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CHAPTER 1

STATEMENT OF THE PROBLEM

Introduction

Techniques for the tracking of a target in free space by radar
are well known and are generally satisfactory.l Most conventional
techniques exploit the directional property of antenna beams or lobes.
For example, we may take an antenna system employing two identical
lobes symmetrically displaced in elevation about an axis, If we
position the axis in elevation to obtain equal signal strengths from
both lobes, the angle of elevation of this axis will be the elevation
of the target. This "lobe comparison" may be sequential as in a
conical scan system or simltaneous as in a monopulse system,

When the target is near a conducting surface, as in the case of
an aircraft near the surface of the sea, then the tracking problem
becomes much more complicated. If the radar system is also near the
conducting surface, the problem of radar tracking is no longer a
free-space problem, since the radar receives energy from the target
by two paths, the direct path and a second path involving reflection

from the surface., Under these circumstances seriocus tracking errors

lL. N. Ridenour, Radar System Engineering (New York and London:
McGraw-Hill Book Company, inc., i19547).
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oCCur .

Successful tracking can be realized at low target elevations if
the directivity of the antenna is increased; that is, if the ability of
the antenna to reject surface reflected energy is increased. There is
a practical limit, however, on the physical dimensions of a radar antenna,
which defines a "low-angle region® in which the energy received by way
of the indirect path is not excluded. It is the object of the present
analysis to characterize certain radar tracking procedures or techniques
through which, ideally at least, the elevation of a target in the low-

angle region can be determined.

The Output Voltage ¢f a Radar Antemna in the Low-angle Region

In order t acquire more insight inte the source and nature of
tracking errors experienced with conventional radars in the low-angle
region, we shall obtain mathematical expressions for the output voltage
of an antenna in this region. The output voltage will depend on the
physical characteristics of the antenna, and also on the geometric
configuration of the target, antenna, and conducting surface.

We idealize the physical situation in the following way. We
assume that the received field is the same as one which would exist
if the radar transmitter were located at the target, i. e., we consider

only a "one way" problem. We assume that the target is a stationary

2Donald E. Kerr, Propagation of Short Radio Waves (New York:
McGiawhHill Book Company, Inc., 1951) .
5.1 L ]
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non-directional point source. We assume further that the received
field is the superposition of two plane waves, one being the direct
wave and the other being the indirect or surface-reflected wave. The
transmitter modulation, including polarization and wavelength, A s 18
assumed to be fixed. Finally, we assume that the reflection coefficlent
is constant, The magnitude of the reflection coefficient,/o s 1s
defined to be the ratio of the magnitude of the component of the field
at the radar receiver due to the indirect wave to the magnitude of the
component due to the direct wave. The phase or angle of the reflection
coefficient,/’ , is defined to be the phase retardation on reflection
from the surface,

Referring to Figure 1, we summarize our hypotheses:

(1) The transmitter modulation is fixed.

(2) A stationary, non-directional point source is
located at T.

(3) The electromagnetic field at A is the resultant of
two plane waves, a direct wave propagated alone TA and an indirect
wave propagated alone TPA.

(L) The reflection coefficient is constant,

(5) The slant range, R, is fixed.

The receiver antenna consists of a uniformly illuminated rec=-
tangular aperture of vertical width 2a with center located at A (see
Figure 1). We shall be concerned with elevation-angle tracking only.
Hence the directional properties of the antenna in azimuth will not

concern us in this analysis,
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Figure 1, Geometrical Configuration in the Low-angle Problem

Notationt

A: position of receiver
T: position of target or point source
at one-half agperture width
h: height of aperture center

h,* target height

3 4t 2angle of arrival of direct wave

ﬁr: angle of arrival of reflected wave
R: slant range

B tilt of aperture.
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The antenna is linear, i.e., its response to the resultant of two
plane waves is the sum of its responses to the individual waves.

The derivation of the response of a uniformly illuminated rec-

3

tangular aperture to a plane wave is readily available in the literature

and will not be repeated here, Let Ed denote the magnitude of the direct

wave at the antenna aperture., Then if we denote the response of the an-

L

tenna to the direct wave by the vector™ d, in the notation of Figure 1,

sinzw":1 in -
1y lal = EQ [Ts i ﬂd)]

2 . Eda. f(a,ﬂ ’ﬁd) ) ]
A TR epotal

where ]dl denotes the magnitude of the vector d, and  is a conversion
factor.depending on the physical characteristics of the receiving system.
Similarly, if we denote the response of the antenna to the indirect wave

by the vector r, then

sin% sin (2 + pr)]
\r] ~ pEdq- 2@a . A+ A f,Eda.[g(a,/:‘,/Br)] .

)\

The quantities

st p )
and -
2T .
'i\a sin (ﬂ +/3r)J

3SL 3ilver, Microwave Antenna Theory and Design (New York:
McGraw-Hill Book Company, Inc., L949) Section 0.5,

hWe shall avoid the use of special notation for vectors, since we
shall employ only three vectors in the analysis. These are d, r, and 3.
All other quantities are scalars,
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shall be restricted to lie between -77 and 77 . Physically this means
that we are not concerned with "side lobes't.
The target height, h,, enters equations (1) and (2) through /'?d

and ﬂr; thus,

h, - h

(3) ﬁd = 2 s
h, +h

(k) By = tR :

Expressions (3) and (L), like (5) below, are derived in Appendix A.
If we take as a phase reference the phase of the direct wave
at the center of the aperture, then the angle of the vector d will be
zero, and the vector r will lag by an angle & radians, where
LTh h

N AR
(%) 3 .

