0.58 0.62 0.73 

OAK 1.00 0.86 0.80 0.63 

OLE 1.00 0.88 0.63 

PNS 1.00 0.61 

YRK 1 .OO 

Table 3.2. Correlation coefficients (r ) of ozone coi~centrations 24-hour averages 

Ozone(24hr) LP WT BHM CTR GFP JST OAK OLE PNS YRK 

LP 1.00 0.87 0.18 0.26 0.66 0.03 0.38 0.35 0.25 -0.21 

WT 1.00 0.09 0.16 0.51 0.07 0.34 0.24 0.12 -0.09 

BHM 1.00 0.84 0.43 0.63 0.67 0.47 0.64 0.64 

CTR 1.00 0.64 0.65 0.84 0.73 0.78 0.67 

GFP 1.00 0.22 0.87 0.85 0.74 0.19 

JST 1.00 0.64 0.56 0.65 0.79 

OAK 1.00 0.91 0.89 0.62 

OLE 

PNS 

YRK 1 .00 



Table 4. Correlation coefficients (r ) of PM 2.5 concentrations 24-hour averages 
- - - - - - - - - - 

PM2.5 LP WT BHM CTR GFP JST OAK OLE PNS YRK FT SD TU OKEFl SlPSl EVERlCHASl 

LP 1.00 0.91 -0.01 -0.17 0.60 -0.17 0.36 0.49 -0.05 -0.06 0.33 -0.70 0.60 -0.24 -0.03 -0.04 

WT 1.00 0.24 0.12 0.72 0.04 0.41 0.51 0.00 0.09 0.28 -0.64 0.65 0.40 0.16 0.17 

BHM 1.00 0.77 0.51 0.65 0.02 -0.08 0.11 0.64 0.32 0.61 -0.38 0.65 -0.13 0.01 

CTR 

GFP 

JST 

OAK 

OLE 

PNS 

YRK 1 .OO 0.74 0.94 -0.18 0.42 0.07 0.59 

FT 

SD 1 .OO 0.29 0.91 0.04 0.71 

TU 1.00 

OKEFl 1.00 -0.3 1 0.43 0.64 

SIPS1 1.00 0.12 0.94 

EVER1 1.00 0.52 

CHASl 1 .OO 

Table 5. Correlation coefficients (r ) of sulfate concentrations 24-hour averages 

SO4 LP WT BHM CTR GFP JST OAK OLE PNS YRK FT SD TU OKEFl SlPSl EVERlCHASl 

BHM 1.00 0.92 -0.01 0.06 0.44 0.23 0.11 0.58 -0.56 0.30 -0.05 -0.70 0.99 -0.13 -0.07 

CTR 1.00 0.25 0.02 0.61 0.37 0.33 0.03 0.53 0.03 -0.06 -0.10 0.54 0.02 

GFP 1.00 0.83 0.93 0.95 0.95 0.45 0.19 0.55 0.76 0.69 -0.08 0.83 

JST 

OAK 

OLE 

PNS 1.00 0.45 0.34 0.59 0.80 0.67 0.06 0.78 

YRK 1.00 -0.06 0.91 0.87 0.63 0.18 0.86 

TU 1.00 0.80 -0.31 0.69 0.81 

OKEFl 1.00 -0.24 0.57 0.84 

SlPSl 

EVERl 

CHASl 



Table 6. Correlation coefficients (r ) of ammonium concentration 24-hour averages 

NH4 LP W T  BHM CTR GFP JST OAK OLE PNS YRK FT SD TU OKEFl SIPSl EVERlCHASl 

LP 1.00 0.85 -0.37 -0.22 0.76 0.10 0.22 0.79 0.59 0.18 0.45 0.01 0.22 

WT 1.00 -0.42 -0.31 0.70 -0.03 0.04 0.71 0.46 -0.04 0.09 -0.04 -0.11 

BHM 1.00 0.63 0.02 0.07 0.45 0.20 0.18 0.12 0.48 -0.02 0.10 

CTR 

GFP 

JST 

OAK 

OLE 

PNS 

YRK 1.00 0.17 0.79 0.68 

FT 1 .OO 0.82 0.29 

TU 1 .OO 

OKEFl 

SIPSl 

EVERl 

Table 7. Correlation coefficients (r ) of nitrate concentrations 24-hour averages 

