
J-Orchestra: Automatic Java Application Partitioning
Eli Tilevich and Yannis Smaragdakis

Center for Experimental Research in Comp. Science (CERCS), College of Computing
Georgia Institute of Technology, Atlanta, GA 30332

{tilevich, yannis}@cc.gatech.edu
http://j-orchestra.org

Abstract. J-Orchestra is an automatic partitioning system for Java programs. J-
Orchestra takes as input Java applications in bytecode format and transforms
them into distributed applications, running on distinct Java Virtual Machines. To
accomplish such automatic partitioning, J-Orchestra uses bytecode rewriting to
substitute method calls with remote method calls, direct object references with
proxy references, etc. Using J-Orchestra does not require great sophistication in
distributed system methodology—the user only has to specify the network loca-
tion of various hardware and software resources and their corresponding appli-
cation classes. J-Orchestra has significant generality, flexibility, and degree of
automation advantages compared to previous work on automatic partitioning.
For instance, J-Orchestra can correctly partition almost any pure Java program,
allowing any application object to be placed on any machine, regardless of how
application objects access each other and Java system objects. This power is due
to the novel way that J-Orchestra deals with unmodifiable code (e.g., native code
in the Java system classes). Additionally, J-Orchestra offers support for object
migration and run-time optimizations, like the lazy creation of distributed
objects.

We have used J-Orchestra to successfully partition several realistic applications
including a command line shell, a ray tracer, and several applications with native
dependencies (sound, graphics).

1 Introduction
Application partitioning is the task of breaking up the functionality of an application
into distinct entities that can operate independently, usually in a distributed setting.
Application partitioning has been advocated strongly in the computing press [11] as a
way to use resources efficiently. Traditional partitioning entails re-coding the applica-
tion functionality to use a middleware mechanism for communication between the dif-
ferent entities. In this paper, we present an automatic partitioning system for Java
applications. Our system, called J-Orchestra, utilizes compiler technology to partition
existing applications without manual editing of the application source code.

Automatic partitioning aims to satisfy functional constraints (e.g., resource availabil-
ity). For instance, an application may be getting input from sensors, storing it in a data-
base, processing it, and presenting the results on a graphical screen. All four hardware
resources (sensors, database, fast processor, graphical screen) may be on different
machines. Indeed, the configuration may change several times in the lifetime of the
application. Automatic partitioning can accommodate such requirements without
needing to hand-modify the application source code. Thus, automatic partitioning is a

sophisticated alternative to input-output re-direction protocols (Java servlets, telnet, X-
Windows [15]). Automatic partitioning can do whatever these technologies do, with
the additional advantage that the partitioning of the application is completely flexi-
ble—different parts of the application can run on different machines in order to mini-
mize network traffic or reduce server load. For instance, instead of using X-Windows
to send graphics over the network, one can keep the code generating the graphics on
the same site as the graphics hardware.

J-Orchestra operates at the Java bytecode level and rewrites the application code to
replace local data exchange (function calls, data sharing through pointers) with remote
communication (remote function calls through Java RMI [18], indirect pointers to
mobile objects). The resulting application is guaranteed to have the same behavior as
the original one (with a few, well-identified exceptions). J-Orchestra receives input
from the user specifying the network locations of various hardware and software
resources and the code using them directly. A separate profiling phase and static analy-
sis are used to automatically compute a partitioning that minimizes network traffic.

Although the significance of J-Orchestra may appear Java-specific, there is a general
conceptual problem that J-Orchestra is the first system to solve. This is the problem of
supporting transparent reference indirection in the presence of unmodifiable code.
More specifically, J-Orchestra is one of many systems that work by changing all direct
references to objects into indirect references (i.e., references to proxy objects). This
approach is hard to implement transparently when the program consists partly of
unmodifiable code. We show that J-Orchestra can “work around” unmodifiable code,
ensuring that it is clearly isolated from modifiable code by dynamically “wrapping”
direct references to make them indirect (and vice versa), when the references are
passed from unmodifiable to modifiable code (and vice versa).

The result of solving the problems with unmodifiable code is that J-Orchestra is the
first automatic partitioning system that imposes no partitioning constraints on applica-
tion code. (We make a clear distinction between “automatic partitioning” systems and
general “Distributed Shared Memory” mechanisms in our related work discussion.)
Unlike previous systems (e.g., Addistant [19]—the most mature and closest alternative
to J-Orchestra in the design space) J-Orchestra can partition any Java application,
allowing any application object to be placed on any machine, regardless of how appli-
cation objects interact among them and with system objects. Any system object can be
remotely accessed from anywhere in the network, although it has to be co-located with
system objects that may potentially reference it. (The terms “application” and “sys-
tem” objects roughly correspond to instances of regular classes of a Java application,
and of Java system classes with native dependencies, respectively.)

In this paper, we present the main elements of the J-Orchestra rewrite engine. We
describe the J-Orchestra rewrite algorithm, discuss its power and detail how J-Orches-
tra deals with various features of the Java language. Finally, we examine some J-
Orchestra optimizations and present performance measurements that demonstrate the
advantage of J-Orchestra over input/output redirection with X-Windows.

2 System Overview
We will give here a high-level overview of the operation of J-Orchestra from the per-
spective of a user (see Fig. 1). Many important details are elided—they will be added
in the next few sections. Some low-level details will be left unspecified as they may
soon change. For instance, currently the interaction of the user and the J-Orchestra sys-
tem is done using scripts and XML-based configuration files, but a complete GUI that
will hide many of these details will be available by the time of publication.

The user interaction with the J-Orchestra system consists of specifying the mobility
properties and location of application objects. J-Orchestra converts all objects of an
application into remote-capable objects—i.e., objects that can be accessed from a
remote site. Remote-capable objects can be either anchored (i.e., they cannot move
from their location) or mobile (i.e., they can migrate at will). For every class in the
original application, or Java system class potentially used by application code, the user
can specify whether the class instances will be mobile or anchored. For mobile classes,
the user needs to also describe a migration policy—a specification of when the objects
should migrate and how. For anchored classes, the user needs to specify their location.
Using this input, the J-Orchestra translator modifies the original application and sys-
tem bytecode, creates new binary packages, produces source code for helper classes
(proxies, etc.), compiles that source code, and creates the final distributed application.

