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SUMMARY

The present investigation treats paper as a three-dimensional homogeneous

material. The propagation of ultrasonic waves through pape-r has been investi-

gated from both experimental and theoretical points of. view. The primary ob-

jective of this work was to determine the validity of applying well-established

wave theories, developed for homogeneous- continuous materials, to the propaga-

tion of waves in paper.

Preliminary experiments indicated that below about 1 MHz ultrasonic waves

propagate in paper without severe attenuation Furthermore, it became clear

that at these relatively low frequencies, the fibrous. structure of paper does

not interact with the waves to produce anomalous behavior.

Techniques were developed for measuring various longitudinal and shear

wave velocities for propagation through paper. Some of the techniques apply

only to samples having.a.thickness of 15 mils or more. Most of the experimental

work was conducted on two 90-lb linerboard samples and a heavy milk carton

stock. For some of the velocity measurements, it was necessary to construct

three-dimensional structures. by g-luing.individual sheets into stacks.

Using these sonic techniques, the nine orthotropic constants were evalu-

ated for the three board samples. These constants were used in conjunction

with orthotropic plate wave theory to predict wave dispersion curves for X-

and Y-direction propagation. Portions of these curves-were determined experi-

mentally using a plate wave resonance technique.

The comparison of experimental and predicted dispersion curves was good,

particularly for the milk carton stock.. It was therefore concluded that the

orthotropic wave theories did apply to paper. Consequently, paper was
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established as a three-dimensional orthotropic material. Orthotropic plate

wave theory was subsequently used to modify the velocity measurement procedures.

These improved techniques were used to redetermine the orthotropic con-

stants for the milk carton stock. The set of elastic constants suggested an

unusual elastic material. The Z-direction moduli were found to be very low.

The Z-direction Young's modulus was about 200 times less than the corresponding

X-direction modulus. The out-of-plane Poisson ratios were found to be greater

than 1.



-3-

INTRODUCTION

The primary objective of this thesis is to determine the validity of apply-

ing wave theories, developed for continuous homogeneous materials, to paper.

Paper is a heterogeneous porous material. Even well-bonded paper sheets contain

unbonded fiber regions and air spaces.

During the formation of the paper web, the fibers generally align prefer-

entially in the plane of the sheet. In addition, the tension in the web during

drying usually differs markedly in the machine and cross-machine directions.

These factors help to explain the observed differences in the stiffness of

machine-made paper along the machine (X), cross machine (Y), and thickness (Z)

directions.

Orthotropic materials have three orthogonal symmetry axes. The ortho-

tropic model is the simplest model which can accommodate different elastic

properties along the three mutually perpendicular directions. Consequently,

orthotropic wave theories, in particular, will be tested.
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LITERATURE REVIEW

MECHANICAL MEASUREMENT OF PAPER ELASTICITY

IN-PLANE

Paper is relatively thin. Consequently, it is difficult to determine the

elastic constants which characterize the thickness direction of paper. On the

other hand, much study has been made of the in-plane elastic properties.

The mechanical properties of elastic materials are time independent.

Brezinski (1) has shown that even under very low loads, the deformation of

paper is time dependent. It was demonstrated, however, that at low loads the

rate of time-dependent deformation is low. It is therefore possible, for

example, to obtain valid estimates of the elastic modulus of paper by measuring

the initial slope of the load-elongation curve.

The time-dependent mechanical properties of paper can be examined using

various techniques such as creep, stress relaxation, and certain resonance

techniques. These latter techniques have been used to investigate the depen-

dency of Young's modulus, shear modulus, and viscous damping on various param-

eters, including strain, relative humidity, sheet density, and orientation in

the sheet (2-6).

Riemen and Kurath (2), using the vibrating reed technique at about 60 Hz

and at low strain amplitude, were able to determine the complex Young's modulus

for handsheets of softwood bleached sulfite pulp. The real component of Young's

modulus was found to be nearly independent of strain up to approximately 6 x

10- . The loss tangent, however, increased markedly with strain. With increas-

ing moisture content, the real component decreased steadily, whereas the
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imaginary component exhibited a minimum at about 2% moisture and a maximum at

about 8%. Both in this work and in that by Horio and Onogi (3), the imaginary

component of Young's modulus was found to be less than 5% of the real component.

Kubat and Lindbergson (4) used a low frequency torsional pendulum in their

study of shear modulus and the damping behavior of machine-made papers. Upon

increasing moisture content the shear modulus decreased, while damping increased.

In another study (6), the dynamic Young's modulus and damping were deter-

mined by applying low frequency uniaxial sinusoidal strains to paper strips.

By varying strain amplitude, static strain and number of cycles, pronounced

strain hardening was observed (increasing modulus). The dynamic modulus and

damping were found to exhibit an inverse relationship for the several paper

samples tested.

It is evident from these investigations and others that paper falls short

of ideal elastic behavior. The measurement of the elastic properties of paper

is complicated by factors related to the measurement technique such as strain

level and strain rate, and by the ambient conditions of temperature and relative

humidity. Furthermore, .changes in the elastic properties may occur with

mechanical conditioning.

The determination of in-plane Poisson ratios for paper is generally more

difficult and less accurate than determinations of Young's and shear moduli.

The more direct method of measuring Poisson ratios consists of uniaxially

stressing the test specimen and measuring both the longitudinal elongation and

the lateral contraction. This technique has been employed on sulfate hand-

sheets yielding ratios of 0.4 to 0.95 (7). Glass beads were affixed to the

specimens and their displacements were measured. Jones (8) used this technique
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in his work with kraft sack and linerboard samples and found v and v values
xy yx

which fell in the ranges 0.10-0.23 and 0.21-0.57, respectively.

Gottsching and Baumgarten (9) studied the triaxial deformation of paper

under tensile loads. The tensile tester used in the study was equipped with

special fittings, including two pairs of blades used for measuring lateral

contraction. Results for spruce sulfite handsheets indicated an increase in

V from 0.17 to 0.32 as the extent of beating was increased. For machine-
yx

made papers, v and V values fell in the ranges 0.04-0.10 and 0.16-0.34,
xy yx

respectively. The authors also demonstrated that a plastic component to the

lateral contraction was detected only when the longitudinal elongation exhibited

a plastic component.

Biaxial testing of cruciform-shaped specimens constitutes a second tech-

nique for determining in-plane Poisson ratios. The biaxial stress field pre-

cludes potential buckling of the sheet in the direction of contraction. When

used in an investigation of jack pine and southern pine kraft handsheets (10),

the IPC Biaxial Load-Elongation Apparatus yielded Poisson ratios which fell

between 0.27 and 0.37 with few exceptions. Contrary to the experimental results

of Gottsching and Baumgarten (9), no particular trends were found with respect

to changing sheet structure, though large variations in Poisson ratio between

specimens were cited. This biaxial tester was employed recently in an investi-

gation of three kraft linerboard samples (11). Poisson ratio ranges were 0.16-

0.18 and 0.36-0.52 for v and v , respectively.
xy yx' pte

Z-DIRECTION

Investigations of mechanical properties of paper seldom include the Z-

direction. In a few studies, measurements have been made of thickness changes
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upon machine or cross-machine tensile straining (7,9,12). In recent work, Z-

direction load-elongation curves were obtained (13).

Ranger and Hopkins (7) found that the apparent thickness of sulfate hand-

sheets generally increased with increasing tensile strain. One-half inch diam-

eter anvils were used to monitor sheet thickness. The degree of thickness in-

crease was reduced as the pulps were beaten. An initial decrease in thickness

was observed for the most highly beaten handsheet. When 1/8-inch diameter

anvils were used, an initial decrease in thickness was typically found. This

was followed by a series of relative thickness increases and decreases.

Ohrn (12) studied thickness variations of a flat kraft paper using a

tensile tester equipped with a roller and flat plate for measuring paper thick-

ness. Paper thickness was found to increase continuously and nearly linearly

upon stretching up to the point of failure. Z-direction strains of 10% at

failure were typical. Initial thickness decreases were observed in a few

cases. Ratios of maximum Z-direction strain (thickness increase) to maximum

tensile strain (at failure) ranged between -0.7 to 6.3 for the samples tested.

Ohm argued that lateral contraction is not necessary for the thickness

to increase upon stretching. Instead, Ohrn conceived paper as a woven struc-

ture and argued for a mechanism whereby fibers aligned in the direction of

tensile loading straighten out when loaded. This in turn would result in a

lifting of perpendicularly aligned fibers and, consequently, a thickness in-

crease.

Gottsching and Baumgarten (9) measured Z-direction deformation with anvils

of 1 cm2 area. Results were reported in terms of one of the out-of-plane

Poisson ratios, v . For spruce groundwood and bleached spruce sulfite hand-
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sheets, V values fell in the ranges of 0.25-0.59 and 0.15-1.19, respectively.
zx

In both cases, v increased with the degree of pulp refining. Poisson ratioszx

between 0.74 and 0.93 were found for a series of spruce sulfite handsheets of

varying clay content. A series of handsheets made from different pulps yielded

V values between 0.36 and 1.05. Negative Poisson ratios were found as well.zx

These latter Poisson ratios were for calendered printing paper, machine finished

newsprint, and printing paper made from synthetic fibers.

In this work, thickness usually decreased at first during tensile loading,

passed through a minimum, and then increased, frequently to values above the

initial thickness. If the thickness did not decrease at the beginning of the

elongation, its increase was first slight and became steeper only with increasing

elongation. Both shapes of curves suggest that multiple processes are involved

in thickness changes.

Recently Van Liew (13) has studied the Z-direction load-elongation behavior

of western hemlock bleached sulfite handsheets. Circular specimens were bonded

between and onto two 1-inch diameter cylinders. As the tensile loads were

applied, cylinder separation was measured at three points on the periphery.

Several difficulties were encountered. Nonparallel separation of the cylinder

surfaces was typical, indicating nonuniform strain over the specimen area.

Failure occurred for strains in the range 0.25-0.7%. The load-elongation curves

were almost immediately nonlinear.

Van Liew calculated Z-direction tensile moduli between 20 and 60 kg/mm2

for the handsheets tested. These moduli are roughly 1/lOth of the in-plane

moduli. It was concluded that intrafiber deformation was the principle mechan-

ism of response only at very low strains. At higher strains, the nonuniform

fibrous structure results in early onset of fiber bond failure.
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The Z-direction experimental results cited above are inconclusive. A

valid method for measuring Z-direction strains mechanically has not been demon-

strated. Indeed, this may not be possible because of local thickness and basis

weight variations which are typical of paper sheets.

SONIC MEASUREMENT OF PAPER ELASTICITY

Sonic determinations of elastic parameters reported in the literature in-

volve the measurement of velocities of longitudinal and shear waves propagated

through the material. Sonic (or ultrasonic) elastic waves travelling through

solids constitute propagation of stress and strain. For longitudinal waves,

the points (particles) within the material are displaced parallel to the propa-

gation direction. For shear wave propagation, particle displacement is perpendic-

ular to the propagation direction.

These two types of waves are depicted in Fig. la and lb (see page 31).

These waves propagate through bulk materials, which are large in all three

dimensions. The waves shown in these figures are pure longitudinal and pure

shear waves since the particles are displaced exactly parallel and exactly

perpendicular, respectively, to the direction of propagation. In the general

case (see Fig. lc), the wave motion has both longitudinal and transverse (shear)

components. In the present work, the longitudinal and shear wave designations

will be employed for waves in bulk materials and in plate materials at low

frequencies.

LOW FREQUENCY

Though there are several sonic techniques for measuring wave velocities

(14-17), the pulse propagation technique has been used almost exclusively
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for measurements on paper. With this technique, wave propagation velocities

are easily calculated from measurements of transit time at different transducer

separations.

The Morgan Dynamic Modulus Tester (18), a commercial instrument, has been

used in several experimental investigations of paper properties. The instrument

employs ceramic piezoelectric transducers which resonate at about 10 kHz.

Attached to the transducers are small round-tipped probes which made essen-

tially point contact with the paper. The electronic circuitry generates triangular

pulses at a repetition rate of 60 Hz, which excite the transmitting transducer

to resonate. As the propagated disturbances are received by the receiving

transducer, the transit time of the pulse through the paper is measured and

registered on a chart recorder. Both longitudinal and shear waves can be prop-

agated and detected. Since the wavelengths at 10 kHz are always much longer

than the paper thickness, the sonic pulse propagation technique is considered a

low frequency technique.

Craver and Taylor (19,20) were the first to use the sonic pulse technique

in the nondestructive measurement of paper elasticity. The authors presented

a theoretical treatment of wave propagation in paper, which is considered a

planar material. In this case, Z-direction stresses are assumed to be zero.

For isotropic planar materials, the following relationship was given:

E = pV (1-v2), (1)

where E = Young's modulus

P = material density

VL = velocity of longitudinal wave

V = in-plane Poisson ratio
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Craver and Taylor approximate Young's modulus by pVL, which is then called the

sonic modulus. This approximate sonic modulus can be determined from a single

velocity measurement.

Considering anisotropic machine-made paper to exhibit orthotropic behavior,

Craver and Taylor presented the theoretical relationships between the four

orthotropic planar stiffness coefficients and various wave velocities. By

determining the velocity of-longitudinal waves propagated in directions 0° ,

45°, and 90° from the machine direction, and the shear velocity along the

machine or cross-machine direction, one can determine all of the planar elastic

constants for paper.

Sonic pulse data, rapidly and easily obtained, is independent of specimen

size. In addition, sonic velocities can be measured continuously. A disadvan-

tage of this technique is that it cannot easily measure the imaginary component

of the complex Young's modulus.

Craver and Taylor used the sonic pulse technique in several studies (19-21).

The anisotropy of unbleached kraft wrapping paper was measured as the ratio of

the machine and cross-machine direction sonic moduli (19). Close agreement was

found with both tentsile moduli and tensile strength anisotropy factors. High

correlation between tensile modulus and sonic modulus was found for handsheets

made from several different pulps.

A study of the effects of fiber orientation and external directional

stresses during drying showed that drying constraints have a pronounced effect

on the anisotropy factor (20). Craver and Taylor, by varying the basis weight

of bleached kraft softwood handsheets, demonstrated that the measured sonic
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velocities were independent of sheet thickness. A basis weight effect was

observed, though this was attributed to real moduli differences.

In a later study of wet-strength paper (21), various liquids were found

to reduce the sonic velocity to different extents upon saturation. In other

work, Chatterjee (22) measured wicking in paper using the Morgan instrument.

Back and Didriksson (23), by monitoring modulus changes with temperature, were

able to detect four secondary transition temperatures and the glass transition

temperature of cellulose. In their work, paper sheets were subjected to 4 sec

of thermostating at various nip temperatures prior to testing.

In a recent experimental investigation using kraft linerboard samples,

Bornhoeft (11) measured in-plane Poisson ratios both sonically and mechanically

and found reasonably good agreement.

Several investigations have demonstrated that paper strength properties,

particularly tensile strength, correlate well with sonic modulus (19,24,25).

It has been suggested that the sonic pulse technique could be adapted for use

on paper machines. The value of such a continuous on-line monitor in terms of

quality control would be great. Yastrebov and Kundzich (26) describe a version

of the sonic pulse apparatus developed in Russia. They as well are interested

in predicting strength on a moving web. Papadakis (27) has reviewed the

problems associated with the development of such an on-line instrument. Re-

cently, work at The Institute of Paper Chemistry, under Project 3332, has

resulted in the development of a promising on-line instrument.
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PLATE WAVE RESONANCE

Luukkala, et al. (28) have reported propagating waves through paper using

a contactless, plate wave resonance method. In this method, plate waves are

excited in paper directly from air.

When sound waves having a velocity in air of Vair impinge upon paper,

making an angle a with the normal, a wave is excited in the paper. This

wave will partially reradiate into the air on the other side of the paper. In

essence, part of theincident wave energy is reflected, part is absorbed, and

part is transmitted.

Paper is a plate material, having a small yet finite thickness. As a

plate material, paper exhibits dispersive behavior at high frequencies. When

the frequency of the incident wave increases, the wavelength decreases. As the

wavelength approaches the plate thickness, the plate waves must travel slower

in order to maintain certain boundary conditions. It has been found that at a

given frequency, only certain wave modes are allowed (29-31). The phase

velocities of these modes are functions of frequency.

With the plate wave resonance method, plate wave velocities can be

measured, for a given frequency, by changing the angle of incidence a until the

transmitted sound is at a maximum. A maximum in the received signal implies a

resonance condition. At resonance, the velocity of the plate wave, Vp, is given

by V air/sin a. By systematically changing frequency and locating the resonance
air

angles, one can construct experimental dispersion curves, i.e., V vs. frequency.

With the plate wave resonance technique, it is the phase velocity which is

measured. This is evident from the fact that continuous waves are employed.

With pulse techniques, it is the group velocity which is normally measured.
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The group velocity is the propagation velocity of the pulse. As will be shown

later, however, it is possible to measure phase velocities using pulse propa-

gation techniques.

Luukkala, et al. (28) employed this method on several commercial papers.

Limiting themselves to the machine and cross-machine directions, they treated paper

as two different isotropic plates in these two directions. They then applied

isotropic plate wave theory to paper. Luukkala, et al., had difficulty inter-

preting their data. Eventually they extrapolated their data to zero frequency

and were able to calculate anisotropy factors which correlated with ones

determined using the Morgan instrument.

The main disadvantage of the method is that the measurement and calculation

procedures are quite complex. There are other limitations as well. Papadakis

(27) discusses the limitations and problems associated with the employment of

this technique on a paper machine.

COMPARISON OF SONIC AND MECHANICAL YOUNG'S MODULI

The measurement of Young's modulus should be independent of the testing

method. With paper, however, discrepancies are found between sonic and mechan-

ical techniques. In comparing sonic and mechanical moduli, it is important to

clarify what is meant by these terms. The mechanical Young's modulus is an

approximation to the real component of the complex Young's modulus, usually

taken as the initial slope of a load-elongation curve. Viscoelastic effects

faster than the test itself will reduce the measured modulus.

The sonic modulus, as defined by Craver and Taylor (19), is only a rough

approximation to Young's modulus. Young's modulus itself can be determined
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sonically by measuring both longitudinal and shear velocities. Neglecting

viscoelastic effects, one would expect the sonic Young's modulus to agree well

with the mechanical modulus.

The available experimental data suggest that the sonic modulus is up to

30% greater than the mechanical modulus (11,19,24,25,32). The reported

discrepancies include a real Poisson effect which is typically 5-10%.

Various possibilities have been suggested to explain the remaining dis-

crepancies between the two techniques. The techniques differ in two important

ways. For sonic stress wave propagation, strain levels are very small. At

the same time, the high sonic frequencies afford little time for creep or

other time-dependent effects to be manifested.

Perhaps the most obvious discrepancy between mechanical and sonic measure-

ments is seen as different dependencies on moisture content. Nissan (33) has

reviewed available mechanical modulus vs. moisture content data from several

investigations. The mechanical moduli were found to decrease exponentially

at a rate consistent with Nissan's hydrogen bond theory. Sonic data (19,32,34,

35) indicate that the sonic modulus does not decrease nearly as fast. Part of

this difference could be accounted for, if the in-plane Poisson ratios increased

with moisture content.

Austin (32) has recently investigated the differences between sonic and

mechanical Young's moduli. The machine direction of a bond paper was examined.

The sonic modulus was measured at about 60 kHz using Morgan instrument trans-

ducers. In-plane Poisson ratios, also measured sonically, were used to determine

a sonic Young's modulus. The mechanical Young's modulus was determined using an

Instron.
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After several possible causes for the observed discrepancies were investigated,

it was concluded that the differences result primarily from viscoelastic effects.

The slower mechanical testing method permitted stress relaxation effects to

occur which reduce the measured modulus. This conclusion was supported by

Instron data obtained at very high strain rates. A strain rate of 500 inches/min

was realized using an optical recorder. At 15% and 50% R.H. the higher strain

rate narrowed the observed discrepancy from 20 to 6%.

WAVE PROPAGATION THROUGH HETEROGENEOUS MATERIALS

For years ultrasonics has been an important tool in investigating the aniso-

tropy of single crystals. By propagating longitudinal and shear modes in differ-

ent crystalline directions, one may examine the directional properties. More

recently ultrasonic techniques have been successfully employed in studying the

elastic properties of many heterogeneous materials.

Early investigations in the textile industry of polymeric materials in-

volved wave propagation through fibers and films (36,37). Later, yarn assemblies

were studied. Zorowski and Murayama reported on wave propagation along contin-

uous filament twisted yarns (38). It was found that the sonically determined

modulus varied with twist angle as predicted from static extension theory,

assuming a constant-volume deformation process. The reduction in modulus with

increasing twist angle was attributed solely to a geometric effect. It was

concluded that waves propagate through continuous filament yarns as one-dimensional

longitudinal plane waves in a linear elastic medium.

Eden and Felsenthal (39), using 150 and 750 kHz ceramic transducers, studied

the transmission of ultrasonic waves through packs of spherical and nonspherical

particles. For glass spheres, actual transmission was detected only when suffi-
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cient external pressure was applied, or when the particles cohered. The measured

velocities varied with frequency.

Peck and Gurtman (40), in presenting a theoretical analysis of transient

stress waves in linearly elastic laminated composites, discuss the problem of

geometric dispersion. The heterogeneous structure of composite materials

causes stress waves to change their shape as they propagate. This process

is called geometric dispersion. For sufficiently long pulses, this effect may

be small and the composite can be considered homogeneous. For sinusoidal waves

geometric dispersion manifests itself in a dependence of phase velocity on

frequency.

Development of composite fibrous materials containing strong uniaxial

fibers in a low modulus resin has produced a class of materials which may have

a tensile strength comparable with the best of the high quality steels, while

having only l/5th the density. By their very nature, these materials are highly

anisotropic. The longitudinal to transverse stiffness ratio can be as great

as 25:1. The simplest elastic symmetry which conforms to the properties of uni-

directionally aligned composites is hexagonal. Such a medium is transversely

isotropic and possesses five independent elastic constants.

Zimmer and Cost measured the hexagonal elastic constants for a unidirec-

tional glass fiber reinforced epoxy using an ultrasonic pulse transmission

technique (41). Quartz transducers were used. Specimens were cut from an

original sheet such that the fibers made various angles with the specimen faces

which were polished flat and parallel. It was reported that in all measurements

attenuation was quite high, although the pulse waveform was relatively undis-

torted. Attenuation was lower at lower frequencies. An operating frequency of

5 MHz was chosen so that the wavelengths would be much greater than the fiber
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diameter, thus reducing interactions which occur when the wavelength is nearly

equal to the fiber diameter.

In general, Zimmer and Cost (41) found self-consistency with respect to

the hexagonal wave theory. A discrepancy was found, however, in the propaga-

tion velocities of shear waves propagated in the layer plane and polarized

parallel and perpendicular to the fibers. It was argued that one of the shear

velocities was erroneously high due to dispersion.

Markham (42) used an immersion technique in a similar investigation of the

properties of a carbon fiber-epoxy resin composite. The use of an ultrasonic

immersion tank permitted measurements over a wide range of orientations for

thin sheets of the composite. Markham assumes that the composite material is

an elastic continuum and that the measured velocities are those relating to

infinite plane waves on an unbounded medium. It is stated that the degree to

which these conditions are approximated in a fiber composite depends on the.

magnitude of the wavelength relative to the fiber diameter and to the overall

specimen dimensions. The wavelength should be large compared with the fiber

diameter, but small compared with the dimensions of the specimen.