NO3 LP WT BHM CTR GFP JST OAK OLE PNS YRK FT SD TU OKEFl SIPSl EVERlCHASl 

LP 1.00 0.83 -0.47 0.77 0.10 -0.17 0.27 0.10 0.1'7 -0.27-0.15 0.26 -0.35 -0.26 -0.40 0.36 -0.10 

WT 1.00 -0.29 0.67 -0.08 -0.06 0.31 -0.18 0.00 -0.26 0.01 0.28 -0.30 -0.26 -0.46 0.40 0.06 

BHM 1.00 -0.25 0.12 0.57 0.1 1 -0.24 -0.36 0.57 0.20 0.43 0.51 -0.22 -0.68 0.49 -0.01 

CTR 

GFP 

JST 

OAK 

OLE 

PNS 

YRK 1.00 -0.09 0.29 0.48 -0.20 0.25 0.35 0.01 

FT 1.00 0.66 0.73 -0.34 0.20 0.70 0.37 

SD 1.00 0.23 -0.18 0.16 0.35 0.20 

TU 1.00 0.15 0.90 0.08 0.57 

OKEFl 1.00 0.02 0.26 0.51 

SIPS1 1.00 -0.3 1 -0.15 

EVERl 



Table 8. Correlation coefficients (r ) of organic carbon concentrations 24-hour averages 
O C  LP WT BHM CTR GFP JST OAK OLE PNS YRK FT SD TU OKEFl SIPS1 EVERlCHASl 

LP 1.00 0.85 -0.54 -0.50 0.17 -0.43 -0.38 0.27 -0.46 -0.70-0.21 -0.27 -0.15 -0.17 -0.42 -0.10 -0.24 

WT 1.00 -0.47 -0.43 0.27 -0.39 -0.34 0.48 -0.39 -0.63 -0.06 0.18 -0.21 0.02 -0.51 -0.04 -0.18 

BHM 1.00 0.78 -0.20 0.45 0.48 -0.20 0.49 0.53 0.62 -0.23 -0.03 0.32 -0.35 0.56 

CTR 

GFP 

JST 

OAK 

OLE 

PNS 

YRK 1.00 0.29 0.09 0.21 -0.02 0.80 0.25 0.35 

FT 1.00 0.24 0.39 0.52 0.57 0.78 0.93 

SD 1.00 0.25 0.30 -0.64 -0.34 -0.46 

TU 1.00 -0.24 -0.35 0.66 0.26 

OKEFl 1.00 0.04 -0.44 0.39 

SIPS1 1 .OO -0.41 0.88 

EVER1 1.00 0.16 

Table 9. Correlation coefficients (r ) of elemental carbon concentrations 24-hour averages 

