A Hybrid AccessModel for Storage Area Networks

Aameek Singh Kaladhar Voruganti? Sandeep Gopisetty? David Pease’ Ling Liuf

Abstract

We present HSAN - a hybrid storage area network, which
uses both in-band (like NFS [9]) and out-of-band virtualiza-
tion (like SAN FS[8]) access models. Using hybrid servers
that can serve as both metadata and NAS servers, HSAN in-
telligently decides the access model per each regquest, based
on the characteristics of requested data. This hybrid model
is implemented using low overhead cache-admission and
cache-replacement schemes and aims to improve overall re-
sponse times for a wide variety of workloads. Preliminary
analysis of the hybrid model indicates performanceimprove-
ments over both models.

1 Introduction

Currently, there are two prevalent access models for Storage
Area Networks (SANs). In an out-of-band virtualization
model (henceforth called direct access model), clients access
file metadata from dedicated metadata servers (MDS) and
access data, directly from the storage controllers. Thisisin
contrast to an in-band NAS access model, in which clients
access data through an intermediate NAS server. Both
access models have their advantages and disadvantages. We
compare them on afew characteristics below:

1. Scalability: Direct access model is more scaable
than the NAS model. Even with centralized MDS, the
direct access model can serve a greater number of clients,
since the hosts access data directly, without an intermediate
server in the data path. The metadata transactions are much
shorter and metadata caching at the client further improves
scalability.

2. Caching: The NAS model of access provides a
great opportunity to exploit access locality across multiple
clients. The NAS servers typically maintain caches of
objects being actively accessed (hot objects). This additional
caching layer between the storage controller cache and
client cache can significantly reduce response times. In a
direct access model, only caches available are client cache
and the storage controller cache. While it can be argued
that storage controller cache can suffice for hot objects, for
workloads where asingle controller is being hit for many hot
objects, the controller cache might end up swapping out the
desired objects. In addition, it causes additional load on the
controllers. The client cache fails to exploit similar accesses
by different clients.

3. Workload Specific:

*Work done while visiting IBM Almaden

T Georgia Tech, {aameek, lingliu} @cc.gatech.edu

fIBM Almaden Research Center, kaladhar@us.ibm.com, {sandeep,
pease} @a maden.ibm.com

It can be easily seen that both

of these models are better suited for certain kinds of work-
loads. For example, for accessing files with heavy read
sharing across multiple clients, NAS model will perform
better. Also, for small sized files the costs of establishing
two connections (to metadata server and storage) makes the
direct access model relatively expensive. On the other hand,
for large files with little sharing across multiple clients, the
direct access model is faster because of zero hops during
data access.

4. Infrastructure: Currently, most SANs are based on
Fibre Channel infrastructure, which is much more expensive
than IP. However, with the advent of iSCSI, this cost
differenceis nolonger an issue.

As can be seen, both of these models have their strengths
and weaknesses. In this paper, we provide a hybrid frame-
work called HSAN, that can provide the benefits of both ap-
proaches and thus, offer a single better solution for a vari-
ety of workloads. The aim of HSAN is to reduce client re-
sponse times by selecting an access model most appropri-
ate for the desired objects. The unique characteristic of the
design is to alow the granularity of a single data request,
or in other words the decision to choose a particular mode
of access is made for each request. We implement this in-
telligence through cache-admission and cache-replacement
policies at the hybrid servers. These policies are very low-
overhead and utilize information aready existing at theMDS
or NAS servers. In this paper, we will discuss centralized di-
rect access models (with dedicated MDS), though it will be
easy to extend the proposed solutions to decentralized ap-
proaches[1].

It is also important to note that our solution reguires hy-
brid servers that can act as both metadata or NAS servers.
This will either require MDS to understand the NAS proto-
cols (initiatives like Parallel NFS [4]) or NAS servers to be
able to serve only metadata as well. We believe this to be
a small change for the prospective benefits. The rest of the
paper is organized as follows. We describe our proposed de-
sign in Section-2 and provide a brief preliminary analysisin
Section-3. In Section-4, we discuss the related work, includ-
ing caching work in other related areas like databases. We
finally conclude in Section-5 with a note on future work.

