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Motivated by desire for collision avoidance in spacecraft formations, and by the need for
accurately computing low kinematic probabilities of collision (KPC) in spacecraft collision
risk analysis, this work introduces an algorithm for sampling from non-degenerate, multidi-
mensional normal random variables. In this algorithm, the analytical relationship between
certain probability density integrals of such random variables and the chi-square distribution
is leveraged in order to provide weights to sample points. In so doing, this algorithm allows
direct sampling from probability density “tails” without unduly penalizing sample size, as
would occur with Monte Carlo-based methods. The primary motivation for the development
of this algorithm is to help in the efficient computation of collision probability measures for
relative dynamic systems. Performance of this method in approximating KPC waveforms is
examined for a low-dimensionality dynamic example. However, this method could be applied
to other dynamic systems and for probability density integrals other than collision probability
measures, allowing for efficient computation of such integrals for problems where analytical
results do not exist. Therefore, this method is suggested as an alternative to random sampling
algorithms such as Monte Carlo methods or the Unscented Transform.

I. Nomenclature

Mathematical symbols:
0n×m = zero-valued matrix in Rn×m
Û[] = First time-derivative operator
¯(·) = “mean” value of random variable (·)
‖·‖ = Euclidean norm operator
B ( · ; a, b) = incomplete beta function with arguments a and b
Br (x) = ball of radius r centered at x
cdfX = cumulative distribution function (cdf) of random variable X
cdfX |Y = conditional cdf of random variable X given outcome of random variable Y
Cov (·) = covariance operator
D = dimension of points in the unit (D − 1)-sphere
d0

(
S̃ (N)

)
= minimum arc length between any pair of points in the sample S̃ (N)

dmax = cutoff Mahalanobis distance (MSS sample parameter)
d ′max = “transition” cutoff Mahalanobis distance
dR = dimensionality of position states (1, 2 or 3)
DX (x) = Mahalanobis distance of instance x of random variable X
E [·] = expectation operator
FX = “alternative”, Mahalanobis distance-based cdf for normally distributed random variable X
hm (·) = regularized incomplete beta function (with parameter m)
In = n × n identity matrix
KPCi, j (t |t0) = KPC between agents i and j at time t, given initial conditions at time t0
Ld (X) = d-Mahalanobis contour of normally distributed random variable X
li = characteristic length of agent i
li, j = i- j joint hard-body radius
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N (µ,Σ) = normal distribution with mean µ and covariance Σ
Nshells = number of shells (MSS sample parameter)
Nsamples/shell = number of samples per shell (MSS sample parameter)
nX = dimensionality of dynamic state
p (·) = probability of event (·)
∂A = boundary of set A
pdfX = probability density function (pdf) of random variable X
pdfX |Y = conditional pdf of random variable X given outcome of random variable Y
φn = generalized golden ratio numbers of order n
Φi, j (t, t0) ,ΦXi , j (t, t0) = i- j relative state transition matrix (from time t0 to time t)
Ri = position of the center of mass of agent i
Ri, j = i- j relative position
Rn = set of all n × 1 real-valued matrices
Rn×m = set of all n × m real-valued matrices
S̃ (N) = sample of points on the unit hypersphere with size N
ΣRi , j = i- j relative position covariance
ΣXi , j = i- j relative state covariance
Snr (x) = n-sphere of radius r centered at x ∈ Rn+1

sup (·) = supremum operator
Vd (X) = d-Mahalanobis volume of normally distributed random variable X
Vd2
d1
(X) = d1, d2-Mahalanobis volume of normally distributed random variable X

Vi, j = i- j intersection volume
x = instance (written in lower case) of random variable X (written in uppercase)
Xi = dynamic state of agent i
Xi, j = i- j relative dynamic state
χ2
r = chi-square distribution with r degrees of freedom

Acronyms:
CARA = “Conjunction Analysis and Risk Assessment” group at NASA GSFC
GSFC = NASA Goddard Space Flight Center
KPC = kinematic probability of collision
MSS = Mahalanobis Shell Sampling algorithm
Pc = “probability of collision”, as defined by NASA CARA (equivalent to KPC)
SFF = spacecraft formation flying
SSA = space situational awareness
SVD = singular value decomposition
TPc = “total probability of collision”, as defined by NASA CARA
WPC = window probability of collision (equivalent in meaning to TPc)

II. Introduction

Spacecraft formation flying (SFF), which has been considered extensively since the beginning of the space age,
has potential to allow for missions that require high instrumentation precision. For example, synthetic aperture

radiometry, which could provide increased precision in weather forecasting and climate monitoring, may be enabled by
interferometric arrays of spacecraft that synthesize large instrument apertures (specifically, by distributing a formation
over regions larger than those spanned by large, monolithic spacecraft) and by using sensor fusion.[1–4] Likewise,
astrophysics missions such as ASTROD-GW (“ ‘Astrodynamical Space Test of Relativity using Optical Devices’
optimized for ‘Gravitational Wave’ detection”), NGO (“New Gravitational wave Observatory”) and LISA (“Laser
Interferometer Space Antenna”) have been proposed as space-based observatories which would implement SFF to detect
gravitational waves, as opposed to ground-based observatories such as LIGO (“Laser Interferometer Gravitational-wave
Observatory”).[5, 6]

Moreover, SFF is also particularly attractive from a space mission design perspective. In a particular, SFF can enable
missions with increased system robustness, as the impact of deterioration (or even failure) of and agent in a spacecraft
formation may cause performance degradation in such a mission, as opposed to causing the end of the mission.[7]
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Spacecraft formation missions may also have performance improvements over their mission lifetimes by replacing failed
agents or by simply adding new ones, which adds a new layer to space mission architecture options beyond traditional,
monolithic spacecraft missions.[8] Additionally, missions that implement SFF have an opportunity for enhanced system
flexibility through improved “adaptability, scalability, evolvability, and maintainability”.[9]

Having established the desirability of spacecraft formation missions, it is essential to examine some of the challenges
with realizing these missions. Specifically, many problems in formation flight arise from guidance, navigation and
control (GN&C) considerations. [10, 11] According to Scharf, Hadaegh and Ploen, spacecraft formation flying is
defined as a “set of more than one spacecraft whose dynamic states are coupled through a common control law”.[10]
Under this commonly accepted definition, for any spacecraft formation, there exists at least one agent of such formation
which tracks a relative state with respect to some other agent of the formation, and the control law of the former must be
a function of its relative state with respect to the latter. Hence, this definition allows for an important distinction among
groups of spacecraft whose members are interrelated in some manner. For instance, spacecraft in constellations, though
related operationally to each other, are not linked from the perspective of control laws, whereas spacecraft that undergo
certain operations that require relative control laws (such as rendezvous, docking, or relative station-keeping, to name a
few examples) are instances of spacecraft formation flying (SFF).

Generally, the focus on spacecraft formation guidance in planetary orbital environments is not to prescribe arbitrary
relative trajectories, but to design “passive” relative orbits whose periodicity enables certain observation properties.[10]
However, errors in state knowledge, in dynamics modeling, or in maneuver timing or pointing (none of which can be
fully eliminated) create a need for constant station-keeping, without which a mission cannot maintain passive periodicity
(often, not even passive stability).[12] Thus, a formation flight mission whose agents run out of propellant is eventually
rendered unable to continue.[7]

Therefore, in order to extend the lifetime of a spacecraft formation, it is imperative to minimize fuel consumption by
means of optimally designing and executing trajectories and station-keeping schemes. However, this in itself creates
several challenges. Generally, optimal control schemes presuppose full dynamic state knowledge.[13, 14] This creates
issues concerning both control coordination and state knowledge transfer. Control coordination in spacecraft formations
presents many challenging architectural trades. First, executing arbitrary optimal control maneuvers would require a
central spacecraft (with full dynamic state knowledge of every spacecraft in the formation) to compute control commands,
and to distribute them (along with timing information) to individual spacecraft. Central spacecraft implementation is
key, unless every spacecraft in the formation has full-formation knowledge and is able to synthesize control signals that
are mutually consistent, just as a central spacecraft would. Thus, control coordination would be difficult to accomplish
without centralized processing, which, on the other hand, raises open questions, such as deciding which spacecraft
should do the following tasks in such a scheme: collect formation-level state knowledge, compute control signals,
schedule maneuvers, and issue details of control signals to all the other spacecraft. Additionally, time delays in signal
transmission from central spacecraft to the rest may induce instabilities in the formation.[15] Furthermore, failure of
such a central spacecraft could be catastrophic to a formation flight mission.

In order to mitigate the issues of formation-wide control coordination, decentralized control schemes have been
proposed for active control in spacecraft formations implementing consensus protocols based on graph theoretic
methods.[16–19] In the case of a spacecraft formation, its full dynamic state comprises the full dynamic state of every
spacecraft in the formation. This implies that, in general, in order to execute optimal control maneuvers, each spacecraft
must have knowledge of at least itself and at least one more agent (if not several agents) in the formation. This is to be
accomplished either by having each spacecraft estimate its own state and that of the spacecraft in its neighborhood (i.e.
the set of other spacecraft with respect to which the present spacecraft must track a relative state), or by having each
spacecraft communicate its own state estimate to the agents in its neighborhood. Requirements for controllability of
distributed agent groups (based on the underlying relative state knowledge communication network structure) have been
presented, as well as protocols for agent consensus, based on applications of graph-theoretic methods.[20] However,
the implementation of these communication networks for spacecraft state knowledge transfer is made difficult by the
presence of inherent sensor and estimator inaccuracies, and by general communication “cost”, which refers to the power,
attitude control and computation overhead required by each spacecraft to both know its own dynamic state and receive
(or directly estimate) state knowledge of other spacecraft. All of these challenges are exacerbated for small satellites,
which have limited control authority, computational power and sensor accuracy.

The challenges aforementioned showcase the need for advances in autonomy in spacecraft formations, which is a
trend observed more generally across most aerospace systems.[21] Specifically, the problem of missions implementing
SFF requires improvements in autonomous system technologies for the following reasons. First, ground station-centered
control of spacecraft formations is not only infeasible, but undesirable. On the other hand, it would be difficult to
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command individual spacecraft among a group of spacecraft in close proximity. On one hand, even if a spacecraft
formation has no agents in close proximity, it would still be difficult to command from the ground all agents at the
same time without significant investments in ground station infrastructure development. It is difficult, logistically and
financially, to have dedicated ground operations for each spacecraft in a formation. Second, in a spacecraft formation
there is need for real time control, not only because maneuvers in a spacecraft formation must be very precise, but
because reactivity is needed for capabilities such as collision avoidance and fault management. According to the 2015
NASA Technology Roadmaps for Robotics and Autonomous Sytems [22], the need for increased system level autonomy
is clear whenever any of several criteria are met (all of which are applicable for spacecraft formations):

• when system decision making must be faster than time between inter-agent communications and much faster than
time between system-human operator communications;

• when mission-critical decisions must be made on board of the system, not by human operators; and
• when decisions are better informed by data on board than decisions made exogenously with summarized data.

A system with autonomy entails that such system should be able to sense, actuate and reconfigure itself from different
perspectives (e.g. mission specification, planning, executive and functional perspectives) in the absence of (or in the
presence of limited) human guidance or input.[21, 23] To accomplish this, the system should carry out tasks without
intervention, it should modify tasks depending on goals and execution context, and it should need to instantiate and
refine tasks at execution time. Autonomy implies that the system is self-directed, since it requires the system to generate
and monitor its own tasks. Therefore, a vision for advances in autonomy for SFF entails treating spacecraft formations as
units, thus simplifying operations through allowing the ability to command high-level behavior of formations and then
letting formations accomplish high-level commands autonomously. Consequently, spacecraft formations would attain a
high degree of autonomous operations, including knowledge gathering, formation corrections and reconfigurations.

The first requirement of autonomous spacecraft formations (and, in general, of autonomous multi-agent systems) is
collision avoidance, which simply holds that each agent in the formation must not be in a trajectory that would have it
occupy portions of the same volume of physical space as any other agent at the same time. Collisions should be avoided
in the presence of deterministic (yet possibly unknown) and stochastic perturbations to nominal dynamics. Similarly, a
spacecraft formation should be able to successfully avoid collisions despite limited and imperfect sensing of the external
environment. Space is a complex, partially known dynamic environment, yet spacecraft formations, as multi-agent
systems, are expected to function in this environment.[24] Therefore, basic functions of agents in spacecraft formations
entail characterizing the likelihood of collision with other agents in the formation, and acting accordingly so as to avoid
collisions while minimizing impact to nominal trajectories.