EC LP WT BHM CTR GFP JST OAK OLE PNS YRK FT SD TU OKEFl SIPS1 EVERlCHASl 

LP 1.00 0.13 0.39 0.02 -0.42 0.07 -0.12 0.23 -0.38 0.18 -0.24 -0.13 -0.24 -0.12 0.78 0.16 -0.26 

WT 1.00 -0.04 0.14 0.39 0.18 0.04 0.22 -0.15 0.20 -0.03 -0.23 0.43 -0.17 0.06 -0.20 0.33 

BHM 1.00 0.67 -0.23 0.72 0.43 0.35 0.36 0.44 0.89 0.60 0.21 0.47 1.00 0.06 0.31 

CTR 1.00 0.38 0.57 0.92 0.74 0.80 0.47 0.01 0.49 0.06 0.77 0.97 0.22 0.63 

GFP 1.00 0.01 0.35 0.32 0.44 -0.1 1 -0.43 0.02 0.71 0.76 -1.00 -0.1 1 0.93 

JST 1.00 0.28 0.04 0.30 0.36 0.38 0.43 0.21 0.35 0.96 0.36 0.38 

OAK 

OLE 

PNS 

YRK 1.00 0.22 -0.15 -0.26 -0.04 0.56 0.46 0.18 

FT 1.00 0.13 0.23 0.04 0.97 0.14 0.28 

SD 1.00 0.20 0.45 0.56 0.51 0.57 

TU 1.00 0.35 -0.89 -0.23 0.01 

OKEFl 1.00 0.26 0.04 0.60 

SIPS1 1.00 0.55 0.38 

EVER1 1.00 0.28 
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I. INTRODUCTION 

The Houston area is among non-attainment areas, where pollutant levels are higher 

than the National Ambient Air Quality Standard (NAAQS). Thus, EPA provided a 

control strategy over the Houston area. We examined how effectively the control 

strategy would reduce pollutant concentrations over the Houston area using 

Community Multiscale Air Quality (CMAQ) modeling system. 

We modeled two episodes. One is from August 11 to 20, 2000, and the o.ther is 

from August 11 to 20,2007. First, we collected an emission inventory in 2000, and 

modeled an air quality from August 11 to 20, 2000. In addition, we evaluated the 

simulated result by comparing the measured concentrations. Then, we prepared an 

emission inventory in 2007 by applying a federal control strategy and EGAS 

(Economic Growth Analysis System) growth factors based on the emission inventory in 

2000. Finally, we modeled the air quality in Houston from August 11 to 20, 2007 using 

the emission inventory in 2007. 

We used a SAPRC-99 chemical mechanism in simulation. The projection of the 

model grid is a Lambert conformal conic projection with a center of (40 N, 90 W) and 

standard parallels of 30 N and 60 N. An origin of the model domain is (- 1,188,000 m, - 



1,620,000 m) and the size of each grid is (36,000 m, 36,000 m). Figure 1 represented 

the model domain and grids. 

Section 2 showed the evaluation of modeling result from August 11 to 20,2000. 

Section 3 described the changes of emission inventory from 2000 to 2007. Section 4 

compared pollutant concentrations in 2000 and in 2007. 



Figure 1. Model domain. Lambert conformal conic projection with a center of (40 N, 90 
W) and standard parallels of 30 N and 60 N. An origin of the model domain is (- 1,188,000 
m, - 1,620,000 m) and the size of each grid is (36,000 m, 36,000 m). The Houston area is 
inside a green rectangle. 



2. Model Evaluation 

We compared simulated pollutant concentrations with measured concentrations 

from August 11 to 20, 2000. Table 1 illustrated measured pollutant species and 

simulated species we compared with. Figure 2 showed the measurement stations over 

the Houston area and Table 2 described those stations in detail. Table 3 illustrates 

statistics representing differences of measured and simulated ozone concentrations only 

when concentrations were higher than 40 ppb. Figures 3 through 14 showed time series 

plots of the measured and simulated pollutants concentrations. 



Table 1. Comparable simulated pollutants to measured pollutants 
-- - -- - - . - - - - 

I 

Measured 
Pollutants 

Ammonium 

Nitrate 

Sulfate 

Organic Carbon 

Elemental Carbon 

Ozone 

Carbon Monoxide 

Sulfur Dioxide 

Nitric Oxide 

NOx 

Simulated Pollutants (SAPRC-99) 

AORGAJ, AORGAI, AORGPAJ, AORGPAI, APRGBJ, 
AORGBI 

AECJ, AECI 

AS04J, AS041, ANH4J, ANH41, AN03J, AN031, 
AORGAJ, AORGAI, AORGPAJ, AORGPAI, APRGBJ, 

AORGBI, AECJ, AECI, A25J, A251 

NO, NO2 

NO, N02, N03, N205, HN03, HN04, HONO, RN03, 
R02-N, BZN02-0, PAN, PAN2 and MA-PAN 



Figure 2. Measurement stations in the Houston area over plotted by model grids. 
Numbers with a yellow background are a column and a row of each grids. 
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Table 2. Measurement stations with their coordinates. 