2 Design

While it is possible to approach the design from both NAS
as well as direct access models, we choose to describe it
through additions to the direct access design. This choice
gives us underlying infrastructure support of host connectiv-
ity to storage. To put it differently, we describe HSAN by
adding caching and data access at MDS of the direct access

design®

The primary motivation of HSAN is to reduce the response
times seen by the clients. Using our design, the MDS will
also maintain a data cache and in case of a cache hit, the
MDSimmediately sendsthe datain response to the metadata
request, thus, saving the costs and delays of (a) parsing the
metadata at the client, (b) connecting to appropriate storage
controllers and () retrieving the data. This modified MDS
is called the hybrid server (HS). In case of a cache miss, the
only penalty is to check for the existence of the data object
in the cache, which is an O(1) operation under our proposed
scheme. In addition, the maintenance of statistics required
for making a decision on the mode of access is cheap and
does not add considerable overheads. Note that once the
client has acquired metadata for a desired object, al sub-
sequent accesses (for example, using cached metadata) are
made directly to the storage controller and thus, the direct
access model is used. Aswe discuss later, this condition can
potentially be relaxed to save I/O operations.

As mentioned earlier, we implement our hybrid scheme to
decide the model of access through cache-admission and
cache-replacement policies. Cache admission policy deter-
mines the conditions necessary for an object to fulfill, before
it can be admitted into a cache. Cache replacement policies
determine the selection of the abject (typically called the vic-
tim object) which is replaced when more space is required
for an incoming object. Our scheme works as follows. We
modify the metadata information for each object to also con-
tain a pointer to the data object in the cache . In case the
data is not in the cache, the pointer is set to null. When a
client requests for metadata of a certain object, the HS first
checks if the requested data object is in the cache. In case
of the cache hit, the data is directly served to the client. In
case of amiss, the HS checksif the requested object can pass
the cache-admission test and can replace an existing data ob-
ject in the cache (or there already exists enough space in the
cache). If yes, it is accessed viathe NAS model - HS making
the access to storage and forwarding data to the client. If it
fails on the cache admission test or cannot replace any exist-
ing cached object based on the cache replacement policy, it
is accessed using the direct access model, with the HS only
providing the metadata to the client and the client making an
accessto the storage. Thus using such a scheme, the problem
of dynamically deciding the access model reduces to the de-
sign of cache admission and cache replacement policies. The
workflow is presented in Figure-1.

2.1 Decision Factors

The main challenge in the design of such policies is iden-
tifying the factors that should influence the decision of
whether an object should be cached or not. In addition,
the evaluation of these factors should not be expensive, to
prevent the caching overheads from becoming prohibitive.
For our storage scenario, we believe the following factors to
be critical in such decision-making:

- Rate of Access (A\): If an object is accessed more
frequently, there is greater incentive of keeping the object

*For the other direction, we require host to storage connectivity and NAS
servers to be able to serve only metadata as well

Client
Request for
Metadata

Cache HIT
HS sends data from the
cache along with
metadata. Access to
storage not required

Direct Model Selected
L HS just sends metadata;
client accesses data from
storage. No caching.

END OF
TRANSACTION

NAS Model Selected
HS retrieves data from
storage, forwards it to the
client along with metadata;
caches data.

L]

Y

an existing
object can be
replaced

Figure 1: Workflow

in the cache. Frequent accesses will result in more cache
hits and improved response times. However, as we describe
later, this metric needs to be measured in conjunction with
the data sharing and locking mechanisms, in order to obtain
agood estimate for our caching policy.

- Cost of Obtaining Object (c): An object that is expensive
to obtain from storage (for example, because of being on a
slower or a heavily loaded storage controller) has a greater
incentive to be cached. In case of cache hitsfor such objects,
the response time improvement will be significant.

- Size of the Object (s): The size of objects aso plays a
critical component. An object that is smaller in size is more
valuable to be cached, since it takes lesser cache space and
aso, in case of a cache hit, provides maximum response
time improvement ratios compared to direct access models.

- Load on HS: Since a HS is aso used for metadata
transactions, it is important to prevent queuing delays at the
HS dueto various I/O operations. Thus, aheavily loaded HS
should perform less 1/0O operations (promote direct access).

