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Summary

" Heart disease is one of the more life-threatening diseases. Its accurate diagnosis
and appropriate treatment are central to the survival of patients. Because the accuracy of
cardiac functional parameters that have been widely used in diagnosis of heart disease
depends heavily on cardiac image segmentatio'n’and motion-tracking techniques, it is
essential that those fechniques be accurate and reliable.

A velocity-aided cardiac segmentation method based a modified active contour
model, the orientation gradient force (OGF), and phase contrast magnetic resonance
imaging (MRI) has been developed to improve the accuracy of segmentation of the
myogardial boundaries, especially Fhe endogardial boundary. Furthermore, the initial seed
contour tracking (SCT) algorithrﬁ was glso developed to improve the accuracy of
automatic sequential frame segmeﬁtation. The performaﬁce of the proposed method was
assessed by experimentations on a phase contrast MRI data set of a normal human
volunteer. Experimental results of individpal frame segmentation showed modest

improvements in the accuracy and reproducibility of the endocardial boundary

xvi



segmentation. Experimental results of the sequential frame segmentation showed that the
propagation of errors caused by improper positioning of initial seed contours ‘was
significantly reduced by the use of the SCT.

A cardiac motion tracking method based on elastic deformation estimation (EDE)
of a deformable model and phase contrast MRI has been also developed to track the
three-dimensional motion of the myocardium addressing the problem of rela.tively low
out-of-plane resolution of MRI. The advantage of this method is that it can provide a
physically plausible yet computationally efficient and shape-independent framework for
cardiac motion tracking. To assess the proposed method, the motion of a normal human

left ventricle (LV) was tracked throughout the entire cardiac cycle. Then, the tracking

results were compared with a colof-coded tissue Doppler echocardiography data set. A
strain analysis was also carried out. The results showed that the out-of-plane velocity
measurements from thé LV model were correlated with those of the echocardiography
data set at the selected regions in the septum and the strain measurements were generally

found to be consistent with previously published values.

xvii



CHAPTER 1

Introduction

1.1 Motivation

Heart disease is one of the more life-threatening diseases. Its accurate diagnosis
and appropriate treatment are central to the survival of patients. Numerous diagnostic
methdds that can assess abnormalities of the heart have been developed. Among these
methods, cardiac functional analysis has be;en widely used to derive global aﬁd regional
parameters that deScribe the functionality of the heart. Because the accuracy of these
parameters depends heavily on cardiac segmentation and motion-tracking techniques, it is
essential that those techniques be accurate and reliable. However, since a heart has such a.
compleg shape and motion pattgm; the deyelopment of an accurate cardiac segmentation

and motion-tracking technique still remains a challenging problem.



Accurate segmentation of the myocardial boundaries is essential for deriving
cardiac global functional parameters such as ventricular volume/mass, ejection fraction,
and cardiac output. It is also an important step for accurate motion and deformation
analysis of the myocardium and has been done by automatic or semiautomatic techniques.
However, current segmentation techniques have difficulty both extracting accurate
myocardial boundaries and performing a fully automatic process because of low image
- quality, a complex shape and motion pattem of the heart, and lack of clear delineation
between the myocardium énd adjacent anatomic structures [1].

Many studies have also been carried out to correlate the dynamic characteristics
of the heart with a priori knowledge of various cardiac pathologies usi'ng various kinds of

imaging modalities. However, difficulty assessing motion of the myocardium still comes

not only from the difficulty in correlating the positions of points within the myocardium
between images taken at subsequent time frames but also from relatively low out-of-
plane resolution of imaging moda!ities such as magnetic resonance imaging (MRI).
Although N.B. Ingels et al. [2] and GD. Meier et al. [3] used implanted markers to obtain
correlation of ﬂle position, these techniques are unacceptable in clinical situations

because of their invasiveness. Recently, a number of MR imaging modalities that use



presaturated tagging patterns [4, S5, 6, 7] and velocity-encoded phase images [8] have
been developed to obtain correlation of the position noninvasively. Although these
methods make it possible to quantify the severity and extent of regional myocardial
motion abnormalities noninvasively, an appropriate heart model is still needed to track
the positions of tissue points in the myocardium and interpolate sparse displacements due
fo relatively low out-of-plane imaging resolution and spérse markers, respectively.

The first goal 6f this thesis is to develop an accurate and reliable semiautomatic
cardiac segmentation method that can be used not only to obtain more accurate global
functional parameters but also to construct an accurate shape description of the heart. The
second goal is to develop a cardiac motion-tracking method for extraction of motion and
deformation parameters that can give accurate descriptions of regional functions of the

heart.

1.2 Problem Statement

Although current cardiac segmentation and motion-tracking techniques are quite

successful, they still have the following major problems and limitations:



1. Segmentation of the endocardial boundary suffers from problems such as flow-
related signal loss, the presence of papillary muscles, and poor visualization of
the endocardium.

2. Large changes in positions and shapes of the myocardial boundaries through
subsequent frames make it difficult to follow the boundaries and cause the
propagation of errors in sequential frame segmentation.

3. Given that the MR imaging plane is spatially fixed and has relatively low out-of-
plane resolution, motion-tracking of the myocardium in three-dimensional space
introduces errors not only in the out-of-plane diréction but also in the in-plane
directions.

4. Most of model-based motion-tracking techniques are confined to a specific
ventricle of the heart to reconstruct the three-dimensional motion of the
myocardium.

A commonly used cardiac segmentation technique in routine clinical practice is
semiautomatic segmentation, which requires a humah operator’s intervention. For
semiautomatic segmentation, the acti\}e contour model, which was first proposed by Kass

et al. [9], has been a popular choice as an underlying automation technique. However,



semiautomatic segmentation based on the active contour models still have difficulty
extracting accurate myocardial boundaries, especially the endocardial Eoundary. This
thesis describes the development of a cardiac segmentatipn method that is based on the
generalized active contour model, the tensor-based orientation gradient force, the initial
seed contour tracking algorithm, and phase contrast MRI to improve the accuracy of the
endocardial boundary segmentation and sequential frame segmentation.

One of the primary approaches to estimate the motion and deformation of the
myocardium using various MR imaging mocialiti&s is to use a three-dimensional nﬁodel of
the heart. In such model-based approaches, geometric models or finite element models
have been used to reconstruct the three-dimensional displacement fields of the
myocardium. However, geometric model-based approaches require separate models for
egch ventricle of the heart, and finite element model-based approaches that can reflect the
physical properties of the myocardium are computationally expensive. In this thesis, a
cardiac motionétracking methéd based on an elasticall_y deformable model and phase
contrast MRI has also been developed to reflect the elastic property of the myocardium
with reduced computational expenses and to make a cardiac motion-tracking method less

dependent on the shape of a specific ventricle.



1.3 Contributions of this Work

The major contributions of this work are summarized as follows:

& The development of an acti\}e contour médel with a new image force derived
from the velocity images of phase contrast MRI to improve the accuracy of
segmentation of the myocardial, especially endocardial, boundaries.

& The development of a sequential frame segmentation algorithm for the velocity-
aided active contour model to reduce the propagation of errors in the automatic
sequential frame segmentation.

4 The development of a three-dimensional cardiac motion tracking method based
on an elastically deformable model and phase contrast MRI. It uses a physical
property of the myocardium to reconstruct the three-dimensional displacement
fields of the myocardium. |
Unlike other MRI cardi;m segr;lent%ttion methods based on active contour models,

| L
the yelocity images from phase ccjmtrast MRI, together with the magnitude images, are
used to derive a new extemal_fofce fronii the orientation gradient. Although the one-

dimensional velocity images have been used in vessel segmentation [24], it is the first

1: W
. i
H

attempt to use the three-dimensional velocity images in cardiac segmentation. With the



additional information from the velocity images, a new seed contour tracking (SCT)
algorithm for a modified active contour model provides a prediction scheme of positions
of initial seed contours through a sequence of cardiac MR images. It contributes to reduce
the propagation of errors in the automatic sequential frame segmentation. Finally, a new
cardiac motion-tracking method based on an elastically deformable model provides a tool
for compensating the relatively low out-of-plane resolution of phase contrast MRI to

track the three-dimensional motion of the myocardium.

1.4 Structure of the Thesis

This thesis consists of two main parts. The first part presents a cardiac
segmentation method in two chapters: chapter 2 describes the research background of

cardiac segmentation, and chapter 3 develops a velocity-aided cafdiac segmentation
method and presents experimental results. The second part is similarly organized: chapter
4 describes the research background of cardiac motion-tracking, ;'md chapter 5 develops
an elastically deformable model-based cardiac motion-tracking method and presents

experimental results.



Part 1

Cardiac Segmentation



CHAPTER 2

Background

In this chapter, cardiac functional parameters and segmentation methods that
have been used previously to identify the myocardial boundaries are described. Cardiac

segmentation methods using deformable model-based approaches are of primary interest.

2.1 Cardiac Function‘al Parameters

Cardiac functional/ paraméfers describe the functionality of the heart and are
frequently used in diagnosis of various heart diseases. These parameters can be divided
into two main areas, global parameters and regional parameters. Global parameters
include general volumetric measures such as ventricular volume, ventriculaf mass,

ejection fraction, stroke volume, and cardiac output. Regional parameters include motion



and defoﬁnation parameters that are related to the motion of the heart during the cardiac
cycle, such as wall thickening, strain, and strain rate.

Ventricular volume is typically measured from images obtained from either
angiocardiography, echocardiography, or MRIL. Volume measurement techniques are
typically based on a geometric model, such as Simpson’s rule. Simpson's Rule is a
fundamental mathematical principle. It is based on the idea that the volume of an object
can be determined ny cutting the objecf into thin slices measuring the volume of each
slice and summing the volumes of all slices. With a boundary segmentation method,
Simpson's Rule is applied to the left ventricle (LV) by slicing the LV into disks glong the
long axis, as shown in Figure 1. The area of éach disk 1s calculated and multiplied by the
disk's thickness to detennirié ifs volume. As described, techniques for volume
measurement first estimate the myoggrdial boundaries tp approximate the ventricular
shape and then vcalculate. the voiuriaé of those ishvap&s. Echocardiography may easily
underestimate the ventricular yolume,'and:' angiocardiography may overestimate the
ventricular volume when the volyume of t.he‘ papillary muscles or trabeculations is not

taken into account. Some studies [10, 11] have shown that MRI provides better

estimation of the ventricular volume than other imaging modalities.

10



Figure 1. Simpson’s rule for LV volume measurement. Ventricular volume

v =23 DAL
453

Ventricular mass is another useful measure of the global functionality of the heart
because ventricular hypertrophy is characterized by an increase in muscle mass. This
parameter is determined by calculating the total ventricular volume within the epicardial
borders, subtracting the ventricular volume, and multiplying the result by the density of
the muscle tissue. Ejection fraction (EF) is a fréquentiy used global parameter that
measures the pumping function of the ventricle. It is derived from the end-systolic and
end-diastolic ventricular volumes. Stroke volume is calculated as the difference between

~ the end-diastolic and end-systolic volume, and cardiac output is derived from the product

1



of the stroke volume and the heart rate.

Wall thickening is an indicator of dysfunctional contraction and closely
associated with myocardial viability. Three-dimensional myocardial wall motion and
thickening were used as methods for distinguishing ischemic from non-ischemic
myocardium [12]. Strain is the change in length of the myocardium relative to its original
length and ha§ been used to describe myocardial deformation. There have been numerous
efforts to estimate strain values of the myocardium. One of the more widely used
approaches is the model-dri?en approach [13]. In this approach, a shape model of the
heart is used to calculate and visualize the three-dimensional regional strain data
throughout the cardiac cycle. Derived strain déta are then used to find the abnormalities
of the motion of the myocardium and to describe the contractility of the myocardium.
Strain calculations have been mostly conducted for the analysis of LV deformation [14,
15] because of its relative geometric simplicity. Strain rate is the temporal derivative of
strain and is also an indicator of deformation of the myocardium, as showﬁ in Figure 2. It
is a load-independent index that is, unlike strain, only slightly affected by rigid-motion,
such as translation and rotation. Studies [16, 17, 18] have suggested that regional

myocardial strain rate estimation can be performed in a clinical setting and may prove to

12



be a robust and sensitive tool to deﬁne alteratiqns in either contractile function or passive
elastic deformation within a mchardial segmgnt. The strain-stress relationship has also
been used to describe regional deformation characteristics [19].

As described previously, estimation of the myocardial boundaries is an essential
step for deriving various cardiac functional paxametefs, >a.nkd the accuracy of these
parameters depends on the correctness of the estimated boundaries. Therefore, it is
essential that cardiac segmentation be accurate and reliable. Numerous cardiac
segmentation methods have been developed and used to estimate the myocardial
boundaries more accurately and efficiently. These methods can be divided into three
broad classes, such as manual segmentation, semiautomatic segmentation, and automatic
segmentation, according to the level of human operator’s intervention. Because manual
and semié.utomatic cardiac segmentation methods are widely used in routine clinical

practice, these are described in the next two sections.

13
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Figure 2. An example of strain rate image of LV from color-coded tissue Doppler
echocardiography.

2.2 Manual Segmentation

Manual segmentation is performed by human operators with a computer, an input
device (usually a mouse), and a display device to trace the endocardial and epicardial
boundaries in cardiac images. Because human operators can use thgir a priori knowledge
of the anatomical structure of the heart, the resqlts of m#nual ségmentation are usually
more reliable than those of automatic and semiautomatic segmentation. Therefore, it is
often considered the “gold standard” a;nd is widely used in routine clinical practice.
However, manual segmentation is time consuming and subject to operator-dependent

variability.

14



2.3 Semiautomatic Segmentation

A full automation of cardiac segmentation is a quite difficult task because of the
complex shape of the heart and noisy imaging .modaliti&s. Instead, semiautomatic
segmentation approaches that include expert interactive guidance are preferably used in
routine clinical practice. The active contour model based on a deformable contour model
is one of these semiautomatic segmentation approaches. It overcomes many of the
limitations of traditional image processing techniques, such as region growing, edge
detection, and mathematical morphology operations. This connected and continuous
geometric model uses a priori knowledge of object shape to constrain the segmentation
problem, and its inherent continuity and smoothness can compensate for noise, gaps, and
other irregularities in object boundaries, such as the myocardial boundaries. These
properties can make it possible to link sparse or noisy image features into a coherent and
consistent model of the myocardial boundaries. In this semiautomatic segmentation
approach, the operator usually initiates the segmentation process either by specifying an
initial region of interest or by drawing an initial shape .Of the object to be segmented.
Then, the operator visually checks the accuracy of the points that havg: been automatically

generated. The points that have been improperly positioned after automatic segmentation

15



can be modified manually through an interactive correction routine. The original active
contour model and its several variations are bﬁeﬂy described in this section.

As described previously, the active coritour models are deformable contour
models that are often used to approximate the locations and shapes of object boundaries
in imagés based on the assumption that boundaries are piecewise continuous or smooth.
Th&se models are also known as “snakes” and are examples of more general techniques
of matching a deformable model to an image by energy minimization. Unlike the other
segmentation methods, these models are active: a contour model minimizes its energy
functional and exhibits dynamic behavior. Snakes usually do not try to find vthe entire
salient contours in images, but they find a desired contour using an initial seed contour.
The original snake [9] is a controlled continuity spline under the influence of image
forces and external constraint forces. Its mathematical formulation draws from the theory
of optimal approximation involving functionals. Geometrically, a snake is a parametriq
contour in the image plane (x, y) e R*. Representing thg position of a snake
parametrically by v(p) = (x(p), (p)), the energy of a snake is defined as:

Eoute = [, { Em(v(p)) + Eme(v(p)) +Eex(v(p)) }dp ()

where E;, represents the internal energy of the spline, E;,, represents the image force, and

16



E... represents the external constraint force. The functional represents the energy of the
contour, and the final shape of the contour corresponds to the minimum of this energy.

The internal spline energy is defined as:

2 2

a*v(p)

En(v(p)) =0(p) > 2)

,M +5(p)
op

The internal energy consists of a ﬁrsf;order elasticity term and a second-order rigidity
term. o(p) controls the tension (stretching) of thg contour and ¢(p) controls the
flexibility (bending) of the contour. The image force consists of three different energy
components that attract a snake to lines, edges, and terminations. Edge force, one of
image force components, is defined as:

Epng e =—|Grad (x, y)f 3)
where Grad(x,y) represents the image gradients. A snake is attracted to contours with
large image gradients. The external constraint force (E.) is defined as the spring force to
provide the interactivity in energy minimization process. By the calculus of variations,
v(p) that minimizes the energy E,.x. must satisfy the Euler-Lagrange equation. This

vector-valued partial differential equation is discretized by finite differences, and the

solution v(p) is calculated by an implicit Euler time-integration method. Although this
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original active contour model has a shrinkage problem around strong edge points, it
provides a simple framework to combine high-level global constraints with low-level
local constraints so that it can effectively segment the object of interest. Cohen [20]
modified the image force of the original aétive contour model by normalizing it to obtain
more stable results and also added an inflation force in the direction of the outward
normal of the contour to eliminate the shrinkage problem around strong edge points. His
model is effective for segmentation of the myocardial boundaries in noisy images such as
ultrasound and MR images of the héart because it avoids the contour’s being trapped by
spurious isolated edge points and makes the result more insensitive to the initial contours.
Later, he extended his model into three;dimensions [21].