The purpose of this work is twofold. One contribution of this work is to present an alternative way of computing,
between arbitrary agents, the kinematic probability of collision, abbreviated in this work as KPC, and known to
NASA as Pc [25], restricted to cases for which knowledge of the relative dynamic states are normally distributed.
In the specific context of spacecraft collision probability, this subject has been investigated extensively, mostly with
regards to how to compute KPC accurately and efficiently, either through direct numerical computation or through
pseudo-analytical approximations, and/or by attempting to include certain nuances of the dynamics.[26–31] For the
Conjunction Assessment and Risk Analysis (CARA) group at NASA Goddard Space Flight Center (GSFC), potential
conjunctions with KPCs as low as 4.4E-4 are deemed “Operational Red”, which are considered high-risk events,
and therefore prompt extensive analysis and briefings.[25, 32] Contemplated mitigation for such high risk events
include intervening actions up to collision avoidance maneuver planning and execution.[25] In CARA’s practice, one
in 1000 potential conjunctions with KPC as low as 1E-7 could become a high-risk event at some point before closest
approach.[25] Further, should a collision avoidance maneuver be required, current CARA best practices recommend
that the maximum KPC after such maneuver be 1E-10 or less, in order to avoid the need for follow-up maneuvers.[33]
This approach demonstrates the need for high resolution when computing KPC. Thus, implementing Monte Carlo
methods would require a prohibitively high number of samples in order to obtain the necessary accuracy, so it is
imperative to avoid computationally costly, slow Monte Carlo methods. Schemes to compute KPC using the Unscented
Transform (UT) have been proposed.[34] However, since the Unscented Transform was created to reproduce moments
of a probability distribution (which are integrals taken over the entire sample space of a random variable) [35], as
opposed to arbitrary integrals of the distribution (which the KPC is, as shown in this work), the Unscented Transform is
not ideal as a sampling method for KPC computation. The weighted sampling method presented in this work aims to
directly sample from “tails” (i.e. probabilistic outliers) of normal, nondegenerate probability distributions by leveraging
1) samples in the unit hypersphere, and 2) analytical relationships between certain integrals of normal probability
distributions and the chi-square distribution. By doing so, samples can be designed so as to be capable of reproducing
low-valued integrals over arbitrary regions of the original distribution.
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The second purpose of this work is to enable, in future work, the efficient computation of a new collision likelihood
measure that could be more operationally useful than KPC, and which has been motivated and referred to as “Total
Probability of Collision (TPc)” by Frigm et. al.[36] This measure is the probability of the event that two agents may
collide “at any time within an arbitrary, compact time window”. This “window probability of collision” measure has a
simple, yet useful physical interpretation: it is the overall risk of collision between two objects in proximity within a
finite time horizon, given initial conditions of the relative state between such two objects. By contrast, the kinematic
probability of collision (KPC) at a given time is the probability of the event that two agents are colliding “at that specific
time”. However, the “window probability of collision” measure cannot be computed directly from instantaneous relative
state distribution information, since a probability density function does not retain information about which regions in
its domain have been within the collision region at any one time, especially not after translation, rotation or scaling
transformations. Therefore, a sampling method must be used for the computation of this probability measure. However,
implementing Monte Carlo methods for this purpose would entail the same difficulties as previously described.

It is helpful to clarify that the primary outcomes of this work do not directly contribute to the space situational
awareness (SSA) field. First, in this work, the objective is to compute collision probability specifically between agents
in a formation; thus, focus is restricted to those interactions, irrespective of potential interactions between agents of
the formation with objects (or agents) outside the formation (including external debris). This objective is different
from that of NASA CARA, which is concerned with evaluating the risk (and sometimes actively avoiding) collisions
between members of a small set of primary assets and members of a much larger, secondary set of objects with whom
the primary assets might collide (including debris). Additionally, this work is not concerned with how the initial relative
state distribution between pairs of agents is obtained, but it presupposes that such information is available, implying the
outcome of an underlying SSA process.

This work is organized as follows. First, the Background section (Section III) expounds the notation used in this
work, defines collision events topologically, defines the kinematic probability of collision (KPC), and lists explicit
dynamic system assumptions that hold for the remainder of this work. Second, the Theory section (Section IV) relates
certain integrals of normal distributions to the chi-square distribution, develops a sampling method of non-degenerate
normal distributions (called the Mahalanobis Shell Sampling algorithm, or MSS) using this relationship, and applies
this algorithm to develop a KPC computation method. Third, the Results and Discussion section (Section V) applies
the KPC computation method to a simple, one-dimensional relative position, two-dimensional relative state example
in order to the behavior of this method, and obtains insights about MSS sample parameters. Fourth, the Conclusion
(see Section VI) summarizes findings and makes recommendations for further examination of this topic. Fifth, since
sampling methods from the unit hypersphere are presupposed as an input to the MSS sampling algorithm, the Appendix
(Section VII) examines the performance of a set of such algorithms in order to motivate the choice of algorithm when
extending applications of these methods to higher dimensions.

III. Background
Before presenting the Mahalanobis Shell Sampling (MSS) method, it is appropriate to introduce some preliminaries.

This section begins by elaborating on the notation used in this work. Then, collision events are formally, topologically
defined. Next, the kinematic probability of collision (KPC) is characterized and discussed. Finally, general dynamic
system assumptions are made that hold throughout this work.

A. Notation

1. Notation - absolute states
Let Xi ∈ R

nX denote the dynamic state of agent i, i.e. a minimum set of variables required to fully describe the
behavior of agent i for all time. Here, nX denotes the dimension of the dynamic state. Let X̄i (t) � E [Xi (t)] denote the
expected (or “mean”) value of Xi .

Let Ri ∈ R
dR denote the position of the center of mass of agent i in dR-dimensional space, and let R̄i (t) � E [Ri (t)]

denote the expected (or “mean”) position of the center of mass of agent i. For the purposes of this work, dR-dimensional
space is assumed to be physical, Euclidean space, i.e. dR ∈ {1,2,3} (note: in this work, norm operations refer to the
Euclidean norm [37]). Additionally, the position of the center of mass of agent i is often referred to as the “the position
of agent i”.

It is assumed thatRi is a linear combination of the components ofXi , i.e. that there exists a mapping L : RnX → RdR
defined by the rule Ri = L (Xi) = MXi for some matrix M ∈ RdR×nX . In particular, if Xi is partitioned as
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XT
i =

[
RT
i , UT

i

]
(where Ui ∈ R

nX−dR is a vector whose components are the components of Xi different from those of

Ri), then M is given by M =
[
IdR , 0dR×(nX−dR)

]
.

In this formulation, the state Xi (t) and position Ri (t) are random variables for every instance of time t. Therefore,
the state Xi and position Ri are random processes under a continuous time formulation, and they are random sequences
under a discrete time formulation.[38]

Additionally, in order to provide phenomenological clarity, whenever the state Xi and position Ri are written with a
lowercase (i.e. as xi and ri), they are meant to denote a specific, deterministic “instance” or value that the state Xi and
position Ri may take on. This is particularly useful in Subsection III.B when defining collision events. Even though the
positions of colliding agents are generally random variables at the time of collision, collision events are topologically
defined without requiring this notion.

2. Notation - relative states
Let Xi, j ∈ R

nX be defined as the difference between the dynamic states of agents i and j, i.e. Xi, j � Xi −Xj . Often,
Xi, j is referred to as the “relative state Xi, j”. Let X̄i, j (t) � E

[
Xi, j (t)

]
denote the expected (or “mean”) value of Xi, j (t).

Let the relative state covariance ΣXi , j ∈ R
nX×nX be defined as

ΣXi , j (t) � Cov
(
Xi, j (t)

)
= E

[ (
Xi, j (t) − X̄i, j (t)

) (
Xi, j (t) − X̄i, j (t)

)T ]
(III.1)

Let Ri, j ∈ R
dR be defined as the difference between the position states of agents i and j, i.e. Ri, j � Ri −Rj . This is

understood to mean that Ri, j represents the position of the center of mass of agent i relative to that of agent j. Often
throughout this work, Ri, j is referred to as the “relative position Ri, j”. Let R̄i, j (t) � E

[
Ri, j (t)

]
denote the expected

(or “mean”) value of Ri, j .
By the assumptions of subsection III.A.1, the relative position Ri, j can be computed as a function of the relative

state Xi, j as given by Ri, j = L
(
Xi, j

)
=MXi, j , with M as defined in subsection III.A.1.

Let the relative position covariance ΣRi , j ∈ R
dR×dR be defined as

ΣRi , j (t) � Cov
(
Ri, j (t)

)
= E

[ (
Ri, j (t) − R̄i, j (t)

) (
Ri, j (t) − R̄i, j (t)

)T ]
(III.2)

3. Notation - Conditional dependencies of relative state and its pdf
Notation III.1 (Conditional dependencies of relative state and its pdf). Suppose that, for every instance of time t, the
relative state Xi, j (t) has a continuous probability distribution. Suppose t belongs to some set T such that T ⊆

[
t0, t f

]
,

where t0 and t f represent the lower and upper bounds, respectively, of a period of time (or horizon) of interest.
The notation Xi, j (t |t0) entails that, for every instance xi, j of Xi, j , then
• the instance xi, j (t) is conditionally dependent on its initial condition xi, j (t0), for every t ∈ T , i.e.

xi, j (t |t0) � xi, j
(
t
��xi, j (t0)) (III.3)

• the instance xi, j (t) is conditionally independent of the horizon end time t f , given its initial condition xi, j (t0), i.e.

xi, j
(
t
��xi, j (t0) , t f ) = xi, j

(
t
��xi, j (t0)) = xi, j (t |t0) (III.4)

Let pdfXi , j
denote the probability density function (pdf) of the relative state. Similarly, the notation pdfXi , j |t ,t0

entails that
• the pdf of the relative state pdfXi , j

is conditionally dependent on its initial value, at all instances of time, i.e. for
every τ ∈ T ,

pdfXi , j |t ,t0
(X|τ, t0) � pdfXi , j |t

(
X
���τ,pdfXi , j |t

(X|t0)
)

(III.5)

• the pdf of the relative state pdfXi , j
is conditionally independent of the horizon end time t f , given the initial pdf

pdfXi , j |t
(X|t0), i.e. for every τ ∈ T ,

pdfXi , j |t ,t0 ,t f

(
X
��τ, t0, t f ) = pdfXi , j |t ,t0

(X|τ, t0) (III.6)

Note: this notation applies to the relative position Ri, j as well. ♦
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Remark III.2. Throughout this work, sometimes the dependencies of the relative state Xi, j and relative position Ri, j on
their initial probability distributions are not expressed, i.e. sometimes Xi, j (t |t0) is expressed as Xi, j (t), and Ri, j (t |t0) is
expressed as Ri, j (t) be done for the sake of simplicity. However, albeit implicitly, Notation III.1 would hold in such
cases.

Note: this remark also applies to moments of the relative state Xi, j and relative position Ri, j , and to their means and
covariances. ♦

B. Definition of a collision event
A collision event (between two agents) occurs whenever their respective physical, nonempty “volumes” in dR-

dimensional space have a nonempty intersection. In other words, a collision event is understood to mean that two
agents may occupy portions of the same “volume” of space at the same time. The notion of a hard-body radius (or
characteristic length) is used to simplify the definition of collision events, and consequently, the computation of the
kinematic probability of collision (KPC).

Definition III.3 (n-ball [39, 40]). The n-ball of radius r , centered at x ∈ Rn, denoted by Br (x), is defined as the set

Bnr (x) � {y ∈ R
n : ‖x − y‖ < r,r > 0} (III.7)

Note: when the dimensionality of elements in Bnr (x) is implicit, it will be referred to as Br (x) for simplicity. ♦

Definition III.4 (n-sphere [41]). The (n − 1)-sphere of radius r , centered at x ∈ Rn, denoted by S(n−1)
r (x), is defined as

the set
S
(n−1)
r (x) � {y ∈ Rn : ‖x − y‖ = r,r > 0} (III.8)

Note: the symbol “S(n−1)” denotes S(n−1)
1 (0), i.e. the unit (n − 1)-sphere centered at the origin. ♦

Notation III.5 (Characteristic length). Let the “body of agent i” Bi be defined as the set

Bi �
{

x ∈ RdR : x is in the body of agent i
}

(III.9)

Let ri ∈ RdR denote the position of the center of mass of agent i. Then, the ith characteristic length li is defined as

li � sup
x∈Bi

‖x − ri ‖ (III.10)

Note: Bi ⊆ Bli (ri), where “the ball of radius ε centered at µ”, denoted by Bε (µ) (for µ ∈ dR), is defined as the set

Bε (µ) �
{
r ∈ RdR : ‖µ − r‖ < ε, ε > 0

}
♦ (III.11)

Definition III.6 (Hard-body radius simplification). The body of agent i is circumscribed within the ball of radius
equal to the ith characteristic length li centered at the ith center of mass ri , i.e. agent i is circumscribed within Bli (ri).
Furthermore, the body of agent i is assumed to be equal to Bli (ri), i.e. Bi = Bli (ri). ♦

The hard-body radius simplification presently described is illustrated in Figure 1.
Suppose there exist two agents i and j in proximity. Through the hard-body radius simplification, the ith characteristic

length li is meant to represent a no-contact zone, meaning that the ith agent does not collide with any other j th agent
(i , j) if no point belonging to the body of agent j th becomes closer to the ith center of mass of than the ith characteristic
length li . Thus, in order to avoid a collision with agent i, it is sufficient for agent j to be at least a distance li away from
agent i, and vice versa. Using this intuition, the i- j collision event is now formally defined.