The first three parameters are used to define a value
for each data object. A greater value indicates a greater
incentive to cache the object (which in turn means, to access
it viathe NAS model).

Value(O;) = A\; * ¢; /s, wherea > 1

The fourth parameter (load on HS) can be used to set up the
admission threshold described later.

The Value metric will favor objects that are (a) accessed
more frequently, (b) expensive to obtain in case of cache-
miss and (c) smaller in size. The parameter o can be set de-
pending upon the amount of favor desired for smaller objects
(especidly in order to favor metadata at the HS). We discuss
this issue of interaction between data and metadata objects
later. It isimportant to note that the rate of accessisthe rate
of requests for the metadata at the HS and not the rate of ac-
cess at the storage. Thisis because objects, which are being

accessed directly from storage (using cached metadata), have
lesser incentives to be cached at the HS, as they are aready
being accessed using the fast direct access model.

2.2 Parameter Evaluation

As mentioned earlier, the evaluation of these parameters
needs to be a low overhead operation. To achieve this goal,
we use the following way of computing each:

—s;: Size of the object is already available at the MDS and
thus, is no added overhead.

— \;: We evaluate the rate of access as a moving average of
the last K inter-arrival times of request to O;, whereK isa
parameter determining the amount of history to be consid-
ered, (typically set to 10). Precisely, A; is defined as \; =
—, where ¢ is the current time and ¢ ¢ is the time of the
last K" referenceto O;. Since all metadata requests come
at the HS, this parameter can also be efficiently computed.
—c;: We measurethe cost of obtaining the datafrom the stor-
age controller by means of average accesstimes. Sincein the
direct access model, the clients directly access storage, this
parameter has to be obtained from the clients. We achieve
thisin the following manner. For every object accessed from
the storage controller, the client maintains its average access
time and whenever it requests alock or metadata for that ob-
ject from the HS, it shares this statistic with the MDS. The
MDS averages this access time across all clients'.

2.2.1 Data Sharing

The calculation scheme described till now does not take into
account the kind of locks held on the data objects. The lock-
ing mechanisms can have potential impact on object values.
For example, consider a case, when an object is accessed
very frequently, but always in an exclusive mode. All the
attempts to access the object while it is being held in an ex-
clusive lock will not be satisfied. Caching such an object has
no incentive due to the inability to serve other clients with
that object. Therefore, we modify the \ evaluation in thefol-
lowing manner. All access attempts that would not have been
satisfied even if the object was in the cache (e.g. one client
holds an exclusive lock) are not counted towards its rate of
access. This scheme automatically prefers object which are
more read-shared and thus, provide the maximum benefits of
caching.

2.3 Cache Admission-Control

As mentioned before, an object is considered for caching
(and thus, accessing via NAS model) only if it passes the
cache admission test (CAT). The motivation for having such
atest isto ensure that the object is valued enough to dedicate
HS resources for 1/0 operations. One simple policy is to
admit an object whose value is greater than the minimum
value of the cached objects.

CAT: Value(Oincoming) > min(Value(O;))

However, this policy is insufficient. For example, con-
sider the workload scenario in which only a few objects in
the cache are being accessed frequently and the rest of the

It is possible to use client-specific parameters instead of averaging
across al clients. For example, the value of O; can be defined as: 3;
Aij * cij /55 where A\;; and ¢;; are parameters for Client-j. In this case, A
can also be computed by the clients

objects are rarely being accessed, though not being replaced
because of low or no contention of cache space. Thus, the
minimum val ue of the objectsin the cache will decrease with
time and can potentially be a very small humber. In such a
scenario, we prefer to avoid bringing in new objects with
low values (less workload for HS). We modify the policy as
follows:

CAT: Value(Oincoming) > maz(m, min(Value(0;))

where 7 is athreshold parameter, which dynamically adjusts
based the workload seen so far. Thisis achieved by setting:
m = avg(N) { min(Value(O;)) } i.e. w is computed pe-
riodically as the average minimum value of cached objects
over the last NV intervals. N determines the amount of his-
tory to be taken into account and can be statically set. The
computation period can be set in terms of number of transac-
tions at the HS. For example, it is computed after every 1000
metadata transactions.

