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PREFACE

The expectation that light waves are the only way to gather information about the distant

universe dominated scientific thought, without serious alternative, until Einstein’s 1916

proposal that gravitational waves are generated by the dynamics of massive objects [12].

Now, after nearly a century of speculation, theoretical development, observational support,

and finally, tremendous experimental preparation, there are good reasons to believe that

we will soon directly detect gravitational waves. Perhaps the most prominent of these

good reasons is the ongoing increase in sensitivity of the Laser Interferometer Gravitational

Wave Observatory (LIGO), which will be able to detect gravitational wave sources such as

colliding neutron star binaries, neutron star black hole binaries and, the focus of this thesis,

black hole binarys.

With expectation for detection increasingly mounting, the community of gravitational

wave physicists is eager to inform basic astronomy questions: What do likely signals look

like? Where is the sky location of the signal’s source? What class of objects does the signal

come from? What are the system’s physical parameters, and can we learn about how those

parameters change in time? Concurrently, pinned to each of these observational questions,

are requisite theoretical ones: Do we understand the physics of likely sources well enough to

generate ideal, template signals? What are the underlying physical principles that determine

who much information is in a gravitational wave signal? Is it possible to test extensions of

current general relativistic theory with detected signals? Conversely, is it possible to identify

new physics, given what we already accept to be true?

Likely, the most practical questions reside at the interface between gravitational wave

theory and experiment: What are the most effective formulaic perspectives for constructing

template signals? What is the maximum information that may be learned from gravitational

wave signals in post-detection analyses? And, in the case of parameter estimation, is it

possible to generate template signals in a manner that is both physically accurate, and very
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computationally efficient?

There are surely more questions being asked. However, it is qualitatively accurate

that most data analysis questions depend significantly on our ability to effectively model

potential gravitational wave signals. It is within this central context that the author’s thesis

work on gravitational wave modeling has emerged.

Gravitational Wave Modeling. Gravitational wave modeling is motivated by the fact

that prior knowledge of signal morphology empowers us to detect gravitational waves,

even when experimental noise is much much larger than the observed signal amplitude

(Section 3.2.2). Therefore, the broad goal of gravitational wave modeling is to characterize,

either analytically, or semi–analytically, the spatiotemporal morphology of gravitational

radiation for different physical systems. The larger utility of such models is that they

enable:

1. The ability to construct maps between waveform morphology and physical quantities

that constrain the structure and dynamics of the waveform’s source (e.g. the final

mass and spin of a black hole resulting from the merger of two compact objects).

2. Our ability to determine which class of physical systems a gravitational wave signal

is likely to belong.

The purpose of this thesis is to summarize the author’s initial contributions to the above

topics. Central focus will be placed on the modeling of gravitational waves from binary

black hole systems.
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SUMMARY

Part (I) establishes a basic foundation in General Relativity and gravitational waves.

Chapter (1) gives a brief introduction to the basic concepts of General Relativity that lead

to Einstein’s equations and consequently, to gravitational waves. Chapter (2) expands upon

gravitational wave theory by narrowing our focus to the gravitational radiation of compact

object coalescence. Specifically, Section (2.1) discusses the interface between Newtonian

gravity and General Relativity in the regime where the binary’s constituents are very far

apart and moving slowly. Section (2.2) expands upon this discussion by introducing Post-

Newtonian theory and its description of gravitational wave inspiral. Section (2.3) picks up

in the strong field gravity regime of merger, where the Post-Newtonian approximations fail.

Here we review the role of Numerical Relativity in evaluating Einstein’s equations in non

perturbative regimes, and establish its very significant but limited role in effort to detect

gravitational radiation from astrophysical sources. In Section (2.4) we briefly introduce the

final pertutbative regime of compact object coalescence: where there were two objects there

is now one, remnant objects whose gravitational radiation rings down like struck bell.

Part (II) describes the interface between Part (I)’s gravitational wave thoery, and current

efforts to detect astrophysical gravitational radiation. Chapter (3) introduces the author’s

applied programming interface for the post analysis of Numerical Relativity simulation, and

overviews its role in Georgia Tech’s Numerical-Relativity-Data-Analysis activities. Chap-

ter (4) builds upon prior discussions of Numerical Relativity and its interface with experi-

ment to motivate gravitational wave modeling. Here, we will define precisely what we mean

by “modeling”, and give two pertinent examples.

With a sufficient foundation in place, Part (III) iterates through this thesis’ core re-

sults. Chapter (5) presents on the author’s contributions to the modeling of black hole

Quasi-Normal Modes (QNMs), whereby a close interface between Numerical Relativity and
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black hole black hole perturbation theory enabled the first robust phenomenological models

for QNM excitement, as well as the first systematic analysis of QNM overtones, and the first

extraction of evidence for non-linear QNM resulting from binary black hole mergers. This

work is also the first to propose that the direction of black hole recoil may be determined ob-

servationally through detection of more than one QNM. Chapter (6) highlights the need for

robust models of gravitational waves from precessing binaries (i.e. “precessing templates”).

Examples are given in therms of the author’s contribution to reference [13]. Chapter (7)

briefly discusses ongoing work, of potentially high impact, regarding the author’s develop-

ment of an unsupervised machine learning scheme at the interface of Numerical Relativity

and gravitational wave modeling.

Finally, Chapter (8) offers both a brief summary of the previous chapters, and a short

discussion of the author’s future directions.
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Chapter I

GRAVITY AND GRAVITATIONAL WAVES

In this introductory chapter we will review this thesis’ core maths and physics topics.

Section (1.1) gives a brief conceptual and mathematical overview of General Relativity, and

introduces the fundamental physics concepts that underpin the results of this thesis. Sec-

tion (1.2) briefly examines the theory of gravitational waves, and bears particular attention

to gravitational wave polarization and its relevance for gravitational wave detection.

While this chapter does not intend to give a linear exposition of General Relativity that

culminates in gravitational wave theory, one may find such an exposition in reference [14].

Instead, we will attempt to conceptually motivate gravitational wave theory in parallel with

the relevant mathematical principles. In other words, an attempt will be made to construct

the fundamental ideas succinctly and without assuming that the reader is already inducted.

We begin by reviewing central concepts of relativity, and then quickly slanting towards the

topic of gravitational waves.

1.1 General Relativity

Space & Time. Of General Relativity’s central concepts, the notion of space-time is

perhaps the most foundational. But more than a simple concatenation of our three spatial

dimensions, ∆xa = (∆x(1),∆x(2),∆x(3)) = (∆x,∆y,∆z), with time, ∆x(0) = c∆t, to

specify a point within a smooth 4 dimensional space, ∆xµ = (∆x(0),∆x(1),∆x(2),∆x(2)), the

marriage of space and time stems from the notion of invariant observables – quantities whose

measured values are independent of the observer’s motion. At the level of Special Relativity,

the invariance of the speed of light, c, when measured by different, non-accelerating1 (i.e.

1Specifically: no relative acceleration between observers.
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inertial) observers demands the invariance of the space-time interval

c2∆s2 = −(c∆x(0))2 + (∆x(1))2 + (∆x(1))2 + (∆x(3))2 (1)

= ηαβ x
α xβ .

Here, in the second line, repeated indeces represent sums (i.e. contractions), and ηαβ, the

flat-space metric, encapsulates the prefactors, 1 and -1, in the first line2.

Curvature and Gravity. Equation (1)’s limitation is that it is not realistic: the concep-

tual constraint that observers are not accelerating is a special rather than general view of

relativity.

Aside on the Equivalence Principle. General observers, from telecommunication

satellites to gravitational wave detectors, not only accelerate, but are also unable

to distinguish between uniform acceleration, such as that due to the acceleration

of a jet engine, and the force of gravity. This is due to the subtly peculiar fact

that all macroscopic objects within a gravitational field, that have the same initial

velocity, follow identical trajectories (Not considering air resistance), regardless of

composition (e.g. mass, charge, spin, particle type, etc. ).

Importantly, the generalization of observers can be made mathematically tractable: In much

the same way that surface of the Earth is locally flat, any smooth non-uniform gravitational

field is locally uniform, with the related gravitational acceleration taking on a value that is

“locally” constant. As a consequence, observational frames that are free falling in the locally

constant field are inertial, and the framework of Special Relativity applies. Put another

way, the constancy of Equation (1)’s prefactors means that ηαβ describes a flat geometry

in which parallel space-time trajectories always remain intuitively straight, regardless of

the size of ∆s. However, in General Relativity, this property of parallelism only holds

2For those who are interested in keeping up with the index notion, it may be helpful to note that
ηµνVµ = V ν , and ηµνηαβ = ηµνηµβ = diag(1, 1, 1, 1). It may also be useful to note that information that
travels at c is described by ∆s = 0
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infinitesimally, with ∆s2 becoming ds2, and where

ds2 = gαβ(x)xα xβ . [with c=1] (2)

Here, gαβ is the general spate-time metric, and just as in Special Relativity, the spacetime

interval, ds, is a central physical observable: the distance along a rod of two nearby points

is |ds|, while the time elapsed on clock that experiences two nearly simultaneous events is3

| − ds|.

At this point, in order to properly handle the mathematics, one must invoke Reimannian

geometry, with it’s Connection, Γρµν (which depends uniquely on gµν and its first derivatives)

as well as the Reimann tensor, Rρσµν (which depends on gµν and its second derivatives4). For

example, the trajectory of free falling particles is locally straight, but must generally conform

to the geodesic equation, d2xα

dλ + Γαβγ
dxβ

dλ
dxγ

dλ = 0. Moreover, Rρσµν , and in particular, its

contractions (Rµν = Rλµλν and R = gµνRµν), encapsulate the curvature of space-time. Of

particular importance is the relative acceleration, Aµ, between two free falling particles that

are separated by Sσ, and move with velocities5 Uν and U ′ν

Aµ = RµνρσU
νUρSσ . (3)

Roughly put, Equation (3) generalizes Newton’s force–free condition ∂2
t ~x = 0 by describing

the nontrivial forcing effect of space-time curvature.

Gravitation. On one hand, the concept of local flatness and global curvature enables us

to translate our flat space-time physical laws, into their curved space-time generalizations:

Given a physical law in an inertial reference frame, write down its Reimannian tonsorial

form, and then verify that the generalized law remains true in curved space-time6. On

the other hand, the equivalence principle allows us to identify gravitational fields with

space-time geometry: locally, gµν can be thought of as depending on either xα, or some

3This is consistent with the sign convention used in Equation (1).
4Importantly, Rρσµν and Γρµν are nonlinear objects on gµν , meaning that they depend on products of gµν

and its derivatives.
5In Equation (3) information about U ′ν contained within Rµνρσ.
6There are many adjacent ways of going about this, such as the principle of least action, and the spin -2

gauge theory approach
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gravitational potential φ(x). It is by unifying these ideas that General Relativity renders

the connection between space-time geometry, and the dynamics of matter and energy. In

particular, if we consider Newton’s gravitational law for the gravitational potential,

∇2φ = 4πGρ , (4)

(where φ is the gravitational field potential, G is the gravitational constant and ρ is density

of mass), then the above program leads to the conclusion that

Rµν −
1

2
Rgµν = 8πGTµν . [Einstein’s equations] (5)

We may first note that, just as Equation (4) enables us to solve for φ (and thereby the force

of gravity) under problem specific boundary conditions, Equation (5) enables us to solve

for the metric, gµν .

An Aside on Black Holes. It is common to imagine that an observer in one

region of space may communicate with an observer in another. More generally, it

might appear from our day to day experience that an object in one region may be

free, given enough effort, to move to any other region of space. However, according

to Equation (5), this is not general true. In particular, there are solutions of Equa-

tion (5) that have closed surfaces of space through which information may enter, but

not exit. These closed surfaces are called event horizons, and space–time regions con-

tained within event horizons are called classical black holes. For example, the Kerr

black hole solution to Einstein’s equations (i.e. a spinning black hole) is of particular

interest to gravitational wave astronomy, and will be discussed in Chapter (5). It

is also noteworthy that black holes have observer dependent “apparent horizons”.

Apparent horizons are surfaces that bound regions of space-time where light rays

that are directed outwards move outwards, and light rays that are directed outward

yet moving inward. In Numerical Relativity (Section 2.3), they are of practical use

for determining the properties of black holes are on the computational grid.
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We should also note that the right hand side of Equation (4), which holds information

about the distribution of matter, is generalized to 8πGTµν , where information about the

distribution of both matter and energy is encapsulated in the energy–momentum tensor,

Tµν . Similarly, the left hand side of Equation (5) may be thought of as a generalization of

Equation (4)’s left hand side, where ∇2 is generalized by Rµν and R. However, an important

point of contrast is that Equation (4)’s left hand side contains only spatial derivatives (there

is no embedded concept of space-time), while Equation (5)’s differential operations are on

the unified space and time7. This last point heralds the existence of gravitational waves.

1.2 Gravitational Waves

We will proceed in this section much as in the last: by focusing on only the most pertinent

math details in tandem with the conceptual foundations. For this reason, unfortunately,

meaningful details will be left aside8. That is, through what is intended as brisk overview,

we currently lend our attention to waves in space-time.

On Waves and Radiation. First, a point of clarification: while all forms of radiation are

waves, not all waves are radiation. That is, by definition, radiation is a class of wave that

carries energy infinitely far away from a physical source (e.g. a circular antenna, or a system

two black holes). But how can this be? And why is it not that all emission carries energy

infinitely far away from a radiating source? These question may be efficiently answered

by noting two ideas: Firstly, for the emission to be physical, its amplitude observed at

a distance r from the source must tend to zero as r/(the scale of the source) → ∞. This

implies that the slowest decaying component of the emission must scale as r−n, where n > 0.

Secondly, what is observable is the ability of the emission to affect patches of area at r;

this makes the total energy of the emission on shells of area 4πr2 a meaningful, if not

fundamental measure. Moreover, if ψ(r, θ, φ) ∼ r−n is the emission9 at r, then it’s energy

7One might also notice that the argument for constructing Equation (5) ensures that Equation (4) is
recovered in the weak field (flat space) limit.

8However, the author would like to refer the reader to reference [15] for a more complete motivation and
description of gravitational waves.

9Here, θ and φ are angles of orientation relative to the source.
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density scales10 as ψ2 ∼ r−2n. As a result, the total energy emitted through a shell of radius

r must scale as r2ψ2 ∼ r2(1 − n). Concurrently, for the emission to be physical, r2ψ2

must not increase as r increases, for this would imply that energy is spontaneously being

added to the emission throughout space, making the emission more measurable are larger

distances. This leaves 2(1− n) ≥ 0 as our only option for physical systems. Moreover, this

means that n = 1, or equivalently, ψ(r, θ, φ) ∼ 1
r , must describe the scaling of the slowest

decaying emission. This is radiation. Its energy is invariant on spherical shells about the

source. All other emission, having n > 1, decays faster and therefore cannot be observed

far away, thus making the 1/r emission the most practical for long range observation.