Specifying the properties (anchored or mobile, migration policy, etc.) of an application
or system class is not a trivial task. A wrong choice may yield an inefficient or incor-
rect distributed application. For instance, many system classes have interdependencies
so that they all need to be anchored on the same site for the application to work cor-
rectly. To ensure a correct and efficient partitioning, J-Orchestra offers two tools: a
profiler and a classifier (Fig. 1).

The profiler is the simpler of the two: it reports to the user statistics on the interdepen-

User

J-Orchestra
classifier

J-Orchestra
profiler

original
bytecodes

.class

partitioning
info

J-Orchestra
translator

.class .java

partitioned
application
(bytecode,
source code)

Fig. 1. An overview of the J-Orchestra partitioning process

dencies of various classes based on (off-line) profiled runs of the application. With this
information, the user can decide which classes should be anchored together and where.
J-Orchestra includes heuristics that compute a good partitioning based on profiling
data—the user can run these heuristics and override the result at will.

The J-Orchestra classification algorithm is responsible for ensuring the correctness of
the user-chosen partitioning. The classifier analyzes classes to find any dependencies
that can prevent them from being fully mobile. One of the novelties of J-Orchestra is
that regular application classes can almost always be mobile. Nevertheless, Java sys-
tem classes, as well as some kinds of application classes, may have dependencies that
force them to be anchored. As discussed in Section 4, example dependencies include
an implementation in native (i.e., platform-specific) code, possible access to instances
of the class from native code, inheriting from a class that is implemented in native
code, etc. The interaction of the user with the classifier is simple: the classifier takes
one or more classes and their desired locations as input and computes whether they can
be mobile and, if not, whether the suggested locations are legal and what other classes
should be co-anchored on the same sites. The user interacts with the classifier until all
system classes have been anchored correctly.

In the next sections, we describe the J-Orchestra classification and translation algo-
rithms in detail.

3 Rewrite Strategy Overview

3.1 Main Insights

J-Orchestra creates an abstraction of shared memory by allowing references to objects
on remote JVMs. That is, the J-Orchestra rewrite converts all references in the original
application into indirect references—i.e., references to proxy objects. The proxy object
hides the details of whether the actual object is local or remote. If remote methods
need to be invoked, the proxy object will be responsible for propagating the method
call over the network. Turning every reference into an indirect reference implies sev-
eral changes to application code: for instance, all new statements have to be rewritten
to first create a proxy object and return it, an object has to be prevented from passing
direct references to itself (this) to other objects, etc. If other objects need to refer to
data fields of a rewritten object directly, the code needs to be rewritten to invoke acces-
sor and mutator methods, instead. Such methods are generated automatically for every
piece of data in application classes. For instance, if the original application code tried
to increment a field of a potentially remote object directly, as in o1.a_field++, the
code will have to change into o1.set_a_field(o1.get_a_field()+1). (This
rewrite will actually occur at the bytecode level.)

The above indirect reference techniques are not novel (e.g., see JavaParty [8], as well
as the implementation of middleware like Java RMI [18]). The problem with indirect
reference techniques, however, is that they do not work well when the remote object
and the client objects are implemented in unmodifiable code. Typically, code is
unmodifiable because it is native code—i.e., code in platform specific binary form. For

instance, the implementation of many Java system classes falls in this category.
Unmodifiable code may be pre-compiled to refer directly to another object’s fields,
thus rendering the proxy indirection invalid. One of the major novel elements of J-
Orchestra is the use of indirect reference techniques even in the presence of unmodifi-
able code.

3.2 Handling Unmodifiable Code

To see the issues involved, let us examine some possible approaches to dealing with
unmodifiable code. We will restrict our attention to Java but the problem (and our solu-
tion) is general: pre-compiled native code that accesses the object layout directly will
cause problems to indirect reference approaches in any setting.
• If the client code (i.e., holder of a reference) of a remote object is not modifiable,

but the code of the remote object is modifiable, then we can use “name indirec-
tion”: the proxy class can assume the name of the original remote class, and the
remote class can be renamed. This is the “replace” approach of the Addistant sys-
tem [19]. The problem is that the client may expect to access fields of the remote
object directly. In this case, the approach breaks.

• If the client code (i.e., holder of a reference) of a remote object is modifiable but
the code of the remote object is not, then we can change all clients to refer to the
proxy. This is the “rename” approach of the Addistant system. This case does not
present any problems, but note that the Addistant approach is “all-or-none”. All
clients of the unmodifiable class must be modifiable, or references cannot be
freely passed around (since one client will refer to a proxy object and another to
the object directly).

• If the client code (i.e., holder of a reference) of a remote object is not modifiable
and the code of the remote object is also not modifiable, no solution exists. There
is no way to replace direct references with indirect references. Nevertheless, the
key observation is that unmodifiable clients can refer to the remote object directly,
while modifiable clients refer to it indirectly. In this way, although unmodifiable
objects cannot be placed on different network sites when they reference each
other, modifiable objects can be on a different site than the unmodifiable objects
that they reference. This is the approach that J-Orchestra follows. A direct conse-
quence is that (unlike the Addistant rewrite) the semantics of the application does
not affect its ability to be partitioned. An application object (instance of a modifi-
able class) can be placed anywhere on the network, regardless of which Java sys-
tem objects it accesses and how.
For this approach to work, it must be possible to create an indirect reference from
a direct one and vice versa, at application run-time. The reason is that references
can be passed from modifiable to unmodifiable code and vice versa by using them
as arguments or results of a method call. Fortunately, this conversion is easy to
handle since all method calls are done through proxies. Proxies for unmodifiable
classes are the only way to refer to unmodifiable objects from modifiable code.
When a method of such a proxy is called, the reference arguments need to be
unwrapped before the call is propagated to the target object. Unwrapping refers to

creating a direct reference from an indirect one. Similarly, when a method of such
a proxy returns a reference, that reference needs to be wrapped: a new indirect ref-
erence (i.e., reference to a proxy object) is created and returned instead.