Inaddition, = can be extended to incorporateload on HS. For
example, for aheavily loaded HS, afactor 5 can be added to
the threshold value, which raises the bar for accessing data
using NAS model, reducing further load and queuing delays
at HS.

2.4 CacheReplacement Policy

Once an incoming object, Ojncoming, Passes the cache-
admission test, we try to evaluate if there is enough space in
the cache to accommodate the object. In case, there is not
enough space, we try to evict existing objects through cache
replacement policy. We use the following agorithm:

1. Arrange al cache objectsin alist in the increasing value
order. Let the sorted list be {O1, O3, ..., 0, }.

2. Let m be the minima prefix, such that
size(O1)+size(O2)+. . +size(Op) > size(Oincoming)

3. If Value(O,) < Value(Oincoming), then evict
01,03, ...,0p, dse No replacement done and O ncoming
is not cached.

Step-3 ensures that we do not replace any higher value object
at the expense of alower value object. The else clause would
in turn mean that the object is accessed via the direct access
model. The cache-admission and cache replacement policies
can be efficiently implemented by a low overhead priority
queue (heap) [3, 5]. This issue will be further discussed in
the detailed version of the paper.

2.5 CacheConsistency

For any caching solution, it is important to have efficient
mechanisms of maintaining cache consistency. We use
the following mechanism for achieving strong consistency.
Whenever an object is required to be accessed for writes (ex-
clusive mode access), the HS serves the initial metadata re-
quest, and then invalidates the object in the cache. Thisisan
efficient mechanism, since an object being held in an exclu-
sive manner cannot be shared at the cache anyway. For later
accesses, the object is treated similar to any new object be-
ing accessed. This design avoids explicit cache consistency
mechanisms, thus, preventing high caching overheads. We
are also investigating mechanisms for maintaining weaker
forms of consistency, with lazy writes by the HS.

2.6 Memory Model

It has been argued that the MDS are meant to provide
only metadata information and are fine tuned for such
workload characteristics (large number of small requests).
Data caching at MDS competes for main memory with the
metadata objects, thus, influencing the core task of the MDS.
We propose following three approaches that can counter
this and any one of them can be used depending upon the
workload characterigtics:

1. Partitioned Memory Model: In this model, there
are statically assigned distinct spaces for metadata caching
and data caching with no overlap between the two. This
ensures that the data-caching component does not effect
the regular metadata caching. This is dependent on the
availability of enough memory at the HS. Such a model is
best for workloads in which the size of the cached metadata
does not fluctuate much.

2. Shared Memory Model with strict priority to Meta-
data: This model uses a shared space between metadata
and data. However, metadata objects are given strict priority
over data objects. Thus, a data object can never replace a
metadata object (similar to setting metadata object values
to o) and a metadata object aways replaces the least
valued data objects. Amongst metadata objects, the regular
cache replacement policies can be used. This model is best
used for workloads in which metadata cache size can vary
significantly and metadata performance is critica to the
application.

3. Shared Memory Model with appropriate «: There can
be scenarios, when it is reasonable to swap out metadata
objects, which are rarely accessed, in order to cache valued
data objects. In such a scenario, we can use the shared
memory model and appropriately set a value of « in the
value function depending upon the priority given to smaller
objects. Notice that « adds value to all small objects and
not necessarily the metadata objects. If it is not desired,
we can modify the value parameter for metadata objects to
(m + Xici/s%), thus, giving a head start of =, where 7 isthe
admission threshold parameter discussed earlier.

3 Analysis

In this section, we present a preliminary anaysis of the hy-
brid model as comparedto the NAS and direct access models.
As part of our initial analysis, we have used simple models
to describe certain empirical behavior. For example, we use
alinear model to determine queue delays at servers based on
the number of clientsthey are serving; though we use differ-
ent parameters for metadata and 1/0 operations. Thus, it is
important to emphasize that the model is not designed to pre-
dict accurately the response times, rather to compar atively
analyze the three models. In the detailed version of the pa-
per, we will include more experimental analysis.

Let v be the time for sending a data/metadata request. Since
the characteristics of metadata response (from MDS/HS) are
similar (short messages), we assume the response to the re-
quest to be v aswell.