The angle ® is the phase difference between direct and indirect waves.
L7h h

The term T represents the geometric path difference in radians,
R
and /7 the phase retardation on reflection at the surface,
The resultant voltage in the antenna output is the vector sum

of r and d. If we denote this resultant by the vectors s then
2 2
- 2 2 ]
’5' (Eda,)[f2+/og+2/ofgcosot .
The phase of the resultant output is the angle by which the vector 3
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lags the vector d. If we denote this angle by©® , then

-1 [r] sin«

lrl cosx + |d]

-1 [og sin
f+ﬁgcoso<

Cutline of Approach to the Problem

We can now show why conventional tracking procedures fail in the
low~-angle region, We shall take as an example of a conventional
tracking radar the monopulse equipment., For elevation determination,
a monopulse employs a single aperture illuminated by two vertically
displaced feeds, 80 as to provide two antenna lobes symmetrically
displaced in elevation about a line called the axis of the system,

The displacement of each lobe from the axis is approximately one half
the half-power beam width. The elevation of the axis is controlled by
a servomechanism which balances the magnitudes of the lobe output
voltages. In free space this balance would cccur when the axis coin-
cides with the line of sight to the target.

Denoting the outputs of the upper and lower lobes by 3 1 and
6 5 respectively, the condition for a balance or "null" is given by

the equation
2 2
(8) 16 1 - 13l = o .

In the low-angle region the vector 5 is the sum of two vectors

1
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dl and ry, where dl and r. are the components of él due to the direct

1

and reflected waves respectively. Similarly, 5 is the sum of d2 and

2
Toe If we denote the magnitude of the displacement in elevation of

each lobe from the axis by?‘l , and set, as in equations (1) and (2),

-fl = f(,gls ﬁd) = f(ﬂ+7’ﬂd) ’
f2 = f(ﬁzsﬁd) = f(ﬁ"'z:/ad) 3
gl = g(ﬁl’far) = g(ﬂ +01 :fgr) ’

and

8 = g(ﬂziﬂx) = g(/3 ‘ﬂ:ﬁr) ’

then equation (8) becomes

where, as before,

x = /1. btih b,

AR
and h is the height of the aperture center,

The principle on which the monopulse operates is the following,
When a balance is secured, the elevation of the axis 18 is the elevation

of the target. In other words, a value of ﬁ = ‘/60 for which equa-
tion (9) is satisfied is the "indicated target elevation". We can show
from equation (9) that for a given target height h, and for fixed values
of all the other parameters including /o and /7 the indicated elevation

will differ in general from the true target elevation., If the indicated
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elevation were the true elevation, /5’ 0 would equal ﬁ a° From equation

(1) it follows that T f, = f 2 0. Hence, if = is
0 d

1 - 1 =

a solution of equation (9), then it is necessary that
2, 2 2 =
/O (gl - gz ) + zﬁ f cos™ (gl - 82) O,

or

/J(gl - Bp) [/O(gl * g,) + 2fcos w] =0

for all values of X . Since ﬁr ¥ f8 4» it can be demonstrated that

g ¥ gye Hence
[/’(gl tgy) * 2fcosn<] = 0

for all values of X . But this is false, since /°> o, f 2 0,
gl‘g 0, and g, Z 0,

The above argument shows that indicated target elevation is in
general not the true target elevation. If we consider the difference
between the indicated and true target elevations as an error, we can
plot the error as a function of target position. This has been done

5

by Kerr” for a conventional tracking radar essentially of the same type
as the monopulse described above.
One approach to the low-angle tracking problem is to fix ht’

determine such that equation (9) is satisfied, and then study the
0

SKeI‘I', _0.20 ﬁo, Section S.lho
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error in indicated target elevation with the object of devising means of
minimizing this error. On the other hand, the approach we shall take is
the inverse of that just mentioned. We shall fiX/3 , examine all the

solutions of equation (9) for h,, and then determine conditions to be

t’
imposed so that an unique determination of ht is secured.

If we regard indicated elevation as a radar measurement, then we
have shown that this radar measurement in the case of the monopulse
system does not in general yield the true target elevation. Our analysis
will be concerned with the development of necessary and sufficient radar

measurement procedures for the unique determination of target elevation

in the low-angle region.
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CHAFTER II
FORMALIZATION

Definitions

Lobe.-«By lobe we mean the main beam of a uniformly illuminated
aperture with its associated feed, specified by three parameters a,ﬁ »
h; as illustrated in Figure 1. The parameter a is one half the wvertical
aperture width,lé the tilt of the aperture from the vertical, and h is
the height of the center of the aperture above the conducting plane. The
output voltage J of a lobe is a vector which is a single-valued function
A of the parameters a, B s by P »7" 5 A5 E45 R, and by, For our
purposes we regard § as independent of the time t. We obtain two diff-
erent lobes by assipning different values to the parameters a,/s s hin
the lobe function A . A difference in lobes will be indicated by sub-

scripts on the output voltages; for example,

s

1

A (a,ﬁshl, o o o)

and

52 A(a9ﬁ9h230°°)

represent two lobes at different heights. For simplicity, we shall
denote a lobe by the output voltage; i.e., if the output is 5 s then
we shall speak of the lobe 5 o

