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CHAPTER I 

STATEMENT OF THE PROBLEM 

Introduction 
Techniques for the tracking of a target in free space by radar 

1 
are well known and are generally satisfactory* Most conventional 
techniques exploit the directional property of antenna beams or lobes* 
For example, we may take an antenna system employing two identical 
lobes symmetrically displaced in elevation about an axis* If we 
position the axis in elevation to obtain equal signal strengths from 
both lobes, the angle of elevation of this axis will be the elevation 
of the target. This "lobe comparison" may be sequential as in a 
conical scan system or simultaneous as in a monopulse system. 

When the target is near a conducting surface, as in the case of 
an aircraft near the surface of the sea, then the tracking problem 
becomes much more complicated. If the radar system is also near the 
conducting surface, the problem of radar tracking is no longer a 
free-space problem, since the radar receives energy from the target 
by two paths, the direct path and a second path involving reflection 
from the surface. Under these circumstances serious tracking errors 

" 4 j o N. Ridenour, Radar System Engineering (New "fork and London? 
McGraw-Hill Book Company,, Inc., 19U7) • 
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2 

C O N F I D E N T I A L 

occur. 
Successful tracking can be realized at low target elevations if 

the directivity of the antenna is increased; that is, if the ability of 
the antenna to reject surface reflected energy is increased. There is 
a practical limit, however, on the physical dimensions of a radar antenna 
which defines a "low-angle region" in which the energy received by way 
of the indirect path is not excluded. It is the object of the present 
analysis to characterize certain radar tracking procedures or techniques 
through which, ideally at least, the elevation of a target in the low-
angle region can be determined. 

The Output Voltage of a Radar Antenna in the Low-angle Region 
In order to acquire more insight into the source and nature of 

tracking errors experienced with conventional radars in the low-angle 
region, we shall obtain mathematical expressions for the output voltage 
of an antenna in this region. The output voltage will depend on the 
physical characteristics of the antenna, and also on the geometric 
configuration of the target, antenna, and conducting surface. 

We idealize the physical situation in the following way. We 
assume that the received field is the same as one which would exist 
if the radar transmitter were located at the target, i, e,, we consider 
only a "one way" problem. We assume that the target is a stationary 

D̂onald E, Kerr, Propagation of Short Radio Waves (New York: 
McGraw-Hill Book Company,, Inc., l°5l7T 
5>,llw 
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non-directional point source. We assume further that the received 

field is the superposition of two plane waves, one being the direct 

wave and the other being the indirect or surface-reflected wave. The 

transmitter modulation, including polarization and wavelength, A , is 

assumed to be fixed* Finally, we assume that the reflection coefficient 

is constant* The magnitude of the reflection coefficient, , is 

defined to be the ratio of the magnitude of the component of the field 

at the radar receiver due to the indirect wave to the magnitude of the 

component due to the direct wave* The phase or angle of the reflection 

coefficient,f , is defined to be the phase retardation on reflection 

from the surface* 

Referring to Figure 1, we summarize our hypotheses: 

(1) The transmitter modulation is fixed* 

(2) A stationary, non-directional point source is 

located at T, 

(3 ) The electromagnetic field at A is the resultant of 

two plane waves, a direct wave propagated alone TA and an indirect 

wave propagated alone TPA* 

(U) The reflection coefficient is constant* 

(5) The slant range, R, is fixed* 

The receiver antenna consists of a uniformly illuminated rec

tangular aperture of vertical width 2a with center located at A (see 

Figure l)» We shall be concerned with elevation-angle tracking only* 

Hence the directional properties of the antenna in azimuth will not 

concern us in this analysis* 

CONFIDENTIAL 



Figure 1, Geometrical Configuration in the Low-angle Problem 

Notation; 

A: position of receiver 

T: position of target or point source 

a: one-half aperture width 

h: height of aperture center 

V target height 

/ V angle of arrival of direct wave 

/ V angle of arrival of reflected wave 

R: slant range 

fit tilt of aperture. 
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The antenna is linear, i.e., its response to the resultant of two 

plane waves is the sum of its responses to the individual waves. 

The derivation of the response of a uniformly illuminated rec-
3 

tangular aperture to a plane wave is readily available in the literature 

and will not be repeated here* Let E^ denote the magnitude of the direct 

wave at the antenna aperture. Then if we denote the response of the an

tenna to the direct wave by the vector^ d, in the notation of Figure 1, 

(i) id/ = Eda sin 2 na sin (/2-/3d) 
Ed a( f ( a'/ 3'/ 3d )] ' 

where |d| denotes the magnitude of the vector d, and Q. is a conversion 

factor .depending on the physical characteristics of the receiving system. 

Similarly, if we denote the response of the antenna to the indirect wave 

by the vector r, then 

and 

l r | " f~d 

The quantities 

sin |p sin + ftr] 

2lTa 22 s i n (/3 + /5 r) 

l ^ s i n ^ - ^ ) 

2.Ta sin ( + p r) 

^ [ g f a , ^ , ^ ) ] . 

-*S. Silver, Microwave Antenna Theory and Design (New York: 
McGraw-Hill Book Company, Inc., 19k9) Section 6.5. 

\je shall avoid the use of special notation for vectors, since we 
shall employ only three vectors in the analysis. These are d, r, and 5 , 
All other quantities are scalars. 
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shall be restricted to lie between -7T and fT . Physically this means 

that we are not concerned with "side lobes". 

The target height, h^, enters equations (1) and (2) through d 

and {2^i thus, 

h. - h 

h. + h 

(W /3V -
' R 

Expressions (3 ) and (U), like (£) below, are derived in Appendix A* 

If we take as a phase reference the phase of the direct wave 

at the center of the aperture, then the angle of the vector d will be 

zero, and the vector r will lag by an angle X radians, where 

k*h h, 
(5) oc * r - ——1 . 

I R 

The angle oc is the phase difference between direct and indirect waves. 
kTh h. 

The term represents the geometric path difference in radians, 

A R 

and P the phase retardation on reflection at the surface. 

The resultant voltage in the antenna output is the vector sum 

of r and d. If we denote this resultant by the vector 5 , then 

|Sl - (Eda ) [ f 2 + /o g + 2/o t g cos «.] . 

The phase of the resultant output is the angle by which the vector 5 

CONFIDENTIAL 
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lags the vector d. If we denote this angle by 9 , then 

O * tan"1 
r sine* 

|r| cos* + |dj 

-. I pg sin <x 
- tan" { -L 

f + g cos« 

Outline of Approach to the Problem 

We can now show why conventional tracking procedures fail in the 

low-angle region. We shall take as an example of a conventional 

tracking radar the monopulse equipment. For elevation determination, 

a monopulse employs a single aperture illuminated by two vertically 

displaced feeds, so as to provide two antenna lobes symmetrically 

displaced in elevation about a line called the axis of the system. 

