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SUMMARY

This thesis develops a new hierarchical protocol for efficiently collecting data from
nodes of a sensor network by performing in-route data reduction. The goal is to develop
a protocol that requires small amount of processing and scales well for large networks. A
network with three hierarchical levels is built and used to evaluate the prdtocol. The
performance of the protocol is based on the number of packets, number of hops and time
required to perform a collection over the network. Uniform, Poisson, and bounded
normal random distributions are implemented and used for node placement for the sensor
network.

The types of collection operations performed are sum, min, max over the sensor
network. The protocol allows different types of collection at different levels in the
network. The lowest level has a different protocol than higher levels. The performance
of the protocol is compared with collection using no reductions, collection using Concast
algorithm [7] and collection using TAG algorithm. [14]

The thesis is structured as follows:-The introduction section gives a brief summary
of the need for efficient aggregation in large sensor networks and applications of the
protocol. This is followed by a brief history of the work that has been done so far to
solve this problem. The problem statement, description of protocol, and simulation
details are explained in the following chapters. A detailed analysis of the results of

performance tests is presented next, which is followed by the conclusion and future-work.



CHAPTER I

INTRODUCTION

Wireless sensor networks consist of multiple network nodes distributed over an
area to measure the state of that area. Each node can contain some environmental sensing
device for temperature, audio, video etc. Each node also has some limited computational
power. Because of recent advances in sensors and wireless communication technology,
the size of these sensor nodes is getting smaller and smaller while the number of sensors
in a single network is increasing. The future applications of sensor networks will consist
of thousands of low cost, low power autonomous nodes deployed over a region of
interest.

One such application of wireless sensors is described in [6]. A set of sensor nodes
were deployed on a srﬁall island off the coast of Maine to monitor habitat and behavior of

seabirds. The sensors sent periodically collected live data to the web. Wireless sensor

networks can be used in a wide variety of applications from sensing the temperature and
pressure on surface of space shuttles to monitoring traffic flows on highways [8, 10, 11].
In [9], Kaiser talks about sensor networks consisting of millions of dust size (cubic
millimeter) sensors deployed to gather information about an environment.

The common feature in all the applications described above is the need for sensors
to combine their data to provide some useful information to the user. This leads to
frequent many to one flows where data from many sensors is sent to a sink or collector

point to be analyzed or sent to external application or user. Having each sensor transmit



its data individually to the collector would be too expensive for power limited nodes.
This would also cause too many collisions in a large size network and would put too
much strain on the collector. There has to be a method to reduce the amount of data in
route to the collector and to minimize the number of packets transmitted in the network.
A good protocol would maximize efficiency by reducing data as much as possible, but
would have to be low complexity due to limited computational power available at each
node.

Recent research on dafa reduction in wireless sensor networks has focused on
developing application-specific protocols. The focus of this research is to develop a
general data reduction protocol that can be used with small modification by any
application that requires data aggregation. The protocol is designed for scalability and
requiring low amount of computation at each node and the collector. This study
evaluates the performance of this protocol for random sensor networks with regards to
number of packets and transmission hops required for data collection.

Definitions

= Sensor Node: Network nodes with some type of sensor (radio, temperature)

attached to it. They usually have low amount of computational and transmission
power, and usually run without direct user control.

= Wireless Sensor Network: Consists of a large number of sensor nodes
communicating with each other to gather information about region of interest.

= Data Collection: Collecting data from sensor nodes at a sink (collector node) to

measure some state of the system.



» Data Reduction: Combining data from multiple nodes in some meaningful way to
reduce the amount of data sent to the collector.

» Spanning Routes: A set of multi-hop routes such that every node in a region is at
least one of the hops in one of the routes in the set.

» Dynamic Source Routing (DSR): Source routing protocol developed by Johnson
et. al. for ad hoc wireless networks. The source discovers the route to the

destination node and includes this route in the transmitted packets [2].



CHAPTER II

BACKGROUND AND RELATED WORK

This project is a part of a larger ScalableSensorSim project being conducted by
Dr. Riley and Dr. Blough [5]. The main goal of the larger project is to deéign and
implement highly scalable simulation environment for wireless sensor networks. The
larger project also involves implementation of protocols designed specifically for large-
scale sensor networks that optimize data throughput and overall life of the network
elements. The sensor nodes usually have very limited processing power and memory
resources. Thousands of these types of devices can be dropped in an area to collect
measurement data. Researchers at UC Berkely have been working on developing very
small sensor elements called smart dust motes. They have developed TinyOS operating
system to facilitate development using their small motes [13].

Since data collection is done periodically in these types of sensor networks, an
efficient method to collect data from a large set of sensors is a major issue. The naive
approach of having each sensor sending its data directly to the collector would create
collisions and unnecessary traffic in the network. The collisions at the collector would
increase as the size of the network increases. One potential solution to this data
collection problem is described in [7]. Concast proposes a technique that could be
described as reverse of multicast. Multiple senders are represented by single address and
messages from this group are combined on route to the receiver. Concast provides an

application-specific merge function to merge data from multiple senders into a single



message for the collector. The collector creates a Concast Signaling Protocol (CSP) that
specifies what sensors to collect from and how to merge the data. This CSP is then sent
to all one hop neighbors of the collector. Each of these neighbors creates a flow state and
upstream neighbor list. The collection request is broadcasted through the sensor network.
When a node receives a Concast reply message from a sender, it looks for CSP for that
message. If the node does not have a CSP, it sends out a request for merge specification
to the receiver. Each node on route to receiver becomes parent node of the previous node
on the route, and forwards the request to next node. This is done until request reaches a
node that knows the CSP. A Concast tree is constructed in this manner. Nodes with
more than one upstream neighbor can perform merge of data packets. For example, if the
data being collected is the minimum of some measurement, the Concast node would not
forward any data received that is larger than previously sent data. This reduces the
number of messages to the collector. This algorithm does not provide significant benefits
when data being collected, like sum of temperature from each sensor, cannot be reduced.
Concast nodes can become bottlenecks, and no benefit is gained if packets arrive in

reverse order from the way they are being reduced. Concast also requires each node to

keep some state information about value previously forwarded and the list of upstream
neighbors. This is undesirable for memory-constrained sensors nodes.

Directed diffusion is a method to query specific pieces of information from
specified regions of the sensor network [15]. The collector broadcasts a request
specifying type of data (interest) and the region. As the request flows out into the
network, a gradient is set up to flow data towards the collector. Each node has an interest

cache. Each interest entry contains immediately previous hope for that interest, gradient



direction, and the data rate for that gradient. Each node could have a direction and data
rate for each of its neighbor. When a neighbor reports detecting data of interest, the data
rate associated with that neighbor is increased. This way the protocol reinforces best
paths from sources to the collector. While this approach works well for functions such as
detecting motion or to track trajectory of an object, it does not work efficiently to
periodically collect data from the network. In the initial stage before the proper data rates
for the gradients are sent, the collector can receive same piece of data from multiple
neighbors. The protocol does suggest performing aggregation on route to the collector,
but it is designed more for moving pieces of information between regions of network then
collecting data from the network.

