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SUMMARY 

 

 The successful creation of a living blood vessel substitute for bypass surgery can 

overcome current problems associated with grafting the patient’s own vascular tissue. A 

fully biological vessel comprised of smooth muscle cells (SMC's) in collagen is an 

attractive alternative due to its potential for long-term remodeling and vasoactivity, but 

these vessels are limited by inherent physical weaknesses. This study determines how the 

mechanical properties of tissue engineered blood vessels made with the collagen/SMC 

method can be improved by biochemical stimulation. Vessels were prepared by 

embedding rat aortic smooth muscle cells in a collagen gel and culturing the constructs 

for two weeks to allow matrix remodeling. Experimental vessels were treated with 

transglutaminase and cultured in media supplemented with ascorbic acid, TGF-beta, and 

insulin. Mechanical properties of these vessels were measured by using tensile testing of 

ring samples from the vessels and applying internal pressure loads over whole constructs. 

The treated vessels demonstrated statistically significant improvements in both ultimate 

tensile strength and burst pressure relative to control vessels. These results indicate that 

biochemical stimulation can facilitate improvements in mechanical properties of tissue 

engineered blood vessels.
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INTRODUCTION 

 

Motivation 

 Approximately half a million coronary artery bypass surgeries are performed in 

the United States each year.[1] This procedure is done when a patient’s coronary arteries 

have narrowed to where blood flow is significantly reduced and a heart attack is either 

imminent or has already occurred. Typically, the narrowed artery is bypassed by using a 

graft of vascular tissue from elsewhere in the patient’s body. The practice of using tissue 

grafts, however, is not always possible since the patient’s other vessels might be 

unavailable due to previous surgery, or because they are also diseased. As a result, efforts 

are being made in the field of tissue engineering to successfully make implantable blood 

vessel substitutes that do not require native tissue from the patient.  

 There are several requirements for a successful tissue engineered blood vessel 

(TEBV). It must be immunologically safe, meaning the patient's immune system will not 

reject the implant. The interior surface of the vessel that contacts blood needs to be non-

thrombogenic, which means that it should not cause unwanted blood clots. The vessel 

should also be mechanically strong enough to withstand blood pressures in vivo. Lastly, 

an ideal small-diameter substitute is able to demonstrate the vasoactivity of native blood 

vessels, meaning it can dilate or constrict when prompted.[1]  

 

Overview of Current State 

 Several technologies for engineering a blood vessel substitute are being 

investigated. Approaches that involve synthetic grafts or scaffolds tend to yield vessels 



2 

 

that are more mechanically stable, but the non-biological components of these vessels 

place limitations on their ability to be successfully incorporated into a human's 

circulatory system. Engineered vessels that consist solely of biological components, such 

as cells and extracellular matrix (ECM) proteins, are better suited for demonstrating 

vasoactivity, but to date they have failed to be physically strong enough to withstand 

blood pressure in the body. This literature review will focus on a particular method of 

engineering fully biological blood vessels constituted of smooth muscle cells (SMC’s) 

and collagen, as well as the efforts being made to improve the vessels' mechanical 

properties. 

 

The Collagen-Based Approach 

 The collagen-based model for engineering blood vessel substitutes is comprised 

of vascular SMC’s embedded in a collagen gel matrix. This model roughly mimics the 

structure of the media, or middle layer, of native blood vessels. The primary advantage of 

the collagen-based approach is that the biological nature of the collagen matrix allows the 

cells to remodel the construct during culture time and promote functional vasoactivity 

demonstrated by a normal blood vessel. In addition, the interior surface of these vessels 

can presumably be lined with endothelial cells, like native vessels, so that they will not be 

thrombogenic. The major issue that arises with this model, however, is that collagen gels 

have an inherent physical weakness that can limit their ability to withstand in vivo blood 

pressure. Although a synthetic reinforcement can be used to increase the engineered 

vessel’s strength, this additional structural component places limits on the construct’s 

ability to undergo biological adaptation. As a result, research focuses on finding ways to 
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improve the mechanical strength of TEBV’s made with the collagen-based model without 

the use of a synthetic support.[1]  

 

Mechanical and Biochemical Stimulation 

 Dynamic mechanical conditioning of the collagen/SMC vessels has shown 

promise as a technique for improving the physical strength of the vessels. In a study by 

Seliktar et al, the constructs were cultured around a silicon sleeve and subjected to 

circumferential strain that cycled between 0% and 10% at a frequency of 1 Hz. In other 

words, the interior of the sleeve was pressurized and depressurized such that the diameter 

of the construct would vary between its original value and 10% greater. The conditioned 

constructs exhibited a significant increase in yield stress and ultimate stress when 

uniaxial mechanics were tested by cutting the vessel into rings and stretching the rings 

until failure.[2] In a later study by Syedain et al., the applied periodic strain was increased 

in four steps from 5% to 15% over a 3 week period. This method of conditioning, called 

incremental cyclic distension (ICD), further improved the mechanical strength of the 

vessels relative to vessels that cycled between the static values for the entire 3 weeks.[3] 

Thus, applying mechanical stress to constructs as they are cultured helps to overcome the 

strength limitations that currently hinder the collagen/SMC model.  