The displacement of each lobe from the axis is approximately one half 

the half-power beam width. The elevation of the axis is controlled by 

a servomechanism which balances the magnitudes of the lobe output 

voltages. In free space this balance would occur when the axis coin

cides with the line of sight to the target. 

Denoting the outputs of the upper and lower lobes by <S ^ and 

o 2 respectively, the condition for a balance or "null" is given by 

the equation 

(8) \h J 2 - = 0 

In the low-angle region the vector h ^ is the sum of two vectors 

mmrnmn 



d-̂  and r^, where d̂  and r^ are the components of due to the direct 
and reflected waves respectively. Similarly, tS 2 is the sum of dg and 
r2« If we denote the magnitude of the displacement in elevation of 
each lobe from the axis by , and set, as in equations (l) and ( 2 ) , 

h ° ^ ^ j . ) • g(/3 **\ ,/3r) , 
and 

then equation (8 ) becomes 

(9) f x
2 - f 2

2 + /^ 2(g 1
2 - g 2

2) + 2 y O ( f l g l - f 2g 2) cos* - 0 , 

where, as before, 
hVh h. ex. = p . — 1 

and h is the height of the aperture center0 

The principle on which the monopulse operates is the following. 
When a balance is secured, the elevation of the axis j& is the elevation 
of the target. In other words, a value of ^2 - ^ for which equa
tion (9) is satisfied is the "indicated target elevation". We can show 
from equation (9) that for a given target height h^ and for fixed values 
of all the other parameters including and f7 the indicated elevation 
will differ in general from the true target elevation. If the indicated 

CONFIDENTIAL 
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e l e v a t i o n were t h e t r u e e l e v a t i o n , /2 q would equal ^ . From equa t ion 

(1) i t fol lows t h a t ^ = f 2 = f 2 0 . Hence, i f j$ Q = f3 d i s 

a s o l u t i o n of equa t ion (9)> then i t i s n e c e s s a r y t h a t 

f02(g^ - g 2

2 ) + 2 y O f c o s * - g2) * 0 , 

or 

^ ( g x - g 2 ) + ^ * 2 f c o s * ] e 0 

for a l l values of CX • S ince f fi ^, i t can be demonstrated t h a t 

g l ^ g 2 * H e n c e 

+ ^2} * 2fcos0<I * 0 

for a l l va lues of Oc . But t h i s i s f a l s e , s i nce f>> 0 , f g. 0 , 

gx i 0 , and g 2 £ 0 . 

The above argument shows t h a t i n d i c a t e d t a r g e t e l e v a t i o n i s i n 

gene ra l no t t h e t r u e t a r g e t e l e v a t i o n . I f we consider the d i f f e r e n c e 

between the i n d i c a t e d and t r u e t a r g e t e l e v a t i o n s as an e r r o r , we can 

p l o t t he e r r o r as a func t ion of t a r g e t p o s i t i o n . This has been done 

by Kerr for a conven t iona l t r a c k i n g r a d a r e s s e n t i a l l y of t h e same type 

as the monopulse desc r ibed above. 

One approach to the low-angle t r a c k i n g problem i s t o f i x h^ , 

d e t e r m i n e ^ q such t h a t equa t ion (9) i s s a t i s f i e d , and then s t u d y t h e 

Ker r , 0£ . c i t . , Sec t i on £.1)4. 
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error in indicated target elevation with the object of devising means of 

minimizing this error. On the other hand, the approach we shall take is 

solutions of equation (9) for ĥ ., and then determine conditions to be 

imposed so that an unique determination of h^ is secured. 

If we regard indicated elevation as a radar measurement, then we 

have shown that this radar measurement in the case of the monopulse 

system does not in general yield the true target elevation. Our analysis 

will be concerned with the development of necessary and sufficient radar 

measurement procedures for the unique determination of target elevation 

in the low-angle region. 

the inverse of that just mentioned. 
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C H A P T E R I I 

F O R M A L I Z A T I O N 

D E F I N I T I O N S 

L O B E o — B Y L O B E W E M E A N T H E M A I N B E A M O F A U N I F O R M L Y I L L U M I N A T E D 

A P E R T U R E W I T H I T S A S S O C I A T E D F E E D , S P E C I F I E D B Y T H R E E P A R A M E T E R S A,^/6 , 

H , A S I L L U S T R A T E D I N F I G U R E 1» T H E P A R A M E T E R A I S O N E H A L F T H E V E R T I C A L 

A P E R T U R E W I D T H , p T H E T I L T O F T H E A P E R T U R E F R O M T H E V E R T I C A L , A N D H I S 

T H E H E I G H T O F T H E C E N T E R O F T H E A P E R T U R E A B O V E T H E C O N D U C T I N G P L A N E . T H E 

O U T P U T V O L T A G E S O F A L O B E I S A V E C T O R W H I C H I S A S I N G L E - V A L U E D F U N C T I O N 

A O F T H E P A R A M E T E R S A , , H , ^0 , T , A , E ^ , R, A N D H ^ . F O R O U R 

P U R P O S E S W E R E G A R D & A S I N D E P E N D E N T O F T H E T I M E T . W E O B T A I N T W O D I F F 

E R E N T L O B E S B Y A S S I G N I N G D I F F E R E N T V A L U E S T O T H E P A R A M E T E R S A , ^ , H I N 

T H E L O B E F U N C T I O N A . A D I F F E R E N C E I N L O B E S W I L L B E I N D I C A T E D B Y S U B 

S C R I P T S O N T H E O U T P U T V O L T A G E S ; F O R E X A M P L E , 

A N D 

& 2 ~ A (A 9 ft s h 2 9 0 * ° ^ 

R E P R E S E N T T W O L O B E S A T D I F F E R E N T H E I G H T S . F O R S I M P L I C I T Y , W E S H A L L 

D E N O T E A L O B E B Y T H E O U T P U T V O L T A G E ; I O E 0 , I F T H E O U T P U T I S & , T H E N 

W E S H A L L S P E A K O F T H E L O B E & 0 

W E H A V E C H O S E N T H E L O B E A S T H E F U N D A M E N T A L U N I T S O T H A T W E M A Y 

A N A L Y Z E A L M O S T A L L A N T E N N A C O N F I G U R A T I O N S W I T H A S I N G L E T H E O R Y . M O R E 

C O N F I D E N T I A L 



complicated antenna structures can be thought of as combinations of 

single-lobe antennas. In this way we avoid such confusion as might 

arise from the question whether a monopulse is one antenna or two 

antennas« 

Receiver Parameters,—By receiver parameters we mean the quantities 

a , /S s and h. 
Radar Measurements,—In a radar system employing several lobes the out

puts of the lobes may be added or subtracted, and each output may be 

attenuated or shifted in phase. We do not observe either the lobe out

puts or linear combinations of them, with or without attenuation or 

phase shift. What we do have access to is the magnitudes of such vectors. 