Let 7 be the timeto send arequest to storage and retrieve the
datafor aparticular file. Thus, thiswill bethe time for ahost
to get datafrom storagefor adirect access model and also for

aNAS (and HS) server to access data from storage in NAS
(and hybrid) model.

Let 7’ be the time to send a request and obtain the data from
server's memory, e.g. from NAS/HS server cache.

Let ¢ be the delay at the NASIMDS/HS server due to con-
tention with other simultaneous accesses. We set ¢ to be
a linear function of number of connections at the server,
though the slope of the linear function is much lower for
metadata connections as compared to data connections.
Below we give a short example of how the analysis would
work for accessing a single file with space available in the
caches. Assume the file is accessed by C' clients and each
client accesses it IV times and only reads are issued. We do
not consider client-data-caching since it is the same for al
models. However, metadata can be cached in the direct and
hybrid model.

For NAS model, only the first of the V x C' accesses results
in 1/0 with the storage. All subsequent accesses are served
from the cache of the NAS server. Therefore, total response
time for NAS moddl is:

(Y+T74+YNas +T7)+ (N C —1)(y +¥Nas +T')
The first term includes - data request + fetching data from
storage + delay at NAS server + forwarding content to client
(once fetched, it is served from the memory) - for the first
request to that data object. The second term includes for the
subseguent N «C'—1 reguests - datarequest + delay + serving
from cache. So total responsetimeis given by:

RTNas=T + NC(y+ 7" +¢¥nas)

For direct access model, the first access of each client re-
sults in metadata request (), metadata response () and I/O
fetch (7). Every subsequent access from each client only re-
quires the 1/0 fetch () because metadata is cached - again
considering no data caching at client or controllers (whichis
the same scenario for NAS model). Thus, the total response
timeis given by:

C (y+y+dpa+7)+(N — 1)C(7)

RTpir=C(27y + Y¥pir + NT)

The hybrid model would determine the value of the object,
and if it considered valued enough, it will be cached at the
HS. The HS would also return the metadata to the client
which is cached at the clients and used for subsequent ac-
cesses. Also ¥y is the sum of delays due to concurrent
metadata and data transactions. The response time would be
given by*:

(V7 my 7)H(C = 1) (y+Hppye+7) +H(N — 1)C(7)
RTHyw=C(y + Yay + 7)+7(1 + (N - 1)C)

Eventhough at first glancethe analysislooksin favor of NAS
model, it isimportant to note that ¢ y 45 is much higher due
to I/O costs in that model. In addition the above workload is
an all-read workload. However, it also indicatesthat for ahy-
brid model, it might not be always a good strategy to obtain
data from the storage when it is present in the HS cache. We
planto explorethisextensionin future. We also will consider
delays due to implementation of caching policies for all the
modelsin the detailed version of the paper.

3.1 Experimental Results

Using the above model, we evaluated the performance of the
NAS, direct access and hybrid models, for anumber of work-

*assuming neglible additional cost for including metadata in response

Direct ——
140 r Hybrid ——

Aver age Response Tines
Aver age Response Tinmes

H———s

160 NS -
150 b pect —w—
140 | Hybrid —=—

130

120
110
100 r

80

0 50 100 150 0 0.2
Nunber of Cients

200

Figure 2: Varying Number of Clients

load and client load scenarios. We used a 1000 file data with
file sizes distributed by a Poisson distribution with mean of
100 KB. Accesses to the files were based on a Zipf's law
with its « = 0.5. The 7 values were also assumed to be
Poisson distributed with mean of 100ms. The NAS cache
was implemented as an LRU cache. Also the HS cache was
implemented using a partitioned memory model.

Figure-2 plots the average response times for the three mod-
elswith varying number of clients (R-W ratio of 0.8 and NAS
cache size = Hybrid datacache size = 10MB). As can be seen
with increasing number of clients, the queuing delaysat NAS
servers increase significantly and thus, the overall response
timesincrease. For direct access model also, the queuing de-
lays increase though at a much smaller rate (metadata trans-
actions). The hybrid model presents an interesting analysis.
For the first jump in the number of clients, the response time
decreases dlightly. Thisisdueto aninitial increasein datalo-
cality at hybrid cache across multiple clients. Since there are
lesser 1/O data transactions at the hybrid server the queuing
delays with increasing number of clients are not able to off-
set this. However, with later transactions, the delays become
dominant. Figure-3 plots the models with increasing read
percentage in the workload (1000 clients). As expected, both
NAS and hybrid models perform better due to the caching
effects. Figure-4 plots the models with varying cache size
a the hybrid cache with the NAS cache fixed at 10MB. As
expected, it performs better with bigger caches.