A consequence of the J-Orchestra rewrite algorithm is that is supports object mobility.
If an object can only be referenced through proxies, then its location can change trans-
parently at run-time. Thus, for instance, regular application objects in a “pure Java”
application can migrate freely to other sites during application execution. (An excep-
tion is the case of application classes that extend system classes other than the default
subtyping root, java.lang.Object—see Section 4.2.2.) In contrast, many instances
of Java system classes are remotely accessible but typically cannot migrate, as they
may be accessed directly by native code.

4 Rewrite Mechanism
In this section, we discuss in concrete detail the J-Orchestra rewrite model. As
described in Section 2, J-Orchestra distinguishes between anchored and mobile
classes. Unmodifiable classes have to be anchored, but modifiable classes can be either
anchored or mobile. The J-Orchestra mechanisms of classificationand translation are
entirely separate. The purpose of the J-Orchestra classifier is to determine whether an
object should be anchored (and where) or mobile. This algorithm could change in the
future, while the translation mechanism for mobile classes, anchored unmodifiable
classes, and anchored modifiable classes stays the same. Similarly, the translation
mechanism for the three categories of classes can change, even if the way we deter-
mine the category of a class remains the same.

In the following sections, we will blur the distinction between classes and their
instances when the meaning is clear from context. For instance, we write “class A
refers to class B” to mean that an instance of A may hold a reference to an instance of B.

4.1 Classification

Classes may have to be anchored if they have native methods or if they may potentially
be manipulated by native code. For example, J-Orchestra’s rewrite engine deems
java.lang.ThreadGroup anchored because a reference to a ThreadGroup can be
passed to the constructor of class java.lang.Thread, which has native methods.

Fig. 2 shows the different categories in which classes are classified by J-Orchestra. The
classification criteria for the vast majority of classes can be summarized as follows.
(Some exceptions will be discussed individually.)
• Anchored Unmodifiable Classes: A class C is anchored unmodifiable if it has

native methods, or references to C objects can be passed between modifiable code
and an anchored unmodifiable class U. In the latter case, classes C and U need to be
anchored on the same network site.
For simplicity, we assume in this paper that the application to be partitioned is
written in pure Java (i.e., the only access to native code is inside Java system

classes). Thus, application classes are modifiable—only system classes can be
unmodifiable. This is the standard usage scenario for J-Orchestra. It is straightfor-
ward to generalize our observations to applications that include native code.1

• Anchored Modifiable Classes: A class is anchored modifiable if it is a modifiable
application class that extends an anchored unmodifiable class (other than
java.lang.Object). These classes need to be anchored on the same site as their
superclasses.
Additionally, a modifiable class may be anchored by choice (see Section 5.1).

• Mobile Classes: Mobile classes are all classes that do not fall in either of the above
two categories. All classes in a pure Java application that do not extend system
classes are mobile. Note, however, that Java system classes can also be mobile, as
long as they do not call native code and they cannot be passed to/from anchored
system classes. In this case, instances of the system class are used entirely in
“application space” and are never passed to unmodifiable code. The implementa-
tion of such classes can be replicated in a different (non-system) package and
application code can be rewritten to refer to the new class. The system class can be
treated exactly like a regular application class using this approach.

Note that static inspection can conservatively guarantee that references to a system
class C never cross the system/application boundary. As long as no references to C or
its superclasses (other than java.lang.Object) or to arrays of these types appear in
the signatures of methods in anchored system classes, it is safe to create a mobile
“application-only” version. (Interface access or access through or
java.lang.Object references is safe—a proxy object is indistinguishable from the
original object in these cases.) As a consequence, the categorization of system classes
into mobile and anchored is robust with respect to future changes in the implementa-
tion of Java library classes—the partitioning remains valid as long as the interfaces are
guaranteed to stay the same.

1. If the application includes native code, our guarantees will need to be adjusted. For an
extreme example, if native code in a single method accesses fields of all application classes
directly, then no partitioning can be done, since all application classes will need to be
anchored on the same site.

system application

anchored
mobile

modifiable
unmodifiable

Fig. 2. The possible categories of classes. Unmodifiable classes need to be
anchored, but both system and application classes can be modifiable and even
modifiable classes may be anchored (by need or by choice). For simplicity, we

ignore the possibility of unmodifiable application classes.

More concretely, the J-Orchestra algorithm to compute anchored unmodifiable classes
can be seen in set pseudo-code notation in Fig. 3. This algorithm finds the classes that
need to be anchored on the same site as any one of the classes of an initial set A. By
changing the input set A, we adapt this algorithm for several different purposes
throughout J-Orchestra. The auxiliary set routines used in this algorithm are defined as
follows: Super(Sub)classes(X) returns the set of all super(sub)classes of classes in set
X; MethodArguments(X) returns the set of all argument and return types of all methods
of all classes in X; Constituents(X) returns the set of all constituent types of all array
types in X. For instance, an array type T[][] has constituent types T[] and T.

We should mention that, anchoring system classes together with other related system
classes typically does not inhibit the meaningful partitioning of system resources. For
instance, we have used J-Orchestra to partition several applications so that the graphics
display on one machine, while disk processing, sound output, keyboard input, etc. are
provided on remote computers. This is possible because classes within the same Java
system package reference mostly each other and very rarely system classes from other
packages. This property means that anchoring group boundaries commonly coincide
with package boundaries. For example, all the classes from the java.awt package can
be anchored on the same machine that handles the user interface part of an application.
This arrangement allows anchored system classes to access each other directly while
being remotely accessible by application classes through proxies.