Weak Field Gravity & Gravitational Plane Waves. As we work to consider gravita-

tional radiation in basic detail in Chapter (2), the discussion above motivates the following

perturbative view of the flat space-time metric:

gµν = ηµν + hµν . (6)

That is, we wish to consider space-time dynamics on the flat space metric, ηµν , plus a

small perturbation hµν . Our specific aim, at least for the moment, is to contemplate

general relativistic effects when space-time is approximately flat, such as in the case of

a gravitational wave detector, far away from the wave source. Canonically, hµν is used

to denote small deviations from flat space-time and, as one contemplates the mathemat-

ics, only quantities proportional to the first power in hµν are retained. Concurrently, to

construct this weak-field picture or General Relativity, it is noted that the equivalence of

physical laws in different reference frames demands that coordinate transformations of the

form xα → x′α = xα + ξα(x) , correspond to gµν(x) → g′µν = ∂xλ

∂x′µ
∂xκ

∂x′µ gλκ(x) . This gauge

symmetry of General Relativity enables the significant simplification of the mathematics.

In particular, the following discussion concedes the transverse–traceless (TT) gauge, where

ξα(x) is chosen such that h0µ, haa = 0, and ∂bhab = 0.

10This is an argument that makes use of dimensional analysis, and the notion that the emission travels
along r.
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In particular, when the above points are used to re-develop Einstein’s equations, Equa-

tion (6) recasts Equation (5) as

�hµν = −16πGTµν . (7)

Here, � is commonly referred to as the wave operator,

� = ηµν∂µ∂µ = −∂2
t +∇2 . (8)

The last equality in Equation (8) has been written to accentuate that � acts on both tem-

poral and spatial dimensions (i.e. ∂2
t and ∇2 respectively). Given the appropriate physical

boundary conditions, this operator is recognized in a broad scope of physical phenomena,

such as in electromagnetic theory and fluid mechanics, as describing spatial correlations

that vary in time – waves. But let’s be more specific.

All cases in this thesis pertain to Equation (5) in vacuum, where Tµν = 0. This means

that we are interested in solutions of

(
−∂t +∇2

)
hµν = 0 . (9)

One of the simplest of such solutions is

hµν = Hµν exp(ikαx
α) . (10)

Note that Equation (10) is written as a complex exponential only for convenience – the

physical form of this class of solutions is a real valued, linear combination of sines and

cosines11.

Applying Equation (9) to Equation (10) yields that kαkα = ηµνk
mukν = 0 (i.e. under

Einstein’s General Relativity, gravitational waves travel at the speed of light). Moreover,

as we are working in a background metric where xα may be identified as xα = (t, x, y, z),

it follows that kα = (ω,~k), where ω is the wave’s frequency, and ~k = (kx, ky, kz) points in

the direction that the wave travels. In particular, if we consider a wave traveling in the

z–direction, then the resulting Aµν is traceless, and only has components that are transverse

11via Euler’s formula, exp(ix) = cos(x) + i sin(x)
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to kα.

Hµν =



0 0 0 0

0 Hxx Hxy 0

0 Hxy −Hxx 0

0 0 0 0


. (11)

By inspection of Equation (10), it is visible that, mathematically, hµν(xα = 0) = Hµν .

However, the physical significance of Hµν may be illustrated by considering the effect of our

wave on two free particles with separation vector Sσ = (0, S(1), S(2), 0) (i.e. the particles

are only separated along the x–y plane). Here, geodesic deviation, Equation (3), gives

quasi–linear differential equations for which the particle separation, Sσ(t), must satisfy.

In particular, we are to consider approximate solutions of Aµ = ∂2
t S

µ = 1
2S

α∂2
t h

µ
α. The

individual significance of Hxx is illuminated by considering the case where Hxy = 0. This

yields

∂2
t S

(1) =
1

2
S(1)∂2

t (Hxx cos(ωt)) , and ∂2
t S

(2) = −1

2
S(2)∂2

t (Hxx cos(ωt)) , (12)

which have lowest order solutions12 given by

S(1) ≈ (1 +
1

2
Hxx cos(ωt)S(1)|t=0 , and S(2) ≈ (1 − 1

2
Hxx cos(ωt)S(2)|t=0 . (13)

Therefore, as each individual particle follows a geodesic13, the displacement between those

geodesics is affected by the gravitational wave. For S(1), the factor of [1 + 1
2Hxx cos(ωt)]

means that the x–displacement of the test particles grows when cos(ωt) > 0, and shrinks

when cos(ωt) < 0. Similarly, for S(2), the factor of [1 − 1
2Hxx cos(ωt)] means that the y–

displacement of the test particles shrinks when cos(ωt) > 0, and grows when cos(ωt) < 0.

This alternating, vertical/horizontal growing and shrinking traces a plus pattern in t (e.g.

Figure 1). Repeating the game above, but withHxx = 0, demonstrates thatHxy corresponds

to a cross pattern (e.g. warping at 45◦ rather than along the x and y axes).

12The approximation treats S(1) and S(2) on the right hand side of Equation (12) as constants given by
S(1)|t=0 and S(2)|t=0. For the cross polarization, an eigenvector representation of the solution is useful.

13This is lightly discussed in Section (1.1). See [15] or [16] for a proper discussion.
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Figure 1: The approximate effect of plus (left) and cross (right) gravitational wave polar-

izations on a ring of test particles.

For these reasons, Hxx is identified with the wave’s “plus–polarization”, and Hxy is iden-

tified with the wave’s “cross–polarization”, and Equation (10) is often compactly rewritten

as

hab =

 h+ h×

h× −h+

 =

 Hxx Hxy

Hxy −Hxx

 exp(ikαx
α) . (14)

Equation (14) is the principle result of this section: it demonstrates that gravitational

waves affect spacetime in a manner that is transverse to their propigation direction, and

consistent with two polarizations (plus and cross).

Aside on Gravitational Wave Interferometry. It is important to note that grav-

itational wave detectors such as LIGO and Virgo14, which track the passage of light

back and forth between mirrors, are primed to measure the geodesic deviation15

incurred in flight. In particular, they are schematically similar to a Fabry-Perot

Michelson Interferometer, Figure (2), where laser light of wavelength λ is split into

two directions, towards arms of unperturbed length L. Along each arm, mirrors are

placed such that the typical photon travels a total distance on the order of 102L

14Located in Italy, Virgo is a gravitational wave detector that is a part of the European Gravitational
Wave Observatory.

15Equivalently, it can be said that they aim to measure the integrated proper distance (Equation 2)
between the two mirrors.
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Figure 2: A schematic for an interferometric gravitational wave detector.

before heading back towards the beam splitter, where it is directed towards a pho-

todiode which converts the optical signal into an electrical one. The configuration

is such that, if there is no gravitational wave, the returning light waves cancel each

other out perfectly, resulting in no signal. However, in the presence of gravitational

radiation, where the deviation between arm lengths is δL = L2 − L1, Equation (13)

suggests that the observable phase shift, δφ, will be proportional to the detected

strain, hdet(t), and will scale as

δφ ∼ 2 (102)
2π

λ
δL ∼ 200

2πL

λ
hdet(t) .

Ideally, if L1 and L2 lie along the x and y axes of Equation (10), then only the h+

polarization will be detected with

hdet(t) =
δL

L
= h+(t) [17].

However, as LIGO is a network of detectors, each with their own multipolar antenna

pattern, the detected strain will generally be of the form

hdet(t) = F+h+(t) + F×h×(t) ,

where F+ and F× encapsulate information about a single detector’s antenna pattern.
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1.3 Chapter Summary

We have now touched upon basic gravitational wave theory: gravitational waves travel

at the speed of light, and correspond to tidal forces in directions transverse to their propa-

gation. We have noted that gravitational waves can be detected via the effect of their weak

tidal forces on test masses, and that the waves that are most likely to be detected correspond

to radiation. However, we have yet to connect gravitational wave theory with the equally

central topic of the gravitational radiation produced by massive astrophysical systems – in

particular, binary black holes, for which there is good hope for detection [18, 19, 20, 21].
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Chapter II

THE GRAVITATIONAL RADIATION OF COMPACT BINARIES

Thus far, we have motivated Einstein’s theory of gravity, and we have shown that it

supports plane wave solutions in the weak field limit (Equations 10-14). Now, we are

primed to review the class of gravitational waves that are at the center of this thesis: the

gravitational radiation generated by two compact objects in a slowly decaying, quasi-circular

orbit, that leads to relativistic, strong-field merger, and ultimately ringdown. Our interest

in this type gravitational radiation is primarily motivated by its expected relevance to

gravitational wave detection, whereby the detection of multiple binary black hole systems

per year is expected in the advanced detector era [18]. To pursue this interest, we must

break from the perspective of Section (1.2), and contemplate the production of gravitational

waves in the presence of matter and/or curvature, where Tµν 6= 0.

Specifically, we will incrementally contemplate the dynamics of two compact objects

(e.g. two black holes) orbiting each other in a quasi-circular fashion: First, when the

objects are far from each other, and moving slowly with respect to the speed of light,

we will consider the Newtonian regime (Section 2.1). Second, we will consider the more

astrophysically relevant Post–Newtonian regime, where velocity and curvature are coupled

(Section 2.2). Third, as the Post–Newtonian approximations are incapable of capturing the

full non-linearity of General Relativity, we will review the approach of Numerical Relativity

(Section 2.3). Lastly, we will briefly introduce gravitational ringdown. These topics inform

us about the data from which this thesis’ results are derived and discussed.

2.1 The Quasi–Newtonian Limit

The goal of this section is to quickly discuss gravitational waves from compact binaries

near the Newtonian limit. This topic is foundational for the Post-Newtonian description of

gravitational radiation, which in tern, significantly informs Numerical Relativity’s efforts to

12



calculate gravitational radiation.

We begin by imagining the effect of gravity on two compact objects separated by a

distance d that is large enough for general relativistic effects to be small. In particular, we

will consider d to be large compared to the dynamical length scale of the system1 given by

2GM/c2, where M is the total system mass. This is equivalent to the condition that

GM

dc2
� 1 . (15)

Moreover, we are to imagine that the objects orbit the location of their center of mass, in a

manner that is almost perfectly circular. Figure (3)’s left panel illustrates this configuration

for the case of a binary black hole system. Here, the Newtonian gravitational force between

the objects must be negated by the outward “centrifugal” force, yielding

µv2

(d/2)
= G

Mµ

d2
. (16)

Here, µ is the system’s reduced mass, µ = m1m2
M , with M = m1 +m2.

In congress, Equations (15-16) communicate that we are considering a limit familiar to

Special Relativity: each object’s velocity is small relative to the speed of light,

GM

dc2
=
v2

c2
� 1 . (17)

It is therefore reasonable to expect that, for very large d, the dynamics are approximately

Newtonian, but with general relativistic deviations described by the addition of successive

terms, weighted by increasing powers of v/c. Per the title of this subsection, the author

considers this regime to be quasi–Newtonian. To consider this point further, and to even-

tually contemplate more general gravitational wave emission by compact binaries, we must

review the consequences of the weak field Einstein’s equations where Tµν 6= 0.

Weak Field Sources. In the presence of matter, curvature, or both, we must consider

Einstein’s equations(Equation 5) with Tµν 6= 0. It is simplifying to start in the Lorentz

gauge, rather than the TT gauge of Section (1.2). Specifically, we are to work with

h̄µν = hµν −
1

2
ηµνh , (18)

1Here GM/c2 may be derived from dimensional analysis; whilie the factor of two is added here to be
consistent with the Schwarzschild radius, 2GM/c2.
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Figure 3: Black Hole inspiral for a 1:1 mass ratio, initially nonspinning black hole binary
having initial total mass of 100 M�, and observed at r = 100 Mpc. Left : A qualitative
schematic of the binary black hole configuration. The black hole’s apparent horizon is shown
by the blue curve. Right : Here we see the analogous gravitational wave emission in physical
units. Specifically, we are shown a period of late merger, where the gravitational wave
amplitude increases noticeably in time. This waveform was calculated using the Taylor-T4
Post Newtonian approximant [1].

along with the Lorentz gauge2 condition that ∂µh̄µν = 0. This, as well as the linearization

of Einstein’s equations via Equation (6), yields

�h̄µν = −16π

c4
Tµν . (19)

In Equation (19), I have broken from the c = 1 convention in order to connect with our

previous discussion.

In seeking solutions to Equation (19), it is noted that in this limit the source is too far

away to affect space-time curvature at the observer’s location, hence the flat background

metric ηµν . Concurrently, this means that Tµν is determined only by the content of the

physical system, and does not depend dynamically on h̄µν . Therefore, in this limit, we may

treat Tµν as a completely known quantity. This point allows us to seek an integral solution

to Equation (19), whereby h̄µν is equated to some linear operation on Tµν . In particular, it

2Note that we may always project h̄µν into the TT gauge when desired. See Eq. 1.36 of reference [15].
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is noted that given some G(x− x′), such that

�xG(x− x′) = δ4(x− x′) , (20)

solutions of Equation (19) can be written as

h̄µν(x) = −16πG

c4

∫
G(x− x′)Tµν(x′)d4x′ . (21)

Here, the 4–vector x′µ (written as x′ when in a function argument) is located in the source,

while xµ (written as x when in a function argument) is collated with the observer.

Physically, this approach is equivalent to considering the source to be made up of point

particles, and thereby holding that the total solution be an integral over solutions on each

particle3. In the context of the binary black hole problem, each black hole is treated as a

pint particle in this limit.

To proceed, G(x − x′) is determined by holding h̄µν to be zero at infinity, along with

the property that
∫
δ4(x − x′)d4x′ = 1. Moreover, G(x − x′) is further constrained by the

notion that the radiation propagates in a causal, time increasing manner. Together, these

ideas yield4

G(x− x′) =
−1

4π|x− x′|δ(x
0
ret − x′

0
) , (22)

where x = (x(1), x(3), x(3)), x′0 = ct′, x0
ret = ctret and tret = t− |x−x′|c . Here, t is the time the

wave is observed, and tret is the time the wave began to propagate away from the source.

Together, Equations (21-22) give

h̄µν(t,x) =
4G

c4

∫
1

|x− x′| Tµν(tret,x
′) d3x′ . (23)

In the Radiation Zone. We now touch base with Section (1.2)’s very conceptually

driven discussion of radiation. Specifically, with Equation (23) in hand, it is now clear that

the gravitational wave emission, h̄µν , depends on 1
|x−x′| . Moreover, all likely gravitational

wave observations will take place far away from the source, meaning that if spatial length

3 In Equation (22), G(x−x′) is dubbed the Green’s Function, after British mathematician George Green,
who developed the method in the 1830s after his father’s death, and a subsequent bequeathal of a small
fortune, which allowed Green to devote himself to maths rather than milling.