Most cardiac segmentation methods based on the active contour models rely on

using only the image gray scale or gradient information to identify the myocardial

woiy

boundaries. However, using the irﬁage ay scale ér gladiént information alone may not
be sufficient to identify the accurate myocardial boundaries due to low signal-to-noise
ratio (SNR) of images or complex shape characteristics of the boundaries. To address
these problems, different kinds of image forces have been proposed for the external

energy of the active contour model. Xu e# al. [22] used the curvature information to
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derive an external image force. They also proposed grédient vector ﬂow (GVF) computed
as a diffusion of the gradient vectors of a gray-level edge map [23]. These image forces
reduced the problems associated with poor convergence fo concave boundaries, such as
the endocardial boundary with papillary muscles. Recently, Kozerke et al. [24] proposed
an automatic vessel segmentation algorithm that used the active contour model with the
velocity-based external force. In their approach, the velocity images from phase contrast
MRI in addition to the magnitude (intensity) image are used to address the degradation
problem of magnitude image around the vessel wall boundary that is similar to those
associated with defining the myocardium boundaries. The original controlled continuity
spline by Kass et al. [9] is used for the internal energy, and the conventional image force
from the edge map of magnitude image is used for the external energy. However, in the
case of severe signal distortions near the vessel wgll boundari&s resulting from disturbed
flow conditions and partial volume eﬁ'gcts, velocity images from phase contrast MRI are
used to derive new image force to replace the image forée based on the edge map. By
simulation, they showed that the boundary ;epr&sentations from velocity images were
often better than those from magnimde images. The sequential frame segmentation in

their active contour model also benefits from this image force because the initial seed
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contour for the current frame is the contour from the previously segmented frame.
Although the application of this technique was the vessel segmentaﬁon, the result
suggested the possibility of using velocity profiles as a new.image force in'segméntation
of the myocardial boundaries.

The active contour models have been very effective for segmenting and tracking
of moving objects in image sequences, such as cardiac image sequences. Several
variations of the original active contour model have been also proposed to improve
sequential segmentation of the myocardial boundaries throughout the cardiac cycle.
Leymarie et al. [25] used the previously segmented contour as an initial seed contour for
the current frame to track the contour through a sequence of images. Inspired by this idea,
Gupta et ai. [26] used the active contour model in four-dimensional cardiac analysis study.
In their approach, the contour is automatically propagated thrdughout the entire slices and
time frames using the previously seghiented contour as an initial séed contour as in
Leymarie’s approach. However, fwo different energy minimization techniques are used
for the automatic propagation of the contour, because con;tour deviation between two
consecutive slices is usually greater than that between tWo consecutive time frames. The

steepest descent method that attempts only local optimization of the contour energy is
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used for temporal propagation of the contour. Dynamic programming, with larger search
region and thus less susceptible to local minima, is used for spatial propagation of the
contour. The inflation and deflation forces are also used to effectively follow the
contracting boundaries of the myocardium. Chalana et al. [27] proposed a multiple active
contour model to reduce the propagation of errors in sequential frame segmentation of ﬂme
myocardial boundaries on echocardiographAic sequences. They added the temporal
smoothness and the monotonic motion coﬁstraints into the iﬁtemél and the external
energy formulation, respectively. Li et al. [28] also proposed a similar approach to take
into account a temporal smoothness of the contour. In the presence of large changes in
positions and shapes of the myocardial boundaries through the subsequent frames, simply
using the previously segmented contour as an initial seed contour may cause severe
propagation of errors in sequential segmentation of the myocardial boundaries. Therefore,
boundary position prediction methods in addition to the active contour models have been
proposed to cope with these errors. Akgul et al. [29, 30, 31] proposed a post-processing
technique to improve sequential frame segmentation of the bngue surface in ultrasound
image sequences. They tracked the previously segmented contour using the op_tical flow

technique to obtain a closer initial seed contour to the desired boundary. As a result, it
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reduced the propagation of errors in sequential frame segmentation. Peterfreund [32] also
applied the optical flow technique in his velocity-contrqlled active contour model to
estimate a better seed contour. Although the applications of Akgul’s and Peterfreund’s
approaches were not cardiac segmentation, they suggested that using motion information
of the myocardium would improve the accuracy of sequential frame segmentation of the

myocardial boundaries.
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CHAPTER 3
Velocity-aided Cardiac Segmentation

3.1 Introduction

As described previously, manual segmentation of the myocardial boundaries is
considered the “gold standard.” However, it 'is time consuming and subject to operator-
dependent variability. Therefore, semiautomatic segmentation methods such as the active
contour models are preferred in routine clinical practice. Although active contour models
have been quite successful in segmentation of the myocardiqm boundaries, most of them
still suffer from problems such as ﬂow—related signal loss, the presence of papillary
muscles, heterogeneity of the myocgrd._hz:‘ryn" _si;g:ixaal, poor visualization of the endocardium
on the most apical slices, and lack of :clé:aAri :delineation between the myocardium and
adjacent anatomic structures. In addition,% 1arge changes in positions and shapes of the

myocardial boundaries through the subseqﬁent time frames may cause the propagation of
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errors in sequential frame segmentation, even if the segmentation algorithm within an
individual frame is highly reliable. In this chapter, a new cardiac segmentation method
that is based on phase contrast MRI, the generalized active contour model, the tensor-
based orientation gradient force, and thé sequential frame segmentation algorithm is

proposed to cope with some of these problems.

3.2 Phase Contrast MRI

3.2.1 Terminology

Cine MRI with short repetition time (TR) is useful for imaging dynamic
processes. This imaging technique uses a gating strategy that acquires data at a constant
rate and retrospectively sorts and mtgrpolat&s the data into the desired number of frames

per cycle [33]. Phase contrast MRI refers to q family of MR imaging methods that exploit
A

the fact that spins that move through 'm'ailgnetic field gradients obtain a different phase
than static spins, enabling the production of images with controlled sensitivity to flow.
The combination of these two tools produces a technique that can depict motion and flow

throughout the cardiac cycle. This is called cine-phase contrast MRI or simply phase
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contrast MRI.

Phase wnﬁast MRI has been used for several quanﬁtative motion applications,
including measurement of flow of blood, cerebrospinal fluid, motion of the brain, skeletal
muscle, and angiography. It is also well suited for measurement of cardiac tissue
yelocities because of their speed, flexible velécity sensitivity, and inherent quantitative
foundation. In this thesis, phase contrast MRI is used for segmentation of the myocardial
boundaries, because it is capable' of measuring velocities of botil the myocardium and

blood.

3.2.2 Physical Principle
Each raw data set of MRI produces images that portray the transverse

magnetization in each voxel. This transverse magnetization is a vector quantity having
both magnitude and phase. Typically, in MRI only the magnitude of the magnetization
contributes to the in;age intensity. However, the phase can contain useful information
about motion: i.e., spins that move through magnetic field gradients obtain a different
phase than static spins, enabling the production of images with controlled sensitivity to

motion.
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Motion in the presence of a magnetic field gradient produces a change in phase
proportional to velocify v [8]:

$ = v (M) i @

M= [ W(yt-dt )

where, ¢ is phase, k¥ is the gyromagnetic ratio, and M is the first moment of the

gradient waveform W(#) evaluated ét echo delay time (TE). In a manner completely

analogous to spatial phase encoding for image generation, the read-out gradient

waveform encodes motion in the direction of this gradient into the phase of the signal,
and demonstrates the effect of flow and myocardial motion in spin-echo data.

If two complete data sets are acquired with gradient waveforms that have a

different first moment in one direction, the difference in phase in each pixel (by simple

subtraction between two phase images) will be

Ag = v (k AM1). ©)
Static structures will exhibit no phas¢ change. By acquiring two measurements with
different gradient first moments (by altering the gradient waveform shape), the method
can be sensitive to phase shift due to motion yet be insensitive to other phase effects (e.g.,

the field gradient inhomogeneity). A critical parameter of phase contrast images is the
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strength of the flow (motion) encoding controlled by AM, (strong encoding means strong
gradient wavefonni An intuitive alternative is the encoding velocity, Ven, that produces a
phase shift (44) of = radians or 180 :

Veo = 7 | (k AM1) @)
This parameter is useful because it also represents the largest speed that can be measured
unambiguously. Because the velocity over V... means the phase shift over 180°, this
causes the phase wrap-around problem (velocity aliasing). Therefore, v, has to be larger
than the maximum velocity that can be measured in the moving structure. The v,,. value
is controlled by adjusting the strength of the flow encoding AM;. The measured phase

shift is converted to velocity by:

v:( Venc).A¢ (8)

b/

With the above phase encoding methods and parameters, three -directional-
dependent velocity images can be produced, one for each Cartesian direction (x, y, z), as
shown in Figure 3. One magnitude image can be also obtained by conventional frequency
and phase encoding along with the velocity images. Therefore, four acquisitions are

required to produce a set of three-dimensional velocity images.
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Figure 3. Typica] velocity images around end systole. a) horizontal directional (vx)
velocity image b) vertical directional (vy) velocity image c) out-of-plane directional (v.)
velocity image, and d) magnitude image.
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3.3 Generalized Active Contour Model

The generalized active contour model [34], which is a variation of the original
active contour model, turns a boundary extraction problem into an energy minimization
problem and is designed to eliminate the shrinkage problem around strong edge points. It
is also invariant to scale change and rotatibn. In this thesis, this model will be used and
modified to incorporate a new external force that is based on the orientation gradient of |
.velocity vector fields.

The generalized ac;[ive contour model balances two different potential energies,
which are internal deformation potential energy (£:.) and external potential energy (E.x).
E,: imposes continuity and smoothness constraints, and E,,, attracts the snake to salient
image features. By combining these two energy temis, the total potential energy for the
boundary extractjon problem is defined as o

Etatal = OEint (Y(p))+Eext (V(p)ylp : (9)
SERIN
where v(p) = (x(p), y(p)) is a par‘a’m’?trﬁc répfresentzglﬁon of the position of a contour, x and
y are the coordinate functions in the image plane (x,y) € R and p € [0, 1] is the

parametric domain. This potential ehi’ergjz represents the energy of a contour, and the final

shape of the contour correspondsﬁfo the minimum of this energy. In practice, this
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continuous form of the energy formulation can be replaced by the discrete form of the
energy formulation. If the ordered set of points are defined as ¥ = [vy, v, ..., v,], where
vi=(x, y) fori=1, 2,..., n, then, the solution set of points with the minimum energy of
E51a1 can be expressed by:
y =argmin{ S5, (v)+ A-1)E )] 10)
where 7; € [0, 1] is the regularization parameter at each contour point. Large 7;’s
generate strong model-driven solutions reflected largely by continuity and smoothness
constraints of the contour, and small 7;’s generate strong image feature-driven solutions.
The local mini-max criterion is used to automatically select the regularization parameters
that produce the optimal tradeoff at every contour location in a local sense. The energy
formulation for the local optimum is
B, 1) = 2[5 () + 0= 1) ()] an)
where "= {m, na, ..., 7.} are th¢ unknown'local regularization parameters. Seeking a
local mini-max solution set ¥* that minimizes the maximum of E(V, I) over every 7;

yields the local mini-max criterion:

EQ, ") =min3. max(E,,(v,), E(v,)) (12)
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where V' and I” are the solutions. This criterion completely bypasses the explicit
selection of the parameters I~ and can be incorporated into the discrete energy
minimization process.

In the original active contour model [9], the internal energy E;, was‘ defined as
the first and second derivatives of the contour, controlling the tension and rigidity
respectively. On the discrete grid, the original formulation of E;,, Equation (2), can be
approximated by the finite difference method:

Ep(v))= "Vi ~Via "2 + "vi—l =2V, +V;y “2 (13)
This approximation has several problems in practical situations. Ej,, vanishes when v;=v
for all 7 causing the contour to shrink around strong edge points. E;»is also not invariant
to scale change and rotation causing error in constraining smoothness on the contour. In
order to impose smoothness cpnsjraint withput the shrinkage problem, E;,is defined to
force the contour to take the form of a line for an opened contour or a circle for a closed

contour:

1 2
E,(v;)= 7(7‘,‘)'"".' -0(v, + Vi+1)" (14)
where v = 0.5 or v = 0.5cos™(27/n) for opened and closed contours respectively. In

order to make E;, invariant to scale change and rotation, the normalizing function /(¥) is
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defined as the average distance between each of two neighboring points:

1) =

=]

,Z:l:"v,. ~viaff (15)

The extemal energy E.. is generalized to include intensity gradient direction if

necessary. Define image b as the function b: /- A. Depending on the data type of either

A =D (intensity image or edge magnitude) or A = D*(2 x 1 intensity gradient vector), the
external energy is formulated as follows:

E(v;)=1-hjb(v;) (16)

where h; is the unit normal vector at v;, |h,[|=1. For A= DZ, h; is normal to the tangent

vector t; of the contour:

t V,— Vi, Via—V;
;=
”Vi =V " ”VM1 -V, "

17)

E..: continuously weighs the gradient magnitude against any orientation in consistency.
An edge point whose orientation disagrees with that of neighboring points may yield

large external energy and is consequently considered the noise.
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3.4 Tensor-based Orientation Gradient Force

Cardiac segmentation based on active contour models and MRI has used only
MR magnitude (intensity) images to derive image forces. However, it is still a difficult
task to find accurate myocardial boundaries, especially the endocardial boundary, because
of problems such as flow-related signal loss, the presence of papillary muscles, and poor
' visualization of the endocardium in MR magnitude images as described previously.
Kozerke et al. [24] addressed similar degradation problems in the segmentation of vessel
boundaries. In their work, they derived an fmage force based on the gradient of one-
dimensional (unidirectional) velocity as an altematiye to the gradient of image inténsity
and showed the potential for using the velocity images from phase contrast. Similar to the

case of vessel boundaries, the direction of the three-dimensional myocardial motion

around the endocardial boundary can be significantly different from that of blood flow,
especially around systolic phases, as shown in Figure 4. This fact can be used to derive a
new image force to improve the accuracy of segmentation of the endocardial boundary. In
this section, the tensor-based orientation gradient force is developed using the concept of
the orientation tensor estimation and the velocity images from phase contrast MRI. It is

incorporated into the generalized active contour model as an additional external force.
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a)

Figure 4. Difference in the direction of the myocardial motion and blood flow. Three-
dimensional velocity vectors are overlaid on both top and bottom sides of the same
magnitude image slice at end systole. Vectors out of the image slice show a) superior
directional blood flow and b) inferior directional myocardial motion.

3.4.1 Orientation Tensor

To quantitatively measure and differentiate the direction of the three-dimensional
myocardial motion and blood flow, an appropriate measure is first needed. The
orientation of three-component velocity vector fields is used for this purpose. Unlike two-
dimensional vector whose orientation can be represented by a scalar value, such as the
angle, the orientation of three-dimensional vector can not be directly represented by a
scalar value. Furthermore, the concepts of deriving edges in two-dimensional scalar

images, such as gray-scale images, do not extended directly to a higher order vector field
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because the gradient of a vector field is not a scalar or a new vector, but a second order
tensor. Hénce, the concept of the orientation tensor [35] is used to represent the
orientation of three-dimensional velocity vector fields from the three-directional velocity
images.

The orientation is a local property of a signal and defined as.a local gradient
direction. It can be well defined in a simple neighborhood, where signals can locally vary
in only one direction. For example, a neighborhood that contains a single edge or line has
a well defined orientﬁtion, whereas neighborhoods that are low-contrast, contain
substantial amounts of noise, or have several edges or lines do not have a well-defined
orientation. A simple neighborhood can be formally expressed as:

s@)=g€-x) - (18)
where s and g are non-constant functions, ¢ is the spatial coordinate vector, and X isa
normalized directional vector that is oriented along the axis of maximal signal variation.
According to this definition, s is constant along any vector that is perpendiéular to x.
For this type of neighborhood, the locai orientation can be entirely defined by x'.

The entity, denoted as T here, 'representing the local orientation of a simple

neighborhood should meet the following three basic requirements:
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1) Invariance

2) Equivariance

3) Uniqueness
The invariance requirement means that T must be invariant to g in a strong sense. A more
practical and weaker requirement is that the normalized entity T =T/|T| must be
invariant to g. The equivariance requirement means that if the orientation of the local
neighborhood changes by a small amount, it should always result in a small change in T.
A more formal description of this requirement is that there mp'st be a continuous mapping
from x to T and if making a small change in x, resulting in a small change also in T,
the norm of T should be invariant to x. The uniqueness requirement means that there is

a unique representation T to each orientation. The entity for the local orientation of the

neighborhood thaf meets these three requirements is a tensor of order two:

T=Ax'x" o (19)
where A is an arbitrary positive number that doesn’t depend on‘ x and x7 is a
txﬁnspose of x. x is actually an eigenvector of T, and A is the only non-zero
eigenvalue of T, so T is a tensor of rank one. It doesn’t change when x changes its sign.

Thus, it is a one-to-one mapping and unique. It also satisfies the invariance requirement,
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because T is invariant to g. To show that it satisfies the equivariance requirement, rotate
X by adding a small perpendicular vector er to x and calculate the difference in the

norm of T. Defining dT/de¢ and carrying out the limit calculation yield:

ar T(x + er)-T(x)

—=Ilim
de &0 £
(20)
= A(xr” +rx")
Then, the norm of dT/de is
LLY [y ~ @1)
de '

This shows that a small change in x results in a small change in T, and the norm of the
differential is independent of both x and r . Thus, it satisfies the equivariance

requirement.