As an advanced technical note, we should mention that less conservative classification
rules can also be applied to guarantee that more system classes can be made mobile.
For instance, if a system class never accesses native code, never has its fields directly
referenced by other system classes (i.e., all access is through methods), and its
instances are passed from application classes to system classes but not the other way,
then the class can be mobile by using a “subtype” approach: a subtype of the system
class can be created in an application package. The subtype is used as a proxy—none
of its original data fields are used. Nevertheless, the subtype object can be safely
passed to system code when the supertype is expected. The subtype object itself prop-

Fig. 3. J-Orchestra algorithm to compute anchored unmodifiable classes

compute_co-anchored (A) {
AS := set of all mutable system classes and all array types
A := A ∪ Superclasses(A) ∪ Subclasses(A)
do {

AS := AS - A
AArg := MethodArguments(A)
AArg := AArg ∪ Superclasses(AArg) ∪ Subclasses(AArg) ∪ Constituents(AArg)
ArgS := AS ∩ AArg
A := A ∪ ArgS

} while (ArgS ≠ ∅)
return A

}

agates all method calls to an actual mobile object. This technique is applicable as long
as the original system class is not final. We already use this technique in J-Orchestra
but not automatically—manual intervention is required to enable this transformation
on a case-by-case basis when it seems warranted. A good example is the
java.lang.Vector class. Vectors are used very often to pass data around and it
would be bad for performance to restrict their mobility: vectors should migrate where
they are needed. Nevertheless, many graphical applications pass vectors to Swing
library anchored system classes—e.g., the javax.swing.table.DefaultTableM-
odel class has methods that expect vectors. All the aforementioned conditions are true
for vectors: the Vector class has no native methods, classes in the Swing library do
not access fields of vector objects directly (only through methods), and vectors are
only passed from application to system code, but not the other way. Therefore, Vector
can be safely turned into a mobile class in this case.

For a more accurate determination of whether system classes can be made mobile, data
flow analysis should be employed. In this way, it can be determined more accurately
whether instances of a class flow from application code to system code. So far, we
have not needed to exploit such techniques in J-Orchestra—the type system has been a
powerful enough ally in our effort to determine which objects can be made mobile.

4.2 Translation

4.2.1 Anchored Unmodifiable (System) Classes

J-Orchestra does not modify anchored system classes but produces two supporting
classes per anchored system class. These are a proxy class and a remote application-
system translator (or just application-system translator). A proxy exposes the services
of its anchored class to regular application classes. A remote application-system trans-
lator enables remote execution and handles the translation of object parameters
between the application and system layers.2 Both proxy classes and remote applica-
tion-system translator classes are produced in source code form and translated using a
regular Java compiler. We will now examine each of these supporting classes in detail.

A proxy is a front-end class that exposes the method interface of the original system
class. It would be impossible to put a proxy into the same package as the original sys-
tem class: system classes reside in system packages that J-Orchestra does not modify.
Instead, proxies are placed in a different package and have no relationship to their sys-
tem classes. Proxy naming/package hierarchies are isomorphic to their corresponding
system classes. For example, a proxy for java.lang.Thread is called

2. The existence of a separate application-system translator is an RMI-specific implementation
detail—under different middleware, the translator functionality could be folded inside the
proxy. Under RMI, classes need to explicitly declare that they are remotely accessible (e.g.,
by inheriting from class UnicastRemoteObject). Therefore, unmodifiable system classes
cannot be made remotely accessible, but their translator can. Separate application-system
translators simplify our implementation because system classes wrapped with an applica-
tion-system translator can be treated the same as application classes.

anchored.java.lang.Thread. To make remote execution possible, all modifiable
classes that reference the original system class have to now reference the proxy class
instead. This is accomplished by consistently changing the constant pools of all the
modifiable binary class files. The following example demonstrates the effect of those
changes as if they were done on the source code level for clarity reasons.

//Original code: client of java.lang.Thread
java.lang.Thread t = new java.lang.Thread (...);
void f (java.lang.Thread t){ t.start (); }

//Modified code
anchored.java.lang.Thread t =
new anchored.java.lang.Thread (...);

void f (anchored.java.lang.Thread t) { t.start (); }

All the object parameters to the methods of a proxy are either immutable classes such
as java.lang.String or other proxies. The rewrite strategy ensures that proxies for
anchored system classes do not reference any other anchored system classes directly
but rather through proxies.

The only data member of an anchored system proxy is an interface reference to the
remote application-system translator class. A typical proxy method delegates execu-
tion by calling an appropriate method in the remote instance member and then handles
possible remote exceptions. For instance, the setPriority method for the proxy of
java.lang.Thread is:

public final void setPriority(int arg0){
try { _remoteRef.setPriority (arg0); }
catch (RemoteException e) { e.printStackTrace (); }

}

The _remoteRef member variable can point to either the remote application-system
translator class itself or its RMI stub. In the first case, all method invocations will be
local. Invocations made through RMI stubs go over the network, eventually getting
handled by the system object on a remote site.

Application-system translators enable remote invocation by extending
java.rmi.server.UnicastRemoteObject.3 Additionally, they handle the transla-
tion of proxy parameters between the application and user layers. Before a proxy refer-
ence is passed to a method in a system class, it needs to be unwrapped. Unwrapping is
the operation of extracting the original system object pointed to by a proxy. If a system
class returns an instance of another system class as the result of a method call, then that
instance needs to be wrapped before it is passed to the application layer. Using wrap-

3. While this is not the only way to achieve remote semantics (a class can simply implement
java.rmi.Remote and then use javax.rmi.PortableRemoteObject.export() to
export objects later on), UnicastRemoteObject provides several important services (e.g.,
identity—see Section 4.3.6), and so far we have chosen to avoid re-implementing them.

ping, J-Orchestra manages to be oblivious to the way objects are created. Even if sys-
tem objects are created by unmodifiable code, they can be used by regular application
classes: they just need to be wrapped as soon as they are about to be referenced by
application code.

The following example demonstrates how “wrapping-unwrapping” works in methods
setForeground and getForeground of the application-system translator for
java.awt.Component.

public void setForeground (anchored.java.awt.Color arg0) {
_localClassRef.setForeground
((java.awt.Color)Anchored.unwrapSysObj (arg0));

}

public anchored.java.awt.Color getForeground () {
return
(anchored.java.awt.Color)
Anchored.wrapSysObj(_localClassRef.getForeground());

}

_localClassRef points to an instance of the original system class (java.awt.Com-
ponent) that handles all method calls made through the application-system translator.