4See page 340 of reference [22] for a full treatment.
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scale of the source is d, where d & |x′|, then the observer is at a distance r = |x|, where

r � d. Consequently, a good approximation for 1
|x−x′| can be gleamed from it’s Taylor

series expansion:

1

|x− x′| = e−x
′·∇ 1

|x| = e−x
′·(x̂∂r) 1

r
(24)

=
∞∑
k=0

(−x′ · x̂∂r)k
k!

1

r
≈ 1

r
+

x · x′
r3

.

Following Section (1.2), we are only interested in the radiation term, given by 1/r, and we

disregard higher order terms, like x·x′
r3

, as they do not contribute significantly to the radiated

energy at very large distances. Our broad aim is to use r � d to unpack the amount of

information needed about the source in order to solve Equation (23) to some leading-order

accuracy. To this end, applying Equation (24) to Equation (23) gives

h̄µν(t,x) =
4G

c4

1

r

∫
Tµν(tret,x

′) d3x′ . (25)

Recalling that tret = t− |x−x′|c , it is clear that r � d enables another expansion about the

source, and therefore another opportunity to rewrite Equation (23) in its most dominant

term.

The Multipole Moment Expansion. It was remarked in the last paragraph that tret =

t − |x−x′|c implies that an expansion of Equation (23) is appropriate in the radiation zone.

Specifically,

|x− x′| ≈ r − x̂ · x′ (26)

gives that

tret =
(
t− r

c

)
+
x̂ · x′
c

. (27)

Here, there is no preference for approximating |x − x′| with only r, as there is no corre-

sponding radiative measurement for |x−x′|. Therefore, keeping the linear term in the series

expansion (i.e. x̂ · x′), enables a “next to leading order” expansion of Tµν(tret,x
′) about

16



tret = t− r
c ,

Tµν(tret,x
′) = Tµν(

(
t− r

c

)
+
x̂ · x′
c

,x′) (28)

=
∞∑
k=0

1

k!

(
x̂ · x′
c

∂τ

)k
Tµν(τ,x′)|τ=t−r/c

= Tµν(t− r

c
,x′) +

x′ix̂i
c

∂τTµν |τ=t−r/c +
1

2c2
x′
i
x′
i
x̂j x̂j∂2

τTµν |τ=t−r/c + ... .

While Equation (28) does yield an appropriate unpacking of Equation (25)’s right hand

side, it is physically illuminating to consider the Tµν(tret,x
′) to be the Fourier transform of

its frequency domain counterpart,

Tµν(τ,x′) =

∫
T̃µν(ω,k) e−iωτ+ik·x′) dω d3k

(2π)4
. (29)

Specifically, letting τ = t− r
c + x′·x̂

c , gives

Tµν

(
t− r

c
+

x′ · x̂
c

,x′
)

=

∫
T̃µν(ω,k) e−iω(t−r/c+x′·x̂/c) + ik·x′ dω d3k

(2π)4
. (30)

Here, it is noted that exponential has an explicit dependence on ωx′ · x̂, which has units of

velocity. This allows us to identify the exponential’s Taylor series expansion5, and thereby

reframe the terms in Equation (28). Specifically, we have that

e−iω(t−r/c+x′·x̂/c) = e−iω(t−r/c) × {1 − i
ω

c
x′
i
x̂i +

1

2
(−iω

c
)2x′

i
x′
i
x̂j x̂j + ...} , (31)

which is an expansion in powers of velocity (i.e. at frequency ω) divided by the speed of

light. Formally, when plugged into Equation (25), this velocity expansion is equivalent to

Equation (31). Moreover, it inspires identification of each term in Equation (31) with a mul-

tipole moment – one of s set of orientation dependent functions. Of particular importance

is the leading order, “quadrapole” term in Equation (31). It is identified with the mass

quadrapole moment6, given by

∂2
tMij(t− r/c) = 2

∫
Tij(t− r/c,x′) d3x′ (32)

= 2∂2
t

∫
x′ix

′
j T

00(t− r/c,x′) d3x′ .

5Note that the indices in Equation (31)’s right hand side label terms in the standard Euclidean dot
product, not that given by Equation (2).

6In Equation (32), the double time derivative is motivated by considering mass–eneergy conservation (i.e.
∂σT

σµ = 0).
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The second line writes the definition of Mij explicitly. Applying Equation (32) to our current

expression for the gravitational wave strain, h̄µν (Equation 25), gives the appropriately

named “quadrapole forumla”,

h̄µν ≈
1

r

2G

c4
∂2
tMµν(t− r/c) . (33)

In the preponderance of physically meaningful cases, Equation (33) represents the lowest

order, most dominant contribution to the solution of Equation (19).

The Case of Compact Binaries. Finally, Equation (33) enables the qualitative evalu-

ation of the gravitational radiation due to compact binaries when their separation length is

large (i.e. GM
dc2
� 1). To see this, Equation (32) says that we must first determine for the

system T 00: Under the current scheme of approximations, T 00 ≈ c2ρ, where ρ is the mass

density of the source (i.e. Equation 4). As we are considering d to be large, it is fair to

imagine that ρ is comprised of delta functions at the location of each object. Let’s further

simplify the situation by imposing that the object have the same mass, m1 = m2 = M .

Now, to write down T 00, we turn back to the discussion at the beginning of this section,

in particular Equation (16), where it was noted that circular motion corresponds to the

condition

v2

(d/2)
= G

M

d2
.

Equivalently, we have that each object moves with speed v =
√
GM/2d, which corresponds

to an angular velocity Ω =
√

2GM/d3. Therefore, if we label the objects with a and b, the

trajectory that object–a takes is given by

x(1)
a = (d/2) cos(Ωt), x(2)

a = (d/2) sin(Ωt) .

Similarly, for object b, we have that

x
(1)
b = −(d/2) cos(Ωt), x

(2)
b = −(d/2) sin(Ωt) .

Concurrently, imposing that the spatial integral over ρ results in 2M gives

T 00(t) =c2M δ(x(3)) [ δ(x(1) −R cos(Ωt))δ(x(2) −R cos(Ωt)) (34)

+ δ(x(1) +R cos(Ωt))δ(x(2) +R cos(Ωt)) ] .
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The resulting strain waveform is

h̄ij(t, r, θ = 0, φ = 0) =
1

r

2GM

c4
Ω2d2

 − cos(2Ωtr) − sin(2Ωtr)

− sin(2Ωtr) cos(2Ωtr)

 . (35)

As before, we have chosen an observational frame that limits excitation to the x–y plane;

therefore, as written above, h̄ij = hij (i.e. it is in the TT gauge). Generally, if the wave

travels at an angle θ relative to the observer’s z–axis, and at an angle φ, relative to the

observer’s x–axis, then we must project into the TT gauge according to hij = Λij,klh̄kl,

where

Λij,kl(n̂) = PikPjl −
1

2
PijPkl , (36)

and Pij(n̂) = δij−ninj . With the above choice of orientation, n = (sin θ sinφ, sin θ cosφ, cos θ).

Working through the algebra, while keeping in mind Equation (14), the projection results

in7

h+(r, θ, φ, t) =
1

r

GM

2c4
d2Ω2

(
1 + cos2 θ

2

)
cos(2Ωtr) , (37)

h×(r, θ, φ, t) =
1

r

GM

2c4
d2Ω2 cos(θ) sin(2Ωtr) .

Equation (37) contains the very rudimentary features of the gravitational radiation of

compact binaries: the waveform is time oscilatory, with an amplitude that depends inversely

with the distance from the source, as well as the observer’s orientation relative to the bi-

nary’s orbital plane. However, while Equation (37) is simply put, it is only pertinent to

gravitational wave detection, and thereby gravitational wave modeling, when the condition

that d is large holds – the weak field limit. But by construction, this is the regime where the

morphology of the radiation is the most regular, and simultaneously, the least powerful in

time. Even more so, the approximations used above essentially turn off essential features

of gravitational radiation, such as the coupling between velocity and curvature, and the dy-

namical relationship between the source’s trajectories and the emitted gravitational waves.

The fully Post–Newtonian formalism has been developed to confront these limitations, at

least, prior to the regime where strong field effects truly begin to dominate.

7Equation (37) is often referred to as the “restricted” Post-Newtonian waveform.
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2.2 The Post–Newtonian Limit

Unlike in the last section, here I will spare the reader a hearty construction of the main

ideas. This will largely be aided by my having already presented the key foundational

concepts: gravitational wave strain, and the multipole expansion of gravitational radiation.

Thusly, my goal in this section to introduce the motive behind the Post-Newtonian expan-

sion of Einstein’s equations, as well as a description of how the machinery is relevant to this

thesis. The description here roughly follows the Blanchet–Damour approach as outlined in

reference [23].

Motivations for Post-Newtonian. As described in Section (2.1), only the very rudi-

mentary nature of the gravitational radiation from compact objects can be captured in the

Newtonian limit. There are crucial physical features missing from Section (2.1)’s consider-

ations, such as radiation–reaction, and the entire host nonlinear effects. As these elements

ultimately impact the observed gravitational radiation in the late and final stages of co-

alescence, there is a practical need to go beyond the quadrapole formula’s leading order

description (Equation 35).

More on Multipoles. For gravitationally bound systems that deviate from the weak

field limit (Equation 15), Equation (28) should be considered beyond the leading order

quadrapole term. Examination of the next–to–leading order terms reveals tensor objects of

positive symmetry under the permutation of indices8 (the “mass octopole” moments), as

well as objects of mixed symmetry (the “current quadrapole moment”)9. Extending this

consideration to higher terms allows the identification of general order mass–type moments,

UL, and current–type moments, VL. Here, we will use a multi–index notation, where L =

i1 · · · il for a multi-index composed of l multipolar spatial indices i1, · · · , il (ranging from 1

to 3). Additionally, L−1 = i1 · · · il−1, aL−2 = ai1 · · · il−2, and r̂L = r̂i1 · · · r̂il is the product

8Symmetry under permutation of the indices: e.g. M ij = +M ji rather than M ij = −M ji (anti-
symmetry), or some mixture, M ij = Aji +Bji.

9Here, it is “current quadrapole” as it relates to the lowest order angular momentum density, while the
“mass octopole” is second order by mass density.
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of l spacial vectors r̂i. Furthermore, in terms such as ALBL, a summation over all indices is

implied [23]. Under this extended expansion, and its new notation, the gravitational wave

strain takes the form

hij =
4G

c2r
P kl
ij (r̂)

+∞∑
l=2

1

cll!

{
r̂L−2 UklL−2(tr)−

2l

c(l + 1)
r̂aL−2 εab(k Vl)bL−2(tr)

}
+O

(
1

r2

)
. (38)

Here, the unit vector pointing from the source to the observer was been written as r̂, rather

than x̂ as was used in the last section. Moreover, we have introduced the projection of the

strain from the Lorentz gauge to the TT gauge via hij = P kl
ij (r̂) h̄kl. The other notational

elements of Equation (38) are ulterior to its significance here. Instead, it is of basic im-

portance to note that Equation (38) the successive evaluation of Equation (38) allows for a

precise description of gravitational radiation, nearly until merger (see reference [23] for an

expanded discussion). Moreover, here, it is of key conceptual importance that Equation (38)

can be written in terms of spherical–type harmonics, reminiscent of electromagnetic field

theory [24].

Spherical Harmonic Multipoles. At this point, readers familiar with electrostatic the-

ory will have noticed that Equation (24) (repeated below) was not used to motivate the

multipole moments, as is often done for the electric potential.

1

|x− x′| =
∞∑
k=0

(−x′ · r̂∂r)k
k!

1

r
≈ 1

r
+

x · x′
r3

For example, x·x′
r3

is used to identify the electromagnetic dipole contribution. Per Sec-

tion (2.1), this is because we are only interested in the radiation term, 1/r, which leaves

Tµν to be expanded in terms of decreasing relevance10 (Equation 38). But by taking this

course, we have perhaps deviated away from one of electromagntic theory’s most practical

tools, the spherical harmonic multipoles11, Ylm(θ, φ).

10This is also the approach taken in electrodynamics.
11 Specifically, by identifying the 1/|x − x′| as the moment generating function for the Legendre

polynomials, and then using the spherical harmonic addition rule, it may be shown that 1
|x−x′| =

1
r

∑
l=0

∑
−l≤m≤l

(
x′

r

)l
4π

2l+1
Ȳlm(θ′, φ′)Ylm(θ, φ) . This is but one way of motivating the spherical harmonic

decomposition of the electric charge density.
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Despite the methdological differences mentioned above, the general utility of the spher-

ical harmonic functions is that they form a basis by which scalar functions may be ex-

panded. In particular, given a scalar function f(θ, φ), the orthogonality of the spher-

ical harmonics,
∫

Ω Ȳl′m′(θ, φ)Ȳlm(θ, φ) dΩ = δll′δmm′ , enables f(θ, φ) to be written as

f(θ, φ) =
∑∞

l=0

∑
−l≤m≤l flm Ylm(θ, φ) , where the spherical harmonic multipole moments,

flm, are defined by flm =
∫

Ω Ȳlm f(θ, φ) dΩ . Here, Ȳlm is the complex conjugate of Ylm.

The eminent practicality of this result is that it enables a problem independent unpacking

(i.e. spectral decomposition) of any scalar function on the solid angle12.

However the scalar spherical harmonics cannot be directly applied to the decomposi-

tion of the tensoral gravitational wave strain. In order to obtain an analogous decompo-

sition upon tensors such as Equation (38)’s UL and VL, the spherical tensor decomposi-

tion is employed. Specifically, the spherical tensor harmonics, Y lmL , are defined such that

Ylm(θ, φ) = Y lmL r̂L, where the orientation dependence is encapsulated only within r̂L. Just

as the Ylm(θ, φ) allow the definition of the scalar multipoles, the spherical tensor harmonics

enable the definition of the spherical tensor components13. That is, for a tensor FL, its

spherical components, Flm, are such that

Flm = FL

∫
Ω
Ȳlm r̂L dΩ = FL Ȳ lmL′

∫
Ω
r̂L′ r̂L dΩ . (39)

Of current relevance are the tensor components of Equation (38)’s UL and VL.

In particular, the above formalism allows the construction of the mass and spin spherical

component tensors (often referred to as simply the mass and current multiple moments),

Ulm =
16π

(2l + 1)!!

√
(l + 1)(l + 2)

2l(l − 1)
ULȲ lmL and Vlm =

−32πl

(2l + 1)!!

√
(l + 2)

2l(l + 1)(l − 1)
VLȲ lmL .

(40)

With these multipole tensors in hand, it may be shown (e.g. in reference [25]) that Equa-

tion (38) can be framed in the form of a spin–weighted spherical harmonic decomposition.

12By the solid angle, the author refers to the spherical polar coordinates: Ω = (θ, φ), where dΩ =
sin(θ)dθdφ.