SiteID State ID Cnty ID Pollutants Lon Lat Street 

AIRS-0014 48 167 0 3  / PM25 -94.856 29.263 87 15 CESSNA STREET 

AIRS-0024 48 201 0 3  / PM25 -95.327 29.901 4510 112 ALDINE MAIL RD 

AIRS-0026 48 201 PM25 -95.125 29.803 1405 SHELDON ROAD 

AIRS-0029 48 201 0 3  -95.675 30.039 16822 KITZMAN 

AIRS-0046 48 201 0 3  -95.284 29.828 7330 112 NORTH WAYSIDE 

AIRS-0047 48 201 0 3  -95.489 29.835 4401 112 LANG RD. 

AIRS-0051 48 201 0 3  / PM25 -95.474 29.624 13826 112 CROQUET 

AIRS-0053 48 167 PM25 -94.919 29.390 I7TH & 5TH AVE. N. PUMPHOUSE ROOF 

AIRS-0055 48 201 0 3  / PM25 -95.494 29.695 6400 BlSSONNET STREET 

AIRS-0058 48 201 PM25 -95.031 29.772 7210 112 BAYWAY DRIVE 

AIRS-0062 48 201 0 3  / PM25 -95.268 29.626 9726 112 MONROE 

AIRS-0066 48 201 0 3  -95.504 29.725 3333 112 HWY 6 SOUTH 

AIRS-0070 48 201 0 3  -95.317 29.733 5425 POLK AVE., SUITE H 

AIRS-0803 48 201 PM25 -95.18 1 29.748 1504 HADEN ROAD 

AIRS-1002 48 167 0 3  -94.933 29.399 2701 13TH AVE NORTH AT LOGAN 

AIRS-1003 48 3 9 0 3  / PM25 -95.398 29.01 1 426 COMMERCE STREET 

AIRS-1005 48 167 PM25 -95.104 29.504 171 CALDER DRIVE 

AIRS-1034 48 201 0 3  -95.221 29.768 1262 112 MAE DRIVE 

AIRS-1035 48 201 0 3  / PM25 -95.257 29.733 9525 CLINTON DR 

AIRS-1037 48 201 0 3  / PM25 -95.361 29.751 1307 112 CRAWFORD ST. 

AIRS-1039 48 201 0 3  / PM25 -95.128 29.669 5414 1\2 DURANT ST. 

LP 48 201 0 3  / PM25 / Others -95.069 29.671 La Porte 

WT 48 201 0 3  / PM25 / Others -95.475 29.750 Williams Tower (254 rn above ground level) 



Table 3. Statistics of ozone concentration from August I 1  to August 20, 2000. 
(cut off value: 40 ppb) 

1 

I 

Site ID 
Model MBE MNB RMSE 

(col, row) ( P P ~ )  PA1 ( P P ~ )  
I 

I AIRS-0014 (20,131 16.349 17.859 29.83 

I 
' AIRS- 1002 
i (20,141 8.519 8.813 26.67 
I 
I 

AIRS- 1 003 (19,131 2.184 -1.33 17.78 

(19,151 
5"' layer 



I + Model(l9,I 5)-NH4(5th layer) OBS(WT)-NH4(254rn) - Model(19,I 5)-NH!(SFC) 

Figure 3. Comparisons of measured and simulated daily ammonium concentrations. (a) is for 
the LP station and (b) is for the WT station 



+~ode l ( l 9 .15 ) -~03 (5 th  layer) -+- OBS(WT)-N03(254rn) - Model(l9,I 5)-N03(SFC) I 