Definition III.7 (Collision event). Let ri and rj denote the centers of mass of agents i and j. Assume the hard-body
radius simplification holds (see Def. III.6). Then, a collision event between agents i and j occurs when there is a
nonempty intersection between the “volumes spanned” by agent i (Bli (ri)) and agent j (Blj

(
rj

)
), i.e. a collision occurs

whenever
Bli (ri) ∩ Blj

(
rj

)
, ∅ ♦ (III.12)

A simpler way to infer that a collision is occurring is by observing that, whenever the ith and j th (ball-) volumes
intersect, the distance between the respective centers of mass is less than the sum of their respective hard-body radii, as
seen in Figure 1. That is,

Bli (ri) ∩ Blj
(
rj

)
, ∅ ⇐⇒



ri − rj

 < li + lj (III.13)
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Fig. 1 Agents i and j under the hard-body radius simplification; a) no-collision condition, b) collision condition.
(Note: the circles drawn represent dR-dimensional spheres that circumscribe the bodies of agents i and j, not
position pdf’s.)

Notation III.8 (Joint hard-body radii). Let li and lj denote the characteristic lengths of agents i and j, respectively (see
Not. III.5). Then, the i- j joint hard-body radius, denoted by li, j , is defined as

li, j � li + lj ♦ (III.14)

Notation III.9 (Intersection volumes). Let li, j denote the i- j joint hard-body radius (see Not. III.8). Then, the i- j
intersection volume (denoted by Vi, j) is defined as the set

Vi, j � Bli , j
(
0dR

)
=

{
r ∈ RdR : ‖r‖ < li, j

}
♦ (III.15)

Therefore, a collision occurs whenever any of the following equivalent statements hold:

Bli (ri) ∩ Blj
(
rj

)
, ∅ ⇐⇒



ri − rj

 < li, j ⇐⇒ ri, j ∈ Vi, j (III.16)

Proposition III.10 (Collision condition under HBR simplification). Suppose there exist two agents i and j for which
the hard-body radius simplification holds (see Def. III.6), let li and lj and denote their respective hard-body radii.
Suppose a collision event between two agents i and j is occurring (see Def. III.7). Let ri and rj denote the present
positions of agents i and j by, respectively. Then, the following statements are equivalent:

1) Bli (ri) ∩ Blj
(
rj

)
, ∅

2)


ri − rj

 < li, j

3)
(
ri − rj

)
∈ Vi, j

♦

C. Definition of Kinematic Probability of Collision (KPC)
As noted previously, collision events are topologically defined without any notion of the positions of colliding agents

being random variables at the time of collision. Thus, if the relative positions of agents are known deterministically, the
question of whether or not agents are colliding (in the sense that the conditions in Proposition III.10 are met, which may
or may not imply not a physical collision) can be answered as either true or false, but not both.

However, the primary aim of this work is to examine collision events when the relative position between agents is
not deterministically known. In such cases, whether or not an object is colliding at any given time with another object is
a question that can only be strictly answered in a probabilistic sense.

Additionally, as can be seen in Definition III.7, the way that a collision event is defined implies that it is an
instantaneous event, since it is a function of the instantaneous relative position between agents. This motivates the
definition of a “kinematic probability of collision” to reflect this physical interpretation of the event of interest.
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Definition III.11 (Kinematic probability of collision). The notation Ci, j (t) is shorthand for the “event that agents i
and j are colliding at time t”. Then, the kinematic probability of collision of agents i and j (abbreviated as KPCi, j) is
defined as the probability of the event Ci, j (t), conditioned on the relative state (and uncertainty) at t0, as given by

KPCi, j (t |t0) � p
(
Ci, j (t)

��t0) ♦ (III.17)

Remark III.12. Assume the hard-body radius simplification (see Def. III.6), and the conditioning of the relative
position state (i.e. Ri, j = Ri, j (t |t0), as seen in Notation III.1). Then, KPCi, j can be expressed as

KPCi, j (t |t0) = p
(

Ri, j (t |t0)



 < li, j
��t0) = p

(
Ri, j (t |t0) ∈ Vi, j

��t0) (III.18)

Furthermore, suppose the relative position probability density function pdfRi , j |t ,t0
is known and is continuous (over the

relative position states and over time). Then, KPCi, j can be computed as

KPCi, j (t |t0) =
∫
R∈Vi , j

pdfRi , j |t ,t0
(R|t, t0) dR ♦ (III.19)

Remark III.12 is illustrated with an example where the (one-dimensional) relative position is normally distributed,
as shown in Figure 2.

Fig. 2 Computing kinematic probability of collision (KPC) for a system with normally distributed (one-
dimensional) relative position (computing directly from relative position pdf).

Even though the collision event Ci, j (t) is defined as a condition in the relative position states Ri, j at time t, these
relative position states (and their uncertainty descriptions) are, in general, dynamically coupled with other states.

According to the notation of subsubsection III.A.2, and assuming that the absolute state of agent i is partitioned as
XT
i =

[
RT
i , UT

i

]
(with a corresponding partition for agent j), the relative state Xi, j is partitioned as XT

i, j =
[
RT
i, j , U

T
i, j

]
.

Suppose that the probability distribution of the entire relative state pdfXi , j |t ,t0
is known. Then, the probability

distribution of the relative position states pdfRi , j |t ,t0
can be found as the marginal pdf of the entire relative state Xi, j

integrated over all the possible “other relative states” Ui, j as given by

pdfRi , j |t ,t0
(R|t, t0) =

∫
U∈RnX−dR

pdfXi , j |t ,t0

([
R
U

] �����t, t0
)

dU (III.20)

Thus, if the pdf of the complete relative stateXi, j is known, KPCi, j (t |t0) can be computed accordingly. This is illustrated
with an example where the relative position is one-dimensional and the (two-dimensional) relative state is normally
distributed, as shown in Figure 3, where Ui, j is the relative velocity ÛRi, j .
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Fig. 3 Computing kinematic probability of collision (KPC) for a system with one-dimensional relative position
and normally distributed (two-dimensional) relative state (computing from full-state pdf).

It is helpful to note that these other relative states Ui, j do not have to be (or include) velocity, but they must complete
the relative dynamic state (i.e. provide enough information for the relative state history to be propagated forward, given
inputs). For example, in 2D and 3D Clohessy-Wiltshire (CW) relative orbital dynamics, Ui, j would be the relative
position rate state, which is different from a relative velocity state because the CW frame (also known as Hill frame) is
not inertial.[42, 43]

D. Dynamic system assumptions
Suppose that the initial mean relative state X̄i, j (t0) is known. Suppose that the initial relative state covariance

ΣXi , j (t0) > 0 (i.e. ΣXi , j (t0) is a symmetric, positive definite matrix) and is known.
Finally, suppose that the probability distribution of the initial relative state Xi, j (t0) is normal, i.e. it is given by

Xi, j (t0) ∼ N
(
X̄i, j (t0) ,ΣXi , j (t0)

)
(III.21)

Let xi, j (t) be any instance of the relative state Xi, j (t). In some examples, the dynamics of the relative state Xi, j (t)
are assumed as linear and uncontrolled, i.e. that there exists a matrix A (t) ∈ RnX×nX such that

Ûxi, j (t) = A (t) xi, j (t) (III.22)

for every instance xi, j (t) of Xi, j (t), and the statement “ ÛXi, j (t) = A (t)Xi, j (t)” carries this interpretation. Therefore, in
such examples, the instance xi, j (t) can be computed as

xi, j (t) = ΦXi , j (t, t0) xi, j (t0) (III.23)

where ΦXi , j (t, t0) is the state transition matrix for the instance xi, j of the relative state Xi, j from t0 to t, which satisfies

d
dt
ΦXi , j (t, t0) = A (t)ΦXi , j (t, t0) (III.24)

ΦXi , j (t2, t1) = InX whenever t2 = t1, t1 ∈ R (III.25)

and the statement “Xi, j (t) = ΦXi , j (t, t0)Xi, j (t0)” carries this interpretation. Further,Φi, j (t, t0) is used as an abbreviated
notation for the relative state transition matrix ΦXi , j (t, t0).
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IV. Theory
In this section, integrals of multi-dimensional, normally distributed random variables bounded by certain hypersur-

faces are linked to the chi-square distribution. Then, the relationship between these two distributions is leveraged in
order to develop the Mahalanobis Shell Sampling (MSS) algorithm for weighted sampling from normal distributions.
This section ends with an application of the MSS algorithm to develop a sample-based method for computing the
kinematic probability of collision (KPC) between two agents in a relative dynamic system: first, individual sample
points are propagated using the same dynamics as the original process; then, particles are flagged whenever they enter
the collision region; finally, probabilities of collision can be computed based on the weights of sample points in the
collision region.

A. Relating the normal distribution to the chi-squared distribution
Definition IV.1 (Mahalanobis distance). Let X ∼ N

(
X̄,Σ

)
, where X̄ ∈ Rn, and Σ ∈ Rn×n,Σ > 0. Let x ∈ Rn be an

instance of X . Then, mapping D2
X : Rn → [0,∞) is defined as a nonlinear transformation of instances x of the random

variable X , given by the rule
D2

X (x) �
[
x − X̄

]T
Σ
−1 [

x − X̄
]

(IV.1)

Thus, DX (x) �
√

D2
X (x) is the Mahalanobis distance of x.[44–46]

Note: it is meaningful to define the Mahalanobis distance for general distributions, and this is often done to evaluate
the presence of outlier points for empirical, sample distributions of arbitrary phenomena.[45–48] However, use of the
Mahalanobis distance in this work is restricted to continuous, normal distributions. ♦

Now, the notions of the d-Mahalanobis contour and volume are introduced.

Notation IV.2 (Mahalanobis contour and volume). Let X ∼ N
(
X̄,Σ

)
, where X̄ ∈ Rn, and Σ ∈ Rn×n,Σ > 0. Let x ∈ Rn

be an instance of X . Let the Mahalanobis distance of x, DX (x), be as defined in Def. IV.1. Then, the d-Mahalanobis
volume of X , denoted by Vd (X), is defined as the set

Vd (X) �
{

x ∈ Rn : D2
X (x) ≤ d2} (IV.2)

Similarly, the d-Mahalanobis contour of X , denoted by Ld (X), is defined as the set

Ld (X) �
{

x ∈ Rn : D2
X (x) = d2} (IV.3)

Note: the d-Mahalanobis contour is the boundary of the d-Mahalanobis volume, i.e. Ld (X) = ∂Vd (X). ♦

Figure 4 illustrates the notions of Mahalanobis contour and volume for an arbitrary normally distributed random
variable X , which are true for any finite-dimensionality. The d-Mahalanobis volumes Vd (X) are hypervolumes
(specifically, hyperellipsoids) in n-dimensions. Similarly, the d-Mahalanobis contours Ld (X) are hypersurfaces
(specifically, hyperellipses) in n-dimensions.

Theorem IV.3. Let X ∼ N (0n×1, In), and let A ∈ Rn×n : AT = A. Then,

XTAX ∼ χ2
r ⇐⇒ A is idempotent, and 1 ≤ rank (A) = r ≤ n (IV.4)

Note:
• An idempotent matrix A satisfies A2 = A.
• The symbol “χ2

r ” denotes a chi-square distribution with r degrees of freedom, and the notation “XTAX ∼ χ2
r ”

implies that
p
(
XTAX ≤ d2

)
= cdfχ2

r

(
d2

)
♦ (IV.5)

Proof. Shown by Mathai and Provost (1992) [49].

Lemma IV.4 gives an analytical expression for integrals of normal probability distributions that are bounded by
contours of constant Mahalanobis distance. This result has been shown by Bhattacharya et. al. (See Thm 12.3.2).[46]
An alternate, intuitive proof of Lemma IV.4 is presented here.
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Fig. 4 d-Mahalanobis contour and volume, a) Ld and b) Vd , respectively.