Another approach to collecting data is the tiny aggregation (TAG) approach
developed at UC Berkeley [14]. In this approach the collector sets its level equal to 0. It
then broadcasts a route tree creatioh message that contains its id and level. Each node
that receives this message sets the sender as its parent and sets its level to be one more
than the sender’s level. It then rebroadcasts the message with its own id and level. Each

node sets the node from which it first heard the request as its parent and ignores all

subsequent requests. This propagation will continue until all nodes have received a
request. The nodes also listen for rebroadcast of the request by their children. Each node
can keep a list of its children. If a node does not hear retransmitting of its request after a
certain time period assumes that it is a leaf node. The leaf nodes start the collection by
sending their data value to their parents. Each parent node waits for a certain amount of
time for their children to report their value. They combine their own value with their

children’s values and send the results to their parents. This way the results are



propagated to the collector node. The protocol also uses snooping to improve efficiency.
When computing max or min if any leaf node or a parent node that has collected from all
its children hears another node report a value higher(for max) or lower(for min) than its
report value, that node does not report its value to its parent. This protocol is the most
efficient in terms of hops of all collection protocols because after the set up of the
collection tree each node has to transmit only one message for each collection. One of
the drawbacks of this protocol is that it requires each node to keep state information.
Each parent node has to know its children and every node including the leaf nodes have
to know id of their parents. There is also a latency problem because each parent waits for
its children to report. If one of the nodes dies or moves away, the collection data from all
nodes below it could be lost and the collection from the nodes above would slow down
because of the waiting. TAG approach provides a very energy efficient protocol but has
latency and reliability problems.

Concast and TAG use similar approaches to the data collection problem. They
both disseminate the céllection request through the network using broadcast. Both
protocols set up a collection tree and perform data reduction at the parent nodes with
multiple children. Each of these nodes that can perform reduction is required to keep
state information about the type of data being collected and current status of collection.
In the TAG protocol, the tree is set up when the request is being sent through the
network, while in Concast tree is set up as the data is sent back to the collector and
Concast nodes learns about nodes down the tree. The main difference between the two
protocols is that in TAG parent nodes waits for all of its children nodes to send their data

and then perform reduction on the data. In Concast, parent nodes perform reduction



based on previously forwarded data and does not wait for all child nodes to reply before
forwarding data. This makes TAG more efficient in terms of number of transmissions
while Concast could perform collections in less time for some networks.

Dynamic source routing (DSR) protocol described in [2] gives an efficient
method to discover routes and send messages between two nodes in a wireless network.
Routes are discovered by sending out a route request broadcast until it reaches the
destination node or a node that knows the route to the destination node. This discovered
route is included in each message sent between the two nodes. The intermediate nodes
simply find themselves in the route and forward the packet to next hop. This protocol
does not require nodes to keep routing tables as in the distance vector routing protocol
described in [3] and is thus suitable for resource limited sensor nodes. Although this
protocol has been shown to work well in one to one transmissions in wireless network, it
is not by itself very efficient for many to one flows. Discovering routes to all the nodes
and then receiving individual messages from each node would be too expensive and
cause too many collisions. There have been many papers on efficient transmissions
between nodes in a wireless sensor network, but there has not been a satisfactory solution
to the problem of collecting some aggregate data from all or part of a large wireless

sensor network.



CHAPTER III

PROBLEM STATEMENT

The two main aspects of this thesis are as follows:
(1) Investigate and implement various ways to randomly place sensor nodes in a
given region.
(2) Design, implement, and evaluate a protocol for efficient data reduction in large
wireless sensor networks.
These implementations will be done on top of the wireless network simulator designed by
Dr. Riley. The random nqde placements are done to evaluate the performance of the
protocol for different types of sensor networks. The placement has to be random enough
to get a realistic test of the protocol, but it should also be consistent to allow comparison
of performance of different protocols on random networks. There are two approaches to
node placement: non-clustered and clustered. In non-clustered mode, the same random
distribution scheme is used throughout the region. In clustered mode, centers for clusters
- are chosen randomly in the region and a point that is closer to one or multiple cluster
centers has a higher probability of having a node. [4] describes two different cluster
models:
(1) Quadrat-based model: The whole area is partitioned into non-overiapping
regions. The center of each region has a certain probability of being chosen as

cluster center. The size of the cluster is equal to the size of the region.



(2) Center-satellite model: Cluster centers are chosen such that each point in the area
has a certain probability of being chosen as a center based on some random
distribution. Each center can have either a fixed size region of influence or sizes
of regions can be determined randomly. This model allows for overlapping
regions.

This thesis implements some common non-clustered and clustered random distributions
for the nodes. Various placements schemes are used to evaluate the performance of the
protocol for different types of networks.

The desigh and implementation of the protocol for data reduction is done on top
of DSR, which was implemented in the simulator by another set of students. The main
considerations for the design were scalability, minimizing amount of data transmissions,
minimizing latency and maximizing performance. The goal was to provide better
performance for data reduction than any current protocols. The performance is based on
amount of time taken to collect data and the number of packets and number of hops
required to perform a collection. This assumes that the energy spent to transmit data over
a single hop is about the same throughout the network. The performance of this protocol
is compared with performance of a base protocol where all the sensor nodes send their
data directly to the collection node when a request is broadcasted. The performance of
the protocol is measured for different random distributions of nodes and different size of
networks. The results from different node placement schemes are compared to see if the
protocol works better for some particular types of networks. The protocol is also
designed to minimize the amount of state stored by each node and to minimize the

amount of processing done at each node. This is done because of limited memory and

10



processing resources available at the sensor nodes. The protocol uses a hier_archical
approach with different algorithms for lowest level and upper levels. A three-level
network is implemented and tested for performance, which is then generalized for more
levels. The protocol is evaluated based on the amount of load it induces on the network
as compared to the naive approach of each sensor node sending its data directly to the
collector. The protocol is also compared with Concast protocol described in [7] and the
tiny aggregation protocol described in [14]. Only minimum required functionalities of

these two protocols are implemented to accurately compare the protocols.
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CHAPTER IV

DESCRIPTION OF DATA REDUCTION PROTOCOL

The problem of data collection is solved by using a multilevel hierarchy and data
reduction when possible. Two different protocols are used, one for the lowest level in the
hierarchy and one for upper levels. These protocols rely on existence of DSR protocol in -

the simulator.

