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Abstract
Back and Forth Error Compensation and Correction (BFECC) was recently developed for interface computation
by using the level set method. We show that it can be applied to reduce dissipation and diffusion encountered in
various advection steps in fluid simulation such as velocity, smoke density and image advections. BFECC can be
implemented easily on top of the first order upwinding or semi-Lagrangian integration of advection equations,
while providing second order accuracy both in space and time. When applied to level set evolution, BFECC
reduces volume loss significantly. We combine these techniques with variable density projection and show that
they yield a realistic animations of two-phase flows. We demonstrate the benefits of this approach on the image
advection and on the simulation of smoke, of bubbles in water, and of a highly dynamic interaction between water,
a solid, and air.

1. Introduction

Simulation of incompressible fluid involves several com-
putation steps including diffusion, advection and pressure
projection. Advection steps transport some quantities from
one region to another along the fluid’s velocity field. In this
paper, we explore four forms of advection encountered in
fluid simulation: velocity, smoke density, image and level set
advections. Velocity advection transports the velocity field
along the velocity itself. This step is always needed in non-
steady flow simulation based on Navier-Stokes equation.
Smoke density advection transports smoke along the veloc-
ity field. Sometimes, we may want to advect a colored im-
age, which may be considered as colored smoke. We call
this process image advection. When one uses a level set
method [OS88] to simulate a free surface or a two-phase
flow, for example a water surface simulation, the level set
must be transported as well. We call it level set advection.

Those advection steps can be computed by an upwind
or a semi-Lagrangian method. The latter is often preferred
due to its stability for large time step. The first order
semi-Lagrangian method is popular in computer animation
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because of its simplicity. However, the first order semi-
Lagrangian contains a significant amount of numerical diffu-
sion and dissipation. In velocity advection, it yields damped
fluid motion.

In smoke density advection, it leads to a premature di-
lution of smoke, and is not able to simulate pure advec-
tion. Therefore, higher order schemes, such as WENO or
CIP [TFK∗03], are desired. We show that the implemen-
tation complexity of these schemes may be easily avoided
by adding a very simple Back and Forth Error Compensa-
tion and Correction (BFECC) to an existing first order semi-
Lagrangian schemes, thus improving its space and time ac-
curacy to second order. We show that this approach reduces
velocity damping and smoke density dilution and demon-
strate its benefits on the four forms of advections discussed
previously.

BFECC was recently proposed in [DL03, DL04] as a
level set interface computation method. As is mentioned in
[ELF05], high order methods may not prevent volume loss
much. However, the authors of [DL03] combined BFECC
with their simple redistancing technique and applied it to the
Zalesak’s problem, showing significantly reduced the vol-
ume loss. In the level set framework, the one with smallest
volume error would be the particle level set method [EMF02,
ELF05] In this paper, we focus on applying BFECC to ve-
locity and smoke advection steps rather than level set advec-
tion. We, however, use BFECC and the simple redistancing



for level set advection of various fluid simulations and show
that sufficiently realistic fluid animation can be obtained. It
would be interesting to apply this to the level set advection
part of the particle level set method [ELF05] for more de-
manding simulation.

2. Previous Work

The stability problems in the earlier works such as [FM96]
were successfully remedied in [Sta99] by introducing the
pressure projection scheme to enforce incompressibility of
the fluid and the semi-Lagrangian treatment of the advec-
tion term in the Navier-Stoke equation. This solution is pop-
ular for the simulation of incompressible Fluids, such as
smoke [FSJ01] and also for more challenging free surface
flows [FF01, EMF02].

The semi-Lagrangian velocity advection [Sta99] comes
with built-in dissipation, i.e., the velocity is dissipated
quickly since the linear interpolation in the first order semi-
Lagrangian produces large error. While higher order interpo-
lation can solve the problem, it involves more neighboring
grid point values and increases the complexity, particularly
when non-uniform mesh structures are used. In [FSJ01], vor-
ticity is added to generate small scale fluid rolling motion.
Recently, [SSK05] addressed this built-in dissipation by en-
hancing advection itself. They adopted the CIP [TFK∗03]
method that increases the order of accuracy in space by in-
troducing the derivatives of velocity to build a sub-cell ve-
locity profile. A nice feature of this CIP method is that it
is local in the sense that only the grid point values of one
cell are used in order to update a point value. However, in
this CIP method, all components of velocity and their partial
derivatives should be advected, increasing the implementa-
tion complexity and computation time, especially in 3D. It
is also worth noting that CIP has higher order accuracy in
space only. Therefore high order integration of characteris-
tics is also necessary. In contrast, BFECC is easier to imple-
ment and exhibits second order accuracy both in space and
time and is local during each of its operational steps.