It is natural therefore to employ as our basic quantities inner products 

of two vectors. By radar measurement or an admissible measurement we 

mean an inner product of two vectors which may be lobe outputs or linear 

combinations of them, with or without phase shift. We denote phase 

shift through the angle Q by right multiplication of the vector by a 

matrix^. Formally, our radar measurements may be represented as inner 

products on a linear vector space whose elements are the lobe out

puts i ^ . Phase shifting represents a rotation in our space. 

Measurement Procedure,—By a radar measurement procedure we mean a 

combination of admissible measurements. By the value of a measurement 

procedure is meant the value of, or number resulting from, such a 

Properties of inner products on linear vector spaces are given 
in Appendix B, 
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combinationo In particular, we shall speak of elementary measurement 

procedures, by which is meant either the measurement procedure 

l*J2-
or 

2 

where (j)̂  is a rotation, and may be the identity matrix. 

It should be noted that the first of these elementary measurements 

procedures compares the magnitudes of lobe outputs, while the second 

depends on their phase difference as well as their magnitudeso 

Closed-Loop Procedure,—The value of a radar measurement procedure 

depends in particular on the receiver parameters (a,^6 > h) in each lobe, 

on the various phase shifts ( J ) and on the target height h., We 

could calculate the value of a measurement for fixed a, , h, and , 

but it will be more convenient to vary these quantities in order to 

obtain a prescribed value of the measurement, A closed-loop procedure 

is a procedure whereby we prescribe the value of a measurement procedure 

and vary the quantities a, p , h, or (£e so as to obtain the fixed value. 

Physically, closed~loop procedures are effected through servo systems. 

Generally the prescribed value of a measurement procedure is taken to be 

zero. 

Null,—Suppose that in a closed-loop procedure the receiver parameters 

or <£ Q depend on a controlled variable. Then a value of the controlled 

variable such that the value of the procedure is zero is called a nullo 

CONFIDENTIAL 
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The terra "null" as used here may not necessarily coincide with the 

"null" associated with a free-space antenna pattern. 

Mathematical Formulation of the Problem 

We shall represent measurement procedures by a real-valued 

function F(£^, »-o,i ) of the lobe output vectors, If 

a procedure under consideration involves shifting of phase in lobe out

puts, this will be indicated by writing F( [^, • 9 S^9$^ , p)« 

The nature of the function F is restricted by our definition of ad

missible measurements, that is, F is a combination of inner products of 

the lobe output vectors. We may rotate and add or subtract these 

vectors before taking inner products. 

Example 1, Interferometer, 

An interferometer is a device consisting of two lobes at differ

ent heights tilted through the same angle. In the case of an incident 

plane wave the difference in phase between the lobe outputs is propor

tional to the angle of arrival of the incident wave. Let 

S1 - A (a, /$ , h x) 

and 

h 2 • L (a.,/3 , h 2) 

denote the two lobe outputs. Then a measurement procedure (the one 

usually employed with interferometers) is represented by 

F ( ^ J 2 i e ) - / M e " ̂ 2 | 2 

- ( f p ^ ) + (<f2, J 2) - 2(6\ie,J 2 )o 

CONFIDENTIAL 
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Example 2 . Monopulse, 

The monopulse has already been described in Chapter I, It 

consists of two lobes at the same height but differing tilt. The 

difference in tilt of the two lobes is held fixed, while the structure 

as a whole is tilted, so as to balance the magnitudes of the lobe out

put voltages. Let 

J x - A (A,/8 h) 

and 

J 2 * A U , / 3 , h) 

where ft + ̂  is the tilt of the upper lobe and^ - ̂  is the tilt of 

the lower lobe. Then the usual measurement procedure is represented by 

The function F ( ^ n , 0 „ „ , EF * $ ~ * ° o o , 3 ? ) representing A 

measurement procedure can be written as 

F(A^, ooo , A^, fi-^j " " i ^ p j b^, , o e , h ^ J T ^ , O O O 5 $ Q > h^) 

since (5 ̂  depends on A^, fi ̂ , h^. In a closed-loop procedure the servo 

system finds a null of F, We can describe a closed-loop procedure, 

then, by an equation 

F(a^, ooo,a , fi^j < > o o 9 f i , h^, 0 0 o , h , ^, 0 0 0 > b-j.) ~ ^ 

CONFIDENTIAL 
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The problem can now be formulated as follows. It is required to 

characterize those functions F for which 

(10) F(a±, /S ± , h±9 § B ; h t) - 0 
i 

determines h^ uniquely in terras of a^, ̂  h., . When we say 
1 i 

that h^ is determined uniquely in terms of a^, ., h. , from 
i 

equation ( 1 0 ) , we do not mean necessarily that h^ is a single-valued 

function of these parameters. It may be that h^ is a multiple-valued 

function of these parameters, but that limitations on the beam width 

exclude all but one of these values. In other words, there is one and 

only one value of h, determined in the low-angle region. 

CONFIDENTIAL 
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C H A P T E R I I I 

S O L U T I O N 

N e c e s s a r y P r o c e d u r e s 

W e h a v e d e f i n e d a d m i s s i b l e m e a s u r e m e n t s a n d s h o w n t h a t a 

m e a s u r e m e n t p r o c e d u r e m a y b e r e p r e s e n t e d b y a f u n c t i o n F w h i c h i s 

a c o m b i n a t i o n o f s u c h m e a s u r e m e n t s * A c l o s e d - l o o p p r o c e d u r e d e t e r 

m i n e s a n u l l o f F . O u r p r o b l e m i s t o f i n d w h a t m e a s u r e m e n t s a r e 

n e c e s s a r y i n o r d e r t h a t t h e e q u a t i o n F * 0 d e t e r m i n e h ^ u n i q u e l y * 

A f t e r i n v e s t i g a t i n g t h i s p r o b l e m m a t h e m a t i c a l l y , w e s h a l l g i v e s o m e 

p r a c t i c a l c o n s i d e r a t i o n s i n f l u e n c i n g t h e a r r a n g e m e n t a n d c h o i c e o f 

t h e s e n e c e s s a r y m e a s u r e m e n t s * 

W e s h a l l s h o w t h a t i n a c l o s e d - l o o p p r o c e d u r e i t i s n e c e s s a r y 

t o e m p l o y m o r e t h a n o n e e l e m e n t a r y m e a s u r e m e n t * I n o t h e r w o r d s , i f 

t h e e q u a t i o n F • 0 i s t o d e t e r m i n e h ^ u n i q u e l y , t h e n F m u s t i n v o l v e 

a t l e a s t t w o e l e m e n t a r y m e a s u r e m e n t s * W e h a v e a l r e a d y s e e n i n C h a p t e r 