Dean and Turner (43), using the immersion pulse transmission technique

developed by Markham (42), investigated various carbon fiber reinforced epoxy

samples covering a range of fiber fraction. The five independent hexagonal

elastic stiffness coefficients were determined. A theory of interpreting com-

posite properties in terms of phase properties, concentration and geometry was

used to analyze the experimental results. A close fit to the experimental data

was obtained.
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Reynolds and Wilkinson (44) surveyed studies of ultrasonic wave propaga-

tion in flat carbon fiber reinforced plastics and reported on their own work

with two- and three-ply laminates and sandwich structures. Part of the earlier

work included propagating longitudinal waves through uniaxial rods over the

frequency range 0.5-1.25 MHz. For isotropic materials there. is a sharp increase

in velocity as the ratio of rod diameter to wavelength approaches unity. With

the reinforced plastic the only velocity change was a slight increase at a

diameter/wavelength ratio of about 0.2. The smallness of the velocity increase

was attributed to the high degree of anisotropy.

Felix (45) investigated the attenuation and dispersion characteristics of

various plastics in the frequency range 1-10 MHz. Little dispersion was

detected for the resins tested, while significant frequency-dependent attenua-

tion was found. Stress pulse distortion was quite significant after propagating

only a few centimeters. It was concluded that the pulse distortion observed

in plastic matrix composite materials may not be attributed to geometric dis-

persion and attenuation alone.

Finally, in a recent study (46), extruded polypropylene and polyethylene

terephthalate were tested at 10 MHz using quartz transducers. The five hexa-

gonal elastic constants were determined by propagating longitudinal and shear

waves in three directions, 0 ° , 45° , and 90° to the extrusion direction. Aniso-

tropy was found to be mainly due to orientation of the polymer. Pulse attenua-

tion was high. In addition, for the 45° specimens, pulse distortion and ex-

traneous signals were observed. These were thought to be due to diffraction

and/or scattering effects, since both longitudinal and shear modes are excited.

This difficulty affected only the determination of one of the stiffness coeffi-

cients.
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As discussed above, ultrasonic techniques can be used to determine the

elastic properties of heterogeneous materials. The validity of these techniques

seems to depend strongly on the size or spacing of the heterogeneity relative

to the ultrasonic wavelength employed. In general, such materials should obey

the wave theories for homogeneous continuous elastic materials whenever the wave-

length is much larger than the irregularities. Pulse attenuation is relatively

high for heterogeneous materials. It is concluded, however, that dispersion

related to pulse attenuation is negligible.

Paper differs from the other heterogeneous materials cited above in its

high porosity. The mechanism of pulse propagation is not likely to be similar

to that in a continuous polymeric film.

Paper consists of bonded and unbonded fibers in air. Because of the high

acoustical mismatch of an air/fiber interface, direct propagation through fiber

and void space in series is not possible. Instead, energy is transmitted

through the solid material via stretching of intermolecular and intramolecular

bonds. Fiber orientation affects the actual transmission path length (20).

With the exception of the work of Luukkala, et al. (28), all applications

of ultrasonic techniques to paper have been at low frequencies, typically 10

kHz. At this frequency, longitudinal waves in paper have wavelengths which

fall in the range of 10 to 40 cm. Fibers are generally less than 0.2-cm long

and less than 0.002 cm in width. The large ratios of wavelength to fiber size

permit paper to be considered as continuous. Consequently, wave theory for

continuous elastic materials should apply to paper at these low frequencies.

Longitudinal waves are expected to interact with fibers when the wavelength
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approaches the fiber length, however. This corresponds to a frequency of

about l MHz. This interaction may or may not significantly affect the

velocity measurements.

THEORY OF WAVE PROPAGATION IN PAPER

ORTHOTROPIC MODEL FOR PAPER

It will be assumed that paper behaves as a continuous elastic material

obeying Hooke's Law. Hooke's Law states that in an elastic solid the strain

is proportional to the stress. The law applies to small strains only.

Consider a cube of material whose edges are parallel to rectangular coor-

dinate axes. In general, there are three possible stresses acting on each face

of the cube. In total there are three normal stresses (ail, 022, and 033) and

six shear stresses (a12, c13, 023, a21, a31, and 032). The subscripts 1, 2,

and 3 correspond to the coordinate directions.X, Y, and Z,. respectively. In

paper, the X, Y, and Z directions correspond to the machine direction, cross-

machine direction, and thickness direction, respectively. The first subscript

in the stress notation indicates the direction normal to the plane of action.

The second subscript indicates the direction of the stress. Under equilibrium

conditions, the net force and the net moment on the cube are both zero, in

which case c.. = a...
iJ Ji

The deformation of the cube can be expressed in terms of a displacement

vector field U(x,y,.z). The vector U is the difference between a particle's

location after deformation and its original location with respect to a fixed

coordinate system. Strains are then defined in terms of the displacement vector

components as follows:
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ell = au /3x (2)

e22 = au /3y (3)
·. y

e33 = auz/az (4)

el=2 = = (aux/ay +auy/ax) (5)
x y

el3 = e3 = (aux/az + au z/x) (6)
x z

e23 = e32 = (u y/3Z + au /ay) (7)
*y z

When Hooke's Law is obeyed, each stress can be represented as a linear

combination of the strains. It is convenient to redefine the stress components

as follows:

O11 = 1 023 = a4

022 2 = 2 13 = 5

033 = 3 12 = 6 (8)

The strains are redefined similarly. In matrix notation, the stress components

are given as follows:

(a) = (C)(e) (9)

The elastic stiffness matrix, C, is a 6 x 6 matrix. The elastic compliance

matrix, S, is the inverse of the stiffness matrix.

With orthotropic elasticity there are three mutually perpendicular symmetry

axes. It takes nine independent elastic constants to completely characterize

the elastic behavior of orthotropic materials. The stiffness matrix has the

following form:
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02

U3

05

(6'

Cll

C12

C1 3

0

0

0O
O

C12 C13

C22 C2 3

C2 3 C33

0 0

0 0

0 0

0

0

0

C44

0

0

0

0

0

0

C5 5

0

0

0

0

0

0

C6 6

Finally, the engineering elastic constants are given in

and stiffness coefficients as follows:

el

e2

e3

e 4

e5

e6

terms of the

(10)

compliance

(11)Ell = 1 = CllC 2 2 C33+2Cl 2 Cl 3 C23-CllC23-C 2 2 C13-C33C12

i11 2C22C
C2 2 C3 3-C 2 3

1
E2 2 = -

1
E3 3 = =

S3 3

2 2 2
CllC2 2 C 3 3 +2C 1 2Cl 3 C23-CllC 2 3- 2 2 C3-C 3 3 C 1 2

CllC33-C13

2 2
CllC22 C3 3+2C 1 2 C1 3 C2 3 -CllC23-C 2 2C 1 3-C 3 3C1 2

CllC2 2 -C1 2

G4 4 = C44
S4 4

G5 5 = S = C55
S5 5

G66 = = C6 6
566

V1 = S12 = Cl2C3-Cl3C23
S22 2

CllC3 3 -C13

V13 = - S13 _ C1 3 C2 2 -C1 2 C2 3

S33 2
CllC22-C12

V23 S2 3 = C23Cll-Cl2Cl3
V23 = 3 C C2 2 C 2S33 C 2

C11C22-C12

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)



-24-

VS = 12 = Cl2C 3 3 -C1 3 C2 3 (20)
S11 2

C2 2 C3 3 -C 2 3

=.- S3 = C1 3 C2 2 -C 1 2C 2 3 (21)
Sll 2

C2 2 C3 3 -C 2 3

32 = S23 = C23C1-Cl 2 Cl3 (22)
S2 2 ClC C2

C1 1C 3 3-C1 3

The equations above apply to three-dimensional orthotropic materials. With

thin materials such as paper, it is convenient to neglect all thickness direction

stresses. In this way, the.in-plane elastic properties of thin orthotropic

materials are fully defined by four independent constants.

This approach has been used by Craver.and Taylor (19,20) in their sonic

investigations of paper anisotropy. Craver and Taylor relate the four planar

orthotropic stiffness coefficients to four sonic velocities. Measurements of

longitudinal and shear velocity were then made at various orientations in the

sheet for several machine-made papers and oriented handsheets. The planar

orthotropic theory was used to predict how these velocities varied with orienta-

tion. It was concluded from the close agreement of experimental data with

theory that paper is orthotropic in the plane of the sheet.

Horio and Onogi (3), using the vibrating reed technique, found that Young's

modulus at angle 6 from the X-direction, Ee, was given.by the simple relation-

ship:

1/E0 = cos 2 E/Ell + sin 2 9/E 2 2 (23)

This expression implies a special relationship between the planar orthotropic

constants, known as Campbell's relationship (47), which effectively reduces

the number of independent constants to three. Craver and Taylor's sonic data
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(19,20) showed that Campbell's relationship between elastic constants was only

approximately true for typical well-bonded paper (20).

Jones (8) also investigated the in-plane elastic behavior of paper, employ-

ing various mechanical measurement techniques. Shear modulus and Young's modulus

were measured using a torsion pendulum and a table model Instron, respectively.

Poisson ratios were determined by measuring the lateral contraction of glass

beads affixed to loaded paper strips.

Jones found that the orthotropic model accurately described variations of

both shear modulus and Young's modulus in the plane of the sheet. Contrary to

Campbell's relationship, but as in the work of Kubat and Lindbergson (4), the

shear modulus was found to vary with orientation.

It can be concluded from these two investigations, then, that the in-plane

elastic properties can be accurately described using an orthotropic model.

From the limited thickness direction data available (7,9,12,13,48), it is

quite evident that the thickness direction differs markedly in its elastic

behavior from either in-plane direction. The simplest elastic model which

would describe the elastic behavior of paper in all directions is the three-

dimensional orthotropic model.

ELASTIC WAVES IN AN INFINITE ORTHOTROPIC MATERIAL

The general laws of elastic waves propagated in crystalline media are

well known (49). The treatment of elastic waves in anisotropic media

which follows was taken from published works of Borgnis (50) and Musgrave (51).
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In infinite crystalline media, plane elastic waves can be propagated in any

direction. These plane elastic waves are called bulk waves when speaking of

real, finite, bulk materials. Let U be the particle displacement vector field

and K the wave vector normal to planes of constant phase. The elastic wave

motion is described by the following expression:

U = UO exp(i(wt ± Kor)) (24)

where w = angular frequency

t = time

r = position vector of any point in the medium

The displacement vector U has certain specified directions, which, in general,

are not parallel to the wave vector K. An equivalent. expression is:

-= U 27i(lx+my+nz - Vt) (25)U U0 exp 2_

where V = phase velocity

A = wavelength

l,m,n = direction cosines of K

The theory of wave propagation through infinite anisotropic media reveals

that for any given direction of the wave vector K, there are three possible

displacement vectors U, which are functions of the direction of K. These three

displacement vectors are independent of each other and form a mutually ortho-

gonal set. These three vectors, then, belong to three independent plane waves

propagated, in general, with three different velocities in the direction K.

If one of the three displacement vectors coincides with K, it follows that the

other two must lie in a plane perpendicular to K. In this case, the wave-

triplet consists of one purely longitudinal and two purely transverse waves.
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In general, U can always be decomposed into a longitudinal

component. These components, however, are not independent

and a transverse

of each other.

Hooke's Law for orthotropic elastic material is given as follows:

au au au
al = Cllx C1 + C1 1

au au au
G2 = C127"X + C22y + C23 z

au. au au
az Y T `z3 = C13 + C23 + C33

au au
o5 = c55T - -+ az

6 = C66ta +ay

The equations of motion are:

aCl + aa6 + aa
ax ay az

aa6 + ag2 a+JC
ax ay az

a9s + aa4 + a3
ax ay az

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

a2u
_ p x

at 2

a2 u
= p Y

at 2

a2 u
= P-

a:t2

where p is the material density.

Upon substitution of Equations (26)-(31) into Equations (32)-(34), a set

of three simultaneous differential equations is obtained. When a plane wave
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solution is sought of the form of Equation (24), then the following three

equations are obtained:

(A-pV2)Ux + (D)Uy + (E)z = 0 (35)

(D)uo + (B-pV2)u + (F)u = 0 (36)

(E)uOx + (F)uoy + (C-pV2)uz = 0, (37)

where

A =.12 Cll + m2C 66 +.n2Css (38)

B = 12C 6 6 + m2C22 +.n2C44 (39)

C =.12C55 + m2C44 + n2C33 (40)

D = lm(Ci2+C66) (41)

E = nl(C13+C55) = (42)

F = mn(C23+C44) (43)

The condition for nonzero solutions of U0 is:

A-pV2 D E

D B-pV2 F = 0 (44)

E F C-pV 2

The resulting expression from Equation (44) can now be used to determine phase

velocities of the three independent plane waves propagated in the direction K.

Equations (35)-(37) can then be used to determine the corresponding displace-

ment vectors.

Orthotropic plane wave theory results will be represented by considering

wave propagation in the .X-Y plane. In this case, n = 0,.12 + m2 = 1. The angle
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between K and the X-axis is given by e = cos-l(l). Letting c = cos e and s =

sin e, Equations (38)-(43) become:

A = .c2C1 + s2C66 (45)

B = .c2C66 + s2C22 (46)

C =.c2C55 +.s2C 44 (47)

D = cs(Ci2+C6 6) (48)

E = 0 (49)

F = 0 (50)

The roots of Equation (44) are given by the following equations:

(c2C+s2C66-pV2)(c2C 6 6+s 2-pV2) -c2s2(C 12+C6 6) 2 = 0 (51)

c 2 C55 + s2C44 - pV2 = 0 (52)

The three roots are given as follows:

pV2 = ½(Q+P) (53)

pV2 = ½(Q-P) (54)

pV = c2Css + s2C44 , (55)

where Q = c2C11 + s2C22 + C66 (56)

P = [(c2 (C1 1-C 6 6) + s
2 (C6 6-C22))

2 + 4c2s2 (C12+C 6 6)
2 ]½ (57)

The particle displacements for the wave with velocity V3 turn out to be

perpendicular to the X-Y plane. This wave is a transverse wave, and is designated

the out-of-plane shear wave.



-30-

The displacement vectors for the other two waves both lie in the X-Y plane.

Let P be the angle between the displacement vector U0 and the X-axis. Then,

from Equations (35) and (36),

tan 1i = (pV2-A)/D (58)

tan p2 = (pV -A)/D (59)

It can be shown that '1 and P2 always differ by 90°. Usually, i1 is approxi-

mately equal to e. This implies that the wave associated with V1 is nearly

longitudinal. The velocity V2 is then associated with an in-plane shear wave.

For propagation along the principle axes, these waves represent purely

longitudinal and shear modes. In general, the normal modes in orthotropic

materials are not pure. These modes can be thought of as combinations of

longitudinal and shear waves, with one or the other dominant. These phenomena

are illustrated in Fig. 1 for wave propagation in the X-Y plane. K gives the

direction of wave propagation in each case, while U gives the direction of

particle displacement. Points on the grid which are in phase with one another

are indicated. It is seen that these points lie along lines. In three

dimensions, there are planes of constant phase. The normal mode depicted in

Fig. lc has a small transverse component to its particle displacement vector.

There are other directions for which the vectors U and K are parallel or

perpendicular. For propagation in the X-Y plane there is only one other

direction. If 1P in Equation (58) is set equal to e in Equation (53), the

following expression is obtained:
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tan ( = [C11+C12/C22+C12]½, (60)

where ( = angle between this special direction and the.X-direction.

The velocities along this direction are determined by substituting Equation

(60) into Equations (53) and (54). The result of doing this is as follows:

PV2 = C12+ C6 6 + C 1+C2 2 -C 12 (61)

2L Cll+C22+2C12pV2 = CllC 2 2-C1 2 (62)
S Cll+C 2 2+2C1 2

It can be shown that a/ae(pV2) is zero at 6 = *. Therefore, Equation (62) gives

the minimum (or maximum) shear velocity which occurs at this special angle (.

In transforming the stiffness matrix for rotation in the X-Y plane, it is

found that the transformed coefficient C36 is zero only when 6 equals 0° or 90°.

It follows that when e = c, shear wave propagation will result in a finite

Z-direction normal stress. This is also true at all angles other than 0° and

90 ° .

Equations similar to (53)-(62) can be derived for plane wave propagation

in the X-Z and Y-Z planes. In addition, more complicated expressions can be

derived to predict wave propagation in directions oblique to all three ortho-

tropic planes. In principle, by measuring a number of wave velocities using

ultrasonic techniques, one can determine all nine independent orthotropic elastic

constants. .As pointed out by Markham (42), however, the degree to which

waves propagated in real bulk materials approximate plane waves depends upon

the size of the specimen relative to the wavelength.
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It can be seen, then, that orthotropic plane wave theory has limited

application to thin materials like paper. Only waves propagated in the thick-

ness direction can be considered bulk waves. As such, only C33, C4 4, and C55

can be determined using standard techniques.

ORTHOTROPIC PLATE WAVE THEORY

In conjunction with IPC Project 3332 and this investigation, plate wave

theory was developed for the orthotropic case (52). Such a development had

not been found in the literature, and was needed for the treatment of wave

propagation in paper.

DESCRIPTION

For bulk materials there are three normal modes of oscillation. In

orthotropic materials along the principal directions, these waves represent

pure modes. In all propagation directions, the wave propagation velocities

are independent of frequency. Since group and phase velocities are equal in

the absence of dispersion, one can measure bulk velocities using pulse

propagation techniques.

For elastic wave propagation in plates, which have two boundary surfaces,

two sources of complexity arise. First, multiple reflections of waves between

the boundary surfaces occur. Second, mode conversion of P and SV type waves

occurs. P is the designation given to the longitudinal type of bulk wave.

SV refers to a shear wave which is polarized in the vertical plane, perpendicular

to the plane of the plate. A third type of wave, designated SH, is a shear wave

polarized in the plane of the plate.
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These three types of waves are depicted in Fig. 2a and b. The SH waves

are shown separately, since they do not couple with either P or SV waves upon

reflection in the isotropic case. This greatly simplifies the mathematical

description of isotropic plate waves. The larger arrows in Fig. 2b show the

direction of particle displacement for the SV waves.

In the orthotropic case, SH waves do not couple only for propagation along

the principal directions. Consequently, in order to avoid excessive mathema-

tical complexity, consideration of plate wave propagation in orthotropic materi-

als will be restricted to the two principal in-plane directions.

Along the principal orthotropic axes, the lowest order SH mode is nondis-

persive, and propagates with the velocity of the transverse bulk wave. This

pure SH mode propagates while satisfying the zero stress boundary conditions.

Higher order SH modes also exist (30). These modes are dispersive and will

not be further considered.

Mathematical formulation of plate waves involves describing all normal

plate wave modes. The desired description gives the phase velocity of the

various modes as a function of the thickness, density, and elastic properties

of the plate, and the frequency.

Analytical solutions to orthotropic plate wave propagation can.be obtained

using the method of partial waves. Solie and Auld (53) have done this for

plates having cubic symmetry. In this method, plate wave solutions are con-

structed from the simple P, SH, and SV partial waves, which reflect back and

forth between the boundaries of the plate. From this point of view, plate

waves are seen as travelling waves in the propagation direction, and as standing
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waves in the plate thickness direction. Plate wave solutions are found by

imposing the condition of zero normal and shear stresses at the plate surfaces.

A basic principle of the partial wave method is that the partial waves are

coupled to each other by reflections at the plate boundaries. Every partial

wave must have the same vector component in the propagation direction. This is

depicted in Fig. 3 for X-direction propagation.

z

. I
KSV w/VSV

Kp cw/Vp

kPx ksvx: kx (x/V

Figure 3. Wave Vectors for Longitudinal (P) and Shear (SV) Partial Waves

Showing Requirement that Components of Wave Vectors in the

Propagation Direction (X) be the Same
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For propagation along the principal directions in orthotropic plates,

the free boundaries couple the P and SV waves. In this case, a total of four

partial waves, two P and two SV waves, are required to construct the normal

plate wave modes. The magnitudes and directions of these bulk waves are chosen

so that the free boundary conditions are met at the plate surfaces. The trans-

verse components of the wave vectors are positive for one P and one SV wave,

and negative for the other two. As is seen in Fig. 3, the slower SV wave

propagates in a direction which is nearer to the plate normal (Z-direction).

As frequency is changed, corresponding changes in the direction and magni-

tude of the partial waves are required in order to satisfy the boundary condi-

tions. This gives rise to the dispersive character of plate wave modes. A

set of dispersion curves can be constructed which depicts the dependency of

phase velocity on frequency for the various plate modes. Plate waves can be

described as either symmetric or antisymmetric modes, depending on the symmetry

about the midplane of the particle displacements along the direction of propa-

gation.

THEORETICAL DEVELOPMENT

In the following analysis the discussion is limited to the X-Z plane.

Plate wave propagation is in the X-directiono Results for Y-direction propaga-

tion can be obtained by changing the appropriate elastic constants.

The equations of motion for mechanical disturbances have been presented

in Equations (32)-(34). In order to construct plate waves in the principal

direction, it is necessary to first find plane wave solutions to Equations

(32)-(34). For bulk waves propagating in the X-Z plane, u and all derivatives
Y
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with respect to y must be zero. Using Equations (26)-(31) to express the stress

components in terms of the displacements, Equations (32) and (34) become:

a2u a2u a2u a2u a2 u
-- = C-- + C13-- + C 5 + (63)
at 2 .. x 2 axaz az 2 axaz

a2u a'2 a2u a2 u a2u
z z x X z

P-= C33-- + C13---+ C5 5 +-- (64).
9at2 2 Z2 azx axaz ax 2

Requiring that the solutions represent plane waves means that

ux =Ox exp(i(k x + k z - wt)) (65)x Oux U ox z

u = u exp(i(kxx + k z - wt)) (66)

Equations (63) and (64) then become:

PUOW2 = Clluoxk + (C13+C55)uzkk + Cssuok 2 (67)

PUoz2 = C5 5sUk
2 + (C1 3+Cs 5)U kxkz + C3 3Uzk

2 (68)

Eliminating ux and u0 , it is found that k 2 must satisfy the following quadratic

equation:

(CS1+Cs5)2k 2k2 = (p2-Cllk2 -C55k2 )(pW2-C5k 2 -C3k2 ) (69)
x z X z X

Given a value of k, uOz /uOx can be determined as follows:

uOz/Ox = (pW2-Cllk 2-Cssk 2)/(CI 3+Css)kxk (70)

2 2x z2e

For k2 = 0, Equation (69) permits two possible values of k2 . One of these
x Z

is k2 = w2 lC3. For tis value of k2, UO /Ox is found from Equation (70) to
z z Oz Ox

be infinity. This is a longitudinal wave travelling in the Z-direction with

velocity V = (C3 3/p)½. The other solution is a transverse wave in the Z-

direction with velocity V = (C55/P) If k2 = 0, Equation (69) yields two
55 JZ
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other solutions. These are longitudinal and transverse waves in the X-direction.

It is seen, then, that orthotropic bulk waves travelling in the principal

directions are like isotropic bulk waves for which particle displacements are

always either parallel or normal to the propagation direction.