4.1 Lowest Level Protocol

The network is divided into predeﬁned geographical regions. Each node knows the
number of its region when it is placed. The lowest level protocol describes the method to
collect from all nodes in a single such geographical region. The protocol assumes that a
route between any two nodes is or can be generated using DSR, and the network is
connected. The network is assumed to be symmetric meaning if a can send message to b
then b can send message to a. Using the routes in its DSR cache, the collector node
generates spanning paths that go through every node in the region at least once. The
collection requests are sent along these paths and replies are sent back along the reverse
routes. Data reduction is done on-route in the reply messages. There are three types of
nodes in the protocol: one collector node, leaf nodes of the spanning paths, and the
intermediate nodes. The following is the specification of processing done at each type of

node and the type of messages sent between these nodes:
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4.1.1 The Collector Node

(1) If not already known, find the ids of all the nodes in the region. The process to do
this is described later.
(2) Generate spanning collection routes:
(a) From the route cache, take the route with highest number of nodes that are in the
collector’s local region as the first path. Also construct and store a bit map that is the
same size as the length of the route. The bitmap has a 1 corresponding to each node
covered by this path.
(b) While at least one node is not covered by a path:
Add a path that has the highest number of nodes not already covered by one of the
paths
If there are not any unselected paths in the route cache that have an uncovered
node, initiate DSR route discovery to an uncovered node and then add the
discovered path
(c) The collection paths and bit maps indicating which nodes are covered by each path
could be stored by the collector or reconstructed each time based on the paths in the
route cache
(3) Send out collection request messages along the spanning paths constructed in the
previous step. The request message contains a request id, level, a sensor id
indicating the type of sensor data, and an opid indicating the type of reduction
operation to be done over the data. The collector also stores these three values along

with a current collection value. The current collection value is initialized to the

13



sensor measurement from the collector. The collector also stores a reply counter
initialized to the number of spanning paths.

(4) Process the reply messages: The collector uses the request id in the reply message to
access data corresponding to that collection. The data in reply message is combined
with the current collection data according to the specified reduction operation. The
reply counter is decremented by one.

(5) When the reply counter reaches 0, collection has been done from all the nodes. The
final value is reported and the state data corresponding to this reqﬁest is removed.

4,.1.2 The Leaf Nodes

(1) Upon receiving a collection request message, initiate a reply message. The reply
message consists of the request id, sensor id, and opid from the request message.
The reply also consists of the sensor data from the leaf node. The bit-map is also
sent along with the reply message after clearing the bit corresponding to the leaf
node.

(2) The reply message is sent back to the collector by reversing the path of the

collection request.

4.1.3 The Intermediate Nodes

(1) Forward the request messages to the next hop in the source path. One
optimization could be to keep the sensors off for most of the time. The
intermediate nodes can turn on the appropriate sensor upon receiving the request
message if there is a one corresponding to this node in the bitmap.

(2) For the reply message:

If the bit corresponding to this node is zero

14



Forward the packet to the next node in the route
Else
(a) Combine this node’s data with the data in the packet as specified by the
opid and set bit corresponding to this node to 0

(b) Forward the packet to the next node in the path

To ensure that all the nodes in the region are covered by spanning paths, the collector has
to find out the ids of nodes in its region. This could be done by using expanding ring
broadcasts as described below:

(1) Broadcast a region discovery message containing the requester’s id and region
number. The ttl of this message is set to 1.

(2) All nodes receiving the discovery message check their recent discovery cache. If
the requester’s id is not in the cache and requester is in receiving node’s region,
nodes send a reply to the requester with its id. Nodes also save the id of the
requester in recent discovery request cache.

(3) Upon receiving a reply, the requester checks the list of ids. If the id is not in the
list, it is added to the list. After a certain time T, requester reissues the request

~ message after incrementing the ttl. This is done until no new nodes are found in
the last n requests. The values of T and n are determined the user and should be
based on the type of network and amount of reliability desired.
Data reduction schemes are used by the protocol if the type of data allows such reduction
(min, max, avg, etc.). To collect data such as median that do not allow reduction, each

node places its data in place of its source address in the source route. If the data being

15



collected is larger than the size of the source addresses, it can be placed in the data
portion of the packet in the same order as the order of nodes in the route.

An alternative implementation is to store the spanning paths and bitmaps at the
leaf nodes. The collection request message can then be multicast to the leaf nodes. The
leaf nodes can then send the reply message along the spanning paths. The multicast of
collection request should be implemented using the most efficient existing multicast

protocol. This could be an optimization for a relatively static network.

4.2 Higher Level Protocol

Multiple lower level regions are grouped together to form a higher-level region. For
example for a K greater than 1, a K level region would consist of a group of K-1 level
regions. Each node is informed about the number of lower level regions at each level. A
collector is chosen at the highest level of hierarchy from which collection is to be done.
In this description, this highest level will be referred to as level n. The n level collector

finds and constructs spanning paths through n-I level collectors. The n-1 level collectors

perform collection in their n-1 level regions and then send results back to the n level
collector through reverse spanning paths. The processing done by each type of collector
and messages exchanged between them are described below:

4.2.1 The n-level Collector

(1) The collectof generates spanning paths through all of the n-1 level regions. Spanning
paths are generated such that at least one node from each of the n-1 level region falls in
one of the routes. This could be done in two ways:

A. Discovery of a single Shortest Route through all the lower level regions:

16



a. Mark the n-1 level region of n-level collector node as covered

b. Generate a path to a node in an uncovered n-1 level region that is closest to
the last added collection node

c. Add this path to the route and mark that closest node as collection node for its
n-1 level region

d. Ifall n-1 level regions are not covered, go back to step b

B. Discovery of multiple routes that span at least one node in each region
a. Mark the n-1 level region of this node as covered
b. From the route cache, iteratively add paths that go through a node in highest
number of uncovered n-1 level regions, if all n-1 level regions are not covered
go tostepc
c. Generate Paths to closest nodes in one of the uncovered n-1 level regions
using DSR. The closeness would be determined using the number of hops

needed to get to a node. The details of this are discussed below.

d. Add the path that goes through the highest number of uncovered n-1 level
regions to the group of collection paths

e. Select one node from each uncovered n-1 level region in the path as the
collection node for that region

f. Ifall the n-1 level regions are not covered, go back to step ¢

The first algorithm would only work well when the size of the network is small and

regions are placed such that each region has at least one node only a few hops from the

17



 collection node. This method does not scale well. Since scalability is one of the criteria
for this simulator, the second method is used in the protoéol. Following is the method to
accomplish Step c of method B:

a. The collection node sends out a broadcast with TTL equal to one hop and a
list of n-1 level regions already covered.

b. All nodes receiving the request whose n-1 level region number is not in the
data packet send a reply back to collection node containing its address and its
n-1 level region number.

c. The collection node stores the address along with the n-1 level region number
in its cache. If multiple messages are received from a region, the one that is
the least number of hops away is chosen.

d. Ifall n-1 level regions are not covered, go back to step 1 after incrementing
TTL by one and placing numbers of all contacted n-1 level regions in the data
packet.