Lemma IV.4 (Cumulative distributions bounded by contours of constant Mahalanobis distance). Let X ∼ N
(
X̄,Σ

)
,

where X̄ ∈ Rn, and Σ ∈ Rn×n,Σ > 0. Then,

p
( [

X − X̄
]T
Σ
−1 [

X − X̄
]
≤ d2

)
= cdfχ2

n

(
d2

)
(IV.6)

Let x ∈ Rn be an instance of X . Let DX (x) be the Mahalanobis distance of x (see Def. IV.1). Let the function
FX : R→ [0,1] be defined by the rule

FX (d) �


p
(
D2

X (X) ≤ d2
)

if d ≥ 0

0 if d < 0
(IV.7)

Then, FX is a cumulative distribution function for X . ♦

Proof. Define Z � Σ−1/2 (
X − X̄

)
. Via Kroese et. al., it follows that Z ∼ N (0n×1, In).[50]

Define B2 � ZT InZ . Then, via Theorem IV.3, B2 ∼ χ2
n, i.e.

p
(
B2 ≤ d2

)
= cdfχ2

n

(
d2

)
(IV.8)

However, B2 = (X − x̄)T
(
Σ−1/2)T Σ−1/2 (X − x̄). Via Bernstein (see Ch 8.5), since Σ > 0, it follows that Σ−1/2 > 0.[51]

This fact implies that Σ−1/2 is symmetric. Therefore,(
Σ
−1/2

)T
Σ
−1/2 = Σ−1/2

Σ
−1/2 = Σ−1 (IV.9)

Thus,
B2 =

(
X − X̄

)T
Σ
−1 (

X − X̄
)
= D2

X (X) (IV.10)

It follows that
p
(
D2

X (X) ≤ d2
)
= p

( [
X − X̄

]T
Σ
−1 [

X − X̄
]
≤ d2

)
= cdfχ2

n

(
d2

)
(IV.11)

The function FX (d), as previously defined, satisfies the following axioms:
1) 0 ≤ FX (d)

Subproof. In the case that d < 0, it follows that FX (d) = 0, by definition.
In the case that d ≥ 0, it follows that FX (d) = cdfχ2

n

(
d2) ≥ 0. �

2) d1 ≤ d2 =⇒ FX (d1) ≤ FX (d2)
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Subproof. Suppose d1 ≤ d2.
In the case that d1 < 0 and d2 < 0, it follows that FX (d1) = FX (d2) = 0, so FX (d1) ≤ FX (d2).
In the case that d1 < 0 and d2 ≥ 0, it follows that FX (d1) = 0 and FX (d2) = cdfχ2

n

(
d2

2
)
≥ 0, so FX (d1) ≤ FX (d2).

In the case that d1 ≥ 0 and d2 ≥ 0,

FX (d2) = p
(
D2

X (X) ≤ d2
2

)
= p

( [
D2

X (X) ≤ d2
1
]
∪

[
d2

1 ≤ D2
X (X) ≤ d2

2
] )
= p

(
D2

X (X) ≤ d2
1

)
+ p

(
d2

1 ≤ D2
X (X) ≤ d2

2

)
≥ p

(
D2

X (X) ≤ d2
1

)
= FX (d1) (IV.12)

�

3) FX (d) ≤ 1

Subproof. In the case that d < 0, it follows that FX (d) = 0 ≤ 1. In the case that d ≥ 0, it follows that
FX (d) � p

(
D2

X (X) ≤ d2) is a probability measure, which means that it is axiomatically bounded above by 1.
Therefore, FX

(
d2) ≤ 1. �

4) lim
d→∞

FX (d) = 1

Subproof. The function FX (d) is monotonically increasing and is bounded above by 1. Therefore, its limit exists,
and is given by

lim
d→∞

FX (d) = sup
d∈R

FX (d) = sup
d∈[0,∞)

p
(
D2

X (X) ≤ d2
)
= 1 (IV.13)

�

Given that the function FX satisfies all the axioms for a cumulative distribution function, it follows that FX is a cumulative
distribution function for X .[52]

Remark IV.5. Since it is trivial that FX (d) = 0 for every d < 0, without loss of generality, only cases when d ≥ 0 are
considered in this work. ♦

Figure 5 illustrates the “alternative” cumulative distribuition of a normally distributed random variable X , FX , for
representative dimensionalities of X .

Fig. 5 Chi-square cdf, and connection to normal probability distributions (for representative dimensionalities).
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Corollary IV.6 (Probability mass within Mahalanobis volume). Let X ∼ N
(
X̄,Σ

)
, where X̄ ∈ Rn, and Σ ∈ Rn×n,Σ > 0.

Let the d-Mahalanobis volume of X , Vd (X), be as defined in Not. IV.2. Then,

p (X ∈ Vd (X)) = cdfχ2
n

(
d2

)
♦ (IV.14)

Now, the notion of the d1, d2-Mahalanobis shell is introduced.

Notation IV.7 (Mahalanobis shell). Let X ∼ N
(
X̄,Σ

)
, where X̄ ∈ Rn, and Σ ∈ Rn×n, Σ > 0. Let x ∈ Rn be an instance

of X . Let the Mahalanobis distance of x, DX (x), be as defined in Def. IV.1. Let the d-Mahalanobis volume of X ,
Vd (X), and the d-Mahalanobis contour of X , Ld (X), be as defined in Not. IV.2. Then, the d1, d2-Mahalanobis shell of
X , denoted by Vd2

d1
(X), is defined as the set

Vd2
d1
(X) � {x ∈ Rn : 0 ≤ d1 ≤ DX (x) ≤ d2} (IV.15)

Note: the union of the d1- and d2-Mahalanobis contours is the boundary of the d1, d2-Mahalanobis shell, i.e.
∂Vd2

d1
= Ld1 (X) ∪ Ld2 (X). ♦

Corollary IV.8 (Probability mass within Mahalanobis shell). Let X ∼ N
(
X̄,Σ

)
, where X̄ ∈ Rn, and Σ ∈ Rn×n,Σ > 0.

Let the d1, d2-Mahalanobis shell of X , Vd2
d1
(X), be as defined in Not. IV.7. Then,

p
(
X ∈ Vd2

d1
(X)

)
= cdfχ2

n

(
d2

2

)
− cdfχ2

n

(
d2

1

)
♦ (IV.16)

The implications of Lemma IV.4 and Corollaries IV.6 and IV.8 on normally distributed random variables (with
positive definite covariances) are illustrated in Fig. 6. Specifically, for such random variables, probability measures over
n-hypervolumes that are bounded by n-hypersurfaces of constant Mahalanobis distances (say, d1 and d2) can be found
analytically as functions that depend only on d1 and d2 (through chi-square cdfs), regardless of the properties of the
mean and covariance of the random variable, and regardless of its dimensionality.

Fig. 6 Probability measures of normally distributed random variables over n-hypervolumes bounded by n-
hypersurfaces of constant d-Mahalanobis distance.)

B. Introducing the Mahalanobis Shell Sampling (MSS) method and applications to KPC computation
The sampling method presented in this work, Algorithm 1 is referred to as the “Mahalanobis Shell Sampling”

algorithm (MSS, for short) throughout this work. The MSS algorithm aims to do the following. First, a canonical sample
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is made along high-dimensional unit sphere surfaces (namely, on the unit (n − 1)-sphere, where n is the dimension of the
points in the normal distribution to be reproduced). This unit hypersphere sample is uniformly distributed in a geometric
sense. Subsection VII.A in the Appendix is dedicated to exploring uniform sequences on the unit hypersphere in detail.

Second, the result from Corollary IV.8 (namely, an analytical solution for the probability mass inside a Mahalanobis
shell) is leveraged in order to both create MSS sample points and to provide weights for such points. Specifically, the
original distribution is truncated until a maximum Mahalanobis distance dmax, and it is divided into a certain number
of Mahalanobis shells (Nshells). Then, for every Mahalanobis shell in the sample, points on the unit hypersphere are
transformed to points in their respective Mahalanobis shell. (This transformation employs the statistics of the original
normal random variable, as well as some Mahalanobis distance within said Mahalanobis shell). Finally, each point in
the MSS sample is given a weight proportional to the probability mass in its respective shell and inversely proportional
to the number of points in the shell. In other words, the collective weight of points in each sample Mahalanobis shell is
the probability mass in the shell, and the collective weight of the shell is divided evenly among points in the shell.

Thus, by transforming canonical unit hypersphere sample points into sample points in Mahalanobis shells, the MSS
algorithm generates a sample that is representative of some normally distributed random variable.

Input: Nshells, Nsamples/shell, dmax (max. sample Mahalanobis distance), dimension of elements of the sequence
nX (nX ∈ N,nX ≥ 2)

Output: MSS sample {x̃k(t0)}k∈{1, · · · ,Nsamples }, sample weights {wk}k∈{1, · · · ,Nsamples }

Data: Initial conditions X̄i, j(t0),ΣXi , j (t0); prior state distribution Xi, j (t0) ∼ N
(
X̄i, j(t0),ΣXi , j (t0)

)
1

{
zp

}
p∈{1, · · · ,Nsamples/shell }

← output of some unit (nX − 1)-sphere sampling algorithm(
Nsequence = Nsamples/shell,D = nX

)
// see Appendix, subsection VII.A for a list of algorithms

2 δd ← dmax/Nshells

3 U,S,V← such that ΣXi , j (t0) = USVT
// output of SVD

4 Σ
1/2
Xi , j
(t0) ← US1/2VT

5 k ← 0
6 Nsamples ← NshellsNsamples/shell
7 for l ← 1 to Nshells do
8 dl ← (l − 1

2 )δd

9 Wl ← cdfχ2
D

(
(dl + 1

2δd)
2
)
− cdfχ2

D

(
(dl − 1

2δd)
2
)

// probability mass in in lth (nX-dimensional) Mahalanobis shell

10 for p← 1 to Nsamples/shell do
11 k ← k + 1
12 x̃k(t0) ← X̄i, j(t0) + dl

[
Σ

1/2
Xi , j
(t0)

]
zp // point in lth Mahalanobis shell

13 wk ← Wl/Nsamples/shell // same weight for pts in the same Mahalanobis shell

14 return {x̃k(t0)}k∈{1, · · · ,Nsamples } , {wk}k∈{1, · · · ,Nsamples }

Algorithm 1: Generation of MSS sample, general nX-dimensional state, normal prior state distribution.

Corollary IV.8 has interesting implications for sampling from multidimensional, non-degenerate normal distributions.
Algorithm 1 is a direct application of Corollary IV.8, whereby using an uniform sample of the unit sphere, a maximum
Mahalanobis distance dmax < ∞, and a discretization of the Mahalanobis distances d ∈ [0, dmax], a sample is generated
for some normal distribution.

The MSS KPC and TPc/WPC computation method, listed as Algorithm 2, aims to do the following. First,
a MSS sample is generated that replicates the initial distribution of a normally distributed relative dynamic state.
Then, individual particles in such sample are propagated using arbitrary dynamics (without requiring the propagated
distribution to retain normality). Finally, the weights of each particle in the sample are used to compute the probabilities
of collision. Thus, through application of the present sampling method to collision probability computation, integration
is sidestepped by using weights that reflect integration of regions bounded by certain surfaces, and the difficulties of
Monte Carlo methods are sidestepped by using canonical samples that are uniformly distributed in a geometric sense.

In principle, MSS samples can be used for arbitrary purposes since, within some truncation and discretization, they
represent the original distribution of some normal random variable. In this work, however, Algorithm 2 is an application
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Input: Initial time t0, final time t f , Nt

Output: Discrete time sample T ; kinematic PC KPCi, j (t |t0), sample kinematic PC �KPCi, j (t |t0), sample
window PC W̃PCi, j (t0, t), t ∈ T ; KPC error RMS

Data: Initial conditions X̄i, j(t0),ΣXi , j (t0); prior state distribution Xi, j (t0) ∼ N
(
X̄i, j(t0),ΣXi , j (t0)

)
; MSS

sample {x̃k(t0)}k∈{1, · · · ,Nsamples }, sample weights {wk}k∈{1, · · · ,Nsamples } ; matrix M for mapping from
complete relative state to relative position (see subsection III.A)

1 δt ←
t f −t0
Nt−1

2 a← 01×Nsamples

3 B2 ← 0
4 for m← 1 to Nt do
5 tm ← t0 +

t f −t0
Nt−1 (m − 1)

6 X̄i, j (tm) ← Φi, j (tm, t0) X̄i, j (t0)
7 ΣXi , j (tm) ← Φi, j (tm, t0) ΣXi , j (t0)Φ

T
i, j (tm, t0)

8 Ri, j (tm |t0) ∼ N
(
MX̄i, j (tm) ,MΣXi , j (tm)MT

)
9 KPCi, j (tm |t0) ←

∫
R∈Vi , j

pdfRi , j |t ,t0
(R|tm, t0) dR // KPC truth

10 B1 ← 0
11 for k ← 1 to Nsamples do
12 if m > 1 then
13 x̃k ← Φi, j (tm, tm − δt ) x̃k
14 r̃k ←Mx̃k
15 if ‖r̃k ‖ ≤ li, j then // i-j collision event at time tm (k th particle)

16 B1 ← B1 + wk

17 if [a]k = 0 then // i-j collision (k th particle) had not yet occurred

18 [a]k ← 1 // mark i-j collision as having occurred (k th particle)

19 B2 ← B2 + wk

20 �KPCi, j (tm |t0) ← B1

21 W̃PCi, j (t0, tm) ← B2
22 T ← {tm}m∈{1, · · · ,Nt }

23 KPC error RMS←
√

1
Nt

∑Nt

m=1

(�KPCi, j (tm |t0) − KPCi, j (tm |t0)
)2

24 return T ; KPCi, j (t |t0) ,�KPCi, j (t |t0) ,W̃PCi, j (t0, t) , t ∈ T ; KPC error RMS
Algorithm 2:Computation of KPC truth, KPC andWPCMSS estimates, assuming normal prior state distribution
and linear relative dynamics.

of the MSS sampling method to the problem of the computation of the probability of collision between any two agents
in proximity, if the distribution of their initial relative state is normal and known, and if the relative dynamics are linear.