 Biochemical stimulation can be used to favorably affect the cell-mediated 

remodeling that occurs when collagen constructs are cultured. Tissue transglutaminase 

(TG) is an enzyme that cross-links collagen gels by catalyzing the formation of an amide 

bond between glutamine and lysine residues in the polypeptide chains of collagen 

fibers.[4] This reaction, which is dependent on the presence of Ca
+2

 ions, has been shown 
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by Orban et al. to significantly increase the burst pressure of collagen constructs without 

being toxic to the smooth muscle cells.[5] The researchers of this study, however, 

acknowledged that burst pressure tests are only a simple comparison of strength that do 

not take into account dimensions and fail to give information on axial mechanics. Also, 

these constructs were only cultured for 7 days, while Girton et al. found that it takes 

about 14 days for them to fully remodel.[6] Thus, the data from this study may not 

accurately represent burst pressures of the engineered vessels in their mature form. 

 Ascorbic acid (AA) is known to stimulate SMC’s to produce more extracellular 

matrix, and a correlated improvement in uniaxial ultimate tensile stress (UTS) occurred 

when the culture media for constructs was supplemented with AA by Ogle et al.[7] 

Insulin similarly causes increased collagen production in vascular SMC’s,[8] so it could 

potentially be beneficial to improving the strength of collagen TEBV's. However, the 

effects of insulin in tissue engineering applications have yet to be thoroughly explored.   

 Transforming growth factor beta (TGF-beta) causes phenotypic changes in 

SMC’s that are not yet fully understood but can lead to favorable extracellular matrix 

remodeling as the cells in constructs compact the collagen gel. Consequently, blood 

vessel constructs cultured in media containing TGF-beta experience a higher degree of 

gel compaction and exhibit a histologically more dense matrix.[9] This means TGF-beta 

may also be useful in improving the mechanics of the collagen/SMC engineered vessels.  

 

Summary 

 It has been established that certain biochemical factors can cause improvement in 

the mechanical integrity of TEBV’s made with the collagen gel approach.  There is not, 
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however, significant knowledge on the effects of using these previously identified 

treatments (TG, AA, TGF-beta, and insulin) in combination with each other. It is 

unknown if all of the treatments together can exhibit mechanical improvements beyond 

what the individual treatments accomplish, or if similarities in the mechanisms of action 

result in negligible benefits of adding more biochemical factors.  Evidence at least exists 

for a synergistic relationship between TGF-beta and insulin,[10] but for several 

treatments the effects are unknown.  

 Comprehensive quantification of the favorable changes in mechanical properties 

is also lacking. Employing multiple testing methods will give a more complete evaluation 

of mechanical properties. Ring tests can be used as a relatively simple method of testing 

tensile properties,[11] and particle tracking on these tests are useful to analyze true local 

strain.[2] Since blood pressure is a load applied to vessels in vivo, circumferential 

mechanics are important factors to consider and can be assessed using pressure vs. 

diameter tests intended to simulate conditions within the body.  

 Thus, the goal of this project on collagen-based TEBV’s is to research a new 

experimental group of biochemical treatments, consisting of TG, TGF-beta, AA, and 

insulin, using a more diverse mechanical testing approach that includes both uni-

directional tension and internal pressure loads. Blood vessel constructs were fabricated by 

embedding rat aortic smooth muscle cells (RASMC’s) in a type I bovine collagen gel, 

then allowing the constructs to compact for two-weeks in culture media. For the 

experimental constructs, the gel contained TG and the culture media was supplemented 

with AA, insulin, and TGF-β. Unidirectional mechanics and tensile strength were 

evaluated using ring samples from the constructs, and internal pressures were applied to 
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whole constructs for burst pressure, creep, and fatigue experiments.  The data for 

experimental and control constructs were compared to determine the changes caused by 

the biochemical treatments of interest. 
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MATERIALS AND METHODS 

 

 

Cell Culture  

  Rat aortic smooth muscle cells (RASMC) were cultured in a monolayer in 

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 2 mM L-glutamine, 

100 U/ml penicillin, 100 ug/ml streptomycin, and 10% fetal bovine serum (FBS) at 

standard cell culture conditions (37° C, 5% CO2). Detachment and seeding of the cells 

was accomplished using phosphate-buffered saline (PBS) and 0.05% trypsin.   