Figure 4. Comparisons of measured and simulated daily nitrate concentrations. (a) is for the 
LP station and (b) is for the WT station 



+ Model(l9.15)-S04(5th layer) A OBS(WT)-S04(254m) - Model(l9,I 5)-SO4(SFC) 
- 

Figure 5. Comparisons measured and simulated daily sulfate concentrations. (a) is for the LP 
station and (b) is for the WT station 



1- ~ode1(19,15)-0~(5th layer) OBS(WT)-OC(254m) - Model(l9,I 5)-OC(SFC) I 

Figure 6. Comparisons of measured and simulated daily organic carbon concentrations. (a) 
is for the LP station and (b) is for the WT station. 



+ Model(l9,I 5)-EC(5th layer) - OBS(WT)-EC(254m) -- Model(l9,15)-EC(SFC) 

Figure 7. Comparisons of measured and simulated daily elemental carbon concentrations. 
(a) is for the LP station and (b) is for the WT station 



-+- Mode1(19,15)-PM2.5(5th layer) --e OBS(WT)-PM2.5(TEOM-254m) - Model(l9,I 5)-PM2.5(SFC) 

Figure 8. Comparisons of measured and simulated hourly PM 2.5 concentrations. (a) is for the 
LP station, and (b) is for the WT station. 



+Model(l9,15)-PM2.5(5th layer) --c OBS(WT)-PM2.5(254m) -- Model(l9,I 5)-PM2.5(SFC) 

Figure 9. Comparisons of measured and simulated daily PM 2.5 concentrations. (a) is for the 
LP station, and (b) is for the WT station. 



Figure 9. Continued. (c) is for the 0024, 0055, 1035, and 1037 stations, and (d) is for the 0026, 
0058,0803, 1039, and LP stations. 



Figure 9. Continued. (e) is for the 005 land 0062 stations, and ( f )  is for the 0053 and 1005 
stations. 



Figure 9. Continued. (g) is for the 1003 station, and (h) is for the 0014 station. 



Figure 10. Comparisons of measured and simulated hourly ozone concentrations. (a) is for the 
LP station, and (b) is for the WT station. 



Figure 10. Continued. (c) is for the 0014 station, and (d) is for the 0024, 0046, 0047, 0055, 
0066, 0070, 1034, 1035 and 1037 stations. 



Figure 10. Continued. (e) is for the 005 1,0062 stations, and ( f )  is for the 1003 station. 



Ozone(19,15)-(5th layer) 

M o d e 1 ( 1 9 , 1 5 ) - ( 5 t h  layer) - OBS(WT-254111) 

Figure 10. Continued. (g) is for the 0029 station, and (h) is for the WT station. 



Figure 11. Comparison of measured and simulated hourly carbon monoxide concentrations 
for the LP station. 



Figure 12. Comparison of measured and simulated hourly sulfbr dioxide concentrations for 
the LP station. 



Figure 13. Comparison of measured and simulated hourly nitric oxide concentrations for the 
LP station. 



Figure 14. Compaiison of measured and simulated hourly NOy concentrations for the LP 
station. 



3. Emissions in 2000 and in 2007 

We examined changes in an emission inventory from 2000 to 2007. We collected 

an emission inventory in 2000. Then, we prepared an emission inventory in 2007 by 

applying a federal control strategy and EGAS (Economic Growth Analysis System) 

growth factors. We plotted the emission of criteria pollutants: ammonium, carbon 

monoxide, volatile organic carbon, sulfur dioxide, PM 2.5, PM 10, and NOx in 2000 

and 2007. Figure 15 showed sum of area, nonroad, mobile, point, and biogenic sources 