13Here, the reader should note that this topic is of a sufficiently technical nature to sure not be communi-
cated completely here. For the reader interested in anything beyond the cursory description given currently,
the author recommends [17, 15, 25] and [23].
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Specifically, the scalar quantity H is defined to encapsulate the plus and cross polarizations

H(r, θ, φ, t) = h+(r, θ, φ, t) − i h×(r, θ, φ, t) , (41)

And its multipole expansion is given by

H(r, θ, φ, t) =
∞∑
l=2

l∑
m=−l

−2Ylm (θ, φ) hlm(t) , (42)

where the spherical multipole moments of H are

hlm(t) =
G√

2rcl+2

(
Ulm −

i

c
Vlm

)
(43)

=

∫
Ω
H(r, θ, φ, t)−2Ȳlm(θ, φ) dΩ

In Equation (42) −2Ylm(θ, φ), are the spherical harmonics of -2 spin weight [26], which,

in the context of gravitational waves, can be shown to result from the transverse nature

of gravitational radiation (e.g. Section 1.2). The first line of Equation (43) expreses the

multipoles in terms of the spherical tensor components discussed above, while the second

line follows from the orthogonality of the spin weighted spherical harmonics.

Equation (42) enables the key statement of this section: when modeling gravitational

waveforms, it is not h+ or h× that is typically modeled, but rather the spin -2 spherical

harmonic multipoles (a.k.a. “modes”), hlm(t). Therefore, throughout this thesis, the gravi-

tational wave strain polarizations, as well as their multipoles, hlm, will be the predominant

focus. The utility of modeling hlm(t) rather than h(r, θ, φ, t) is that it assigns the spatial

dependence of the waveform to the spherical harmonics (and 1/r), and therefore reduces

the number of variables needed to model a single waveform. In particular, much of the work

discussed in this thesis pertains to the time (or frequency) domain modeling of the most

dominant hlm(t). It is also important to note that in the preponderance of likely scenarios,

only l < 6 multipoles are needed to represent the gravitational wave strain to very high

accuracy.

While Equations (42-43) are of the utmost relevance here, in order to actually calculate

the Post-Newtonian waveforms (e.g. beyond Equation 35), one must solve equations for

the gravitational waveforms and the trajectories of each compact object. As the extent of
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this topic will not be covered here, the author refers the motivated reader to reference [27].

Even so, it is of use to note that such labors result in analytic expressions for gravitational

waveforms. For example, for an observer looking down towards the center of the orbital

plane, the first few terms of the dominant, l = m = 2 multipole (to 3PN order14) is given

by

h22(t) =− 8

√
π

5

GηM

c2r
e−2iφ(t)x

{
1− x

(
107

42
− 55

42
η

)
+ x3/2

[
2π + 6i ln

(
x

x0

)]
...+ O(ε7/2)

}
.

(44)

In Equation (44), the waveform’s time dependence is encapsulated in the instantaneous

orbital phase, φ(t), and the frequency parameter x(t) = 1
4

[(
ηc3

5Gm

)
(tcoalescence − t)

]−1/4
[25].

Additionally, η is the symmetric mass ratio given by m1m2/(m1 +m2)2. Figure (3)’s right

panel illustrates the typical morphology quadrapole radiation when observing the system

face on. As will be discussed in Chapter (5), the functional form of Equation (44) (and its

related expressions not shown here) yield insight into the class of functions compatible with

gravitational waveforms, as well as how the waveforms should scale with system parameters

such as the symmetric mass ratio η.

Limitations of the Post–Newtonian Expansion. By construction, the Post-Newtonian

formalism is an approximation: best in the weak field limit, where velocities are slow rela-

tive to the speed of light, and the dynamics of the system are dominated by length scales

much greater than the system’s inherent dynamical length (Equation 16). As we are to

focus on the gravitational radiation of coalescing binaries, the Post-Newtonian approxima-

tion inevitably fails: as gravitational radiation is emitted, the binary system loses energy,

and the two compact objects in-spiral towards each other at ever shorter separation, and

at increasingly fast orbital speeds. While the Post-Newtonian approximation is capable of

describing the radiation up to late inspiral, when the orbital separation is on the order of

5 ·102 times the system’s dynamical length scale (Equation 15), it is clear that near merger,

a much more robust approach is necessary.

14See page 239 of [15].
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2.3 Numerical Relativity

Perturbative approaches to solving Einstein’s equations inevitably fail to give accurate

physical descriptions when applied outside of their valid regions. Therefore, in order to

accurately describe relativistic systems in all regimes of gravity, a general method of solving

the full Einstein’s equations is required. As there is no general analytic approach for solving

Einstein’s nonlinear equations, computer based numerical approaches have prevailed. This

so called Numerical Relativity is broadly defined by the collective computational frameworks

seeking to evaluate Einstein’s equations in general regimes.

While Numerical Relativity contains many sub fields15, of the most studied is the Nu-

merical Relativity of binary black hole coalescence16. For example, Figure (4) illustrates

the regime of binary black hole coalescence where Numerical Relativity must be used in

order to resulve the relevant physics. Figure (4)’s left panel illustrates the two black holes

after they have formed a common apparent horizon, and Figure (4)’s right panel illustrates

the late inspiral-merger gravitational waveform corresponding to this period.

Towards the modeling of such waveforms, in this chapter we will briefly overview the

elements of Numerical Relativity that are most pertinent to evaluation of binary black

hole coalescence simulations, and their related post-analysis. Specifically, the operational

structure of Numerical Relativity will be reviewed under the framing of Georgia Tech’s

MAYA Numerical Relativity code, and pertinent limitations will be outlined.

2.3.1 The 3+1 Formalism

In broad terms, a binary black hole simulation is an operation that acts on the binary

system’s initial conditions (i.e. the initial data), applies Einstein’s equations under a conve-

nient formalism, and then outputs the evolution of both the space–time and the black hole

trajectories17. But while Einstein’s equations, given by Equation (5), are very compactly

written, they are not immediately amicable to being solved numerically. First, one must

15See reference [28] for a review of subtopics.
16For a detailed review, the author refers the reader to reference [29, 30, 31, 32].
17See reference [33] for a recent review.
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Figure 4: Black Hole merger for a 1:1 mass ratio, initially nonspinning black hole binary
having initial total mass of 100 M�, and observed at r = 100 Mpc. Left : A qualitative
schematic of the binary black hole configuration. The black hole’s apparent horizon is shown
by the blue curve. Right : Here we see the analogous gravitational wave emission in physical
units. This waveform was calculated using the Georgia Tech Maya code [2].

clarify what it means for a physical system to evolve when space and time are coupled. This

clarification is most commonly provided by recognizing that a 4–dimensional space may be

organized by a foliation a 3–dimensional space–like18 hypersurfaces, plus a 1–dimensional

time–like19 dimension. This “3+1” split of General Relativity of enables Equation (5) to be

projected (Equation 36) into its components that are parallel, perpendicular and oblique

to the space–like hypersurfaces. This split, in addition to physical constraints (e.g. con-

servation of energy and momentum) enables Einstein’s equations to be written in a way

that can be numerically integrated. The basic way of writing down Einstein’s equations

in this manner is called the ADM formalism after Richard Arnowitt, Stanley Deser and

Charles W. Misner [34]. But, as the ADM formalism is plagued by numerical instabili-

ties, the related but numerically stable BSSN formalism[35] is in common use. In practice,

the Georgia Tech Numerical Relativity group executes this formalism via the proprietary

“Maya” code, which operates under a version of the Einstein Toolkit applied programming

18Equation (1) when ∆x(0) = 0
19Equation (1) when ∆x(1) = ∆x(2) = ∆x(3) = 0
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interface (API), which is itself based upon the Cactus API [2, 4, 5, 6, 7].

2.3.2 Numerical Relativity’s Inputs and Outputs

With an effective implementation of the 3 + 1 formalism in hand, what remains is

an “initial value problem”. In other words, the physical system is defined by its initial

conditions (such as initial positions, velocities, spins, and the dynamically related values of

mass and spatial curvature), and the application of Einstein’s equationss determines how

these conditions evolve in time. However, as these conditions must satisfy both Einstein’s

equations and the aforementioned physical constraints, the resulting initial data problem is

nontrivial, but manageable by applying the appropriate transformations to the space–like

hypersurface (See [36] for a topical review).

Inputs. In an operational, but oversimplified way, these initial conditions are tightly

constrained by the system’s initial parameters, which effectively serve as the “inputs” to a

Numerical Relativity simulation20.

These initial parameters fall into two categories: intrinsic and extrinsic. On one hand,

here, we will consider the extrinsic system parameters to be those that do not uniquely

constrain the dynamics of the system. In the case of binary black holes, the extrinsic

parameters are the distance from the observer to the source, r, the initial phase of the

gravitational wave signal, ∆φ0, as well as the observation period, t = ∆tret. + tinitial. On the

other hand, the intrinsic parameters uniquely constrain the physical system throughout the

evolution of the simulation. For a binary black hole system, the intrinsic parameters include

the black hole masses, m1 and m2, their momentum vectors, ~P initial
1 and ~P initial

2 , as well as

their spin vectors ~S initial
1 and ~S initial

2 . As each vector has three components, there are 14

intrinsic parameters that define the type of binary black hole simulation being considered.

However, in practice, only subsets of this space are considered. For example, here, our

interest in quasi–circular binaries (with ~P initial
1 = −~P initial

2 ) is prompted by the preferential

radiation of orbital eccentricity [18, 19, 20, 21, 36]. Under this class of system, the initially

20The constraint is not exact as the nonlinearity of Einstein’s equations prevents an exact solution.
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non–spinning cases, with ~Sinitial
1 = ~Sinitial

2 = 0, are of the simplest, as they may be param-

eterized by only m1 and m2. However, as the amplitude of gravitational radiation scales

directly with the total mass, M = m1 + m2, only the system’s symmetric mass ratio21,

η = m1m2
M2 , is need to constrain the gravitational radiation’s morphology (e.g. Equation 44).

For this reason, at least in the scope of Numerical Relativity, M , as defined by the ADM

formalism, may be treated as an effectively extrinsic parameter, and is often set within the

code to be unity. Similarly, in–code unit scalings are such that G = c = 1.

Importantly, as the initially non–spinning cases demonstrate, different initial “parameter

classes” of binary black hole systems may be defined by considering subsets of the larger 14

dimensional parameter space. This point is central to the systematic analysis of Numerical

Relativity’s outputs, and related applications to data analysis, post experimental detection.

Outputs. The outputs of Numerical Relativity simualtion, in principle, may include every

aspect of the numerical evolution; however, here, the most relevant outputs result from

the extraction of gravitational radiation. Specifically, the most commonly used method for

extracting gravitational radiation derives from the so called Newman–Penrose formalism[37,

38, 39], under which the gravitational wave strain is written in terms of the Weyl scalar,

ψ4, as

H = h+ − ih× = −
∫ t

−∞

∫ t′

−∞
ψ4 dt

′′dt′ . (45)

In Equation (45), ψ4 is effectively the output of Numerical Relativity simulation (we shall

see shortly that its multipole moments are actually output), and H, or rather h+ and h×,

are the physical observables of interest. Furthermore, Equation (45) together with the spin

weighted harmonic decomposition given by Equation (42), motivate output of the spin -2

spherical harmonic multipoles of ψ4 (a.k.a. the ψ4 “modes”):

ψ4(r, θ, φ, t) =
1

r

∞∑
l=2

l∑
m=−l

ψlm(t)−2Ylm (θ, φ) . (46)

21The naive mass ratio, m1/m2, may also be used for conceptual clarity; however, η is of more practical
use due to its appearance in the Post-Newtonian approximation (Equation 44), as well as its invariance
under the exchange of m1 and m2.
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Note that in Equation (46) we have chosen to write the 1/r dependence explicitly. In doing

so, we highlight the independence of each ψlm on the numerical extraction radius (i.e. the

observation distance), r. However, in practice, ψlm/r is the relevant, lowest level output of

binary black hole simulation. Moreover, just as in Equation (43), we have that

ψlm(t) = r

∫
Ω
ψ4(r, θ, φ, t)−2Ȳlm(θ, φ) dΩ . (47)

With the above overview in mind, the utility of Numerical Relativity as a tool for inves-

tigating strong field gravity can, in effect, be treated as non–trivial mapping between binary

black hole system parameters, and the time dependence of the corresponding gravitational

waveforms. It is from this perspective that the post-simulation analysis, and modeling of

gravitational waveforms begins. However, concurrently, it is important to note the current

limitations of Numerical Relativity.

2.3.3 Numerical Relativity’s Limitations

While numerical techniques have been used since the 1970s to investigate black hole

solutions to Einstein’s equations (e.g. [40, 41]), it was only as recently as 2005 that simula-

tions were capable of evolving the general two black holes through merger [42, 43, 44]. Prior

to that time, challenges to successful evolution of Einstein’s equationss included finding a

numerically stable formalism, calculating reasonably accurate initial data, and devising a

host of other techniques (such as gauge choices) to promote the stability of simulations in

different regimes. Although each of these challenges has been resolved to some large extent,

there remain adjacent aspects of Numerical Relativity that limit both its numerical and

physical accuracy. The most prominent of these limitations relate to numerical noise, long

simulation times, and uncertainty about where and how many simulations to run.

Spurious Radiation. Our inability to generate exact initial conditions results in an

unavoidable relaxation period at the beginning of each simulation. During this period, non

physical gravitational radiation propagates through the space time until it either leaves

the computational grid, or is diminished in amplitude after many interactions over the
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computational domain. In the preponderance of scenarios, the timescale over which this

non-physical radiation dominates is much smaller than those of interest. For the extracted

gravitational waveforms, the result is a period of “spurious” or “junk” radiation at the

beginning of each waveform time series. Independently, for all outputs of the simulation,

finite resolution effects incur a “noise floor”, below which all data is dominated by irregular,

non-gaussian fluctuations.

Simulation Time, and Convergence. The ability to stably evolve Einstein’s equations

is, in part, dependent on the computational grid being sufficiently fine. This is to resolve

the relevant scales while simultaneously maintaining physical constraints. However, as

Numerical Relativity generally seeks to evolve a vast range of systems across parameter

space, there is a tenuous interplay between the input spatiotemporal resolution, and the

time required to complete the desired simulation. Naturally, the higher the resolution, the

higher the number of computations per iterations, and therefore the longer a simulation

will take to complete. Moreover, while there may be range of resolution schemes over

which the system evolves stably, stable evolution does not guarantee physical convergence

of the result. For these reasons, an often time consuming comparison between simulations

of different resolution is needed to verify that the calculated behavior is sufficiently near

the ”infinite resolution”, physical, regime. While, in some cases, running three or more

simulations with the same physical parameters, but different resolutions may allow this sort

of “convergence testing”, in general, computational resources are too scarce to repeat this

exercise throughout even the most scant parameter ranges. As a result, when simulating a

1D subset of the parameter space, at least one convergence test is necessary to characterize

the related gravitational wave data.