Song et al [SSK05] focused on applying CIP to generate
more dynamic water surface behavior. However, we believe
that having less dissipative and diffusive advection provides
significant benefits in smoke simulations as well. This is il-
lustrated in the middle five images of Fig. 4, where large
amount of dissipation makes the smoke look very dark. In
contrast, when BFECC is used, the smoke keeps full bright-
ness throughout the simulation as is shown in the last five
images.

The introduction of the level set method to fluid animation
in [FF01] allowed realistic simulation of fluids with complex
free surfaces. The problem left here was the volume loss in
the level set method and the solution, known as the particle
level set method, proposed subsequently in [EMF02], turned
out to be very successful in volume preservation.

The two phase fluid solver using variable density pro-
jection has been broadly studied in mathematics and fluid
mechanics [SSO94, OKBG00, HKLS04]. It has been used
in graphics applications by [HK03], where the authors sim-
ulated air bubbles rising and merging and by [TFK∗03,
SSK05], where splash style interactions between water sur-
face and air are studied.

3. Fluid Simulation

Consider the following Navier-Stokes equation

∂u
∂ t

= −u ·∇u+ν∇ · (∇u)− 1
ρ

∇P+ f. (1)

We follow the operator splitting steps proposed in [Sta99]
except for the advection step, where we use BFECC and
for the projection step for which we use the variable den-
sity pressure projection. We use the standard staggered grid
[FSJ01]. Suppose all terms in (1) except for − 1

ρ ∇P are
treated and let the velocity obtained so far be ũ. The final
step is applying the variable density pressure projection step
to enforce the continuity equation ∇ ·u = 0, i.e, solving the

equation ∇ ·
(
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We assume ∆x = ∆y here and through the rest of the
presentation. The extension to 3D is straightforward and
hence omitted. This first order approximation is identical
to [SSK05] and higher order formulations can be found in
[ABS96, SAB∗99]. Obviously, if ρ is constant, we have the
pressure projection ∆t

ρ ∇2P = ∇ · ũ introduced in [Sta99]. We
also include a simple implementation of surface tension sim-
ilar to [SAB∗99].

4. The BFECC Method

In this section, we review the BFECC method. Since we
want to apply it to various advections, we use ϕ to denote
a quantity that is advected and reserve the symbol φ for the
level set function through the presentation of this paper. This
ϕ can be the velocity components u,v,w, smoke density,
RGB color of an image or level set function φ , satisfying

ϕt +u ·∇ϕ = 0. (3)

We briefly describe the BFECC method here. Let L be the
first order upwinding or semi-Lagrangian integration steps
to integrate (3), such that

ϕn+1 = L(u,ϕn). (4)
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Figure 1: On the right column, a highly dynamic behavior
of water interaction with air, air bubbles, and solid is made
possible by the two-phase formulation and the BFECC-
based reduction of the dissipation in the velocity advection
step. On the left column, the BFECC is turned off and the
splash is lower.

Using this notation, the BFECC can be written as the follow-
ing three L-calling process

ϕn+1 = L

(
u, ϕn +

1
2

(
ϕn − ϕ̄

))
where ϕ̄ = L (−u, L (u,ϕn)) .

(5)

One may understand this method intuitively as follows. If
the advection step L(·, ·) is exact, the first two forward and
backward steps should return the value exactly the same as
the original one, i.e., ϕn = ϕ̄ . However, this does not hold
due to the error in the advection operation L. Suppose L
contains an error e. Then the first two forward and back-
ward steps will produce error 2e, i.e., ϕ̄ = φn + 2e. There-
fore, the error can be computed as e = −1

2 (ϕn − ϕ̄). We
subtract this error e before the final forward advection step.
Then the equation (5) becomes ϕn+1 = L(u,ϕn − e). This
step will add an additional e, which will be cancelled by the
subtracted amount −e. This method is proven to be second
order accurate both in space and time [DL03, DL04].