We have chosen the lobe as the fundamental unit so that we may

analyze almost all antenna configurations with a single theory. More

CONF IDENTIAL
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complicated antenna structures can be thought of as combinations of
single-lobe antennas. In this way we aveid such confusion as might
arise from the question whether a monopulse is one antemma or two
antennas,

Receiver Parameters.--By receiver parameters we mean the quantities

a,,@ s and he

Radar Measurements.--In a radar system employing several lobes the out-

puts of the lobes may be added or subtracted, and each output may be
attenuated or shifted in phase. We do not observe either the lobe out-
puts or linear combinations of them, with or without attenuation or
phase shift. What we do have access to is the magnitudes of such vectors.,
It is natural therefore to employ as our basic quantities inner products
of two vectors, By radar measurement or an admissibtle measurement we
mean an inner product of two vectors which may be lobe outputs or linear
combinations of them, with or without phase shift. We denote phase
shift through the angle & by right mltiplication of the vector by a
matrixég, Formally, our radar measurements may be represented as inner
products on a linear vector space6 whose elements are the lobe out-
putsgj: Phase shifting represents a rotation in our space.

Measurement Procedure.--By a radar measurement procedure we mean a

combination of admissible measurements. By the value of a measurement

procedure is meant the value of, or number resulting from, such a

6Pr0perties of inner products on linear vector spaces are given
in Appendix B.
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combination. In particular, we shall speak of elementary measurement

procedures, by which is meant either the measurement procedure

1507 - 15,0,

or
2
|

3

18,8, - &,

where ég is a rotation, and may be the identity matrix.

It should be noted that the first of these elementary measurements
procedures compares the magnitudes of lobe outputs, while the second
depends on their phase difference as well as their magnitudes.

Closed-loop Procedure.--The value of a radar measurement procedure

depends in particular on the receiver parameters (a, P h) in each lobe,

on the various phase shifts (@e ) and on the target height h We

£°
could calculate the value of a measurement for fixed a, /? s h, and é;o R
but it will be more convenient to vary these quantities in order to
obtain a presecribed value of the measurement., A closed-loop procedure
is a procedure whereby we prescribe the value of a mezsurement procedure
and vary the quantities a,/e s h, or §a so as to obtain the fixed value.
Physically, closed-loop procedures are effected through servo systems.
Generally the prescribed value of a measurement procedure is taken to be
ZEro.

¥ull.—-Suppose that in a closed-loop procedure the receiver parameters

or §e depend on a controlled variable. Then a value of the controlled

variable such that the value of the procedure is zero is called a null,
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The term "null" as used here may noit necessarily coincide with the

"null" associated with a free-space antenna pattern.

Mathematical Formulation of the Problem

We shall represent measurement procedures by a real-valued
function F((g 12 o.n,ép) of the lobe output vectors, 61, ..o,é‘p. If
a procedure under consideration involves shifting of phase in lobe out~
puts, this will be indicated by writing F(c(l, .“,Jp,ﬁe s P p).
The nature of the function F is restricted by our definitiin of ad-
missible measurements, that is, F is a combination of inner preducts of
the lobe output vectors. We may rotate and add or subtract these
vectors before taking inner products.

Example 1. Interferometer,

An interferometer is a device consisting of two lobes at differ-
ent heights tilted through the same angle. In the case of an incident
nlane wave the difference in phase between the lobe outputs is propor-
tional te the angle of arrival of the incident wave. Let

él = A(a’feshl)
and
b, = A (a,8,h)
denote the two lobe outputs. Then a measurement procedure {the one

usually employed with interferometers) is represented by
= (61’51) + (Jz.? 62) - 2(51%34‘2)0

CONFIDENTIAL
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Example 2. Monopulses,

The monopulse has already been described in Chapter I. It
consists of two lobes at the same height but differing tilt. The
difference in tilt of the two lobes is held fixed, while the structure
as a whole is tilted, so as to balance the magnitudes of the lobe out-

put voltages, Let

(51 = A(asﬁ"'ﬂ(s h)
and

dy = B, p-m,m

where ﬁ +ﬂ1 is the tilt of the upper lobe a.nd/9 - ’\? 1s the tilt of

the lower lobe. Then the usual measuremeni procedure is represented by

F(§1dy) = (6%~ 18,07 = (85,6 - (0 dy -

The function F(Jl, n.o,&p, ig » soasy §e )} representing a
1 P

measurement procedure can be written as

F(aJ., ecoy ap, ﬁl, Dﬂnsﬁp, hl’ ﬂﬂo, hp’ég

y aves 3 hy)
pde sn

since 5 N depends on a;s 13 19 h;e Ina closed-1loop procedure the servo

system finds a null of F. We can describe a closed-loop procedure,

then; by an equation

F(al’ aw:ap,ﬂls ooosﬂp, hly caoy hp’@9 1? °°°§ep5 ht) = 0.
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The problem can now be formulated as follows. It is required to

characterize those functions F for which

(10) Flag, B35 0y P g RRE

determines ht uniquely in terms of 3ss ,8 ;9 hi’ §g iq When we say
that h, is determined uniquely in terms of a,, A 12 hys & o, from

equation (10), we do not mean necessarily that ht is a single-valued
function of these parameters. It may be that h‘b is a multiple-valued
function of these parameters, but that limitations on the beam width
exclude all but one of these values, In other words, there is one and

only one value of h_ determined in the low-angle region.