Simulation Placement. Thankfully, the convergence testing discussed in the preceding

paragraph does not generally need to be done exhaustively. This is because perturbation

theory is most often applicable in regimes of small and/or disparate length scales, while

full Numerical Relativity is largely concerned with scenarios of large and similar length
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scales. Even so, convergence testing, as well as the resulting conclusion about a simula-

tion’s resolution, place real world constraints on how many simulations may be evaluated

throughout any region in parameter space. Therefore, as numerical relativists explore in-

creasingly high dimensional cases, time and computational resources limit the rate at which

they may evaluate simulations, and thereby model the related waveforms. This poses a

optimization problem over where to place Numerical Relativity simulations, and how many

to place there. See Chapter (7) for an expanded discussion.

Importantly, despite all of its limitations (Section (2.3.3)), Numerical Relativity remains

extremely useful to gravitational wave astronomy: It’s gravitational waveforms have been

quality checked across different code implementations, and agree to high precision [45, 46].

In tandem, the physical accuracy of these waveforms has made them a large and significant

participant in the build up to detection [45, 47]. Moreover, as the momentum of research

points in the direction of improvement, the limitations listed above do provide fertile ground

for advances at the intersection of Numerical Relativity and detection oriented data analysis.

Under the scope of this thesis, the above intersection will be referred to Numerical Relativity

Data Analysis. As we will see in the next chapters, gravitational wave modeling is required

in order to efficiently interface Numerical Relativity waveforms with detection and post–

detection analysis routines.

2.4 Gravitational Ringdown

In Section (2.1), we learned that perturbation techniques can be used in order to charac-

terize the gravitational radiation due to binary black hole coalescence in the regime where

the two objects are weakly bound by gravity. In Section (2.2), we learned that, as the

distance between the two compact objects shrinks, and the strength of their gravitational

attraction grows, this perturbative, Post-Newtonian was no longer capable of accurately

describing the key physics. As a result, Numerical Relativity (Section 2.3) needs to be

employed to calculate gravitational wave emission in the late inspiral and merger regimes.

However, it is important to note here that, in addition to Post-Newtonian’s inspiral, there
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Figure 5: Black Hole “ringdown” for a 1:1 mass ratio, initially nonspinning black hole binary
having initial total mass of 100 M�, and observed at r = 100 Mpc. Left : A qualitative
schematic of the final black hole configuration ringdown. The black hole’s apparent horizon
is shown by the blue curve. Right : The analogous ringdown gravitational wave emission in
physical units. The corresponding simulation was performed with the Georgia Tech Maya
code[2].

is yet another perturbative regime of binary black hole coalescence where analytic solutions

are tractable.

In particular,after the two black holes collide, they form a single, perturbed, remnant

black hole. Under Equation (5), the dynamics of this black holes distortions result in

gravitational radiation that is reminiscent of the ringing down of a struck bell. Figure (5)

illustrates this regime for a representative, equal mass binary observed along the center

normal to its orbital plane. In particular, the right panel illustrates that far to the right

of merger, the radiation is exponentially damped. In fact, the theory of perturbed black

holes – which was spurred by the seminal work of Vishveshwara [41] and then put on

rigorous theoretical footing by Teukolsky [48] – describes gravitational ringdown as a sum

of decaying sinusoids.

As will be discussed in detail in Chapter (5), each term in the sum corresponds to a

single “quasi-normal mode”, and is related to the spherical harmonic multipoles discussed

in Sections (2.2-2.3.2). Because these quasi-normal modes are constrained by the final

mass and spin of the remnant black hole, this final stage of binary black hole coalescence
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offers yet another analytic insight into the properties gravitational radiation from compact

binaries. Consequently, as will be expanded upon in Chapter (5) where the author presents

his central results, ringdown radiation enables potentially viable methods for extracting

physical information from gravitational wave signals.
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Chapter III

NUMERICAL RELATIVITY DATA ANALYSIS

Numerical Relativity Data Analysis (NRDA) refers to the processing of Numerical Rel-

ativity data, with the goal of informing detection and post–detection information pipelines.

Less broadly, the phrase encapsulates a series of operations that take in simulated gravita-

tional waveforms, and then output data and analysis components that can then be applied to

experiment based analysis. At the lowest level, the data output is gravitational wave strain,

which must be calculated from ψ4 according to Equations (45-46). Given the gravitational

wave strain, the functional motive of NRDA is to develop analysis components that facil-

itate information extraction in detection scenarios. In this chapter, we will briefly review

the transition between data and analysis components in the context of my contributions to

Georgia Tech’s NRDA activities [47, 45, 13].

3.1 Tools for Numerical Relativity Data Analysis

The Georgia Tech Numerical Relativity group has amassed more than 1,900 binary

black hole simulations. Each represents a point in the effectively 13 dimensional initial

parameter space (See Section 2.3). Given such a large collection of Numerical Relativity

waveforms embedded within such a highly dimensional space, it is a non-trivial computa-

tional exercise to catalog, reference, analyze, and conceptually render data in a way that

elucidates the desired science. As a result, each Numerical Relativity group must develop

in–house analysis tools that facilitate the answering of ongoing research questions. Here,

I outline, in broad strokes, an applied programming interface (API) that I have developed

(mostly in MATLAB) for the Georgia Tech Numerical Relativity group’s NRDA activities.

This “NRDA–Toolkit” is foundational to all of this thesis’ key results.
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3.1.1 The NRDA–Toolkit

The power of any API is arguably derived from its ability to handle abstraction: the

representation of general ideas rather than specific jobs. It is under this philosophy that the

NRDA–Toolkit is structured to allow a hierarchical flow of information, with very selective

attention paid to specific tasks. It is assumed that user’s most basic object of interest

is the Numerical Relativity simulation, rather than the Numerical Relativity waveform.

This underlying principle is key, as it facilitates the simultaneous investigation of physics

parameters (initial and final), and waveform morphology. However, in order to fully connect

the output of Numerical Relativity to data analysis components, the above low–level aspects

of the toolkit must be utilized the within NRDA–Toolkit’s high–level routines.

3.1.1.1 Low–Level Interface

Specifically, at the lowest level, the idea of a simulation is encapsulated within a class1

whose attributes include a system’s initial and final parameters, as well as all bookkeeping

information needed to readily access simulation output. A Simulation Catalog of such

objects is compiled, and then stored for fast referencing. In contrast to an “on the fly

loading” approach (the grey dashed line in Figure 6), where the user must keep track of

every data directory in use, this catalog based scheme allows users to select simulations

based on physical identifiers, without having to keep up with where the simulation is, and

how it is stored. While ostensibly trivial, this property significantly simplifies ones ability

to simultaneously manage simulation attributes, and waveform data.

For example, Figure (6) outlines the prototypical flow of information that occurs during

the analysis of Numerical Relativity data. Boxes A and B follow Section (2.3.2)’s description

of Numerical Relativity’s inputs, λ = {m1
m2

, ~P1, ~P2, ~S1, ~S2}, and outputs, ψlm. Boxes C

and D represent the connection between cataloging2 and parameter based searching. In

box D, the options input is assumed to be a cell array containing the search query. For

1Here, I assume that the reader is familiar with object oriented programming.
2Note that cataloging need only be done once, prior to the execution of the main workflow.The catalog

need only be recompiled of new simulations are added.
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example, Y = sc search('q',[1 10]) is equivalent to setting options = {'q',[1 ...

10]}, as each case will result in the search algorithm returning all simulations with mass

ratio, q = m1/m2, from 1 to 10.

It is important to note that the information held by each unique simulation object, Y, is

inherited by its derivative objects. In box E, we see the primary example of this hereditary

structure in the standard waveform object, y, which holds various time series information

for a specific ψlm multipole (Equation 47). Specifically, y is capable of referencing all of

the information describing the simulation it belongs to via the y.init info reference. It

is in this way that the NRDA–Toolkit’s structure greatly simplifies connections between

simulation parameters, λ, and waveform morphology, ψlm. Alternatively, one may follow

the path of box F, and use the results of the catalog search to investigate relationships

between initial binary parameters, and final black hole parameters.

3.1.1.2 High–Level Interface

As in the case of most programming interfaces, the propagation of low–level information

mentioned above empowers the user to construct high–level abstractions. Here, the most

useful of these abstractions are stored as functions, such as those listed in Figure (6)’s box

H. The most important of these functions is y strain(), which calculates of gravitational

wave strain via Equation (45). Predominantly, the other functions take strain as an in-

put in some form: time, or frequency domain. One notable exception is y recompose(),

which calculates either rH(t, θ, φ) (via Equation 42), or rψ4(t, θ, φ) (via Equation 46). In

conjunction, all of these functions facilitate the conversion of the ψlm into experiment ori-

ented statements, such as signal detectability (via snr(h)), or parameter similarity (via

match0(h1,h2)). The utility and significance of these functions will be expended upon in

Section (3.2).

Lastly, of primary interest to this thesis is the intermediate course, signaled by box I,

whereby the simulated gravitational waveforms are used to develop models, hmodel
lm , that

take in initial parameters, λ, and output a waveform hlm(t) = hmodel
lm (λ). An expanded

outline of this topic will given in Chapter (4).
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A. Initial Conditions: λ = {m1
m2

, ~P1, ~P2, ~S1, ~S2}

B. Numerical Relativity Simulation

C. Build Simulation Catalog: sc catalog('save')

D. Catalog Search: Y = sc search(options{:}) E. Load ψlm: y = y load(Y,'lmr',[l m r])

F. Access Initial and Final Parameters: Y(k).init info
G. Calculate Strain,

hlm: h = y strain(y)

H. Process Strain: y recompose(), ...

snr(), match0(), y radiate(), etc.
I. Model ψlm or hlm on λ

J. Inform Anlaysis Components: Detection, Parameter Estimation

Figure 6: NRDA–Toolkit structure: Dashed lines denote optional paths of information

flow. The low level operations are held in white boxes, while the high level operations are

in blue boxes. Just as in box B, gravitational waveforms are both processed and created in

box I. Box J encapsulates the highest level of abstraction, in which the output of Numerical

Relativity simulation is rendered in a manner that informs experiment data analysis.

3.2 Applications

In this section we will review some of the primary high–level components of the NRDA–

Toolkit. Particular focus will be placed on calculations of strain, match and signal to noise

ratio (SNR), as they are the most pertinent to the results of this thesis. Additional focus
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Figure 7: The l = m = 2 strain multipole moment for a 2:1 mass ratio, binary with spins
that are aligned with the orbital angular momentum, and are of like magnitude χ1 = χ2 =
|~S1|/M2 = 0.6 (calculated with the GT Maya Numerical Relativity code [2]).

will be placed on the process of attaching Post-Newtonian waveforms to their Numerical

Relativity counterparts (i.e. PN-NR Hybridization). Each of these tasks is important for

their role in scientific discussions about waveform accuracy, signal detectabilty, and parame-

ter estimation. In particular, the components presented below have been used to contribute

to the NINJA and NRAR collaborations [45, 47]. Concurrently, the strain calculation and

match calculations are the most pertinent to this documents as whole.

3.2.1 Strain Calculation

As described in Section (1.2), and expanded upon in Section (2.3.2), gravitational wave

strain is the primary observable of interest to gravitational wave experiment. However, as

Numerical Relativity’s primary output is the Weyl scalar ψ4’s spherical multipole moments,

at least one intermediate step is required in order to proceed with NRDA. This step is the

double time integration of ψ4 according to Equations (45-47):

H = h+ − ih× = −
∫ t

−∞

∫ t′

−∞
ψ4(t′′) dt′′dt′ = −1

r

∑
l,m

∫ t

−∞

∫ t′

−∞
ψlm(t′′) dt′′dt′. (48)
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As one typically handles ψlm, the multipoles of strain, hlm, are calculated in practice. If

follows from Equation (43) and Equation (48) that

hlm(t) = −1

r

∫ t

−∞

∫ t′

−∞
ψlm(t′′) dt′′dt′. (49)

The above equation suggests that one need only apply a discrete quadrature procedure,

such as the “trapezoidal rule”, to evaluate the double integrals. The existence of numerical

noise (Section 2.3.3) however, prevents this naive approach from yielding physical results.

In particular, while the magnitude of numerical noise if typically ∼ 10−5 times smaller

than the peak amplitude in a numerical waveform, the noise has the quality of not being

centered about zero. Therefore, when integrating, one effectively acts upon ψlm(t) + ε(t),

where 〈ε〉t 6= 0. Consequently, after one time integration, one observes a non-physical linear

drift, proportional to t 〈ε〉t and, after two time integrations, a parabolic drift, proportional

to t2 〈ε〉t.

In order to circumvent this spurious effect, it was recognized in reference [49] that

the most aberrant numerical noise lives at frequencies much lower than those related to

the physical data. Put another way, it is this low frequency noise that contributes the

most to the non-zero mean of ε(t), which is given by 〈ε〉t. This observation was coupled

with the fact that one may perform time domain integration on the waveform’s Fourier

transform. Specifically, if Fourier Transform of ψlm(t) is F [ψlm](ω) =
∫∞
−∞ exp(iωt)ψlm(t)dt,

then integration by parts3 gives

F
[∫ t

−∞

∫ t′

−∞
ψlm(t′′) dt′′dt′

]
(ω) = (iω)−2F [ψlm](ω) (50)

Here, the inverse Fourier transform can be used to recover
∫ t
−∞

∫ t′
−∞ ψlm dt′′dt′. Conse-

quently, as we wish to overlook the aberrant, low frequency noise, Equation (50) is handled

in two pieces. In the first piece, ω is less than some fixed value, ω0, which is the lowest

physical frequency expected in the waveform. Here, (iω0)−2 is used in Equation (50), rather

than (iω)−2. In the second piece, normal frequency domain integration is applied (i.e. Equa-

tion 50 with no alteration). It is important to note that the frequency parameter, ω0 may

3The physical boundary conditions, ψlm(−∞) = ψlm(∞) = 0, are also used.
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be easily determined from the inspiral phase of ψlm. As can be deduced from Equation (44),

ω0 should be approximately equal to the waveform’s instantaneous frequency at the start

of the simulation. In total, these ideas compose the “Fixed Frequency Integration” method

that is implemented in y strain() [49].

To briefly illustrate the utility of y strain(), let us consider the instance where one

wishes to calculate the strain of a q=def.
m1
m2

= 2 mass ratio binary, with spins that are

aligned with the orbital angular momentum, and are of like magnitude χ1 = χ2 = |~S1|/M2 =

0.6. The MATLAB code for this calculation is given below.

1 % Simple example of y strain() usage: Find 2:1 mass ratio, spin aligned

2 % simulation, and then calculate hlm = h+ - i*hx. Units: M code=G=c=1.

