
Finding Kernels in Non-Linear Data-Driven CHC Solving

Michael Eden
Trustable Programming

Georgia Institute of Technology

Abstract

Program verification has seen a lot of progress, but
its still unable to automatically find proofs for in-
dustry programs. This paper builds on data-driven
approaches from previous work [11] to provide a
more robust automatic prover for programs with
non-linear loop invariants. It does so by attempt-
ing to find the correct kernel for the relation that
makes the invariant linear. This is an easy addi-
tion to existing systems and can be used with any
data-driven approach, allowing it to be easily imple-
mented on top of them. By finding a suitable kernel,
many difficult non-linear invariants are easily found.

1 Background

Questions on computability and decidability have
perplexed theoretical computer scientists for many
years. Early research showed that some classes of
problems are undecidable, i.e. no algorithm could
determine an answer in a finite amount of time [9].
However there are incredibly useful problems that
fall into this class, such as determining if an algo-
rithm will ever end or determining if it contains er-
rors. Since malicious actors exploit software by find-
ing errors in its code, the process of automatically
finding those errors becomes invaluable to people,
businesses, and the government. There are some
who believe that, since the problem is impossible,
its not worth pursuing, but only a few years after
being ruled out a solution was discovered and pub-
lished [9]. These two discoveries weren’t conflicting,
rather the solution simply didnt work in all cases.

Even though it was incomplete, that first solution
began a mission to find an ever more (but not quite)
complete method. The focus of safety verification
has been to attempt to determine if some programs
could reach any error states and not to develop a sys-

tem that works for all programs [4]. When rephrased
like this the search seems more optimistic. After all,
humans can do this task in a finite amount of time
for many programs. Many systems have been pro-
posed, but currently encoding programs into a sys-
tem of Horn Clauses (a special form of logical equa-
tion) stands out [8]. If such a system has no solution,
then there is no way for a program to reach an error
state. This method has had significant success but
is incomplete in an important way. One of its vital
tasks is being able to summarize a loop body so it
can avoid essentially simulating a run of the input
program. This is an impossible task, one basically
has to find a function that maps every iteration of a
loop to a program state efficiently. A common prob-
lem is that this function becomes too specific, i.e.
it becomes a table of previous iterations and their
states. Such a table is not amenable to generaliza-
tion or abstraction; it is too specific to past itera-
tions to help understand future ones. Specifically,
the problem described here is the issue of finding
weaker interpolants when finding loop invariants.

This research focuses on finding more general
(weaker) loop invariants in the realm of boolean and
integer arithmetic. It reviews existing techniques
for finding linear invariants, especially data-driven
methods, and explores how they can be extended to
fit non-linear loops. To accomplish this, a mapping
from the state space to a higher-dimensional and
non-linear space is found (a kernel). Since the focus
is augmenting existing linear solvers, the method is
limited by the SMT solver used (Z3 here). Hopefully
these weaker non-linear interpolants will generalize
better than their linear counterparts.

2 Related Work

In 1936 Alan Turing proved that no algorithm could
determine in a finite amount of time if a program will

1



always terminate or continue to run forever [9]. Un-
fortunately this also means that many related and
useful questions are also undecidable about general
programs. For instance one cannot always know
whether a program will have errors in it until its ac-
tually run, an obvious property of interest in indus-
try. Still thirteen years later Turing also published
a now widely used method of proving program ter-
mination [9]. In the face of a provably impossible
problem, Turings method simply never halts when
it cannot decide on an answer.

This led to the comparatively easier problem of
answering “Will Halt”, “Will Not Halt” and “Un-
known” for every program. Since then the fields
of program termination, software verification, pro-
gram equivalence, etc. have all been attempting to
slim down the cases in which their algorithms result
in “Unknown” [4] [10] [3]. A driving and practical
motivation for program verification is that software
embedded into the United States’ electric grid, med-
ical instruments, nuclear weapons storage, and other
vital components of infrastructure could contain er-
rors. Proving that these systems work correctly is
both beneficial at face value and prevent attackers
from compromising them.

Verification has thankfully seen a lot of progress
since it was able to transform programs into a con-
cise logical representation known as Horn Clauses
and then solve the resulting systems efficiently [8].
As reported by Albarghouthi, there is now a fission
in the approach used to solve these systems [1]. One
style attempts to find properties at every point in
the program while the other only tries to find prop-
erties when they are needed to prove some goal [1]. It
might seem that the former is clearly worse, however
it can solve some programs which the latter cannot
and vice-versa. The disagreement here, at its core,
is about finding the right property to prove. A lot
of research effort has been poured into this problem,
and so far the consensus is leaning towards the latter
“lazy” approach [1] [8] [7].