Figure 7 illustrates graphically an example of an application of the MSS method to compute KPC for a relative
dynamic system that has normal distribution and whose dimension is R2, specifically by having one-dimensional relative
position and one-dimensional relative velocity. Unlike direct KPC computation from the relative position pdf (illustrated
in Figure 2) or computation of KPC through marginalization of the full state pdf into the relative position pdf (illustrated
in Figure 3), when MSS is applied, the original distribution is truncated until a maximum Mahalanobis distance dmax,
divided into Mahalanobis Shells, and then each shell is further subdivided, and one point from within each shell is
added to the sample and given a weight proportional to the probability mass in the shell and inversely proportional to
the number of points in the shell.

The notation of the MSS sampling method and of the MSS KPC computation method assume that the normally
distributed multi-dimensional random variable to be sampled is a relative dynamic state (specifically, the initial
conditions of such state). The reason for this notation choice is that the primary motivation for the development of this
algorithm is to help in the efficient computation of KPC and TPc/WPC for relative dynamic systems. However, it is
helpful to note at this point that, in principle, the MSS sampling algorithm could be used to directly sample from an
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Fig. 7 Computing kinematic probability of collision (KPC) for a system with one-dimensional relative position
and normally distributed (two-dimensional) relative state (computing through application of MSS).

arbitrary multidimensional, normally distributed random variable, whether or not it has any physical interpretation.
Similarly, in principle, the MSS KPC computation method could be adapted to include nonlinear dynamics, and its end
goal could be to obtain other time-integrals of the distribution, or even to just propagate the distribution itself. Thus, the
MSS sampling method is a potential choice for other applications, such as filtering, as an alternative to the Unscented
Transform or other particle-based sampling methods.

V. Results and discussion
In this section, the Mahalanobis Shell Sampling (MSS) algorithm (see Algorithm 1) is applied in order to compute

kinematic probability of collision (KPC) in the context of a dynamic example (see Algorithm 2). The current
example involves a set of two mass-spring-damper systems in R2 (specifically, by having one-dimensional position and
one-dimensional velocity). This pedagogical example is useful because an analytical solution can be found for KPC,
which is presented in subsection V.A. Then, a slight variant of the MSS applied to KPC computation is presented in
subsection V.B for relative dynamic systems in R2. Finally, the efficacy of the MSS application to KPC computation is
examined by comparing the discrete time error RMS between the analytical and estimated KPC waveforms for two sets
of initial conditions and system parameters, as discussed in subsection V.C.

A. Relative mass-spring-damper system (rel. position in R1, rel. state in R2) - setting up dynamics
In this example, two “boxes” (labeled i and j, respectively) are modeled as individual mass-spring-damper systems.

It is assumed that these boxes experience no external forces, and the contact dynamics between these boxes are ignored.
The dynamic state of the center of mass of box i, Xi , (see subsection III.D) is defined in terms of its position Ri (see

subsection III.A) and its corresponding velocity ÛRi as XT
i �

[
Ri , ÛRi

]
. Denoting the ith mass, damping coefficient and

spring constant by mi , bi and ki , respectively, its dynamics can be expressed as follows:

dXi

dt
=

d
dt

[
Ri

ÛRi

]
=

[
0 1

−ki/mi −bi/mi

] [
Ri

ÛRi

]
(V.1)

The dynamics of the position of the center of mass of box j can be expressed similarly. Furthermore, it is assumed that
the center of mass of box j is stationary at the origin initially, while the initial state of box i has some nontrivial value.
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Therefore, the state of box j is trivial for all time (i.e. Xj(t) = 02×1), and the dynamics of of i relative to j (i.e. the
dynamics of Xi, j � Xi − Xj) are the same as the dynamics of i, namely,

dXi, j

dt
=

d
dt

[
Ri, j

ÛRi, j

]
=

[
0 1

−ki/mi −bi/mi

] [
Ri, j

ÛRi, j

]
(V.2)

The system parameters mi , bi and ki (all positive-valued) are chosen in order to observe an underdamped (i.e.
decaying oscillatory) response; thus, ki > b2

i /4mi . Letting X̄i, j (t0) denote the initial mean relative state, where

X̄i, j (t0) =
[
R̄i, j (t0) , Û̄Ri, j (t0)

]T
, the mean relative state X̄i, j (t) can be computed as

X̄i, j (t) = Φi, j (t, t0) X̄i, j (t0) (V.3)

where the relative state transition matrix Φi, j (t, t0) can be computed as

Φi, j (t, t0) = Φi, j (t − t0,0) (V.4)

where

Φi, j (t,0) =

[
[Φi, j (t,0)]1,1 [Φi, j (t,0)]1,2
[Φi, j (t,0)]2,1 [Φi, j (t,0)]2,2

]
(V.5)

[Φi, j (t,0)]1,1 = exp (−ζωnt)

[
cos (ωdt) +

ζ√
1 − ζ2

sin (ωdt)

]
(V.6)

[Φi, j (t,0)]1,2 = exp (−ζωnt)
1

ωn

√
1 − ζ2

sin (ωdt) (V.7)

[Φi, j (t,0)]2,1 = − exp (−ζωnt)
ωn√

1 − ζ2
sin (ωdt) (V.8)

[Φi, j (t,0)]2,2 = exp (−ζωnt)

[
cos (ωdt) −

ζ√
1 − ζ2

sin (ωdt)

]
(V.9)

and
ωn =

√
ki/mi (V.10)

ζ = bi/2
√

kimi (V.11)

ωd = ωn

√
1 − ζ2 =

√
ki/mi − (bi/2mi)

2 (V.12)

Let the relative state covariance ΣXi , j > 0 be related to the variables σRi , j , σ ÛRi , j
and ρ(Ri , j , ÛRi , j ) as follows

ΣXi , j =

[
[ΣXi , j ]1,1 [ΣXi , j ]1,2

[ΣXi , j ]1,2 [ΣXi , j ]2,2

]
=

[
σ2
Ri , j

ρ(Ri , j , ÛRi , j )σRi , jσ ÛRi , j

ρ(Ri , j , ÛRi , j )σRi , jσ ÛRi , j
σ2
ÛRi , j

]
(V.13)

Suppose ΣXi , j (t0) > 0 is known. Since the i- j dynamics are linear, the relative state covariance can be computed as

ΣXi , j (t |t0) = Φi, j (t, t0) ΣXi , j (t0)Φ
T
i, j (t, t0) (V.14)

Suppose the initial probability distribution of the relative center of mass is normal (see Eq. III.21). Because the
dynamics of the relative state Xi, j are linear and uncontrolled, its distribution remains normal for all time, i.e.

Xi, j (t) ∼ N
(
Φi, j (t, t0) X̄i, j(t0),Φi, j (t, t0) ΣXi , j (t0)Φ

T
i, j (t, t0)

)
(V.15)

Based on Remark III.12, the KPC between agents i and j, KPCi, j (t |t0), can be computed as

KPCi, j (t |t0) =
∫ li , j

−li , j

pdfRi , j |t ,t0
(R|t, t0) dR (V.16)
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For this example, the kinematic probability of collision KPCi, j (t |t0) waveform can be found analytically as

KPCi, j (t |t0) =
1
2

[
erf

(
li, j − R̄i j (t)

σRi , j (t)
√

2

)
− erf

(
−li, j − R̄i j (t)

σRi , j (t)
√

2

)]
(V.17)

where
R̄i j (t) = [Φi, j (t, t0)]1,1 R̄i, j (t0) + [Φi, j (t, t0)]1,2 Û̄Ri, j (t0) (V.18)

and

σ2
Ri , j
(t) = [Φi, j (t, t0)]21,1σ

2
Ri , j
(t0) + [Φi, j (t, t0)]21,2σ

2
ÛRi , j
(t0)

+ 2
(
[Φi, j (t, t0)]1,1[Φi, j (t, t0)]1,2

)
ρ(Ri , j , ÛRi , j ) (t0)σRi , j (t0)σ ÛRi , j

(t0) (V.19)

B. Mahalanobis Shell Sampling (MSS) algorithm - variant for system with rel. position in R1, rel. state in R2.
A variant of the general nX-dimensional MSS sampling algorithm (see Algorithm 1), specifically for the case of

a two-dimensional relative dynamic state with one-dimensional relative position, is presented as Algorithm 3 and
implemented for the examples of this section.

Input: Nshells, Nsamples/shell, dmax (max. sample Mahalanobis distance)
Output: MSS sample {x̃k(t0)}k∈{1, · · · ,Nsamples }, sample weights {wk}k∈{1, · · · ,Nsamples }

Data: Initial conditions X̄i, j(t0),ΣXi , j (t0); prior state distribution Xi, j (t0) ∼ N
(
X̄i, j(t0),ΣXi , j (t0)

)
1 δd ← dmax/Nshells

2 U,S,V← such that ΣXi , j (t0) = USVT
// output of SVD

3 Σ
1/2
Xi , j
(t0) ← US1/2VT

4 k ← 0
5 Nsamples ← NshellsNsamples/shell
6 for l ← 1 to Nshells do
7 dl ← (l − 1

2 )δd

8 Wl ← cdfχ2
2

(
(dl + 1

2δd)
2
)
− cdfχ2

2

(
(dl − 1

2δd)
2
)

// probability mass in in lth (2-dimensional) Mahalanobis shell

9 r ∼ U [0,1]
10 θ0 ← 2πr/Nsamples/shell
11 for p← 1 to Nsamples/shell do
12 k ← k + 1
13 θl,p = θ0 + 2π(p − 1)/Nsamples/shell

14 zk ←
[
cos

(
θl,p

)
sin

(
θl,p

) ]T
// point in 1-sphere (i.e. circle)

15 x̃k(t0) = X̄i, j(t0) + dl
[
Σ

1/2
Xi , j
(t0)

]
zk // point in lth Mahalanobis shell

16 wk ← Wl/Nsamples/shell // same weight for pts in the same Mahalanobis shell

17 return {x̃k(t0)}k∈{1, · · · ,Nsamples } , {wk}k∈{1, · · · ,Nsamples }

Algorithm 3: Generation of MSS sample, 2-dimensional rel. state (one-dimensional rel. position), normal prior
state distribution

C. Relative mass-spring-damper system (rel. position in R1, rel. state in R2) - KPC andWPC - MSS results and
discussion
Two sets of initial conditions and system parameters are considered for the example of the current section, and they

are listed in Table 1. In both cases, system parameters are chosen so that the relative system response is underdamped
(see subsection V.A), and since this implies that both cases have asymptotically stable dynamics, the mean relative state
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converges to the origin asymptotically, and the relative covariance vanishes. Therefore, these system parameters imply
that the kinematic probability of collision (KPC) asymptotically approaches the value 1, which implies a sure collision.
Additionally, the joint hard body radius li, j is chosen to be large in order to observe higher collision probabilities.

Table 1 MSS applications 1D mass-spring-damper system examples

Parameter Example #1D.001 Example #1D.002
R̄i, j (t0) (m) 1 1
Û̄Ri, j (t0) (m/s) 0 4
σRi , j (t0) (m) 1 1
σ ÛRi , j

(t0) (m/s) 1 1
ρ(Ri , j , ÛRi , j ) (t0) 0 0
mi (kg) 4 4
bi (kg/s) 1 0.25
ki (kg/s2) 1 2
li, j (m) 0.5 0.5(
t f − t0

)
(s) 20 45

The first case, Example #1D.001, is discussed in subsubsection V.C.1, and it is chosen so that a “faster” convergence
to a sure collision scenario (within 1.25 oscillations) can be observed compared to that of Example #1D.002 (within
8.3 oscillations), which is discussed in subsubsection V.C.2. Discussion of results comprises the following: first,
qualitative comparison of KPC among analytically-, Monte Carlo- and MSS-generated waveforms; second, motivating
TPc/WPC as a collision risk indicator; and third, comparing the performance of changing MSS sample parameters by
directly comparing the analytically- and MSS-generated waveforms. The metric used to compare these waveforms is the
discrete-time Euclidean distance, i.e. the difference root-mean-square (RMS) between the waveforms (referred to as
“error” RMS for brevity), or simply referred to as KPC error RMS.