of emission. Figures 16 through 23 illustrated emissions of each source. 
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Figure 15. Total emission in 2000 and in 2007. (a) is for ammonium emission, and (b) is for 
carbon monoxide emission. 
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Figure 15. Continued. (c) is for volatile organic carbon emission, and (b) is for sulfur 
dioxide emission. 
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Figure 15. Continued. (e) is for PM 2.5, and (f) is for PM 10 emission. 
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Figure 1 5. Continued. (g) is for NOx emission. 
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Figure 16. Ammonium emission in 2000 and in 2007 [tonslday]. (a) is area source emission, 
and (b) is nonroad source emission. 
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Figure 16. Continued. (c) is point source (electricity generating units) emission, and (d) is 
point source (non-electricity generating units) emission. 
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Figure 16. Continued. (e) is mobile source emission 
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Figure 17. Carbon monoxide emission in 2000 and in 2007 [tondday]. (a) is area source 
emission, and (b) is nonroad source emission. 
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Figure 17. Continued. (c) is point source (electricity generating units) emission, and (d) is 
point source (non-electricity generating units) emission. 
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Figure 17. Continued. (e) is mobile source emission 
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Figure 18. Volatile organic carbon emission in 2000 and in 2007 [tonslday]. (a) is area 
source emission, and (b) is nonroad source emission. 
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Figure 18. Continued. (c) is point source (electricity generating units) emission, and (d) is 
point source (non-electricity generating units) emission. 
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Figure 18. Continued. (e) is mobile source emission, and (f) is biogenic emission. 
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Figure 19. Sulhr dioxide emission in 2000 and in 2007 [tonslday]. (a) is area source 
emission, and (b) is nonroad source emission. 
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Figure 19. Continued. (c) is point source (electricity generating units) emission, and (d) is 
point source (non-electricity generating units) emission. 
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Figure 19. Continued. (e) is mobile source emission 
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Figure 20. PM 2.5 emission in 2000 and in 2007 [tonslday]. (a) is area source emission, and 
(b) is nonroad source emission. 
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Figure 20. Continued. (c) is point source (electricity generating units) emission, and (d) is 
point source (non-electricity generating units) emission. 
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Figure 20. Continued. (e) is mobile source emission 
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Figure 21. PM 10 emission in 2000 and in 2007 [tonslday]. (a) is area source emission, and 
(b) is nonroad source emission. 
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Figure 21. Continued. (c) is point source (electricity generating units) emission, and (d) is 
point source (non-electricity generating units) emission. 
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Figure 2 1. Continued. (e) is mobile source emission 
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Figure 22. NOx emission ill 2000 and in 2007 [tonslday]. (a) is area source emission, and (b) 
is nonroad source emission. 
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Figure 22. Continued. (c) is point source (electricity generating units) emission, and (d) is 
point source (non-electricity generating units) emission. 
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Figure 22. Continued. (e) is mobile source emission 
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Figure 23. Biogenic NO emission in 2000 and in 2007 [tonslday]. 



4. Air Quality in Houston 

We simulated an air quality in the Houston area from August 11 to 20, 2000 and 

from August 20,2007. Then, we compared hourly pollutant concentrations in 2000 and 

in 2007 in Figures 24 through 47. Those compared pollutants are ammonium, nitrate, 

sulfate, organic carbon, elemental carbon, PM 2.5, ozone, carbon monoxide, sulfur 

dioxide, nitric oxide, NOx and NOy. 



Figure 24. Comparison of the simulated hourly ammonium concentrations in 2000 and in 
2007. (a) is for the 19th column and the l S h  row of grids and (b) is for .the 20th column and 
the 1 Sh row. 



Figure 24. Contii?ued. (c) is for the 19th column and the 14th row of grids and (d) is for the 
20th column and the 14th row. 



Figure 24. Continued. (e) is for the lgth column and the 13'h row of grids and (9 is for the 
20th column and the 1 3th row. 
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Figure 25. Changes (%) of ammonium concentrations from the 2000 year to the 2007 year. 