The n-level collector also acts as the n-1 level collector for its n-1 level region. It
executes the lowest level protocol if n-1 is the lowest level; otherwise, it executes this
same code for n-1 level.

(2) The n-level collector sends out collection requests over the spanning paths. The
collection requests contain request id, sensor id, opid, and level of collection being done.
The requests contain a timeout after which the request is dead. The requests also contain
a bitmap with 1 indicating the lower level collector nodes. The collector also stores the

id values along with the current collection value that is initialized to the measurement
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from this collector. A reply counter initialized to number of spanning paths is also
stored.
(3) Process the reply message: collector uses the request id in the reply message to
access data corresponding to that collection. The data in reply message is combined with
the current collection data according to the specified reduction operation. The reply
counter is decremented by one.
(4) Check for unfinished collectors: For the n-1 level regions that were unable to give
their data, collection node can reissue the request using the returned bit map as the bit
map for the request. Another option is for the collection nodes of unfinished regions to
store higher-level collection node’s address, and when data becomes available, send it
directly to that collection node. For this second option, the higher-level collection node
would increment the reply counter by the number one’s in the bitmap from the reply
message.
(5) When the reply counter reaches 0, collection has been done from all the nodes. The
final value is reported and the state data corresponding to this request is removed.
4.2.2 Intermediate Collector Nodes
(1) Process the Request Message:
If there is a zero in the bit corresponding to this node in the request message
Forward the request message to the next hop in the route
Else

i. Get the request level from the message
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ii. Ifthis level is greater than 1 then execute the n-level collector
protocol described above with n = level —1. Otherwise execute the
code for collector in the lowest level protocol.

ili. Forward the message to the next hop in the route
(2) Process the reply message:
If there is a zero in the bit corresponding to this node
Forward the reply message to the next node in the path
Else if data collection from its region is done
(a) Combine the region’s data with the data in the message as specified by
op id and set its bit to 0
(b) forward the message to next node in the path
If data collection is not done in its region:
(a) Store the reply message for some amount of time, e.g.
Tstore = (1/f)* Timeout, where Timeout was specified in the
original request, and f'is specified by user
(b) When the data becomes available, forward the packet to next node
after placing its data and setting its bit to 0
(c) If data does not become available before time is over, forward the
message to next node without setting its bit to 0 and store the addrgss
of the n-level collector.
(d) If the higher level collector reissues the request for unfinished n-1

level regions, store the data and wait for the request. Otherwise, send
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a unicast message containing the collected data to the higher level

collector node.

4.2.3 Leaf Collector Nodes

(1) Process the Collection Request:
a. Get the request level from the message
b. Ifthis level is greater than 1 then execute the n-level collector protocol
described above with n =level —1. Otherwise execute the code for collector in
the lowest level protocol.
c. Store the reverse source route along with the request id. Associate the request
id of the lower level collection with the request id in the request packet.
(2) Initiate the reply message: The reply message contains reverse route and reverse
bitmap from the collection request message. This message is initiated after the data has
been collected in the lower level region of the leaf node. The leaf collector node puts its
collected data in the message, sets its bit to 0 and forwards the message to the next node
on the reverse route.
The non-collector nodes in the spanning routes would behave just as they did in the
description of the lowest level protocol. Although having nodes temporarily store reply
messages when they are not done collecting is not the ideal solution, it should not occur
very often due to relatively equal sizes of the regions. The storing might have to be done
in the first few nodes in the return path, but the collection nodes in the regions towards
the end of the return path would have had more time to collect their data. The option of

the unfinished collector node sending a unicast directly to the higher level collector is
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implemented when evaluating the protocol. Since the unfinished region has a good
chance of being towards the end of the collection path, this option seems better, but it
requires the node to temporarily remember the collection request and address of the
collection node. If one of the nodes on the spanning path goes down, the previous node
will try to find a route to the node after the failed node. The collector is then notified of
this new path and the set of spanning paths will be modified. This fault and mobility

tolerance can be built in as part of DSR.
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CHAPTER V

IMPLEMENTATION OF NODE PLACEMENT ALGORITHMS

5.1 Non-Clustered Distributions

Several schemes were considered to randomly distribute the sensor nodes in an entire
given region. Four non-cluster distribution schemes were implemented as described
below.

5.1.1 Bounded Normal Distribution

In this distribution, the number of nodes, variance, width and height of the region are
specified. Random x and y coordinates are generated using normal distribution with the
specified variance around the center of region. If the generated coordinates fall outside
of the size of the region, they are thrown away and other coordinates are generated. This

throwing away does not seem have a significant effect as long as the variance is relatively

small compared to the size of the region. This process is iterated until coordinates for all
the nodes are obtained. The normal points are generated using the following polar
method described in [1]:

(1) Generate U1 and U2 as two uniformly distributed random variables

(2) Set Vi=2Ui -1;and W =V1?+ V2% If W> 1 go back to step 1

(3) Y = (2 In Wyy'w)'”

(4) X1 =VI*Y and X2 = V2*Y are two normally distributed random variables.

A sample of a randomly generated region is given below:
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Figure 1: Bounded Normal Distribution

5.1.2 Uniform Distribution

In this distribution, the number of nodes, height, and width of the region are specified.
Two uniformly distributed coordinates within specified ranges are generated and used as
the location of the nodes. This distribution was implemented by Dr. Riley. A sample of

region created by this distribution is given below:
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5.1.3 Radial Distribution

In this distribution nodes are distributed at a random angle and random radius from the
center of the region. This distribution was implementéd by Dr. Riley. The angle and
radius can be generated using different distributions. First a random radius r and a
random angle A are generated. Then the location of the node is computed by using the
following formula:

X =r1* cos((A * 2.0 * PI)/360.0)

Y =r * sin((A * 2.0 * PI)/360.0)

When the angle is distributed from 0 to 360, the nodes are distributed in a region defined
by circle of radius R, where R is the bound on the radius. A sample of region with this
distribution is given below. In this sample, the radius was distributed uniformly from 0

to R and the angle was distributed uniformly from 0 to 360.
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Figure 3: Radial Distribution

5.1.4 Poisson Distribution

In this distribution, node density of the region is specified instead of specifying the
number of nodes. The region is divided into sub-regions of the same area. The area is
determined such that the probability of having two nodes in that area given the density is
less than 0.001. If this area comes out to be less than one, an area of size one is used
(each region is a single point). Using the density of the region and area of sub-regions,
the probability of having a node in a sub-region is computed. For each smaller region, a
uniform random number between 0 and 1.0 is generated. If this number was less than the
probability for the region, a node was placed at the center of the region. This distribution

would look similar to the uniform distribution. A sample region is shown below:
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5.2 Clustered Distributions

Instead of placing nodes using the same random distributions throughout the region,
nodes can be placed into clusters using some random distribution. Centers are placed
using some random distribution around the region. Each center will have a specified
square region of influence given by its width and height, which can be the same for all
centers or determined randomly. These influence regions could be overlapping. Sensor
nodes would be placed in these influence regions using a specified random distribution.