1. Kinematic probability of collision (KPC) results - Example #1D.001
Qualitatively, for Example #1D.001, the KPC waveforms generated analytically, through Monte Carlo sampling of

the initial state distribution, and through MSS (shown in Figures 8, 9 and 10, respectively) are in agreement with one
another, i.e. they start at a local minimum (consistent with agent i starting at a location furthest from the origin (on its
right) before moving towards the origin), a local maximum is crossed at 1/4-oscillation (consistent with agent i crossing
the origin) before another local minimum at 1/2-oscillation (consistent with agent i being locally furthest from the
origin on the left), before another local maximum at 3/4-oscillation (consistent with agent i crossing the origin) before
another local minimum at 1-oscillation (consistent with agent i being locally furthest from the origin on the right again).
This behavior is intuitive and consistent with two facts: 1) the expectation that the KPC waveform should asymptotically
approach the value of 1, implying that a collision is happening “almost surely” after a threshold, which for this case is
after 1.25 oscillations; and 2) that the system response is decaying and sinusoidal, as previously described.

It is interesting to note that the “Total Probability of collision” (TPc, also labeled as WPC, see Frigm et. al. [36])
waveforms generated through Monte Carlo sampling of the initial state distribution and through MSS (shown in Figures
9 and 10, respectively) are also consistent, and they show that (almost) every region of the initial relative state pdf
has crossed the collision volume Vi, j (see Fig. 3 for reference) by the 1/3-oscillation, which implies that a collision
has “almost surely” occurred by this time. This observed TPc/WPC behavior is not in contradiction to that of the
KPC waveform; in fact, the information obtained from observing the KPC and TPc/WPC waveforms is distinct but
complementary: while a collision is “almost surely” occurring at the 1.25-oscillation (and any time after that), a
collision has “almost surely” occurred sometime between the simulation start time and the 1/3-oscillation.

This example shows that, from a collision risk analysis perspective, the question that the TPc/WPC is trying to
answer (the probability of collision anytime within a compact time window) has the potential of being an important
collision risk indicator. Furthermore, in some cases, the TPc/WPC datum might be more appropriate as a collision
risk indicator than the maximum kinematic probability of collision (KPC) at any given time within the same time
window. For reference, by the 0.44-oscillation, the TPc/WPC value was exactly 1 for the Monte Carlo case (i.e. 100%
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Fig. 8 Probability of collision waveform results, analytically-generated, Example #1D.001

Fig. 9 Probability of collision waveform results, Monte Carlo-generated, Example #1D.001

of all 50 million Monte Carlo particles had collided by then), while the TPc/WPC value for the MSS case was exactly
1 − 1.6075E − 11, which is very close to the total sample weight cdfχ2

2

(
7.052) = 1 − 1.6115E − 11.

As was discussed in the Introduction (see section II), in order to compute the TPc/WPC, a sampling-based method
is required; therefore, it is helpful to compare such methods. It is interesting to note that, through MSS, samples were
made of points within dmax = 7.05 (colloquially, to within 7.05-“σ”) utilizing only 16920 points. The probability mass
outside dmax = 7.05 is equal to 1− cdfχ2

2

(
7.052) ≈ 1.6115E − 11, i.e. the chance of that a point is Monte Carlo-sampled

at or beyond 7.05-“σ” is about 1 in 6.205E10, which is more than three orders of magnitude larger than the Monte
Carlo sample size (5E7). In fact, the chance of a Monte Carlo sample point to be at or beyond 5.9544-“σ” is is equal to
1 − cdfχ2

2

(
5.95442) ≈ 2E − 8, or about 1 in 5E7; therefore, only one point in the entire Monte Carlo sample is expected

to cross this threshold with the number of points in the sample (5E7). In turn, there are 22 MSS shells (i.e. 2640 points
total) with points in that same range (i.e. at or beyond 5.9544-“σ”).

Thus, it seems that the MSS sample method can account for probabilistic outliers without unduly penalizing the
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Fig. 10 Probability of collision waveform results, MSS-generated, Example #1D.001

sample size; thus, the MSS sample method might enable achieving comparable accuracy (for low-valued probabilities
of collision) when compared to Monte Carlo (at the very least in a qualitative sense) at a fraction of the effort. For
Example #1D.001, waveform computation using MSS method took 0.5942 sec, while Monte Carlo took 453.7546 sec
(in both methods, execution time in MATLAB was averaged over 10 runs, with 0.02 sec timestep and accounting for
sample generation).

As can be seen in Algorithm 1, there are three primary inputs to perform an MSS sample: the number of shells
Nshells, the number of samples per shell Nsamples/shell, and the cutoff Mahalanobis distance dmax. Figures 11, 12 and 13
are concerned with comparing how accurately the MSS KPC waveform approximates the analytical KPC waveform,
specifically, when changing the number of shells Nshells and the cutoff Mahalanobis distance dmax (for a fixed, arbitrary
number of samples per shell Nsamples/shell).

Fig. 11 Euclidean distance (i.e. error RMS) between analytical and MSS KPC waveforms; changing number
of shells Nshells and cutoff Mahalanobis distance dmax (with fixed Nsamples/shell) in MSS sample; Example #1D.001.

Upon examining the trade of changing the number of shells Nshells versus changing cutoff Mahalanobis distance dmax
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(as seen in Figure 11), it is seen that while the MSS KPC method is insensitive to the number of shells Nshells, increasing
the cutoff Mahalanobis distance dmax results in a monotonic increase in error RMS accuracy. However, this observation
only holds for “low” cutoff Mahalanobis distances dmax. This observation can be explained by noting that the MSS
sample algorithm does not implement sample weight normalization, i.e. the sum of the weights of the elements of the
sample is not 1, but 1 − cdfχ2

(nX)

(
d2

max
)
, so a high enough dmax is needed for a valid sample.

Next, Figure 12 is examined, where representative cutoff Mahalanobis distances dmax ∈ {4, . . . ,10} are held constant,
while changing the number of shells Nshells. It is clear that, for constant cutoff Mahalanobis distances dmax, increasing
the number of shells Nshells improves RMS residuals. Additionally, it can be seen that, after dmax = 4, better RMS
residuals are obtained with lower dmax. It can be seen that, after dmax = 4, equal accuracy can be achieved with higher
dmax by increasing Nshells; conversely, after dmax = 4, increasing dmax while holding Nshells constant decreases RMS
accuracy. This trend is opposite to that observed in Figure 11, where for low dmax and wht, when holding Nshells constant,
increasing dmax ile holding Nshells constant, increasing dmax increases RMS accuracy. Combined, these trends suggest
thaimproves RMS accuracy up to a point, after which continuing to increase dmax worsens RMS accuracy.

Fig. 12 Euclidean distance (i.e. error RMS) between analytical andMSSKPCwaveforms; changing number of
shells Nshells while holding cutoffMahalanobis distance dmax constant (with fixed Nsamples/shell); Example #1D.001.

In Figure 13, representative Nshells ∈ [20,210] are held constant, while changing cutoff Mahalanobis distances dmax.
It is seen that, in every case, RMS residuals improve up to a certain “transition” cutoff Mahalanobis distance d ′max
(which depends on Nshells), and the RMS residuals deteriorate with dmax > d ′max. Furthermore the, “transition” cutoff
Mahalanobis distance d ′max increases with increased number of shells Nshells. For Nshells ∈ [20,210], the “transition”
cutoff Mahalanobis distance d ′max is between 4 and 5, which is consistent with observations from Figure 12.

These observations imply that there exists an underlying requirement for Mahalanobis shell resolution; in other
words, in order to maintain or improve error RMS performance while increasing dmax, it is necessary to increase the
number of shells Nshells. Thus, MSS KPC error RMS accuracy is not insensitive to the number of shells Nshells. In fact,
for constant KPC error RMS, increasing dmax requires an increase in Nshells; conversely, for constant KPC error RMS,
increasing Nshells allows sampling from increasingly greater cutoff Mahalanobis distances dmax.

It should be noted that increasing dmax by itself does not affect sample size. Therefore, increasing dmax while keeping
Nshells constant effectively creates a grid that, while including more probabilistic outliers, becomes increasingly more
coarse. However, while correctly increasing Nshells in tandem, increasing dmax should always improve RMS accuracy (at
the cost of additional computation and longer time to converge).

2. Kinematic probability of collision (KPC) results - Example #1D.002
For Example #1D.002, most insights obtained are similar to those obtained through examination of Example

#1D.001 (see Subsubsection V.C.1). Qualitatively, for Example #1D.002, the KPC waveforms generated analytically,
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Fig. 13 Euclidean distance (i.e. error RMS) between analytical and MSS KPC waveforms; changing cutoff
Mahalanobis distance dmax while holding number of shells Nshells constant (with fixed Nsamples/shell); Example
#1D.001.

through Monte Carlo sampling of the initial state distribution, and through MSS (shown in Figures 14, 15, and 16,
respectively, are in agreement with one another. Namely, during every oscillation, there is one KPC local minimum
followed (1/4-oscillation after) by one KPC local maximum, before repeating the sequence after 1/4-oscillation. Unlike
Example #1D.001, the KPC waveforms do not start at a local minimum because agent i is initially moving further away
from the origin.

Fig. 14 Probability of collision waveform results, analytically-generated, Example #1D.002

Example #1D.002 is an interesting example that further illustrates how TPc/WPC might be an important collision
risk indicator. The TPc/WPC waveforms generated through Monte Carlo sampling of the initial state distribution and
through MSS (shown in Figures 15 and 16, respectively) are also consistent, and they show that (almost) every region of
the initial relative state pdf has crossed the collision volume Vi, j (see Fig. 3 for reference) by the 1/2-oscillation, which
implies that a collision has “almost surely” occurred by this time. In contrast, the KPC waveform indicates that the first
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time a collision is “almost surely” occurring is at the 7.933-oscillation, and a collision is “almost surely” occurring at
the 8.789-oscillation and every time after that.

Fig. 15 Probability of collision waveform results, Monte Carlo-generated, Example #1D.002

Fig. 16 Probability of collision waveform results, MSS-generated, Example #1D.002

The contrast between the information that can be gleaned from the KPC and TPc/WPC waveforms is especially
noteworthy between the simulation start time and the end of the 2nd oscillation. On one hand, in that interval, four times
the KPC waveform indicates that a collision either is not occurring or has low probability of occurring; on the other
hand, at those same four times, the TPc/WPC shows that a collision has occurred by said times with probability of over
30% (the first time), and almost 100% (the other three times). Regardless of the dynamics of convergence of the KPC
waveform to an “almost sure” collision, in an operational context, such concerns would be irrelevant when considering
that a collision might be imminently expected much sooner.

For reference, by the 0.48-oscillation, the TPc/WPC value was exactly 1 for the Monte Carlo case (i.e. 100% of
all 50 million Monte Carlo particles had collided by then), while the TPc/WPC value for the MSS case was exactly
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1 − 1.6105E − 11, which is very close to the total sample weight cdfχ2
2

(
7.052) = 1 − 1.6115E − 11. Additionally, it is

worth noting that, for Example #1D.002, waveform computation using MSS method took 1.2808 sec, while Monte
Carlo took 1007.1877 sec (in both methods, execution time in MATLAB was averaged over 10 runs, with 0.02 sec
timestep and accounting for sample generation). MSS execution time for Example #1D.001 was 2.16 times faster than
for Example #1D.002, while the former had a propagation horizon 2.25 times shorter than the latter.

In a similar fashion to Example #1D.001, in Example #1D.002, upon examining the trade of changing the number
of shells Nshells versus changing cutoff Mahalanobis distance dmax, it is observed that, for “low” cutoff Mahalanobis
distances dmax, the MSS KPC method is insensitive to the number of shells Nshells, and that increasing the cutoff
Mahalanobis distance dmax results in a monotonic increase in error RMS accuracy. This observed behavior is consistent
after 1 simulation (see Figure 17) and after averaging over 23 simulations (see Figure 20).

Fig. 17 Euclidean distance (i.e. error RMS) between analytical and MSS KPC waveforms; changing number
of shells Nshells and cutoff Mahalanobis distance dmax (with fixed Nsamples/shell) in MSS sample; Example #1D.002
(after 1 simulation).