For waves oriented at an angle to the principal axes (kx 0, k # 0)

the polarizations of the two wave solutions are neither normal nor parallel

to the direction of travel. In this more general case, the two solutions of

k2 from Equation (69) are given as follows:
Z

k = k(-B±(B24D))/2 (71)

where

B = (-pV2(C3 3+C 5 5)-C13(Cl3+2C 5 5)+CllC 33)/C 3 3Css (72)

D = (pV2-C5 5)(pV
2-Cl)/C33C 5 (73)

V = /k (74)

For a given frequency, w, and component of the wave vector in the X-direc-

tion, k , Equation (71) establishes the four possible values of k for ortho-
X .z

tropic bulk waves. Equation (70) can then be used to find the polarization of

the disturbance. These waves are nondispersive, but the velocity and the angle

between the wave vector and the polarization depend on the direction of propaga-

tion.

Plate waves will now be constructed from combinations of these bulk

(partial) waves. The X-direction plate modes must be plane waves along the

machine direction. As shown above, for any X-direction component of the wave

vector, there are four bulk plane waves. Since any combination of these four

bulk waves is a plane wave in the X-direction, sums of these bulk waves are
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sought which meet the free boundary conditions9 It will turn out that solutions

exist only for certain combinations of w and k . Since the plate velocity is

equal to w/k , dispersion curves relating frequency to velocity can then be

~~x~~~ ~x
constructed from the permissible combinations of V and k

The z = 0 plane is taken to be at the center of the plate. The plate,

of thickness T, has boundaries at z = ±T/20

The possible plate wave solutions have the following form:

i(kxx-wt) ik z -ik z ik z -ik z
u = e (Me z+ +Ne z+ +Pe z- +Qe z- )

x

i(kxx-wt)ik -ik z ik z -ik z
u = e (tan .+(Me z+ -Ne z+ ) + tan V (Pe z- -Qe z- )), (76)

Z

where tan 9+ and tan ._ are defined as the values of uOZ/uOx when kz+ are

inserted into Equation (70).

The boundary conditions which must be met at z = ±T/2 are as follows:

a9u au
33'= C33 Z + C- x

= o

= c Z ax= =0
a5 = 055 [-I-+

(77)

(78)

Substituting u and u from Equations (75) and (76) into Equations (77) and (78),

imposes the following four conditions on M, N, P, and Q:

G+kz+T + G+e z+ + Ge -

Ge -ikz+T + G ek+T + G e-ikz -T
Z+ +

H2ik T H-ik+T + H.eik T

H +ez+ - H+e ikz+T + H e-ikz T

+ G.e-zikz- T+Ge z-

+G e.ikz-T

-H.e-ikz-T

H ezikz T

M

N

P

Q

= 0 (79)F

(75)



-41-

where G+ = C3 3kz+ tan + + C 13k (80)

H+ = kz + k tan p± (81)

There are nonzero solutions for U only if the determinant of the matrix in

Equation (79) is zero. This requirement reduces to:

[tan(½k +T)/tan(½k T)] = [H G+/G_H (82)

When Equations (.70)-(73) are used to eliminate tan +± and k ::, Equation

(82) becomes a relationship between w and V that must be satisfied if a plate

wave is to exist. This equation is the orthotropic plate wave dispersion

equation. This equation can be put into the following alternative form:

tan(*Z k-T v+ a+bZ c-dZ
tax n(½i/ (83)tan(½/Z k T a+bZ c-dZ ' (83)L h-x re -

where Z = k2 +/k 2
+ z+ x

Z = k 2 /k 2

z- x

a = pV 2 -C 1 1

b = C1 3

c= a + C1 3 (C 1 3+C-S)/C 3 3

d = C55

One can find the particle motion of a particular mode by choosing values

of w and V that satisfy Equation (82), finding M, N, P, and Q from Equation (79),

and then substituting into Equations (75) and (76) to find U as a function of

x, z, and t (time). The plate wave solutions to Equation (82) can be classified

by the symmetry of motion in the sheet direction. The plate waves correspond-

ing to the +1 exponent in Equations (82) and (83) are called symmetric modes.
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The antisymmetric modes are those with a -1 exponent. For symmetric modes M =

N, and P = Q, while antisymmetric modes have M = -N and P = -Q.

Equation (83) is transcendental, and therefore solutions must be found

with numerical techniques. The wave vector components depend,for a given

material, on phase velocity and frequency. However, the wave vector components

for both directions are proportional to frequency. Hence, Z and Z , which

are given in terms of the ratios of these components, are independent of

frequency.

This fact can be used to simplify the numerical determination of solutions

to Equation (83). A computer program has been written to do this. A listing

of the program is presented in Appendix I, along with an explanation of the

parameters. Generally, the program is capable of finding all solutions of

Equation (83) over a given frequency range and for any given phase velocity.

A set of dispersion curves is shown in Fig. 4. These are for an ortho-

tropic plate 0.679-mm thick. The X to Z-direction stiffness ratio is 2:1.

Each mode is identified by a letter, A or S, indicating either a symmetric or

antisymmetric mode, and by a number indicating the order of the mode. It is

seen that all modes tend to approach a common velocity at high frequencies.

Theory predicts that this is indeed the case, with the limiting velocity being

that of a Rayleigh wave. A Rayleigh wave is a surface wave which propagates

along the surface of a semiinfinite material. At higher and higher frequencies

plate wave motion becomes more and more localized at the plate surfaces, the

condition for surface wave propagation.

A second computer program, listed and described in Appendix II, has been

written for the purpose of graphically representing the plate deformations.
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The program computes particle displacements, u and u , for any mode at any
X Z

frequency.

LOW FREQUENCY SYMMETRIC MODE

At low frequencies the zeroth order symmetric mode is nondispersive. A

plateau region exists for which phase velocity is essentially independent of

frequency. This plateau region is evident in Fig. 4. This plateau region has

been expanded in Fig. 5. It is seen here that the SO mode is very flat up to

at least 900 kHz. It is also seen that the AO curve begins to level off at

about this frequency.

The limiting velocity at zero frequency can be related to the orthotropic

stiffness coefficients by using Equation (83). The left side of Equation (83)

approaches:

+,k T/½- k T/ = r+'/ Z_ (84)

as k = 2Trf/V approaches zero, where f is the frequency. At zero frequency,
X

then, Equation (83) becomes:

(a+bZ+)(c-dZ_) = (a+bZ_)(c-dZ+) (85)

The next step is to expand Equation (85) in terms of the C..'s, p, and V. After

considerable algebraic manipulation, the following simplification is obtained:

PVx = Cl-C~3/C33 (86)
sox

where V x = SO velocity in the limit of zero frequency for propagation in the
SOx

X-direction. In terms of the engineering constants, Equation (86) has the

following form:
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pV2 = Ell/(l- 12 v2 1) (87)SOx

Since Equation (87) involves only in-plane elastic constants, the low

frequency zeroth order symmetric mode velocity, V , does not depend directly

on Z-direction properties. Upon examination of Equations (75) and (76), it is

found that as f approaches zero, u (max)/u (max) approaches zero. In the limit,
z x

then, there is no Z-direction motion and the wave velocity should not.depend on

Z-direction properties.

Paper is sometimes treated as a planar material. This means that Z-

direction stresses are assumed to be zero and Z-direction motion is ignored.

In this case, it is easily shown that the longitudinal velocity is also given

by Equation (87). Therefore, in the limit of zero frequency, the planar assump-

tion is valid and is expected to provide the correct velocity. As the frequency

increases, however, Z-direction motion begins and the plate mode becomes dis-

persive.

Treating orthotropic materials as planar materials reduces the number of

elastic constants from 9 to 4. While compliance coefficients and engineering

constants remain numerically unchanged, in this case, the assumption of zero

Z-direction stresses will necessitate redefining the stiffness coefficients.

The numerical difference in the stiffness coefficients in the two cases can be

understood by recalling how Cil is determined. The coefficient Cll is deter-

mined by straining the plate in the X-direction while preventing Y and Z-

direction displacements. The restraint on the plate effectively increases its

stiffness in the X-direction depending upon the Z-direction properties. The

zero stress assumption.essentially removes the restraint, with a resulting

decrease in stiffness.
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The four planar stiffness coefficients, denoted by primes, are given in

terms of the three-dimensional constants as follows:

CS1 = Cll - c13/C 33 (88)

C22 = C22 - C23/C33 (89)

Cl2 = C1 2 - C1 3 C2 3 /C 3 3 (90)

C6 = C6 6 (91)

Equation (86) can then be written as follows:

pVOx = C1 (92)

This equation, giving the low frequency limit to the zeroth order symmetric

mode velocity, is simply Equation (53) for e = 0° with planar constants sub-

stituted for bulk constants. It is found, then, that the equation for bulk

longitudinal waves is valid for planar materials when the planar constants are

substituted for the bulk constants. Of course, these equations will be approxi-

mate except in the limit as frequency goes to zero. Since C11 # C1 1, the low

frequency longitudinal velocity in the planar case will differ from the longi-

tudinal bulk velocity by some small amount.

In the case of shear wave propagation in the X-Y plane, there will be no

velocity difference between the planar and bulk materials when e = 0° or 90° .

This is because C16 = C66. Consequently, the bulk shear modulus C6 6 can be

measured on thin specimens by propagating shear waves along the X or Y-directions.

The bulk and planar shear velocities will differ, however, for propagation

in the X-Y plane which is not along either principal axis. Equation (54)

gives these shear velocities as a function of angle, 6. Again, bulk or planar

shear velocities are obtained by using bulk or planar stiffness coefficients,
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respectively. The inequality of these two velocities away from the principal

axes can be appreciated by recalling that shear wave propagation in the X-Y

plane of a bulk orthotropic material will result in a finite Z-direction nor-

mal stress for all angles except 0° and 90°. In the planar case, this Z-

direction stress vanishes, and it follows that the shear wave velocity must be

different.

BULK LONGITUDINAL VELOCITY

In a later section, the propagation of plate waves through single thick-

nesses of paper at the bulk velocity will be discussed. In order to propagate

these waves, it will be necessary to predict the frequencies for which the

symmetric modes have plate wave velocity equal to the bulk longitudinal velocity.

For X-direction propagation the bulk longitudinal velocity is given by:

= =

V = (C 1 1/p) (93)

When this relationship is substituted into Equations (72) and (73), it is

seen from Equation (71) that k2 becomes zero. It can also be demonstrated
z-

that for plate wave velocities greater than the bulk longitudinal velocity,

both.k2 and.k2 are positive. In a region below the bulk velocity, k2 remains
z+ Z- z-

positive, while k2 becomes negative. Eventually, k2+ becomes negative as well.

For symmetric modes, Equation (83) has the following form:

tan(½YkxT) = Y9(c-dY2 )] a+bX 2 ltan(kxT) (94)
x a+bY2 C-dX2j x
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where Y = Z+

X = Z

a = pV2-C1 1

b = C13

c = PV2 -C11 + C1 3 (C1 3+C 55 )/C 3 3

d = C55

Now, when V = (CIl/p)½, X = 0, but Y > 0.

tan(½YkxT)

lim X +- 0

Therefore, in the limit as X approaches

= C13+Css5 -C5 5 Y 0 I lim tan(XkT)1
C3 3Y C1 3 Ci3(C13+C55)/C33 LX-0X X:ic~~ ~ 5css13 Ll o lr )i :lim 1a~~k

Since

lim tan( (Xk T)

X+0 X

(sec 2 lXkxT). (X ak x/x + kx)T/2
11

it is seen that

X+O tan(½YkxT) = 0

Therefore, the following must be true:

- 2TfT/2
X=O ~+ v x=O = +

IT ft
Cl = nx=o vC

n T ,
T Z+ X=0

1 3 (C 3 C33C55
= n T C13(Cl3+2C55)+CllC55

(95)

X= 0
k xT 0 0

x~
(96)

(97)

½Yk T
x

(98)

(99)
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= 1 + C13(C 1 3+2Css) (100)
C 11C 5 5

where f = crossover frequency of the nth symmetric mode
n

Vz = bulk longitudinal velocity in the Z-direction
Lz

Now, since T is the plate thickness, VLz/T is the reciprocal of the transit

time of a longitudinal wave propagated through the plate.

APPLICABILITY OF WAVE PROPAGATION THEORIES:
EXPERIMENTAL ASPECTS

The primary objective of this thesis is to test the validity of wave propa-

gation theories as applied to paper. In particular, orthotropic wave theories

are to be tested, since it is known that the elastic properties of machine-made

paper differ along each of the three principle axes. The main consideration

here is whether or not wave theories developed for continuous homogeneous

materials apply to fibrous networks which contain more or less discrete elements

in a porous heterogeneous structure.

A useful approach commonly adopted in such investigations is to make more

than a sufficient number of ultrasonic velocity measurements and to then analyze

the velocity data, using the assumed theory, for self-consistency. A different

approach will be used in this investigation.

Paper will first be treated as a bulk material. Bulk velocity measurements

will be made and some of the stiffness coefficients will be determined. These

coefficients will then be used to predict theoretical plate wave dispersion

curves. Finally, actual plate wave velocities in dispersive regions will be

measured, and compared with the theoretical predictions. Close agreement
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between theoretical and experimental data will constitute sufficient proof that

the wave theories for bulk and plate waves are valid for paper.

It was first necessary to investigate the propagation of waves through

paper in some detail. Much of this work consisted of developing techniques

for measuring various bulk and plate wave velocities.

SAMPLE DESCRIPTION

The main part of the experimental work was conducted with four board

samples. Much of the early developmental work was done with chipboard. The

main advantage of using chipboard was its immediate availability. The chipboard

was homogeneous throughout its thickness, but was made from a heterogeneous

fiber furnish. Chipboard results will not be reported below in much detail.

Thick samples were selected for two basic reasons. First, thick sheets

simplify the construction of three-dimensional paper specimens. Second, the

thicker samples will permit more of the plate wave dispersion curves to be

detected.

The other three board samples, made on fourdrinier machines using kraft

pulp, consisted of two unbleached linerboards and a fully bleached milk carton

stock. The milk carton stock was supplied by Champion Papers, and was made on

a single headbox machine. The milk carton stock had an average basis weight

of 107.8 lb/1000 ft2 . Data for the two linerboard samples, supplied by the

manufacturers, are presented in Table I. Both linerboards were made on double

headbox machines.

SEM photomicrographs were taken for these three board samples. These are

presented in Appendix III. A pronounced difference between felt and wire sides

is observed for both linerboard samples. The wire side is more open and the
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fibers show a high degree of orientation in the machine direction. Fibers on

the felt side appear better bonded and do not exhibit any preferred orientation.

A pronounced two-sidedness is not observed with the milk carton stock. A small

amount of filler material is apparent. The edge view shows a much denser

structure relative to the linerboard samples.

TABLE I

DATA FOR TWO LINERBOARD SAMPLES

Sample

Manufacturer

Average basis weight
(lbs/1000 ft2)

Top layer

% by weight

Kappa number

C.S.F. (mL)

Furnish

#1

MacMillan Bloedel

87.3

20

75

400

90% pine

10% hardwood

#2

Union Camp

88.4-

20

300

70% pine

30% hardwood

Bottom layer

% by weight

Kappa number

C.S.F. (mL)

Furnish

80

85

650

90% pine

10% hardwood

80

650

65% pine

10% hardwood

25% waste

The two linerboard samples were received in web form and immediately cut

up into 14 inch by 28 inch specimens. These specimens were then placed under

constant conditions of 73°F and 50% RH.
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The milk carton stock was received as 14 inch by 28 inch specimens. These

were placed in a low humidity environment (about 22% RH) for 48 hours before

being placed in a 73°F, 50% RH environment.

Most of the measurements, including all of the velocity measurements,were

made at 73°F and 50% RH. Transport of specimens between conditioned rooms

was accomplished with the samples in air-tight polyethylene bags.

The average thickness of each sample was determined using a Schopper microm-

eter. About 40 thickness measurements were made for each sample. The microm-

eter was calibrated according to TAPPI Standard.411. These results appear in

Table II.

TABLE II

AVERAGE BASIS WEIGHT, THICKNESS, AND DENSITY
FOR THREE BOARD SAMPLES

90 lb. Linerboard Milk Carton
No. 1 No. 2 Stock

Basis weight (g/cm2) 0.0426 0.0432 G.Q526

Apparent thickness (mm) 0.682 0.625 0.679

Apparent density (g/cm3) 0.625 0.691 0.775

PRELIMINARY INVESTIGATIONS

MORGAN INSTRUMENT

The initial experimental work was with the Morgan Dynamic Modulus Tester.

The main purposes for this work were to become acquainted with low frequency

wave propagation in paper in general, and with the Morgan instrument in parti-

cular.
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During this time the only auxiliary equipment used in conjunction with

the self-contained Morgan instrument was an oscilloscope. With this set-up the

basic operation of the instrument was ascertained. A high voltage triangular-

shaped pulse of approximately 300 usec duration and 60 Hz repetition rate is

fed to the sending transducer. The electrical pulse is such as to cause the

ceramic transducer to resonate at about 10 kHz. These oscillations attenuate

rapidly between pulses.

The sending transducer probe rests on the paper and displaces in a

direction parallel to the plane of the sheet. The receiving transducer is

oriented along or perpendicular to this direction for longitudinal or shear wave

propagation, respectively. The receiving transducer converts particle motion back

to an electrical signal and in this way senses the propagated pulse. When the

transducers are positioned far from the sheet edges, reflections which arrive

at the receiving transducer will be attenuated and delayed in time. This is

seldom a problem since only the very first portion of the received signal is

used to determine pulse transit times.

The circuitry of the Morgan instrument determines transit time using an

internal counter. The start pulse is coincident with the high voltage tri-

angular pulse. A separate circuit provides the stop pulse by triggering on

the initial slope of the received signal. The trigger voltage level is set by

the operator. A small systematic error results from this method whenever the

initial slope changes with transducer separation distance. This error should

be less than 1%.

The Morgan instrument employed, Model PPM-5, was equipped with a chart

recorder which would continuously display the total pulse delay time. The

variability in the recorder reading was very large, and was attributed to both
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the recorder and the paper. Variations of elastic properties within the sheet

were found to be quite large. Consequently, accurate characterization of a

particular sheet required a large number of transit time measurements over a

large area. The overall accuracy of the velocity measurement has been estimated

to be about ±1%.

In general, the dry, essentially point contact that the transducers make

with the paper was found to be quite efficient. It was also found that the

backing material onto which the paper is placed has no significant effect on

the received signal.

MEASUREMENT SYSTEM

It was apparent at the outset that the Morgan instrument would not be suit-

able for measuring wave velocities at other than these low frequencies. A more

versatile measuring system was therefore sought. The initial intent was to make

velocity measurements on paper at higher frequencies where attenuation would be

high and where the waves might be dispersive.

In highly dispersive or attenuating materials the echo or pulse overlap

techniques (4916,1_7,54) may be impractical due to pulse distortion or an

inability to observe echos. In addition, the pulse echo technique is applicable

only at frequencies sufficiently high that the width of the pulse can be made

small compared to the transit time through the sample.

The pulse through-transmission technique may be used on highly dispersive

and attenuating materials by measuring the time of flight of a pulse on a single

pass through the specimen. The measuring system depicted in Fig. 6 was eventu-

ally assembled, and the pulse through-transmission technique was used exclusively.
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Appreciable versatility was designed into this system. For instance, the

function generator is capable of producing both continuous waves and pulses of

varying width and repetition rate. The direct current to 20 MHz generator

can produce bursts of sine waves, particularly useful in the through-transmiss-

ion technique, and can also sweep frequency while in the continuous wave mode

of operation. The H.P. 1740A oscilloscope has two time bases. When used in con-

junction with the time interval counter, the oscilloscope can be used to measure

delay times to the nearest nanosecond.

The operation of this system is as follows. The input pulse waveform is

amplified and fed to the sending transducer. The positive slope of the SYNC OUT

square pulse is coincident with the first positive peak in the generator output,

and is used to trigger the main time base on the oscilloscope. At the same time,

the oscilloscope main GATE OUT starts the counter. The receiving transducer

picks up the attenuated signal, which is amplified and displayed on the oscillo-

scope.

The instant of triggering of the second time base is controlled by the

operator. When automatic triggering is chosen, the measuring system acts like

a sophisticated Morgan instrument. Greater accuracy is obtained by manually

adjusting the delay time multiplier knob on the scope. The scope is designed

to provide visual representation of the point of triggering of the delayed time

base. For instance, it is possible to trigger on any peak or crossover point.

Generally, it is advantageous to trigger somewhere toward the middle of the

burst of sine waves, where the waveform will be least distorted.

Finally, coincident with the triggering of the delayed time base, is the

delayed GATE OUT which stops the counter. The counter gives a continuous

digital display of the measured delay time. The number of time periods
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averaged by the counter is selectable. The counter can also be used as a fre-

quency counter to calibrate the function generator.

With the time interval counter, the measuring system depicted in Fig. 6

is capable of making delay time measurements to the nearest nanosecond. To

calculate a velocity from this delay time measurement, however, it is necessary

to account for the time delays through the various electronic components as

well as through the transducers. Also, transducer separation must be determined.

In general, these latter considerations limit the accuracy of the pulse through-

transmission technique.

CONTACT TRANSDUCERS

With the objective of investigating high frequency wave propagation in

paper, it was necessary to obtain appropriate transducers. Commercially avail-

able piezoelectric contact transducers were found to operate at these high

frequencies.

The contact transducer consists of a slab of piezoelectric ceramic material

attached to a wear plate, and enclosed in a cylindrical-shaped housing. A

special backing material behind the ceramic material controls the damping be-

havior of the transducer. A highly damped transducer will result in less wear

plate displacement for a given applied voltage. However, the highly damped

transducer will be broadbanded. Low damped transducers are more sensitive,

but over a smaller frequency range.

Three matching pairs of contact transducers were used in the experimental

work. A pair of 1 MHz immersion transducers was obtained from Dapco Indus-

tries. These were highly damped longitudinal transducers. The immersion trans-

ducers have epoxy wear plates of 1/2-inch diameter, which acoustically match
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the transducers to water. The epoxy wear plates vibrate in a direction normal

to the plate surface, parallel to the axis of the cylindrical transducer,

The other two pairs were obtained from Panametrics, Inc. One of these

were 5 MHz longitudinal transducers of 1-inch diameter. The other were 1 MHz

shear transducers of 1/2-inch diameter. Both pairs have the higher impedance

wear plate. The faces of the shear transducers vibrate in a direction per-

pendicular to the axis of the cylindrical transducer.

Initially, attempts were made to propagate waves in the Z-direction of

heavy board materials. It was quickly learned that signal losses resulting

from poor transducer-specimen contact were severe. It was discovered that an

intimate contact was required. Even the roughness of a smooth calendered paper

surface was prohibitive. The displacements of contact transducers are extreme-

ly small.

Of the contact aids which were tried, vacuum grease worked best. The

vacuum grease could be applied in small amounts and yet sufficiently fill in

the surface irregularities, thereby acting as a bridge between the transducer

and individual fibers in the sheet.

Penetration of the vacuum grease into the fibrous structure does occur.

Penetration is a slow function of time, and is affected by the initial amount

of grease applied and by the degree of contact pressure. Vacuum grease pene-

tration affects both transit time and signal amplitude measurements. A slight

signal decrease has been observed with time as the grease penetrates, thereby

altering the nature of the transducer-specimen bond. This change is so small

as to be insignificant.



-60-

The effect on the transit time measurement can be substantial. Longitudinal

waves propagating in the X-Y plane, transit times and transducer separations are

both large, and the effect of the grease penetrating a few mils is negligible.