3.4..2 Orientation Estimation

The local orientation of three-dimensional velocity vecfor {ﬁelclls ’. éan: now be
represented by the orientation tensor described in the previous section. The orientation
tensor is constructed by combining the output magnitudes from quadrature filters [36].
Each quadrature filter is spherically separable and real in the Fourier domain and given -

by:

37



- F,(u)=R(p)D,(u) (22)

where u is the frequency, p= u' =u/ p. The radial function R is a band-pass

function given by:

4 z(»o/a)

R(p)=e P (23)

where B is the relative bandwidth and p;is the center frequency. The directional function

Dy is given by:

D, () z{gu' ‘n)’, u-n >0 24)

X otherwise
where n, is the kth filter directing vector. Thus D(u') varies as cos®(d), where @ is
the difference in angle between  and the filter direction n, . Then, the orientation tensor

for three-component velocity vector fields is constructed by:

1
T= Z(Zqﬂ) (N —ll) (25)
k=1 4 )

where gy is the output magnitude of kth quadrature filter obtained by filtering the /th
velocity image out of three(x, y, and z)-directional velocity images, N, is the outer

product of the kth filter directing vector n, and n,”, and I is an identity tensor. The

detailed derivation of the above equation can be found in [35].
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3.4.3 External Force Construction

The estimated orientation tensor T represents the local variation in the velocity
vector fields, and its norm corresponds to the local energy of the variation. Thus, the
edges of the three-component velocity vector fields from the three-directional velocity
images are obtained from this tensor and used to derive a new image force, called tensor-
based orientation gradient force (OGF). The OGEF is defined as:

E ientation (Vi) = (1 —tho(Va)) (26)
where o(v)) is an orientation feature function that produces the orientation gradient
vectors from the norm of the orientation tensor, h; is the unit normal vector at v, vand
[ ” =1.

The estimation of the local orientation tensor assumes that a neighborhood be
simple as described in section 3.4.1. However, it is apparent that not all neighborhoods
are simple in real data, such as the velocity vector fields. Consequently, the estimated
orientation tensor is not a rank one tensor. The tensor T describes the directions of both
the maximum change and minimum change, and the co;responding eigenvalues describe
~ the rate of change in each direction. Therefore, some method of interpreting the estimated

orientation tensor is needed to reliably incorporate the OGF into the generalized active
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contour model. Rank one approximation of T and a resulting certainty measure are used
for this purpose.
Because the estimated orientation tensor, not necessarily é rank one, is always

symmetric, it cén be decomposed into

T=3 hed] | @7)

k=1 '

where e, is an eigenvector of T and A, is the corresponding eigenvalue. For a non-
simple neighborhood, the orientation tensor T doesn’t have only one nonzero eigenvalue
and can even have a negative eigenvalue. The convention of setting any negative
eigenvalue of T té zero is used here for interpretation purposes. Let T, be a rank one
tensor, then it can be expressed as:

T, =Ae.e, (28)

If T minimizes

2

£=|T-T,

2 Vo
= "T -Aee,

(29)
then, T;is refer to a rank one approximation of T. It can be shown that any rank one
approximation T of T is such that A is the largest eigenvalue of T with e as the
corresponding eigenvector, i.e., 4, = A; and e, =e, when 4; > 1,. With the rank one

approximation T}, the approximation error £ becomes
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2
&=

2
;ﬂkekekT - llelelT

=4 (30)
From this error estimation, a useful measure that indicates the certainty of a rank one

approximation of T can be defined as:

T \aza

A=A, {osz,.g 61)
z ~ 1 indicates that T is approximately a rank oﬁe tensor, corresponding to a simple
neighborhood. In other words, y represents the certainty of the local orientation in the
velocity vector fields (i.e., how much relia.ble the measured local orientation variation is).
Therefore, this certainty measure can be used as a weighting factor to combine the OGF
with the conventional intensity gradient force.

A new extemal force for the generalized active contour mbdel is now constructed
by combining the OGF with the intensity gradieqt force described in section 3.3 using the
certainty measure ¥:

Erps_ea(i) == 2)Es (V) + ZiE ientation (Vi) (32)
This force can effectively incorporate the velocity-based external force into the

generalized active contour model. In practice, y is normalized because the estimated

values of its components are usually high (¥ = 0.8) and have a small dynamic range.
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3.5 Energy Minimization
The discrete dynamic programming approach [37] is used to find the solution set
of points with the minimum energy of E4. Instead of using an exhaustive search, the
minimization process is decomposed into »# independent stages, where each stage uses
only 3 neighboring points. Because the energy decreases monotonically in this process,
the solution is guaranteed to converge in a finite number of iterations. Denote the ordered
set of contour points P = [vy, va, ..., V,]. Then, the solution set Pj' at iteration j is
P, =arg min iZ:l:E, (Vie1s Vis Vi) (33)
where E;is a state variable defined by:
E (Vi Vi Vin) = 4B, (v) + (A= )E,,,, (V) (34)
" The minimization process starts with m,:
m (v, V3) = ﬂgn{lf“‘ (v, V1, V2) + E3(V1, V2, V3)} (35)
For the next stage, 51 and E3 are used to: obtam

my(Vs,V,) = ngp{m,(vz, V3)+Ey(V,,v5,v,)}
I (36)

g
=min ZEx (Vi1 Vis Vi)
V2V g
L
e

Continuing with the similar fashion, the ?g‘eneral recurrence relation m, for 7 = 3 through i

=n -3 is obtained:
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M (Vi, Vi) = n}in_{mi-—l (Vis Vi) H Ey (Vi Vg, Vira)} (37

Then, the process is completed in stage n-2 as follows:
M5 (V, 1, V,) = fvlzgl{mi-a (Voo Vo) H B i (Vs Vit Vi) + B (V, 1, V,,V,5)} (38)
D 7oV, %,) =i S E (Y, Vi) (39)

Finally, backward substitution produces a solution set Pj' fromi=n-landi=ntoi=

- L] .
{V1,V,} =ar1g min m, ,(v,,,v,)
n-1+¥n (40)
» . *
Vv; =argminnm, (Vi,Vin)
1

To obtain a final solution set 7", the above minimization process is iterated until the

energy of the contour cannot be further reduced:

V=Pj', if Pj'=pj'_],wherej=1,2,... 41)

3.6 Sequential Fram‘e Segmentation

As described previously, majnuallszégmentation of the myocardial boundaries is
reliable, but too time consuming in practice. Semiautomatic segmentation, such as active
contour models that generally use an aﬁtomatic process in sequential frame segmentation,

also requires considerable human intervention to correct the segmentation errors and their
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| propagation during the entire segmentation process. Because most active contour models
use a segmented boundary as an initial seed contour for the subsequent frame, the.
propagation of errors in automatic sequential frame segmentation of the myocardial
boundaries can be significant where there are considerable changes in position and shape
of the boundaries. Hence, a method, which minimizes the propagation of errors in
automatic sequential frame segmentation of the myocardial boundéries with a minimum
human intervention, is desirable. Tracking the motion of a segmented contour using the
velocity information from phase contrast MRI is the proposed solution for minimizing the
propagation of errors, because an initial seed contour placed closer to the desired
boundary generally reduces the segmentation errors from the effect of a false local
minimum in an active contour model. In this section, the SCT algorithm for the
segmentation method developed in prev?eus sections is developed with the goal of
reducing the propagation of errors. m automatic sequential frame segmentation of the
myocardial boundaries, especially the endocardia] boundary.

Before applying fhe SCT. ajlgorithm, the locations of pixels on a segmented
endocardial boundary shoeld be ee;eﬁ;lly exémined in a pixel-by-pixel basis because

they may be either in the region of the myocardium or blood pool due to segmentation



errors. Poor tracking of the boundary pixels in the region of blood pool will result in the
tracked initial seed contour containing significant errors because the velqcity values in
blood pool near the endocardial boundary can be significantly different from those in‘
nearby myocardium as previously described. Hence, an appropriate selection and
displacement of a segmented boundary pixel is first needed to ensure that all the
boundary pixels to be tracked are located in the region of the myocardium. Define the
average orientation tensor energy in the neighborhood around a segmented endocardial
boundary pixel:

B == [ “2)

n i

where |T| is the norm of the neighboring pixel’s orientation tensor around the
segmented boundary pixel. Then, this average orientation tensor energy is compared with
the energies calculated at pixels located in the normal-outer direction to the segmented
boundary, and the pixel with the lowest energy is selected as a new location of the.
boundary pixel. Practically, the neighborhood is chosen to be a 3x3 window centered at
the segmented boundary pixel of interest, and a search region is limited to 3 pixels in the
normal-outer direction of the segmented endocardial boundary for the LV. Because the

average orientation tensor energy measured at the endocardial boundary usually has a

45



higher value than the region of the myocardium, displacing the segmented boundary pixel
to the location with a lower energy will more likely place the boundary pixel in the region
of the myocardium (away from the region of the blood pool). Then, tracking the
segmented boundary pixel located in the region of the blood pool can be mostly avoided
so that a false prediction of the position of an initial seed contour can be minimized.

Now, the initial seed contour tracking for the subsequent frame is performed by
integrating velocity components on the segmented and displaced endocardial boundary
pixels as a function of time [8]:

f@)=s@)dr (43)
wh_ere (1) represents one of the three Cartesian coordinates of the boundary trajectory and
v is one of the velocity components. In practice, this integral is replaced by a summation
over the velocity:

Jen = S + V(i 1) At (44)
where fi+; is the position of a tracked initial seed contour at time #+;, k is the current
frame number, v(f, #;) denotes the velocity at the position of a segmented contour at time
1y, and At is the temporal resolution of a phase contrast MR data set. The out-of-plane (z)

component of the tracked contour position is projected onto the imagirig plane. Because
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the positions of pixels on the previously segmented boundary contour are tracked using
available velocity information, the resulting initial seed contour for the subsequent frame
using this method can be closer to the desired boundary when there are considerable
changes in positions and shapes of the endocardial boundaries between the two
subsequent frames. Then, the effect of a false local minimum (or segmentation .errors) in
automatic sequential boundary segmentation can be reduced. The SCT algorithm is
repeated-sequentially between two subsequent frames untii all the cardiac frames are

processed. An overview of the entire segmentation process is given in Figure 5.
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loop i= 0 to i = middle of cardiac éycle -1 "loop i =n to i = middle of cardiac cycle

L
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‘Individual frame processing for frame i
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v
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R 2R

| Sequential frame p_roc&ssing fo’f frame i

‘Boundary pixel selection and displacement -
—_— —
* Initial seed contour tracking for the next frame
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Figure 5. Overview of segmentation process for the entire cardiac cycle. The total
number of cardiac frames 1s denoted by n.
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3.7 Experimental Results

In this section, the performance of the proposed cardiac segmentation method is
quantitatively assessed. Individual frame segmentation and sequential frame
segmentation of the human LV and RV are separately examined, and results are compared

with those obtained by manual segmentation. -

3.7.1 Data Acquisition

A phase contrast MRI data set of a normal human volunteer was acquired by
Philips Gyroscan Intera 1.5T MRI scanner at the Frederik Philips Magnetic Resonance
Research Center in the Department of Radiology at Emory University. A single human
subject (male, 22 year-old) was scanned once. Scan parameters of the breath-held
segmented echo-planar imaging (EPI) scans were as follows: 20 cardiac frames, 8 short
| axis slices (each slice sequen?ce Wa;s gcquired per breathhold), 41-msec temporal
resolution, 256x 256 in-plane resjolution, 350-mm field of view, 10-mm slice thickness, 1-
mm slice distance, and 50-cm/se<;3 velocity encoding in three orthogonal directions. Stacks

of slices and a set of phase contrast MR images at end diastole are shown in Figure 6.
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Figure 6. A phase contrast MRI data set of a normal human volunteer. a) Stacks of 8
slices at end diastole are visualized, and b) mid-ventricle slices at end diastole. LR, AP,
and SI indicate the velocity encoding directions in left-right, anterior-posterior, and
superior-inferior, respectively. Magnitude indicates the magnitude image.
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3.7.2 Quantitative Measures for Performance Assessment

Although the visual inspection of segmented boundaries is the simplest way for
assessing the accuracy of segmentation, it is qualitative and subjective. Thus, a
quantitative measure is needed to objectively assess the accuracy of segmentation. The
boundary matching descriptors (BMD) [39, 40] and the linear correlation coefficients
(LLC) [41] are used to quantitatively assess the performance of the proposed
segmentation methods in this thesis.

The BMD is a measure of shape-similarity between the myocardial boundaries.
Define the gradient Grad([i] at each manually segmented reference boundary point 7:

1 d
Grad[i] =;}Z:l;|1[i, A-10i,-j1|, 0<i<n (45)

where I[i, -d:d] is the intensity level at each point along the line normal to the boundary, d
is a distance interval from point 7, apd n is the total number of sampled boundary points.
Let CD[7] be a confidence distance along the normal line defined at point 7. Then, the

confidence distance, which is inversely proportional to the gradient, is defined as:

d

CD[i]= ; 46
1= Grad Tl (46)
where Grad [i] is the gradient, which is linearly scaled such that
1<Grad[i]<d 47)
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Given a value of the distance d, CD[7] is calculated and lies between a value of one pixel
and d pixels. Practically, the value of d is chosén as 3 for the LV and 2 for the RV
depending on the myocardial thicknesses. If CD[7] is small (i.e., the gradient is large), the
border can be easily identified. Similarly, if CD[i] is large, the border is ambiguous. Then,
the BMD is defined as the ratio of the total number of points in a comparing boundary
within the confidence distance of a reference boundary (the numbexf of matches) to the
number of points outside of the confidence distance (the number of mismatches). Instead
of directly using the BMD, a modified definition of the BMD is used for normalization

purposes:

Number of boundary points within the confidence distance 8
Total number of boundary points

BMD(%) = 100 (48)
The LLC is a measure of .hqw likely it is that a manually segmented reference

boundary and a segmented boundary by tl}e proposed methods are correlated. The LLC is

defined by:

'v SR-<R)C-<C) ‘
LLC = i=1 Py oo

(49)

Y (R-<R>)*Y.(C~<C>)
izl SRR A
where  is the total number of sampled ‘boundary points, R;is a signature value (radius
B ‘

measured with the center of mass) of the rriénually segmented reference boundary, <R> is
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a mean signature value, C;is a signature value of the segmented boundary by the
proposed methods, and <C> is a mean signature value. If the two boundaries are exactly
correlated with each other in a linear sense, then LLC should be one. Similarly, if there’s

no correlation between the two boundaries, then LLC should be zero.

3.7.3 Individuai Frame Segmentation
Experiments of ‘individual frame segmentation were performed on the entire
cardiac cycle (20 frames) and three different longitudinal levels (apex, mid-ventricle, and
base) of both the LV and RV as follows:
1) Each frame was segmented ten times using both the segmentétion methods with
and without the OGF.
2) In each segmentation, an‘initial seed contour was placed manually around the
desired endocardial bound?;iry by the }'same observer.

HE
t
.
i

3) The BMD and LCC valueé of the segmented boundaries were calculated relative

\
i

to the manually segmented reference boundaries and averaged over ten different

trials.
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4.) The BMD and LCC values from the segmentation methods with and without the

OGF were compared.

At the apical level of the LV, mean BMDs and LCCs from both the segmentation
methods with and without the OGF decreased toward the end systole (frame 8) because
the boundaﬁeé around the end systole were concave and easily corrupted by nearby
points with higﬁ external forces. However, because the three-dimensional motion
differences between the myocardium and blood flow increased arouhd end systole, the
improvements in mean BMDs and LCCs by the OGF also increased around the end
systole. The intra-observer variability of segmentation caused by manually placed initial
seed contours, which were slightly different with each segmentation, decreased by the use

of the OGF especially around end systole. Around end diastole, mean BMDs and LCCs

from both methods were similar. Thése results are shown in Figure 7, and quantitative
comparisons of BMDs and LCCs at selected frames are shown in Table 1. Because the
calculation of LCC assumes a circular shape of the boundary, only BMDs were measured
for the boundaries of the RV. At the apical level of the RV, lower mean BMDs were
obtained around early systole because of the ambiguous boundary delineation due to the

presence of papillary muscles. The use of the OGF reduced the effect of papillary -
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- muscles and resulted in higher mean BMDs. However, improvements in the intra-
observer variability were negligible throughout the entire cardiac cycle. Figure 8 shows
the results of segmentation of th;e RV, and Table 2 shows comparisons of BMDs.

Similar to the apical level, mean BMDs and LCCs at the mid-LV decreased
toward end systole, and the improvements in mean BMDs and LCCs by the OGF
increased around end systole, as shown in Figure 9. Note that BMDs and LCCs at frame
12 and 14 show the effect of flow-related signal loss. This effect was reduced by the use
of the OGF. The intra-observer variability in BMDs also decreased around the end systole,
as shown in Table 3 At the mid-RV, similar results were obtained, but the magnitude of
BMDs and improvements were generally less than those at the mid-LV, as shown in

Figure 10. Comparisons of mean BMDs are shown in Table 4.