4.2.2 Anchored Modifiable Classes

Anchored modifiable classes are the application classes that inherit from anchored sys-
tem classes or any otherwise modifiable class that is anchored by choice. Anchored
modifiable classes are handled with a translation that is identical to the one for
anchored unmodifiable classes, except for one aspect. The defining distinction between
unmodifiable and modifiable anchored classes is that the latter can be changed so that,
if they access other classes’ fields directly, such accesses can be replaced with calls to
accessor and mutator methods. In this way, other classes referenced by anchored mod-
ifiable classes do not need to be anchored.

4.2.3 Mobile Classes.

Mobile classes are able to migrate to various network sites during the run of a pro-
gram. The migration currently supported by J-Orchestra is synchronous: objects
migrate in response to run-time events, such as passing a mobile object as a parameter
to a remote method. Migration allows us to exploit data locality in an application. For
instance, when a remote method call occurs, it can be advantageous to have a mobile
object parameter move temporarily or permanently to the callee’s network site. All
standard object mobility semantics (e.g., call-by-visit, call-by-move [10]) can be sup-
ported in an application rewritten by J-Orchestra.

J-Orchestra translates mobile classes in the original application (and the replicated
mobile system classes) into a proxy class and a remote class. Proxy classes are created
in source code form, while remote classes are produced by bytecode rewriting of the
original mobile class. Proxies for mobile classes are very similar to the ones for

anchored classes. The only difference is that a mobile proxy assumes the exact name
and method interface of the original class. J-Orchestra adds an “__remote” suffix to
the original class name. The clients of a mobile class access its proxy in exactly the
same way as they used to access the original class.

Mobile class proxies mimic the inheritance structure of their original classes. The
remote semantics is achieved by changing the superclass of the base (topmost) proxy
from java.lang.Object to java.rmi.server.UnicastRemoteObject.

The example below summarizes the rewrite in source code form (although in reality
the original class and the remote class only exist in bytecode form).

//Original class declaration
class A extends B implements I {...}

//Proxy class declaration.
//B or one of its ancestors inherit from UnicastRemoteObject
class A extends B implements I, Proxy { ... }

//Remote class declaration
//body of A__remote is same as body of original A
class A__remote extends B__remote implements I, Remote {...}

Some care needs to be taken during binary modification of a class, to ensure that the
types expected match the ones actually used. For instance, the name of a class A needs
to change to A__remote, but most references to type A (e.g., as the type of a method
parameter) need to continue referring to A—the proxy type is the right type for refer-
ences to A objects in the rewritten application.

4.3 Handling of Java Language Features

In this section, we describe how J-Orchestra handles various Java language features.
Some parts of the translation (e.g., that of static methods) are straightforward and only
add engineering complexity. Handling other elements (e.g., arrays), however, is far
from trivial. Some of the techniques described here are similar to the ones used by Jav-
aParty (but JavaParty operates at the source code level while J-Orchestra is a bytecode
translator).

Maintaining exactly the local execution semantics is not always possible or efficient.
We will identify the few features for which J-Orchestra will not guarantee, by need or
by choice, that the partitioned application will behave exactly like the original one.

4.3.1 Static Methods and Fields

J-Orchestra has to handle remote execution of static methods. This also takes care of
remote access to static fields: just like with member fields, J-Orchestra replaces all
direct accesses to static fields of other classes with calls to accessor and mutator meth-
ods. In order to be able to handle remote execution of static methods, J-Orchestra cre-
ates static delegator classes for every original class that has any static methods. Static

delegators extend java.rmi.server.UnicastRemoteObject and define all the
static methods declared in the original class.

//Original class
class A {
static void foo (String s) {...}
static int bar () {...}

}

//Static Delegator for A--runs on a remote site
class A__StaticDelegator
extends java.rmi.server.UnicastRemoteObject {
void foo (String s) { A__remote.foo (s); }
int bar () { return A__remote.bar (); }

}

For optimization purposes, a static delegator for a class gets created only in response to
calling any of the static methods in the proxy class. If no static method of a class is
ever called during a particular execution scenario, the static delegator for that class is
never created. Once created, the static delegator or its RMI stub is stored in a member
field of the class’s proxy and is reused for all subsequent static method invocations.

A static delegator for a class shares the mobility properties of the class itself. While a
static delegator for an anchored class must be co-anchored on the same site, the static
delegator of a mobile class can potentially migrate at will, irrespective of the locations
of the existing objects of its class type.

4.3.2 Inheritance

Proxies, remote application-system translator classes, and remote classes all mimic the
inheritance/subtyping hierarchy of their corresponding original classes. Replacing
direct references with references to proxies preserves the original execution semantics:
a proxy can be used when a supertype instance is expected. Since it is not known
which particular proxy is going to be used to invoke a method, only the base class con-
tains the interface reference that is used for method delegation. This field is accessible
to all the subclasses’ proxies by having the protected access modifier.

4.3.3 Object Creation

Creating objects remotely is a necessary functionality for every distributed object sys-
tem. J-Orchestra proxies’ constructors work differently from other methods in order to
implement distribution policies (i.e., create various objects on given network sites).
First, a proxy constructor calls a special-purpose do-nothing constructor in its super
class to avoid the regular object creation sequence. A proxy constructor creates objects
using the services of the object factory. J-Orchestra’s object factory is an RMI service
running on every network node where the partitioned application operates. Every
object factory is parameterized with configuration files specifying a symbolic location
of every class in the application and the URLs of other object factories. Every object
factory client keeps remote references to all the object factories in the system. Object

factory clients determine object locations, handle remote object creations, and main-
tain various mappings between the created objects and their proxies. The following
example shows a portion of the constructor code in a proxy class A.

public A () {
//call super do-nothing constructor
super ((BogusConstructorArg)null);

//check if we are already initialized or are
//called from a subclass
if ((null != _remoteRef) || (!getClass ().equals (A.class)))
return;

...
//Call ObjectFactory
try { _remoteRef = (A) ObjectFactory.createObject(“A”); }
catch (RemoteException e) { ... }

}

4.3.4 Arrays

Handling arrays is interesting from a language standpoint because they are the only
native generic type in Java. Conceptually, arrays are very similar to objects. For
instance, arrays are subclasses of java.lang.Object. An array can be thought of as
a class that supports the operations “store” and “load”. Arrays require special treat-
ment because, just like objects, they are mutable and can be aliased: changes made
through one array reference have to be visible to all other references to the same array.