The grease does not affect the fibrous structure other than to fill some of the

void space. Since longitudinal waves travel slower in the grease than in the

paper, the net effect will be a slight decrease in the wave velocity in the

regions of grease penetration. Generally, this effect is negligible for propaga-

tion in the X-Y plane.

In the case of Z-direction propagation, however, grease penetration is no

longer negligible. The Z-direction longitudinal velocity in paper turns out to

be considerably less than that in the grease. The effect of the grease is to

decrease the measured transit time, yielding an erroneously high Z-direction

longitudinal velocity.

The extent of grease penetration has been approximated by examining vari-

ous paper specimens under the microscope. Areas on the specimens which have

made contact with vacuum grease are darker. It was found that the depth of this

discoloration was only a couple mils.

Z-direction measurements can be made with little vacuum grease applied to

the transducers. The precise techniques which were developed to minimize the

effect of grease penetration are discussed later.

Vacuum grease, like most nonsolids, does not transmit shear motion. A

special shear wave coupling material is required. It was found that honey

serves this purpose quite well. Honey did partially penetrate the fibrous

structure, but as with the vacuum grease, penetration effects were negligible

for propagation in the X-Y plane, and have been minimized for Z-direction

propagation.
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SPECIMEN-TRANSDUCER CONFIGURATIONS

Studies were made of various specimen-transducer configurations in order to

determine possible means for measuring the velocities of waves in paper. Unlike

the Morgan instrument probes, the contact transducers have large active areas.

Z-direction wave propagation is straightforward enough. The transducers are

simply coupled to opposite surfaces on single specimens. Propagation in the X-Y

plane is more difficult.

The Morgan instrument is capable of propagating low frequency longitudinal

waves in the X-Y plane. Using contact transducers, it was desired to propagate

bulk longitudinal waves in the X-Y plane. The bulk velocities are somewhat

higher than the corresponding Morgan velocities. Both types are needed for

calculating some of the elastic constants, the out-of-plane Poisson ratios in

particular.

One scheme for measuring these bulk velocities consists of constructing

stacks made of paper. The stacks of paper were compressed in a special clamp-

ing apparatus, and two opposite faces of the stacks were smoothed on a belt

sander. The transducers are bonded to these smooth surfaces. The stacks were

typically 1 1/2 inches in width (between transducers), 1 1/2 inches in depth,

and 3 inches in length. Stack widths were always in the range of 1/2 to 2 inches.

The most accurate way to measure propagation velocities is to measure

the total delay time for two identical stacks of different widths. For each

stack, the total delay time includes the following:

1. actual transit time through the fibrous material;

2. extraneous time delays occurring at the transducer-specimen inter-

faces; and
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3. time delays in the transducers and associated electronic equipment.

Everything being the same, the difference between the two total delay times

corresponds to the actual transit time through a hypothetical stack having a

width equivalent to the difference between the original stack widths. This

measuring technique assumes that the two paper stacks are identical in all

respects except their widths.

It has been shown that sanding the opposite faces of the stacks changes

the fibrous structure only slightly. The affected regions are very narrow,

perhaps a couple mils into each surface. The above technique would cancel

out even this small effect, since presumably the effect on measured delay time

would be the same for each stack.

The stack widths are never small relative to the transducer diameter,

as is the case for Z-direction propagation. The transducers are neither point

sources nor infinite plane sources. Strictly speaking, then, these bulk waves

are not plane waves. It has been found that the above transducer-specimen

arrangement approximates plane wave propagation remarkably well, though care

must be taken to insure that the transducers are directly opposite one another.

An interesting experiment was conducted using this stack configuration.

Four stacks of Mountie Offset printing paper were constructed using different

orientation schemes, as follows:

1. all sheets were oriented with X-direction parallel to the propaga-

tion direction;

2. every third sheet was oriented in the Y-direction;

3. every other sheet was oriented in the Y-direction; and
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4. all sheets were oriented with Y-direction parallel to the propaga-

tion direction.

Eight stacks were constructed, two for each orientation scheme. For each

pair the difference in widths was approximately 50 mm. Delay times were

measured for longitudinal wave propagation through each stack, and velocities

were calculated.

Elasticity theory predicts that for a layered arrangement, Young's moduli

add in a series fashion. Since the bulk longitudinal velocity squared is

very nearly proportional to Young's modulus, it was expected that the V2 values

would vary linearly with the proportion of sheets oriented in the X-direction.

The results of the experiment are given in Fig. 7.

The linear plot in Fig. 7 gives support to the general validity of the

ultrasonic technique. This specific result seems reasonable when one compares

the wavelength with the thickness of the individual Mountie Offset sheets.

This experiment was conducted at 1 MHz. The wavelengths ranged, then, between

2.7 and 3.8 mm. Each sheet was only about 2.5 mils, or 0.064 mm thick. With

such a large wavelength-to-sheet thickness ratio, it is not surprising that

the longitudinal wave would travel at the correct average velocity when layer

orientation is mixed.

Other specimen-transducer configurations were studied. Another arrange-

ment which proved acceptable involved single sheets. The transducers were

affixed to opposite edges of the narrow specimens. The arrangement was essen-

tially like the stack configuration. This technique is limited to fairly

heavy board material of sufficient rigidity. The disadvantage of this tech-

nique is that signal levels are greatly reduced since very little of the
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transducer active area is in contact with the specimen. Also, plate waves, not

bulk waves, are propagated with this arrangement.

ATTENUATION AND DISPERSION IN PAPER

Attenuation and dispersion phenomena are important to the measurement of

elastic properties using ultrasonic techniques. A wave velocity which changes

with frequency cannot be easily used to uniquely determine an elastic constant.

There are various types of dispersion. Basically they all stem from an

interaction of the wave with some aspect of the material. With paper, three

types of dispersion can be considered.

Plate wave dispersion is associated with the interaction of waves with

the paper itself. In this case, the wavelength/plate thickness ratio has

particular significance. This type of wave dispersion is characteristic of

plate materials, and can be predicted theoretically from a knowledge of plate

density, thickness, and elastic constants.

Ultrasonic waves will be attenuated in a viscoelastic material. This

attenuation will result in dispersion. This effect is generally very small,

and is negligible except when attenuation is extremely high.

The third type of dispersion, important for all fibrous systems, results

from an interaction of the waves with the fibers. This type of dispersion can

be thought of in terms of wave scattering or attenuation. In general, higher

frequency waves will be attenuated more since wavelength decreases with fre-

quency.

It was necessary at the outset to determine if this latter type of disper-

sion was significant at ultrasonic frequencies around 1 MHz. In propagating
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longitudinal waves through Mountie Offset stacks of varying widths, it was ob-

served that short 1 MHz pulses became increasingly distorted as they travelled

through the stacks. The distortion was accompanied by considerable attenuation.

To quantify these effects, the shape of the received pulse was character-

ized for propagation through two stacks of different widths. These signals

were compared using Fourier transform techniques. A computer program was

written for this purpose. The original pulse was fairly wide, having Fourier

frequency components which fell in a fairly narrow band centered around 0.94

MHz. Useful computer data was limited to the frequency range 0.80 to 1.08 MHz.

As expected, it was found that the higher frequencies were attenuated more.

It was also found that the velocity of the frequency components was essentially

constant over this frequency range.

The quality factor, Q, is proportional to the number of wavelengths travelled

by the wave before it is attenuated by a factor of 0.368 (= l/e), and is defined

as follows:

Q = 7f(Ad)/V ln(A.F.), (101)

where f = frequency

V = phase velocity

A.F. = attenuation factor, ratio of signal amplitudes over distance Ad

Ad = distance over which attenuation factor applies

The quality factor depends on frequency and direction in the material.

From the data plotted in Fig. 8 it is seen that the log of attenuation

factor increases linearly with the log of frequency, while the quality factor

is essentially constant. The high Q value of about 15 implies that attenuation
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0

0
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is not particularly severe. While attenuation is moderately high, the result-

ant dispersion is negligible.

Measurements at frequencies as high as 10 MHz have been made on other

stacks. It was found that attenuation became increasingly severe above 1 MHz.

Presumably, wave dispersion would be significant at higher frequencies. How-

ever, the severe attentuation precludes its measurement.

Z-direction velocities and attenuation have also been measured as functions

of frequency. The Z-direction longitudinal velocity variations with frequency

were always within experimental error. Wave attenuation is much more severe

in the Z-direction compared with propagation in the X-Y plane. This is not

surprising in view of the fact that the wavelengths are about 1/10 those in the

X-Y plane.

In conclusion, it was found that wave attenuation increases with frequency,

becoming severe above about l MHz. This attenuation is not associated with

any measurable dispersion. Therefore, the velocities of ultrasonic bulk waves

in paper should be independent of frequency below at least 2 MHz. This would

be necessary in order for these velocities to relate directly to the elastic

properties of paper.

EXPERIMENTAL TECHNIQUES

IN-PLANE BULK VELOCITY MEASUREMENTS

As stated previously, in order to measure all of the elastic constants

for paper, it is necessary to make in-plane bulk velocity measurements. In

order to predict the dispersion curves for plate wave propagation, it is

necessary to determine the in-plane bulk longitudinal velocities. The thinness

of paper makes it imperative to construct bulk paper specimens.
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The most direct approach is to simply stack individual sheets to the

desired overall thickness. With this approach it is necessary to compress

the loose stack in order to effect good contact between sheets. The result

is a layered structure which may or may not behave as a true bulk material. The

criterion which must be applied to wave propagation through such a material is

whether there is slippage between the layers. It is necessary that all stresses

and strains be continuous across the interfaces between individual sheets.

This will be true when surfaces are completely bonded. With a compressed stack,

this may or may not be a good approximation to a bulk material.

Experimentally, it was found that the propagation velocity of longitudinal

waves through compressed stacks increased slightly with compressive strain.

An increase in longitudinal velocity of 1.4% was measured for a Mountie Offset

stack when a 10% strain was applied. This increase could be the result of

compressing the individual sheets, or the result of improving the contact

between layers, or both. It is not possible to separate these effects. In

conclusion, while the compressed stack permits an easy way to measure the bulk

velocities, there exists uncertainty as to how closely these velocities approxi-

mate the true bulk velocities.

A second approach involves constructing stacks by gluing the individual

sheets to each other with a rubber cement. This approach insures good contact

between layers. However, the effect of the glue on the measured velocity must

be ascertained. Experimental work with glued stacks will be discussed below.

First, a discussion of the velocity measurement procedure will be given.

There are two basic ways to measure bulk velocities on loose or glued

stacks. The simplest way, Method 1, is to measure the total delay time both

with and without the specimen in place. A fairly long burst of sine waves
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is propagated. Since a long wave train will have a narrow Fourier spectrum,

any frequency dependent attenuation will not severely distort the pulse. It

is generally found that distortion is limited to the initial and final few

cycles in the wave train. Accurate phase velocities are therefore obtained

when time measurements are made to a specific point within the pulse. A

common practice used in the present experimental work was to measure the delay

time out to the fourth or fifth peak. With this approach it is only necessary

to measure the delay time out to corresponding points on each signal.

It has been found that this technique suffers from small frequency depen-

dent errors. These errors are associated with apparent time delays which are

associated with the transducer-transducer and transducer-specimen interfaces.

The extraneous time delay, Tt, is defined as the total effective time delay

occurring at the transducer-specimen interfaces. Various mechanisms have been

considered which would account for this extraneous time delay. The transit

time through the vacuum grease itself is about 15 nsec/mil. However, if the

same amount of grease is used with and without the specimen, this would not

contribute to Tt . Another possibility is the occurrence of phase changes at

the various interfaces resulting from impedance mismatches. While mismatches

certainly exist at these interfaces, phase shifts appear in pairs having

opposite signs. These should cancel out. The origin of T has not been accounted
t

for.

The preferred method, Method 2, uses two specimens of different widths

and eliminates the error due to the extraneous delay time. In this case, the

propagation velocity is given as follows:

V = (d2-dl)/(td2-tdl), (102)



-71-

where d = specimen width

td = total measured delay time

This method assumes the same average velocity through each stack. It can

be shown that if this is not so, the calculated velocity will be either greater

or less than the two true stock velocities. Consequently, this method is only

accurate to the degree to which the two specimens are characterized by the

same velocity.

The extraneous delay time can be evaluated by measuring the delay time

through just the transducers, tdo, in addition to tdl and td2. Then, Tt is

given as follows:

Tt = td2-tdo - d2(td2-tdl)/(d 2 -d) (103)

A very large chipboard stack was glued together in order to evaluate these

two methods for calculating longitudinal velocities. Two applications of a

rubber cement were made to each interface. The stack was compressed and then

cut into two pieces, having the following final dimensions: length, 2.75 inches;

height, 1.40 inches; width, d2 = 33.48 mm and dl = 14.99 mm.

Delay times were measured for both specimens, and with the transducers to-

gether, as a function of frequency. This was done using both the 1 MHz and 5

MHz longitudinal transducers. From the delays, velocities were calculated

using both methods. Also, it was possible to calculate the extraneous delay

time at each frequency, using Equation (103). Results are shown plotted in

Fig. 9. The difference between the two total delay times, i.e., td2-tdl, is

roughly 10 -sec.
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The extraneous delay time is found to increase with frequency. Conse-

quently, Method 1 has associated with it a slight frequency-dependent error.

This error can be minimized by employing larger specimens if this is feasible.

For the most accurate velocity measurements, however, the second method should

be employed. The stacks should be constructed in a way that minimizes differ-

ences between the stacks.

The gluing of paper sheets into stacks is itself a source of potential

error. The presence of glue alters the fibrous structure. The question here

is whether the glued stack is representative of a single layer.

The stacks are constructed as follows:

1. one or more applications of glue are made to each sheet allowing

time for drying;

2. sheets are compressed to roughly 100-200 psi for approximately 5

minutes;

3. opposite faces are sanded smooth and parallel; and

4. stacks are permitted to reach equilibrium with environment.

It was found that a single glue application often resulted in a bond as strong

as the paper in the Z-direction.

Sanford's Grippit and Rubber Cement glue were used exclusively. According

to the CRC Handbook of Chemistry and Physics (55), the bulk longitudinal velocity

for gum rubber is 1.55 mm/psec. This velocity is only slightly lower than for

Y-direction propagation in paper. The effect of the glue will be greater for

X-direction propagation, for which the bulk velocities are roughly twice the

velocity through the gum rubber.
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In the process of forming the stacks, particularly in compressing them,

it is possible to permanently alter the structure. An actual weakening of the

structure may occur due to bond breaking, or more likely, the stack may be

permanently deformed. The very presence of the glue is expected to have some

effect, since wave velocities in gum rubbers are slower. If the glue remains

as separate layers, it is expected that the measured velocity would be reduced

in proportion to the glue content. It is also possible that glue penetrates

the surface structure of the individual fibrous sheets. This would result in

an increase in stack density and might also strengthen the surface regions,

thereby increasing the measured velocity.

A simple experiment was conducted to determine the total effect of the

glue in the stack. Six chipboard stacks were constructed, three with only one

glue application/layer, and three with three applications/layer. All six were

compressed to about 125 psi, and machined carefully to nearly the same widths.

X-direction bulk longitudinal waves were propagated through each of the stacks.

The results of the experiment are summarized in Table III. It is seen that

the difference in glue content of 4.1% resulted in a velocity difference of

only 1.45%. The predicted velocity for the 6.0% glue content stack is 3.067

mm/usec. This value is based on the measured velocity of 3.204 mm/usec for

the low glue content stack, and is obtained by assuming that the glue and paper

moduli add in series. With this assumption, the measured value of 3.158 mm/

usec implies that at least two glue effects are operative, and that these

effects are not all in the same direction. These results can be used to extrap-

olate back to 0% glue content, though not without some uncertainty.
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TABLE III

VL vs. GLUE CONTENT FOR CHIPBOARD STACKS

Average glue content 1.9% 6.0%

Longitudinal velocity (mm/usec) 3.204 3.158

In a second experiment, the- three low glue content s-tacks were subjected

to varying amounts of Z-direction compression, each. for three minute periods.

Stack thickness and the X-direction bulk -longitudinal velocities were remeasured

after five days. The results are presented in Table IV. These velocity

changes are within experimental error.. It is concluded that pressures as high

as 400 psi are insufficient to significantly alter the-fibrous structure.

TABLE IV

IRRECOVERABLE STRAIN AND VLx FOR CHIPBOARD STACKS

vs. MAXIMUM PRESSURE FOR COMPRESSING STACK

Pressure
0 psi 200 psi 400 psi

Irrecoverable strain 0% 1.2% 1.5%

Initial velocity (mmpsec) 3.186 3.208, 3.218

Final velocity (mm/psec) 3.198 3.20.2 3.215

Velocity change 0.4% -0..27. -0.1%

Later stack work was conducted using the heavy. bleached. kraft milk carton

stock . Glued stacks having 3.3 and 5.2% glue-were constructed.. Two stacks

with d , = 1.51 inches and d = 0.90 inch.were made for each glue content level.

A fifth loose stack was also assembled The longitudinal velocities were deter-

mined in each case. Over a large frequency.range, no significant differences

among the three glue contents (0, 3.3 and 5.2%) were detected.
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It is concluded that both stack types, loose and glued, approximate bulk

sheets under conditions of X-Y plane propagation. The gluing of stacks is

definitely more time consuming. However, the uncertainty in the measured

velocity is probably less for glued stacks.

For the purpose of making in-plane bulk velocity measurements, three

glued stacks were constructed for each sample. Both longitudinal and shear

waves were propagated through the stacks in the width direction. The three

stacks were oriented along the X-direction, Y-direction, and at a 45° angle

to the X-direction.

The actual stack construction procedure varied from sample to sample.

For instance, more glue was needed for the milk carton stock stacks. The

arrangement of individual sheets in the stacks was also varied. Typically,

every other sheet was flipped over, leaving wire sides and felt sides of ad-

jacent layers together. This was done in order to balance the internal stresses

which were initially present in the heavy boards as evidenced by pronounced

curvature.

Three delay time measurements were made on each stack at different locations

on the smoothed surfaces. The delay time through the transducers was also

measured. The velocities were calculated from delay times by estimating the

extraneous delay time. Both longitudinal and shear velocities were measured

in this way.

Z-DIRECTION BULK VELOCITY MEASUREMENTS

Z-direction bulk velocities are easier to measure than in-plane bulk vel-

ocities. The transducers are bonded to opposite surfaces of a single thickness



-77-

of paper using either vacuum grease or honey. It will be shown, however, that

the accuracy of Z-direction velocities is substantially less.

In early work with the two 90-lb linerboard samples, fairly thick layers

of vacuum grease were applied to the transducers in making longitudinal veloc-

ity measurements. With lesser amounts, the transducers would not remain affixed

to the specimens, making it necessary to apply external pressure to the trans-

ducers. It was found that the measured delay time was quite sensitive to the

applied pressure.

It was also observed that, with the transducers together, the measured

delay time varied with the amount of grease between the transducers. Time

measurements suggested a typical grease application of about 3 mils. Using

feeler gages, the grease layer between transducers was found to be between 2

and 3 mils.

With the higher velocity through the vacuum grease, it became apparent

that any grease penetration would give erroneously high velocities. It was

estimated that significant grease penetration was occurring due to high initial

contact pressure used to bond the transducers to the specimens.

The effect of grease penetration on the measured longitudinal velocity

was determined by making velocity measurements with very small amounts of

grease. The new method of making Z-direction measurements attempts to minimize

the application of both grease and external pressure. As pressure is applied

to the transducers, the signal on the scope is observed to increase in magnitude

from no signal at all. As pressure is increased, the magnitude of the signal

increases and the signal is shifted to shorter delay times (pulse is coming

through board sooner). In making delay time measurements with the new method,
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the applied pressure is increased just until a peak in the output signal

can be distinguished. This method resulted in much slower velocities for

both longitudinal and shear velocity measurements.

The effect.of straining the material was investigated by measuring Z-

direction longitudinal velocities as a function of Z-direction compressive

strain. This was done for two specimens per sample. The results, plotted in

Fig. 10, represent the averages. Though a couple of strong fingers could

produce strains of up to 12%, these strains correspond to pressures well beyond

what is necessary to make good contact. Nonetheless, these results indicated

the sensitivity of Z-direction velocity measurements to Z-direction strain.

Three factors influence the accuracy of the Z-direction measurements. First,

as discussed above, the amount of grease and pressure applied is very important.

Second,.it is not possible to determine the extraneous delay time, Tt, for Z-

direction measurements, since only single thickness specimens can be used. This

extraneous delay time has been estimated to lie between -100 and +100 nsec. This

delay time error is relative to the total delay time, which depends greatly on

the third factor, specimen thickness. For thicker specimens, having greater

transit times, the delay time errors due to the first two factors will constitute

less relative error. Error due to the uncertainty in the thickness measurement

is also significant.

The three board samples investigated had thicknesses in the range of 24.4

and 26.9 mils. Transit times for longitudinal waves were between 2940 and 3245

nsec. Experimental accuracy for these velocity measurements has been estimated

to be ±5%. This estimate applies to both longitudinal and shear velocity

measurements for thick board materials.
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The error associated with Z-direction measurements will obviously depend

upon specimen thickness quite strongly. Another consideration is the large

variation which exists from point to point within and between specimens. Twenty

or more delay time and thickness measurements have to be made in order to obtain

a good representative average.

The Z-direction bulk velocity measurements were made on small specimens.

For convenience, inch-wide specimens were used. These strips were taken from

several of the large specimens. The strips were marked off into 1 inch by 1

inch sections. Generally, longitudinal waves were propagated through 20 squares,

and only 10 squares were tested for each shear wave polarization.

MORGAN VELOCITY MEASUREMENT

The errors associated with the measurement of the low frequency zeroth _ _

order symmetric mode velocity using the Morgan Dynamic Modulus Tester have been

discussed previously. The error has been estimated to be about ±1%. The

technique was modified to eliminate much of the error associated with measuring

delay time.

In the original modification, only the Morgan instrument transducers

were used. Eventually, even these were replaced with contact transducers.

Using the Morgan transducers, the sending transducer is excited by a signal

originating at the function generator. Complete control over both frequency

and repetition rate is maintained. The measurement scheme depicted in Fig. 6

is employed.

The main advantage of this set-up is that it allows one to trigger off the

same point on the received pulse waveform despite transducer separation dis-

tance. In this way, delay time measurements are much more accurate.
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The pulse carrier frequency was typically in the range 40-60 kHz, despite

the fact that the transducers had a center frequency of about 10 kHz. The

response of the transducers at higher frequencies is strongly dependent on

frequency. However, for certain frequencies in the 40-60 kHz range, strong

signals were received.

The time period between peaks is substantially reduced at these higher

frequencies. This in itself increases the sensitivity of the delay time

measurements. Because attenuation is relatively low at these low frequencies,

signal reflections from the specimen ends and sides eventually are detected by

the receiving transducer. These extraneous signals superimpose on the original,

straight-path, signal and distort the received pulse beyond a certain point.

The length of the undistorted portion depends on transducer separation, the

specimen dimensions, and the position of the transducers on the specimen For

any given transducer-specimen configuration, the number of undistorted wave-

lengths can be increased by increasing the frequency. This, then, is a second

advantage of going to higher frequencies.

The new technique was found to work well. Delay times measured to peaks

1 and 2 gave the same results, indicating that pulse distortion was negligible.

A further modification of the low frequency technique involved doing away

with the Morgan instrument transducers. Instead, the 5 MHz longitudinal trans-

ducers were used. In this case, the transducers were coupled to the edges of

the board specimens, which were trimmed so that opposite sides were parallel.