I t h a t f o r t h e m o n o p u l s e , a s p e c i a l i n s t a n c e o f a s i n g l e e l e m e n t a r y 

m e a s u r e m e n t p r o c e d u r e , a n u l l o f F i s n o t i n g e n e r a l t h e t r u e t a r g e t 

e l e v a t i o n * H o w e v e r , t h i s r e s u l t d o e s n o t p r e c l u d e t h e u n i q u e d e t e r 

m i n a t i o n o f h ^ f r o m a n u l l o f F * I n t h i s c h a p t e r w e s h a l l s h o w t h a t 

t h e e q u a t i o n F * 0 , w h e r e F i n v o l v e s b u t o n e e l e m e n t a r y m e a s u r e m e n t , 

i s s a t i s f i e d b y m o r e t h a n o n e v a l u e o f h ^ i n t h e l o w - a n g l e r e g i o n * 

O n e w a y o f p r o v i n g t h a t i t i s i m p o s s i b l e i n g e n e r a l t o d e t e r m i n e 

t h e t a r g e t h e i g h t u n i q u e l y t h r o u g h a s i n g l e e l e m e n t a r y m e a s u r e m e n t 

C O N F I D E N T I A L 
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procedure would be to consider all possible elementary measurements, 

ascertaining for each if there exists more than one h^ in the low-

angle region corresponding to a given nullo The values of the target 

height corresponding to a given null in each case depend among other 

things on the particular antenna pattern and the values assumed for 

^ and P o In Appendix C9 a particular case is worked out showing 

the several values of h determined by F = 0, where F is an ele-
t 

mentary measurement procedure. In order to avoid the difficulties of 

a proof based on examination of every possible case, and to illustrate 

more clearly the reason for the indeterminacy in h^, we shall introduce 

some approximations usually adopted in practice. These approximations 

will be stated when the proof is given. 

We recall that a single elementary measurement procedure in

volves two lobes. These lobes differ in one of the receiver parameters 

a, j8 i h. If we denote the two lobes by & ^ and fa 2 , and the elementary 

measurement procedures by F a and F ^ , then 

( i d F a « f j j 2 . i £ 2 | 2 ( f ^ ) - i i 2 , i 2 ) , 

- (d^ c^) - (d2, d2) + (r x, r x) - (r g, r 2) 

+ 2(dx, r x) - 2(d2, r 2 ) , 

and 

(12) F p - Mi~^2|2
 * ^ l ' ^ + l ^ ' f a ' Xfi'fy* 

CONFIDENTIAL 



CONFIDENTIAL 19 

(d^ d^ + (r 1 ? Tj) + (d2, d 2) + (r 2, r g) 

+ 2 ( 0 ^ , r ] _) + 2(d2, r 2) - 2(d1, d 2) - 2(dx, r 2) 

2 ( 1 ^ , d 2) - 2 ( ^ 5 r 2) 

We are now ready to prove that if there exists a value of 

h^ = h^ such that 

F a(h t ) - 0 F (h ) - 0 P * 

tr 1 

then there exists at least one other value h. e h. f h. in the 
low-angle region such that 

»t F a(h t ) - 0 f t F (h. ) - 0 
p t. 

where the square brackets indicate that the same proposition holds for 

F . 
P 

We now introduce the approximations mentioned earlier. Since 

changes in ĥ . or h cause variations in ^ and ft (see page 6 ) 9 

these changes result in variations in |dland | r/, We shall assume as 

an approximation that changes in h^ or h such that ft ̂  and ft vary by 

no more than a small fraction of the beam width result in no change in 

I d| and |r/<, In practice it is sufficient to take this fraction to be 

of the order of 1 /20, 

We shall divide the proof into two parts, 

CONFIDENTIAL 
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C a s e I ( h ^ f h g ) 

In this case, under the assumption made above, F reduces to 
(13) Fa = 2̂ 1 / rj (cos*-, - cosô.;, 
where 

Let 

and 

Then 

h7Th» h. r . 
« = P ^ 5 [i - 1, 2 

1 AR U J 

h • = C * n7T)/U t 2 7T(h1 + h2) 5 

ĥ  = 2̂ 7r[h ̂h/V̂  ^ 5 where n is an integer. 

F (h ') - F(h.") - 0. at. at 
and 

ht - ht 2(hx • h2) In practice R is of the order of 20̂,000 yards, X = 0»1 ft., and h i 75 ft. Hence 
» ti 

ht ~Y. R is well within a beam width of 1° ? which is representative of beam widths 
CONFIDENTIAL 
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normally employed, 

F reduces to P 

(IU) F p - 2|dJ|r1||̂cos*1 + cos 0( 2 . cos (CXi + - cos (0C2-̂ jj 
where \ denotes the phase difference between r 2 and r^, and \ ̂  the 
phase difference between d 2 and d^, and 

) r " > d = « 2 " « 1 

We may write F as P 

(15) F p = jd 1||r 1|[ 2sin 1 (?0( l + yr) sin|( - )r) 

* 2 sin | (20(2 - ) p ) sini ( ) r) ] , 

- 2̂1 |rj sin sin ( 0 < 2 - . sin ((* 1 + J^) , 

- 2|dJ IrjJ sin ̂ sin ̂ [cos ( ̂  2 ̂ 1 ) j . 
Let 

' „ \zP - (2n + D̂JAR 
t i4 7r(h1 + h 2) where n is an integer, and 

h " = [2P ~ (2n - 1)77] A R 
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Then 

yO = yO = a 

As in the case of F 9 

a 

h t " ht 2 ^ • h 2) 

Case II = h 2) 

In this case DC^ -0(.^o Let this common value be denoted 

byO( . Then F reduces to a 

(16) F a - ( d p d x) - (dg, dg) + ( P 1 , r x) - (r 2, r g) 

+ 2(|d1|/r]J - |d2||r2|) cos U . 

» 

Let ĥ . be such that 

F a(h t) - 0 

If we now choose 

h " « h ' - ^ nt t ^ h 9 

then 

since this change in ĥ . does not change the value of cos ^ 

The same argument applies for F , 
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We have shown that at least two elementary measurements are 

necessary for an unique determination of h^ in the low-angle region 

through a closed-loop procedure. 