A quick consequence of the “lazy” approach is the
ability to completely automate the proving process.
A key in the fully automated verification process
is the ability to find some invariant that is consis-
tent across every iteration of a loop. Since programs
without loops (and without recursion) are relatively
simple, it is this automatic finding of loop invariants
that has taken hold of a lot of research today [8] [10].
Issues with finding these invariants are consistent
with the overall theme and difficulty of finding the
right property to prove. In McMillan’s research, he
demonstrates an automatic proof that a loop start-
ing at zero and incrementing a counter by two can

never be forty-one [8].

function count(N)
i← 0
while i < N do

i← i + 2
end while
assert i 6= 41

end function

Figure 1: Program described in [8]

However the tool in [8] does not prove “the loop
starts at an even number and adds an even num-
ber, so it cannot be odd” as many people might
hope. Instead it shows “once the loop gets to 40,
the only next possible value is 42” [8]. In the-
ory, McMillan’s method can find any invariant ex-
pressed in linear arithmetic (and the modulo oper-
ator is linear for a constant modulus, since q = p
mod c→ p = k ·c+q). In practice, Z3 does not gen-
eralize the multiple unfoldings of this loop to arrive
at that invariant. It tends to generate facts that are
too specific, large, and complex about the current
program state and does not provide a more general
and useful fact [2] [5]. According to Albarghouthi,
the principle of Occams Razor should somehow be
embedded into the invariant finding process in the
hopes a simpler fact will be a more useful one. This
is akin to “regularization” in many statistical meth-
ods.

Albarghouthi has made significant progress in
finding incredibly concise and general interpolants
(a precursor to loop invariants) in Quantifier Free
Linear Rational Arithmetic (QFLRA). This encom-
passes a significant but not total portion of programs
in industry [2]. Finding these loop invariants are vi-
tal since they are the biggest roadblock to automatic
verification. Automatic is important here since most
use cases involve large complex software that would
take a long time to annotate with invariants.

Another gap in the current research is the avail-
ability of a dataset of real-world programs. Many of
the seminal papers here are from Microsoft Research,
which tests their methods on Windows Drivers
[3]. This research benefits from the existing set
of testable programs but, being a data-driven ap-
proach, will always benefit more from more data.
Hopefully there will be a large de-facto dataset in
the future, since this is a major hurdle when quan-
tifying new methods and improving old ones.

2



3 Implementation

The implementation of this method is based off the
idea that [11] does a great job with linear data and
that it can be extended to fit non-linear data by sim-
ply applying a different kernel. The kernel can be
“guessed” by analyzing the source code of the incom-
ing program. In the method described in [11] there
was no direct analysis of the program source, so the
process would be more difficult. It’s also possible to
learn the correct space purely through the data, but
this requires a large dataset. Solving logical systems,
therefore, has a strange relationship with statistical
methods since they contain very little data and de-
mand a perfect fit (completely “over-fitted”). As de-
scribed earlier a “simpler” solution is preferable so
that it can generalize, but this generalization must
not cause any loss in accuracy.

3.1 Linear CHCs

The function described in Figure 2 is a simple
quadratic relationship between x and y. One might
think that this non-linearity would pose a problem,
but that’s not the case.

function quadratic
x← 1, y ← 1
loop

y ← y + x
x← x + 2
assert y ≥ x

end loop
end function

Figure 2: Simple quadratic program

The iteration is simple, positive (brown red) and
negative (blue) points are loaded into a classifier to
be separated (Figure 3). Positive points are sim-
ply variables values that the program will encounter
(found by unfolding the loop) and that agree with
the goal (if they do not, one can show the goal is
wrong). While negative points are counterexamples
that Z3 generates that ensure the invariant found
isn’t too weak or trivial. A classifier is built and
it’s function is assigned to the loop invariant in Z3.
If the classifier finds an invariant strong enough to
prove the goal, Z3 stops and the process completes.
If the invariant is too weak, Z3 finds a counterex-
ample which then gets added to the pool of nega-
tive points and the process restarts. To bootstrap
the first negative point, true or the goal function
is used as the initial invariant. So far this tool has

only emulated [11] but it will soon be extended to
do more. Source code is freely available online [6].

Figure 3: Decision boundary created by Figure 2

Clearly Figure 3 demonstrates that linear decision
boundary is quickly found for the quadratic program
(Figure 2) using the method described in [11], the
classifier found three linear boundaries tied together
by a decision tree.

Figure 3 shows the output of the tool developed
for this project on the program in Figure 2. It’s
title is the decision boundary encoded into Z3’s s-
expressions, a necessary step in the process, it is the
equivalent of:

(x ≤ 1.5 ∧ 0.5 < y ≤ 1.5) ∨ (y > 1.5 > 0.5)

Naturally, this depends on Z3’s ability to produce
counterexamples, which means Z3’s limited ability
to handle transcendental functions (ex, sinx, x!,
etc.) also applies here, limiting the scope to polyno-
mials.

3.2 Non-Linear CHCs

Non-Linear CHCs have direct application in find-
ing the complexity bound of a program (since many
useful programs have polynomial complexity). Writ-
ing a simple recurrence containing a multiplication
(Figure 4), however, grinds the previous method to
a halt.