Following Steps would be followed to generate Clusters:

e Step 1: Pick cluster centers according to uniform, poisson, radial, or bounded
normal distributions described above. The inputs for these functions would be the

overall region width, height, and the origin as the center.
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e Step 2: For each cluster center céll the uniform, poisson, radial or bounded normal
functions described above, specifying width, height and center of the cluster to
generate coordinates for the nodes.

o Step 3: Examine the nodes created in Step 2 and throw away all the nodes that
fall outside of the whole region. This would not be a problem for uniform, radial
and poisson distributions; however for normal distribution this throwing away of
nodes could give strange looking distribution. To compensate for this, a lower
value of sigma would have to be used depending on the size of the cluster that fits
inside the big region. This would implement the center satellite model.

For Poisson distribution, each cluster could be created with same density, or the

density of each cluster could be chosen using some random distribution. Since there

are four distribution choices for the cluster centers and four choices for distribution in
the clusters, sixteen different types of clustered distribution can be generated. Since
the uniform distribution, radial distribution and the Poisson distribution give similar
types of regions, only two of the clustered distributions were implemented using
uniform and bounded normal distributions. The first clustered distribution was
generated by distributing the centers uniformly and then uniformly distributing nodes
around those centers. Following is a sample of a network generated by this clustered

distribution:
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Figure 5: Uniform-Uniform cluster distribution

This sample network has seven total clusters. The two clusters at the bottom overlap with
each other. The second clustered distribution was generated by distributing the centers
uniformly and then distributing the nodes around this centers using bounded normal
distribution. The following is a sample of a network generated by using this clustered
distribution. There are eight total clusters, but two of cluster overlap and give the big

cluster on top left.
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CHAPTER VI

IMPLEMENTATION OF DATA COLLECTION PROTOCOLS

6.1 Data Reduction Protocol

The data reduction protocol described in chapter 4 was implemented over the GTNet
simulator designed by Dr. Riley at Georgia Tech. The implementation follows closely to
the protocol description. Multiple spanning paths were used for higher level collection.
If a collector does not have path to any nodes in an uncovered region, a route discovery
was done to a default node in that region. This was done to simplify the implementation.
In actual implementation an expanding ring search would be done to find a node from
that region as described by the protocol. If a region is not done collecting by the time the
return packet gets to the collector, the collector forwards the packet and sends a direct
packet to higher level collector when the collection is done. This never occurred during
the simulations. Lower level collectors were always done collecting by the time the reply
message got back to them. Each node was assigned a location upon placement using one
of the random distribution schemes. Sixteen equal size lowest level regions were based
on fixed geographical boundaries. Each node can determine its region by knowing the
size of the regions and its own location. Four lower level regions were grouped together
to form a higher level region, so the network consisted of sixteen 1-level regions, four 2™

level regions, and one 3" level region. A picture of a sample network is given below:
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Figure 7: Data Reduction Protocol over a Sample Network
In this sample network, the orange node is the 3" Jevel collector and the orange paths are

spanning paths for the third level. The blue nodes are the 2™ level collectors and the blue

paths are 2" Jevel spanning paths. The yellow nodes are 1% level collectors and black
arrows indicate local level spanning paths. The uncolored nodes are non-collector nodes
and are only shown for one of the regions. The protocol is called as a hook function from
the TCP/IP layer. This is done because the protocol has to be executed at some
intermediate nodes in the tcp transmission as well as the end nodes. TCP packets are
used to send the collection requests and responses. Each collection request contains the
type of collection and an id. The id and the collector’s address differentiate different

collections. Only the collector nodes have to keep track of the higher level collector
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address and the id. The non-collector nodes are not required to keep any state
information. The response packet from lower level collectors contains the number of
packets and hops taken to perform the collection in that region. This data is used for
evaluation purposes.

6.2 TAG and Concast Protocols

The minimum functionalities of these protocols were implemented. The collector sends a
broadcast to set up the collection tree. Each node receiving the broadcast for the first
time sets the source as its parent and rebroadcasts the message. Each node then sends a
packet with its data to its parent. For Concast, the parent nodes forward the data as soon
as they receive them. When the aggregate being collected is min or max, the Concast
parent nodes keep track of lowest or highest value forwarded and ignores any value that
is higher or lower than that forwarded value. For tiny aggregation, each parent is notified
of the number of children it has. The parent node waits for a certain amount of time to
get the data from all of its children, and then forwards the combined data to its parent.
The amount of wait increases higher up on the tree. The protocols are integrated into the

IP layer. UDP packets are used to send tree-setup broadcast and the data packets.
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CHAPTER VII

ANALYSIS OF THE RESULTS OF THE DATA COLLECTION

ALGORITHMS

One of the main goals of the thesis was to design a new data collection protocol and then
compare the performance of the protocol against existing collection protocols. The main
parameters for performance are amount of energy required per collection measured by
number of hops and packets, and the amount of time required to perform a collection.
The amount of state required by each protocol is examined by evaluating the
requirements of the protocol. This chapter compares the performance of the three
protocols mentioned in Chapter 6. In addition a general naive approach was also
implemented and tested. In this approach, the collector broadcasts the request through
the network, and each node receiving the request sends a unicast reply back to the
collector. This protocol does not do any processing at intermediate nodes. Tests were
run on networks with uniformly distributed nodes and then on networks with bounded
normally distributed nodes. The performance was measured on Dr. Riley’s GTNetS
simulator running on enzo cluster. The processor node for the simulation consisted of
two 847.258 MHz Intel Pentium III processors. Amount of memory available was 2.06

GB. The simulations were run on Linux operating system version 2.4.18.
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7.1 Performance Tests over Uniformly Distributed Networks

In each of these tests, nodes were distributed uniformly over a 400 by 400 region. For
the data reduction protocol, the network was divided in sixteen 100 by 100 geographical
regions. The data reduction protocol was evaluated using three levels with four lower
level regions per each higher level region. Four lowest level regions were combined to
give one second level region. The four second level regions were combined to give a

single third level region. The set up was as described by Figure 7. The radio ranges