t
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CHAPTER IIT
S0LUTION

Necessary Procedures

We have defined admissible measurements and shown that a
measurement procedure may be represented by a funciion F which is
a combination of such measurements. A closed-loop procedure deter-
mines a null of F. Our problem is to find what measurements are
necessary in order that the equation F = 0 determine ht uniquely.
After investigating this problem mathematically, we shall give some
practical consideratlons influencing the arrangement and choice of
these necessary measurements,

We shall show that in a closed-loop procedure it 1s necessary
to employ more than one elementary measurement. In other words, if
tha equation F = 0 is to determine ht uniquely, then F must involve
at least two elementary measurements. We have already seen in Chapter
I that for the monopulse, a special instance of a single elementary
neasurement procedure, a null of F is not in general the true target
elevation. However, this result does not preclude the unique deter-
mination of ht from a null of F, In this chapter we shall show that
the equation F = 0, where F involves but one elementary measurement,

is satisfied by more than one value of h, in the low-angle region,

t
One way of proving that it is impossible in general to determine

the target height uniquely through a single elementary measurement
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procedure would be to consider all possible elementary measurements,
ascertaining for each if there exists more than one ht in the low-
angle region corresponding to a given null, The values of the target
height corresponding to a given null in each case depend among other
things on the particular antenna pattern and the values assumed for
ﬁ and /7 . In Appendix C, a particular case is worked out showing
the several values of h & determined by F = 0, where F is an ele=-
mentary measurement procedure, In order to avoid the difficulties of
a proof based on examination of every possible case, and to illustrate
more clearly the reason for the indeterminacy in ht s we shall introduce
some approximations usually adopted in practice. These approximations
will be stated when the proof is given.

We recall that a single elementary measurement procedure in-
volves two lobes. These lobes differ in one of the receiver parameters

a,/& s ho If we denote the two lobes by g 1 andé 99 and the elementary

measurement procedures by Fa and Fp, then

= (dls dl) - (dzs d2) + (rl’ rl) - (r23 r2)

+ 2(dl’ rl) - 2(d29 r2)s

and

(12) F,om (81 6o = (61580 *+ (5 dp) - 20455 4,0
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= (dl, dl) + (rl, rl) + (d2, d2) + (r2, r2)
+ 2(d13 rl) + 2(d2, 1'2) - 2(dl, d2) - 2(dl: r2)

- Z(rl3 d2) - 2(rl, r2) °

We are now ready to prove that i1f there exists a value of

1
ht = ht such that

F(h, ) = 0O [?p(ht ) = OJ ,

then there exists at least one other value hy = hg ¥ h, in the

low=-angle region such that
Pt Tt
F (ht ) = 0 [?i(ht_ ) = 0],

where the square brackets indicate that the same proposition holds for
F .

P

We now introduce the approximations mentioned earlier. Since

changes in ht or h cause variations in ﬂd andﬂr {see page 6 ),
these changes result in variations in ldland lr[. We shall assume as
an approximation that changes in h_ or h such that I3 d andﬂr vary by
no more than a small fraction of the beam width result in no change in
ldl and Jr]. In practice it is sufficient to take this fraction to be
of the order of 1/20,

We shall divide the proof intoe two parts.
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\
Case I (hl # hy)

In this case, under the assumption made above, Fa reduces to

(13) F o= 2[dll [rl[ (coso(l - cosqz),
where
LITh, h
cxi=r'“.__1....’.°,£ [i=1,2]a
AR
Let
p'o= (0 # nlr)AR
t 27r(h1 + h2)
and
mo_ (7 +(n-21)m)AR ) )
ht 21r(h1 3 hg) s Where n is an integer.,
Then
F i t
ahy ) = F(h ) = 0
and

hl hﬂ - AR
t Tt §(hl+h2j °

In practice R is of the order of 20,000 yards, A = 0.1 ft.,

and h = 75 ft. Hence

is well within a beam width of 103 which is representative of beam widths
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normally employed,

F reduces to
P
(1h) Fp = 2,dl“r1l cos¥, * 0050(2 - cos ((Xl + yr) - cos (Kz-}'rﬂ s

where »r denotes the phase difference between r, and rys and L g the

rhase difference between d2 and dl’ and

We may write Fp as

. .1
(15) Fp = ld]_”rll[E 51n% (?0(1 + }’r) Slﬂg( - vr)
+25in]2-‘-(20(2—)r) sin%(}r)],
= ZIdHrI sin ¥ sin (& %_r_) sin ( »r
171 e 2 - -sin (¢ * ),
&, + &
= e bt [ 227807
2|d.1Hr1| sin 4= sin [cos( > )]
Let [
v 2. (2n + 1)TAR
B hrr(hl'*hz)l ’

where n is an integer, and

nr]Air

ot fer - (on
hy )

L. llﬂ'(hl

+
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Then

As in the case of Fa’

Case 1T (h1 = h

In this case ™ 0

by & . Then Fa reduces to

(16} F = (dl’ dl) - (d2, d2) + (rl, rl) - (rz, r2)

a

+ 2(}d1“rﬂ - |d2”r2|) cos &L .

Let hl' be suCh that
a t!)
F (h O a

If we now choose

then

"
Fa(ht) = 0,

L]

since this change in ht does not change the value of cosix »

The same argument applies for Fpo

CONFIDENTIAL
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We have shown that at least two elementary measurements are
necessary for an unique determination of ht in the low-angle region
through a closed~loop procedure.