Solving the recurrence g(n) = g(n) + n2 and
g′(n) = g′(n)+n2−2n (where x is g(n), y is g′(n) and
z is n) shows us that both x and y are functions of
degree three. However it might not always be easy
to solve recurrences directly, instead it is easier to
approximate the degree and attempt to classify the

3



function cubic
x← 1, y ← 1, z ← 1
loop

x← x + z2

y ← y + z2 − 2z
z ← z + 1
assert G(x, y, z)

end loop
end function

Figure 4: Slightly more complex program

points in a higher space. This is where picking the
correct space becomes crucial, too large and sparse
and it will take too long to traverse, too small and
it won’t be expressive enough.

The degree isn’t solely decided by the program ei-
ther, the goal G(x, y, z) is also relevant. For instance
if Figure 4 contained

G(x, y, z) = x ≥ y

then a simple linear boundary would suffice. How-
ever if the goal was more complex like

G(x, y, z) = y + z2 ≥ x

then linear boundaries won’t do, and the method
in [11] iterates forever generating lines that approx-
imate a parabola. It seems that x and y are of close
enough degree to each other and z is far away from
both. By analyzing the source we can tell the max-
imum degree these variables might become (but Z3
does not check this bound):

z : 1, y : 1 + 2(z) = 3, x : 1 + 2(z) = 3,

Further we can look at all the possible ways each
term is used (1), or simply take each variable to its
maximum degree (2), or look the goals terms (3).
This gives us a collection of possible kernels:

T = {x, y, z, z2} (1)

P = {x1, x2, x3, y1, y2, y3, z1} (2)

Q = {x, y, z2} (3)

For the quadratic G itself is enough to act as the
invariant, meaning the space spanned by Q is the op-
timal space to search through. The general solution
to the recurrence, however, would not be covered by
Q:

x = y + z2 − z ∧ z > 0

Since this is the ground truth for the loop invari-
ant, we’d like all classifiers to look through no space
larger than this.

4 Experiments

A tool was made to test different heuristics when
evaluating these non-linear programs [6]. It analyzes
the source and pulls out terms such as T , P , and
Q, adding them to the dataset and trying to clas-
sify them. A large dataset of positive and negative
points was also used from the indefinitely-iterating
purely linear method. When these points where clas-
sified with added dimensions they were clearly lin-
early separable. However simply using a polynomial
SVM with a decision tree took hours to complete on
a test machine.

The most successful heuristic ended up being Q,
or terms only in the goal, since the goal has to be
somehow expressed within the invariant. Using a
simple linear SVM was much faster than the polyno-
mial SVM (a few milliseconds for 1000 data points)
so the best strategy so far is to attempt to fit many
different combinations of degrees in parallel. Since
the number of data points is usually small, given
a max degree of ∆ and number of variables n that
would generate:

number of classifiers = 2n∆

The example above would train 29 = 512 linear
SVMs, which is a lot, but since scikit-learn’s
SVM is so fast it can generally be done rather
quickly. Further if the list of term combinations is
ordered with more likely sets first (such as Q), it will
likely find a separable line quicker.

5 Conclusion

Overall finding non-linear invariants is harder, but
not so much harder than linear invariants. On the
other hand even simple exponential functions will
cause Z3 to give “unknown”. This method is a sim-
ple addition to many data-driven methods that can
make a lot of programs that users expect to be solv-
able actually solvable. What this and many other
methods need is a larger and more standard data set
to learn from. Future work to aid this automatic ver-
ification would definitely include manually collecting
large data-sets from important open source projects.
Another important addition to this work would be
to add it to a layer in SeaHorn so that it could be
used in production with any LLVM language.

4



References

[1] Albarghouthi, A., Gurfinkel, A., and Chechik, M.
Under-approximations to over-approximations and back.
TACAS (2012).

[2] Albarghouthi, A., and McMillan, K. L. Beautiful
interpolants. CAV (2013).

[3] Cook, B., Gotsman, A., Podelski, A., Rybalchenko,
A., and Vardi, M. Y. Proving that programs eventually
do something good. POPL (2007).

[4] Cook, B., Podelski, A., and Rybalchenko, A. Prov-
ing program termination. ACM 54, 5 (2011), 88–98.

[5] D’Silva, V., Kroening, D., Purandare, M., and
Weissenbacher, G. Interpolant strength. VMCAI
(2010).

[6] Eden, M. Non-linear chcs. https://github.com/

illegalprime/nonlinear-chcs, 2018.

[7] McMillan, K. L. Lazy abstraction with interpolants.
CAV (2006).

[8] McMillan, K. L., and Rybalchenko, A. Solving con-
strained horn clauses using interpolation. Technical Re-
port MSR-TR-2013-6 (2013).

[9] Turing, A. Checking a large routine. Conference on
High Speed automatic Calculating Machines (1949).

[10] Zhou, Q., Heath, D., and Harris, W. Completely
automated equivalence proofs. ACM (2017).

[11] Zhu, H., Magill, S., and Jagannathan, S. Data-
driven chc solver. PLDI (2018).

5