4.1. Implementation of BFECC

In this section, we provide a pseudo code to show the sim-
plicity of the BFECC implementation. First let the func-

Figure 2: Comparison of without (top) and with (bottom)
BFECC in velocity advection on a 80×200 grid. Top images
show damped fluid motion. Bottom ones show small scale
details as well as large scale fluctuations thanks to BFECC
applied to the velocity advection step.

tion SingleStep(u,v,ϕn,ϕn+1) implement upwind or semi-
Lagrangian integration of the scalar field ϕ , which can be
the velocity components u,v,w, the smoke density, RGB col-
ors of an image or the level set function φ . Then BFECC is
implemented as:

SingleStep(u,v,ϕn, ϕ̃)
SingleStep(−u,−v, ϕ̃ , ϕ̄)
ϕ̃ := ϕn +(ϕn − ϕ̄)/2
SingleStep(u,v, ϕ̃ ,ϕn+1)

4.2. BFECC for Velocity Advection

We can use (5) to implement the velocity advection step in
solving the Navier-Stokes Equation. In this case, ϕ becomes
u,v and w. We show that BFECC can improve the damping
in the first order semi-Lagrangian implementation of veloc-
ity advection, which is a well known drawback of [Sta99].
For multiphase flow, this BFECC needs to be turned off near
the interface to prevent velocities of different fluids with dif-
ferent densities from being mixed, which creates momentum
changes. We simply turn BFECC off, i.e., use the first order
semi-Lagrangian, for the grid points where |φ | < 5∆x. No-
tice that reducing velocity dissipation is equally important in
the entire fluid domain, not only near the interface. In other
words, turning BFECC off near the interface has little effect
since it is still turned on in most of the fluid domain.

As is shown in Fig. 2, applying BFECC adds details in
smoke motion. Notice that these details cannot be obtained



Figure 3: Advection of an image along with the up-going flow field on 100×250 grid. The first image shows initial location of
the image. The next six images are without BFECC where the dissipation/diffusion are significant. The last six images are with
BFECC, where the dissipation is greatly reduced and the features of the image can be identified.

Figure 4: Simulation of weakly diffusive and dissipative smoke in bubble rising and bursting situation. The far left image shows
the initial bubble. The next five are without BFECC, where the dissipation/diffusion in the semi-Lagrangian step deteriorate
the density of smoke. The last five images simulated with BFECC show minimal dissipation/diffusion and the smoke is in full
density throughout the simulation. Notice that all simulation parameters are exactly same except for the usage of BFECC in
smoke advection. Therefore the only difference is the density of smoke. Also, notice that the simulation time differs by less than
1% since it is dominated by the pressure projection step.

from the vorticity confinement method [FSJ01], which only
adds small scale rolling motions. We also performed the
same test in a coarser grid of 100×40. In this case, the flow
did not fluctuate at all around the obstacles with the first
order semi-Lagrangian advection. However, when BFECC
was added, the flow fluctuated as in the refined grid. We con-
clude that BFECC creates a physically correct fluctuations in
a coarser grid.

Velocity advection can also be important when rigid bod-
ies are involved. In Fig. 7, the cup does not tumble due to
the velocity dissipation in the first order semi-Lagrangian
method, while the cup tumbles when BFECC is applied to
the velocity advection step.

4.3. BFECC for Smoke Density and Image Advection

We also apply BFECC to the advection of smoke density
for the smoke simulation. In Fig. 3 and 4, we show that
BFECC can reduce dissipation and diffusion significantly.
As is shown in [DL03], BFECC is linearly stable in l2 sense,
i.e., ||a||l2 = ∑ |ai j|2 is bounded, when the velocity field is
constant, where a is the smoke density. However, density
values ai j can become negative or greater than 1.0 for some
grid points. In our simulation, this problem was not signifi-
cant and we simply clamped those values to stay in [0,1].

To measure the diffusion/dissipation amount, we design

a test problem similar to Zalesak’s problem. Instead of the
notched disk, we place a color image and rotate it 360 de-
gree and then compare it with the original image as is shown
in Fig. 5. As is shown in (d), the dissipation of the color
is significantly reduced with BFECC. During the advec-
tion, the image is also diffused to neighboring region, even
though it is not visible. To visualize the diffusion amount,
we plot background pixels as blue to show the region where
the image has been diffused into. As is shown in (d), the
color of the object is little diffused into neighboring region
when BFECC is used. Also notice that the size of the image
looks smaller and its position is noticeably different from
the original location in (c), which is again fixed in (d) where
BFECC is used. The computation time was 0.156 sec (with-
out BFECC) and 0.36 sec (with BFECC) per frame on a
3GHz Pentuim4.

Advection is often used for scientific visualization, es-
pecially for various forms of flow visualization. For exam-
ple, [JEH02] uses semi-Lagrangian advection of dye to vi-
sualize the vector field. [Wei04] applied level set method to
advect dye without diffusion. Only one dye color is allowed
and the dye cannot be diffused at all. Also level set imple-
mentation is needed. In contrast, BFECC is trivial to imple-
ment and provides advection of fully colored pattern of dye,
if necessary. As is shown in Fig. 3, the dissipation/diffusion
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Figure 5: Test of dissipation and diffusion with image ad-
vection problem on a rotating vector field (800×800 grid,
CFL = 6.29). (b) is the top center portion of the original
image (a). (c) is obtained by rotating it 360 degree using the
first order semi-Lagrangian scheme, where one can see large
amount of dissipation, diffusion, shrinkage of image and po-
sition error. These are significantly improved in (d) where
BFECC is used. The blue background region is in fact in
black color but it is rendered as blue to illustrate the region
where the color is not diffused into.