J-Orchestra treats arrays very similarly to objects, although at the concrete level the
translation is different. All arrays are wrapped into special array front-end classes for
reference by the application. Application classes are modified to replace array accesses
with calls to the “store” and “load” methods of an array front-end. The front-end is
responsible for performing the appropriate operations on the array itself. If the array
type is mobile, then the array front-end is treated exactly like a regular mobile class
(i.e., a proxy is created for it). If, however, the array type is anchored, the front-end has
a dual role. It also serves as a system/application translator and automatically wraps
and unwraps the elements inserted into arrays. For instance, the front-end for an
anchored array of java.lang.Thread objects is responsible for wrapping the thread
objects when they are retrieved by application code and unwrapping them when they
are stored. This front-end class is shown here:

class java_lang_Thread_FrontEnd {
java.lang.Thread []_array;

anchored.java.lang.Thread aaload(int location) {
return (anchored.java.lang.Thread)

Anchored.wrap (_array[location]);
}

void aastore (int location, anchored.java.lang.Thread elem) {

_array[location] = (java.lang.Thread)Anchored.unwrap (elem);
}

}

It is worth noting that the same “wrapping/unwrapping” needs to be performed for
multidimensional anchored arrays. For instance, if a two dimensional array of integers
is anchored, then before each of its constituent arrays is retrieved, it needs to be
wrapped in a front-end for one dimensional integer arrays. The code fragment below (a
slight simplification of the actual J-Orchestra generated code) shows this transforma-
tion.

class Int2FrontEnd {
int [][] _array;
Int2FrontEnd (int[][]array) {_array = array;}
int [][] get_array () { return _array; }

 IntFrontEnd aaload (int location) {
return new IntFrontEnd(_array[location]);

}
void aastore (int location, IntFrontEnd value) {
_array[location] = value.get_array ();

}
}

Determining whether an array needs to be anchored or can be mobile is an interesting
problem. Although arrays are implemented in native code, we can safely assume that
they do not capture system-specific state and that they never directly access fields of
the arguments to their “store” and “load” methods, as they have no knowledge of the
types of the array elements. Therefore, arrays can be made mobile, unless they are
passed between application code and system code. Note that this means that an array
of objects of class C can be mobile even when class C is anchored—C objects may
cross the application/system boundary, but as long as arrays of C objects do not cross
it, these arrays can be made mobile.

Nevertheless, the usual type-based anchored/mobile classification mechanism of J-
Orchestra can be too restrictive when applied to arrays. Recall that according to the J-
Orchestra classification, if a reference to a certain type can cross the system/applica-
tion boundary, then all references to this type are made anchored. Some of the conse-
quences of this approach are: a) if a multidimensional array is anchored, then every
array of the same or lower dimension and the same element type also needs to be
anchored on the same site; b) if an array of C objects is anchored to a site, then all
arrays of subclass objects of the same dimension need to be anchored on the same site.
For primitive types (int, float, etc.) the problem becomes even more intense. The
problem is that the J-Orchestra classification algorithm is type based and primitive
array types are anonymous types. The same type, e.g., int[], can be used for very dif-
ferent purposes, but currently J-Orchestra can only be conservative due to lack of data
flow information. For instance, any application that passes an integer array to an

anchored system class will have to treat all its integer arrays (of the same or lower
dimension) as anchored on the same site! This restriction may even hinder the ability
to safely place different Java system classes on different network sites. If two entirely
unconnected system packages both exchange arrays of integers with some applica-
tion’s code, then both packages have to be placed on the same machine, because of the
possibility that they both refer to the same array.

In the future, we plan to explore more sophisticated classification algorithms to auto-
matically ensure that arrays can be mobile safely. For now, manual intervention is the
only way to circumvent the rigidness of the J-Orchestra classification. Unfortunately,
safety is not automatically ensured in this case. Note that the only problem concerns
the read-write use of arrays: if arrays are only written by application code and read by
system code (or vice-versa), they can safely be made mobile. Fortunately, this is the
common for arrays shared between application and system code, but J-Orchestra can-
not know this without manual hints.

We have partitioned several Java applications using J-Orchestra without ever needing
to exercise manual control in order to overcome array classification problems.

4.3.5 “this”

Under the J-Orchestra rewrite, an object can refer to its own methods and variables
directly. That is, no proxy indirection overhead is imposed for access to methods
through the this reference. Nevertheless, this means that J-Orchestra has to treat
explicit uses of this specially. Recall that remote objects are generated by changing
the name of the original class at the bytecode level. When the name of a class changes
so does the type of all of its explicit this references. Consider the following example
showing the problem if no special care is taken:

//original code
class A { void foo (B b) { b.baz (this); } }
class B { void baz (A a) {...} }

//generated remote object for A
class A__remote {
void foo (B b) { b.baz (this); } //”this” is of type A__remote!

}

Method baz in class B expects an argument of type A, hence the call b.baz(this)
will fail, as this is of type A__remote. J-Orchestra detects all such explicit uses of
this and fixes the problem by looking up the corresponding proxy object and replac-
ing this with it. Furthermore, we can store the result of the proxy lookup in a local
variable and use that variable instead of this in future expressions. For example, the
rewritten bytecode for foo in this case would be:

aload_0 //pass “this” to locateProxy method
invokestatic Runtime.locateProxy
checkcast “A” //locateProxy returns Object, need a cast to “A”
astore_2 //store the located proxy object for future use

aload_1 //load b
aload_2 //load proxy (of type A)
invokevirtual B.baz

At the bytecode level, it is somewhat involved to detect when the transformation
should be applied. Recognizing explicit uses of this (as opposed to instances of the
aload_0 instruction used to reference the object’s own methods) requires a full stack
machine emulator for the bytecode instructions. The emulator needs to reconstruct
operations and operands from the bytecode stack-machine instruction architecture.
This is the only instance where we have found our transformations to be harder to
apply at the bytecode level than at the source code level (e.g., like JavaParty does).