_ (transmission range) of the nodes were set to 40. In the initialization stage, n/2 messages

were exchanged between random source/destination pairs, where n is the number of
nodes in the network. The amount of time, packets, and hops required to perform a
single collection through the network were measured. The time included the sending of
the request to all the nodes and sending of all the replies to the collector. The time,
packets, and hops required to set up the collection trees for Concast and TAG were not
counted. The time, packets, and hops required for the third level collector to generate
spanning paths were not counted. The times to generate spanning paths at the second and
first levels were counted, because these paths are generated on-demand after receiving
the collection request. All data was collected by performing a third level collection over
the entire network. There are two types of aggregates. Aggregates such as sum, average,
count where data from all the nodes have to be reported and aggregates like min/max
where accurate results could be obtained without data from some of the nodes. Sum was
used to test the performance of the protocol over the first type of aggregates, and

min/max were used to test over the second type of aggregates.
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7.1.1 Number of Packets Required Per Collection

Avg # of Packets for Sum-Uniform
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Figure 8: Average Number of Packets per Collection with Uniform Node Distribution
Figure 8 shows the average number of packets required for a single collection for
different number of nodes using Data Reduction protocol and the other three protocols.
The data was collected by computinga sum over random networks. One hundred
random networks were used to test networks with 100 and 200 nodes. Fifty random
networks were used to test the networks with 400 and 800 nodes. These same numbers

of random networks were used for all the simulation results presented in this thesis. The
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random networks were created as described above in Section 7.1. For the general
approach, Concast and TAG, the number of packets required was equal to the ﬁumber of
nodes, because each node creates and transmits a single packet with its own data. In the
data reduction protocol, only the leaf nodes create a packet. This leads to a lower number

of packets being created and transmitted as seen in the above graph.

7.1.2 Number of Hops Required Per Collection
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Figure 9: Average Number of Hops per Collection with Uniform Node Distribution
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Figure 9 shows the average number of hops required for a single collection for different
number of nodes using Data Reduction protocol and the other three protocols. Again the
data was collected by computing a sum. As shown by the graph, the data reduction
protocol gives a much better performance when compared to the general and Concast
approaches. The advantage gets lérger as the number of nodes increases. The number of
hops required is almost four times lower for the data reduction protocol. In the general
approach, the nodes have to pass on data packets from other nodes as well as send their
own data packet to the collector. In the data reduction protocol, nodes combine their data
into the packets sent to the collector by other nodes. Some nodes still have to pass on
multiple packets because they are in multiple spanning routes. In the TAG protocol, the
parents wait for all of their children to send their data before sending the aggregate to
their parent. For this reason, the number of hops required in the TAG protocol is equal to
the number of nodes. Since the collection was done through all the nodes, each node had
to transmit at least one time and at least for one hop. Therefore in terms of number of

hops, the TAG represents the best possible performance.
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7.1.3 Amount of Time Required Per Collection
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Figure 10: Average Amount of Time per Collection with Uniform Node Distribution
Figure 10 shows the average amount time in seconds per single collection through the
network. The time was measured from sending of the request by the final collector to the

>
time when all the data is collected from the entire network. As seen in the graph, data
reduction protocol performs better than the Concast and general protocols. This
advantage in the amount of time taken is lower than advantage in number of hops and
packets. This is because of the time taken to generate the spanning paths and also

because the request has to be sent along the spanning paths instead of just being

broadcasted through the network. TAG protocol gives a similar performance as the data
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reduction protocol. For 800 nodes, data reduction protocol performs better than TAG.
This is because at high number of nodes there are more children per each parent. Since
each parent has to wait for all the child nodes to report, parent node can only report after
the slowest child has reported. A delay at a leaf node is propagated to every node up
along the tree. All children trying to report at the same time can also cause collisions at

the parent nodes.

7.1.4 Number of Packets to Compute Min/Max
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Figure 11: Avg Number of Packets to Compute Min/Max with Uniform Node Dist.
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Figure 11 shows the average number of packets to perform min/max computation over a
network using Concast and data reduction protocol. The parent nodes in the Concast
protocol keep track of the last largest or the smallest value forwarded previously for max
or min computation. If the nodé receives a packet that contains a value lower than (for
max computation) or larger than (for min computation) previously sent value, that packet
is dropped and not forwarded. The Min and Max operations were tested separately, so
the nodes only stored the highest or the lowest value depending on the type of operation.
The averages from the two operations were combined to give these graphs. The number
of packets initiated is still equal to the number of nodes, but the number of packets
getting all the way to the collector is lowered. Each node’s sensor measurement value
was chosen from 0 to 800 using uniform random distribution. The performance of TAG
and the general approach were not measured because both of these protocols process the
min/max and sum aggregation the same way. For the TAG protocol, the number of
packets received by the collector would be the number of nodes one hop away from the
collector. This is because each of these parent nodes would forward only one packet to

the collector.
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7.1.5 Number of Hops to Compute Min/Max

Avg # of Hops for Min/Max -
Uniform

2500

2000

1500 —e— DataRed

—e— Concast

1000

Avg # of Hops

500

100 200 400 800
# of Nodes

Figure 12: Avg. Number of Hops to Compute Min/Max with Uniform Node Dist.
Figure 12 shows the average number of Hops to perform min/max computation over a
network using Concast and data reduction protocol. The set up was the same as
described above. As can be seen in the graph, the data reduction protocol still completes
the collection with lower number of hops than the Concast protocol. However, the

difference between the performances of the two protocols is less than when computing
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sum. Concast achieves some improvement by keeping state at all the nodes and reducing

the number of packets forwarded to the collector.

7.1.6 Amount of Time to Compute Min/Max
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Figure 13: Amt. of Time Required to Compute Min/Max with Uniform Node Distrib.

Figure 13 shows the amount of time taken to perform the min/max computations. As can

be seen from the graph, Concast protocol performs slightly worse than the data reduction
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protocol for small number of nodes. For large number of nodes, Concast surpasses the
data reduction protocol. This is because of the larger number of children per parent in the
Concast protocol for larger number of nodes. In the best case, a parent only has to report
the value of its child node with the highest or the lowest value. This leads to a much

larger number of packet reductions at parent nodes with larger number of children.

7.2 Performance Tests Over Bounded Normally Distributed Networks

Just as for previous section, the nodes were distributed over a 400 by 400 region with
sixteen 100 by 100 predefined geographical regions. Three levels were used for the data
reduction protocol just as in Section 7.1. The nodes in these tests were distributed over
the entire area using bounded normal distribution as described in Chapter 5. The radio
ranges were again set to 40. Some of the random placements produced unconnected
networks. This was detected by noticing that a broadcast through the network did not
reach all of the nodes. These networks were discarded and another random network was
generated. Again an initialization stage consisting of n/2 messages was included. All the
simulation results were generated by running third level collections over the entire

network. The number of random networks tested was the same as in Section 7.1.
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7.2.1 Number of Packets Required Per Collection
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Figure 14: Avg Number of Packets per Collection with Bounded Normal Node Distrib.