Presently, we shall show that two elementary measurements
are sufficient. To give insight into the construction of such pro-
cedures, we shall first consider some practical aspects of the problem,
From an engineering point of view the existence of a solution, or in
other words, the fact that a particular equation F = O determines ht
uniquely, is not sufficient. We must devise a simple and direct method
for determining hto

The monopulse and the interferometer are simple direct methods
for determining the angle of arrival (and hence ht) of a single plane
waves It is natural therefore to seek an arrangement of elementary
measurements in a closed-loop procedure such that the determination of
target height is effected through a basic monopulse or interferometer
procedure. We shall exhibit two methods by which this is accomplished
in this chapter under "Sufficient Procedures".

The monopulse or interferometer is effective in free-space since
only a single wave, the direct wave, is involved. One way, therefore,
of modifying these methods so that they may apply to the low-angle
region is to design a measurement procedure in which at least two ele-
mentary measurements are employed such that nulls of F occur if and
only if d, = dy,orry = ry, orky = &, + 27 . This means
that essentially we have effected an isolation of either the direct

or indirect wave or the phase difference between the two waves.
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If such a measurement procedure can be found, then the target
height can be determined simply as in the free-space monopulse or
interfercmeter method, In Chapter I we showed that in the case of a
monopulse even when dl = d2, a null of F may not occur. However,
by use of two monopulses consisting of four lobes, the pair J.l and cf 2
and the pair J 3 and J K and a procedure F involving two elementary
measurements, we may obtain a situation where F = O if and only if

dl = d2 and d3 = dho Such a procedure is exhibited in this chapter.

It should be pointed out that in a measurement procedure F

such that F = 0 if and only if d dorry, = r or X =0<2+2'T7,

1 2 1
the nulls of F and hence the target height are independent of f and /7,
This is desirable from a practical point of view, since/ and /7 may
vary as propagation conditions change.

The two procedures to be discussed undér "Sufficient Procedures" deter-
mine the target height uniquely from the conditions dl = d2 or ry = TIsa
We do not exhibit a measurement procedure in which the target height is

uniquely determined from the conditions %, = &, + 27 . Such

measurement procedures can be exhibited, but at present are impractical.

CONFIDENTIAL




CONFIDENTIAL 25

Sufficient Procedures

The Dual Interferometem?--Let 51, 52’ and JB be three lobes vertically

spaced so that the distance between the uppermost lobe 6 1 and the middle
lobe 5 5 is equal to the distance between the middle lobe and the bottom
lobe 530 Denote this distance by s. Let @ + denote counterclockwise
rotation through an angle & or phase advance, and let§ _ denote clock-
wise rotation through the same angle or phase retardation,

We take as the measurement procedure

in which © is the controlled variable., Expanding each term on the

right, we have

l5,- 6,3

L}

(823 82) + (51:51) = 2(52361@ +) 3
(5 23 éz) + (dl’ dl) + (rl, rl) + Z(dl’ rl)
- 2(d21 dlé +) = 2(d29 rlé +) - 2(1‘2, dl@ +) - 2(1'23 rlé +) L

and similarly

2
|52 = 53@ _I = (523 52) + (dB,s d3) + (r33 I‘3) + 2(d3, 1"3)

- 2dy, 4,9 ) - 204y, Ty @ ) - 2rys 43D ) - 2(rp 733 ).

7This is the Brooks three-lobe interferometer. See F. E. Brooks,
Jr., The Brooks Antenna System for Measuring Low Elevation Angles, The
Electrical kngineering Research Laboratory, University of Texas, Report
No. 49, 1 February 1951 (Prepared under U. S. Navy Contract NSori -136,
T.0.1l. CONFIDENTIAL,).
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Then

(18) F(®) = (4, &) = (dyy dy) *+ (v, 1) = (rg, 75) + 2(dy, 7y)
- 2(dy, rg) - 2(dy, 4 F - d;F )
SEICTREN: SV ICANEN: SRR TCUAP IV SO - 3
~ 2{z,, r1§+ - r3§=;’ o

Since both the direct and indirect waves are plane by hypothesis, and

,@ and a are the same for each lobe, then by the approximation introduced

in Chapter III,

(4, ) = (dys dy) = (dgs d)
(pgsvy) = (rpsrp) = (rgery) o
(45 08, -, )= 0
(rpo i@, -758 ) = 0

for all values of & , Therefore F{® ) reduces to

(19) ) = -2(ry 4 ,-d,8 ) -2 F 09, -,F )

- 2y F 5 438 _ - )
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We may rearrange the terms in (19) to obtain

(20) F(®) = -20dp, 1§ ,-738 ) -2 P o, -2 @)

-2(d3_@§=, r3§_-—r2) o

Let } d be the phase by which dl lags dzo Since the wave is
assumed to be a plane wave, and the middle lobe is halfway between

the top and bottom lobes, then } will also be the phase by which

d

d, will lag d

> Hence

30

(21) d1§+ = 4, = d3§ s

when © = Bdo

Similarly, let ) _be the phase by which r, lags r,. Then if

(22) rl§+ =r, = rgé_ °

For these two values of ® , it is seen from (19) and (20) that
Fe) = 0.