3 % by llondon2/6'15

4 close all; clc;

5 % [A] Find an Numerical Relativity Simuulation

6 Y = sc search('q',2,'spin aligned','chi1 val',0.6,'verbose');

7 % Multiple simulations are found. Keep the first simulation in the list,

8 % which is set to be that with the highest resolution.

9 Y = Y(1);

10 % [B] Load a single Psi4lm multipole

11 l = 2; m = 2; % the spherical harmonic indeces

12 r = 75; % r is the extraction radius (units:M code)

13 y = y load(Y,'lmr',[l m r],'verbose');

14 % [C] Calculate the corresponding strain multipole moment using y strain.

15 h = y strain(y);

16 % Plot the result.

17 figure; hold on; plot( h.t raw, h.Yp raw ); plot( h.t raw, h.Yx raw )

The above code corresponds Figure (7), which shows the plus and cross polarizations for

the related h22(t). Note that the spurious radiation discussed in Section (2.3.3) has been

automatically located and removed. After its calculation, the gravitational wave strain is

perhaps most commonly used as an input for the match and/or SNR calculations.

40



3.2.2 Signal to Noise Ratio and Match

Any realistic detector will have noise. But even for the most current gravitational wave

detectors such as Advanced LIGO (Adv. LIGO), this experimental noise is expected to be

much larger than the amplitude of likely gravitational wave signals. However, this apparent

difficulty does not prevent detection if the morphology of possible signals is known a priori

[50, 15, 51, 52, 53]. To motivate this idea, let us briefly consider the somewhat idealized

detector output4, s(t), given by the sum of the gravitational wave strain, h(t), and the noise,

n(t). In elaborating on the above statement, we will encounter and give basic example for

the primary ideas of this section: signal to noise ratio (SNR), and match.

We begin by noting that, for sufficiently long observation periods, we are able to consider

the output in the frequency domain:

s̃(f) = h̃(f) + ñ(f) . (51)

With this data in hand, the central analysis task is to filter out the desired signal from the

noise. The simplest way to approach this goal is to seek some linear operation, F̂ , such that

||F̂ s̃ − h̃|| is minimal. A widely used, and well investigated solution to this optimization

problem is given by the Wiener filter5, also known as the matched filter, where

F̂ s̃ =
def.

∫ ∞
−∞

s̃(f) g̃∗(f)

(1/2)Sn(f)
df (52)

= 4Re

∫ ∞
0

s̃(f) g̃∗(f)

Sn(f)
df .

In Equation (52), g̃∗(f) is the complex conjugate of g̃(f), and Sn(f) is the positive valued

power spectral density (PSD) of the noise, defined by twice the fourier transform of n(t)’s

ensemble averaged6 auto-correlation function,

Sn(f) =
def.

2

∫ ∞
−∞

(
lim
T→∞

1

T

∫ T

−T
n(τ + t)n(τ)dt

)
e2πifτdτ . (53)

4Here we assume a flat antenna pattern.
5The author refers the motivated reader to reference for a full development of Equation (52) [50, 15, 53].
6Here we imagine that one is able to observe infinitely many realizations of the noise, and then compute

the average the Fourier transform amplitude of each. If each realization is independent, then, as shown in
Equation (53), the ensemble average is the time average.
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Note that, in going from the first line of Equation (52), to the second, we have used a

property of the Fourier transform on real valued function. Namely, as s(t) ∈ R, s̃(−f) =

s̃∗(f). Lastly, in practice, Equation (52) is identified with a scalar inner–product, defined

by

(a|b) =

∫ ∞
−∞

ã∗(f) b̃(f)

Sn(f)
df . (54)

Although a formal derivation of Equation (52) is not appropriate here, the strength of

the Wiener filter may be seen by the inspection of two cases: g̃(f) = h̃(f), and g̃(f) 6= h̃(f).

Signal to Noise Ratio. First, if g̃(f) = h̃(f), then the integrand of (h|h) is positive for

all f , and largest when the PSD of the noise is smallest. Simultaneously, the integrand of

(h|n) is not positive for all f , and is thus prone to deconstructive interference7. Importantly,

it is for this reason that information about the gravitational wave signal may be exacted,

even when its typical amplitude is much smaller than the noise.

More formally, we may use the above ideas to more carefully consider “signal size to

noise size”. Specifically, for g̃(f) = h̃(f), it may be shown (as in reference [15]) that the

weighted average of h̃(f) (via Equation 52), divided by the root-mean-square value of the

noise (also via Equation 52), is equivalent to (s|h)√
(h|h)

, and gives the appropriate SNR for this

problem. In this setting, the SNR is typically written as

ρ =
(s|h)√
(h|h)

≈
√

(h|h) . (55)

The “≈” in Equation (55) becomes an “=” when the observation period is long enough for

(h|s) = 0. Looking back to Equation (52), the placement of Sn(f) in the denominator of

Equation (52) is appropriate as it effectively scales information by the noise.

It is important to note, however, that the above discussion overlooks an inherent limi-

tation. In particular, it assumes that, given detector output, s(t), we not only have prior

knowledge about the gravitational wave signal, h(t), but that we have exact knowledge

about it’s morphology. This scenario is clearly ideal, as we won’t know ahead of time ex-

actly what the signal looks like, or what parameters its astrophysical system has. We can

only make educated, model guesses.

7Although the noise may be centered about zero, F̂ ñ is not trivially zero for finite observation times.
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Figure 8: The signal to noise ratio, and “noise curve plot” for a 1:1 mass ratio, nonspin-

ning binary. The Numerical Relativity (NR) waveform was calculated with the GT Maya

NR code [2], and the post analysis was performed with the author’s NRDA–Toolkit. As

discussed in Section (3.2.3), the dip in the NR-Only curve after 20Hz results from the finite

initial separation of the binary black holes. This results in a non-physical bias for the value

of ρAdvLIGO which depends on the total mass scaling. One way to overcome this limita-

tion is to carefully attach information from Post-Newtonian (PN), as shown by the PN-NR

Hybrid curve.

Match. To briefly touch upon the problem of not knowing the h̃(f) prior to detection, let

us return to our consideration of Equation (52), but now with g̃(f) 6= h̃(f). In particular,

let’s imagine that h̃(f) is an astrophysical waveform from a binary black hole system of
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unknown initial parameters, λ0, and that g̃(f) is a model waveform, or template, with

trial parameters, λ. In this setting, we are interested in determining which parameters λ

maximize (g|h). This goal is simplified by noting that the morphology of the signals is more

important than their constant amplitude scaling. With this in mind, the match is defined

on normalized waveforms (i.e. (u|u) = 1), and optimized over the extrinsic parameter of

time and phase shift (See Section 2.3.2). For ease of reference, and using the notation given

in Section (2.3.2), the author chooses to write the match as

µ = max
∆T,∆φ0

(g|s)√
(s|s) (g|g)

. (56)

In practice, optimization over ∆T and ∆φ0 can be performed simply by time-shifting in the

frequency domain (e.g. via the Fourier transform), and then taking the absolute value of

the total result [46]. However, when seeking the optimal8 template for a given signal, one

also needs to optimize over the waveform’s intrinsic physical parameters. This optimization

poses a computational problem whose complexity increases with the number of parameters

being considered9. Notably, there is an active area of research with large intersections with

gravitational wave modeling, that is devoted to devising ways of speeding up this, and

related procedures (e.g. [54]).

Together, the SNR and match calculations are based upon Equation (54), and they

are implemented in the NRDA–Toolkit as snr() and match0(), respectively. Despite the

above discussion, in order to properly connect the theory oriented output of simulation with

our experiment oriented discussion, one must choose a physical orientation of the binary

black hole system relative to the detector, put the waveform in physical units, calculate

strain, and then consider the match or SNR using a predetermined PSD. In the case of

SNR, this process is briefly illustrated by the following MATLAB example.

Example. Here we consider the SNR calculation an equal mass non-spinning system.

This system was chosen because it’s SNR can be easily referenced externally [46]. While

the first part of this example is nearly identical to the previous, y strain() example, the

8Here, we mean “optimal” only in the sense of maximizing the match, not, for example, in the sense of
identifying the true physical parameters of h̃(f).

9In this setting, total system mass is kept as it determines the waveform’s frequency scale; however,
observation distance is not counted due to normalization.
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key differences are that, here, we set the orientation of the detector relative to the physical

system, and then we put the strain in physical units before calculating the SNR values.

Figure (8) displays the related “noise curve” plot, along with the calculated values of the

SNR for LIGO and the current, Adv. LIGO. The purpose of this plot is to visualize the

SNR for a waveform at given observation distance and total mass. Note that, when plotted,

both strain and the PSDs are scaled so that they have the same units. Moreover, note

that while we have limited our current consideration to the most dominant l = m = 2, the

example code may easily be modified to include additional multipole moments.

1 % Find 1:1 mass ratio, nonspinning simulation, define its physical

2 % properties, and then calculate its SNR. May be compared with

3 % arxiv:0901.1628v2.

4 clear; close all; clc;

5 % ## Calculate strain ##

6 Y = sc search('setname','hr-series','q',1,'nonspinning','verbose');

7 l = 2; m = 2; % the spherical harmonic indeces

8 r = 75; % r is the extraction radius (units:M code)

9 y = y load(Y(1),'lmr',[ l m r ],'verbose');

10 % [C] Calculate the corresponding strain multipole moment using y strain.

11 h = y strain(y);

12 % Set the orientation. Always do after strain calculation.

13 theta = 0; phi = 0; % "face on"

14 h = y recompose(h,[theta phi]);

15 % ## Calcualte the SNR ##

16 M = 110; % Total system mass in solar units

17 D = 100; % Observation distance (Mpc) -- used for "1/r"

18 hf = Y FFT(h); % Calculate frequency domain waveform

19 % Convert the simulated strain to physical units

20 hf phys = PHYS Hf(hf,M,D);

21 % Retrieve the Detectors PSD evaluated on the waveform's frequency range

22 Sn = Noise(hf phys.f, 'iligo');

23 % ## Plot the strain against the detector's PSD with like units ##

24 figure; hold on;
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25 plot( hf phys.f, 2*sqrt(hf phys.f).*hf phys.POW RAW )

26 plot( hf phys.f, sqrt(Sn), 'k' )

27 set(gca,'yscale','log','xscale','log')

28 % ## Calculate the SNR ##

29 rho iligo = snr(hf phys,'iligo'); % Initial LIGO

30 rho Advligo = snr(hf phys,'advligo'); % Advanced LIGO

3.2.3 PN-NR Hybridization

It is noteworthy that the left hand side of Figure (8)’s NR-Only strain curve dips down-

ward to the left of f = 10(Hz). This is a non-physical feature due to the simulation’s

starting the binary black hole system at a finite separation. Numerical relativists are

largely forced to do this as a result of limited computational resources. Put simply, the

larger the initial binary separation, the more time is need to evolve the system through

merger. One practical consequence of this limitation is that gravitational waveforms from

Numerical Relativity can only be used in the preceding analysis for total masses such that

the nonphysical dip is “out of band”. For example, in Figure (8), the dip occurs in a re-

gion where the LIGO’s initial PSD10 is much larger than the values expected by extending

|h̃| towards lower frequencies. While there are ongoing efforts to run longer binary black

hole simulations more efficiently (e.g. [55]), one of the most established methods11 for ex-

tending Numerical Relativity waveforms towards the Post-Newtonian regime is referred to

as hybridization, or, more colloquially, stitching [59]. The immediate appeal of smoothly

blending together Post-Newtonian and Numerical Relativity waveforms, is that it results in

an a full picture of binary black hole dynamics. While this blending can simply be done in

a way that optimizes how similar the Post-Newtonian and Numerical Relativity waveforms

are in a chosen region of overlap, one must be wary systematic errors resulting from errors

10This is the PSD prior to the sensitivity upgrades that were completed in early 2015. The present detector
is said to be “Advanced LIGO”.

11 Alternatively, there are “Effective One Body” (EOB) extensions of Post-Newtonian approximants
(e.g. [56, 57, 58]) which, in practice, compete with hybrid waveforms (and models thereof). While there is
no prevailing consensus over which is truly more effective, EOB waveforms are the more established, and
widely used due to their relative.
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in the Post-Newtonian approximation, the choice of blending region, and the details of the

hybridization method [60, 61, 62, 58, 63, 64, 65]. Moreover, although consensus regarding

the effectualness and practicality of these hybrib waveforms appears to be evolving within

the gravitational wave community, they do represent an interesting tool by which the full

dynamics of binary black hole coalescence can be interfaced with data analysis. In what

follows, we will briefly review the process of hybridization, per the author’s contribution to

the NINJA-2 collaboration’s seminal paper [50].

Most typically, hybridization uses least-squares fits to determine the extrinsic parameters

for the Post-Newtonian waveform [66, 50, 46, 62]. This is accomplished by evaluating

{~u∗, a∗} = argmin
{~u,a}

∫ s1

s2

|aΥPN(s, ~u)−ΥNR(s, ~u0)|2 ds (57)

where Υ represents waveform data relating to strain (e.g. h(t) = h+(t)− i h×(t), arg[h(t)]

or h̃(f)). If Υ is derived from the time domain, then s = t; if Υ is in the frequency domain,

then s = f . For either case, [s1, s2], chosen within the domain of both the Post-Newtonian

and Numerical Relativity data sets, defines the integration interval and, in most cases, the

blending region. The vector ~u denotes the set of Post-Newtonian–parameters over which the

fitting is performed. For example, ~u = (tshift, φshift, µ) corresponds to adjusting time- and

phase- shift and the mass ratio of the Post-Newtonian waveform to match the Numerical

Relativity waveform. The best-fit parameters are denoted by ~u∗ and a∗. The amplitude

scaling factor, a, is often fixed to a = 1, but may be included in the fitting parameters [50].

Finally, in the limit s1 → s2, this procedure reduces to enforcing equality of ΥPN and ΥNR

at s1 = s2, as well as equality of the first derivative.

Explicitly, hybridization may be performed via the following algorithm:

1. Choose [s1, s2] within the Post-Newtonian and Numerical Relativity data sets. Ide-

ally, [s1, s2] is sufficiently early so that both Post-Newtonian and NR sets should be

accurate.

2. Evaluate Eq. Equation (57); apply {~u∗, a∗} to the Post-Newtonian data set, resulting

in Υ∗PN. Measure error quantities relating to fit.
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3. If desired, adjust [s1, s2] and iterate (1) and (2), to find a preferred interval [s∗1, s
∗
2].

4. Defining a monotonic function z(s) such that z(s < sa) = 0 and z(s > sb) = 1, the

hybrid is given by

ΥHyb(s) = [1− z(s)] Υ∗PN + a∗ z(s) ΥNR . (58)

Note that the transition region [sa, sb] is generally taken to be a sub-interval of [s∗1, s
∗
2],

sometimes consisting of a single point.