It is encouraging to note that the hybrid model is able to out-
perform both the other models due to its ability to make in-
telligent choices per-request. We continue to evaluate the
models for other criteriaand with real benchmarks.

4 Reated Work

Even though there has been work on data management for
file systems in storage area networks [2], to the best our
knowledge, there is no prior work describing a SAN with
both co-existing in-band and out-of-band access models and
ability to switch models per each request. In general, caching
has been an important performance enhancing mechanism
with application to a wide range of problems. While a num-
ber of caching agorithms like LRU, [6, 7] are targeted to-
wards simplicity of implementation, more complex algo-
rithms have also been extensively used in a variety of sce-
narios - like databases [10], web caching [3, 5, 11] etc. All
of these approaches follow a similar principle of cost-aware
caching. Our caching policy is similar to [10] algorithm,
though we differ in cache admission and the parameter eval-
uation. Especidly, our policy is closely aligned to the data
sharing mechanisms, whereas other works do not focus on
such environments.

0.4
Per cent age of Reads

Figure 3: Varying Read-Write Ratio

Aver age Response Tines (r

0 2000 4000 6000 8000 10000

Hybrid Cache Size

0.6 0.8 1

Figure 4: Varying Hybrid Cache Size

5 Conclusions and Future Work

In this paper, we have presented a hybrid access model for
Storage Area Networks. To the best of our knowledge, this
is a first attempt at designing SANs that can exploit the
strengths of both in-band NAS and out-of-band direct access
models through a unified solution. An important character-
istic of our design is to intelligently choose between the ac-
cess models at a per-request granularity using low-overhead
cache admission and cache replacement policies. Our ini-
tial analysisindicatesthat the hybrid model outperformsboth
NAS and direct access models for a variety of workloads. In
future, we would like to evaluate the hybrid model on real
benchmarks and al so design extensions to the model.

References

[1] T. Anderson, M. Dahlin, J. Neefe, D. Patterson,
D. Rosdli, and R. Wang. Serverless network file sys-
tems. In Proc. of SOSP, pages 109126, 1995.

[2] R. Burns. Data management in distributed file system
for storage area networks. PhD Thesis, UCSC, 2000.

[3] P Caoand S. Irani. Cost-aware WWW proxy caching
algorithms. In Proc. USITS, 1997.

[4] G. Gibson and P. Corbett. pNFS Problem Statement.
IETF Internet Draft, 2004.

[5] S. Jdin, A. Bestavros, and A. lyengar. Accelerating in-
ternet streaming media delivery using network-aware
partial caching. In Proc. ICDCS, page 153, 2002.

[6] T. Johnson and D. Shasha. 2g: A low overhead
high performance buffer management replacement al-
gorithm. In Proc. VLDB, pages 439450, 1995.

[7] N. Megiddo and D. Modha. Arc: A self-tuning, low
overhead replacement cache. In Proc. FAST, 2003.

[8] J. Menon, D. Pease, R. Rees, L. Duyanovich, and

B. Hillsberg. IBM Storage Tank - A Heterogeneous

Scalable SAN file system. IBM Systems Journal, 42(2).

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and

B. Lyon. Design and implementation of the sun net-

work filesystem. In Proc. USENIX, 1985.

P. Scheuermann, J. Shim, and R. Vingralek. WATCH-

MAN: A Data Warehouse Intelligent Cache Manager.

In VLDB Journal, pages 51-62, 1996.

[11] A. Singh, A. Trivedi, K. Ramamritham, and P. Shenoy.
PTC: Proxies that Transcode and Cache in Heteroge-
neous Web Client Environments. World W de Web Jour-
nal, 7(1), 2004.

(9]

(10]