Further, the target height is determined wniquely from elther

null. For example, if © = B a’ then
h, = h
& = 2I's o1 ﬁ - s .t
AL = ( - ) s
or 5
- \RS
By = Zys TP

CONFIDENTIAL
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An ambiguity arises if the null is @8 + 2n7 instead of & . If we are
unable to distinguish between © and € + 2nW , a number of possible
tarpet heights will be determined by the procedure. However, the angu-
lar separation of these possible target heights is l\/so In practice s
is restricted; so that only one possible target height is determined in
the low-angle region, and "uniqueness" as defined in Chapter II holds,
In ordsr to ensure that F(@ ) = Oonly if & = Yd + 2ny or
e = Y . * 2w we need the following theorem. ‘
Theorem:

If 78 ) "l_f 0, and if there exists a value of ® such that

F(®) = O, then either (1)® = ] . +2am ,or (i1)® = Y _+2nw .
Proof's

By hypothesis, there exisis a value of & such that F(®) = 0,
Hence

(23) (rpy 4@ , - 438 )+ 0, F Lo dy - ) (P L4, @ -y
= 0,
Expanding, we obtain
(2) (rpo @ ) - (rpe 4,8 )+ (1§ o ) - (s ap) * (rgs )
- (r3@ s d,) = o

Recalling that ¥ 1 denotes the phase lag of ro behind di’ We may expand

the inner products in equation (24) as follows, denoting ]di! l r’il by X,
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(r25d1§+) = Keos( yd -G a-o(z) = K[coso(2 cosf Yd -6 )
+sino(251n(yd=e)_] 5
(r23d3§+) = Kcos(0(2 + Yd -@) = K[costx2 cos( }d -5 )

_sinb{2 sin(}’dme)] 5

(rlé‘_”gdz) = Kcos( yr - @ "'0(2) K[oostxz cos(yr -® )

(25) - sinog, sin(y - )]

(ry> @) K[ cosx, cos( Yr ~ g

~ siniK, sin( )/r m\'d)]

Keos(f . +%¢, = ) )

o

(1"33, d3) = Kcos (Yr uo(2 “)'d) = K cos()t2 cos( }r - yd)
* sink, sin( }r - }d)] .
(r3§ _sds) = Koos( }r @ -,) K[cosx ,cos{y . ~®)

+ sine, sin(yr -8 )] o
Since K # 0, equations (25) together with equation (2L) imply
(26) sin¥, [sin( }'d - R Sin(Yr <& ) * sin yr " }(d)] = O

The first hypothesis imnlies that sinb{z is not zero. We can argue
this as follows, Suppose
sin x2 = 0,
Then, since
(d2 §T‘T/23 1"2)

CAREAN
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it fellows that d2 = k Ths where k is a scalar # 0. DBut this implies

that
(dys r1§ . r3<£ o= klrp, rl§ + - r3§ ) =0

for all values of @ , Hence, F(& ) as given in (20) reduces to

Fo) = -2q,@ ory-r 3 ) -200,8 038 _-1)

or,

(27) Fle) - 2Ary, P, - dyg )+ 2(dy, rp) - 20dg, v,) o

The first term on the right is zero for all ® , since
(rps 4§ , - 4,8 ) = (e @, - 4,8 ) - o
Fron equation {25)
(dl’ rl) - (d39 r3) == 2K 5in & ,, sin )r - }d)n
Sinee sin ¢ 5 = 0,
(4, 1) = (dgsry)

and, therefore F{® )

O, Hence the first hypothesis implies that
sin® , # 0.

From equation (26) we have

]
<
a

(28) sin(}dus)=sin(}r=9)+sin(}rm}d)
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On applying trigonometric identities, we obtain

sin(\r -‘d) - cos® (sin \r' - cos\‘d) + sin@(cos)r - cos }’d) = 0,
and
e - + -
2sin(—=——9) ms(iz——lg)wass(wﬂ z \dﬁhﬂxr bd),
2 2 2
+ +
-2 s5ing [sin (—E—Z Xd) sin (————% Ad) = 0,
2 2
Hence,
(29) 2 Sin(—'ﬂ) COS(«I-?—:-!-d-) - cOS5® cos(Lz:——X—-g)
2 2 2
+
- 8in & sin(i——r«-—%g) = 0,

2

We shall show that the first hypothesis implies

sin (lﬂé) £ 0.
2
Suppose
sin(\r %d) = 0,
2
Then

}rq )d = 2nT .
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We can write F(© ) as given in (20) as

(30) PO) = -2 @y 3,-1,2y
r r
‘2(d2§-7d§ +? rz‘rzé-ﬂyr@-w‘-)

- z(dzéyd§ .3 rzéyré - - Tl

Rearranging terms, we obiain

(31) Fle) = - 2(dy, (r=2§_=3 -r2§_hd)§_+)
r

]

ey 48 Ly - %8 -Yr@ s

. 2(d2§'§,“)d@ w2 @y B

i

2(d2§ 7 d@ s f2iyr@ _)o
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Kach of the first two terms on the right is identically zero in & ,
and the sum of the last two terms is zero for all values of @ .,
flence F(& ) = 0, contrary to hypothesis.