For Georgia Tech’s contribution to the NINJA-2 collaboration, the author implemented

a hybridization routine following reference [46]. Put briefly, it is done in the time domain

with Υ = h+− ih× and ~u = (tshift, φshift). In the NRDA–Toolkit, hyb reg() determines the

blending region based on a given starting frequency and desired width. Then, the function

hyb4() evaluates Equation (57) over {~u, a}. Lastly, Equation (58) is used to construct the

final hybrid, with z(t) = (t − t1)/(t2 − t1). As a final comment, it is worthwhile to note

that while the effectiveness of the above process has been investigated in detain (e.g. [66]),

the gravitational wave community currently lacks an in depth understanding of how well it

applies to general precessing cases.

3.3 Chapter Summary

In this chapter, we have seen a very brief overview of topics in NRDA that are not

only pertinent to the remainder of this thesis, but also reflect the author’s contributions to

the Georgia Tech Numerical Relativity group’s activities. In Section (3.1.1), the author’s

NRDA–Toolkit was introduced. In Section (3.2.1), an example was given for the calculation

of gravitational wave strain from Numerical Relativity’s ψ4. In Section (3.2.2), we intro-

duced the SNR and match, and a brief example was given for the SNR calculation. Finally,

in Section (3.2.3), we motivated PN-NR hybridization by pointing out the limitations of

short Numerical Relativity waveforms.

Independently, these topics lightly illustrate the practical connections between Numeri-

cal Relativity and gravitational wave experiment. But, together, they motivate, and form the
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foundation of, gravitational wave modeling. In Section (3.2.2) we learned that gravitational

wave signals embedded deep within noise may be filtered out if we have prior knowledge

of what the signal looks like. While Numerical Relativity predominantly outputs the Weyl

scalar, ψ4, the conversion from ψ4 to strain was demonstrated in Section (3.2.1), thereby

illustrating that Numerical Relativity is a means by which gravitational wave signals can

be calculated outside of perturbation theory.

However, we saw in Section (3.2.3) an example of how ideal, template waveforms that

are the direct output of Numerical Relativity carry all of the shortcomings mentioned in

Section (2.3.3). In particular, their duration, as well as our ability to generate them, are

limited by computational expense. As a result, while Numerical Relativity is fully capable

of generating the most theoretically accurate waveform models, its practical limitations bar

it from being a direct resource to many problems in experiment data analysis. For example,

in Section (3.2.2), we discussed the optimization of the match over many initial parameters.

Even this very rudimentary process can require 102 to 106 waveforms, and thus cannot be

accomplished purely within the realm of Numerical Relativity. Consequently, in order to

overcome this and other practical barriers, the community of NRDA has recognized that

phenomenological models of Numerical Relativity are needed.
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Chapter IV

GRAVITATIONAL WAVE MODELING

In Section (2.2) we learned that Post-Newtonian approximations to Einstein’s equations

yield theoretically accurate models of binary black hole coalescence’ gravitational wave-

forms. But we also learned that, as a perturbative formalism, they are inaccurate during

the dynamical, strong-field regimes near binary black hole merger. In Section (2.3) we

learned that Numerical Relativity overcomes the limitations of Post-Newtonian, but comes

with a host of limitations of it own. In Section (3.2) we learned that Numerical Relativity,

despite its limitations, is a fundamental tool for gravitational wave detection because it

enables us to dig gravitational wave signals out of noise via matched filtering. However, in

Section (3.3) we also recognized that the inherent tensions between Numerical Relativity’s

ability to yield theoretically accurate gravitational wave models, and its inability to do so

arbitrarily quickly, results in a need for phenomenological models of Numerical Relativity’s

waveforms.

These tensions are at the heart of most current research within the NRDA community.

They challenge us to develop gravitational waveform models that utilize both perturbation

theory and Numerical Relativity (e.g. Section 3.2.3 and [55]). Concurrently, they chal-

lenge us to seek ever efficient solutions to highly dimensional data analysis problems (e.g.

Section 3.2.2 and [67, 68]).

In this chapter, our awareness of these challenges brings us to the forefront of grav-

itational wave modeling. Specifically, we will overview in detail what is mean here by

modeling, and then discuss two modeling approaches that underly results presented in fol-

lowing chapters. The first approach aims to represent the morphology of gravitational waves

with closed form, analytic functions. The second approach takes the perspective of linear

modeling, wherein gravitational waveforms are written as sums over waveform basis func-

tions, times initial parameter dependent coefficients. In practice, there is a popular third
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approach, which is based upon an Effective-One-Body treatment of binary black hole coa-

lescence. However, this “EOB” approach is will be of auxiliary importance here for reasons

that will be discussed in Chapter (7).

4.1 A Formal Perspective on Modeling

It is useful to begin by reviewing the structure of what is meant in this thesis by modeling.

Specifically, in order to precisely frame the discussion in upcoming chapters, here we will

very briefly construct a formal notion of modeling.

In the setting of NRDA, we find ourselves in a very common situation: we have a sparse

set of information (Numerical Relativity waveforms), and we wish to use this sparse set to

make practical statements about the more densely populated set to which it belongs (here,

the continuous space of all gravitational waveforms). As we formalize our discussion of this

problem, we will refer to the starting set of Numerical Relativity waveforms as the training

set,

T = {hNR
k }Nk=1 , (59)

where T has N members. With the goal of connecting waveform morphology with initial

binary parameters in mind, it is more useful to label each waveform with an initial pa-

rameter set λk = {~S1, ~S2, ~P1, ~P2,M, q}k ∈ Λ = {λk}Nk=1, rather than simply with k, as in

Equation (59). We therefore have that

T = {hNR(λk)}Nk=1 . (60)

As treated above, hNR is not a waveform, but instead an operation that takes in one

initial parameter set and then outputs a waveform. For example, in the frequency domain,

hNR(λ) = h̃(f).

In much the same spirit, we will refer to the larger set to which T belongs as the field,

F , where T ⊂ F . The ability of numerical relativists to change initial binary parameters

smoothly means that T can be identified with a smooth manifold. We may also attach to

F the property that every waveform can be identified uniquely by only one set of initial
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conditions, and vise versa. This vastly simplifies our perspective because it means that we

will only need to keep track of one λ for each hNR.

Now, with this underlying structure established, we may describe the gravitational wave

modeling process in precise terms. Given some T , and its corresponding initial parameter

family Λ, we wish to construct a smooth mapping (i.e. a model), ĥ, such that ĥ(λk) is

approximately equal to hNR(λk) for all k, and in every small ε-region defined by |λk−λ| < ε.

In essence, these conditions signify that the model must not only reproduce the training

set, but it must also smoothly interpolate between points in parameter space.

Centrally, the condition that ĥ(λk) is approximately equal to hNR(λk) for all k can be

satisfied by constructing ĥ to depended on a set of model parameters that are functions1

of λ,

a(λ) = {ak(λ)}Mk=1 ∈ RM .

In this sense, ĥ ≡ ĥa, and the condition of similarity between ĥ(λk) and hNR(λk) is achieved

by evaluating2

δa(λ) = max
k
||ĥa(λ)− hNR(λk)|| . (61)

and then finding model parameters such that δa(λ) sufficiently approximates a global min-

imum

a(λ) = argmin
a′

δa′(λ) . (62)

Equations (61-62) tells us plainly that the modeling problem is, at heart, an optimization

problem in at least M dimensions. However, Equation (62) has one important limitation:

it does not guarantee that ||ĥa(λ) − hNR(λ)|| is small for all λ of interest. We will return

to this point in Chapter (7), where a machine leaning approach to modeling gravitational

waveforms is presented. For now, we can use the framework above to efficiently review

the two most pertinent modeling approaches in NRDA: representative modeling, and linear

modeling.

1This includes constant functions.
2Here, ||x(s)||2 =

∫∞
−∞ x

∗(s)x(s)ds.
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4.2 Representative Modeling

Put simply, this approach to gravitational wave modeling aims to use closed form func-

tions (e.g. polynomials, sine and cosine), to represent gravitational wave strain. This course

may be pursued either in the time domain, by modeling h(t), or in the frequency domain,

by modeling h̃(f). Frequency domain modeling is most often of interest, as its results may

be readily applied to experiment oriented analysis routines without the need for Fourier

transforms (Section 3.2.2).

Therefore, typically, representative modeling seeks ĥa such that ĥa(λ) = h̃(f). Spurred

by the fact that h̃(f) are complex valued, separate amplitude and phase modeling are

common:

ĥa(λ) = Âa(λ) eiΦ̂a(λ). (63)

Concurrently, as there is no known single analytic function that is capable of representing all

of inspiral, merger and ringdown, a piecewise approach is very often taken [62, 69, 50, 70].

For example, Santamaria et al. [62] seek to model the dominant, l = m = 2 multipole,

and thereby construct Φ̂a(λ) such that

Φ̂a(λ) = ψ22
SPA(λ)w−f1 + ψ22

PM (λ)w+
f1
w−f2 + ψ22

RD(λ)w+
f2

= Φphen(f) . (64)

In Equation (64), ψ22
SPA, ψ22

PM , and ψ22
RD are models for the inspiral, merger and ring-

down portions of the waveform’s phase. For example, ψ22
PM (f) = 1

η

(
a1f

−5/3 + a2f
−1 +

a3f
−1/3 +a4 + a5f

2/3 + a6f
)
), and {a1, a2, ...a6} ⊂ a. Additionally, w±fk(f), are smooth

blending functions of the form

w±fk =
1

2

[
1± tanh

(
4(f − fk)

d

)]
. (65)

Furthermore, in Equation (64), f1 and f2 are interrelated model parameters, {f1, f2} ∈ a,

with f1 = 0.1f2.

Here, it is important to recall that inspiral (Section 2.2) and ringdown (Section 2.4)

fall under the purview of their respective perturbation theories. For this reason, models of

these regions must be consistent with their perturbation theory’s predictions. As a final,
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pertinent example, Santamaria et al. note the black hole perturbation theory describes

gravitational ringdown for the l = m = 2 multipole to be given by

h22(t) = A22 e
itω̃22 , with ω̃ = ω22 + i/τ22 . (66)

Equation (66) is informed by perturbation theory’s analytic prediction of ω̃22 [71], which

upon considering the Fourier transform of eitω̃22 , allows the identification of Equation (64)’s

f2 with ω22/2π.

In this way, representative gravitational wave modeling most often aims to independently

model inspiral, merger and ringdown in a manner consistent with perturbation theory re-

sults for inspiral and ringdown. However, the interface between Numerical Relativity and

perturbation theory is not always trivial. In particular, for ringdown, perturbation theory

predicts that the spin weighted spheroidal harmonics, rather than Numerical Relativity’s

spin weighted spherical harmonics (Equation 43), are the most natural for representing

gravitational wave strain. Specifically, Equation (66) is a spheroidal harmonic multipole

moment, not a spherical harmonic multipole moment. Santamaria et al. make no distinc-

tion between spherical and spheroidal because, for l = m = 2, the two harmonics are nearly

identical. However, in Chapter (5), we will see that for general l and m much more care is

needed.

4.3 Linear Modeling

A fairly recent alternative to representative modeling stems from the application of “lin-

ear regression modeling” to gravitational waves [72, 73]. As its name suggests, under linear

modeling one images that the gravitational wave strain is equal to a linear superposition

of basis waveforms. Unlike representative modeling, where the modeling domain shape of

the waveform is endowed by analytic functions, here each basis waveform represents an

independent feature within the gravitational wave morphology. Of notable and practical

importance is the fact that these features may be ordered in terms of their contribution

to the total variance within a training set. In this sense the most important features may

be identified, and kept for modeling while disregarding the rest, thus reducing the model’s
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complexity while making it more computationally efficient. For this reason, linear model-

ing approaches have flourished in many areas of computational science, including machine

learning [72]. Here, we briefly describe the most basic and practical aspects of this topic.

The discussion of linear modeling’s connection to machine learning will be picked up in

Chapter (7).

The linear modeling of gravitational wave strain starts by evoking the spectral theorem:

given set of orthonormal basis functions, {êj}Nj=0, one may equate any function in the

same space with a linear superposition over the basis. For the space of gravitational waves

spanned by a training set, one typically constructs the basis directly from the training set.

For example, in the work of Blackman et al. [68], the êj are derived from the training

set by the Gram-Schmidt algorithm [74]. Alternatively, the recent work by Clark et al. [3]

holds êj to be the eigenvectors of T ’s covariance matrix3 (i.e. here the êj are the “principal

components” of the training set [72]). In either case, given a training set of N linearly

independent waveforms, one will generally have N basis waveforms. Upon construction,

the basis set allows for the spectral decomposition of each waveform in the training set

hNR(λk) =
N∑
j=1

aNR
j (λk) êj , (67)

where the coefficients, aNR
j , are given by the standard inner-product

aj(λk) = 〈êj |hNR(λk)〉 (68)

=

∫ ∞
−∞

ê(t)∗hNR(t) dt

=

∫ ∞
−∞

˜̂e(f)∗h̃NR(f) df .

In the second and third lines of Equation (68), we have utilized that 1̂ =
∫∞
−∞ |f〉〈f |df =∫∞

−∞ |t〉〈t|dt. In essence, Equation (68) yields a set of discrete points, aNR
j (λk).

Centrally, it is upon this set of aNR
j (λk) that the model, ĥa, is actually constructed.

That is, we may identify the basis coefficients aNR
j with the model’s parameter functions,

aj (Section 4.1). In practice, the aj(λ) are often defined as polynomials fit to aNR
j (λk), or

3Here, the training set, T , is referenced as a matrix of N columns, and its covariance matrix is given by
T T >/N .
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as spline interpolants between aNR
j (λk) [54]. In either case, the resulting full-order model

takes the form

ĥa(λ) =

N∑
j=1

aj(λ) êj . (69)

Equation (69) refers to the full-order model because is neglects the fact that, for all

λk, not all aj(λk) contribute significantly. For example, the previously mentioned principal

component approach is such that the aj(λk) are proportional to the amount of variance

within T that is attributed to êj . With this in mind, one may quantify the percentage of

variance held within each êj by defining E(j) =
∑j

j′=1 µj′/(
∑j

j′=N µj′), where µj are the

square roots of T ’s covariance matrix eigenvalues4. In the case of Figure (9)’s Q-series, only
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Figure 9: Here we see the number of principle components needed to represent some frac-
tion, E(k), of the variance within the training set [3]. Each curve represents a training set
composed of different “initial parameter families”. The Q-series is composed of 13 initially
nonspinning variable massratio waveforms. The HR-series is composed of 15 initially non-
spinning, variable mass ratio, spin-aligned waveforms, and the RO-series is composed of 20
precessing waveforms.

two êj , of the initial 13, are needed in order to account for more than 90% is the training

set’s variance. This implies that only N ′ = 2 of the terms in Equation (69) are actually

4This also happens to be a normalized measure of 1 minus the model’s representation error
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needed in order to accurately reproduce the training set. Put another way, it is possible

to “reduce the order” of ĥa over Λ, by only retaining the first N ′ terms in Equation (69),

giving

ĥa(λ) =

N ′∑
j=1

aj(λ) êj . (70)

For this reason, many classes of linear models are often referred to as reduced-order models

(ROMs). In regards to the efficiency of data analysis routines, it is natural to imagine that

the lower the model’s order, the faster its implementations will be [54].