At the basall level, the overall performance improvement by the use of the OGF
was less than at other ventricle levels. This might be because of the velocity wrap-around
problem of phase contrast MRI (around .frame 10) and blood turbulence around the
valves. The ilelocity wrap-around problem produces high extemnal forces that attract the
boundary to the false minima, and non-consistent blood flow produces ambiguous

orientation edges that lower the effect of the orientation gradient force. The intra-observer
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variability was also affected by these problems. Figure 11, Figure 12, Table 5, and Table

6 show the results of individual frame segmentation at the basal level.

< Improvement in BMD >
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Figure 7. Performance graphs of individual frame segmentation at the apical level of the
LV. Mean boundary matching descriptor (BMD) values and mean linear correlation
coefficient (LCC) values of ten selected frames are given in a) and c) respéctively.
Improvements in mean BMDs and mean LCCs are given in b) and d) respectively. Blue
in a) and c¢) indicates the results with the OGF, and magenta in a) and c) indicates the
results without the OGF. Error bars in a) and c) represent the standard deviations.
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Figure 8. Performance graphs of individual frame segmentation at the apical level of the
RV. Mean boundary matching descriptor (BMD) values of ten selected frames are given
in a). Improvements in mean BMDs are given in b). Blue in a) indicates the results with
the OGF, and magenta in a) indicates the results without the OGF. Error bars in a)

represent the standard deviations.
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Figure 9. Performance graphs of individual frame segmentation at the mid-ventricular
level of the LV. Mean boundary matching descriptor (BMD) values and mean linear
correlation coefficient (LCC) values of ten selected frames are given in a) and c)
respectively. Improvements in mean BMDs and mean LCCs are given in b) and d)
respectively. Blue in a) and c) indicates the results with the OGF, and magenta in a) and
c) indicates the results without the OGF. Exror bars in a) and c) represent the standard

deviations.
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Figure 10. Performance graphs of individual frame segmentation at the mid-ventricular
level of the RV. Mean boundary matching descriptor (BMD) values of ten selected
frames are given in a). Improvements in mean BMDs are given in b). Blue in a) indicates
the results with the OGF, and magenta in a) indicates the results without the OGF. Error
bars in a) represent the standard deviations.
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Figure 11. Performance graphs of individual frame segmentation at the basal level of the
LV. Mean boundary matching descriptor (BMD) values and mean linear correlation
coefficient (LCC) values of ten selected frames are given in a) and c) respectively.
Improvements in mean BMDs and mean LCCs are given in b) and d) respectively. Blue
in a) and c) indicates the results with the OGF, and magenta in a) and c) indicates the
results without the OGF. Error bars in a) and ¢) .represent the standard deviations.
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Figure 12, Performance graphs of individual frame segmentation at the basal level of the
RV. Mean boundary matching descriptor (BMD) values of ten selected frames are given
in a). Improvements in mean BMDs are given in b). Blue in a) indicates the results with
the OGF, and magenta in a) indicates the results without the OGF. Error bars in a)
represent the standard deviations.
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Table 1. Results of individual frame segmentation at the apical level of the LV.
Endocardial boundary in a frame was segmented ten times by the same observer. In each
segmentation, an initial seed contour was placed manually. The boundary matching
descriptor (BMD) and the linear correlation coefficient (LCC) are mean + standard

deviation.
With OGF Without OGF
Frame Number | BMD (%) LCC BMD (%) LCC
0 83.40+3.76 | 0.832+0.038 | 82.72+2.90 | 0.810+0.067
2 87.44+4.27 0.88210.047 87.40+4.50 | 0.862+0.052
4 88.48+2.85 | 0.840+0.025 | 85.56+4.04 | 0.804+0.029
6 90.44+4.14 | 0.762+0.075 | 86.20+6.85 | 0.698+0.072
8 77.48+5.29 | 0.748+0.072 | 69.70+7.18 | 0.680+0.094
10 79.86£1.70 | 0.832+0.038 75.06i2.69 0.801+0.067
12 86.80+3.34 | 0.800+0.052 | 84.50+4.74 | 0.758+0.086
14 89.58+1.30 | 0.832+0.038 | 88.16+3.28 | 0.8100.067
16 83.58+3.67 | 0.798+0.055 | 84.80+3.02 | 0.814+0.064
18 91.94+3.17 | 0.904+0.011 | 91.08+2.92 | 0.878+0.008
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Table 2. Results of individual frame segmentation at the apical level of the RV.
Endocardial boundary in a frame was segmented ten times by the same observer. In each
segmentation, an initial seed contour was placed manually. The boundary matching
descriptor (BMD) is mean + standard deviation.

With OGF Without OGF
Frame Number BMD (%) BMD (%)
0 76.78+2.48 75.10£1.39
2 68.54+4.70 62.80+5.18
4 58.02i4.89 52.24+4.49
6 61.50+3.56 58.204+4.18
8 75.08+3.58 73.504+3.82
10 70.08+5.03 70.68+6.26
12 70.10+5.87 69.42+5.14
14 © 65.00+6.34 62.6416.41
16 69.76+4.43 67.3415.11
18 70.44+£2.70 68.78+3.61
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Table 3. Results of individual frame segmentation at the mid-ventricle level of the LV.
Endocardial boundary in a frame was segmented ten times by the same observer. In each
segmentation, an initial seed contour was placed manually. The boundary matching
descriptor (BMD) and the linear correlation coefficient (LCC) are mean + standard
deviation.

With OGF Without OGF
Frame Number BMD %) LCC BMD (%) LCC
0 83.9412.93 | 0.872+0.019 | 83.92+2.56 | 0.866+0.015
2 82.76+4.07 | 0.854+0.057 | 79.68+5.04 | 0.824+0.042
4 81.6413.67 0.820i0.031 77.54+3.73 | 0.79610.053
6 75.44+4.76 | 0.798+0.061 70.12i6.68 0.754+0.067
8 §0.70i4.01 0.781+0.038 | 76.36+4.88 | 0.754+0.017
10 | 79.50};*4.86‘ 0.756+0.079 | 77.62+5.43 | 0.744+0.089
12 75.60£3.59 | 0.804+0.043 | 71.76+5.51 | 0.782+0.059
14 75.42+432 | 0.750£0.059 | 72.66+5.55 | 0.738+0.067
16 82.96+3.10 | 0.880+0.034 | 81.22+1.35 | 0.862+0.041
18 80.36+£3.33 | 0.832+0.038 | 80.30+4.55 | 0.810+0.067




Table 4. Results of individual frame segmentation at the mid-ventricle level of the RV.
Endocardial boundary in a frame was segmented ten times by the same observer. In each
segmentation, an initial seed contour was placed manually. The boundary matching
descriptor (BMD) is mean + standard deviation.

With OGF | Without OGF

Frame Number BMD (%) BMD (%)
0 79.86+5.89 | 79.94+7.68
2 7336:2.64 | 74.42+4.87
4 73.4812.62 72.40+3.95
6 | 72.4651 65 | 70.1843.06
8 80.14+6.47 | 78.58+6.27
10 85.90+3.16 | 83.04+526
12 77424298 | 74.78+2.50
14 is.16§:2.49 75.08+3.27
16 73.92:&2.52 74.5012.44
18 76.04:1:2.90 76.44+5.10
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Table 5. Results of individual frame segmentation at the basal level of the LV.
Endocardial boundafy in a frame was segmented ten times by the same observer. In each
segmentation, an initial seed contour was placed manually. The boundary matching
descriptor (BMD) and the linear correlation coefficient (LCC) are mean + standard

deviation.

With OGF | Without OGF
Frame Number | BMD (%) LCC BMD (%) LCC

0 86.02+5.15 | 0.768+0.041 | 84.90+5.68 | 0.758%0.061
2 81.32+2.35 | 0.714+0.042 79.22-f_-1 30 0.696+0.055
4 81.78t4.44 | 0.676+0.033 | 80.78+3.25 | 0.678+0.085
6 79.16+5.27 | 0.618+0.039 | 77.48+4.66 | 0.610+0.063
8 79.26+4.37 | 0.608+0.058 | 76.821+5.60 | 0.594+0.072
10 81 .58+3.59 | 0.712+0.043 82.54i3.20 0.712+0.052
12 74.92+1 96 0.74240.036 | 74.20+3.34 | 0.730+0.016
14 89.481—4.8;6 0.7$6i0.038 87.2414.76 | 0.763+0.047
16 86.9613 75 0.738+0.019 | 86.92+3.08 | 0.724%0.048
18 85.08+1 29 0.758+0.031 | 83 .§0i3.29 0.742+0.028
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Table 6. Results of individual frame segmentation at the basal level of the RV.
Endocardial boundary in a frame was segmented ten times by the same observer. In each
segmentation, an initial seed contour was placed manually. The boundary matching
descriptor (BMD) is mean + standard deviation.

With OGF | Without OGF
Frame Number | BMD (%) BMD (%)
0 76383.68 | 73.26+4.78
2 78.8242.63 | 76.962331
4 78.7022.59 | 77.00+4.31
6 73244290 | 69.58+5.10
8 69.944327 | 67.04+4.43
10 62.184347 | 62.5243.54
12 67244255 | 65.6413.20
14 | 6644371 | 65804435
16 ' 71324255 | 68.84+3.84
18 69.6043.57 | 68841384

67




3.7.4

Sequential Frame Segmentation

The testing for sequential frame segmentation was performed on the same data

set used for individual frame segmentation (20 frames at three different longitudinal

levels in both the L'V and RV as follows:

1)

2)

3)

4)

5)

A sequence at each longitudinal level of each ventricle was segmented five times
using both the segmentation methods with and without the SCT.

In each segmgntation, an initial seed contour for the first frame of the sequence |
was placed 'mam_lal‘ly around the desired endocardial boundary by the same
observer.

Sequential frame segmentation was performed automatically in both forward and
backward tim¢ direction up to the middle of cardiac cycle (i.e., frame 0 to 9 and
frame 19 to 10, respectively)}.}

The BMD and LCC values of tl'%c segménted boundaries were calculated relative
to the manually segmented r%eférience boundaries and averaged over five different
trials.

The BMD and LCC values ﬁqhm the segmentation methods with and without the

SCT were compared.
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At the apical level of the LV, mean lBMDs and LCCs from the method with the
SCT were more consistent than those from the method without the SCT, aﬁd
improvements in BMDs and LCCs by the use of the SCT and the bi-directional sequential
segmentation increased dramatically as the frgme number approached the middle 6f
cardiac cycle (frame 10), as shown in Figure 13. These results were obtained bécause the
initial seed contours for each frame, which were tracked and placed closer to the desired
boundafy by the SCT, significantly reduced the segmentation errors in each frame and
prevented their propagation. The intra-observer varability by slightly different initial
seed contours for the first frame of a sequence was also lower in most cardiac frames, as
shown in Table 7. Similar to the experiments of individual frame segmentation, only
BMDs were measured for the RV. At the apical level of the RV, the overall magnitudes of
BMDs and improvements in BM]); were l‘ower» t?mn those for the LV, because of the
presence of the papillary musc}e% ‘and the tihinner myocardial wall. The thinner
myocardial wall produces more er;ors in bounjciéry pixel selection and displacement
before the actual SCT, and tracking. the boundary pixels outside the myocardial wall can
place an initial seed contour for th:e subsequent frame at a location far away from the

desired boundary. These facts resulted in lower improvements in BMDs and virtually no
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improyement in the intra-observer variability of segmentation. Figqre 14 and Table 8
show the results of sequential frame segmentation of the endocardial boundaries at the
apical level of the RV.

At the mid-LV, changes in positions and shapes of the endocardial boundaries
between the subsequent frames were less than at the apical level. Thus, the overall
performance improvement by the use of the SCT was lower than those at the apical level,
as shown in Figure 15. However, improvements, which increased toward the middle of
the cardiac cycle, were still obtained in both BMDs and LCCs, except for the frame 12,
where the flow-related signal loss was large. The performance degradation by the signal
loss in the magnitude image can be compensated by the combined use of the OGF and the
SCT as described in section 3.7.3. The intra-observer variability of segmentation was aiso
lowered by the use of the SCT, as shown in Table 9. Experimental results for the mid-RV
were the similar to those obtained for the apical ievel of the RV, as shown in Figure 16
and Table 10. However, the magnituées of BMDs and improvements iq BMDs were
generally higher than those at the avpic.alA level because of the reduced effects of the

papillary muscles.
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The velocity wrap-around problem also affected the performance of sequential
frame segmentation at the basal level of the LV as it did in the individual frame
segmentation. Improvements in BMDs and LCC at frame 2 and 4 were relatively low,
and improvement in BMD at frame 10 was even negative, as shown in Figure 17 b) and
d). This is because small errors in the position of the segmented boundary and the
boundary pixel selection process produce large positional errors in the initial seed contour
for the subsequent frame after applying the SCT. The intra-observer variability was also
affected by this problem, as sﬁown in Table 11. For the RV, the combined effects of
velocity wrap-around and the thinner myocardial wall resulted in more modest
improvements in BMDs and virtually no improvement in the intra-observer variability, as

shown in Figure 18 and Table 12.
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Figure 13. Performance graphs of sequential frame segmentation at the apical level of the
LV. Mean boundary matching descriptor (BMD) values and mean linear correlation
coefficient (LCC) values of ten selected frames are given in a) and c) respectively.
Improvements in mean BMDs and mean LCCs are given in b) and d) respectively. Blue
in a) and c¢) indicates the results with the OGF, and magenta in a) and c) indicates the
results without the OGF. Error bars in a) and ¢) represent the standard deviations.
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Figure 14. Performance graphs of individual frame segmentation at the apical level of the
RV. Mean boundary matching descriptor (BMD) values of ten selected frames are given
in a). Improvements in mean BMDs are given in b). Blue in a) indicates the results with
the OGF, and magenta in a) indicates the results without the OGF. Error bars in a)
represent the standard deviations.
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Figure 15. Performance graphs of sequential frame segmentation at the mid-ventricular
level of the LV. Mean boundary matching descriptor (BMD) values and mean linear
comrelation coefficient (LCC) values of ten selected frames are given in a) and c)
respectively. Improvements in mean BMDs and mean LCCs are given in b) and d)
respectively. Blue in a) and c) indicates the results with the OGF, and magenta in a) and
c) indicates the results without the OGF. Error bars in a) and c) represent the standard
deviations. )
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Figure 16. Performance graphs of individual frame segmentation at the mid-ventricular
level of the RV. Mean boundary matching descriptor (BMD) values of ten selected
frames are given in a). Improvements in mean BMDs are given in b). Blue in a) indicates
the results with the OGF, and magenta in a) indicates the results without the OGF. Error
bars in a) represent the standard deviations.
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Figure 17. Performance graphs of sequential frame segmentation at the basal level of the
LV. Mean boundary matching descriptor (BMD) values and mean linear correlation

coefficient (LCC) values of ten selected frames are given in a) and c) respectively.
Improvements in mean BMDs and mean LCCs are given in b) and d) respectively. Blue
in a) and c) indicates the results with the OGF, and magenta in a) and c¢) indicates the
results without the OGF. Error bars in a) and c) represent the standard deviations.
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Figure 18. Performance graphs of individual frame segmentation at the basal level of the
RV. Mean boundary matching descriptor (BMD) values of ten selected frames are given
in a). Improvements in mean BMDs are given in b). Blue in a) indicates the results with
the OGF, and magenta in a) indicates the results without the OGF. Error bars in a)

represent the standard deviations.
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Table 7. Results of sequential frame segmentation at the apical level of the LV.
Endocardial boundaries in twenty cardiac frames were sequentially segmented five times
by the same observer. The boundary matching descriptors (BMD) and linear correlation
coefficients (LCC) of ten selected frames presented here are mean + standard deviation.

With SCT Without SCT
Frame Number { BMD (%) LCC BMD (%) LCC
0 84.38+0.72 | 0.834+0.034 | 84.20+0.74 | 0.834+0.034
2 82.30+£3.19 | 0.830+0.071 | 78.44+5.63 | 0.834+0.097
4 82.06+£5.28 | 0.766+0.093 | 72.84+8.67 | 0.646+0.086
6 81.10+4.71 | 0.686+0.055 | 69.16+8.49 | 0.602+0.130
8 77.52+7.63 | 0.714+0.080 | 64.26+6.15 | 0.638+0.071
10 76.66+4.22 | 0.706+0.084 | 58.62+5.35 | 0.550+0.090
12 80.68+3.81 | 0.808+0.075 | 71.16+4.80 | 0.638+0.026
14 88.62+4.37 | 0.844+0.042 | 77.34+5.27 | 0.654+0.135
16 88.00+4.30 | 0.878+0.058 | 82.72+5.67 | 0.818+0.048
18 89.12+4.23 | 0.880+0.037 | 87.40+6.47 | 0.882+0.045
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Table 8. Results of sequential frame segmentation at the apical level of the RV.
Endocardial boundaries in twenty cardiac frames were sequentially segmented five times
by the same observer. The boundary matching descriptors (BMD) of ten selected frames

presented here are mean + standard deviation.