Also, specimens were generally longer than they were wide to preclude effects

of side reflections. Vacuum grease was used to couple the transducers to the

board specimens. A slight pressure maintained good transducer-specimen

contact.
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The 5 MHz transducers had a very strong response at about 50 kHz. While

the received signal was less noisy for the contact transducers, the two types

of transducers were found to measure the same velocities.

In Fig. 11, delay time is plotted versus transducer separation distance

for a milk carton stock specimen. The 5 MHz transducers were used at 50 kHz.

Each data point represents the average delay time for measurements at three

locations within the specimen. Delay time measurements were made to Peaks 1

and 3. In order to enhance the comparison of the data, the Peak.3 data has

been shifted to the left by subtracting from each Peak 3 delay time some con-

stant, roughly two wave periods. This puts the two curves nearly together.

It is seen that for transducer separations above about 5 inches, both

sets of data fall on the same straight line. Below 5 inches separation, the

Peak 3 data becomes somewhat erratic. This behavior is explained in terms of

end reflections which will superimpose on the third peak (before the first

peak) as transducer separation is decreased.

In making transit time measurements, it is desirable to avoid making delay

time measurements to portions of the signal which have been distorted. Using

Peak 1, this usually means that transducer separation must be greater than about

2 inches.

A simplified procedure for making these velocity determinations has been

tried, whereby delay times are measured at various locations for a specimen

of given width and then the specimen is cut in half, and time delay measure-

ments are made on each of the half-width pieces. Average delay times are then

calculated for the two transducer separations. The difference between these

two delay times represents the average transit time through half the original

specimen width. This procedure is quicker and works equally well.
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The new techniques for measuring these low frequency velocities are much

more accurate. This accuracy has been estimated to be about ±0.25%. This

estimate is based on experience making numerous velocity measurements using

several different techniques. The actual measurement accuracy is difficult

to determine and is a function of the precise measurement procedure used.

PLATE WAVE RESONANCE TECHNIQUE

To test the predictions of the orthotropic plate wave theory, it was

necessary to measure plate wave velocities. Since the zeroth-order symmetric

mode is nondispersive at low frequencies, its velocity can be determined using

an ultrasonic pulse technique. However, this straightforward procedure is not

applicable in general. The only successful measurements of dispersive waves in

paper have been achieved using an air-paper resonance technique (28). An adap-

tation of this plate wave resonance technique has been used here. The basic

set-up is depicted in Fig. 12.

With the air-paper resonance technique, a large sheet of paper is mounted

between an ultrasonic transmitter and receiver. The transducers are rigidly

connected so that they always face each other, but can be rotated with respect

to the plane of the sheet. As the transducers rotate, the wavelength of the

disturbance along the sheet changes. At angles where the frequency and wave-

length along the sheet correspond to those of a plate wave mode, optimum trans-

fer of energy occurs. This results in a peak in the receiver signal. There-

fore, the velocities of plate wave modes can be determined by recording peaks

in the received signal versus angle curves at different frequencies. The

plate wave velocities are given by the following equation:

V = V /sin a,
p air

(104)



-85-



-86-

where V = plate wave velocity
P

Vair = velocity of wave in air

a= angle of wave incidence measured to plate normal

The technique used here differed from that described by Luukkala, et al.

(28) in one important aspect. Instead of direct current biased electrostatic

transducers, permanently polarized dielectric films were used as the active

medium in the transducers. These films were made by voltage cycling 0.125

mm F.E.P. Teflon films as described by Curtis (56). These transducers were

constructed as part of IPC Project 3332.

The specific apparatus was designed for rotating the paper relative to

the transducers, which remained stationary. The 14-inch by 28-inch paper

sheets were taped to an aluminum plate which had a 12-inch by 24-inch opening.

The aluminum plate, mounted vertically, pivoted about a vertical axis which

was 11.5 inches from the transmitter and 4.5 inches from the receiver. Two of

the three transducers used had diameters of 1.75 inches. The third transducer

had a diameter of 3.0 inches.

The plate wave resonance apparatus included a variable speed reversible

motor for rotating the paper sheets, and a chart recorder. The received sig-

nal was amplified and rectified. The direct-current voltage was amplified

and used to drive the chart recorder. A large corrugated box housed the rota-

ting plate and the transducers. It was found that small air velocity, temper-

ature and relative humidity fluctuations caused interference effects. The

enclosure reduced the resulting noise considerably.

The portion of the dispersion curves that can be measured with this plate

wave resonance technique is limited by a number of factors. First, attenuation

of ultrasonic waves in air limits the frequency range to below about 400 kHzo
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One result of this limitation is that a sheet must be fairly thick in order to

excite plate waves by this technique. Paper thicknesses must be about 15 mils

or more. Second, since the wavelength along the sheet is always greater than

in the air, velocities below that of sound in air cannot be measured. With

physical limitations of the apparatus, this limits the measurements to veloc-

ities above about 0.38 mm/usec. Finally, resolution becomes increasingly poor

as alpha is decreased. Consequently, there is a practical upper limit as well.

In general, waves with velocities greater than about 5V ir cannot be resolved.
air

Plate wave velocities are obtained in the following manner. The function

generator is set for continuous wave operation at some given frequency. The

specimen is taped to the aluminum plate. The motor driven plate is positioned

so that a = 70°. With the chart recorder on, the motor is switched so that the

plate starts to rotate. When a = 0°, the motor drive is reversed. The plate

reverses its rotation while the chart paper records the return path as well.

This procedure is repeated at other frequencies.

A chart recorder tracing is shown in Fig. 13 for X-direction propagation

through milk carton stock at 230 kHz. The two peaks correspond to two different

modes which were detected at this frequency. The method of determining the

angles associated with resonance conditions is indicated. The velocity of

sound in air used in calculating the plate wave velocities, using Equation (104),

is 344 m/sec..
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RESULTS AND DISCUSSION

EXPERIMENTAL RESULTS

STIFFNESS COEFFICIENTS

Several longitudinal and shear velocities were measured on the various

specimens. The specific velocities which are needed to predict the dispersion

curves for both X and Y-direction plate wave propagation are as follows:

VL = bulk longitudinal velocity

L bulk longitudinal velocity

V = bulk longitudinal velocity
V = bulk longitudinal velocity

V = bulk shear velocity in the
X-direction

VX = bulk shear velocity in the
Y-direction

Vs = low frequency zeroth-order
X-direction

VS = low frequency zeroth-order
Y-direction

in the X-direction

in the Y-direction

in the Z-direction

Z-direction, polarization in the

Z-direction, polarization in the

symmetric mode velocity in the

symmetric mode velocity in the

These velocities for the three board samples are given in Table V. All veloci-

ties have units of millimeter/microsecond (= km/sec).

Seven of the nine independent orthotropic stiffness coefficients can be

calculated from these velocities. Stiffness coefficient calculations are normal-

ized with respect to density throughout this work, in order to avoid errors due

to the uncertainty in the density. As presented, stiffness coefficients will

have units of velocity squared, or millimeter squared/microsecond squared.
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TABLE V

MEASURED VELOCITIES FOR THREE BOARD SAMPLES

Linerboard
No. 2

3.428

2.194

0.214

0.431

0.387

3.342

2.123

Milk Carton
Stock

3.279

2.307

0.231

0.418

0.356

3.188

2.199

These seven normalized coefficients (indicated

from Equations (53)., (55), and (86), as follows:

*
C13 =

C23 =

C23 =

by asterisks) are determined,

C* = V2

* =
C2 2 = V2

Ly* 2c33 = VL

C44 = VXyz

* 2
* = V2

C55 Sx-z

±(C33(C l-V 2 ))

(C3'3(C22-V2oy) )

(105)

(106)

(107)

(108)

(109)

(110)

(111)

* *
C13 and C2 3 are assumed to be given.by the positive roots in.Equations (110) and

(111).

The- coefficients for the three- board samples are given in Table VI. All

coefficients-have units of square-millimeter/squeare microsecond. Values for

Velocity
(mm/psec)

VLx

VLy

Sx- z

Vy-z

VOx

VS0y

90 lb.
No. 1

3.337

2.078

0.191

0.389

0.351

3..354

2.103
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* *
C1 3 and C2 3 are not given for 90-lb- linerboard Sample No. 1. From Equations

(110) and (111) it is- apparent that VL and VLy must.be greater than VSO and

VS0y, respectively. This.was not found:for this sample.

TABLE VI

SEVEN OF THE NINE ORTHOTROPIC. STIFFNESS COEFFICIENTS
FOR THE THREE BOARD SAMPLES

Stiffness Coefficient
(mm2/1sec2)

*
Cl1

*
C2 2

*
C3 3

*
C13

*
C23
*

C44

C55

·90 lb. Linerboard
No. 1 No. 2

11.134 11.750

4.318 4.814

0.0363 0.0458

0.163

0.119

0.123 0.150

0.151 0.186

Milk Carton
Stock

10.750

5.322

0.0534

0.177

0.161

0.127

0.175

For all three samples, the bulk longitudinal and-SO. velocities are very

nearly equivalent. This fact means.that in general C1 3 and C23 will be diffi-

cult to accurately determine. Apparently, for Sample No. 1 these velocities

are too- close to each other to distinguish them.

DISPERSION CURVES

Dispersion curves for the milk carton stock are given in Fig. 14 and 15.

The computer program described .earlier and.given in Appendix I was employed for

this purpose. The parameters involved in predicting.each set of curves are given

at the tops-of Fig. 14 and 15.
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The milk carton stock dispersion curves are typical of all the board samples

tested. In comparing Fig. 14 and 15 with Fig. 4, one notes several interesting

features. Most obvious is a difference in the shape of the curves. For the milk

carton stock, the curves are "sharper," having pronounced horizontal and vertical

regions. Horizontal plateau regions are found for each of the symmetric modes.

Comparing Fig. 14 and 15, it is seen that these plateau .regions..occur near the bulk

longitudinal velocities. This velocity is higher in the case of X-direction

propagation.

The nondispersive region of the SO mode is much shorter in the case of

the milk carton stock. In fact , relative to Fig. 4, the dispersion curves for

the milk carton stock are shifted..considerably to lower frequencies. Evidence

for this can also be seen in Equation (100). The velocity VL is much lower

for the milk carton stock.. In essence, the low Z-direction modulus of the milk

carton stock causes the SO.. mode to become dispersive at a relatively low

frequency.

The AO mode becomes flat very quickly. The limiting velocity, very nearly

equal to the Z-direction shear velocity, is much lower for the milk carton

stock. The Z-direction bulk shear waves with polarization in the X and Y-

directions have the same velocities as shear-waves polarized in the Z-direction,

propagating in the X and Y-directions respectively. -At higher frequencies,

eachmode approaches a surface wave. This is seen.in..Fig...16, where three SO

waves are depicted. As frequency increases, it is seen-that the wave motion

becomes increasingly localized at the surfaces.

Other waves are shown in Fig. 17 for X-direction propagation in the milk

carton stock. These waves are. identified in Fig.. 14 by letters. The particle
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(a) AO mode: v = 0.450 mm/usec, f = 0.276 ITIz

(b) AO mode: v = 0.410 mm/usec, f = 0.602 ITHz

(c) AO mode: v = 0.407 mm/usec, f = 1.114 MHz

Figure 16. AO Plate Waves for Milk Carton Stock Showing Localization

of Motion with Increasing Frequency
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displacements have been-greatly exaggerated. In each..case there are 8 vertical

divisions per wavelength.

Wave A belongs to the Sl.mode and travels at the bulk longitudinal veloc-

ity. Interestingly, the plate surfaces, in this case, do not move Waves

B, C, and D propagate at the same velocity (2.1 mm/usec), yet constitute differ-

ent modes of propagation. Several things are observed by comparing these three

waves. First, the wavelength, given by V/f, decreases with increasing frequency.

Second, higher order modes..have more complicated displacement patterns. Third,

symmetric modes have displacements which.are symmetric about the midplane. Wave

E belongs- to the AO mode and is sometimes called a flexural wave.

Wave patterns corresponding to those in Fig. .17 are presented in Fig. 18

for an isotropic plate (v = 1/3), The isotropic plate appears larger than

the orthotropic plate in order to better show-the detailed deformation. Com-

paring Fig. 17 and 18, one sees that, for a given location on the dispersion

curves (e.g. , Point A), the wavelength is longer in the case of the milk carton

stock. The major difference, however, is that there is very little X-direction

displacement with the milk. carton stock. Motion in the Z-direction predominates.

In summary, the.Z-direction..properties of milk carton stock are seen to

greatly affect the nature of both the.dispersion.curves and.-the displacement

patterns.

*EXPERIMENTAL-PLATE WAVE DATA

The experimental plate. wave data for the two linerboard samples and the

milk carton stock are presented..in.Fig. .19 through 24. The plate wave resonance

technique was capable of detecting.only these three modes for the three heavy

board samples tested because of the high signal attenuation at high frequencies.
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(a) S1 Mode: v = bulk longitudinal velocity
= 3.0 mm/usec

(b) SO Mode: v = 2.1 mm/usec
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Figure 20. Theoretical and Experimental Dispersion Curves for
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Portions of the theoretical curves have also been presented. The experimental

plate wave velocities are tabulated in Appendix IV.

From Table V it is seen that the shear velocities range between 0.351 and

0.431 mm/usec. The lower values in this range correspond to Z-direction shear

waves polarized in the Y-direction. As stated previously, the plate wave

resonance technique is incapable of detecting plate waves travelling slower

than about 0.38 mm/psec. Consequently, AO experimental data is absent from

Fig. 20, 22, and 24 for Y-direction propagation.

When measuring the plate wave velocities, one could generally easily dis-

tinguish peaks on the received signal versus angle recordings. However, when-

ever two or more dispersion curves are in close proximity, corresponding peaks

will tend to overlap. The extent of this overlap depends on how close the

velocities of the modes are, but is also a function of the resolution character-

istics of the measuring system. The result of this effect is either a shift

in the locations of the peaks or a masking of peaks. This was not a serious

problem in most cases.

The linerboard data were collected using the two smaller transducers. With

this set-up, very little Al data was obtained. For the milk carton stock, the

larger transducer was used as the transmitter. This change increased the

sensitivity considerably, permitting the measurement of Al velocities at the

high frequencies.

Additional plate wave data appear in F-ig. 29 (see p. 125) for X-direction

propagation in the milk carton stock. These Sl velocities, measured using a

pulse propagation technique, constitute additional experimental evidence

supporting the validity of the orthotropic wave theories..
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DISCUSSION

In order to determine how well the experimental data fits the theoretically

predicted dispersion curves, it is necessary to know how sensitive the disper-

sion curves are to errors in the parameters on which they depend. For X-

* * * *
direction propagation these parameters are T, Cl, C 3 3, C1 3, and C55. The