Presently, we shall show that two elementary measurements 

are sufficient. To give insight into the construction of such pro

cedures, we shall first consider some practical aspects of the problem. 

From an engineering point of view the existence of a solution, or in 

other words, the fact that a particular equation F a 0 determines h^ 

uniquely, is not sufficient. We must devise a simple and direct method 

for determining h^. 

The monopulse and the interferometer are simple direct methods 

for determining the angle of arrival (and hence h^) of a single plane 

wave. It is natural therefore to seek an arrangement of elementary 

measurements in a closed-loop procedure such that the determination of 

target height is effected through a basic monopulse or interferometer 

procedure. We shall exhibit two methods by which this is accomplished 

in this chapter under "Sufficient Procedures", 

The monopulse or interferometer is effective in free-space since 

only a single wave, the direct wave, is involved. One way, therefore, 

of modifying these methods so that they may apply to the low-angle 

region is to design a measurement procedure in which at least two ele

mentary measurements are employed such that nulls of F occur if and 

only if d^ * dg, or r^ ~ r 2, or <X ̂  = 2
 + 2 7T 0 This means 

that essentially we have effected an isolation of either the direct 

or indirect wave or the phase difference between the two waves. 

CONFIDENTIAL 
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If such a measurement procedure can be found, then the target 

height can be determined simply as in the free-space monopulse or 

interferometer method. In Chapter I we showed that in the case of a 

monopulse even when d^ = dg, a null of F may not occur. However, 

by use of two monopulses consisting of four lobes, the pair J ̂  and cl ^ 

and the pair (f ̂  and $ ^ and a procedure F involving two elementary 

measurements, we may obtain a situation where F = 0 if and only if 

d^ - dg and d^ = d^. Such a procedure is exhibited in this chapter* 

It should be pointed out that in a measurement procedure F 

such that F = 0 if and only if 1 = 1 or r, = r 0 or 0t _ - OC + 277. 
' 1 2 1 2 1 2 

the nulls of F and hence the target height are independent of ̂  and / , 

This is desirable from a practical point of view, since^ and P may 

vary as propagation conditions change* 

The two procedures to be discussed under "Sufficient Procedures" deter

mine the target height uniquely from the conditions d^ = dg or r^ = 

We do not exhibit a measurement procedure in which the target height is 

uniquely determined from the conditions Qt ^ = ^ 2 + 2 7 7 " , Such 

measurement procedures can be exhibited, but at present are impractical. 
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Sufficient Procedures 

The Dual Interferometer,^—Let t $ 2> be three lobes vertically 

spaced so that the distance between the uppermost lobe h -j_ and "the middle 

lobe J 2 ^ s equal to the distance between the middle lobe and the bottom 

lobe <5 y Denote this distance by s. Let $ + denote counterclockwise 

rotation through an angle 9 or phase advance, and let^ denote clock

wise rotation through the same angle or phase retardation. 

We take as the measurement procedure 

(17) F( <5 1 ( S 2 , lyB ) 3 \h2 - bx$ + | 2 - |S 2 - <5 3$.| 2 , 

in which © is the controlled variable. Expanding each term on the 

right, we have 

/*2 " +/2 - iS2,S2) + (^P^) " 2(^2,^1 +) , 

85 ( I 2 ,^ 2 ) + (dp d 1) + (r^ r^ + 2(d1, r x) 

- 2(d2, d ^ + ) - 2(D2, R ] LI +) - 2(r2, d 1 $ + ) - 2(r2, i^F +) , 

and similarly 

K " -I2 = ^ 2 ^ 2 } + (CV D3 } + ( R3' R3 } + 2 ( D 3 5 R3 } 

- 2(d2, D3F _) - 2(d2, r 3 F _) - 2(r2, d 3 $ J - 2(r2, r 3 $ J . 

7 
This is the Brooks three-lobe interferometer, See F. E. Brooks, 

Jr,, The Brooks Antenna System for Measuring Low Elevation Angles, The 
Electrical Engineering Research Laboratory, University of Texas, Report 
No, U9, 1 February 1951 (Prepared under Uo S 0 Navy Contract N5ori -136, 
T,0.1o CONFIDENTIAL,). 
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Then 

(18) F(©) - (d1$ o^) - (d3, d 3) + (rv r x ) - (ry + 2(d 1 > r^ 

- 2(d3, r 3) - 2(d2, c ^ f + - d 3 $ J 

- 2 ( d 2 , t±$ +) + 2(d2, r 3 J J - 2(r2, + - d 3 $ J 

- 2(r^ r 1 $ + - r 3 J o 

Since both the direct and indirect waves are plane by hypothesis, and 

j3 and a are the same for each lobe, then by the approximation introduced 

in Chapter III, 

(dp 6^) = (d2§ d 2) = (d , d 3) , 

(Vls r l ^ = ^ r 2 5 T2) " ^Ty r 3 ^ s 

(d2, c ^ f + - d 3 f _) - 0 , 

(r2* r l £ + - r 3 ^ J * 0 » 

for all values of & 0 Therefore F ( d ) reduces to 

(19) F(©) - - 2(r2, c ^ f + - d 3 $ J - 2 ( r x f + , d 2 - c ^ f + ) 

- 2(r~§> , d-$ - d j o 
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We may rearrange the terms in (19) to obtain 

(20) F ( S ) = - 2 ( d 2 , r ± § + - r 3 $ J - 2 ( d 1 $ + , r 2 - r ± § +) 

" 2 ^ d 3 $ «> r 3 ^ - r 2) 

Let \ ̂  be the phase by which d^ lags d2« Since the wave is 

assumed to be a plane wave, and the middle lobe is halfway between 

the top and bottom lobes, then \ ̂  will also be the phase by which 

d 2 will lag d^o Hence 

( 2 1 ) a 1 i + = d 2 = d 3 f _ 

when 0 = |̂ d„ 

Similarly, let ^ be the phase by which r^ lags r2<» Then if 

© - )>r, 

(22) + - r 2 - r 3 f _ 

For these two values of © , it is seen from (19) and (20) that 

F ( e ) = Oo 

Further, the target height is determined uniquely from either 

null. For example, if S - ^ ̂ , then 

ft _ 2 r r s . x> _ 2frs f \ ~ \ 

or 

CONFIDENTIAL 
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An ambiguity arises if the null is 6 + 2n77" instead of © 0 If we are 

unable to distinguish between 6> and O + 2n7T 3 a number of possible 

target heights will be determined by the procedure* However, the angu

lar separation of these possible target heights is A / s Q In practice s 

is restricted, so that only one possible target height is determined in 

the low-angle region,, and "uniqueness" as defined in Chapter II holds 0 

In order to ensure that F(Q ) ~ 0 only if Q = ^ + 2nTT or 

^ ~ \ r
 + ^ n T r * w e n e e ^ the following theoremQ 

Theorems 

If F(S ) ^ 0 5 and if there exists a value of © such that 

F(© ) - 0, then either (i) © - JF d + 2njT , or (ii) S - ^ + 2nTT a 

Proofs 

By hypothesise, there exists a value of Q such that F(©) ffi 0 o 

Hence 

(23) ( R 2 , d X F + - d 3 F J + ( R ^ + 5 d 2 - d X F + ) + ( r 3 £ d 3 < F _ - d g ) 