With SCT Without SCT
Frame Number BMD (%) BMD (%)

0 74.26+5.33 7426+5.33
2 70.62:+5.40 70.74+4.24
4 58.78+3.67 59.22:+6.84
6 55.94+1.31 55.92+2.34
8 57.14+7.77 54.40+5.71
10 54.92+7.70 52.109.36
12 57.78+5.93 55.16+6.37
14 '58:.'48-‘.t7.27 61.08+5.89
16 50.8618.74 60.22+7.26
18 62.48+5.97 60.22+6.18

79




Table 9. Results of sequential frame segmentation at the mid-ventricle level of the LV.
Endocardial boundaries in twenty cardiac frames were sequentially segmented five times
by the same observer. The boundary matching descriptors (BMD) and linear correlation
coefficients (LCC) of ten selected frames presented here are mean + standard deviation.

With SCT Without SCT
Frame Number | BMD %) LCC BMD (%) LCC
0 | 85.80i0.44. 0.93040.010 | 85.80+0.44 | 0.930+0.010
2 81.77+1.33 | 0.883+0.025 | 80.60+2.17 | 0.877+0.040
4 76.73+£3.15 0.807+0.065 | 71.73+2.27 | 0.767+0.068
6 77.63£0.29 | 0.780+0.020 | 73.90+4.44 | 0.693+0.110
8 73.57£0.65 | 0.720+£0.061 | 68.93+£3.54 | 0.643£0.153
10 62.47£3.70 | 0.743+£0.032 | 56.40+7.69 | 0.620+0.173
12 66.50+£1.47 | 0.780+0.010 | 63.70+4.57 | 0.7604+0.070
14 73.00£1.31 | 0.803+£0.025 | 65.43+6.07 | 0.727+0.064
16 79.00£4.70 | 0.847+£0.049 | 72.03+3.21 | 0.773+£0.076
18 80,10:t5.37 0.843+0.049 | 77.17+£3.61 | 0.803+0.086
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Table 10. Results of sequential frame segmentation at the mid-ventricle level of the RV.
Endocardial boundaries in twenty cardiac frames were sequentially segmented five times
by the same observer. The boundary matching descriptors (BMD) of ten selected frames
presented here are mean + standard deviation.

With SCT Without SCT
‘| Frame Number ‘BMD (%) BMD (%)
0 84.17+1.29 84.17+1.29
2 77..70i2.29 73.27+4.10
4 ' 71.5043.60 64.40+6.37
6 66.67+1.55 61.8742.55
8 66.7743.16 61.40+3.22
10 68.27+4.24 62.63+2.24
12 67.3742.65 66.47+2.00
14 66.10+3.06 67.3743.37
16 69.80:5.20 67.4342.59
18 78.03+1.85 75.07+1.15
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Table 11. Results of sequential frame segmentation at the basal level of the LV.
Endocardial boundaries in twenty cardiac frames were sequentially segmented five times
by the same observer. The boundary matching descriptors (BMD) and linear correlation
coefficients (LCC) of ten selected frames presented here are mean + standard deviation.

With SCT Without SCT
Frame Number | BMD (%) LCC BMD (%) LCC
0 91.83+291 |0.863+0.029 | 91.83+2.91 | 0.863:+0.029
2 81.60+4.01 | 0.817+0.049 | 80.1742.32 | 0.777+0.075
4 78.57+4.51 | 0.810£0.036 | 75.53+4.17 | 0.777+0.065
6 77.07£1.78 | 0.817+0.060 | 70.13+2.45 | 0.727+0.070
8 72.27+4.68 | 0.710£0.030 | 63.00+7.19 | 0.620+0.026
10 49.63+428 |0.520+0.060 | 52.83+4.54 | 0.547+0.038
12 67.27+4.35 ‘(-).663450.0‘15 61.03+5.58 | 0.593::0.040
14 86.67i2.57§ :‘0.'863i0.0.32 76.63+3.44 | 0.72320.051
16 78.77i1.51j 0.750£0.044 | 78.73+1.69 | 0.7800,069
18 840762.14 | 079760,087 | 79.60£121 | 0.773£0.065
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Table 12. Results of sequential frame segmentation at the basal level of the RV.
Endocardial boundaries in twenty cardiac frames were sequentially segmented five times
by the same observer. The boundary matching descriptors (BMD) of ten selected frames

presented here are mean + standard deviation.

With SCT Without SCT

Frame Number BMD (%) BMD (%)
0 81.37+3.95 81.3743.95
2 © 73.9322.51 73.4343.56
4 72.4742.68 68.87:0.91
6 65.57+2.74 62.17+2.01
8 56.13+2.98 56.203.05
10 54.27+2.71 52.1042.10
12 54.53+0.86 52.2343.10
14 65.70+4.68 68.17+3.41
16 70374676 71.23+5.34
18 67.77+4.50 69.90+2.07
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3.8 Discussions and Conclusions

The active'cpntour models have been quite successful in segmentation of the
myocardium boundaries. However, most of them still suffer from problems such as flow-
related signai loss, the presence-of papillary muscles, and poor visualization of the
endocardium. In addition, large _éhangés in positions and shapes of the myocardial
boundaries between the subséquent time frames may cause the propagation of errors in
sequential frame segme‘ntatiqn.

A new velocity-aided cardiac segmentation method, which is based on a
- modified active contour model and phase contrast MRI, has been developed to ithprove'
the accuracy of MRI-based cardiac segmentation. Unlike other segmentation methods

based on active contour models, the velocity images from phase contrast MR, together

with the magnitude images, were used for segmentation of the myocardial boundaries.
Using thjs additional information, the tensor-based orientation gradient force was derived
and incorporated into the generalized active contour model to improve the accuracy of
segmentation of the myocardial boundaries, especially the endocardial boundary.
Furthermore, the initial seed contour tracking algoritﬁm was developed to improve the

accuracy of automatic sequential frame segmentation throughout the entire cardiac cycle.
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The performance of the proposed velocity-aided cardiac segmentation method

has been assessed by experimentations on a phase contrast MRI data set of a normal
| human volunteer. Expen'mental. results of the individual frame segmentation showed that
improvements in the accuracy and reproducibility of segmentation of the endocardial
boundary by the use of the OGF were obtained mostly around thé lower level of the
ventricles and end systole. However, improvements were generally negligible around the
upper level of the ventricles and end diastole, and the velocity wrap-around problem and
blood turbulence around the basal level of the ventricles even degraded the performance
of boundary segmentation. Experimental results of the sequential frame segmentation
showed that the propagation of errors caused by improper positioning of initial seed
contours was significantly reduced by the use of the SCT. Improvements in the accuracy
and reproducibility of segmentation of the endocardial boundary were higher in the LV
than the RV and increased as the frame numbér approached the middle 6f cardiac cycle
by the use of the SCT and the bi-directional sequential segmentation. The velocity wrap-
around problem at the basal level of both ventricles and the thinner myocardial wall of
the RV degraded the performance of the SCT and sequential frame segmentation. In

general, improvements in the sequential frame segmentation were higher than those in the
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individual frame segmentation. Visual comparisons of the segmented endocardial
boundaries of selected f‘raﬁles in the LV are presented in Appendix A.

Because problems of registration and flow-artifact of phase contrast MRI data set
can degrade the performance of the proposed segmentation method, appropriate pre-
processing steps are needed to réduce potential sources of segmentation errors from these
problems. Although a simple registration method based on a block matching approach
was applied for the acquired data sét in this thesis, a better method for registration and a
method for reducing flow-artifact are highly desirable. Therefore, future work should
include the development of these methods. Because of the experimentations with the
limited data set of a normal human subject, the results might be easily biased by a certain

experimental setting. Future work should also include experimentations with more data

sets of various human subjects.
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Part 11

Cardiac Motion-Tracking
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CHAPTER 4
'Background

In this chapter, MRI-based cardiac motion-tracking methods that have been used
previously to derive the dynamic characteristics of the myocardium are described. They
can be classified into three main categories, tagged MRI-based methods, phase contfast
MRI-based methods, and computer vision-based methods, depending on the techniques
used to obtain correlation of the positions of myocardial tissue points between images

taken at subsequent time frames.

4.1 Tagged MRI-based Cardiac Motion-Tracking

MR tagging is a technique that can be used to label and track specific regions of
the myocardium during contraction. MR tagging technique produces dark lines or stripes

in the myocardium as multiple and noninvasive markers. Thus, the motion of the
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myocardium within a certain felg._xation time can be tracked without using invasive
markers, such as implanted sutures, becausé lines or stripes move with myocardial tissue.
It originated from “time-of-flight method” that meaéured blood flow by locally saturated
magnetization of blood and detected the passage of this tagged blood stream [42].
Zerhouni et al. [4] propoéed the first MR tagging technique for the analysis of the
myocardial motion within the plane of the image by using selective excitation to produce
a pattern of lines (star-bursts) of altered magnetization. Axel et al. [5, 6] and Bolster et al.
[7] further improved the tagging technique to have grid-like shape so that many markers
could be tracked.

Among these techniques, Axel’s technique based on the spatial modulation of
magnetization (SPAMM) has been extensively used for the analysis of the myocardial
motion and is briefly described here. SPAMM produces a dark tagging grid by spatially
modulating the degree of magnetization prior to imaging. It uses a sequence of two RF
pulses separated by a magnetic—ﬁeld-gradicnt pulse. Starting from a condition of uniform
longitudinal magnetization, a RF pulse (a 90" flip angle) tumns this magnetization into
transverse magnetization with the same initial phase. Then, a magnetic-ﬁeld gradient is

applied across the sample, causing the transverse magnetization to dephase linearly
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across the sample in the direction of the gradient. This corresponds to a sinusoidal
modulation of the x and y components of the transverse magnetization along the direction
of the applied gradient. Then, applying the second RF pulse with the same flip angle as
the first produces a sinusoidal modulation of the longitudinal magnetization. The
resulting image shows periodic stripes due to this modulation. Applying another sequence
of two RF pulses with the ﬁeld gradient orthogonal to the first field gradient produces a
tagging grid, as shown in Figure 19.

As described, SPAMM provides some\:;/hat sparse but sufficient number of
noninvasive markers within the imaging plane to track the motion of the myocardium. It
yields the two (x and y) components of thg motion parallel to the image plane, so the two-
dimensional (in-plane) motion of the myocardium can be directly visualized and tracked
[43, 44, 45, 46, 47, 48, 49]. However, because the motion and deformation of the
myocardium are typically described by the strain that is a function of the derivatives of
the displacement field, the interpolation process is needed to obtain a dense displacement
field. In addition,‘because the current MR imaging techniques can provide only the image
slices instead of true volumetric data, the three-dimensional motion of the myocardium

can not be directly visualized and tracked as the two-dimensional case. For example,
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Figure 19. An example of SPAMM images. Image on the left is at end-diastole, and
image on the right is at end-systole.

given that every imaging plane is spatially fixed, the out-of-plane (through-plane) motion
of the myocardium cannot be captured by tagged data points on the image plane: i.e., the
subsequent motion of tissue points imaged at frame 0 are not generally known. However,
tégged data points imaged at subsequent iframes (= 1) provide one-dimensional
displacement information ‘because their proj;aions af frame 0 onto the imaging planes
are known. Figure 20 shows the relationship between imaged and actual tissue
displacement. Point P on the tagging plane is initially imaged as P and finally as P'. Pand

P’ are the same tissue point, a component of whose motion is estimated by the tagging
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approach to have the displacement of P' to P. As stated previously, the motion of the
tissue point initially at P’ is generally not imaged at subsequent frames due to the out-of-
plane motion. Therefore, a method for combining a series of sparse one-dimensional
displacement information into a dense three-dimensional displacement field is needed to

fully characterize the three-dimensional motion of the myocardium.

At frame 0

At frame 1

B , ’ YT P"/
, / )’/ . ﬁ " Tmaging plane

Initial tagging plane

Defonmed tagging plane

Figure 20. Relationship between imaged and actual tissue displacement.
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Model-based cardiac rﬁotioﬁ-tracking methods have been widely used to
reconstruct the mree-dimeqsional displacement field from the two-dimensional image
sequences from tagged MRL Young et al. [13, 14, 50, 51, 52, 53] proposed a fmité—
element model-based approach to reconstrﬁct the three-dimensional motion of the
myocardium. In their method, a ﬁnitg-g]ement model is first constructed based on
‘techniques described by Nielsen ef al. [54]. This model is then used to reconstruct the
three-dimensional displacement field from the one-dimensional displacement information
obtained from short- and long-axis tagged MRI slices. The actual reconstruction
technique is based on model-fitting procedures, which are called “réconstruction fit” and
“deformation fit.” Young et al. [55, 56] recently developed a similar method for trackingl
thg three-dimensional motion of the myocardium based on a “model tag” and applied this
method to the analysis of the motion of the RV. This method doés not require
“reconstruction fit,” and thus can be analyzed faster. Park et al. [15, 57, 58, 59,‘60] used a
volumetric physics-based deformable model and Lagrangian dynamics in the analysis of
the three-dimensional motion of the myocardium. They fitted a deformable model to
tagged MRI data set of the LV to reconstruct the thtee-dimensional displacement field

and extract the motion parameters. Their deformable model is based on the parameter
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functions that can capture regional shape variations of the LV, such as bending, twisting,
and contraction. O’Dell et al. [61, 62] proposed a three-dimensional motion
reconstruction method from planar tagged MR images, where three orthogonal sets of
one-dimensional displacement fields from a stack of two-dimensional short- and long-
axis slices of the LV were used to fit an analytical series expression in a polar spheroidal
coordinate system. ‘Kerwin at al. [63] and Ozturk at al. [64] proposed spline-based
methods for reconstructing the three-dimensional motion of the myocardium from tagged
MR images. Denny at al. [65] also proposed a method for estimating a dense
displacement field from sparse displacement field based on a stochastic model. In general,
these model-based cardiac motion-tracking methods extract a series of one-dimensional
displacement information from orthogonal tagging planes and then fit a model to the
displacements of tagging stripe intersection points (or tagging stripes) to reconstruct the
three-dimensional displacément field. |

Tagged MRI-'bvased cardiac motion-tracking rﬁetﬁods have been quite successful
because of the lov?z sensitivity to artifacts, relativély high temporal resolution, and direct
~ visualization of myocardial motion, but currently have the sevéral limitations. First,

tracking the entire cardiac cycle often suffers from the inherent tag fading from T}
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recovery: i.e., the motion of the myocardium only during the contraction phases can be
tracked without the tag fading problem. Secondly, multiple data acquisitions, such as
acquisitions in both short and long axis, are required to obtain three-dimensional motion
information of the myocardium. Thirdly, detection of tagging snipeé or tagging stripe
intersection points is required in the preprocessing stage. The tag detection step is
generally done by semiautomatic segmentation methods [66, 67, 68], but it may cause
errors in the motion-tracking stage.} Lastly, because of the limited spatial resolution of
tagging grids, an appropriate interpolation method based on a specific model-geometry is
generally required to obtain a dense displacement field. Thus, the motion-tracking

method is often limited to a specific ventricle.

4.2 Phase Contrast MRI-based Cardiac Motion-Tracking

Although phase contrast MRI has been extensively used for measurement of
blood flow as described in section 3.2, several researchers have also applied this imaging
technique to measurement of the motion of the myocardium. Dijk [69] first suggested the
use of MR phase to obtain the myocardial velocity using a spin echo gated MR imaging

sequence, and Nayler ef al. [70] then demonstrated that velocity information could be
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‘

encoded into the phase of the MR sfgnal by using rapid gradient echo sequences. More
recently, N.J. Pelc er al. [8, 71, 72] extended these concepts by incorporating the velocity
phase encoding into a conventional Cine-MR sequence and enabled the tracking of the
motion of the myocardium throughdut the entire cardiac cycle.