Figure 26. Comparison of the simulated hourly nitrate concentrations in 2000 and in 2007. 
(a) is for the lgth column and the l S h  row of grids and (b) is for the 20th column and the l S h  
row. 



Figure 26. Continued. (c) is for the 1 9th column and the 14th row of grids and (d) is for the 
20th column and the 14th row. 



Figure 26. Continued. (e) is for the 19th column and the 1 3th row of grids and (f) is for the 
20th column and the 1 3th row. 
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Figure 27. Changes (%) of nitrate concentrations from the 2000 year to the 2007 year. 



Figure 28. Comparison of the simulated hourly sulfate concentrations in 2000 and in 2007. 
(a) is for the 19th column and the 1 Sh row of grids and (b) is for the 20th column and the 1 5th 
row. 



Figure 28. Continued. (c) is for the lg th  column and the 14th row of grids and (d) is for the 
20th column and the 14th row. 



Figure 28. Continued. (e) is for the lgth column and the 1 3th row of grids and (0 is for the 
20th column and the 1 3th row. 
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Figure 29. Changes (%) of sulfate concentrations from the 2000 year to the 2007 year. 



Figure 30. Comparison of the simulated hourly organic carbon concentrations in 2000 and in 
2007. (a) is for the lgth column and the lSth row of grids and (b) is for the 20th column and 
the 1 5th row. 



Figure 30. Continued. (c) is for the lgth column and the 14th row of grids and (d) is for the 
20th column and the 141h row. 



Figure 30. Continued. (e) is for the 191h column and the 13th row of grids and (0 is for the 
20th column and the 13th row. 
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Figure 3 1. Changes (%) of organic carbon concentrations from the 2000 year to the 2007 
year. 



Figure 32. Comparison of the simulated hourly elemental carbon concentrations in 2000 and 
in 2007. (a) is for the 19th column and the I S h  row of grids and (b) is for the 20th column and 
the 1 Sh row. 



Figure 32. Continued. (c) is for the 19th column and the 14th row of grids and (d) is for the 
20th column and the 14th row. 



Figure 32. Continued. (e) is for the lgth column and the 13Ih row of grids and (0 is for the 
20th column and the 1 3th row. 
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Figure 33. Changes (%) of elemental carbon concentrations fiom the 2000 year to the 2007 
year. 



Figure 34. Comparison of the simulated hourly PM 2.5 concentrations in 2000 and in 2007. 
(a) is for the lgth column and the 15th row of grids and (b) is for the 20th column and the l S h  
row. 



Figure 34. Continued. (c) is for the 19Ih column and the 14th row of grids and (d) is for the 
20th column and the 14th row. 



Figure 34. Continued. (e) is for the 19th column and the 13th row of grids and (9 is for the 
20th column and the 13th row. 
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Figure 35. Changes (%) of PM 2.5 concentrations from the 2000 year to the 2007 year 



Figure 36. Comparison of the simulated hourly carbon monoxide concentrations in 2000 and 
in 2007. (a) is for the lgth column and the 1 5th row of grids and (b) is for the 20th column and 
the 1 row. 
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Figure 36. Continued. (e) is for the 19th column and the 13th row of grids and (f) is for the 
20th column and the 13th row. 



Figure 36. Continued. (c) is for the lgth column and the 14th row of grids and (d) is for the 
20th column and the 14th row. 
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Figure 37. Changes (%) of carbon monoxide concentrations from the 2000 year to the 2007 
year. 



Figure 38. Comparison of the simulated hourly sulfur dioxide concentrations in 2000 and in 
2007. (a) is for the 19th column and the 1 Sh row of grids and (b) is for the 20th column and 
the 1 Sh row. 



Figure 38. Continued. (c) is for the 191h column and the 141h row of grids and (d) is for the 
20th column and the 14th row. 



Figure 38. Continued. (e)  is for the 19th c o l ~ ~ m n  and the 13th row of grids and (f) is for the 
20th column and the 1 3th row. 
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Figure 39. Changes (%) of sulfur dioxide concentrations from the 2000 year to the 2007 year. 