- Oo 

Expanding,, we obtain 

(21.) ( R 2 , d X<F + ) - (r 2 5 d 3 $ ) + ( r ^ +i> c^) - ( R L S d^) + (ty d^ 

- ( r 3 $ ^ d 2) = Oo 

Recalling that IX ^ denotes the phase lag of r^ behind d^, we may expand 

the inner products in equation (210 as followss denoting )d„j | r,| by K« 
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( 2 5 ) 

( R ^ C L ^ ) - K C O S ( ) d -e »D ( 2) - K J R O S O < 2 C O S ( Yd = © ) 

+ S I N O C 2 S I N ( V D " ® ) J 

( R 2 , D 3 $ + ) - K C O S ( C < 2 + Y D - © ) - K [ C O S * 2 C O S ( IF D - © ) 

- S I N E * 2 S I N ( Y D - © ) J 

( R 1 ^ + S D 2 ) - K C O S ( Y R « © + * 2 ) - K [ C O S O < 2 C O S ( ) R ) 

- S I N O < 2 S I N ( ^ R - © ) J 

( R ^ D ) = K C O S ( ) R R + * 2 - ) D ) - K [ C O S ^ 2 C O S ( ) T - ) D ) 

~ S I N * 2 A I N ( ̂  - Y D ) ] 

( R 3 , D 3 ) - K C O S ( Y R ~0(2 - } D ) - K [ C O S O C 2 C O S ( } R - ^ D ) 

^ S I N 6 4 2 S I N ( ) R - ) D ) J 

( R 3 f ^ , D 2 ) - K C O S ( ^ s e . ^ C < 2 ) - K [COSD< 2 C O S ( y r ^ © ) 

+ S I N X 2 S I N ( ]F R - $ )J 

S I N C E K f 0§ E Q U A T I O N S ( 2 5 ) T O G E T H E R W I T H E Q U A T I O N ( 2 U ) I M P L Y 

( 2 6 ) S I N S I N ( )F - S ) - S I N ( Y ) + S I N ( ) F - K ) J - o< 

T H E F I R S T H Y P O T H E S I S I M P L I E S T H A T sin0<2 I S N O T Z E R O Q W E C A N A R G U E 

T H I S A S F O L L O W S O S U P P O S E 

S I N ^ C 2 - O O 

T H E N , S I N C E 

| D 2 | | R 2 

C O N F I D E N T I A L 
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I T F O L L O W S T H A T D G ~ k r^s W H E R E K I S A S C A L A R f 0 o B U T T H I S I M P L I E S 

T H A T 

(<V R I $ + m J = k ^ r 2 > R L $ + - r 3 $ - ) = 0 

F O R A L L V A L U E S O F & 0 H E N C E , F ( £ ) A S G I V E N I N (20) R E D U C E S T O 

F(© ) = - 2 ( 0 ^ $ + 5 R 2 - R X § + ) - 2 ( D 3 § r 3 § _ - r g) , 

O R , 

(27) F(© ) « - 2(r2, D X $ + - d 3 f J + 2 ^ , R ^ - 2 ( D ^ r 3) . 

T H E F I R S T T E R M O N T H E R I G H T I S Z E R O F O R A L L S , S I N C E 

(*2. + - D 3 f J - i ( D 2 S D x f + - d 3 F J - 0 . 

F R O M E Q U A T I O N ( 2 5 ) 

( A ^ R I ) - ( D 3 S r 3) - - 2K S I N 0< 2 S I N ( ) R - ) D ) . 

S I N C E S I N o< 2 • 0^ 

( D ^ R X ) = ( D ^ r 3) 5 

A N D , T H E R E F O R E F(9 ) sr O O H E N C E T H E F I R S T H Y P O T H E S I S I M P L I E S T H A T 

S I N < X 2 f O O 

F R O M E Q U A T I O N (26) W E H A V E 

(28) sin(^ d -e ) - sin( ̂  r -© ) + sin()F R - Y D ) - 0, 

C O N F I D E N T I A L 
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On applying trigonometric identities, we obtain 

sin( \ r - \ d) - cose (sin\ r - cos + sin^icos^ - cos j ^ ) = 0 , 

and 

0 . , ̂  r ~ ^ d N / \ r ~ ^ d x 0 2sm( — ) cos ( -) - 2cos © ^ r * ^ d * . , \ r ~ ^ d \ 

)sin( ) 
/ » r u d cos(— 

2 sin 0 sin (— ) sin ( — ) = 0< 

Hence, 

(29) 2 sin(-£ -1) , " ^ds _ cos(- -) ~ cos© cos(,————; 

s m © sin(<—-——>) 0, 

We shall show that the first hypothesis implies 

/ ̂  r ^ d \ / ~ sin (- — ) f Oo 

Suppose 

Then 

sin ( — — ) ~ 0< 

2n7T 
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Vile can write F(© ) as given in (20) as 

(30) F(S) = - 2(d 2, r 2 § . $ + - r 2 5 v $ ) 
' r ' r 

- 2 ( d 2 $ - ) d § + > r 2 - r 2 $ - y p § 

-
 2(d2^v,§ r

2iy $ - - r 2 ) o 

' d (I r 

Rearranging terms, we obtain 

(31) F(e) = - 2(d2, (r ? f v - r ? $ v ) $ ,) 
° tfr "* 0 d 

- 2
2̂> ('d25 .v " d 2 $ - \ 

( d I r 

2(d 2$ * (| +, r 2 ^ , * +) 
0 d * r —' 

2 ( d 2 £ ^ r 2 £i y J _ ) 
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Each of the first two terms on the right is identically zero in 9 , 

and the sum of the last two terms is zero for all values of & * 

Hence F(&) = 0, contrary to hypothesise 

Equation (29) by the first hypothesis implies 

r 
(32) IS R

 =^ D F A 

cos -— - 7 5 C O S ( © ? ') 