Equation (29) by the first hypothesis implies

(32) 0§ —=—m—= = COS (6 - l'rj—?—(-i‘)] = 0,

Equation (32) implies either

(i) lr_'_.;_)ﬂ -6 + Lr_;)d_ = 2nTr
or
(11) l_x;;jﬂ + 6 . B_rr\g = o2nT ,

where n is an integer, Simplifying, we find that equation (32) implies

either

(1) ¥_-& = onf
or

(ii) «.)d-ro = 2nT .

This is the desired conclusion.

The physical significance of the first hypothesis is that the
middle antenna is not situated on a maximum or a minimum of the inter-
ference pattern, i.e., d, 7 k ros and furthermore, the vertical
separation of the lobes in the interference pattern does not coincide

with that of the anternna lobes.
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Dual Monopulse.=<Consider two monopulse systems at different heights,

' "
h and h , Denote the upper and lower lobes of the top sysitem by é)l
and 5 5 respectively, and the upper and lower lobes of the bottiom
system by‘é 3 and 5 I respectively. Leb/G denote the tilt of both

systems., We take as the measurement procedure

(53) DR PN Y I

where the controlled variable is /9 0

Expanding each term, we obtain

151" 32,2 (81587) +(J2952)-2(51,§2)

(r19 rl) + (dlj d-.l.) + 2(1‘13 dl) + (I‘2, r2) + (dgs d2)
+2(ry, dy) = 2ry, r,) - 2ry, d,) - 2045, d)) - 2(dy,r,),
and similarly
5,- 5,
[55- 8] = (rg mp) * (a5 ap) walegs @) + (s 1)) + (4, @)
+ 2(rh, dh) - 2(r39 rh) - 2(r3, dh) - 2(d3, dh) - 2(d3,rh).

By the approximation introduced on page ( 19 )

(ry5 ry) = (rys r3) s
(4> 4) = (450 d)
(d23 d2) = (dh: dh) 3
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and (rz, r2) = (rh, rh) .
Hence F(/B) reduces to
(3h) F(B) = 2(ry, d)) * 2(r,s dy) - 2(ry5 dy) - 2(d), 1))

- 2(r3, d3) - 2(rh, dh) + 2(r3, dh) + 2(d3, rh).

or
F(£) = 2(d), ry = 1) +2(dy, vy - 7)) - 2(dg, vy - 1))
- 2(dh, Ty - r3),
or
F(P) = 2(r1, d; - dz) + 2(r2, d, - d.l) - 2(r3, d3 - dh)

- 2(1‘]4, dh - d3)u

If ﬂ =ﬁd, then
|4l = Jdy] and Jai| = g ,

by the discussion of the monopulse given in Chapter II., Similarly, if

ﬁ =,9r, then
[r2] = [zl and |ryl = |z}

Hence either

A= 6d0r L= ﬁris a null of F(& ).
ONFIDENTIA
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The target elevation is determined uniquely from either of these two
mills, Effectively we have a monopulse determination of the angle of
arrival of a single plane wave.

In order to ensure that these are the only nulls, we need the
following theorem.

Theorem:

If F(ﬁ) # 0, and if there exists a value of/c? such that
F(,@) = 0, then either (i) B = ﬁd’ or, (ii) /3 = ﬂr.

By hypothesis there exists a value of ﬂ such that Fw) = O,

Hence from (3L) we may write

(35) (‘dll [ xq) - [dy )=o) * ’dzl EPVICN PN RS D cos e’
- oyt rg) = [ag) [ * Ja] Iyl = 14y [rg)) cosx” T
where
; L7h b
= - s
. AR *
and
"o _ LTh h )
) r 5a t
Since [d]_[ = |d3’3 }rlf = |r3|, fd2| = ldh" and|r2| = |ru| s
equation (35) becomes
(36) ('dlj 'rl} - ,dll 'rzi + |d2] | rzf - ’dzurll) (cosb(‘ - cosx")

= Oo
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it

1
From the first hypothesis it follows that cos ™ ¥ cos o .

Hence, equation (3%) implies
(Jagl = 1DUry] = 7P = O

and therefore either

n
—
jo N
NN
-

SINEN

(1) |rq) = ]rz’ .

The first relation holds only if ﬁ = Ad’ and the second only if

B =f.

CONF IDENTIAL
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ATFPENDIX A

Formulae Derived from the Geometry

We shall assume that h/R and ht/R are extremely small positive
quantities. For example, R may be 20,000 yards, while h and ht may
be about 10C feet,

From Figure 1,

) ht =h
/ed = sin@, = o
and
C hy +h
ﬁr = Slnﬁr = R °

Since the angle of incidence of the surface reflected wave is
equal to the angle of reflection, the length of the path TPA is equal

to that of the path T'PA. The length of the path T'FA is

/VRZ— (ht_h)2+(ht+h)2 >

or

fV2 'L) Lhy +h
R+ hh h = RY1+—Fm |

fxpanding the last expression by the binomial theorem, we obtain

Lh, h 2h, h
RT/l-* t R + —o .
r? R

fie
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The terms neglected involve R in the denominator to at least the third

povwer. The difference in the lengths of the paths TPA and TA is

¢h, h

t

or

radianse.

CONFIDENTIAL
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AVPENDIX B

Properties of Inner Products and Certain Transformations on Linear
Vector Spaces

A postulational definition of a linear vector space in which
an inner product is defined is given by P. R. Halmos.8 We shall not
repeat this definition here, but we shall state certain properties of
inner (or "dot') products and transformations used in the analysis.