The data provided by phase contrast MRI are velocities at a set of fixed points in
space, i.e., instantaneous Eulerian velocities. Because velocity measurements at a given
image location at different times generally correspond to different myocardial tissue
points, deriving the motion and deformation characteristics of the myocardium
necessarily involvesk tracking the motion of myocardial tissue points. Thus, velocity-
based trajectory computation is needed to obtain the tissue velocities and their trajectories.
Several tracking methods have been proposed to calculate the trajectories of tissue points
by integrating the velocities over time. Constab}e et al. [73] and N.J. Pelc ei al. [74]
proposed tracking methods for the twc)-dimensic%pal motion of the myocardium using
similar velocity integration methods. L. R. Pelc etval. [75] compared their methods with
directly visualized motion by implanted markers. Lingamneni et al. [76] improved N.J.
Pelc’s method by using motion terms higher than the‘ velocity. These are based on |

“forward-backward velocity integration.”
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Forward-backward _velocity ‘integrgt§on performs two different velocity
integrations as follows. Velocity integration in the forward direction is first performed by
| a recursive summation §§er the velqcity as described in section 3.6:
| Ser1= ﬁ +¥( ﬁ,tk)At (50)
where fi+; is the position of a tracked tissue point at time #j, k is the current frame
number, v(fx, tx) denotes the velocity at the position of tissue point at time %, and At is the
temporal resolution (phase delay) of a phase contrast MR data set. This simple integration
method assumes that the velocity is W(f;, #) for the entire interval # to #+,, and then
suddenly becomes W(fi+1, #+1). Therefore, if it is assumed that the velocity varies linearly
during the time interval (from # to %), then a refined trajectory of tissue motion can be
obtained by:
Foor= St VR R+ V(e A (51)
These forward directional velocity integration methods estimate the tissue location in the
next time frame from the location in the current time frame. However, because periodic
motion of the myocardium and retrospective gating ensure that a point identified in the
first frame returns to its starting position in the end of each cardiac cycle, velocity

integration in backward direction can also be performed to obtain a trajectory of tissue
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motion. Let b, be the trajectory resulting from backward directional velocity integration.
Then, the equations of the backward directional velocity integration are
b 1= b — v(bx, t) At (52)
bio1= bk-%[v(bk, 1) + (b -1, te - )] AL (53)
Then, more reliable trajectory of tissue motion can be obtained by combining the
trajectories from forward and backward integrations. Let this combined trajectory 7. be a
linear combination of the forward and backward trajectories, with the relative weighting
on the forward trajectory, wy, being dependent on the time frame: |
re=Wwr fi + w5 b - (54)
where the weighting coefficient w can be selected on the basis of various constraints.
Examples of the appropriate weighting coefficients arews =1—¢/Tandws=¢/T that
minimize the velocity offset cqused by eddy current-induced fields, where T is the cardiac
cycle. Because forward/baqkward trajectory error increases with increasing/decreasing
frame numberﬁ, these intuitive weighting coefficients effectively minimize the errors of
the combined trajectory.
Data degradation in the acquisition process resulting from sources such as eddy

currents and the interpolation procedure used in cine data reconstruction sometime
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presents challenges to phase contrast MRI-based cardiac motion analysis. To reduc_e this
degradation and improve the tracking accuracy of the motion trajectory, Zhu et al. [77]
proposed a tracking method based on the frequency domain integration technique. Rather
than using polynomial models and the time domain velocity integration, this method uses
a Fourier model‘ that takes advantage of the periodicity of the measured data and any
depicted motion. Because the motion depicted by the cine data is periodic, the algorithm
models a trajectory composed of Fourier harmonics and integrates the velocity data in the
frequency domain. Later, Drangova et al. [78] compared Zhu’s method with the forward-
backward integration method, and a better in-plane tracking accuracy was obtained in the
frequency domain integration technique. However, a problem of the trajectory
uhderestimation occurred when there was the out-of-plane motion of the myocardium.
Although the velocity integration methods described so far produce reliable in- -
plane motion trajectories of the myocardium, these methods clgarly can introduce errors
not only in the out-of-plane direction, but also in the in-plane directions. This is because
these methods use only a single slice from the phase contrast MRI and assume that there
is no motion in the out-of-plane direction. To cope with this problem, Zhu e? al. [79] used

multiple two-dimensional slices from phase contrast MRI to track the three-dimensional
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motion of the myocardium. In thgir method, a linear spatial modeling technique is used
because phase contrast MRI hés relatively low out-of-plane resolution compared with the
in-plane resolution. Zhu et al. [SOj also proposed a spatial and temporal modeling method
using a finite element-based deformable model and Fourier tracking.

Phase contrast MRI-based cardiac motion-tracking methods have several
advantages over tagged MRI-based methods. First, because of higher spatial resolution of
trackable markers, pointwise motion-tracking of the myocardium can be achieved.
Secondly, segmentation of markers, such as tag intersection points, is not needed.
However, phase contrast MRI-based methods are sensitive to velocity artifacts and do not
have the capability of direct visualization of the motion of the myocardium. They also

suffer from the relatively low out-of-plane resolution of velocity images. Furthermore,

because velocity estimation near the myocardial boundaries is often noisy, the tracking

accuracy near the myocardial boundaries can be degraded.
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4.3 Computer Vision-based Cardiac Motion-Tracking

Several computer vision-based methods, which try to obtain correlation of
positions of myocardial tissue points between subsequent time frames without the use of
either tagged MRI or phase contrast MRI, have been proposed to track the motion of the
myocardium. Song at al. [81] used three-dimensional cine-CT images and the optical
flow algorithm, which is based on the assumption that a pixel in an image is consistent in
its intensity level from one frame to the next. Amini et al. [82] used a shape feature-based
method to obtain displacement estimates. Shi at al. [83, 84] proposed a pointwise
tracking method based on the surface curvature of the epicardium and also combined a
curvature-based displacement estimation method with phase contrast MRI [85].
Papademetris at al. [86] also proposed a shape feature-based method using a physical
model and ultrasound images.

In general, computer vision-based cg_r_diac motion-tracking methods are mostly
independent of imaging modality types i.;;L, MRI, CT, or ultrasound can be used.
However, most of them are very dependtzanﬁ <;n accurate ventricular boundary (or surface)

segmentation that are still neither easy to achieve or fully automated. Furthermore, their

trackable region tends to be limited to a certain region of the ventricle.
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CHAPTER 5

Elastically Deformable Model-based Cardiac
Motion-Tracking

5.1 Introduction

.As described in section 4.2, phase contrast MRI has been used for cardiac
motion-tracking with the several advantages over tagged MRI. However, because the data
acquisition time of phase contrast MRI usually prohibits the use of true volumetric data in
routine clinical practice, phase contrast MRI generally produces only multiple 'two-
dimensional im‘age‘ slices with relatively low gut-qf-_plane resolution. A linear or higher
order spatial modeling technique can be:‘ usedj.to éstimate the velocity values within (or
between) the imaged slices to compensgte fo% ‘t:h‘e ciaﬁ'ects of this relatively low out-of-
plane resolution. However, because of the coirfﬁiéx shape and motion of the myocardium,

simple polynomial model-based techniques mgy produce errors in the estimated velocity
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values, and consequently they may degrade the accuracy of tracking not only the out-of-
plane métion but also the in-plane motion of the myocardium. Therefore, in order to track
the three-dimensional motion of the myocardium more accurately, the effects of the
relatively low out-of-plane resolution of phase contrast MRI should be effectively
compensated for or minimized.

In this chapter, a new elasfically deformable model-based cardiac motion-
tracking method is introduced to estimate the three-dimensional motion and deformation
of the myocardium. The mgthod is designed mainly to address the problem of the
relatively low out-of-plane resolution of phase contrast MRI and transforms the cardiac
motion-tracking problem into an energy minimization. In section 5.2, the basic concept of
elastic deformation and the elastically deformable model, which will be used to recover
the three-dimensional motion and deformation of the myocardium, is reviewed. In section
5.3, a cardiac motion-tracking method using elastic deformation estimation (EDE) is
introduced. In secfion 54, techniqugs; ;féf constructing a geometrical representation of the
LV from phase conﬁast MRI data set is presented. In section 5.5, the overall procedure of
the motion-tracking is described. Exbén'mental results are presented in section 5.6,

followed by the discussions and conclusions in section 5.7.
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5.2 Elastically Deformable Model

The complete modeling of the physical properties and mechanical behavior of
the myocardium is extremely difficult and has been an ambitious goal because the
myocardium is non-linear, anisotropic, and an active material. Rather, simplified
modeling techniques, which retain some of the important properties of the myocardium,
have been developed to seek a trade off between precise modeling and computational
efficiency. In this section, an elastically deformable model, which is used to recover the
three-dimensional motion and deformation of the myocardium, is described. This model
is often considered the approximate continuum model because it adheres less strictly to
the laws of physics than the sophisticated continuum mechanics-based models. However,

it is still physically plausible and computationally efficient.

Deformation is called elastic when an object recovers its undeformed reference
configuration (shape) as soon as all extemally applied forces are removed. The elastic
force is the force that recovers the deformed object to its reference configuration and can
be characterized by the deformation potential that associates an energy with the
deformation of an object. The deformation potential energy'shou]d have the following

properties: the energy is zero in the reference configuration of an object, the energy
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increases as the deformation of an object from its reference configuration increases, and
the energy is invariant to rigid motion of an object. The differential geometric-based
shape description can be used to define the deformation potential energy of a three-
dimensional object that has the above broperties.

Two objects (solids) in three-dimensional space haye the same instantaneous
shape if their metric tensors are identical at a particular time [87, 88]. Let the metric

tensor be G, and defined by a 3 by 3 matrix with entries:
op op

G;(p(u,7)) =§§J (35)
where u; is the ith element of three Cartesian coordinates, and p is a parametric
representation of the position of a constituent point of an object defined by p(u, #) = [p1(u,
1), pAu, 0, ps(u, t)]T, where u = (u), u2, u3)at time 7 in a domain Q=0<u,, u,, u, <1.
This metric tensor describes the shape of an object defined by Euclidean distances and
angles between nearby pdints in three-dimensional space. The off-diagonal elements
quantify angle deviations and the diagonal elements quantify distance deviations. These
distances and angles change as an object deforms, and the metric tensor is invariant to

rigid motions such as rotation and translation [89]. Therefore, the metric tensor uniquely

describes the instantaneous shape of an object by the stretching and shearing tensor
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components between nearby data points in three-dimensional space. Using this shape
measure, the deformation potential energy, which describes the elastic deformation of an

object, can be defined as:

E g formation (D) = ;fl,:[lilag(U)(Q;(p)—G,?(p))zdulduzdua (56)
where Gis the metric tensor of the deformed state, G° is the metric tensor of the reference
(undeformed) state, and o;{(u)is a weighting. coefficient determining the influence of each
tensor component: the resistance to stretching along uy, u;, and u3, as well as shearing
across planes perpendicular to these axes.

Now, by using the definition of the elastic deformation of an object, the system

of a dynamically deformable model, which unifies the description of shape and motion of

a three-dimensional object, can be constructed. Because dynamically deformable model

is described completely by the positions p(u, 1), velocities Op/0r, and accelerations
0°p/of* of its mass elements as functions of u and ¢, Lagrange’s equations of motion for

p is expressed as:

62p

a 2 +7gp 4 Edeformaﬁon(p) =f (57)

where f(u, #) is the net externally applied force, H(u) is a mass density, y(u) is a damping

density, and 6pEd¢fom,,.a,,(p) is the internal elastic force that resists deformation. By
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numerically solving the above partial differential equation with appropriate initial
conditions, the system can evolve to equilibrium and exhibit intuitively meaningful
physical behaviors. An example of the elastic behavior of the above elastically

deformable model is shown in Figure 21.

53 Motion-Tracking by Elastic Deformation Estimation

In this sectiqn, a cardiac 'motion-tracking method by elastic deformation
estimation is introduced to recover the three-dimensional motion of the myocardium from
phase contrastkMRI data set. By first formulating the simplified potential energy of elastic
deformation of the myocardium and then constructing a system of a dynamically
deformable model, the cardiac motion-tracking problem is transformed into the energy
minimization problem of an élastically deformable model. The elastic property
incorporated into the s‘ystem is uséd ;to refine the;motion-trajectories calculated by the
polynomial-based spatial modeling téchnique. Finally, a numerical solution procedure of

the system is described.
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Figure 21. An example of the simulated elastic behavior of the elastically deformable
model. a) a reference configuration. b) a deformed configuration. c) a sequence of
recovery process back to the reference configuration (left to right and top to bottom)
when all externally applied forces are removed.
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5.3.1 Potential Energy Formulation

Our cardiac motion-tracking problem is transformed into the energy
minimization problem to estimate a set of position vectors p of tissue points on the
myocardium. The energy minimization of an elastically deformable model of the
myocardium balances an intemal potential energy derived from an elastic deformation
measure of the myocardium and an external potential energy derived from externally
applied forces. Its mathematical formulation draws from the thimal approximation
theory. The estimated positions of tracked tissue points on the myécardium are expressed
as the positions that mjnimize the total potential energy defined as:

E\ia(P) = Eitormat(P) + E oiterma (P) (58)
where Einema(p) is an internal deformation potential energy and Eexerna(p) is an external |
potential energy.

To simplify the problem, an ésgumption hafs been mafie: thé myobardium is
linearly elastic’ (Hookean’s elasﬁc) and ;sbtropic matérial. Even though' the myocardium
has much more complex material properties (e.g. non-linear, anisotropic, and active
properties) and needs_ a sophisticated continuum mechanics-based formulation to reflect

those properties, this assumption can be used to retain the intuitive physical property of
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the myocardium yet greatly simplify our cardiac motion-tracking problem. Using this
assumption, the internal deformation potential energy Ejema(p) is defined by using
Equation (56):

3 &,)G, () -GN dududu,  (59)

i,J=1

B toma(P) = Edefarmarion (p)= j‘j‘j‘
5 200
where a;(u) is a weighting function determining the influence of each metricrtensor
component, and u = (u, uz, u3). This internal potential energy formulation stores the
energy as the elastically deformable model of the myocardium deviates from its reference
conﬁguratibn, while it releases the energy as the configuration of the model recovers its
reference configuration as described in section 5.2. Because it is also assumed that the
myocardium is an isotropic material, the intemal deformation potential energy can have
only two weighting ﬁmctions‘corresponding to on- and off-diagonal elements of the
metric tensor, which quantify distance ci_eviations and angle deviations from the reference
configuration, respectively.
The external potential energy Ea,,,e,mz(p) associates the elastic ‘deformation of the
myocardium with externally applied forces and consists of two components: the motion
potential energy Eornion(p) and thé 1mage ?é)ténﬁal energy Ej,qq.(p). The motion potential

energy Eonon(p) 1s derived from the force that attracts the model to the tracked position
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of the myocardium by velocity integration and is defined by:

Emo,,-m(p){Hﬂ(u)g(p,-p?)zdu,duzdus (60)
where B(u) is a weighting function determining the influence of the tracked position of a
tissue pdint on the myocardium by velocity integration and p° is the tracked position of a
tissue point on the myocardium by velocity integration in the subsequent time frame
(deformed state). Because the two in-plane .(#; and u, in Cartesian coordinate system)
spatial resolutions of the velocity images from phase contrast MRI are usually identical
and higher than the out-of-plane (u3) resolution, B(u) is solely a function of the out-of-
plane directional distance between the current position of p and the position of the

imaging plane and is inversely proportional to the distance (i.e., smaller the distance,
higher'the weighting value). B(u) can be seen as a confidence measure of the velocity
value at the current location of a tissue point on the myocardium. Then, highly weighted
model points close to the imaging plane tend to move to the tracked.positions of
corresponding tissue points by velocity integration, while lowly weighted model points
away from the imaging plane tend tp move in terms of the elastic property of the
deformable model of the myocardium. This implies that the tracked positions of tissue

points on the myocardium by velocity integration with less reliable velocity values can be
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refined by the elastic property of the myocardium.
p’is obtained by integrating velocity values of tissue points in the current time
frame (reference state) as a function of time:
p’=p" +v(p)At (61)
where Af is the time interval (phase delay) between the current and the subsequent
frame of a phase contrast MR image sequence, p is the spatial position of a tissue point
in the current frame, and v(p") denotes the velocity value at position p”. Because the in-
| plane spatial variation of the velocity value in a single voxel is small, the simple nearest
neighbor interpolation technique is used for the in-plane directional spatial modeling of
v(p"). However, because the out-of-plane resolution of multi-slice phase contrast MRI is
usually poorer than the in-plane resolution, the linear spatial modeling technique [79] is
used for .the out-of-plane directional spatial modeling of v(p"). Let (u1, uz, u3) be the
spatial position in Cartesian coordinate system, then the intra-voxel velocity variation can

be expressed as:

0
U —u

Wty 0y, 45) = V08,13, 43) + (VV)- |ty —tts |+ - (62)

U, —-ug
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where (u°,u),ul) is the center of voxel () is the slice position) and Vv is velocity
gradient. If the higher-(second or higher) order terms are truncated, then it becomes the
linear spatial interpolation. In the case of the nearest-neighbor interpolation, constant
velocity within each voxel is assumed, and the velocity value for all locations inside the
voxel is v(u’,us,u).

The image potential energy Einag.(p) is derived from the force that attracts the
boundaries of the model to the closest endocardial and epicardial boundary in the phase

contrast MRI magnitude image and is defined by:

111 3

E,.(D)= E{Hr(u)% (p, —p}) du,du,du, | (63)
where 7(u) a weighting function and p® is the closest position of zero-qrossing of the
Laplacian of a Gaussian smoothed phase contrast MR magnitude image in the.subsequent
frame. Because the velocity values around endocardial and epicardial boundaries are
often noisy, this image potential energy derived from image boundary information makes
it possible to reduce the tracking errors of the boundaries of the myocardium. Finally, the

motion potential energy and the image potential energy are combined into the external

potential energy:
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5 o @ E,pyor(0)+ (1~ ®)- B, (p), if p belongs to the boundaries
exeral \P) = E, ion(D); otherwise

(64)
where o is a weighting coefficient (0 < @ < 1), which is' determined experimentally to
produce the optimal results.

By balancing the intemal and external potential energies (minimizing the total
potential energy), the estimated configuration of the model of the myoéardium will have
a minimal deviation from its reference configuration while having the most similar
deformation with a tracked configuration of the myocardium by velocity integration. In
practice, a solution set of position vectors p, which minimizes the total energy E,,,(p)
can be found by the variational approach (the calculus of variations). Instead of directly

solving the above static problem, a dynamically deformable model system, which unifies

the description of shape and motion of the myocardium as briefly described in section 5.2,

will be constructed and solved numerically in the next section.
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5.3.2 Dynamically Deformable Model and Numerical Solution

Procedure

Solving the static problem described in the previous section can only produce the
final deformed (tracked) configuration of the model of the myocardium at a particular
time instance (frame) of the phase contrast MRI data set. By applying the principle of
Lagrangién mechanics, the dynamic behavior of the elastically deformable model of the
myocardium between the given two time frames can be estimated, so intermediate
configurations of the model can also be estimated.