Equation (32) implies either 

= 2n7T 

= 0, 

or 

(ii) 2" D+© - A '<* = 2nTT 

where n is an integer© Simplifying, we find that equation (32) implies 

either 

or 

(i) \ - 2nTT 

(ii) - V + S - 2nTT 

This is the desired conclusion 

The physical significance of the first hypothesis is that the 

middle antenna is not situated on a maximum or a minimum of the Inter= 

ference pattern, ±oe0$ d^ f k and furthermore, the vertical 

separation of the lobes in the interference pattern does not coincide 

with that of the antenna lobes0 
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Dual Monopulseo~"Consider two monopulse systems at different heights, 
» IT ^ 

h and h 0 Denote the upper and lower lobes of the top system by 0 

and £) g respectively, and the upper and lower lobes of the bottom 

system by \ ^ and ^ respectively.. Let j$ denote the tilt of both 

systemso We take as the measurement procedure 

(33) F ( A ) = 1^- \2f -\l3 - <5J2 , 

where the controlled variable is Q 

Expanding each term, we obtain 

2 

1̂ 1 - U =
 ( ^ 1 ^ 1 } + (&2»%2) ' 2(2>V$2) 

= (r x, i^) + (&v d x) + 2(rv c^) + (r2, r 2) • (d2, d 2) 

+ 2(r2, d 2) - 2(1^, r 2) - 2(1^, dg) - 2 ^ , d 2) - 2(d 1,r 2), 

and similarly 

1̂ 3 " 1̂.1 = ( r 3 s r 3 ) + ( V V + 2 ( l V V + ( V V + ( C V V 

+ 2(1^, d^) - 2(r3, r^) - 2(r 3, d^) - 2(d3, d^) - 2 ^ , ^ ) 

By the approximation introduced on page ( 19 ) 

(rx, r x) = (r3, r 3) , 

(dp d 1) = (d 3 ? d 3) , 

(d2, d 2) = (d^, d^) 
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- 2(IY D3) - 2(r̂ , D̂ ) + 2(R3> D̂ ) + 2(D̂  R̂ ) 

OR 

F(̂ ) - 2(D1, r± - R2) + 2(DG, R2 - - 2(dy R3 - R̂ ) 

2(D^ TU - r 3 ) , 

OR 
F(̂ ) - 2(RR DX - D2) + 2(r2, D2 - Ĉ ) - 2(r3, D3 - D̂ ) 

IF fi * /^D, THEN 

Kl = ld
2l and id

3l = \\\ 
BY THE DISCUSSION OF THE MONOPULSE GIVEN IN CHAPTER II» SIMILARLY, IF 
fi = fi ̂  THEN 

RI = I R2
 and r

3l = I rU 

HENCE EITHER 
= /3 D OR /0 s / 5 r IS A NULL OF F(0 ). 

CONFIDENTIAL 

AND (R2, R2) = (R̂ , R̂ ) 

HENCE ) REDUCES TO 

(3U) HjS) " 2(RI, Ô) + 2(r2, D2) - 2(rv d g) - 2^, r 2) 
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T H E T A R G E T E L E V A T I O N I S D E T E R M I N E D U N I Q U E L Y F R O M E I T H E R O F T H E S E T W O 

N U L L S o E F F E C T I V E L Y W E H A V E A M O N O P U L S E D E T E R M I N A T I O N O F T H E A N G L E O F 

A R R I V A L O F A S I N G L E P L A N E W A V E . 

I N O R D E R T O E N S U R E T H A T T H E S E A R E T H E O N L Y N U L L S , W E N E E D T H E 

F O L L O W I N G T H E O R E M . 

T H E O R E M : 

I F F(y# ) ^ 0, A N D I F T H E R E E X I S T S A V A L U E O F ^ 3 S U C H T H A T 

F ( ^ 5 ) = 0, T H E N E I T H E R ( I ) ft = fl D , O R , ( I I ) ft = fi ^ 

P R O O F : 

B Y H Y P O T H E S I S T H E R E E X I S T S A V A L U E O F ^3 S U C H T H A T F ( ^ # ) = 0, 

H E N C E F R O M (3W W E M A Y W R I T E 

(35) (IdJ / rj - r2, + |d2| |r2( - |d21 (rj) cosv' 

- </<ty/ r
3' - ld3l lrul + ldul lPul - Kl /r3p oos*" = °' 

W H E R E 

/A R 

A N D 

o< - r 
* R 

S I N C E / D J - l ^ J . J R J = | R 3 | , | D 2 | = | D J , A N D | R 2 | - | R ^ | , 

E Q U A T I O N (35) B E C O M E S 

(36) (JA^J | R J - | D J | R 2 | + | D 2 | ) R 2 | - ( ^ ( / R J ) ( C O S ^ ' - C O S * " ) 

C O N F I D E N T I A L 
- 0„ 
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or (ii) (r-J - |r2j . 
The first relation holds only if fi! ~ fi $s an^ "the second only if 

COMFIDENTIAL 

i . » From the first hypothesis it follows that cos f cos U . Hence, equation (36) implies 
<K/ - /d

2P</ril -lr2p • °> 
and therefore either 
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APPENDIX A 

Formulae Derived from the Geometry 

We s h a l l assume t h a t h/R and h^/R a re ex t remely smal l p o s i t i v e 

q u a n t i t i e s o For example, R may be 20,000 y a r d s , whi le h and h .̂ may 

be about 100 f e e t . 

From Figure 1 , 

A 4 S I R Y * 

h t - h 

R 

and 
h + h 

ft s s i n ^ = — 
R 1 V R 

Since t h e angle of inc idence of the su r face r e f l e c t e d wave i s 

equal to t h e angle of r e f l e c t i o n , t h e l eng th of t h e pa th TPA i s equal 

to t h a t of t h e pa th T'PA. The l eng th of t h e pa th T'PA i s 

R 2 - ( h t - h ) 2 + ( h t + h ) 2 

or 

+ k h . h - R1J 1 + h 

t " - f - • r 2 

Expanding the l a s t express ion by the binomial theorem, we o b t a i n 

R 2 " R 
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The terms neglected involve R in the denominator to at least the third 

power. The difference in the lengths of the paths TPA and TA is 

2*1,. h 
R 

or 

hV\ h 
— - radians, 

A R 
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APPENDIX B 

P r o p e r t i e s of Inner Products and Cer t a in Transformations on Linear 
Vector Spaces 

A p o s t u l a t i o n a l d e f i n i t i o n of a l i n e a r vec to r space in which 

an inne r p roduc t i s def ined i s given by P . R„ Halmos* We s h a l l no t 

r e p e a t t h i s d e f i n i t i o n h e r e , b u t we s h a l l s t a t e c e r t a i n p r o p e r t i e s of 

inne r (or "do t" ) p roduc t s and t rans format ions used i n the ana ly s i s* 

We a re d e a l i n g wi th a r e a l f i n i t e dimensional vec to r space* 

The inner p roduc t i s a r e a l - v a l u e d funct ion ( x , y) of the ordered 

p a i r of v e c t o r s x and y such t h a t 

(1) (x, y) - ( y , x) , 

(2) {a1 x x + a 2 x 2 , y) = a-^x-p y) + a 2 ( x 2 , y) , 

where a^ and a 2 a re r e a l numbers, and 

(3) ( x , x) 2 0; ( x , x) - 0 i s equ iva l en t to x = 0* 

We denote t h e norm or l e n g t h of a vec to r x by | x | , where 

l x | - x ) . 