4.3.6 Object Identity

To support full object mobility, J-Orchestra assigns globally unique object identifiers
to all the remote objects. Each execution site maintains a mapping between remote
objects and their proxies. In case of object migration to a remote site, the run-time sys-
tem first checks whether the site already has a proxy for the remote object. If such a
proxy is found, then its remote object field is reassigned. Otherwise, a new proxy
object is created. This arrangement preserves correct reference semantics in the pres-
ence of full object mobility.

J-Orchestra employs a similar scheme to handle anchored objects’ wrapping. When an
object is unwrapped and re-wrapped, we should ensure that the identity of the proxy
(the “wrap” object) is preserved. This means that the wrapping operation for anchored
unmodifiable objects is a bit more complicated than originally presented in Section
4.2.1. Consider an example method returnMyArgument in anchored unmodifiable
class A that takes an argument of another anchored class B.

B returnMyArgument (B arg) { return arg; }

J-Orchestra’s rewrite algorithm ensures that the following code fragment preserves its
original semantics, although in the translated code all objects will be proxies for appli-
cation-system translators.

B b = new B();
A a = new A();
B b1 = a.returnMyArgument(b);
assert_equal (b == b1);

When providing a wrapper for its return value, returnMyArgument in the applica-
tion-system translator for class A returns the existing proxy rather than creating a new
one.

Another complication results from the fact that Java RMI does not keep a per-site iden-
tity for remote objects. If a remotely accessible object is used as a parameter to a
remote method, RMI transfers the object’s RMI stub. If the stub eventually gets passed
back to the site of the original remotely accessible object, the RMI run-time will not

recognize that it can use the object directly instead of the stub. Application-system
translators need to recognize this case when they are passed a proxy for a locally
anchored object, as they need to retrieve a local reference to the anchored object from
the proxy. Being able to do this correctly requires maintaining a mapping between
application-system translator RMI stubs and the corresponding anchored objects. For-
tunately, RMI guarantees the invariant that the identity of a remote object and its stub
as provided by the equals method is the same. Furthermore, RMI guarantees that the
hashCode of a remote object and its stub is the same, allowing the mapping to be effi-
cient. An anchored object can be inserted into the mapping using its application-sys-
tem translator (remote object) and retrieved using the remote object’s stub. For those
anchored classes that override the hashCode and/or equals methods providing their
own implementations, special care is taken to use the base class
(java.rmi.server.UnicastRemoteObject) versions of the methods.

4.3.7 Multithreading and Synchronization

The handling of synchronization is an important issue in guaranteeing regular Java
semantics for a partitioned multithreaded application. Java has no support for remote
synchronization: RMI does not support transparency of synchronization references—
all wait/notify calls on remote objects are not propagated to the remote site (see
[18], section 8.1). Nevertheless, it is possible to build a distributed synchronization
mechanism that will guarantee semantics identical to regular Java for all partitioned
applications. On the other hand, such a mechanism will likely be complex and ineffi-
cient, especially if the distribution relies on an unmodified version of Java RMI. One of
the noteworthy issues with synchronization is the possibility of self-deadlocks if thread
identity is not maintained when the flow of control moves over the network. We will
not describe here the complications of distributed synchronization—a good description
of both the problems and the possible solutions (also applicable to J-Orchestra) can be
found in the documentation of version 1.05 of JavaParty [8].

In the near future, we plan to evolve the J-Orchestra synchronization mechanism, mak-
ing this description of transient interest. The current mechanism is rudimentary and
incomplete. First, thread identity is not maintained when the flow of control crosses the
network, creating the possibility of deadlocks. Second, the identity of locks is guaran-
teed when synchronized methods are used (which is the most common Java syn-
chronization technique) but not necessarily when synchronized code blocks are
used. When code blocks are used, lock identity is maintained per-site: if all synchro-
nized blocks are executed on the same machine, synchronization will work correctly
(barring the problems caused by not maintaining thread identity across machines).

The translation to maintain these properties is as follows: for synchronized methods,
we only have to ensure that the proxy “forwarder” method is not synchronized—the
original method on the remote object will perform the synchronization. For handling
wait/notify/notifyAll calls on proxies, we globally detect all such calls and
replace them with calls to specially generated methods in the proxy objects (the origi-
nal wait/notify/notifyAll in java.lang.Object are final and cannot be over-
ridden). Proxies propagate all wait/notify/notifyAll calls to the remote objects

they represent. All remote objects (__remote objects for mobile classes or system/
application translators for anchored classes) export methods that implement wait/
notify/notifyAll semantics on the object.

4.3.8 Reflection and Dynamic Loading

Reflection can be used explicitly to render the J-Orchestra translation incorrect. For
instance, an application class may get an Object reference, query it to determine its
actual type, and fail if the type is a proxy. Nevertheless, the common case of reflection
that is used only to invoke methods of an object is compatible with the J-Orchestra
rewrite—the corresponding method will be invoked on the proxy object. In fact, one of
the first example applications distributed with J-Orchestra—the JShell command line
shell—uses reflection heavily.

We should note that offering full support for correctness under reflection is possible
and we have not done so for pure engineering reasons. For example, it is possible to
create a J-Orchestra-specific reflection library that will mimic the interface of the regu-
lar Java reflection routines but will take care to always hide proxies. All reflection
questions on a proxy object will instead be handled by the remote object. With byte-
code manipulation, we can replace all method calls to Java reflection functionality with
method calls to the J-Orchestra-specific reflection library. We have considered this task
to be too complex for the expected benefit.