 

Collagen Construct Preparation 

 Bovine collagen type I was dissolved to a concentration of 4 mg/ml in 0.02 N 

acetic acid. The construct mixture was prepared by first mixing 5X DMEM and 0.1 M 

NaOH such that the complete mixture would had a 1:4 volume ratio of  5X DMEM: 

collagen solution, and 1:6 ratio of NaOH: collagen solution. The collagen solution was 

then added to the DMEM-NaOH mixture so that the final concentration of collagen 

would be 2 mg/ml. Lastly, a cell suspension in 1X DMEM was added to make the cell 

concentration 10
6
 cells/ml in the complete mixture. 

 For constructs treated with TG (experimental constructs), a 5000:1 weight ratio of 

collagen:TG was used in the complete construct mixture, since this has been found to be 

the optimal concentration.[5] Also in accordance with the Orban study, the construct 

mixture contained 2.5 mM CaCl2 and 1 mM dithiothreitol (DTT).   

 The complete construct mixture was pipetted into test tubes at 5 to 7 ml per tube, 

then a glass mandrel was inserted into each tube. Gels were allowed to solidify about the 
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central mandrel in the cell culture incubator for approximately 45 minutes, after which 

they were removed and placed in the DMEM solution previously described (see Figure 

1). The culture media for the experimental constructs contained 2 ug/ml of insulin, 1 

ng/ml of TGF-beta, and 50 ug/ml of Ascorbic Acid in accordance with the studies listed 

in the background section. The gels were cut away from the rubber ends of the central 

mandrel so that they could compact freely. Vessels were cultured in the conditions 

previously described with media being changed weekly and the experimental media 

being re-supplemented three times weekly to account for biochemical degradation (see 

Figure 2). 

 

 

 

Figure 1: Overview of vessel preparation 
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   A          B 

Figure 2: Images of constructs before (A) and after (B) the two week remodeling 

period 

 

 

Ring Tests 

 Constructs were tested 14 days after being made since research has found that no 

significant gel compaction or remodeling occurs after this time.[6] Rings with a length of 

approximately 4 mm were cut from the construct and given a light dusting of black 

carbon powder so that particle tracking could eventually be done on pictures taken during 

the tests.   

 The ring tests were conducted in PBS using the testing apparatus in Dr. Nerem's 

lab. The testing device recorded the load and displacement of the two hooks on which the 

rings are pulled (see Figures 3 and 4). After being preconditioned by 5 stretches to 1 mm 

greater the unstretched length, the construct rings were stretched to failure at constant 

displacement rates of either 0.1 mm/s or 1 mm/s. Two cameras record images during the 

tests: one from the front of the ring and another from the side. Nominal stress and strain 

measurements for the construct rings were calculated using the load and extension 
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measurements taken by the testing equipment. The geometric dimensions of the rings in 

the unloaded state were found by referencing the length and thickness of the rings in the 

camera images with the testing hooks (which have a known diameter). Average ultimate 

tensile strength (UTS), which is the maximum stress sustained before tearing, was 

calculated for each treatment group and displacement rate.  

 

Figure 3: Schematic of ring tests 

 

 

 

Figure 4: Picture of ring sample being tested 
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Pressure-Diameter Tests 

 For pressure testing, each end of the whole construct was slid onto a metal tube 

and secured using suture thread (see Figure 5). The testing set-up was a fluid “circuit” of 

PBS consisting of the following items in a loop: (1) a partially filled, stopper-sealed 

Erlenmeyer flask with several leads for tube connections, (2) a pressure transducer, (3) 

the construct in a bath of PBS, and (4) a second pressure transducer. The fluid pressure in 

the system was controlled by clamping shut one tube leading to the flask, then modifying 

the pressure in the air space above the fluid in the flask. The average of the two pressure 

readings was taken to be the pressure inside the construct. Burst pressure was measured 

by increasing the internal pressure at a constant rate, then recording the maximum 

pressure sustained before rupture.   

 

Figure 5: Image of vessel undergoing a burst pressure experiment 
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RESULTS 

 

 Ring tests and burst pressure tests were used to quantify the mechanical properties 

of the biochemically treated vessels as compared to the control vessels.  