actual measured parameters, however, are T, VL , V V , and V . Density

~~~~~~~~xis not a factor.x
is not a factor.

When one of these parameters is changed a little, the dispersion curves

are shifted, while the basic shape of the curves is not altered significantly.

Two quantities are defined in order to assess the sensitivity of the curves.

A computer program has been written for the purpose of determining the sensi-

tivity of these two quantities with respect to the four velocities on which they

depend. Partial derivatives were calculated in each case.

The first quantity is the frequency at which the SO mode drops off. This

is taken as the SO frequency which corresponds to a velocity of 1.0 mm/usec.

This frequency can be used to monitor horizontal shifts in the dispersion curves.

The other quantity is the AO velocity which corresponds to a frequency of 500

kHz. This velocity can be used to monitor vertical shifts in the dispersion

curves.

Since the quantities represent horizontal and vertical displacements, it

is convenient to plot all of the results as vectors. This has been done in Fig.

25 for the X-direction of the milk carton stock.

Each of the vectors corresponds to one of the four velocities. The magni-

tude of the vector shows how sensitive the dispersion curves are to that partic-

ular velocity. The direction of the vectors is in the general direction of
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shift in the dispersion curves as the particular velocity is varied. As an

example, a 1% increase in VLz would result in an equal 1% increase in the

frequency at which the SO velocity equals 1.0 mm/Psec. At the same time, the

AO velocity at 500 kHz would increase only 0.1%.

Vertical shifts are due predominantly to errors in V . This is ex-
Sx-z

pected in view of the previous discussion of surface waves. Horizontal shifts

can result from errors in VL , VLz, and VSOx . Deviations in VLx and VOx affect

horizontal shifts in an opposite sense. Consequently, it is the relative

accuracy of these velocity measurements which is important. Horizontal shift

is very sensitive to VL and the thickness measurement. Dispersion curves are
Lz

independent of the product of frequency and thickness. Therefore, an overesti-

mation of thickness, T, will shift the curves to the left by a corresponding

amount.

The estimated uncertainties associated with each of these parameters are

given in Table VII. Limit bars appear in Fig. 23 and 24 in the case of the

milk carton stock. These bars give the extremes which are accountable by the

uncertainties given in Table VII. All of the data fall. very close to the

lower limit.

Table VII and.Fig. 25 can.be combined to estimate the.maximum horizontal

shift which is accountable by experimental error. The total amount comes to

±11%.

It is seen in Fig. .19 through 22 that in. general the experimental SO plate

wave velocities for the two linerboard.samples are considerably left of the

predicted SO curves. The deviation is approximately. 25%..for Sample No. 1, and

15% for Sample No. 2.. It is concluded. that..these deviations..cannot entirely

be accounted for by experimental error.
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TABLE VII

ESTIMATED UNCERTAINTIES IN THE PARAMETERS
AFFECTING DISPERSION CURVES

Parameter Estimated Uncertainty

T ± 3%

VLx, VLy 1%

VLz 5%

VSOx, VS0y + 1%sV sox, VSY± 1%

V V + 5%
Sx-z' VSy-z

The deviations for the linerboard samples are assumed to result from two-

sidedness, characteristic of double headbox fourdrinier linerboards. The top

20% of the linerboards consists of a more refined pulp. This results in a

better bonded and more dense top layer. The bottoms of the linerboards were

open and exhibited high fiber orientation in the machine direction. The milk

carton stock is a much more homogeneous material, and the experimental results

in this case were very good.

The scarcity of experimental data in Fig. 20 is indicative of problems en-

countered in resolving peaks for Y-direction propagation through linerboard

Sample No. 1. This was the only instance of poor resolution, and it was not

attributed to the experimental apparatus. It was concluded that large varia-

tions in the Y-direction elastic properties through the sheet were responsible

for the poor resolution.

*
A second trend involves C3 3. Horizontal shifts were less pronounced for

higher values of C3 3. C3 3 was lowest for linerboard Sample No. 1 and highest

for the milk carton stock. To shift the predicted curves for the linerboard

sample to the left it is necessary to decrease C3 3. One possibility, then,
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is that the Z-direction bulk velocities are too high. Since the accuracy of

this velocity measurement has been estimated to be ±5%, the additional error

in this velocity measurement would have to be about 15% for linerboard Sample

No. l in order to account for the observed deviations.

CONCLUSIONS

The prediction of plate wave propagation using orthotropic bulk wave

and orthotropic plate wave theories has been demonstrated for three heavy board

samples. In all three cases, the form of the experimental data was found to

agree with the orthotropic theory.

The experimental plate wave data for the two linerboard samples were found

to deviate from theoretical predictions by more than was expected considering

measurement uncertainties. It has been suggested that this anomalous behavior

results from a two-sidedness which characterizes both linerboard samples. The

milk carton stock was more homogeneous, and, in this case, close correlation of

experimental data to the predicted dispersion curves was found.

These results clearly demonstrate the validity of using these theories.

It is concluded that, in general, machine-made paper can be considered a three-

dimensional orthotropic material. Orthotropic wave theories, developed assum-

ing a continuous homogeneous material, apply to paper.

DETERMINATION OF C12 AND C66

In order to predict plate wave dispersion curves for both X and Y-direction

propagation through orthotropic plates, it was necessary to specify seven of

the nine orthotropic stiffness coefficients. The determination of these seven

constants was the subject of previous discussion. The two remaining stiffness

coefficients are C1 2 and C6 60
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C66 is most easily determined by propagating either shear bulk waves or

shear plate waves in the X or Y-direction. C1 2, on the other hand, can only be

determined by propagating waves in the X-Y plane in a direction other than

along the principle axes.

In the sections below, various ways of evaluating these remaining two

orthotropic stiffness constants are discussed. Of particular interest are

measurement techniques which simplify the determination of these elastic con-

stants.

GOVERNING EQUATIONS

The equations which govern longitudinal and shear wave propagation in the

X-Y plane, from Equations (53) and (54), are as follows:

PV2(e) = (c2C 1 1 +s2C22+C66) + ½[(c2 (C1-C66) + s 2 (C66-C 2 2)) 2: +
L1

4c2s2(C12+C66)2] (112)

pVS(e) = ½(c2 C +s2 C22+C66) - ½[(c2 (Cl1-C66) + s 2 (C 6 6-C 2 2 )) 2 +

4c2s 2(C12+C66) ]½, (113)

where c = cos e

s = sin 8

e = angle between propagation direction and X-direction

VL = longitudinal velocity

VS = shear velocity

Equations (112) and (113) are valid theoretical relationships for bulk

materials. In addition, it can be shown that these equations are also valid

for thin materials in the zero frequency limit (57). In the latter case,
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the planar orthotropic stiffness coefficients must be used. In either case,

C66 (= C66) is given by the following expression:

C66 = pVJ(0 °) = pVs(90° ) (114)

Since C1 2 appears in both Equations (112) and (113), it can be determined

by propagating either longitudinal or shear waves. A convenient angle for wave

propagation is 45°. In this case, C12 is given by either of the following

relationships:

C1 2 = [(2pV2(450) - ½(Cll+C22) - C66 )
2 - ((Cll-C22)/2)2]1 - C66 (115)

C1 2 = [(2pVS(45 ° ) - ((Cll+C 2 2 ) - C6 6)
2 - ((Cll-c 2 2 )/2 2] - C_ 6 (116)

A third possibility involves measuring both VL(45°) and Vs(45°). In this. case:

C1 2 = [(pV (45° ) - pV|(45°)) 2 - ((C 1-C 2 2 )/2)2]½ - C6 6 (117)

Assuming that VL(45°) and Vs(45°) can be measured with the.same accuracy,

it can be argued that Equation (116) is generally more accurate. This stems

from the fact that VL(45°) > VS(45°). Consequently, the maximum error in VS(45°)

will be less than the maximum error in V2(45°). Therefore, Equation (116) has

been selected for determining C12.

MILK CARTON STOCK RESULTS

The resulting bulk shear velocities for the milk carton stock are given in

Table VIII. These velocities represent shear wave propagation through three

glued stacks. No correction was made for the effect of the glue. This effect

should be very small as discussed earlier.
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0'

45C

90C

TABLE VIII

BULK SHEAR VELOCITIES FOR X-Y PLANE PROPAGATION
THROUGH MILK CARTON STOCK

Vs(e) V2 (e)

(mm/psec) (mm2/Psee

1.613 2.602

1.596 2.549

1.618 2.616

c2)

C66 is taken to be average of V2 at 0 and 90 ° , i.e., 2.609 mm2/psec2. As

before, the stiffness coefficients are normalized with respect to density.

Equation (116) is then used to determine C1 2, yielding a value of 2.229 mm
2/psec2 .

DISCUSSION

C1 2 can be determined using Equation (116) by measuring VS(45°) through

the plate material and by using the planar stiffness coefficients:

C1 1 = pV2 0

C2 2 = PVSySOp

(118)

(119)

The bulk C12 is then given as follows:

C12 = C1 2 + C1 3 C2 3 /C 3 3 (120)

The advantage of this method is that only two in-plane bulk velocities must be

measured. These are VL and VLy This simplifies the procedure in that only

two rather than three glued stacks are required. Also, errors associated with

the gluing of stacks are reduced.

The closeness of the three shear velocities in Table VIII seems to be

characteristic of many paper grades. Similar results were obtained by others
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(20). Simplifying expressions result for C12 when various assumptions are

made with respect to the in-plane shear velocity.

If it is assumed that VS(0°) = VS(45°) = C66, the following relationship

results from Equation (113):

C12 = (C66-C66(Cl+C22) + C l l C2 2 ) - C66 (121)

For milk carton stock, Equation (121) predicts a value of 2.091 mm2/usec2 for

C12, compared with 2.229 mm2/usec 2 as previously determined. An expression

identical to Equation (121) results if one assumes that VS(0°) = VS( ), where

( is the special angle for which the shear and longitudinal modes become pure

modes. Furthermore, Equation (121) is also obtained when VS(45°) = VS(p) is

assumed. It follows, then, that when C12 is given by Equation (121), VS(0°) =

S= V=(45) = V ) . .. ... -.

For the milk carton stock, these three velocities are as follows:

VS(0
°) = 1.613 mm/psec

V (45°) = 1.596 mm/psec
S

VS () = 1.595 mm/psec,

where ( = 52.70. It is evident that the assumption that VS(45°) = VS(q) is a

very good one, at least in this case. Setting V2 (45°) equal to V2S() in
S S

Equation (62) gives the following relationship:

*** *(V45) - VSC012 = (Vs(45°) - V(45°)(Ci 1 C22) + CllC22) V(45°) (122)

*The value for Ci2 obtained from Equation (122) is 2.220 mm2/psec2 . This value

is very close to the value of 2.229 mm2/psec2 obtained using the exact relation-

ship of Equation (116).
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A third approximation is obtained when Campbell's relationship is assumed.

Campbell's relationship implies that the shear modulus is independent of angle

e0 It can be shown that this will be true if and only if C6 6(0
°) = C6 6(45°).

Now, the shear modulus is related to angle as follows:

C6 6(6) = (c
2 s2)2C6 6 + c2s2(Cll+C22-2C1 2) (123)

Campbell's relationship reduces, then, to:

C6 6(0
°) = C66 = ¼(Cz1+C22-2C12) (124)

C12 is then given as follows:

C12 = ½(C11+C22-4C66) (125)

For the milk carton stock, Equation (125) predicts a value of 2.818 mm2/psec2

for C12.

Equation (122) undoubtedly gives a very good approximation to C12 for paper.

( from Equation (60) will be between about 50° and 57° for most machine-made

paper. The shear velocity, as given by Equation (113), varies very gradually

with angle. Consequently, VS(45°) and VS(q) should be very nearly equal for

all machine-made papers.

The first assumption made, that VS(0°) = VS(45°), is not as good, since

VS(0°) is greater by 1.1%. However, if V2(450) is used in Equation (121) in-

stead of C66, i.e., .V2(0), then the resulting expression is identical to

Equation (122). The third approximation invoking Campbell's relationship

leads to a very inaccurate prediction of C12.

Equation (122) can also be used for thin materials. In this case, the

shear velocity is measured on the plate material and Cll and C22 are replaced
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t I

with C1 1 and C2 2 of Equations (118) and (119). Now, the in-plane Poisson ratio,

e !

V1 2, is equal to C1 2/C:l. Therefore, Equation (122) can be used to directly

evaluate v1 2. The resulting expression is as follows:

V2 = A 2 -A(1+R)+R) -A, (126)

where A = .V2 (450)/V2
= Sox

R =V 2 /V2
SOy SOx

Equation (126) is identical to the one used by Bornhoeft (11) in her Poisson

ratio determinations of various linerboards. For the milk carton stock, vl 2

calculated from Equation (126) is 0.165, which is 0.9% less than the true value.

For this calculation a planar value for VS(45°) was calculated using Equations

(116) and (118)-(120).

It is concluded that C12, C12, and v 1 2 can all be very nearly approximated

by making three independent velocity measurements in the X-Y plane rather than

four, if the shear velocity at 45 ° is used in the equations rather than the

shear velocity at 0°. It is also concluded that Campbell's relationship is

invalid.

The most accurate and direct way to approximate vl2 is on thin paper

specimens, using Equation (126). Three velocity measurements are required,

including longitudinal velocities along the X and Y-directions, and the shear

velocity at 45° .

MEASUREMENT OF VLx AND VLy ON SINGLE THICKNESS SHEETS

INTRODUCTION

The in-plane bulk longitudinal velocities, VL and VL , are importantin

several ways. By themselves, they determine C1 1 and C22, respectively. Together



-117-

with VLz, Vsox and VS , these bulk velocities determine C13 and C2 3. C13 and

C23 dominate the determination of the out-of-plane Poisson ratios. For in-

stance, V31 is given, from Equation (21), as follows:

V31 = (C1 3C2 2-Ci2C2 3)/(C2 2C3 3-C23) (21)

The accuracy of the method previously discussed for determining C1 3 and

C23 depends greatly on the relative accuracy of the in-plane bulk longitudinal

and SO velocity measurements. This fact is apparent from Equations (110) and

(111). Since the bulk and SO velocities differ by only a few percent (see Table

V), it is necessary to measure these velocities very accurately. Improved

techniques for doing this are discussed in this section.

A useful outcome of the work has been the observation that plateau regions

exist for the symmetric modes. As discussed earlier, these are characteristic

of materials like paper which have relatively little Z-direction stiffness.

These nondispersive plateau regions are found to occur very close to the bulk

longitudinal velocities. This is illustrated for the milk carton stock in Fig.

26 and 27. The bulk longitudinal velocities are indicated by the broken lines.

Apparently, with the low Z-direction stiffness, the plate behaves very much

like a bulk material. The tendency for the symmetric modes to propagate at

nearly the bulk velocities over such a wide frequency range is evidence of this.

The effect of changing C3 3 on these plateau regions can be seen in Fig.

28. Curve 1 corresponds to X-direction propagation through the milk carton

stock. Curve 2 represents a hypothetical material which has a much higher

C3 3 value. In this case, C3 3 was taken to be 0.8544 mm2/psec2, compared to

0.0534 mm2 /psec2 for the milk carton stock. C 1 was kept the same so that the

bulk longitudinal velocity would be the same. In general, as C3 3 increases,

the slope of the S1 curve becomes steeper.
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The frequency for which the Sl velocity is exactly equal to the bulk

velocity is given by Equation (100):

+ _Lz 1 _____ (100)
T 1 + Cl3(C13+2C55)

, ~ CllCs55

The square root term is very nearly equal to unity (actually 0.976) in the case

of the milk carton stock. This will be the case whenever C1 1 is much greater

than C 13 and C55. For paper, this is probably a reasonable expectation. It is

seen, then, that Equation (100) can be used to easily and accurately estimate

the frequency for which the Sl plate wave velocity is equal to the bulk longi-

tudinal velocity.

Bulk longitudinal velocities can be measured on single thickness specimens.

To do so, one needs only to first measure the Z-direction bulk longitudinal

velocity. Equation (100) can then be used to determine the frequency at which

to propagate the Sl plate wave.

An alternative method is to construct the plateau regions of the Sl curve

experimentally. As an approximation, the bulk longitudinal velocity would be

taken as the point of inflection on the experimental curves. This would re-

quire the measurement of several Sl velocities over the frequency range span-

ning the nondispersive plateau region.

Not shown in Fig. 28 are the locations of inflection points on the curves.

It was initially thought that inflection points were located at the bulk

velocities. A separate computer program was written to generate these disper-

sion curves. This program was capable of calculating the slope of the curve

as a function of frequency. Hence, these inflection points were easily located.
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In Fig. 28, the bulk velocity is 3.2787 mm/usec and fl is 332 kHz. The inflec-

tion point for the milk carton stock, Curve 1, occurs at a velocity of 3.2720

mn/usec and a frequency of 357 kHz. In the second case, the inflection point

is further from the bulk velocity, at 3.2645 mm/usec. This trend was found to

hold for other values of C3 3. As C3 3 increased, the velocity at the inflection

point was found further from the actual bulk longitudinal velocity. In general,.

these velocities should be very close for paper.

The existence of plateau regions should make it possible to measure plate

wave velocities in these flat regions with pulse propagation techniques. Further-

more, the use of Equation (100) to compute the frequencies which correspond

to the bulk longitudinal velocities should permit the determination of these

bulk velocities, VLx and VLy. A second possibility is to use the frequency of

the inflection point determined experimentally for this purpose. Though the

two frequencies differ by roughly 10%, the error in the measured bulk velocity

will be small due to the small plateau slope.

EXPERIMENTAL TECHNIQUE

The nondispersive S1 velocities were measured using the same technique

used to measure SO velocities employing contact transducers. In this case,

1 MHz immersion transducers were used instead of the 5 MHz transducers because

the former functioned better at these higher frequencies.

Sample preparation was the same as before, though the specimens tended to

be narrower due to higher attenuation. Vacuum grease was used to improve the

coupling of transducers to specimens.

The thickness of the specimen is important in three ways. First, the

thickness of the specimen greatly affects fl, the frequency for which the S1
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plate velocity equals the bulk longitudinal velocity. For thin sheets this

frequency will be high, and attenuation may be too severe. Second, thicker

sheets will contact the transducers over a larger area, thereby reducing signal

losses. Third, thicker sheets are generally more rigid, capable of withstanding

contact pressure applied to the transducers.

The specimen width is important also. The maximum specimen width is deter-

mined by the degree of attenuation at the operating frequency. Generally, a

width of 6 inches was the limit. The lower limit is determined by the occurrence

of interference due to reflections. Delay times were typically measured out

to Peak 4 through 8 on the received pulse. This insured that measurements were

made to the undistorted middle region of the pulse. It was necessary, then,

that the first echo arrive later than about 8 periods in order to preclude in-

terference effects. The minimum width for this was usually 2 to 3 inches.

As with the SO velocity measurements, various schemes can be used for

measuring time delays. One method was to make several delay time measurements

first along a 6-inch wide specimen. A 1/2-inch strip would be trimmed off the

specimen, and delay time measurements would be repeated on the narrower speci-

men. This procedure would be repeated until the lower specimen width limit

was reached. A linear regression of the average delay time versus specimen

width data would yield an average velocity representing that part of the speci-

men which was trimmed off.

More commonly, after the initial delay time measurements, the 6-inch speci-

men would be cut in half and time delay measurements would be made on both 3-

inch pieces. The velocity calculated this way would represent all of the orig-

inal specimen. This method requires fewer delay time measurements for a given

level of accuracy.



-124-

The results for X-direction propagation through the milk carton stock are

presented in Fig. 29. Velocities were calculated at several frequencies. A

portion of the predicted S1 curve is included for comparison. It is seen that

the experimental curve follows the predicted curve closely. The deviation of

about 2% in the velocities is not unexpected, since only one specimen was tested.