Figure 14 shows the average number of packets required for a single collection for
different number of nodes using Data Reduction protocol and the other three protocols.
The data was collected by computing sum over random networks. The random networks
were created as described above. For the general approach, Concast and TAG, the

number of packets required is still equal to the number of nodes, because each node
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creates and transmits a single packet with its own data. Data reduction protocol still
requires lower number of packets than the other protocols, but the difference is not as
great as when the nodes were distributed uniformly. In this distribution, most of the
nodes were clustered close to the center of the region. The collector node also has a
higher probability of being close to the center. Because of this, a larger number of nodes
are one or two hops away from the collector node. No reduction is done when a node is
only one hop away from the collector. Therefore, the advantage in terms of packets for

the data reduction protocol is not as much as in uniform distribution.

7.2.2 Number of Hops Required Per Collection
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Figure 15: Avg Number of Hops per Collection with Bounded Normal Node Distrib.
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Figure 15 shows the number of hops required for single collection. As before with the
uniform distribution, the data reduction protocol still shows a significant advantage over
the general approach. All the protocols except TAG took a lower number of hops per
collection than in the uniformly distributed network. The reason is again the clustering of
nodes at the center of the region. Collector near the center can reach more nodes with
very few hops. There is a smaller chance of having a collector away from the center,
since there is smaller number of nodes away from the center. The TAG protocol does not
show any difference because it is already using the least number of hops possible. The
Data Reduction protocol gets closer to the ideal represented by TAG in bounded normal
distribution.

7.2.3 Amount of Time Required Per Collectibn
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Figure 16: Avg Amount of Time per Collection with Bounded Normal Node Distrib.
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Figure 16 shows the amount of time for single collection. As before, the data reduction
protocol still has advantage over general and concast protocols, but the difference is
much smaller in bounded normal distribution than in uniform distribution. All protocols
take a little less time to complete one collection than in uniform distribution. The
improvement is gre:ater for the general approach. The reason is the same as one given in

previous sections. For nodes one hop away from the collector, the general approach uses

just as much transmissions as other protocols but does not require as much processing.

7.2.4 Number of Packets to Compute Min/Max

Avg. # of Packets for Min/Max -

BoundedNormal

900

800
@ 700 —m— DataRed
% 600
Ky 500 - Concast
% 400 (Received)
ot 300 —o— Concast
Z 200 + (Initiated)

100 -

0L , .

100 200 400 800
# of Nodes

Figure 17: Avg Number of Packets to Compute Min/Max with Normal Node Dist.
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Figure 17 shows the packets required to perform min and max operations. These
operations were performed separately as with the experiment in uniformly distributed
networks. Packets were dropped at intermediate nodes as before. The number packets
received by the collector nodes in Concast is higher for bounded normal distribution.

This is again because of the higher number of one hop neighbors to the collector.

7.2.5 Number of Hops to Compute Min/Max
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Figure 18: Avg Number of Packets to Compute Min/Max with Normal Node Dist.
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Figure 18 shows the number of hops taken to perform the min/max operations. The data
reduction protocol still holds advantage over the Concast protocol. Both protocols
require fewer hops to compute min and max. The difference between the two protocols is

about the same as in uniform distribution.

7.2.6 Amount of Time to Compute Min/Max
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Figure 19: Amt of Time Required to Compute Min/Max with Normal Node Distrib.
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Figure 19 shows the time taken to compute min and max values. The results were similar
to results with uniform distribution. Both protocols took a little less time to compute the
aggregates. The difference between the Concast and data reduction protocol at high
number of nodes is a little less than the difference in the uniform distribution experiment.
This is because most of the packet drops in the concast protocol occurred close to the
collector rather than farther down the tree. This reduces the advantage of Concast over

the data reduction protocol.

7.3 Performance Tests over Different Radio Ranges

As seen in Section 7.2, the advantage of the data reduction protocol over general
approach was reduced a little for bounded normal distribution. This was hypothesized to
be because of the increase in the number of one hop neighbors to the collector. To
confirm this, data was collected on the effect of varying the radio range of all the nodes.
Increasing the radio range while keeping the number of nodes fixed tends to increase the

number of neighbors of each node, thereby allowing us to test this hypothesis. The total

number of nodes was fixed to 200. The nodes were distributed over the same 400 by 400
regions using uniform distribution. The min operation was tested to check the

performance of general, Concast and data reduction protocols.
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7.3.1 Packets Required Per Min Operation
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Figure 20: Avg # of Packets vs. Radio Range
Figure 20 shows the number of packets required to perform a single collection with
different radio ranges. The general protocol requires the same number of packets for all
radio ranges. For data reduction protocol, the number of packets required increases as the
radio range increases. The number of packets received by the collector in the Concast

protocol also increases with radio range. This is as predicted by the hypothesis.
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7.3.2 Hops Required Per Min Operation
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Figure 21: Avg # of Hops vs. Radio Range
Figure 21 shows the average number of hops required to perform a single min operation.
The graph shows that all of the protocols require lower number of hops as the radio range
of nodes increase. However, the drop is lot more significant in the general approach than
in the data reduction and Concast protocol. This shows that as the range increases the

number of reductions done due to the protocols decreases.
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7.3.3 Amount of Time Required Per Min Operation
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Figure 22: Avg Amount of Time vs. Radio Range
Figure 22 shows the effect of different radio ranges on the time required for min
operations. Again the general approach benefits the most from the increase in radio
range. The previous three graphs show that the data reduction protocol provides a larger
benefit when a large number of nodes are not clustered around the collector. In the most
extreme case if all the nodes are just one hop away from the collector, the general
approach would give the best solution, provided that there is a good collision resolving
mechanism. These graphs also show that the data reduction protocol is less vulnerable to
reduction in radio range. If some nodes need to reduce their power levels to last longer,

the effect on performance of the data reduction protocol would be small.
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7.4 Performance Tests with Loss of Nodes