The dynamic behavior of the elastically defonnab]e model of the myocardium
can be described by Lagrange’s equations of motion as described in section 5.2 and given
here again:

2ty s i) = ©3)

where  6,E . mauion(P) 1is the simplified internal elastic force derived from the

deformation potential energy and represents the first variational derivative of the energy

SE g
———""f"g“""" ®) . The simplified internal elastic force can be approximated by:
p
59 op
SE. . (p)=3 —| a. ()G (p)-G(p))=— 66
Epmaen )= 3~ [a,,@)( /() -G;()) au,.] (66)
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The complete derivation of this simplified internal elastic force of the elastically
deformable model is presented in Appendix B.

Because Equations (65) and (66) are continuous expressions of the partial
differential equation of motion and the internal elastic force, discretization of these
equations is needed to solve the problem numerically. For this purpose, the standard
finite-difference approximation method is applied to transform the partial differential
‘equation of motion into a system of ordinary differential equations [87, 90] as follows.
Let us first consider the continuous expression of the internal elastic force. With time-
independent notations, the domain Q=0<u,, u,, u, <1 is discretized into a regular
M x NxL discrete grid " of nodal variables such that p[m, n, I] = p(hm, hn, i),
where B =1/(M-1), h=1/(N-1), h=1/(L-1), 0<m<M , 0<n<N, and
0</<L. Then, the first forward (D) and backward (D~) difference operators of

plm, n, I] can be defined as: -

{
1
|
|

( [m+1 n, I1-p[m, n, )

p[m NES A
DS pim, n, 1= (p[m é+l ;]2 plm, n, I]) 67
D; pim, m, 1] = (p[m n, 1+2 plm, n, 1)
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D pim, n, 1= (plm, n, I1—p[m-1, n, 1)

h
D; pim, n, 1= (plm, n, 1] —hp[m, n-1,1]) (68)
D; plm, n, I]= (plm, , 7 _hl:[m’ n, 1-1)

Using the above difference operators, the discretized internal elastic force can be

approximated by:
g[m, n, 1] =i~D; (w,lm, n, 11D} p[m, n, 1) (69)
ij
where  w,[m, n, I]=ay[m, n, l](D,.+ plm, n, I]-D; plm, n, I1-G.[m, n, I]) and
a;[m, n, 1] is the discrete counterpart of a;(u). By rearranging the right side of the
above equation and denoting p[m, n, I] and €[m, n, I] as p’and & respectively, the
discretized internal elastic force can be written as:

e =K@ p’ (70)
where K(p’) is called a stiﬁ‘ness matrix. The next step is to discretize the mass density
(w1, uy, us) and the damping density y(u, ua, u3) as y[m, n, I] and y[m, n, I], and construct
mass and damping matrices. In finite element analysis [91], the mass matrix can be
assembled from element mass matrices by expressing the mass density in terms of the

interpolating functions and integrating over the element. The damping matrix can

similarly be obtained by assembling contributions from element damping parameters.
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However, because it is usually difficult to determine these damping parameters, the
damping matrix is often appro'ximated as a linear combination of mass and stiffness
matrix, or mass alone [92]. For simplicity and cémputational efficiency of our system, the
mass 1ﬁatrix (M) is defined by a diagonal lumped (i.e., the mass vis assumed to be
concentrated at a nodal point) matrix with g{m, n, I] as diagonal components, and the
damping matrix (C) is deﬁned by the simplified linear relationship C = aM. For further
simplicity, an identity matrix is used for the mass matrix, and « is chosen experimentally
to minimize the vibrating behavior of the model during evolving to equilibrium. Then, the

external force is discretized into ., (p"):

[ (M N.L }
10

MN.L
ferma(P) =1+ (1-®) ( > 7(u) ”p'—p'b ”2), if p’ belongs to the boundaries  (71)
m,n,l

M N,L 2
ZI ,B(u)“p’ —p’°" , otherwise

Finally, a system of the second-order ordinary differential equations, which describes the
dynamical behavior of the elastically deformable model of the myocardium, can be
expr&sséd as:

d2

dp’
M= 5+ C2 A KPP’ = e (P) (72)
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where ¢ is a time variable.
To solve the system numerically, the semi-implicit time-integration technique
[87] is applied. First, &’ and f.,,,, are computed at t+Ar and 1, respectively, and the

discrete-time operators are approximated by:

dzp' p': At—2p’t+p't At
o P = 73
dr* Ar? ‘ (73)
dp ' p ,t+At - p,t-At
~ R 74
dt 2At (74)

Then, a linear system for p',,,, is obtained by substituting Equations (73) and (74) into

Equation (72):

A Pa=8, (75)
1
K + —M+—~C 76
AP =K@)) ( > ) (76)
, 1 1 1),
gt=fwdema1t N2M+EC pt EM_-ZEC |\ (77)
pr, = el (78)

By recursively solving this system w1th initi{ll conditions of p’, and p’, at r =0, the

model can evolve to equilibrium and exhibit pﬁysically meaningful dynamic behaviors.
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5.4 Model Geometry

In this section, techniques for constructing the initial geometrical representation
of the LV from phase contrast MRI data set are described. The techniques in this section

can be directly extended to the RV with minor changes.

5.4.1 Boundary Segmentation

To construcf a volumetric representation of the LV from the multiple two-
dimensional slices of phaﬁe contrast MRI, segmentation of both the endocardial and
epicardial boundaries are first needed. Velocity-aided cardiac segmentation method
developed in Part I of this thesis is used to obtain both the endocardial and epicardial
boundaries in the two-dimensional image slices at the first time frame, as shown in
Figure 22. Initial contours are placed manually around either the endocardial or epicardial
boundary, and the segmentation algorithm is applied to each boundary.’ This process is
repeated until all the boundaries in the entire slices are segmented, and then the
segmented boundaries are stacked together, as shown in Figure 23. Some manual

corrections are performed where the segmented locations are considered significant errors.
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Figure 22. Boundary segmentation of human LV at the first time frame. a) original
magnitude image of phase contrast MRI around the apex. b) the segmented endocardial
(red) and epicardial (blue) boundaries are superimposed on the same magnitude image. c)
original magnitude image around the base. d) the segmented endocardial and epicardial
boundaries are superimposed on the same magnitude image.
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Figure 23. Segmented myocardial boundaries. a) A stack of the segmented endocardial
(yellow) and epicardial (white) boundaries of human LV. b) the segmented endocardial
and epicardial boundaries are superimposed on a stack of the two-dimensional magnitude
images of phase contrast MRL
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5.4.2 Slice Interpolation

As most three-dimensional imaging modalities, such as MRI and computerized
tomography (CT), phase contrast MRI also produces a series of two-dimensional image
slices that usﬁally have higher in-plane resolution than out-of-plane (through-plane)
resolution. Theréfore, quantitative ahalysis of images from such modalities often suffers
from the lack of out-of-plane resoiution, and the three-dimensional Cardiac motion
analysis even more suffers from it because of the out-of-plane motion of the myocardium.
One of the classical solutions for this problem is to interpolate the given slices to estimate
the missing slices between them, and then use this extended data set for further
processing. Because our initial model geometry is based only on the endocardial and
epicardial boundary information of the LV, a shape-based contour interpolation method is
used to provide an extended data set for the shape description of the LV.

The shape-based contour »int:c?:rpolation method [93] consists of two main
processes: distance map transformatiog, and linear interpolation of the dis’gance maps.
The distance map transformation is performed by two consecutive chamfering processes,
where the first chamfering updates the pixels row by row from top to bottom with a left-

to-right ordering within the rows using the template in Figﬁre 24 a), and the second
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chamfering updates the pixels row by row from bottom to top with a right-to-left ordering
within the rows using the template in Figure 24 b). These chamfering processes convert
the segmented contour image (slice), which is initialized with positive numbers inside the
contour and negative numbers outside the contour, into a grayscale image. The resulting
grayscale image represents the chamfer distance map of the segmented contour. Then, the
linear interpolation of the chamfer distance maps at the two consecutive slice positions is
performed to obtain missing contour images between two slice positions. Finally,
thresholding of the obtained contour images at zero produces interpolated contours.
These chamfering and linear interpolation processes are repeated until all the interpolated
endocardial and epicardial contours are found. Figure 25 shows the results of this shape-

based contour interpolation of the endocardial and epicardial boundary contours.

14 | 10 | 14

10 | o 0 10

14 10 14

a) b)

Figure 24. 3 x 3 templates for chamfering processes. a) template for the first chamfering.
b) template for the second chamfering.
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Figure 25. Results of the shape-based contour interpolation. a) given endocardial
boundary contours. b) interpolated boundary contours. c) given epicardial boundary
contours. d) interpolated boundary contours.
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543 Data Point Sampling

To construct an elastically defonpable volumetric model of the LV, a set of three-
dimensional data points neéd to be éampled not only from the segmented and/or
interpolated boundary contours, but also from the mid-wall region that is bounded by the
endocardial and epicardial boundaries. Data point sampling is performed such that an
initial model with the hexahedral lattice structure can be constructed. The hexghedral
lattice structure is chosen because of its simplicity in setting up the neighboring
information of the model points between neighboring slices. An example of the

hexahedral lattice structure is shown in Figure 26.

Figure 26. An example of the hexahedral lattice structure.
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The endocardial and epicardial boundaries are sampled at the intersections of
boundaries and radial lines, which are originated from the center of mass of the LV and
evenly distributed in central angle. The numbers of sample data points are determined by
the hekahedral iattice strﬁcture used. Figufe 27 shows examples of the endocardial and
epicardial boundary sample data points. Data points of mid-wall region are sampled
uniformly between the neighboring endocardial and epicardial sample data points
depending on the number of mid-wall data points needed. Examples of the two-
dimensioﬁal sample data points including mid-wall points and a set of the entire three-

dimensional sample data points are shown in Figure 28.
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Figure 27. Examples of the endocardial and epicardial sample data points. a) the radial
lines and endocardial sample data points are superimposed on the segmented two-
dimensional magnitude image. b) a stack of the endocardial sample data points, c) the
radial lines and epicardial sample data points are superimposed on the segmented two-
dimensional magnitude image. d) a stack of the epicardial sample data points.
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Figure 28. Examples of the mid-wall sample data points and a set of the entire three-
dimensional sample data points. a) the mid-wall sample data points are superimposed on
the segmented two-dimensional magnitude image. b) a stack of the mid-wall sample data
points. c) a set of the entire three-dimensional sample data points. d) a set of the sample
data points are superimposed on a stack of the two-dimensional magnitude images of

phase contrast MRI.
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5.5 Overall Motion-Tracking Procedure

With the system of the cardiac motion-tracking model described in section 5.3

“and the initial model geometry of the LV described in the previous section, motion-
tracking of the LV throughout the entire cardiac cycle is performed as follows. The initial
equilibrium configuration of the model at the first cardiac frame (end diastole) is first set
up based on the locations of the sample data points. The distances between the sample
data points and the corresponding initial model points with the hexahedral laitice
structure are used to generate an equilibriixm force, which maintains the equilibrium
configuration of the model. This force is constant over time and implicitly incorporated
into the governing equations of motion Equation (72) by setting the equilibrium
configuration as the reference configuration (the metric tensor of the undeformed state,
G°). An example of the initial equilibrium (reference) configuration of the model at the
first frame is shown in Figuie 29. Then, p° for E,,.,(p) is calculated by velocity
integration with the linear spatial inode]ing, and the zero-crossing of the Laplacian of a
Gaussian smoothed magnitude imaige in the next frame is calculated for E,, . (p). Then,
p’, at¢=0 is initialized by using?the reference configuration, and p’, atz= 0 is set to

zero. Finally, with these reference configuration and initial conditions, the dynamically
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deformable model system is solved (i.e., the system evolves to equilibrium), and the
motion trajectories and final tracked locations of myocardial tissue points between the
first (end diastole) and the next cardiac frames are obtained.

The above motion-tracking process between two consecutive cardiac frames is
first repeated in forward direction (e.g., frame 0 — 1 — -~ — 19) until the last frame of
the cardiac cycle is processed. Because periodic motion of the myocardium ensures that a
tissue point in the first frame returns to its starting position in the end of the cardiac cycle '
and combining the forward and backward directional_ motion trajectories can reduce the
errors of the velocity offset as described in section 4.2, the whole process is repeated
again in backward direction (e.g., frame 0 - 19 — 18 — .-« — 1). Then, the forward and

backward directional results are linearly combined into the final results with the

weighting coefficientswy =1—r/7T andws =¢/T , where 7 is the current frame number and

T is the total number of frames in a cardiac cycle.
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Figure 29. An example of the initial reference configuration at the first frame (end

diastole).

5.6 Experimental Results

In this section, experimental results of the proposed cardiac motion-tracking

method are presented. First, the tracking results of a normal human LV are compared with
a color-coded tissue Doppler echocardiography data set. Then, strain analysis is

performed for quantitatively analyzing the motion and deformation of the LV,

5.6.1 Comparisons
Although tracking of the myocardial motion using implanted markers or

sonomicrometers is considered the “gold standard,” it is invasive. In this thesis, a color-
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coded tissue Doppler echocardiography data set was used to noninvasively compare the
results of the proposed cardiac motion-tracking method. The same phase contrast MRI
data set of the LV of a normal human volunteer (i.e., male, 22 year-old) described in
section 3.7.1 was used to produce the outputs of the proposed cardiac motion-tracking
method. To construct the initial model of the LV at'end diastole, the shape-based slice
interpolation method was first applied, and then total 924 points were sampled from the
phase contrast MRI data set. Both the weighting function a(u) for the internal
deformation potential energy and 7(u) for the image potential energy were set to the
constant value 1.0, and f(u) for the motion-potential energy was dynamically set to a
value between 0 and 1.0 depending on the distance between the current position of a
model point and the position of the nearest imaging plane. Then, the motion of the LV
throughout the entire cardiac cyc}e (20»f1‘ames) was tracked using the procedure described
in section 5.5. Figure 30 show; the tracked motion of the LV throughout the entire
cardiéc cycle by volumetric meshes.

The color-coded tissue Doppler echocardiography data set of the same volunteer
as the phase contrast MRI data set was acquired using a Philips 7500 ultraéound system

with a 2.5 MHz transducer at Sibley Heart Center Cardiology at Children’s Healthcare of
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Atlanta. Scan pérameters were as follows: the spatial resolution was 512x 512, the
temporal resolution was 40-frames per cardiac ._cycnle (i.e., approximately 20-msec), and
each frame was the two-dimensionai color-coded tissue Doppler image scanned in apical
four chamber view with the maximum and minimum encoding velocity 4.5 cm/sec. A
typical anatomical location of the apical four‘ chamber view image slice and the
anatomical location of the acquired color-coded tissue Doppler image slice are shown in
Figure 31 a) and b), respectively. Selected frames of the color-coded tissue Doppler
echocardiography data set are also shown in Figure 31 c).

The out-of-plane directional velocity values from the tissue Doppler image and
the three-dimensional motion-tracking model at the septum of the LV were compared
throughout the entire cardiac cycle using the correlation coefficient (r) as follows. First,
the near&;t model points at the intersecﬁon of the tissue Doppler image slice and the LV
model wefe determined, and the model pointé bf the ehdocardium, mid-ventricle, and
epicardium at three different longitudinal levels (around the apex, mid-ventricle, and
base) were selected, as shown in Figure 32. The distances between the selected model
points and the tissue Doppler image slice were usually less than 3 mm (i.e., less than two

pixels in in-plane resolution of phase contrast MRI) for the case of 924 sample points.
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Then, the positions of the selected’n.lodel points were projected onto the tissue Doppler
image slice, and the velocity valueé at the projected positions were fetrieved. Although
the velocity values in the tissue Doppler image of the apical four chamber view at the
septum were measured approximately in the apex-to-base direction, these velocity values
are projected onto the exact out-of-plane direction of phase contrast MRI data set, as
shown in Figure 33. Finally, the above process was repeated frame-by-frame throughout
the entire cardiac cycle, and correlation coefficients of the out-of-plane directional
velocity values derived from our LV motion-tracking model and the tissue Doppler image
were calculated.