 

Ring Tests 

 The results from ring tests are displayed in Figure 6. The control group consisted 

of engineered vessels made according to the standard protocol, while the treated group 

consisted of constructs that were treated with transglutaminase and cultured in media 

containing ascorbic acid, TGF-beta, and insulin. The number at the top of the graph is the 

rate at which the rings were stretched until failure, either 0.1 mm/s or 1 mm/s. Each of the 

four bars represents a sample size of N=6, and results are plotted as mean ± standard 

error. At an extension rate of 0.1 mm/s, treated constructs had an average ultimate tensile 

strength (UTS) of 107 ± 4 kPa while control constructs had an average UTS of 60 ± 3 

kPa.  At an extension rate of 1 mm/s, treated constructs had an average UTS of 133 ± 7 

kPa while control constructs had an average UTS of 70 ± 4 kPa. For both extension rates, 

the difference between treated and control constructs was statistically significant (p = 

1.84e-6 for 0.1 mm/s and p = 3.94e-5 for 1 mm/s). 
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Figure 6: Ultimate Tensile Strength of Ring Samples of Control vs. Treated 

Constructs 

 

 

Burst Pressure Tests 

 The results from the burst pressure tests are displayed in Figure 7. The control and 

treated groups had the same conditions as described in the previous section. The sample 

size for the control group was N = 8, while the sample size for the treated group was N = 

5. Treated constructs had an average burst pressure of 211 ± 10 mmHg while control 

constructs had an average burst pressure of 144 ± 6 mmHg. This difference was 

statistically significant (p = 4.46e-4). 

0.1 mm/s 

1 mm/s 
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Figure 7: Average Burst Pressure of Control vs. Treated Constructs 
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DISCUSSION 

 

 The results indicate that treatment with TG, AA, insulin, and TGF-beta 

significantly improves the mechanical properties of engineered blood vessel constructs 

consisting of SMC's in collagen. Compared to control vessels, the treated vessels were 

able to withstand greater applied loads before rupturing during both tensile and pressure 

testing.   

 Compared to constructs in other studies treated only with TG and cultured for 7 

days, the vessels in this experiment were substantially stronger based on the results of 

burst pressure experiments. Orban et al. reported that constructs treated with TG had an 

average burst pressure of 71 ± 4 mmHg after 7 days.[5] In comparison, vessels in this 

experiment that were treated with TG in addition to AA, TGF-beta, and insulin had an 

average burst pressure of 211 ± 10 mmHg after 14 days. Thus, the additional culture time 

combined with the three additional biochemical treatments results in further 

improvements in mechanical strength.  

  The primary take-away from this project is that biochemical stimulation of 

collagen-based blood vessel constructs seeded with smooth muscle cells produces 

favorable changes in the mechanical properties of the tissue. The strength of vessels that 

are treated with the four factors of interest in this study, however, remains insufficient for 

these vessels to be used as tissue substitutes for applications such as bypass surgery. The 

human saphenous vein, which is typically used as the substitute vessel during bypass 

surgery, has a burst pressure that is roughly one order of magnitude greater, in the range 

of 1,680 to 2,273 mmHg.[12] Additional strengthening techniques such as mechanical 



16 

 

conditioning are required if the collagen/SMC engineered vessels will ever be feasible as 

replacement grafts, but biochemical stimulation is a technique that can help meet the 

requirements for mechanical strength. Once these vessels can be engineered to have the 

necessary mechanical integrity, researchers will be one step closer to manufacturing 

blood vessel substitutes that eliminate the need for grafting native tissue during bypass 

surgery. 
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FUTURE RECOMMENDATIONS 

 

 Characterization of biological and/or structural changes caused by these factors 

will lead to a better understanding of the mechanisms by which the strength has been 

improved. Collagen content of the vessels may be increased due to ascorbic acid and 

insulin stimulating the SMC's to produce more ECM. The extent of crosslinking should 

also be greater in constructs that have been treated with TG. TGF-beta has previously 

been shown to lead to greater compaction of the vessels, so the structure of the treated 

vessels will presumably be denser than that of untreated vessels. These hypotheses should 

be tested with the appropriate biological assays to confirm that the chemicals are 

inducing the expected changes.  

 Increasing the number of experimental groups will reveal more information about 

which of the biochemical treatments are the most beneficial to mechanical strength. This 

experiment only used a control group with none of the treatments and an experimental 

group with all four of the treatments, under the expectation that future work will test 

mechanical properties when only one, two, or three of the treatments are used. At the 

very least, repeating these methods on a group with just TG and a group with just the 

soluble factors in the culture media will give insight to their relative contributions. 

Ideally, there would be 16 (2
4
) experimental groups so that all possible combinations of 

treatments are used. Data can then be analyzed with ANOVA to see the effects of each 

treatment so that researchers will know which factors are the most promising. 

 A wider variety of pressure tests should also be conducted to more 

comprehensively analyze vessel mechanics. The burst pressure experiments in this study, 
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which increased pressure until vessel failure, were a relatively simple way to assess 

strength. Vessels in vivo, however, experience pressures that oscillate between systolic 

and diastolic blood pressures. Thus, a more appropriate mechanical test would cycle the 

internal pressure between an upper and lower value and analyze the deformation of the 

engineered vessels compared to native vessels. 
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