The bulk longitudinal velocity, VL , is determined by computing the crossover

frequency, fl, and reading the velocity at this frequency off the experimental

curve. Normally, one would compute this frequency first, and then measure

just the one velocity at this frequency.

These results clearly indicate that pulse propagation techniques can be

used to measure plate velocities in regions where the velocity is not a strong

function of frequency. This technique is particularly useful, though, when SO

velocities are determined concurrently. When-this is done using the same

specimens, the resulting velocities, e.g., Vsx and VLx, will have been measured

with high relative accuracy. This high relative accuracy is required in order

to determine C1 3 and C2 3 accurately.

RESULTS AND DISCUSSION

V and V were determined for the milk carton stock on four specimens
SOx. Lx

cut from four 14-inch by 28-inch sheets. The same material was used in each

velocity measurement. A frequency of about 340 kHz was used to determine V .

Results are presented in Table IX.

The absolute accuracies of these measurements are not easily determined.

The differences between velocities calculated using delay times to different

peaks give some indication of experimental error. In the VSO measurement
at 50 kHz, the delay times out to the first peaks were recorded. A velocity

at 50 kHz, the delay times out to the first peaks were recorded. A velocity
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was calculated for each peak. The two velocities were found to differ by 0.30%.

For VL at 340 kHz, delay times to Peaks 4 and 5 were recorded. In this case, the

two velocities differed by 0.32%.

TABLE IX

VSO AND VL RESULTS FOR MILK CARTON STOCK

V s 3.164 mm/psec

VLx 3.205 mm/psec

Vs0x/VLx 0.9874

Allowing for errors in predicting the frequency at which to measure VLx,

one can estimate that each velocity is measured to ±0.25%. The ratio of the

two velocities is therefore known to ±0.50%, and VSO /VL is equal to 0.9874

±0.0050.

Data for the Y-direction was also obtained. At the higher frequency of

340 kHz, attenuation was significantly greater than for X-direction propaga-

tion. In this case, the maximum usable specimen width was 4 inches.

V S and VLy were determined for three specimens as presented in Table X.

Specimens l and 2 were from the same 14-inch by 28-inch sheet, while the

third specimen was from a different sheet. As with the X-direction velocities,

experimental error was estimated to be ±0.25% for each velocity, and hence

V /VL is given as 0.9737 ± 0.0050.

The experimental work with milk carton stock has demonstrated that it is

possible to make in-plane bulk longitudinal velocity measurements on single

thickness specimens. It is possible, therefore, to determine all nine indepen-

dent orthotropic elastic stiffness constants using only single thickness speci-

mens for the velocity measurements. Some of the techniques, however, can be
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used on fairly thick board materials only. The new method of calculating VL

and VLy on single sheets also permits very accurate determinations of VOx /VL

and VSO /V y . This greatly improves the accuracy of determining C13 and C2 3.

TABLE X

VSy AND VLy DATA FOR MILK CARTON STOCK

Specimen VSOy(mm/psec) VLy(mm/isec) VSy/VLy

1 2.152 2.209 0.9741

2 2.148 2.206 0.9740

3 2.182 2.243 0.9730

average 2.161 2.219 0.9737

ELASTIC CONSTANTS FOR MILK CARTON STOCK

The final results for the milk carton stock will now be presented. This

was the only sample which was examined with the new techniques, for measuring

in-plane bulk longitudinal and SO velocities.

The nine orthotropic stiffness coefficients are presented along with esti-

mates of their measurement errors. These estimates are specific to the velocity

measurement techniques used. A discussion of these stiffness constants follows.

MEASURED VELOCITIES

The nine independent velocity measurements for the milk carton stock are

given in Table XI, along with estimates of measurement accuracy. All velocity

measurements were made on single thickness specimens.
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TABLE XI

NINE VELOCITY MEASUREMENTS FOR MILK CARTON STOCK

Velocity (mmpsec) Accuracy

VLx = 3.205 ± 0.5% absolute
Lx

VLy = 2.219 ± 0.5% absolute
Ly

VL = 0.231 ± 5.0% absolute
Lz

VS = 3.164 ± 0.25% relative to V

VS0 = 2.161 ± 0.25% relative to VL

VS(0°) = 1.615 ± 0.5% absolute

VS(450) = 1.596 ± 0.25% relative to Vs(0°)

Vs = 0.418 ± 5.0% absolute

Vy = 0.351 ± 5.0% absolute
Sy-z

Absolute accuracy refers to how accurately the particular velocity

measurement characterizes the whole sample. For instance, it is estimated

that VLx, measured on a few small specimens, is within 0.25% of the true

average velocity for those specimens. However, considering the variation

between specimens, it is estimated that the measured value of VL is only

within 0.5% of the true sample average. While the same argument applies to

VSOx, both VSO and VL were measured on the same specimens. Hence, the

accuracy of either measurement, relative to the other, is higher in this case.

The same holds for the measurement of VSOy and VLy, and for V (0°) and VS(45°).

ELASTIC CONSTANTS

The velocities cited in Table XI yield the orthotropic elastic constants

given in Table XII. All elastic constants, except for the Poisson ratios, are

normalized with respect to density, and have units of mm 2/vsec2.
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TABLE XII

ELASTIC CONSTANTS FOR THE MILK CARTON STOCK

C = Ell = 9.537

* *
C22 = E22 = 4.451

C33 = 0.0534 E33 = 0.0501

C1 2 = V 1 2
= 0.15 V21 = 0.32

C13 = 0.118 V13 = 0.008 V31 = 1.52

C23 = 0.116 v2 3 = 0.021 V3 2 = 1.84

C44 = 0.127 G44 = 0.127

* *
CS5 = 0.175 G 55 = 0.175

C66 = 2.609 G6 6 = 2.609

The errors associated with determining some of these elastic constants can

be analyzed in a straightforward manner. These are the elastic constants which

depend upon only one velocity measurement. These constants constitute the first

six entries in Table XIII. The errors involved in determining the remaining

elastic constants are not so easily obtained. A computer program has been

written which determines d(ln Cij)/d(ln Vi) coefficients for each of these

elastic constants. By multiplying these coefficients by the accuracies of

the measured velocities and summing absolute values, one can estimate the maximum

errors associated with these elastic constants. The errors are also presented

in Table XIII.

DISCUSSION

The strain level associated with the propagation of ultrasonic waves is

very low. At the same time, the frequency of the oscillations is very high.

Essentially no time is permitted for viscoelastic deformations to occur. -
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consequently, the elastic constants determined with ultrasonic techniques should

characterize strictly the elastic response of the milk carton stock as to

applied strains.

TABLE XIII

ESTIMATED MEASUREMENT ERRORS
FOR MILK CARTON STOCK ELASTIC CONSTANTS

Elastic Constant Error

Cll ± 1%

C2 2 ± 1%

C33
± 10%

* *

C4 4 , G44 ± 10%

* *

C5 5 , Gss ± 10%

C6 6 , G66 1%

Ell ± 1.3%

E2 2 . ± 1.4%

E33 ± 12%

C12 ± 7.7%

C1 3 ± 36%

C23 ± 19%

V2 1 ± 10%

v 3 1 ± 61%

v 3 2 ± 28%

Mechanical measurements of Young's modulus for the milk carton stock in

the X and Y-directions were found to be significantly lower than the values

reported in Table XII. The measurements were made on 1-inch by 10-inch test

strips employing an Instron tensile tester. The results of the load-elongation

runs at three different strain rates are given below in Table XIV. It is seen
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that the discrepancy between mechanical and sonic Young's moduli decreases as

the strain rate of the mechanical test is increased. This trend strongly

suggests that viscoelastic effects are operative during the mechanical test.

TABLE XIV

MECHANICAL MEASUREMENTS OF YOUNG'S MODULI ON MILK CARTON STOCK

Strain Rate (per minute)
0.1% 0.5% 2.0%

El1 (mm2/psec2) 7.053 7.351 7.789

E22 (mm2 /psec2) 3.060 3.159 3.923

*t * *
100%(Ell-Ell)/Ell -26.0% -22.9% -18.3%

100%(E 2 2-E2 2 )/E2 2 -31.3% -29.3% -11.9%

(' indicates mechanically determined Young's Moduli)

The elastic constants for the milk carton stock are typical of all three

board samples tested. These constants indicate that the elastic properties of

these materials are highly unusual. Perhaps the most unique characteristic is

the high degree of anisotropy between the in-plane and Z-direction properties.

This is indicated by the high Ell/E 3 3 ratio of 190. It is also seen that the

two Z-direction shear moduli are both greater than the Z-direction tensile

modulus.

The high out-of-plane Poisson ratios are also unusual. A high positive

value of 1.52 means that a 1% tensile strain in the X-direction results in a

1.52% contraction in the Z-direction. The two out-of-plane Poisson ratios,

v31 and v3 2, are measured least accurately of all the elastic constants. With

an accuracy of ±61%, v 3 1 is located in the range 0.59 to 2.45. v32 is known to

lie between 1.32 and 2.36. Clearly, then, at least v3 2 must be greater than 1.
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* *
It is recalled that C1 3 and C23 were taken to be the positive roots of

Equations (110) and (111). This assumption necessarily results in the calcula-

tion of positive out-of-plane Poisson ratios. Had the negative roots been

chosen, v3 1 and v 32 would have become negative. It is not obvious from the

* *
sonic measurements whether C1 3 and C23 are positive or negative.

Choosing the negative roots results in negative out-of-plane Poisson

ratios, but does not affect any of the other elastic constants. The dispersion

curves, however, are slightly affected by assuming negative values for C13 and

C23. The theoretical curves are found to shift horizontally to the right a few

percent when negative values are substituted. This effect is relatively small,

and consequently, the experimental data is not precise enough to indicate

* *
whether C13 and C23 are actually negative or positive.

* *
It has been assumed in all of the previous discussion that C13 and C23 (and

hence the out-of-plane Poisson ratios) were indeed positive. In the absence

of other evidence, this assumption would be very reasonable. The mechanical

measurements of thickness changes with tensile loading reported earlier (7,9,

12) were inconclusive. Both thickness increases and decreases were reported

for various samples and under various conditions. Gottsching and Baumgarten

(9) in the most recent work, found that paper thickness usually decreased

initially during tensile loading, passed through a minimum, and then increased.

The suggestion was that multiple processes are involved in the thickness changes.

Apparently, for small strain levels, the thickness decrease predominates. This

gives a basis, then, for assuming that the out-of-plane Poisson ratios measured

sonically are indeed positive.

It would not be difficult to propose a mechanism which would account for

these high out-of-plane Poisson ratios. To do so, however, would be highly
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speculative. Obviously, the fibrous structure of paper is unusual, with the

more or less parallel alignment of fibers in the plane of the sheet greatly

determining the Z-direction elastic properties.
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CONCLUSIONS

The present investigation has shown that waves propagate in paper accord-

ing to wave theories developed for homogeneous materials. The fibrous struc-

ture does not interact with the waves to produce anomalous behavior below

about 1 MHz.

Attenuation of waves in paper depends on frequency, and is a function of

the direction of propagation. At a given frequency, attenuation is greatest

in the Z-direction and least in the X-direction.

Pulse propagation techniques have been successfully adapted for measuring

wave velocities in thick paper samples. With these techniques, delay times

are measured to a certain peak near the middle of the received pulse for two

or more transducer separations.

The experimental results clearly indicate that orthotropic wave theories

are valid for machine-made paper. Consequently, paper has been established

as a three-dimensional orthotropic material. The elastic constants are deter-

mined from various wave velocities. Orthotropic bulk wave and orthotropic

plate wave theories furnish the necessary equations relating the measured

velocities to the orthotropic elastic constants.

Nine velocity measurements are required to determine the nine independent

orthotropic elastic constants. Three of the velocities are for waves propagated

in the Z-direction. Two of these, V and V are for shear waves polarized
Sx-z XyX-z

in the X and Y-directions, respectively. The third, VLz, is for the longitudinal

wave. These velocities can be measured to roughly ±5% on samples about 25 mils

thick. The accuracy decreases with sample thickness. Generally, it is advanta-

geous to operate above 200 kHz, where the transit time is longer than one period.
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Four more velocities, Vsx , Vsy , Vs(0°) and Vs(45°), can be easily

obtained for sheets of any thickness. These are for low frequency (around 10

kHz) longitudinal and shear waves propagated in the X-Y plane. The longitudinal

waves are to be propagated along the X and Y-directions. The shear waves are

to be propagated in either principal direction and in a direction 45° from the

X-direction.

The remaining two velocities, VL and VLy, are bulk longitudinal velocities

in the X and Y-directions. These velocities can be accurately measured for

thick samples on single thickness specimens by operating at a specific predeter-

mined frequency. Otherwise, it is possible to construct glued or loose stacks

which have been shown to approximate bulk materials.

For the milk carton stock, the orthotropic elastic constants determined

from these nine measurements exhibited the following characteristics:

1. very high in-plane to Z-direction anisotropy;

2. very low Z-direction moduli; and

3. out-of-plane Poisson ratios greater than 1.

Young's moduli determined sonically have been found to be somewhat higher

than mechanically determined moduli. From recent experimental results (32),

it is concluded that the sonic technique measures strictly elastic responses,

whereas the much slower mechanical tests involve viscoelastic responses as well.
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LIST OF SYMBOLS

AO,Al,etc.

A.F.

C

C..

Ci

c

d

e

e..
1J

E

Ell,E22,E33

f

G4 4,G 5 5 ,G 6 6

KsvKp

k ,k

kz,k z

l,m,n

P

Q

designation given to zeroth, first, etc., antisymmetric plate
wave modes

attenuation factor

stiffness matrix

orthotropic stiffness coefficient

normalized (with respect to density) orthotropic stiffness
coefficient

planar orthotropic stiffness coefficients

cos-

specimen width

strain matrix

strain component in the j direction having the plane of action
normal to the i direction

Young's modulus.for an isotropic material

for an orthotropic material, Young's moduli in the X, Y, and
Z-directions, respectively

Young's modulus along the direction which makes an angle e with
the X-direction

frequency

for an orthotropic material, shear moduli characteristic of
principle directions in the Y-Z, X-Z, and X-Y planes, respectively

wave vector

wave vectors of SV and P type waves, respectively

component of wave vector in X and Z-directions, respectively

Z-direction wave vector components belonging to SV and P type
partial waves, respectively

direction cosines of wave vector, K

designation given the bulk longitudinal wave

quality factor
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r

s

S

SH

SO,Sl,etc.

t

T

td

Ttt

U(x,y,z)

u o

UOx'Oy

V

V .
air

VL

Lx'VLy' Lz

V
p

VS

Vsx-z

Sy-z

position vector

sin e

compliance matrix

designation given the shear wave polarized normal to the plane
under consideration

designation given the shear wave polarized in the plane under
consideration

designation given to zeroth, first, etc., symmetric plate wave
modes

time

plate thickness

total delay time

extraneous delay time

displacement vector field, the difference between a particle's
location after deformation and its original location with respect
to a fixed coordinate system

maximum displacement vector

components of displacement vector

components of maximum displacement vector

phase velocity

velocity of sound in air

velocity of a longitudinal wave propagated in the X-Y plane

bulk longitudinal velocities for propagation along the X, Y,
and Z-direction, respectively

velocity of a plate wave

velocity of a shear wave propagated in the X-Y plane

bulk shear velocity in the Z-direction, polarization in the
X-direction

bulk shear velocity in the Z-direction, polarization in the
Y-direction
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VO x, Vsoy

V1,V 2 ,V 3

x,y,z

Cl

v ,v ,v
xy yx xz

iJ

P

a

a..
1J

(1,

low frequency SO plate wave velocity for X and Y-direction
propagation, respectively

phase velocities of orthogonal set .of waves- propagated in the
X-Y plane of an orthotropic bulk material

coordinates along the -X, Y, and Z-directions , respectively

angle of incidence-. in.plate wave resonance technique, measured
to plate.normal

angle.specifying .orientation with- respect to X-direction

wavelength

Poisson ratio for an isotropic material

Poisson ratios (stress applied in the--direction given by the
second subscript)

Poisson ratios (stress applied.in the direction given by the
second subscript)

bulk density

stress matrix

stress component in j.direction having .the.plane of action normal
to the i direction

specific. angle i for which the wave vector (K) and particle
displacement vector (U) are either parallel or normal to each other

for bulk-.wave propagation in. the X-Y plane of an orthotropic
material,.the.angle.between -the particle displacement vector
and the X-direction

P for bulk waves having..phase velocities Vi andV 2 respectively

angular frequency
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APPENDIX I

FORTRAN IV LISTING:. SOLUTIONS TO ORTHOTROPIC
DISPERSION EQUATION

The computer program.listedin this appendix finds solutions to the ortho-

tropic dispersion equation, Equation .(83) .The.primary.inputs to the program

are as follows:

1. Stiffness.coefficients: Cll, C 3 3, C1 3, and Css for X-direction

propagation; C 2 2, C.3 3 , C 2 3 , and C44.for Y-direction propagation.

2. Maximum phase.velocity for.which solutions are to be.sought (CPI).

3. Number of velocities for which solutions are to be sought (NC).

4. Maximum frequency for.which.solutions are to.be sought (FMAX).

5 Plate thickness (T).

6. Integer parameter indicating how results are.to .be plotted (IGRAPH).

7. Lengths of coordinate axes (XHM and YHM).

In addition, there are several secondary inputs,..i.e., those specified in the

program. These are:

8.. Minimum.frequency for which.solutions are to be sought (FI).

9. Frequency increment used in iterative search (DELF).

10. Maximum number of.solutionsto.be..located (NMR).

11. Plate density (RHO).

The main.program.consists .of.a large DO.loop within another DO loop.

The outer DO loop sets.the.wave symmetry. Solutions for antisymmetric modes

are sought first.. The inner DO loop sets the phase velocity. .Within the inner

DO-loop, frequency is stepped by increments of DELF from FI.to.FMAX. For each.

velocity,.the right side of Equation..(83).,.being independent of frequency, is
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evaluated. Then, for each frequency, the left side- .of Equation. (83) is evalu-

ated.and a comparison is made. When the two sides are approximately equal,

solution is indicated. When the right- side of.Equation .(83) is either very

large or very small, which occurs in certain velocity.ranges, solutions are

sometimes not located.

The first time through.the inner main.DO loop, solutions are sought for

the maximum phase velocity,CPI. ..With succeeding passes,.the velocity is

decreased in NC-l steps of CPI/NC . No program.itself.is .described via comments

within the FORTRAN statements.
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C
C
C DETERMINATION OF ORTHOTROPIC PLATE WAVE DISPERSION CURVES
C
C
C RESULTS CAN BE PLOTTED IN THE FOLLOWING FORMATS
C IGRAPH X-AXIS Y-AXIS
C ---- ---- ----

C O F V
C I F*T/V V
C 2 F*T/V F
C 3 F F/IV*V)
C
C
/JOB GO,TIME=60

DIMENSION ID1300),VEL(300),FREQI150,15),X41000),Y(1OOO),A(20)
DIMENSION LX(13),LY(13)
REAL KP,KM,KPS,KMS
READ (5,4) CPI,NCFMAX,T,XHM,YHM
FI = 0.001
DELF = 0.001
XSF = FMAX/XHM
YSF = CPI/YHM
NUMF = FMAX/DELF
MNR = 5
DELCP = CPI/NC
RHO = 1.00

C.....THE NEXT LINE IN THE DATA FILE IS LITERAL INFORMATION.
READ 16,5) ORT

1 FORMAT (4F10.3/11)
2 FORMAT (lHO,///,'STIFFNESS COEFICIENTS ARE',/,T5,4F10.2)
3 FORMAT (1H ,'C = ,»F5.2,5X, B*B-4*D IS ZERO OR LESS*)
4 FORMAT IF10.4,12,8X,6F10.4)
5 FORMAT 18X,F2.01

400 READ (5,1) Cll,C22,C12,C66,IGRAPH
IF (IGRAPH-3) 7,6,7

6 IG = 3
IGRAPH = 0

7 IF (Cll) 123,500,123
123 WRITE 16,2) Cll,C22,C12,C66

CALL RONIIRHO,C11,C22,C12,C66,AlA2,A3,A4,A5,A6)
C.....OUTER DO LOOP, L=1 FOR ANTISYMMETRIC MODES
C ..... L=2 FOR SYMMETRIC MODES

DO 200 L=1,2
DO 9 1=1,100
IDIII = 0
DO 9 J=l,10

9 FREQ(I,J) = 0.
C ..... EACH TIME THROUGH THIS NEXT DO LOOP, A NEW VALUE OF
C.... VELOCITY IS USED.

0D 100 1=1,NC
IK = 0
IF (IGRAPH-1) 32,32,31

31 ANGLE = -(ATANICPI)/NCI*II-1) + ATANICPI)
C = SIN(ANGLE)/COS(ANGLE)
GO TO 33

32 C = CPI- (I-11*DELCP
C.....PHASE VELOCITY, C=VELIII

33 VELII) = C
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IF (C-0.001) 150,150,10
C.....SUBROUTINE RON2 THEN EVALUATES SQUARES OF THE Z-DIRECTION
C.....WAVE VECTORS. INDEX INDICATES IMAGINARY QUANTITIES.

10 CALL RON2(C,A1,A2,A3tA4,A5,KPS,KMSINDEX)
IF (INDEX) 30,30,20

20 WRITE 16,3) C
GO TO 100

30 IF IKMS) 40,100,50
40 IK = 1

KMS = -KMS
IF (KPS) 45,100,50

45 IK = -1
KPS = -KPS

C.....THE Z-DIRECTION WAVE VECTORS ARE THEN CALCULATED. THE