Figure 6: The far left image shows an air bubble placed in
olive oil at time zero. The next three images are first order
semi-Lagrangian implementation of level set advection. The
next three images are produced using BFECC and simple
redistancing, showing significantly reduced volume loss.

is very small. Thus, we believe that it can be used in flow
visualization as well. This remains as a future work.

4.4. BFECC for Level Set Advection

Even though, BFECC still has some volume loss in fluid
simulation, especially for small droplets or thin filaments,
it is still interesting to show how BFECC performs in the
fluid simulation since it is trivial to implement and fast.

When we use the BFECC for level set advection, i.e., ϕ =
φ , redistancing is needed to keep the level set function as a
signed distance function. We use the following redistancing
equation [SSO94]

φτ +w ·∇φ = sgn(φ) where w = sgn(φ)
∇φ
|∇φ | . (6)

w is the velocity vector for redistancing. This equation can
be solved by applying first order upwinding in discretizing
the term w ·∇φ . An alternative is the semi-Lagrangian style
integration, i.e., φn+1 = φn(x−w∆τ)+ sgn(φn)∆τ , where x
is the location of each grid point. Hence, φn(x−w∆τ) is the
φ value of previous location.

When these integration formulae for (6) are combined
with BFECC, the redistancing tends to spoil good φ val-
ues computed from the second order accurate BFECC. This
leads to the idea of turning redistancing off near the inter-
face to keep good φ values there. The conditions to turn off

redistancing is provided in [DL03], where the significant en-
hancement were shown for the Zalesak’s problem. This sim-
ple redistancing is crucial in preserving volume [DL03]. It
is also easy to implement since it simply requires to perform
redistancing at the points where at least one of the following
two conditions are met.

• When the grid point is not close to the interface, i.e.,
when φi, j has the same sign with its eight neighbors.

• When the slope is sufficiently high, i.e.,
when |φi, j −φi±1, j| or |φi, j −φi, j±1| ≥ 1.1∆x.

5. Results

We test BFECC in different fluid simulations. We simulate
air-water and olive oil-air interactions. Properties of these
fluids are provided in Table 1. Water is rendered as bluish
surface and olive oil is rendered in yellowish color. We use
PovRay (http://povray.org) to render images.

ρ[kg/m3] ν[m2/sec] Surf. Tension [N/m]

air 1.125 1.7×10−5

water 1000 1.0×10−6 0.07
olive oil 910 9.2×10−5 0.035

Table 1: Properties of fluids used in simulations

In Fig. 7, we simulated a cup, air and water interaction.
The cup is released upside down near the water surface. Due
to its weight, the cup sinks deep into water but it soon rise
again because of the air in it. However, in the top, we turned
BFECC off for velocity advection and hence the water be-
came dissipative, preventing the cup from tumbling. In the
bottom, we use BFECC for velocity advection, where the ve-
locity dissipation is small and hence the cup can tumble 180
degree. This example indicates that reducing velocity dissi-
pation could be important in simulating fluid and rigid body
interaction. We implement the rigid fluid method [CMT04]
to simulate rigid body and fluid interaction in Fig. 1 and 7.
We use multiple pressure projections to address the seeping
problem mentioned in [CMT04].

The computation time varies in situations such as the com-
plexity of fluid motions. In simple bubble rising situation
without rigid body, it took a few seconds per time step using
a 503 mesh. The cup example in Fig. 7 has multiple pressure
projections and it took about 30 to 130 seconds per time step
on a 703 grid.

6. Conclusion

We have shown that the BFECC scheme can be used to im-
prove the simulation of fluids. Once the simple first order up-
winding or semi-Lagrangian steps for velocity, smoke den-
sity, image or level set advections are implemented, BFECC



Figure 7: Simulation of a sinking cup. The top row is simulated without the BFECC in velocity advection, where the cup fails
to tumble. The bottom row is simulated with BFECC and the cup tumbles thanks to the reduced damping in velocity field.

can be added with a trivial amount of code. We show that
this simple extension yields significant enhancements in re-
ducing diffusion and dissipation in velocity, smoke, image
advection and in preserving volume under various situations
including two-phase flows and rigid bodies. The benefits of
the proposed approach are illustrated in the accompanying
video.
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