Figure 40. Comparison of the simulated hourly ozone concentrations in 2000 and in 2007. 
(a) is for the 19th column and the 1 5th row of grids and (b) is for the 20th column and the 1 Sh 
row. 



Figure 40. Continued. (c) is for the 19th column and the 14th row of grids and (d) is for the 
20th column and the 14th row. 



Figure 40. Continued. (e) is for the lgth column and the 13th row of grids and (0 is for ,the 
20th column and the 1 3th row. 
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Figure 41. Changes (%) of ozone concentrations from the 2000 year to the 2007 year when 
ozone concentrations in 2000 were higher than 40 ppb. 



Figure 42. Comparison of the simulated hourly nitric oxide concentrations in 2000 and in 
2007. (a) is for the lgth column and the 1 5'h row of grids and (b) is for the 20th column and 
the 1 Sh row. 



Figure 42. Continued. (c) is for the lgth column and the 141h row of gnds and (d) is for the 
20th column and the 14th row. 



Figure 42. Continued. (e) is for the 191h column and the 13th row of grids and (f) is for the 
20th column and the 131h row. 
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Figure 43. Changes (%) of nitric oxide concentrations from the 2000 year to the 2007 year. 
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Figure 44. Comparison of the simulated hourly NOx concentrations in 2000 and in 2007. (a) 
is for the 19th column and the 15th row of grids and (b) is for the 20th column and the l S h  
row. 
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Figure 44. Continued. (c) is for the 191h column and the 14th row of gnds and (d) is for the 
20th column and the 14th row. 
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Figure 44. Continued. (e) is for the 19th column and the 13th row of gnds and (f) is for the 
20th column and the 13th row. 
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Figure 45. Changes (%) of NOx concentrations from the 2000 year to the 2007 year. 
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Figure 46. Cornparisoil of the simulated hourly NOy concentrations in 2000 and in 2007. (a) 
is for the lgth column and the lSh row of grids and (b) is for the 20th column and the 15th 
row. 
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Figure 46. Continued. (c) is for the l9lh column and the 14th row of grids and (d) is for the 
20th column and the 14th row. 
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Figure 46. Continued. (e) is for the 19th column and the 1 31h row of grids and (f) is for the 
20th column and the 13th row. 
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Figure 47. Changes (%) of NOy concentrations from the 2000 year to the 2007 year. 



5. Conclusion 

EPA provided a control strategy over the Houston area. We examined how 

effectively the control strategy would reduce pollutant concentrations by comparing an 

air quality in 2000 with that in 2007. 

First, we collected an emission inventory in 2000, and modeled an air quality in the 

Houston area from August 11 to 20,2000. We compared model output with measured 

ammonium, nitrate, sulfate, organic carbon, elemental carbon, PM 2.5 total mass, 

ozone, carbon monoxide, sulfur dioxide, nitric oxide and Noy concentrations. Except 

nitrate, which model underestimated, all modeled pollutant concentrations were very 

close to measured ones. 

In addition, we prepared an emission inventory in 2007 based on an emission 

inventory in 2000. We applied EGAS (Economic Growth Analysis System) growth 

factors and a federal control strategy for preparing emissions in 2007. Emissions of 

carbon monoxide, volatile organic carbon, and NOx in 2007 were lower than those in 

2000. Nevertheless, emissions of ammonia, sulfur dioxide, PM 2.5 and PM 10 in 2007 

were higher than those in 2000. 



Finally, we compared pollutant concentrations in 2000 and .those in 2007. 

Arnminium, sulfate, PM 2.5 and sulfur dioxide concentrations increased from 2000 to 

2007. However, nitrate, organic carbon, elemental carbon, ozone, carbon monoxide, 

nitric oxide, NOx, and NOy concentrations decreased from 2000 to 2007 