4.3.9 Similar observations hold regarding dynamic class loading. J-Orchestra is meant
for use in cases where the entire application is available and gets analyzed, so that the
J-Orchestra classification and translation are guaranteed correct. Currently, dynami-
cally loading code that was not rewritten by J-Orchestra may fail because the code may
try to access remote data directly. Additionally, dynamically loading code that calls J-
Orchestra rewritten code may violate the security guarantees of the original application
(see below). Nevertheless, one can imagine a loader installed by J-Orchestra that takes
care of rewriting any dynamically loaded classes before they are used. Essentially, this
would implement the entire J-Orchestra translation at load time. Unfortunately, classi-
fication cannot be performed incrementally: unmodifiable classes may be loaded and
anchored on some nodes before loading another class makes apparent that the previous
anchorings are inconsistent. The only safe approach would be to make all dynamically
loaded classes anchored on the same network site.

4.3.10 Method Access Modifiers

If methods of a modifiable class are private or protected, they need to be made
public if they are to be remotely invokable through Java RMI. J-Orchestra performs
this rewrite at the bytecode level. Thus, J-Orchestra does not weaken the compile-time
checking of the Java language (the compiler will still check the properties when com-
piling source code) but it affects the security guarantees of the Java VM. The JavaParty
system [13] follows the same approach.

Note that the only potential security problem is with malicious code that calls methods

in a J-Orchestra rewritten class. Nevertheless, this is an unusual way to employ J-
Orchestra. J-Orchestra is meant for use in cases where the entire application is avail-
able and analyzed, so that the J-Orchestra classification and rewriting are guaranteed
correct. For code that needs to be dynamically loaded, our previous dynamic loading
observations hold: the problem can be solved by a special-purpose, J-Orchestra-aware
loader, but we do not offer such a loader yet.

4.3.11 Garbage Collection

Distributed garbage collection is a tough problem. J-Orchestra relies on the RMI dis-
tributed reference counting mechanism for garbage collection. This means that cyclic
garbage, where the cycle traverses the network, will never be collected. Nevertheless,
this aspect is orthogonal to the goal of J-Orchestra—the system just inherits the gar-
bage collection facility of the underlying middleware.

4.3.12 Inner Classes

On the Java language level, inner classes have direct access to all member fields
(including private and protected) of their enclosing classes. In order to enable this
access, the Java compiler introduces synthetic methods that access and modify member
fields of enclosing classes. Synthetic methods are not visible during compilation. This
clearly presents a problem for J-Orchestra since synthetic methods also need to be
accessed through a proxy. The code inside a synthetic proxy method accesses the syn-
thetic method of its remote class. Since proxies are created in source code form, no
Java compiler would be able to successfully compile them. Removing the synthetic
attributes from methods in remote classes eliminates the problem. The removal does
not violate the Java security semantics because there are no access restrictions for syn-
thetic methods to begin with.

4.3.13 System.out, System.in, System.err, System.exit, System.properties

The java.lang.System class provides access to standard input, standard output, and
error output streams (exported as pre-defined objects), access to externally defined
“properties”, and a way to terminate the execution of the JVM. In a distributed envi-
ronment, it is important to modify these facilities so that their behavior makes sense.
Different policies may be appropriate for different applications. For example, when
any of the partitions writes something to the standard output stream, should the results
be visible only on the network site of the partition, all the network sites, or one spe-
cially designated network site that handles I/O? If one of the partitions makes a call to
System.exit, should only the JVM that runs that partition exit or the request should
be applied to all the remaining network sites? J-Orchestra allows defining these poli-
cies on a per-application basis. For this purpose, J-Orchestra provides classes called
RemoteIn, RemoteOut, RemoteErr, RemoteExit, and RemoteProperties whose
implementation determines the application-specific policy. For example, all references
to System.out are replaced with RemoteOut.out() in all the rewritten code. An
implementation of RemoteOut.out() can return a stream that redirects all the mes-
sages to a particular network site, for example.

5 Performance

5.1 Overhead and Limited Rewrite

As mentioned earlier, modifiable classes may be anchored by choice. In fact, it is a
common usage scenario for J-Orchestra to try to make mobile only very few classes.
We call this the J-Orchestra limited rewrite model. The reason to limit which classes
are mobile has to do with performance. The J-Orchestra rewrite adds some execution
overhead even when mobile objects are used entirely locally. The most significant
overheads of the J-Orchestra rewrite are one level of indirection for each method call
to a different application object, two levels of indirection for each method call to an
anchored system object, and one extra method call for every direct access to another
object’s fields. The J-Orchestra rewrite keeps overheads as low as possible. For
instance, for an application object created and used only locally, the overhead is only
one interface call for every virtual call, because proxy objects refer directly to the tar-
get object and not through RMI. Interface calls are not expensive in modern JVMs
(only about as much as virtual calls [1]) but the overall slowdown can be significant.

The overall impact of the indirection overhead on an application depends on how much
work the application’s methods perform per method call. A simple experiment puts the
costs in perspective. Table 1 shows the overhead of adding an extra interface indirec-
tion per virtual method call for a simple benchmark program. The overall overhead
rises from 17% (when a method performs 10 multiplications, 10 increment, and 10 test
operations) to 35% (when the method only performs 2 of these operations).

Penalizing programs that have small methods is against good object-oriented design,
however. Furthermore, the above numbers do not include the extra cost of accessing
anchored objects and fields of other objects indirectly (although these costs are second-
ary). To get an idea of the total overhead for an actual application, we measured the
slowdown of the J-Orchestra rewrite using J-Orchestra itself as input. That is, we used
J-Orchestra to translate the main loop of the J-Orchestra rewriter, consisting of 41 class
files totalling 192KB. Thus, the rewritten version of the J-Orchestra rewriter (as well as
all system classes it accesses) became remote-capable but still consisted of a single
partition. In local execution, the rewritten version was about 37% slower (see Table 2).
Although a 37% slowdown of local processing can be acceptable for some applica-

Table 1. J-Orchestra indirection overhead as a function of average work per
method call (a billion calls total)

Work (multiply,
increment, test) Original Time Rewritten Time Overhead

2 35.17s 47.52s 35%

4 42.06s 51.30s 22%

10 62.5s 73.32s 17%