For Example #1D.002, when examining the trade of changing the number of shells Nshells in the MSS sample, while
holding cutoff Mahalanobis distances dmax ∈ {4, . . . ,10} are held constant. First, for constant cutoff Mahalanobis
distance dmax, increasing the number of shells Nshells improves RMS residuals. Additionally, it is seen that, after
dmax = 4, better RMS residuals are obtained with lower dmax. The observed trends are consistent after 1 simulation (see
Figure 18) and after averaging over 23 simulations (see Figure 21).

Second, for constant number of shells Nshells, increasing cutoff Mahalanobis distance dmax starts improving RMS
residuals before stagnating at a “transition” cutoff Mahalanobis distance d ′max, after which continuing to increase cutoff
Mahalanobis distance dmax degrades RMS residuals. The observed trends are consistent after 1 simulation (see Figure
19) and after averaging over 23 simulations (see Figure 22).

To examine the reproducibility of these trends, the same simulation is averaged over 23 simulations. It is noteworthy
that, after averaging, the trends appear to smooth out, which show that for the one-dimensional position, 2D state MSS
sampling method, rotating each unit shell by a random angle, and thus adding an element of randomness to the specific
location of each shell point (within its respective cell), gives the algorithm probabilistic consistency (see Algo 3, line
9), at least within each dynamic system example. When extending the algorithm to higher dimensions, it is worth
examining whether it might be beneficial to rotate unit shells through random rotations as well, which would entail
modifying the main MSS sampling algorithm (see Algo 1) slightly in order to reflect this change.
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Fig. 18 Euclidean distance (i.e. error RMS) between analytical andMSSKPCwaveforms; changing number of
shells Nshells while holding cutoffMahalanobis distance dmax constant (with fixed Nsamples/shell); Example #1D.002
(after 1 simulation).

Fig. 19 Euclidean distance (i.e. error RMS) between analytical and MSS KPC waveforms; changing cutoff
Mahalanobis distance dmax while holding number of shells Nshells constant (with fixed Nsamples/shell); Example
#1D.002 (after 1 simulation).
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Fig. 20 Euclidean distance (i.e. error RMS) between analytical and MSS KPC waveforms; changing number
of shells Nshells and cutoff Mahalanobis distance dmax (with fixed Nsamples/shell) in MSS sample; Example #1D.002
(averaging over 23 simulations).

Fig. 21 Euclidean distance (i.e. error RMS) between analytical andMSSKPCwaveforms; changing number of
shells Nshells while holding cutoffMahalanobis distance dmax constant (with fixed Nsamples/shell); Example #1D.002
(averaging over 23 simulations).
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Fig. 22 Euclidean distance (i.e. error RMS) between analytical and MSS KPC waveforms; changing cutoff
Mahalanobis distance dmax while holding number of shells Nshells constant (with fixed Nsamples/shell); Example
#1D.002 (averaging over 23 simulations).

VI. Conclusion
In this work, the notions of collision events and the kinematic probability of collision (KPC) are reintroduced and

formalized. Then, for the specific case of normal probability distribution functions (pdfs), certain pdf integrals (namely,
those bounded by contours of constant Mahalanobis distance, or integrals over Mahalanobis shells) are analytically linked
to the chi-square distribution. Upon the basis of this relationship, a sampling method, referred to as the Mahalanobis
Shell Sampling algorithm (MSS), is developed. Using the parameters of normal, nondegenerate distributions, the
MSS algorithm transforms a sample from the unit hypersphere into a sample of the original normal, nondegenerate
distribution. The MSS algorithm accomplishes this by giving weights to each sample point that are proportional to the
probability mass in the target shell and inversely proportional to the number of points in such shell. The MSS sampling
method could in principle be applied to sample from arbitrary (non-degenerate) normal pdfs, regardless of their physical
interpretation or application (or lack thereof). However, in accordance with a motivation of this work, a method is
presented in which MSS samples are used to compute kinematic probability of collision (KPC) waveforms, as well as
total/window probability of collision (TPc/WPC) waveforms.

Given a choice of unit hypersphere sampling algorithm, a MSS sample is parameterized by three primary inputs:
the number of shells Nshells, the number of samples per shell Nsamples/shell, and the cutoff Mahalanobis distance dmax.
The performance of MSS samples for KPC computation is examined through a simple, intuitive example, where the
relative position between agents is one-dimensional and the relative state is two-dimensional, and an analytical KPC
solution is found for this example. Further, the system parameters and initial conditions are chosen so as to guarantee a
sure collision. The performance of the MSS KPC method is measured through the Euclidean distance (or difference
RMS) between the analytically and MSS generated waveforms.

The KPC waveforms generated through analytical, Monte Carlo and MSS methods are qualitatively consistent, and
they follow the intuition of the dynamics of the example presented. It is found that, for low cutoff Mahalanobis distances
dmax, the KPC error RMS is insensitive to the number of shells Nshells in the sample, and KPC error RMS monotonically
decreases with increasing cutoff Mahalanobis distances dmax. However, more generally, increasing the number of shells
Nshells in the sample (while holding cutoff Mahalanobis distances dmax constant) monotonically improves RMS residuals.
In contrast, when increasing cutoff Mahalanobis distances dmax in the sample (while holding the number of shells Nshells
constant), an improvement in RMS residuals is observed up to “transition” cutoff Mahalanobis distance d ′max, after
which continuing to increased dmax results in RMS residual deterioration. Further, it is found that this “transition” cutoff
Mahalanobis distance d ′max increases with increased number of shells Nshells.

These observations give insight for application of this method to KPC computation. This work is developed with the
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motivation of having an alternative method of KPC computation in an operational context where the KPC values might
be low (for orders of magnitude between 1E-10 to 1E-3 in the context of spacecraft formation collision risk analysis),
which motivates the need from sampling from “tails” of probability distributions. From inspection of KPC error RMS
results, continuing to increase cutoff Mahalanobis distances dmax (which means increasing, in a normalized sense, the
maximum distance of sample points from the sample mean, and implying having more extreme probabilistic outliers),
without also increasing the number of shells Nshells, is ultimately detrimental to KPC accuracy. However, increasing the
number of shells Nshells, without also increasing cutoff Mahalanobis distances dmax, always results in KPC accuracy
improvements. Further examination of applications of MSS to KPC computation should quantify the required increment
in Nshells in order to obtain non-deteriorating KPC error RMS properties for incremental cutoff Mahalanobis distances
dmax. Additionally, in future work, the MSS sample parameters required have desired convergence rate and error
properties should be characterized; conversely, for certain families of dynamic systems and sets of initial conditions,
appropriate KPC error RMS values should be identified in order to obtain desired KPC and TPc/WPC accuracy. In
accordance with the motivation of this work, spacecraft formations should be among the dynamic systems explored in
this effort.

It should be noted that, even though this work demonstrates that the MSS sampling method can faithfully reproduce
pdfs for a specific, low-dimensionality dynamic example, the suitability of this method to approximate pdfs representative
of other dynamic processes should be examined, as well how the sample size required for comparable accuracy scales in
higher dimensions. In future work, it would be beneficial to quantify the relative performance improvement of MSS
KPC/TPc/WPC computation compared not only to Monte Carlo, but also to other sampling algorithms, and to make
these comparisons for different families of dynamic systems and sets of initial conditions. Additionally, in future work,
it would be beneficial to quantify the relative performance improvement of MSS KPC computation compared not only
to Monte Carlo, but also to other sampling algorithms, and to make these comparisons for different families of dynamic
systems and sets of initial conditions, including relative orbital dynamics.

Results were also examined for the “Total Probability of collision” (TPc, also labeled as WPC) waveforms. From
the perspective of collision risk analysis, the results indicate that TPc/WPC information has the potential of being an
important collision risk indicator; specifically, in the few sets of initial conditions examined in this work, the TPc/WPC
indicates that a collision would have “almost surely” occurred much earlier than the KPC indicates that a collision would
be “almost surely” occurring. It appears that, even though TPc/WPC information is distinct from KPC information, the
former is complementary to the latter, thus suggesting that TPc/WPC information is operationally useful, especially if
an imminent collision (on an intolerable high risk of collision) is expected much earlier (or at all) as evidenced by the
TPc/WPC indicator than a later (or possibly not existing) expectation of collision as evidenced by the KPC indicator.
Specifically, the TPc/WPC indicator can be used to indicate whether a collision is likely to occur within a future time
window. Since a sampling method is required to compute TPc/WPC, as an algorithm that can sample from “tails” of
normal probability distributions efficiently (provided enough shells are added to the sample), the MSS KPC method is a
candidate for TPc/WPC computation. It is expected that MSS KPC method would perform better than Monte Carlo in
most cases, but this also should be quantified, and other algorithms should be considered as well.

In future work, it would be appropriate to formally define the TPc/WPC collision risk indicator, similarly to how
it was done in this work. Additionally, it would be appropriate to prove some properties of the TPc/WPC waveform,
including its relationship to the KPC waveform. Furthermore, application of the TPc/WPC indicator as an actionable
collision risk indicator (i.e. as information that is usable to trigger a process of collision avoidance) should be explored.

The MSS method presupposes a sample on the unit hypersphere (i.e. on the surface of the unit hyperball), and
the Appendix is dedicated to exploring this subject in detail. With the exception of the Marsaglia method, most unit
hypersphere sampling algorithms use a sample from the unit hypercube and a mapping from the unit hypercube to
the unit hypersphere. In this work, the only unit hypercube sampling algorithm considered is presented by Roberts
[53]; in future work, it would be beneficial to examine other methods of quasi-random number sequence generation
(qrns) for uniform sampling on the hypercube (such as Sobol and Niederreiter).[54, 55] In this work, two mappings
from the unit hypercube to the unit hypersphere sampling algorithms are considered: a variant of high-dimensional
spherical coordinates, as well as an extension of the Lambert equal area projection to higher dimensions. Additionally,
in future work, it would be beneficial to explore other mappings from the unit hypercube to the unit hypersphere as well.
Finally, in this work, the minimum arclength between pairs of elements in a sample of the unit hypersphere is used
as an indicator for how evenly distributed such sample is on the unit hypersphere, and this is done by observing how
slowly that minimum arclength decreases when adding elements to the sequence. It is possible that metrics other than
arclength might be advantageous, computationally or otherwise, in order to measure the dispersion of a sequence on the
unit sphere.
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In summary, this work creates a framework for evaluating collision risk in a precise manner. First, by allowing
to sample directly from “tails” of normal probability distributions, the Mahalanobis Shell Sampling (MSS) method
allows for efficient sample-based KPC computation, restricted to cases where relative dynamic states have normal
prior distribution. Second, being validated through the reproducibility of KPC waveforms, the MSS method allows
the computation of a recently proposed collision risk indicator, the “Total Probability of Collision” (TPc). The TPc
figure is motivated in this work as an indicator whose information is both consistent with and complementary to KPC
information, and examples shown demonstrate that TPc insights can be more relevant than KPC insights. Efficient,
accurate and quick computation of collision risk indicators is enabled through this work, which is a necessary step
before triggering any collision avoidance process.

VII. Appendix

A. Algorithms for sampling from the unit (D − 1)-sphere (D ∈ {3,4,6}).
This subsection is concerned with algorithms for uniform sampling on the unit sphere in high-dimensions. The

Marsaglia (subsubsection VII.A.1) and the Roberts and Brauchart (subsubsection VII.A.3) sampling algorithms are
presented.

Additionally, the performance of these algorithms is quantified in terms of the d0 metric, which represents the
minimum great circle distance between any two distinct points in a sample, as given by Def. VII.1.

Definition VII.1 (d0 performance metric). The function d0 : S̃ (N) → [0,∞) is defined by the rule

d0
(
S̃ (N)

)
= min

{
arccos

(
zTi zj

)
: i, j ∈ {1, · · · ,N} , i , j,zi ∈ S̃ (N) ∀i ∈ {1, · · · ,N}

}
(VII.1)

where
(
S̃ (N)

)
is a sample of points in the unit (D − 1)-sphere with N distinct elements in the sample. ♦

The goal of these sampling algorithms is to maximize d0
(
S̃

(
Nsequence

) )
for any given sample S̃

(
Nsequence

)
, and

to have the slowest possible decrease in d0 with increased Nsequence. This is a traditional method for ensuring that
sequences produced by these algorithms are “evenly” distributed on the unit (D − 1)-sphere.[56]

The performance of these unit sphere sampling algorithms (from a d0 perspective), for the 2-sphere, 3-sphere and
5-sphere cases, is discussed in Subsubsections VII.A.4, VII.A.5 and VII.A.6, respectively, and the figures presented are
listed in Table 2.

Table 2 Performance charts for unit sphere sampling.