Comparison results using the qorrelation coefficients of the out-of-plane
directional velocity values are shown in Figure 34. Correlation coefficients were higher at
the mid-ventricle level than other levels and lower at the mid-wall region than other
regions within the same level. In ger}c%,ral, the out-of-plane velocity values from the LV
model were moderate}y well corrgla}tea with those from the color-coded tissue Doppler
images. The discrepancy between the model-driven velocity values and the tissue
Doppler velocity values might come ﬁom the flow-artifacts and velocity-offset errors of

the phase contrast MRI data set. It might also come from the errors in aligning the tissue
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Doppler slices into the phase contrast MRI data set and the errors in the tissue Doppler
velocity values ;hemselves. The simplified deformation potential energy formulatibn of
the LV model, which can not fully reflect all the physical properties of the myocardium,
might also cause the discrepancy. Because the acquired tissue Doppler velocity data were
valid only in the septal region, compvarisons were limited to the selected regions in the
septum. Thus, the results of me measured correlation coefficients may not be generalized

for the entire LV.
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Figure 31. a) A typical anatomical location of four chamber view image slice. b) the
acquired color-coded tissue Doppler image slice is aligned with a long-éxis magnitude
image of phase contrast MRI data set. ¢) selected frames of the acquired color-coded
tissue Doppler echocardiography data set. hnage on the left is end diastole, and image on
the right is end systole. Red indicates “th‘e§velocity in the direction of toward-transducer
(bottom-direction in the images), and @blué indicates the velocity in the direction of away-
transducer (top-direction in the imageS); i
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Figure 32. Positions of the selected model points at end diastole for comparison with the
velocity values from the tissue Doppler image are indicated as spheres (red =
endocardium, green = mid-wall, and blue = epicardium)

Figure 33. The out-of-plane direction in a) the tissue Doppler echocardiograhy data set
and b) phase contrast MRI data set. Red lines in both images indicate the out-of-plane
direction.
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Figure 34. Correlation coeﬁicientjs;c«)f the out-of-plane directiQnél velocity values derived
from the LV model and the tissue Doppler image. a) endocafdidl sample position at the
basal level of the septum. b) mid-wall sample position at the basal level of the septum. c)
epicardial sample position at the bésél level of the septum. d) endocardial sample position
at the mid-ventricular level of the septum.

140



30y r=0381

2 2
Q L4
> >
3 T
£ 4
& a5 . &

-45 -30 -15 0 15 30 45 =45 -30 =15 0 15 30 45

; {mm/sec) (mmisec)

Tissue Doppler Velocity Tissue Doppler Velocity
e) f)
a5 45
30{ r=0.73
2 2
‘g ‘g
2 2
CJ Cd
S 5
s 2
] ]
[g! ~45 £-'E =45
~45 -30 -15 0 15 30 45 ~45 =30 -15 0 15 30 45
{mmsec) (mm/sec)
Tissue Doppler Velocity Tissue Doppler Velocity
8) | h)

Figure 34 (cont’d). e) mid-wall sample position at the mid-ventricular level of the
septum. f) epicardial sample position at the mid-ventricular level of the septum. g)
endocardial sample position at the apical level of the septum. h) mid-wall sample position
at the apical level of the septum.
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Figure 34 (cont’d). 1) epicardial sample position at the apical level of the septum.

5.6.2 Strain Analysis

For the purpose of quantitatively analyzing the results from the proposed cardiac
motion-tracking method, strain analysis of a normal human LV was performed using the
same experimental setting as the previous section. For strain analysis, the LV was dividgd
into three longitudinal levels (apical, mid_—véniricular, and basal level), ahd each level was
further subdivided into four sub-regions (septal, anterior, lateral, and posterior sub-

region), as shown in Figure 35. Then, the average strain values in these sub-regions of the

LV were calculated.
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a) b).
Figure 35. Division of a human LV for strain analysis. a) three longitudinal levels are
indicated on the long axis magnitude image. b) four sub-regions in the mid-ventricular
level are indicated on the short axis magnitude image.
In order to define the strain of the LV, a three-dimensional coordinate system is

first needed, and then each strain component (i.e., normal or shear component) can be

measured depending on the coordinate system used. Because using the most appropriate

coordinate system for the LV can not only facilitate the physical interpretation of strain
measurements but also reduce the mathematical complexity required to describe the
deformation, a specific coordinate system, called “the local heart coordinate system [94]”,
was used for strain analysis of the LV rather than using a simple global Cartesian
coordinate system. For each tissue point in the myocardium, three mutually perpendicular

axes are defined as follows:
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1) The radial (R) axis: perpendicular to the epicardium pointing outwards.
2) The longitudinal (L) axis: perpendicular to the radial axis, and pointing towards
the base of the LV.
3) The circumferential (C) axis: perpendicular to both the radiél and longitudinal
axis, defined in such a way that the R-L-C coordinate system is right-handed.
This local heart coordinate system is illustrated in Figure 36. Although this coordinate

system cannot be defined around the most distal point of the apex of the LV, it can be

generally used for strain measurements of the LV.

-
|

sl ]
! Longitudinal
Circumferential \

Figure 36. The local heart coordinate system defined for strain measurements of the LV.
Red, blue, and green arrows indicate the radial, the longitudinal, and the circumferential
axis, respectively.
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Bécause the axial (normal) components of the myocardial strain defined in the
local heart coordinate system are commonly used to measure deformation of the
myocardium in the cardiology community, only the radial, circumferential, and
longitudinal components of the myocardial strain were measured in this experiment.
Figure 37 shows the temporal evolutions of the three axial strain components at different
regions of the LV from end diastole to end systole. Even though the motion of the LV
throughout the entire cardiac cycle was tracked, only the strain evolutions during the
contraction phases are plotted because of their physiological importance. At all
longitudinal levels and all sub-regions, the average radial, circumferential, and
longitudinal strain values generally increased their magnitude as the cardiac cycle
reabhed the end systole. At end systole, the average radial and circumferential strain
values reached around 0.3 and -0.2, respectively. The average longitudinal strain values
were relatively small compared with other two strain values. These indicate that
thickening of the myocardium is primarily in the radial direction and shortening is in the
circumferential direction. To less extent, shortening of the myocardium is undergone in
the longitudinal direction. Extent of the myocardial deformation can be easily visualized

using the color-coded strain maps, as shown in Figure 38,
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Figure 37. a) Temporal evolutions of the radial strain component of a normal human LV

at three longitudinal levels of four sub-regions. Each plot shows the strain evolution from
end diastole to end systole.
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Circumferential Strain
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Figure 37 (cont’d). b) Temporal evolutions of the circumferential strain component of a

normal human LV at three longitudinal levels of four sub-regions. Each plot shows the
strain evolution from end diastole to end systole.
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Longitudinal Strain
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Figure 37 (cont’d). c) Temporal evolutions of the longitudinal strain component of a

normal human LV at three longitudinal levels of four sub-regions. Each plot shows the
strain evolution from end diastole to end systole.
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Radial Strain Map

Frame O (ED) Frame 3

Frame 16 . Frame 19

a)

Figure 38. Temporal sequences of the three different strain components of a normal
human LV. Extent of the myocardial deformation is visualized using the color-coded
strain maps. ED and ES represent end diast:ole and end systole, respectively. Red and blue

indicate extension (lengthening) and contraction (shortening), respectively. a) selected
frames of a sequence of the radial strain maps.
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Circumferential Strain Map

Frame 5 Frame 8 (ES)

Fram_e 10 Frame 19

b)

Figure 38 (cont’d). b) selected frames of a sequence of the circumferential strain maps.
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Frame 0 (ED)

Frame 10

Longitudinal Strain Map

Frame 13 Frame 16

Frame 8 (ES)

Frame 19

c)

Figure 38 (cont'd). c) selected frames of a sequence of the longitudinal strain maps.
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The average strains in four sub-regions at three longitudinal levels of the LV at
end systole are shown in Figure 39. At the apex, the septum and the lateral wall showed
the greater radial strains than the anterior and posterior wall and their maximums are both
around 0.33 (i.e., 33% extension). The circumferential strains were quite consistent over
four sub-regions (around -0.2: ie., —20% contraction). The magnitudes of the
longitudinal strains in all sub-regions were relatively small with the greatest value 0.09 in
the lateral wall. At the mid-ventricle, the radial strain was the greatest in the lateral wall
(0.36) and the least in the posteribr wall (Q.25). The circumferential strains in the anterior
(-0.2) and posterior wall (—0.18) were greater than the septum (—0.12) and the lateral
wall (—0.1), and the consistency of the strains over four sub-regions decreased. Again, the
magnitudes of the longitudinal strains in all sub-regions were relatively small compared
with other strain components, and the septum and posterior wall had even positive strains
(extensions). The positive longitudinal stral.,ir;1‘s might beA caused by the bending behavior
of the LV along the Iongimdinal ax15 At th'e:{:;a-se, the septum and the lateral wall showed
the less radial ;s,‘t;ains .(aro:uvhd 024) than ;)thér two sub-regions (around 0.27 in the
anterior and posterior wall). The circumfgrential strains (around -0.1) in the septum and

the lateral wall also showed the less strains than other two sub-regions (around -0.2 in
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the anterior and posterior wall). In the average, the magnitudes of the circumferential
strains at the base were similar to those at other longitudinal levels, but the consistency of
the strains over four sub-regions further decreased. The longitudinal strains in the
posterior and lateral wall (around —0.17) were greater than other two sub-regions (around
—0.03) reflecting the greater longitudinal shortening.

The above strain measurements were compared with previously published values
[13, 15, 45, 83, 95]. The average regional radia} strains that ranged from a minimum of
0.24 and a maximum of 0.36 were higher than the previous studies. Errors in boundary
segmentation and papillary muscles especially in the apical level of the LV might cause
this higher estimation. However, variation of the radial strains across four sub-regions
agreed with the previous studies. The average regional circumferential strains and their
variation across four sub-regions agreed with the previous studies at all longitudinal
levels (the differences in their magnitudes were less than 5%). The average longitudinal
strains were generally lower than the previous studies. This might result from a potential
over-smoothing of motion trajectories by the deformation potential energy, lacking of
neighboring slice informatipn at the most apical and basal levels, and the problem of

defining the local heart coordinate system around the apex (i.e., a tilted longitudinal axis).
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In general, our strain measurements were found to be consistent with previously

published values.

Average Regional Strain at Apical Level

BR
oc
HL

Average Regional Strain at Mid-Ventricular Level

©)

Figure 39. The average radial (R), circumferential (C), and longitudinal (L) strains in the
four different sub-regions of a normal human LV at end systole. a) at the apical level. b)
at the mid-ventricular level. c) at the basal level.
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5.7 Discussions and Conclusions

Estimation of dynamic characteristics of the myocardium is essential for the
accurate diagnosis and treatment of heart disease because they are sensitive indicators of
many types of heart disease. Although -seVeral MR imaging techniques, such as tagged
MRI and phase contrast MRI, provide noninvasive tools for estimating the dynamic
characteristics of the myocardium, difﬁculty still arises from the limitations of those
imaging modalities, such as relatively low out-of-plane resolution.

A new cardiac motion tracking method based on elastic deformation estimation
of a deformable model has been developed to track the three-dimensional motion of the
myocardium. Elastic deformation estimation was performed to compensate for the eﬁ'ecfs

of relatively low out-of-plane resolution of phase contrast MRI data set by balancing the

internal elastic deformation potential energy of a deformable model and the external
potential energy derived from both the magnitude and velocity images from phase
contrast MRI. The advantage of this method is that it can provide a physically plausible
yet computationally efficient aﬁd shape-independent framework for cardiac motion

tracking.
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Experiments have been performed on a phase contrast MRI data set of the LV of
a normal human volunteer. The motiop of the LV .was tracked throughout the entire
cardiac cycle, and then the results were compared with a color-coded tissue Dopplet
echocardiography data set. The comparison- results showed that the out-of-plane velocity
measurements from the LV model were correlated with tho;e of the echocardiography
data set at the selected regions in the septum. However, the motion of other regions (i.e.,
the anterior, posterior, and lateral wall) in the LV could not be compared because of the
lack of velocity information of the tissue Doppler data set in those regions. Because they
are adjacent to the regions with noisy velocity information, comparison with velocity
information of the entire volume of the LV or invasive markers is desirable.

To quantitatively analyzing the results from the proposed cardiac motion-tracking
method, a strain analysis of the motion and deformation of the LV was carried out. The
results showed that the strain measurements were generally found to be consistent with
previously published values. However, the reproducibility of the proposed method could
not be fully investigated because of the limited number of the experimental data set.
More study with various human subjects including normal and abnormal subjects is

desirable.
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Appendix A: Figures of Segmentation Results

Frame 14 Frame 18

Figure A.1. Individual frame segmentation without the OGF at the apical level of LV.
Blue dots indicate the reference boundary by manual segmentation, and red dots indicate
the boundary by semiautomatic segmentation.
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Frame 14 Frame 18

Figure A.2. Individual frame segmentation with the OGF at the apical level of LV. Blue
dots indicate the reference boundary by manual segmentation, and red dots indicate the
boundary by semiautomatic segmentation.
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Frame 14 Frame 18

Figure A.3. Individual frame segmentation without the OGF at the mid-ventricle level of
" LV. Blue dots indicate the reference boundary by manual segmentation, and red dots
indicate the boundary by semiautomatic segmentation.
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Frame 14 Frame 18

Figure A.4. Individual frame segmentation with the OGF at the mid-ventricle level of
LV. Blue dots indicate the reference boundary by manual segmentation, and red dots
indicate the boundary by semiautomatic segmentation.
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Frame 14 ' Frame 18

Figure A.S. Individual frame segmentation without the OGF at the basal level of LV.
Blue dots indicate the reference boundary by manual segmentation, and red dots indicate
the boundary by semiautomatic segmentation.

161



Frame 14 Frame 18

Figure A.6. Individual frame segmentation with the OGF at the basal level of LV. Blue
dots indicate the reference boundary by manual segmentation, and red dots indicate the
boundary by semiautomatic segmentation.
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Frame 14 Frame 18

Figure A.7. Sequential frame segmentation without the SCT at the apical level of LV,
Red dots indicate the segmented boundary.
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Frame O Frame 4

Frame 14 . Frame 18

Figure A.8. Sequential frame segmentation with the SCT at the apical level of LV. Red
dots indicate the segmented boundary, and green vectors indicate the location of the
tracked initial seed contour for the subsequent frame by the SCT.
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Frame O Frame 4

Frame 14 Frame 18

Figure A.9. Sequential frame segmentation without the SCT at the mid-ventricle level of
LV. Red dots indicate the segmented boundary.
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Frame O ‘ Frame 4

Frame 14 Frame 18

Figure A.10. Sequential frame segmentation with the SCT at the mid-ventricle level of
LV. Red dots indicate the segmented boundary, and green vectors indicate the location of
the tracked initial seed contour for the subsequent frame by the SCT.
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Frame 14 Frame 18

Figure A.11. Sequential frame segmentation without the SCT at the basal level of LV.
Red dots indicate the segmented boundary.
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Frame 14 Frame 18

Figure A.12. Sequential frame segmentation with the SCT at the basal level of LV. Red
dots indicate the segmented boundary, and green vectors indicate the location of the
tracked initial seed contour for the subsequent frame by the SCT.
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Appendix B: Derivation of the Simplified

Form of the Internal Elastic Force

3
By letting the integrand ), a;;(u}(G;(p) -G,;? (p))* of the deformation potential
' 1

i,j=

energy Equation (59) be &(u,,u,,u;,p,p,.5P.,-P.;), the deformation potential energy is

written as:
111
Edtfomatr’an (p) = “"{5(1‘1 > uz > u3 > p’ pul > puz ] puJ) dulduzdu3 (79)

000

where p,, =—gu£. Then, the first variational derivative of the deformation potential

energy can be obtained by the Euler-Lagrange differential equation generated upon the

integrand £, where its solution gives the function that minimizes E,,,..,(p). By using

the Euler-Lagrange differential equation for three independent variables [96]

R -
ap aul apul' au2 apuz au3 apuJ
and the definition of the metric tensor G, a sirhple vector form of 8,E,, ain(P) can be

approximated. First, by denting the first summation components of the integrand of

Equation (79) denoted as &;,
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0
where p,, % and p, =%Pu;. Then, components of the Euler-Lagrange differential
1

1

equation upon the integrand &, are calculated as follows:

% _
op

o (08,
Ou, \ 0p,,

b

/ 3\
(26, )
6u3 \apusj ‘

2
—i[%l_}'*i a(a”(u)(p""pun—pﬁl-pﬁl) ) |
aul apul 6u1 apul

= ——a%(%]l(u)(Gn(p)'pul _Glol(p). p"'))

0
=——671(4%(11)(&,@)—Gﬂ(p))-g%)

Then, the first variational derivative of Equation (3) denotéd by J,E,(p) becomes

O.E ( )—?."_ell__a__ o0&, _ 0 [ 9§, _ 0 aé:n
pLnlP) = op oul\odp, ) Ou,\op, ) Ou\Op,

= —Eua_[llau(“)(G”(p)—Gﬂ (p))g’%J

1

(83)
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By similar fashion, all other derivatives are calculated as follows:

g

8, (@) == | 400) (G ) - 2<p))§u—pj
2\ 2
6pE33(p)=—§ 4oy (u)( G;,(p) - Gfs(P))%‘)
3\ 3
5 E(p) == -;-(zan(u) Gia(p) - z(p))gu"—
\
5?—(2“12(“) G,(p) - Gloz(p))@
l)
\
Oy (P) = gi—(zazl (u) Gu(p)- Gﬁl(p))g:i)
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171

(84)

(85)

(86)

(87)

(8%)

(89)

(90)



OpEs (p) = - 58‘(2“32 (u) (Gsz (p)-G;, (P)) “QE)

2 au3
a - 1)
‘Eu“;(mnw)(@z(p)—sz“’))aTJ

Then, with the assumption of the isotropic material (a,(u)=a;(u), ifi=j), the
approximated first variational derivative of Equation (79) is obtained by adding Equation

(83), (84), (85), (86), (87), (88), (89), (90), and (91) and dropping out all the constant

coefficients:

5pEdejbmatian (p) = ‘i:] _aui[ay (u) (Gy (p) - G:? (p)) %} (92)

This completes the derivation of the simplified intemnal elastic deformation force.
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