One of the advantages of the data reduction protocol over the TAG protocol is its
performance and reliability when one or more nodes go down or move out of range.
Tests were performed to measure the performance of these protocols with loss of one or
more nodes. These tests were done on random networks generated using the same
method as in Section 7.1. The count aggregate was collected. Each node was given a 1%
chance of being turned off. A uniform random variable was used to decide whether a
node should be on or off. The percentage difference between the actual result and
collected result was measured. Latency was also measured for TAG and data reduction
protocols. For data reduction protocol, DSR protocol takes care of off nodes. The node
that precedes the off node in the spanning path would detect that the link is broken. This
node sends an error message back to the collector. The collector node constructs new
spanning paths to cover the nodes in the same spanning path as the off node and then
sends requests on those paths. Nodes ignore the collection requests with the same request
id and source as a previously received request. In TAG, the collection latency is highly
dependent on the timeout values f;)r the parent nodes in the collection tree. A different
timeout value has to be used for different levels of the tree. Collections were done on ten
randomly generated networks for each of the four different numbers of nodes. The max
latency value from those ten collections was taken as the timeout value for the final
collector for that number of nodes. The amount of time taken to collect data from one
hop neighbors was taken to be the timeout for the second lowest level. The tree depth

was also measured for each of the different number of nodes. The maximum value of the
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tree depth was assumed to be the depth for that number of nodes. The decrease in the

timeout value was set equal to following equation:

Decrease at each Level = [(Timeout at Highest Level) — (Timeout at lowest level)] / depth

The following table shows the values used for different number of nodes:

Table 1: Timeout Values for TAG Protocol

# of Nodes | Max Timeout | Min Timeout | Depth
(sec) (sec)

100 8.46 0.35 18

200 22.17 0.52 21

400 69.71 1.17 24

800 177.38 2.18 25

The following two graphs show the percentage error and collection latency for the TAG

and data reduction protocols.
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Figure 23: Avg. Percentage Error for Count with Loss of Nodes
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When a node is turned off, TAG protocol looses the data from not only that node but also
from every node below that node. This makes TAG less reliable than data reduction
when nodes are lost. When computing count in data reduction protocol, the percentage of

error is equal to the percentage of nodes that were turned off.
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Figure 24: Avg Collection Latency for Count with Loss of Nodes
Figure 24 shows that the data reduction protocol outperforms the TAG protocol for large
number of nodes. This is because the parent nodes in the TAG protocol have to wait until
the timeout occurred before transmitting collected data. The data reduction protocol does
not require any such waiting. Figure 23 and Figure 24 show that the data reduction

protocol performs better than TAG when there is node loss.
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CHAPTER VIII

CONCLUSION

8.1 Summary of Results

The goal of this thesis was to design and evaluate a new protocol for data collection in a
sensor network. Such a protocol would be useful in many wireless sensor applications
where periodic data collection is a frequent operation. The goal was to design a protocol
that minimizes the amount of transmissions and hence the amount of energy used for
each collection. The protocol also had to be simple and as stateless as possible to
conserve the limited resources of the sensor nodes. Since most future applications of
sensor networks consist of a very large number of small sensor nodes, the protocol also
had to be scalable. The data reduction protocol accomplishes these goals. It is simple
and requires very little processing and memory at the nodes. Only the few collector
nodes are required to keep state information for each ongoing collection. In a one-level
collection, only the request originator needs to maintain state. This is an improvement
over the other current protocols. Both TAG and Concast protocols require each node to
keep state information about the identity of its parent and current state of collection. The .
data reduction protocol requires almost four times lower number of hops than the general
approach. The difference becomes larger as the number of nodes increases. This shows
that the protocol is more scalable then general approach. Data reduction protocol also

requires lower number of hops than the Concast protocol even when computing min/max.
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The number of packets created in the data reduction protocol is lower than in any of the
other protocols. This protocol also shows a slight advantage in the amount of time taken
to complete a collection. The advantages are there for both uniform aﬁd bounded normal
distributions. The performance of data reduction protocol does not fall as sharply as the
performance of general approach when the power level, hence the radio range, of the
nodes is lowered.

Another advantage of data reduction protocol over TAG and Concast is that it
could be implemented on top of any existing source routing protocol. The error
correction and reliability of a well developed source routing protocol such as DSR can be
used to ensure reliability of the data reduction protocol. This makes data reduction more
robust for ad hoc mobile networks. The spanning routes are generated by the collectors
each time on demand, although they can also be cached for efficiency. DSR handles
mobility by removing routes that are no longer valid and discovering new routes if
necessary. Since the DSR routes are used to generate the spanning paths or to update
stored spanning paths, data reduction protocol can also handle mobility. In TAG and
Concast protocol, the collection tree has to be rebuilt periodically to account for mobility.
This could be time consuming, and in between periodic rebuilds, the protocols will give
false results if mobility occurs.

Even though TAG protocol requires less hops then the data reduction protocol, it
requires more state and processing. The parent nodes have to remember the number of
children and have to set a timer to wait for all child nodes to report. This has to be done
at all nodes except at few leaf nodes with no children. TAG is also less reliable,

especially when there is mobility. Data reduction protocol outperforms the TAG protocol

59



when there is loss of nodes. The data reduction protocol becomes more efficient as more
routes become known through DSR. After a while, route discoveries do not have to be
done to find spanning paths. In TAG protocol, performance is not improved as more
messages are exchanged.

The above analysis and results have shown that data reduction is a viable
alternative to existing collection protocols for many practical applications of sensor
networks. The protocol can be modified to perform better in certain situations. For
example if amount of energy used is a very critical condition, nodes that fall on more
than one spanning paths can try to wait and combine the results from the two spanning
paths. This would make the protocol similar to TAG protocol and reduce the number of
hops. Next section discusses some other optimizations to be explored for the data

reduction protocol.
8.2 Future Work

The multi level data reduction protocol requires the network region to be divided into
smaller regions and each node knowing the number of its local region. More research
needs to be done on how to accomplish this task. The geographical boundaries of the
regions can be pre-determined by user based on the network topology. Each node can be
made aware of these boundaries when the network is created and can calculate its current
region based on its location. There have been some papers on how a node can determine
its current location based on distances relative to some other fixed nodes [16, 17, 18].
These protocols have to be analyzed and evaluated for use with data reduction protocol.
One essential process in the data reduction protocol is the selection of collector

nodes for lower levels. The collector node is currently chosen by simply selecting one
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node per region that is in one of the spanning routes. More than one node from some of
the regions can be in one or more spanning routes. The current protocol arbitrarily
selects a collector node for that region. More work needs to be done on this collector
selection process. The collector can be chosen based on its power level, its position or
some other criteria. Tests have to be conducted to see which selection algorithm gives
the best results. Since the collector nodes are required to do additional processing,
rotating of collectors could prolong the life of the network.

The test results presented in this paper were obtained by running the protocol on
the GTNetS simulator. Although the simulation environment reflects the real world
applications, the protocol has to be tested on actual sensor nodes in real world
applications. The power requirements of the protocol have to be studied further to
evaluate the benefit of such optimizations as keeping the sensors off until receiving a

collection request.
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