Metric 2-sphere 3-sphere 5-sphere
d0

(
S̃

(
Nsequence

) )
Fig. 23 Fig. 27 Fig. 32

d0
(
S̃

(
Nsequence

) )
5
√

Nsequence Fig. 33
d0

(
S̃

(
Nsequence

) )
4
√

Nsequence Fig. 28 Fig. 34
d0

(
S̃

(
Nsequence

) )
3
√

Nsequence Fig. 24 Fig. 29 Fig. 35
d0

(
S̃

(
Nsequence

) ) √
Nsequence Fig. 25 Fig. 30 Fig. 36

d0
(
S̃

(
Nsequence

) )
· Nsequence Fig. 26 Fig. 31 Fig. 37

The performance of these algorithms are summarized in Table 3. Overall, the Brauchart sphere sampling algorithm
has the best d0 performance of all algorithms considered. It is helpful to note that, while both the Marsaglia and
Brauchart algorithms improve with increased dimensionality, the Roberts algorithm does not, so it is inadvisable to use
the Roberts algorithm in higher dimensions, at least not with the present implementation (i.e. with the quasi-random
number sequence generation algorithm on the unit hypercube shown in Algo. 5).

1. Marsaglia algorithm for uniform sampling on the unit (D − 1)-sphere.
TheMarsaglia algorithm for generation of sequences of points that are uniformly distributed on the unit (D−1)-sphere,

presented as Algo. 4, is a simple algorithm in which, for each point in the sequence, each component is drawn from the
standard normal distribution, and then the point is normalized so that it lies on the unit sphere. Unlike the other methods
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Table 3 Performance results for unit sphere sampling algorithms.

2-sphere 3-sphere 5-sphere
Algorithm L.B. U.B. L.B. U.B. L.B. U.B.

Marsaglia O

(
1
N

)
O

(
1
N

)
O

(
1
N

)
O

(
1√
N

)
O

(
1√
N

)
O

(
1

3√
N

)
Roberts O

(
1
N

)
O

(
1√
N

)
O

(
1
N

)
O

(
1√
N

)
O

(
1
N

)
O

(
1√
N

)
Brauchart O

(
1
N

)
O

(
1√
N

)
O

(
1√
N

)
O

(
1

3√
N

)
O

(
1

3√
N

)
O

(
1

4√
N

)
presented in subsubsection VII.A.3, which attempt to have an uniform distribution in the unit sphere in a geometric
sense, the Marsaglia algorithm distributes points on the surface uniformly in a probabilistic sense. This algorithm was
first presented by M. Muller, and it was popularized by G. Marsaglia.[57, 58]

Input: Number of elements in sequence Nsequence; dimension of elements of the sequence D (D ∈ N,D ≥ 2)
Output: Sequence of points on the unit (D − 1)-sphere {zs}s∈{1, · · · ,Nsequence }

1 for s← 1 to Nsequence do
2 for n← 1 to D do
3

[
ys

]
n
∼ N (0,1)

4 end
5 zs ← ys/‖ys ‖ // point on the unit (D − 1)-sphere
6 end
7 return {zs}s∈{1, · · · ,Nsequence }

Algorithm 4: Sample of points uniformly spread over the surface of the unit (D − 1)-sphere, Marsaglia method

2. Roberts algorithm for quasi-uniform sampling from the unit n-hypercube.
The Roberts quasi-random number sequence (qrns) generation algorithm is a low-discrepancy qrns generation

algorithm for uniform sampling within the unit n-hypercube, and is listed in Algo. 5. This algorithm is based on a
generalization of Fibonacci sequences’ “golden ratio” number to higher dimensions, and it was presented by Roberts as
an alternative to known low-discrepancy quasi-random number sequence (qrns) generation methods such as Sobol and
Niederreiter.[53, 59]

Input: Number of elements in sequence Nsequence; dimension of elements of the sequence n (n ∈ N,n ≥ 2)
Output: Sequence of quasi-random numbers

{
yns

}
s∈{1, · · · ,Nsequence }

1 φn : (φn)n+1 = φn + 1 // generalized golden ratio numbers

2 α← 0n×1
3 for j ← 1 to n do
4 [α]j ←

(
1
φn

) j
5 end
6 for s← 1 to Nsequence do
7 for j ← 1 to n do
8

[
yns

]
j
←

(
s [α]j

)
mod 1

9 end
10 end
11 return

{
yns

}
s∈{1, · · · ,Nsequence }

Algorithm 5: Quasi-random number (low-discrepancy) sequence generation, quasi-uniformly distributed in unit
n-hypercube [0,1]n, Roberts method
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3. Algorithms for quasi-random, quasi-uniform sampling on the unit (D − 1)-sphere
The following algorithms show how to make samples from the unit (D − 1)-sphere (see Definition III.4). These

algorithms rely on the Roberts quasi-random number sequence on the (D − 1) unit hypercube (see Algo. 5), although in
principle any other such algorithm could be used for this purpose as well.[53]

The Roberts algorithm for generation of quasi-uniformly distributed sequences of points on the unit (D − 1)-sphere
is presented as Algo 6. This algorithm was presented in 3D for the 2-sphere by Brannon, and it was implemented by
Roberts.[53, 60] The algorithm was slightly modified in order to use a latitude angle instead of an inclination angle, and
a naive extension of this method to high-dimensional spherical coordinates is presented in this work using a procedure
similar to the one shown by Blumenson.[61, 62]

Input: Nsamples/shell; dimension of elements of the sequence D (D ∈ N,D ≥ 3)
Output: Sequence of points on the unit (D − 1)-sphere

{
zp

}
p∈{1, · · · ,Nsamples/shell }

1
{
y(D−1)
p

}
p∈{1, · · · ,Nsamples/shell }

← output of Algo. 5,
(
Nsequence = Nsamples/shell,n = D − 1

)
// collection of

quasi-uniformly distributed points in the [0, 1](D−1) unit hypercube

2 for p← 1 to Nsamples/shell do
3 x← y(D−1)

p

4 θ ← 2π [x]1
5 for j ← 2 to D − 1 do
6 λ(j−1) : sin

(
λ(j−1)

)
= 2 [x]j − 1

7 end
8 z← 0D×1

9 [z]1 ← cos (θ)
∏D−2

k=1 cos (λk)
10 [z]2 ← sin (θ)

∏D−2
k=1 cos (λk)

11 if D > 3 then
12 for j ← 3 to D − 1 do
13 [z]j ← sin

(
λ(j−2)

) ∏D−2
k=j−1 cos (λk)

14 end
15 end
16 [z]D ← sin

(
λ(D−2)

)
17 zp ← z
18 end
19 return

{
zp

}
p∈{1, · · · ,Nsamples/shell }

Algorithm 6: Sample of points quasi-uniformly spread over the surface of the unit (D − 1)-sphere, extension of
Roberts method (based on high-dimensional spherical coordinates)

The Brauchart algorithm for generation of quasi-uniformly distributed sequences of points on the unit (D− 1)-sphere
is presented as Algo 7. This algorithm was developed by Brauchart et. al. as an extension of the area preserving
Lambert transform (from points in unit hypercubes to surfaces of hyperspheres) for higher dimensions, and their work
includes a proof of the area preserving property of the proposed transform.[54] This method utilizes the regularized
incomplete beta (hm) function, shown in Def. VII.2.[54]

Definition VII.2 (Regularized incomplete beta (hm) function). The function hm : [0,1] → [0,1] is defined by the rule

hm (x) =
B (x; d/2, d/2)
B (1; m/2,m/2)

(VII.2)

where m ∈ N, and B (z; a, b) is the incomplete beta function, given by

B (z; a, b) =
∫ z

0
ua−1 (1 − u)b−1 du ♦ (VII.3)
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Input: Nsamples/shell; dimension of elements of the sequence D (D ∈ N,D ≥ 3)
Output: Sequence of points on the unit (D − 1)-sphere

{
zp

}
p∈{1, · · · ,Nsamples/shell }

1
{
y(D−1)
p

}
p∈{1, · · · ,Nsamples/shell }

← output of Algo. 5,
(
Nsequence = Nsamples/shell,n = D − 1

)
// collection of

quasi-uniformly distributed points in the [0, 1](D−1) unit hypercube

2 for p← 1 to Nsamples/shell do
3 x← y(D−1)

p

4 z←
[
cos (2π [x]1) sin (2π [x]1)

]T
5 z←

[(√
1 − (1 − 2 [x]2)2

)
zT 1 − 2 [x]2

]T
6 if D > 3 then
7 for j ← 3 to D − 1 do

8 z←
[(√

1 −
(
1 − 2h−1

j

(
[x]j

))2
)
zT 1 − 2h−1

j

(
[x]j

)]T
9 zp ← z

10 return
{
zp

}
p∈{1, · · · ,Nsamples/shell }

Algorithm 7: Sample of points quasi-uniformly spread over the surface of the unit (D − 1)-sphere, Brauchart
method

4. Comparison of unit 2-sphere sampling algorithm performance.
Over the 2-sphere, both the Roberts and Brauchart algorithm have comparable d0 performance. For both, d0

decreases faster than O
(
1/
√

N
)
(see Fig. 25), but they both decrease slower than O (1/N) (see Fig. 26). It looks like

Brauchart may perhaps decrease as O
(
1/
√

N
)
(see Fig. 25), but further examinations would need to be made in order

to ascertain the specific rate of decay for these algorithms.
However, it is clear that, over the 2-sphere, both Roberts and Brauchart have better d0 performance than Marsgalia

does, since d0 decreases as O (1/N) (see Fig. 26), which is faster decay than either Roberts or Brauchart.

Fig. 23 Minimum great circle distance between points in samples of unit 2-sphere, d0, no adjustment.
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Fig. 24 Minimum great circle distance between points in samples of unit 2-sphere, d0, adjusted by 3
√

Nsequence.

Fig. 25 Minimum great circle distance between points in samples of unit 2-sphere, d0, adjusted by
√

Nsequence.

5. Comparison of unit 3-sphere sampling algorithm performance.
Over the 3-sphere, the Brauchart sampling algorithm has superior d0 performance to both Roberts and Marsaglia.

Its d0 decrease is faster than O
(
1/ 3√N

)
(see Fig. 29) but it is at least as slow as O

(
1/
√

N
)
(see Fig. 30).

On the other hand, the Roberts algorithm still has better d0 performance than Marsaglia. Both of these algorithms
decay faster than O

(
1/
√

N
)
(see Fig. 30) and slower than O (1/N) (see Fig. 31). However, it can be seen from Fig. 31

that the decay of Marsaglia is faster than that of Roberts. Nonetheless, further examinations would need to be made in
order to ascertain the specific rate of decay for these algorithms.
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Fig. 26 Minimum great circle distance between points in samples of unit 2-sphere, d0, adjusted by Nsequence.

Fig. 27 Minimum great circle distance between points in samples of unit 3-sphere, d0, no adjustment.
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Fig. 28 Minimum great circle distance between points in samples of unit 3-sphere, d0, adjusted by 4
√

Nsequence.

Fig. 29 Minimum great circle distance between points in samples of unit 3-sphere, d0, adjusted by 3
√

Nsequence.

37



Fig. 30 Minimum great circle distance between points in samples of unit 3-sphere, d0, adjusted by
√

Nsequence.

Fig. 31 Minimum great circle distance between points in samples of unit 3-sphere, d0, adjusted by Nsequence.
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6. Comparison of unit 5-sphere sampling algorithm performance.
Over the 3-sphere, the Brauchart sampling algorithm has superior d0 performance to both Roberts and Marsaglia.

Its d0 decrease is faster than O
(
1/ 4√N

)
(see Fig. 34) but it is at least as slow as O

(
1/ 3√N

)
(see Fig. 35).

On the other hand, and unlike for the 2-sphere and 3-sphere cases, the Marsaglia algorithm has better d0 performance
than Roberts. For the Marsaglia algorithm, its d0 decrease is faster than O

(
1/ 3√N

)
(see Fig. 35) but it is at least as slow

as O
(
1/
√

N
)
(see Fig. 36).

The Roberts algorithm retains the same performance for the 5-sphere as for the 3-sphere. The d0 decrease for the
Roberts algorithm is faster than O

(
1/
√

N
)
(see Fig. 36) and slower than O (1/N) (see Fig. 37). It is expected that

further examinations would confirm these trends.

Fig. 32 Minimum great circle distance between points in samples of unit 5-sphere, d0, no adjustment.

Fig. 33 Minimum great circle distance between points in samples of unit 5-sphere, d0, adjusted by 5
√

Nsequence.
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Fig. 34 Minimum great circle distance between points in samples of unit 5-sphere, d0, adjusted by 4
√

Nsequence.

Fig. 35 Minimum great circle distance between points in samples of unit 5-sphere, d0, adjusted by 3
√

Nsequence.
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Fig. 36 Minimum great circle distance between points in samples of unit 5-sphere, d0, adjusted by
√

Nsequence.

Fig. 37 Minimum great circle distance between points in samples of unit 5-sphere, d0, adjusted by Nsequence.
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