We are dealing with a real finite dimensional vector space.
The immer product is a real-valued function (x, y) of the ordered

pair of vectors x and y such that

(1) & »n = (y;x) ,

(2) (al xl + 8.2 xzs Y) = al(xl’ Y) + az(xzs y) 2
vwhere aq and a, are real numbers, and
(3) (xyx)2 03 (x, x) = O is equivalent tox = 0.

We denote the norm or length of a vector x by |x|, where

\xl = ""V(X: x).

The rotation or phase shift P introduced in Chapter II is

the matrix representation in a particular coordinate system of a

linear transtormation, i.e.,

(""1"1”‘2"2)%\r " an@, tayn P, -

8P. R. Halmos, Finite Dimensional Vector Spaces {Princeton:
Princeton University Press, 1948). (Annals of Mathematics 3tudies,
Number ?n )
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The transformation ie is unitary, that is
(1) |x&,| = |x|» forall x,
or equivalently,
(2) (xés s yée) = (x, y) for all x and y.

The following additional properties hold for rotation transformations

(1) X§91§92 = x§92§91
and

(2) x@_eg o = x@o = x, for all x,

wherego denotes the identity transformation.
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APPENDIX C
Proof That a Meononulse Target Height Determination !lay be Multiple-
valued
In this aprendix we take a specilal case of a single elementary
measurement procedure, the monopulse, and show in a numerical example
that there may be several possible values of target height corresvonding

to a given null,

{x16%)

-2

=3

Fhg)

ht in feet

Flgure 2, Target Heights Determined by a Monopulse Null

BB by) = l:f12 - £, - f°2(*‘322 - g%+ 2P (f18) - f,e,) COS“] (“2'%"5)2

where
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T2 sin (8 + - )
A (A

sin[zrasin (B-m-p )]
Errasm(/a ”[ ﬂd)

sin[2':a sin ( B+ M + ldr)]
22 5in (p+ M+ A

m/

ﬁ.

sin[zga sin (ﬂ - Y *ﬂr)]
e (4o 0 )

h”hth
AR

Numerical values chosen for the various parameters are the

foliowing.

Sy F

C.1 ft.
2.5 fte
0.5 degree
60 fto

0.8

-
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R = 20,000 yards
B = - {0.55) milli radian
e note that in Figure 1 solutions of the equation F(ht)
are approximately hy = Lo ft., 60 ft., and 90 ft. The solutions

exhibited fall within the low-angle region, since the low-angle
region in our example extends to a height of roughly 1000 ft. at

20,000 yardse
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ABSTRACT

"Netermination of the Height of-a Target Above a Conducting
Plane by Means of Radar Measurements", by W. W. Wright, a Thesis
Presented to the Faculty of the Graduate Division in partial ful-
fillment of the Requirements for the Degree of Master of Science in

Applied Mathemaiics.

Techniques for the tracking of a target in free space by radar
are well known and are generally satisfactory.l Most conventional
techniques exploit the directional property of antenna beams or lobes.
For example, we may take an antenna system employing two identiecal
lobes symmetricaily displaced in elevation gbout an axis. If we
position the axis in elevation to obtain equal signal strengths from
both lobes, the angle of elevation of this axis will be the eleva-
tion of the target. This "lobe comparison" may be sequential as in a
conical scan system or simltanecus as in a monopulse system.

When the target is near a conducting surface, as in the case of
an aircraft near the surface of the sea, then the tracking problem be-
comes much more complicated. If the radar system is also near the
conducting surface, the problem of radar tracking is no longer a free-
space problem, since the radar receives energy from the target by two
paths, the direct path and a second path involving reflection from the
surface. Under these circumstances conventional radar tracking tech-

niques i‘ail.2

lL. N. Ridenour, Radar System Engineering, {New York: lcGraw-

Yill Book Company, Inc., 19L7).

2Dona1d E. Kerr, Propagation of Short Radio Yaves, (New York:
McGraw~-Hill Book Company, inc., 1951) Section G.ll.




When the target is sufficiently near the conducting plane so
that the angle of arrival of the surface reflected wave dlffers from
that of the direct wave by less than the antenna beam width, the tar-
get is said to be in the "low-angle" region. The problem considered
in this thesis is that of investigating the modifications of conven-
tional tracking radars which will be needed in order fo determine the
height of a target in the low-angle region.

The mathematical formulation is based on the two plane wave
model, The concept of radar measurements if formalized, and in particu-
lar, an "elementary measwrement" is defined. Conventional tracking
radars employ only a single elementary measurement. It is shown,
subject to an approximation usually adopted in practice, that the height
of a low-angle target is not determined unigquely in general by a closed-
loop procedure involving only a single elementary measurement. It is
then shown that it is possible to determine uniquely the height of a
target in the low-angle repion by a closed-lecop procedure involving

3 The

two elementary measurements. Two such solutions are exhibited.
result of the analysis is that in a closed-loop procedure two elementary
measurements are both necessary and sufficient for the unique determi-
nation of the target height in the low-angle region.

7 /f’i)

ot

¢
<
“tn

. e - .

airman of Thesis Advisory Committee

3One of these is the Brooks three-lobe interferometer. See F. E.
Brooks, Jr., The Brooks Antenna System for Measuring low Zlevation
Angles, The Electrical “ngineering Research Laboratory, University of
Texas, Report No. 49, 1 February 1951 (Prepared under U. S. Navy

Contract NSori - 136, T.0. 1. Qi)