The r o t a t i o n or phase s h i f t in t roduced i n Chapter I I I s 

the mat r ix r e p r e s e n t a t i o n in a p a r t i c u l a r coord ina te system of a 

l i n e a r t r a n s f o r m a t i o n , i . e * , 

^ • a 2 x 2 ) § & = + * 2 * 2 ' 

P. Ro Halmos, F i n i t e Dimensional Vector Spaces (P r ince ton : 
P r i n c e t o n U n i v e r s i t y P r e s s , 19U8) 0 (Annals of Mathematics S t u d i e s , 
Number 7*) 
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The transformation |£ is unitary, that is 

(1) )x $ e | - jx\ , for all x, 

or equivalently, 

(2) ^ x > y <i> ) = (x, y) for all x and y. 

The following additional properties hold for rotation transformations 

(1) x £ s 1 f e 2

 = x $ » 2 $ * i 
and 

(2) x § _ ^ $ + 0 - x§ Q - x, for all x, 

wherejFn denotes the identity transformation. 
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APPENDIX C 

P r o o f That a Monopulse T a r g e t H e i g h t D e t e r m i n a t i o n May be M u l t i p l e -
v a l u e d 

In t h i s appendix we t a k e a s p e c i a l c a s e o f a s i n g l e e l e m e n t a r y 

measurement p r o c e d u r e , t h e monopulse , and show i n a n u m e r i c a l example 

that t h e r e may b e s e v e r a l p o s s i b l e v a l u e s o f t a r g e t h e i g h t c o r r e s p o n d i n g 

to a g i v e n n u l l * 

x 2 

/ 
2 ) 3 0 Y 0 1 5 0 60 7 0 8 0 ,9 0 l( 0 

ht in feet 

F i g u r e 2« T a r p e t H e i g h t s Determined b y a Monopulse N u l l 

Hp , h t) 
fl ~ f2 ' f2(g22

 " g l 2 ) + 2 / ^ ( f l S l " f 2 g 2 ) C 0 S ^ 

K2lT^ 

where 
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sin [ipsin + * t - ^ d ) ] 

f 2 

g, 

2 \ a sin (/3 • 1 -/*d> 
sin[ 2^ a sin -/*d>] 
2 a . / * 

. f27Ta . , * s m l — — s m ( fi 

ZfZ sin (p + ^ + 

sm|^ ^ s m (fs 
2 2/ra . j^sin {ft- + 

and OL = P -

fi - h t " h * . ^ f h 

^d — I T " 5 ^ r ~ 

Ui7h. h t 
^R 

Numerical values chosen for the various parameters are the 

following* 

X - 0*1 ft* 

a ~ 2*5 ft* 

0*5 degree 

h = 60 ft* 

/* = 0,8 

- TT 
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R = 20,000 yards 

fi = - (0,55) mill! radian 

We note that in Figure 1 solutions of the equation F(h^) - 0 

are approximately h^ = i|0 ft., 60 ft,, and 90 ft. The solutions 

exhibited fall within the low-angle region, since the low-angle 

region in our example extends to a height of roughly 1000 ft. at 

20,000 yards. 
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ABSTRACT 

"Determination of the Height of a Target Above a Conducting 

Plane by Means of Radar Measurements", by W. W. Wright, a Thesis 

Presented to the Faculty of the Graduate Division in partial ful

fillment of the Requirements for the Degree of Master of Science in 

Applied Mathematics. 

Techniques for the tracking of a target in free space by radar 

are well known and are generally satisfactory."** Most conventional 

techniques exploit the directional property of antenna beams or lobes. 

For example, we may take an antenna system employing two identical 

lobes symmetrically displaced in elevation about an axis. If we 

position the axis in elevation to obtain equal signal strengths from 

both lobes, the angle of elevation of this axis will be the eleva

tion of the target. This "lobe comparison" may be sequential as in a 

conical scan system or simultaneous as in a monopulse system. 

When the target is near a conducting surface, as in the case of 

an aircraft near the surface of the sea, then the tracking problem be

comes much more complicated. If the radar system is also near the 

conducting surface, the problem of radar tracking is no longer a free-

space problem, since the radar receives energy from the target by two 

paths, the direct path and a second path involving reflection from the 

surface. Under these circumstances conventional radar tracking tech-
2 

niques fail. 

"""L. N. Ridenour, Radar System Engineering, (New lork: McGraw-
Hill Book Company, Inc., 1 9 U 7 ) . 

2 
Donald E. Kerr, Propagation of Short Radio leaves, (New York: 

McGraw-Hill Book Company, Inc., 195lT*Section 5*1U» 
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When the target is sufficiently near the conducting plane so 

that the angle of arrival of the surface reflected wave differs from 

that of the direct wave by less than the antenna beam width, the tar

get is said to be in the "low-angle" region. The problem considered 

in this thesis is that of investigating the modifications of conven

tional tracking radars which will be needed in order to determine the 

height of a target in the low-angle region. 

The mathematical formulation is based on the two plane wave 

model. The concept of radar measurements if formalized, and in particu

lar, an "elementary measurement" is defined. Conventional tracking 

radars employ only a single elementary measurement. It is shown, 

subject to an approximation usually adopted in practice, that the height 

of a low-angle target is not determined uniquely in general by a closed-

loop procedure involving only a single elementary measurement. It is 

then shown that it is possible to determine uniquely the height of a 

target in the low-angle region by a closed-loop procedure involving 
3 

two elementary measurements. Two such solutions are exhibited. The 

result of the analysis is that in a closed-loop procedure two elementary 

measurements are both necessary and sufficient for the unique determi

nation of the target height in the low-angle region. 

^Chairman of Thesis Advisory Committee 

One of these is the Brooks three-lobe interferometer. See F. E, 
Brooks, Jr., The Brooks Antenna System for Measuring Low Elevation 
Angles, The Electrical Engineering Research Laboratory, University of 
Texas, Report No, h9, 1 February 195>1 (Prepared under U. S. Navy 
Contract N^ori - 136, T.O, 1. tUJgJEglBJIfr)• 