C.....SQUARE ROOTS OF THE ABSOLUTE VALUES ARE TAKEN.

50 KP = SQRT(KPS)
KM = SQRTIKMS)

C.....SUBROUTINE RON3 DETERMINES THE RIGHT HAND SIDE OF THE
C.....DISPERSION EQUATION IAS CONST) AND ALSO DETERMINES THE
C.....COEFFICIENTS IN THE ARGUMENTS OF THE TANGENT FUNCTIONS.
C.....ALPHA AND BETA MUST BE MULTIPLIED BY THE FREQUENCY, F.

CALL RON31KP,KMT,C,RHO,C11,C12,A6,C66,ALPHA,BETA,CONST,IK)
C.....THE RIGHT SIDE OF THE DISPERSION EQUATION IS INVERTED,
C.....OR NOT, DEPENDING ON THE SYMMETRY.

IF (L-2) 52,51,51
51 CONST = 1./CDNST

GO TO 55
52 IF IlK-1) 55,53,55
53 CONST = - CONST

C.....IF CONST IS TOO LARGE OR SMALL, SEARCH INCREMENT ON F IS
C.....DECREASED.

55 IF (ABSICONST)-40.0) 56,56,57
C 56 IF (ABS(CONST)-0.025) 57,59,59

56 GO TO 59
57 DEL = DELF/5.0

NUM = NUMF*5
GO TO 61

59 DEL = DELF
NUM = NUMF

61 IQ = 0
IF (IGRAPH-1) 22,22,21

21 NUM = NUM*C
C.....WITH THIS DO LOOP, FREQENCY IS SCANNED.

22 DO 90 J=1,NUM
F = FI + (J-1)*DEL
IF (F-FMAX) 15,15,100

15 IF (IGRAPH-1) 12,11,12
11 F = F*C/T

C.....TANGENT FUNCTIONS ARE EVALUATED.
12 SA = SIN(ALPHA*F)/COSfALPHA*F!

IF (IK) 64,60,65
60 SB = SINIBETA*F)/COS(BETA*F)

GO TO 69
64 IF (ALPHA*F-5.0) 164,165,165
164 SA = IEXPIALPHA*F)-EXPI-ALPHA*F))/(EXP(ALPHA*F)+EXPI-ALPHA*F)I

GO TO 65
165 SA = 1.0
65 IF (BETA*F-5.0 66,67,67
66 SB = (EXP(BETA*F)-EXP(-BETA*F))/IEXP(BETA*F)+EXPI-8ETA*F))

GO TO 69
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67 SB = 1.0
69 IF (SB8 70,90,70

C.....THEIR RATIO IS THEN CALCULATED.
70 RATIO = SA/SB

170 IF (J-l) 72,71,72
71 F2 = F

02 = RATIO
GO TO 90

C.....STARTING WITH THE SECOND FREQUENCY, SUBROUTINE RON4
C.....DETERMINES IF RATIO=CONST.

72 Fl = F2
Q1 = Q2
F2 = F
Q2 = RATIO
CALL RON41QI,CONST,Q2,IND)
IF (IND) 90,90,75

75 FV = F1 + ICONST-QL)*DEL/1Q2-Q0)
IF (IGRAPH-1) 17,16,16

16 FV = T*FV/C
17 IQ = 1 + IQ

ID(I) = IQ
FAC = FV/(VEL(I)*VELII))
IF (IG-3) 19,18,19

18 VELII) = FAC
C ..... SOLUTIONS ARE STORED IN FREQ(IIQ). IQ IS A COUNTER
C ..... USED IN RONS.

19 FREQ(I,IQ) = FV
C WRITE (6,5) SASB,FP,VELII,)FVFAC

IF (IQ-MNR) 90,100,100
90 CONTINUE

C.....PROCEDURE IS REPEATED FOR NEXT VELOCITY.
100 N = I
150 CONTINUE

C.....WHEN SOLUTIONS FOR ALL VELOCITIES HAVE BEEN SOUGHT,
C.....SUBROUTINE RON5 IS CALLED TO PUT THE DATA IN FINAL FORM
C.....FOR PLOTTING.

CALL RON5tVELFREQID,N,X,Y,A,IGRAPHT)
C .... SUBROUTINE RON6 IS CALLED TO PLOT DATA.

CALL RON64N,X,Y,LXHM,YHM,XSFYSF)
200 CONTINUE

GO TO 400
500 STOP

END
C

SUBROUTINE RON1 IRHO,Cll,C22,C12,C66,AlA2,A3,A4,A5,A6)
Al I (CII*C22 - C12*1C12+2.*C661)/IC22*C66)
A2 = -RHO*(C22+C66)/(C22*C66)
A3 = Cll/C22
A4 = -RHO*(1.+Cl1/C66)/C22
A5 = RHO*RHO/(C22*C661
A6 = -Cll + C12*(C12+C66)/C22
WRITE (6,1) AlA2,A3,A4,A5,A6

1 FORMAT 11HO,///,'THE A CONSTANTS ARE9,/,T5,6F10.3)
RETURN
END

C
SUBROUTINE RON2(C,AI,A2,A3,A4,A5,KPS,KMS,INDEX)
REAL KPS,KMS
B = Al + A2*C*C
D 0 A3 + A4*C*C + A5*C*C*C*C
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O = B*B - 4*0
IF 4(0 10,10,20

10 INDEX = I
GO TO 100

20 KPS = 1-B + SQRTID))/2.
KMS = (-B - SQRT(D)O/2.
INDEX = 0

100 RETURN
END

C
SUBROUTINE RON3(KPtKM.TCRHOtC11C12,A6,C66.ALPHABETACONSTIK).
REAL KPKM
ALPHA = (KP*T*3.141592)/C
BETA = (KM*T*3.141592»/C
IF (IK) 10,20,10

10 CSS = -C66
COT = -C12
CON = C12
CSX = C66
IF (IK) 15,20,30

15 CON = -C12
CSX = -C66
GO TO 30

20 CSS = C66
COT = C12
CON = C12
CSX = C66

30 CONST = KM*IRHO*C*C - Cll + CON*KP*KP)
CONST = CONST*(RHO*C*C + A6 - CSS*KM*KM)/KP
CONST = CONST/(RHO*C*C - Cll + COT*KM*KMI
CONST = CONST/(RHOC*CC + A6 - CSX*KP*KP)
WRITE 16,1) C,KPKM,ALPHABETA, CONST

1 FORMAT IIH ,3F10.4,5X,3F10.4)
RETURN
END

C
SUBROUTINE RON41QI,CONST,Q2,IND)
IF (Ql*Q2) 5,10,10

5 IF (ABSIQ1-Q2)-2.0) 10,109100
10 IF (QL-CONST) 20,20,50
20 IF ICONST-Q2) 200,200,100
50 IF (CONST-Q2\ 100,200,200

100 IND = 0
GO TO 300

200 IND = 1
300 RETURN

END
C

SUBROUTINE RON5(VELFREQ,IDN,X,YAIGRAPHT)
DIMENSION A(20),FREQ(150,15),ID4300 ,X(1000 ,Y(1000l IVEL(3001
K s 0
M r -1
00 100 I=1,N
MM - IDII)
IF IID I )-I 100,40,10

10 M = -M
IF (M) 20,20,50

20 DO 25 J=1,MM
25 A(JI = FREOII,J)

DO 30 J=1,MM
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INDEX = MM + 1 - J
30 FREQII,J) = A(INDEX)

GO TO 50
40 K = K + I

XIK) = FREQ(I,MM)
IF (IGRAPH-1) 42,42,41

41 YIK) = X(K)*VEL(I)/T
GO TO 100

42 YIK) = VEL(I)
GO TO 100

50 DO 70 J=1,MM
K = K + 1
X(K) = FREQ(I,J)
IF (IGRAPH-1) 60,60,55

55 Y(K) = XiK)*VELII)/T
GO TO 70

60 Y(K) = VEL(I)
70 CONTINUE

100 CONTINUE
N = K

200 CONTINUE
RETURN
END

C
SUBROUTINE RON61N,X,Y,L,XHM,YHM,XSF,YSF)
DIMENSION X(1000),Y(1000),LX(13),LY(131,IBCD(121
IF (L-1l 10,10,20

10 CALL ITLZ
CALL DPTI1,4)
CALL PLOT(IO0.O,-11.0,-2)
CALL PLOT(1.5,1.25,-3)

15 READ (5,1) (LXII),I=1,13),(LY(I),I=1,13)
1 FORMAT (12A4,I2/12A4,12)

25 CALL AXIS(O.O,O.O,LX,-LX4131,XHM,0.0,O.0,XSF)
CALL AXIS(0.0,O.O,LY,LYi13),YHM,90.0,0.0,YSF)

20 NN = N + 1
NNN = NN + 1
XINNI = 0.0
X(NNN) = XSF
Y(NN) = 0.0
Y(NNN) = YSF
INP = 2
IF (L-2) 29,28,28

28 INP = 6
29 CALL LINEIX,Y,N,1,-1,INP)

IF (L-l 40,40,30
2 FORMAT (2F5.2,12,12A4)

30 READ 45,2) XPAGEYPAGE,NCHAR,IIBCD(I),I=1,12)
IF INCHAR) 35,45,35

35 CALL SYMBOL (XPAGE,YPAGE,0.14,IBCD,O.O,NCHAR)
GO TO 30

45 CALL FINAL
40 RETURN

END
C.....SAMPLE DATA FILE
/DATA
1.6 16 0.4 0.625 6.0 8.0
MAX VEL. NO. PTS. MAX FREQ THICK. X-AXIS Y-AXIS
12.137 0.0644 0.100 0.300
0
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FREQUENCY (MEGAHERTZI 21
PHASE VELOCITY (MM/USECI 24
1.5 8.8 31RHO = 1.0, THICKNESS = 0.625 MM
1.5 8.6 30C11 = 12.137, C33 = 0.0644
1.5 8.4 30C13 = 0.100, C55 = 0.300
0
12.137 0.0644 0.100 0.100
0
FREQUENCY IMEGAHERTZ) 21
PHASE VELOCITY (MM/USECI 24
1.5 8.8 31RHO = 1.0, THICKNESS = 0.625 MM
1.5 8.6 30C11 = 12.137, C33 = 0.0644
1.5 8.4 30C13 = 0.100, C55 = 0.100

/END CARD READ, JOB TERMINATED
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APPENDIX II

FORTRAN IV LISTING: PLOTTING OF PLATE WAVE DEFORMATIONS

This computer program plots actual plate wave deformations. Part of the

program solves the dispersion equation for a particular velocity and mode in

order to locate the frequency. At the same time the wave vectors are computed.

The program.will plot any number of waves at a time,.though only 7 to a

page. Each wave is described on.a separate input data card. For each it is

necessary to give a minimum frequency for which to.start the search.

Most of the symbols are explained in the comments preceding the program.

Additional comments within the program.serve to describe the flow of computa-

tions.
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C
C
C PLOTTING OF ORTHOTROPIC PLATE WAVES
C
C
C**********PARAMETERS SPECIFIED IN THE MAIN PROGRAM**********
C N = NO. OF POINTS PLOTTED ON VERTICAL DEFORMATION LINES
C PLI = INCHES UP ON 11 INCH PAPER TO FIRST WAVE PLOT
C NV = NO. OF VERTICAL DEFORMATIONS LINES PLOTTED PER WAVELENGTH
C XMA = LENGTH OF WAVE AS PLOTTED IN INCHES
C YMAX = PLATE THICKNESS AS PLOTTED, IN INCHES
C PRNT = PRINT PARAMETER. WITH PRNT = 2, MUCH OF THE
C PRINT OUT IS DELETED.
C FD = FREQUENCY INCREMENT (IN MHZ) USED IN SEARCHING FOR SOLUTIONS
C TO DISPERSION EQUATION
C T = ACTUAL PLATE THICKNESS IN MM
C NF = MAXIMUM NO. OF FREQUENCIES TO BE TRIED IN SEARCH
C RHO = PLATE BULK DENSITY IGMS/CM3)
C INK = MAXIMUM NO. OF PLOTS PER PAGE
C M = NO. OF HORIZONTAL LINES PLOTTED
C
C
C**********PARAMETERS SPECIFIED IN DATA FILE*********
C Cll1C33.C13,C55 = ELASTIC STIFFNESS COEFFICIENTS
C LNI,LN2,LN3 = LITERAL INFORMATION AS STRINGS, FOR PRINTING THE
C VELOCITY, FREQUENCY, AND DISPLACEMENT RATIO (PROVISION
C FOR 28 CHARACTERS EACH)
C NC = NO. OF WAVES TO BE PLOTTED
C S = VELOCITY OF WAVE
C FI = FIRST FREQUENCY IN SEARCH
C NVL = ADDITIONAL VERTICAL LINES PLOTTED PER WAVELENGTH
C SCA = SCALE FACTOR (SAME FOR X AND Z DISPLACEMENTS) IN INCHES
C SYM = SYMMETRY PARAMETER (1-SYMMETRIC, 2-ANTISYMMETRIC)
C XMAX = ADDITIONAL LENGTH OF WAVE (INCHES)
C
C
C**********OATA FILE FORMAT**********
C 4F10.3 C11,C33,C13,C55
C 7A4/7A4,7A4 LN1,LN2,LN3
C 12 NC
C 2F5.2,I154F5.2 SFI,NVLSCASYMXMAX
C ETC.
C ETC.
C
C
/JOB GO,TIME=15

DIMENSION ARG(2),KSi2),K(2,2),G(2,2),H(2,2),A(2),B(21,C(2)tO2)
DIMENSION TX(21,TY(2),CX(2),CY(2),V(2),Vl(2l,V2(2)tWI2,LN34301
DIMENSION U(2),T1(21,T2(2l,T3(2),T4(2),XP(2),XM(2),YP(2),YM(2)
DIMENSION U1(100,2)tU2(100,2),XC(501)tYC(501,)LN1(30),LN2(301
REAL KStK,KPSKMS

C
N = 25
PL1 = 9.0
NV = 8
XMA= 45.0
YMAX = 1.00
SCA = 0.050
PRNT 2 2.0
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SYM = 1.0
FD = 0.0001
T = 0.679
NF = 10000
RHO = 1.0
INK = 7
M = 5

C
READ (5,1) Cll,C33,C13,C55
READ 45,18) ILN1( II1=1,71,(LN211),I=1,7),(LN3(1),I=1,71
WRITE 46,2) Cll,C33,C13,C55,RHO,T

1 FORMAT 14F10.3)
2 FORMAT (1HO,///,'STIFFNESS COEFICIENTS ARE',/,T5,4F10.3,/,

+ 'RHO = ',F4.2,' THICKNESS = ',F4.2)
3 FORMAT 11H ,'C = ',F5.2,5X,'B*B-4*D IS ZERO OR LESS')
4 FORMAT (1H ,//,'KZ+B/F = ',F10.4,/'KZ-B/F = ',F10.4/' CONST = ',

+ F11.5)
5 FORMAT (1HO,/,50l'-' )
7 FORMAT (1HO,/,T24*'C = ',F5.3,' MM/USEC',/T24,'F = ',F5.3,

+ I MHZ',//,T2,'KS+ = ',F10.4,/,T2,*KS- = ',F10.4,///,T12,'REAL,
+ T22,'IMAG',/,T12,'----',T22,'----,//,T3,'K+ = ',2F10.4,/,T3,
+ 'K- = ',2F10.4,//,T4,'X = ',F10.4,/,T4,'Y = ',F10.4,//)

8 FORMAT (1H ,T4,'A = ',2F10.4,/,T4,'B = ',2F10.4,/,
+ T4,'C = ',2F10.4,/,T4,'D = ',2F10.4/)

C 9 FORMAT (1H ,2F10.4,10X,2F10.4)
14 FORMAT (12)
15 FORMAT (2F5.2,15,4F5.2)
16 FORMAT (1HO/,T24,'C = ',F5.3,' MM/USEC'/T24,'F = ',F5.3,

+ ' MHZ'/)
18 FORMAT 47A4/7A4,7A4)

C
C.....SUBROUTINE RON1 CALCULATES SEVERAL PARAMETERS FROM
C.....DENSITY AND STIFFNESS COEFFICIENTS.

CALL RON11RHO,CllC33,C13,C55,A7,A8,A3,A4,A5,A6)
READ t5,14) NC
IF (NC-1) 40,40,30

C.....MAIN 00 LOOP ON LBJ WHEN MORE THAN 1 WAVE IS TO BE DRAWN.
30 DO 900 LBJ=1,NC
40 READ 15,15) S,FI,NVL,SCA,SYM,XMAX

NVL = NVL + NV
XMAX = XMAX + XMA

C.....SUBROUTINE RON2 CALCULATES SQUARES OF Z-DIRECTION WAVE
C..... VECTORS.

CALL RON2(SA7,A8,A3,A4,A5,KPS,KMS,INDEX)
IF (INDEX) 60,60,50

50 WRITE (6,3) SKPS,KMS
GO TO 900

C
C.....SUBROUTINE RON3 CALCULATES RIGHT SIDE OF DISPERSION EQUATION.

60 CALL RON3(KPSKMS,S,RHOCIlC13,C55,A6,CONST)
C.....ARGUMENTS TO TANGENT FUNCTIONS ARE DEFINED.

ARG(l) = (SORT(ABS(KPS)l*T*3.141592)/S
ARG(21 = ISQRT(ABS(KMSIl*T*3.141592)/S
WRITE 16,5)
IF (PRNT - 2.0) 61,62,61

61 WRITE 16,4) ARGl1),ARG(2),CONST
62 KS(1) = KPS

KS(2) = KMS
IF (SYM-1.0) 80,70,80

70 CONST = 1./CONST
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C
C.....FREQUENCY SEARCH BEGINS WITH 00 LOOP ON I.

80 DO 300 I=1,NF
F = Fl + (I-1)*FD

C.....SUBROUTINE R0N4 CALCULATES LEFT SIDE OF DISPERSION
C.....EQUATION.

CALL RON4(ARG,KS,F,RATIO)
IF (I-11 100,90,100

90 F2 = F
02 = RATIO
GO TO 300

100 Fl = F2
Ql = 02
F2 = F
Q2 = RATIO

C.....SUBROUTINE RONS DETERMINES WHEN A SOLUTION HAS BEEN FOUND.
CALL RONSIQlCONSTQ2,INDO
IF (IND) 300,300,110

110 F = F1 + ICONST-Q1)*FD/(Q2-Q1)
GO TO 305

300 CONTINUE
C

305 CONTINUE
C
C
C
C.....IAVING FOUND THE SOLUTION TO THE DISPERSION EQUATION, Ft
C.....THE PARTICLE DISPLACEMENT VECTORS CAN NOW BE SOUGHT.

X = ARGI(1*F
Y = ARG42)*F

C.....THE GOVERNING DISPLACEMENT EQUATIONS ARE COMPLEX. SUBROU-
C.....TINE RON6 DEFINES SEVERAL COMPLEX QUANTITIES.
C.....K = Z-DIRECTION WAVE VECTORS
C.....TX,TY = TANGENTS OF ARGUMENTS X AND Y
C.....CXCY = COSINES OF ARGUMENTS X AND Y

CALL RON61KS,K,F,TX,TY,CX,CY,X,Y»
C.....IN THIS DO LOOP THE G AND H PARAMETERS ARE DETERMINED.
C.....THE SECOND SUBSCRIPT INDICATES REAL AND IMAGINARY COMPONENTS.

DO 400 1=1,2
GII,l) = C33*(RHO*S*S - Cll - C55*KS(I))/(C55+C131 + C13
G11,21 = 0.0
AAs (RHO*S*S - ClI -C55*KSI ))/IC55+C13)
IF (KS(I)) 320,320,310

310 H(I,l) = K(ll, +AA/K(I,1)
HI11,2 = 0.0
GO TO 400

320 H(I,2) = K(I,2) -AA/K(I,2)
H(I,1) = 0.0

400 CONTINUE
C
C WRITE (6,12) Gll,1),G(l,2),GI2,1),G(2O 2)
C WRITE (6,13) H(l,1),Hl1,2),H(2,1),H(2,2)
C 12 FORMAT (1H ,T5,'G+ = ',2F10.4,/,T5,'G- s ',2F10.41
C 13 FORMAT IIH ,T5,'H+ = ',2F10.4,/,T5,H- = ',2F10.4)

IF (PRNT - 2.0) 401,402,401
401 WRITE (6,7) S,F,KS(IKKS(2),K(1l,1,K(1,2),Kt'2,1,K(2,2t1X,Y

GO TO 403
C

402 WRITE (6,161 S,F
403 All) = 1.0
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A(21 = 0.0
8(2) = 0.0
IF (SYM-1.0) 442,441,442

441 B(1) = 1.0
GO TO 443

442 B(1) = -1.0
C.....SUBROUTINE RON9 DIVIDES THE FIRST VECTOR BY THE SECOND,
C.....RETURNING THE THIRD.

443 CALL RON9(-G(l,l),-G(1,2),G(2,11,G(2,2)1,V41,V(2))
CALL RON9(CX1),CX(2),CY(1),CY(2),V1(1),V1(2))
CALL RON9(TX(1),TXI2),TY(11,TY(2),V2(1),V2(2»)

C.....SUBROUTINE RON7 MULTIPLIES THE FIRST AND SECOND VECTORS,
C.....RETURNING THE THIRD.

CALL RDN71VI 2),V2),V11),V1(2),A1,A2)
IF (SYM-1.0) 445,444,445

444 C(1) = Al
C(21 = A2
D(l) = Al
D(21 = A2
GO TO 446

C
445 CALL RON7(Al,A2,V2(l),V2(2),C(l),C(2))

D(II = -C(l1
0(2) = -C(2)

C
446 IF IPRNT - 2.0) 447,448,447

C.....THE A,B,C, AND D QUANTITIES GIVE THE MAGNITUDES OF THE
C.....PARTIAL WAVES.

447 WRITE (6,81 A(l),AI2t,B(11,B(2),C(1,C(12),D1tD(2)
C

448 CONTINUE
C.....THESE NEXT STATEMENTS SET SOME OF THE PLOTTING PARAMETERS.

XWL = S*YMAX/(F*T)
WN = XMAX/XWL
NLX=NVL*WN + 2
SCALE = SCA*YMAX*S/13.0*F)
NS = INT(S)
NSP = INT(1000*S) - 1000*NS
NF2 = INT(1000*F)

C.....SUBROUTINE NUMB INCORPORATES INTEGER NUMBERS INTO STRINGS TO
C.....BE PRINTED BY THE PLOTTER. IN THIS CASE, VELOCITY AND
C .... FREQUENCY ARE PLACED IN STRINGS LN1 AND LN2, RESPECTIVELY,

CALL NUMBINS,LNL,13,13)
CALL NUMB(NSPLNI,15,17)
CALL NUMB(NF2,LN2,14,171

C
C.....SUBROUTINE RON11 COMPUTES THE MAXIMUM X lUll AND Z IU2)
C....,PARTICLE DISPLACEMENTS. THESE ARE NORMALIZED.

CALL RON11(A,B,C,D,H,X,Y,KS,K,N,UI U2,RI
C.....R GIVES THE RATIO OF WAVELENGTH TO MAXIMUM Z-DIRECTION
C.....DEFORMATION.

R = S/(R*F*T)
NR = INTIR)
CALL NUMBI(R,LN3,14,17)

C
C IF (N-50) 505,601,601
C 505 DO 600 I=1,N
C 600 WRITE (6,9) U1(11,1,U1(I,2),U2(I,1),U2(I,2)
C
C.....PLOTTING OF THE LITERAL INFORMATION IS PERFORMED.

A
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601 IF (N) 900,900,602
602 INK = INK + 1

IF INK-7) 605,605,603
603 IF INC-1) 606,604,606
604 PL1 = 5.5 - YMAX/2.0
606 CALL ITLZ

CALL DPT(1,4)
CALL PLOT(O.0,-11.0,-2)
CALL PLOT(4.0,PL1,-3)
CALL SYMBOL(-3.5,0.000.14,LNl,0.0,25)
CALL SYMBOL(-3.5,0.25,0.14,LN2,0.0,25)

C CALL SYMBOL(-3.5,0.590.14,LN3,0.0,25)
INK z INK - 7
GO TO 610

605 PL2 = (2.0*PL1-11.0)/(NC-1)
CALL PLOTO0.0,-PL2,-3)
CALL SYMBOL(-3.5,0.00,0.14,LN1,0.0,25)
CALL SYMBOL(-3.5,0.25,0.14,LN2,0.0,25)

C CALL SYMBOL -3.5,0.5,0.14,LN3,0.0,25)
610 XC(N+l) = 0.0

XC(N+21 = 1.0
YCIN+1) = 0.0
YC(N+2) = 1.0

C
NX = 301

C
IN = 1

C.....HORIZONTAL DEFORMATION LINES ARE PLOTTED FIRST.
DO 700 I=1,NLX
IN = -IN
XI XWL*('I-1)/.VL + XWL/4.0
XA = 2.0*3.141592*XI/XWL
DO 650 J=1,N
JJ = J
IF (IN) 621,620,620

620 JJ = N - J + 1
621 YI = YMAX*(JJ-1)/(N-1)

C.....XC AND YC ARE THE ACTUAL X,Y COORDINATES (IN INCHES) OF
C.....THE INITIALLY UNDEFORMED HORIZONTAL GRID LINE.

XC(J) = XI +(COS(XA)*U1(JJ,1)-SINIXA)*U1(JJ,2)1*SCALE -XWL/4.0

650 YC(J) = YI +(COS(XAI*U2(JJ,1)-SINIXA)*U2(JJ,2))*SCALE
C.....SUBROUTINE LINE DOES THE PLOTTING.

CALL LINEIXCYC,N,1,Otl)
700 CONTINUE

C
XC(NX+1)= 0.0
XC(NX+2)= 1.0
YC(NX+1)= 0.0
YC(NX+2)= 1.0

C
IN =-1

C.....VERTICAL DEFORMATION LINES ARE THEN PLOTTED.
00 800 L=1,M
IN = -IN
J = 1 + (L-1)*(N-1)/IM-1)
YI - YMAX*(J-1)/(N-1)
00 750 I=1,NX
XI - XWL*(I-1)*(NLX-1)/((NX-I)*NVL) + XWL/4.0
II I
IF (IN) 721,720,720

.. - _
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720 II = NX - I + 1
721 XA = 2.0*3.141592*XI/XWL

XC(II)= XI +(COS(XA)*UI(J,1) - SIN(XA)*U14J,21)*SCALE -XWL/4.0
750 YC(III= YI +(COSIXA)*U2(Jl) - SIN(XA)*U2(J,2))*SCALE

CALL LINE(XCYC,NX,1,0,1I
800 CONTINUE

IF (INK-7) 900,850,900
850 CALL FINAL

C
C.....PROCEDURE IS REPEATED FOR NEXT WAVE.

900 CONTINUE
IF (N) 950,1000,950

950 CALL FINAL
1000 STOP

END
SUBROUTINE RON1(RHO,C11,C33,C13,C55,A1,A2,A3,A4,A5,A6)
Al = (C11*C33 - C13*(C13+2.*C55I)/(C33*C55>
A2 = -RHO*(C33+C55)/(C33*C55)
A3 = C11/C33
A4 = -RHO*1l.+C11/C55)/C33
A5 = RHO*RHO/(C33*C55)
A6 = -Cll + C13*(C13+C55)/C33
WRITE 46,1) Al,A2,A3,A4,A5,A6

1 FORMAT (IHO,///,'THE A CONSTANTS ARE',/,T5,6F10.4)
RETURN
END

C
SUBROUTINE RON2(SAlA2,A3,A4tA5,KPSKMSINDEX)
REAL KPS,KMS
B = Al + A2*S*S
D = A3 + A4*S*S + A5*S*S*S*S
D = B*B - 4.0*0
IF (I) 10,10,20

10 INDEX = 1
GO TO 100

20 INDEX = 0
KPS = (-B + SQRTID)I/2.0
KMS = (-B - SQRT(D))/2.0

100 RETURN
END

C
SUBROUTINE RON3(KPS,KMS,S,RHO,ClltC13,C55,A6,CONST)
REAL KPSKMS
CONST = SQRT(ABS(KMSI)*IRHO*S*S-Cll+C13*KPSI
CONST = CONST*(RHO*S*S+A6-C55*KMSI/SQRT(ABS(KPS))
CONST = CONST/IRHO*S*S-Cll+CI3*KMS)
CONST = CONST/(RHO*S*S+A6-C55*KPS)
RETURN
END

C
SUBROUTINE RON4(ARGKSF,RATIO)
DIMENSION ARGt2),KS(2),V(2)
REAL KS
DO 100 I=1,2
A = ARG(I)*F
IF (KS(I)) 20,10,10

10 V(I) = SIN(A)/COSIAI
GO TO 100

20 VII) = (EXP(A)-EXP(-A))/(EXPIA)+EXP(-A))
100 CONTINUE
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RATIO = V(1/V(21
RETURN
END

C
C
C

SUBROUTINE RON5(QI,CONSTQ2,IND)
IF Q01*Q2 5,10,10

5 IF IABS(QI-Q21-2.0) 010,10',1
10 IF (Q1-CONST) 20,20,50
20 IF ICONST-Q2) 200,200,100
50 IF ICONST-Q2) 100,200,200

100 IND = 0
GO TO 300

200 IND = 1
300 RETURN

END
C

SUBROUTINE RON61KS,K,F,TX,TYCXCYX,Y)
DIMENSION KS(2),K(2,2),TX(2),TY12 tCX(2) CYV2)
REAL KSK
IF IKS(1)) 20,10,10

10 K(1,1) = SQRTIKS(1))
K(1,2) = 0.0
TX(1) = SIN(X)/COS(X)
TX(2) = 0.0
CX I1 = COS(X)
CX(2) = 0.0
GO TO 25

20 K(1,1) = 0.0
K(1,2) = SQRT(-KS(l))
TX(l1 = 0.0
TX(2) = (EXP(X)-EXP(-X»I/IEXP(X)+EXP(-X)I
CXI() = (EXPIX)+EXP(-X))/2.0
CX(21 = 0.0

25 IF IKS(2)) 40,3030,
30 K(2,11 = SQRT(KS(2))

K12,2) = 0.0
TYI() = SINIY)/COS(Y)
TY(2) = 0.0
CY(1) = COSIY)
CY(2) = 0.0
GO TO 50

40 K(2,1) = 0.0
K(2,2) = SORTI-KS(21)
TYIl) = 0.0
TY(2) = (EXPIY)-EXP(-Y))/(EXPIY)+EXP(-YJ)
CY(1) = (EXP(Y)+EXP(-Y))/2.0
CY(2) = 0.0.

50 RETURN
END

C
SUBROUTINE RON7(A,B,C,D,E,F)
E = A*C - B*0
F = A*D + B*C
RETURN
END
SUBROUTINE RON9(A,BC,DE,F)
Rl = C*C + 0*D
E = (A*C + B*D)/Rl
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F = (I*C - A*D)/RI
RETURN
END

C
SUBROUTINE RON1IIA,8,C,D,H,X,YKS,K,N,U1,U2,RI
DIMENSION A12),B(2),C2)t2)t ,E(4,2),F(4,2),G4,2),Hf2,2)
DIMENSION FG(4,2),KS(2),K(2,2),UlI100,2),U2(100,2)
REAL KSK
El 1It = H( 111 - Kt. 111
E 1,2) = H 1,2) - K(1,2)
E(3,1) = H(2,1) - K(2,1)
E(3,2) = H(2,2) - K(2,2)
E(2,1) = - Ell,1)
E(2,2) = - E1,2)
E14,1) = - E(3,1)
E(4,2) = - E(3,2)
F(1,1) = All}
Fl,2) = Al2)
F(2,1) = Bill
Fl2,2) = B(2)
F(3,11 = C 1)
F(3,2) = C(2)
F(4,1) = 0(1)
F(4,2) = 0(2)

C
X1 = X
YL = Y
DUD = 0.
DUB = 0.

C
DO 500 I=1,N
X = Xi*(2*I-N-1)/(N-1)
Y = Yl*12*I-N-1)/IN-11

C
IF (KS(1)) 20,10,10

10 Gl,1 = COSIX)
Gl 12) = SINIXI
G(2,1) = COS(-X)
G(2,2) = SIN(-X)
GO TO 30

20 G(l1,1 = EXP(-X)
G(1,2) = 0.0
G(2,1) = EXP(X)
G12,2) = 0.0

30 IF KS (2)) 50,40,40
40 G(3,11 = COS(Y)

G(3,2) = SINIY)
G14,1) = COSI-Y)
G14,2) = SIN(-Y)

- GO TO 60
50 G(3,1) = EXP(-Y)

G(3,2) = 0.0
G(4,1) = EXP(Y)
G(4,2) = 0.0

C
60 U1(I,1) = 0.0

ULII,2) = 0.0
U2(1,1) = 0.0
U2{1,2) = 0.0

C
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DO 100 J=1,4
CALL RON7(FIJ, IlF(J,2),G(J,1),GIJ,2),FGIJ,1),FG(J,2))
Ul(l,l) = UlItl) + FGIJ,1)
UI11,2) = Ul(I,2) + FGIJ,2)
CALL RON7(E(J,1),E(J,2),FG(J,l),FGIJ,21P,QI
U21(,1) = U2lI,1) + P

100 U2f(1,2 = U2(1,2) + Q
C

IF (DUD - ABSIUlIIIl))) 110,120,120
110 DUD = ABSIU1(I1,1)
120 IF (DUD - ABSIU1(I,2))) 130,140,140
130 DUD = ABS(U1I1,2))
140 IF IDUB - ABSIU2II,1))) 150,160,160
150 DUB = ABSIU21I,1)
160 IF (DUB - ABS(U2(I,2))) 170,500,500
170 DUB = ABSIU21,2))

C
500 CONTINUE

C
R = DUD/DUB
IF tDUD-DUB) 510,520,520

510 DUD = DUB
520 DO 600 I=l,N

DO 550 J=1,2
Ul(I,J) = U1!I,J)/DUD

550 U2IIJ) = U2II,J)/DUD
WRITE 46,5) UlII,l),U11,2I,U2,),U2(I, (I,2)

5 FORMAT (1H ,2F10.4,10X,2F10.4)
600 CONTINUE

C
RETURN
END

/END CARD READ, JOB TERMINATED
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APPENDIX III

SEM PHOTOMICROGRAPHS OF BOARD SAMPLES

On the following pages, SEM photomicrographs are presented for the three

board samples tested extensively in this investigation.
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APPENDIX IV

PLATE WAVE VELOCITY DATA

Listed in the tables (Tables XV-XVII) in this appendix.are the plate

wave velocities measured at various.frequencies for the three board samples.

These data have been plotted in Fig. 19 through 24.
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TABLE XV

PLATE WAVE VELOCITIES FOR 90 LB. LINERBOARD SAMPLE 1

Frequency Velocity (m/sec)
(kHz) Specimen 1 Specimen 2 Specimen 3

X-direction 100 1935 - -
110 925 677 595
120 554 579 598
130 479 477 384, 521
140 439 417 381, 453
150 426 455 379, 453
160 402 432 392, 413
170 390 416 386
180 387 409 384
190 379 400
200 376. 396
210 - 867
220 643 663
230 581 - -
240 369, .498 - -
250 372, 479 399
260 374, 472 405
270 373, 472 410
280 374, 453 407
290 374, 439 410
300 374, 434 415
310 383, 429 -
320 396, 439

Y-direction 100 1836 - 1340
110 782 666 677
115 509 575
120 515 - 435
125 - - 420
130 414 496 400
140 - 477
150 380
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TABLE XVI

PLATE WAVE VELOCITIES FOR 90 LB. LINERBOARD SAMPLE 2

Specimen 1
Velocity (m/sec)

Specimen 2 Specimen 3

X-direction

Y-direction

Frequency
(kHz)

1876
876
697
634
563
527

366, 504
369, 485
372, 481
373, 463
376, 453
379, 449
381, 442
382, 441
384, 439
387, 434
387, 439

437
442

1941
1877
1234
924
703
616
559
515
487

483

365, 460

379, 452

382, 442

384, 436

386, 440

440

2493

1626
832
620
656

546
539
509
503

384, 477
453

385, 453
393, 438
391, 464

404, 453

451

892
489
513
446
431
412
394
387
382
377

110
120
125
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

120
130
140
150
160
170
180
190
200
210
220
230
240
260
270
280
290
300

1755
1307
644
508
456
432
407
395
384

1092
800
640
644

1384
691
640
554
512
490
455
428
409

393

385
381
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TABLE XVII

PLATE WAVE DATA.FOR.MILK CARTON STOCK

Frequency
(kHz)

Velocity (m/sec)
Specimen 1 Specimen 2

X-direction 150
160
170
180
190
200
210
220
230
250
270
290
310
330
350
360
370
380
390
400
410
420

Y-direction 140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
310
330
350

1100
724
623
562
530

369, 514
374, 498
375, 478
379, 471
387, 460
393, 449
452, 1610
444, 873
465, 751
440, 589

1441
807
676
605

366, 567
372, 540
375, 526
378, 509
379, 493
383, 477
389, 468
392, 465
396, 456
464, 948

402, 461, 810
397, 457, 779

457, 667
462, 669
459, 627
448, 582
456, 587

597

1774
1426
769
625
555
510
474
459
446
438
425
419
412
404

397, 1133
389, 747
383, 697
389, 600

1765
1483
782
626
542
498
473
450
438
432
424
415
408
404
402
400

394, 914
396, 763
393, 629