Lastly, while not sufficiently pertinent to expand upon here, it is worth noting that the

success of linear modeling relies heavily on the construction of the basis set. For example,

when using a training set from Numerical Relativity, one must be very careful to appro-

priately manage regions where non-physical information are prevalent in the waveform.

However, with appropriate care, this difficulty can be overcome [68].

4.4 Chapter Summary

With the formal and specific definition of modeling established in Section (4.1), we now

fully prepared to discuss the author’s contributions to gravitational wave modeling. In

particular, the representative modeling described in Section (4.2) underpins the author’s

listed contributions to modeling gravitational wave ringdown (Chapter 5). Similarly, the

linear modeling of Section (4.3) is the foundation for the author’s ongoing work at the

intersection of machine learning and Numerical Relativity (Chapter 7).
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Chapter V

MODELING GRAVITATIONAL RINGDOWN

5.1 Chapter Preface

As we approach the era of gravitational wave detection, there is a tremendous effort to

understand and predict the rich gravitational wave signals coming from all expected sources

of radiation. These predictions are used to construct gravitational wave templates that will

enable not only the recognition of gravitational wave signals within noise, but also the

extraction of information about the source. It is for these purposes that the development

of templates that include the final moments of binary black hole coalescence is important

for future gravitational wave detection.

While source populations remain uncertain, binary black hole systems are expected to

account for multiple signals per year and, if systems with a total mass of a few hundred

times that of our sun or larger are observed, detectors such as Advanced LIGO and the

Einstein Telescope are most sensitive to the final stages of binary black hole coalescence

[18, 19, 20, 21]. In these final moments the two black holes merge into a perturbed, remnant

black hole, whose gravitational radiation rings down like a struck bell. Very roughly put, if

one were to observe the remnant at an orientation (θ, φ) relative to its spin axis, and at a

distance r away, then the observable time domain strain of this decaying ringdown radiation

may be written as the real part of

h = −1

r

∑
l,m,n

Almn Slmn(θ, φ)
ei(ωlmn+i/τlmn) t

(ωlmn + i/τlmn)2
(71)

= h+ − i h× .

Here, h+ and h× are the real valued plus and cross polarization states. In general, a linear

combination of these states will be detected [75, 76].

If provided the remnant black hole’s mass and spin, then the perturbation theory of

isolated Kerr black holes informs us of Equation (71)’s spatial multipoles and temporal
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frequencies: the QNMs that dominate ringdown [77, 40, 78]. However, in order to model

astrophysically relevant ringdown signals the output of Numerical Relativity simulation is

generally needed to tell us how much each multipolar component is excited for a given initial

binary [78, 79].
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(θ, φ) = (0, 0)
(θ, φ) = (π3 , 0)
QNM Sum

Figure 10: Ringdown for a 2:1 mass-ratio, initially nonspinning black hole binary calculated

via the GaTech MAYA code [2, 4, 5, 6, 7]. The solid gray lines show the time domain envelope

of Numerical Relativity ringdown for two different lines of sight. Here θ and φ are polar

and azimuthal angles relative to the black holes final spin vector. The dashed black lines

show the corresponding model ringdowns (QNM sums) calculated using the results of this

chapter: estimation of spheroidal QNM excitations from Numerical Relativity, including

and beyond the fundamental overtones.

For this reason, applying perturbation theory to the analysis of Numerical Relativity

ringdown has assisted in the creation of inspiral-merger-ringdown templates [80, 81, 82], and

revealed novel relationships between the initial binary’s configuration and the remnant black

hole’s parameters [79]. But thus far, technical challenges have limited analysis primarily
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to the fundamental (lowest overtone) QNMs, while it has also been acknowledged that a

more detailed application of perturbation theory to Numerical Relativity ringdown may

be needed [79, 80, 83, 84, 85, 86, 87]. As an example of ringdown’s potential complexity,

Figure (10) shows the time domain strain envelope of a potential 2:1 mass-ratio ringdown

signal of an initially nonspinning black hole binary, observed at two different lines of sight.

Here we see that the sum of many QNMs precisely models Numerical Relativity ringdown

data. This example case demonstrates that both the intrinsic QNMs of perturbation theory

and the observer’s extrinsic line of sight contribute to the richness of possible ringdown

signals.

In this study we assist in clarifying the extent to which QNMs beyond the fundamentals

are pertinent to the physics and modeling of Numerical Relativity ringdown (e.g. Figure 10).

We consider the ringdown of 68 initially nonspinning binary black hole simulations of mass-

ratios between 1:1 and 1:15. In doing so, we find that QNM excitation is exceptionally well

modeled by a Post-Newtonian expansion (Sec.5.4). However, we also find that the excitation

amplitudes of some QNMs differ qualitatively from their Post-Newtonian counterparts,

suggesting that the imprints of nonlinear merger are more evident in these QNMs than

in others (Sec.5.6.1). But first, we present a robust method to estimate multiple QNMs

within Numerical Relativity ringdown (Sec.5.3.1). We then apply this method to a series

of initially nonspinning Numerical Relativity runs of varying mass-ratio (Sec.5.3.2-5.4.2).

Lastly, we consider the results of our analysis (overtones and second order modes) in the

context of ringdown-only templates (Sec.5.6.2). Generally, our results may be of use for the

construction of merger-ringdown templates.

A complete chapter outline is given in Sec. 5.1.3. A full summary of fitting formulas

and coefficients for QNM excitations is given in Appendix A. For convenience, fits for the
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most dominant QNM excitation amplitudes in Equation (71) are below:

A220 = ηω̃2
220 (0.18e0.06i + 0.10e−2.21iη (72)

+ 5.09e0.24iη2)

A221 = η2ω̃2
210 (0.89e−2.94i + 6.30e0.13iη (73)

+ 19.40e2.96iη2)

A210 = ηω̃2
210

m1 −m2

M
(0.20e2.42i + 0.36e−2.65iη (74)

+ 1.03e−2.04iη2)

A330 = ηω̃2
330

m1 −m2

M
(0.08e−0.12i + 0.91e1.53iη (75)

+ 5.35e−1.13iη2 + 20.66e1.75iη3)

A320 = ηω̃2
320 (0.07e−0.77i + 0.46e1.71iη (76)

+ 0.78e−2.04iη2 + 2.48e−2.55iη3)

A440 = ηω̃2
440 (0.06e0.01i + 0.78e2.59iη (77)

+ 7.74e−0.44iη2 + 41.32e2.73iη3

+ 82.02e−0.58iη4) .

Here, M is the sum of the initial black hole masses,

M = m1 + m2 ,

and η is the symmetric mass-ratio,

η =
m1m2

M2
.

The amplitudes are scaled relative to 10 M after the peak luminosity in ψNR
22 (Sec. 5.1.2),

Note that the QNM frequencies, ω̃lmn, are complex, and depend on the remnant black

hole’s parameters: spin magnitude and mass.

ω̃lmn ≡ ωlmn + i/τlmn (78)

In Equation (78), ωlmn is the QNM’s central oscillation frequency, and τlmn the mode’s

decay time. Each frequency may be conveniently computed using the mapping between η
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and remnant black hole parameters given in Eqs. 122 and 121, or Ref. [88], along with the

phenomenological fitting formulas1 for QNM frequencies in Ref. [89].

5.1.1 From QNMs and templates

to Numerical Relativity ringdown analysis

Shortly after Vishveshwara’s 1970 discovery that perturbed black holes dissipate energy

via gravitational ringdown, the study of perturbed black holes began a proliferation that

now enables the creation of gravitational wave ringdown templates [41, 90, 91]. In 1971

Teukolsky and Press revealed that ringdown should be well approximated by a sum of

eigenfunctions of Teukolsky’s master equation which describes first order departures from

the Kerr metric [48, 77, 92]. For a black hole of mass Mf and dimensionless spin parameter,

jf =
sf
M2
f

,

these eigenfunctions are uniquely determined. Here sf is the magnitude of the final black

hole spin vector. Press later referred to Teukolsky’s set of radial, angular, and temporal

eigenfunctions as QNMs [92, 90] (Equation 81). QNMs are multipoles with the usual polar

and azimuthal indices, ` and m. In addition, in loose analogy with acoustic theory, they

are also labeled by an overtone number, n = {0, 1, 2...}, where, as n increases, so does

the typical QNM decay rate [40]. The n = 0 QNMs are traditionally referred to as the

fundamental modes.

Given that astrophysical black holes are expected to be described by only mass and

spin, the work of developing gravitational wave templates that include ringdown is largely

equivalent to modeling the excitations of Kerr QNMs for different progenitor binaries [91,

93]. This work has largely focused on the most slowly decaying, fundamental QNMs, which

correspond to first order departures from the Kerr metric.

However, it has been suggested that second order QNMs, resulting from nonlinear self-

coupling of their first order counterparts, may also be pertinent [38, 85, 94, 95, 96, 97].

Although these second order QNMs have largely been studied for Schwarzschild black holes,

1Note that here ω̃lmn are in units of 1/M while [89] reports the unitless M ω̃lmn.
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where Regge-Wheeler-Zerilli techniques can be directly applied, formal results for the Kerr

case do not appear to exceed [38], wherein the second order contribution’s wave equation is

derived within the Newman-Penrose formalism.

This result demonstrates that the second order wave equation for Kerr, like its Schwarzschild

counterpart, is sourced by a quadratic function of the first order modes. For this reason

it is expected that the second order QNMs for Kerr are characteristically similar to those

for Schwarzschild [95]. In particular, one might expect to find within Figure (10) damped

sinusoids whose frequencies and decay rates are sums of those from two first order modes2.

From these considerations it is clear that perturbation theory allows for an extremely

rich space of possible ringdown signals. But given that the fundamental modes are the

slowest damped, it is not immediately clear that modes beyond the fundamentals are per-

tinent to modeling of Numerical Relativity ringdown. Indeed, the single and two-mode

ringdown-only templates of Ref. [91] only consider fundamental QNMs. Similarly, studies

that focus on linking QNM excitation with initial binary parameters typically focus only on

the fundamental modes [9, 79, 98] and, while work on templates that include both merger

and ringdown has found that overtones are required to blend the two regions, a systematic

study of overtone excitement is lacking [82, 86, 80, 87]. Moreover, there has been no work

published on the detection of nonlinear second order QNMs within Numerical Relativity

binary black hole coalescence. Here, we inform these areas by describing QNM excitation

for a series of initially nonspinning, unequal mass binary black hole systems.

For the recovery of these initial parameters precise agreement between template and

signal is needed. Concurrently, only qualitative agreement is needed for detection purposes

[91, 93]. Although a full exploration of detection and parameter estimation is beyond the

scope of the current study, we note that the richness of possible signals depends not only

on the configuration of the initial binary, but also the orientation of the black hole’s final

spin vector with respect to the observer’s line of sight.

As an example, consider again Figure (10). Here we see that if this idealized signal is

2This is analogous to the anharmonic oscillator, in which the second order oscillation frequency is twice
the first order one [95].
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observed along the remnant black hole’s final spin axis, θ = 0, then the envelope of its time

domain behavior appears to be dominated by a single exponentially decaying function, or

equivalently, a single QNM; however, if observed at a significant angle with respect to the

final spin axis, here θ = π/3, then many QNMs may visibly contribute. In order to model

the complexities of these potential signals, we utilize the intersections between perturbation

theory and Numerical Relativity.

5.1.2 Numerical relativity meets perturbation theory

Numerical Relativity waveforms are typically decomposed3 into spin weighted-2 spheri-

cal harmonics, −2Ylm(θ, φ), such that the Weyl scalar ψ4 is given by

ψ4(t, θ, φ, r) =
1

r

∑
l,m

ψNR
lm (t) [−2Ylm(θ, φ)] . (79)

For gravitational radiation, the orthogonality of these harmonics in both ` and m ensures

that this is a true spectral decomposition:

ψNR
lm (t) ≡ r

∫
Ω
ψ4(t, θ, φ, r)−2Ȳlm(θ, φ) dΩ . (80)

Here −2Ȳlm(θ, φ) is the complex conjugate of −2Ylm(θ, φ), and we will focus on ψNR
lm , the

spherical harmonic multipoles of the Weyl scalar ψ4. The Weyl scalar ψ4 is related to the

observable strain via two time derivatives, ψ4 = −ḧ [75].

During ringdown, this choice of multipolar decomposition effectively casts the radiation

as that corresponding to a perturbed nonspinning black hole [75]. However the remnant of

a binary black hole merger is typically a spinning black hole.

For these cases, the perturbation theory of Kerr black holes [99] yields

ψ4(t, θ, φ) ≈ 1

r

∑
l,m,n

ψ PT
lmn(t) [−2Slm(jf ω̃lmn, θ, φ)] (81)

ψ PT
lmn(t) ≡ Almn e

iω̃lmnt , (82)

3 This decomposition is typically done such that the origin is at the initial binary’s center of mass. In
general, this is not the location of the remnant black hole if there is a nonzero recoil velocity. However,
for the systems studied here, the typical distance traveled postmerger, is sufficiently small compared to the
waveform extraction radius, making this initial center of mass location a good approximation for the position
of the remnant black hole. Nevertheless, as discussed in Sec. 5.5 , this does potentially introduce detailed
effects that may not be inherent to the ringdown regime.
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where ω̃lmn is the complex QNM frequency, −2Slm are the spin weighted spheroidal harmon-

ics, and Almn are the complex QNM amplitudes or excitation coefficients whose magnitude

is contingent on where t is chosen to be zero [90, 100, 101].

For example, if t∗ is the time relative to the peak luminosity of ψNR
22 , and one considers

ringdown to include T0 ≥ 10 (M) after t∗ = 0, then t ≡ t∗− 10 (M) [98]. Here we consider

t to be in units of the initial binary mass, M , which is canonically set to unity.

Generally, Equation (81) is not an equality as power-law tails, of the form ψtail ∼ t−k,

are also expected in the postmerger regime [102, 99]. While, in principle, these power-law

contributions may be significant near the radiation’s peak, a host of numerical studies has

shown them to be extremely weak throughout the subsequent QNM regime4 [99, 78]. In

particular, while all power-law functions decay slower than exponentials, they also require

excitation coefficients much larger than those of QNMs to contribute significantly to the

waveform. Therefore there is a heuristic expectation that the power-law tails eventually

dominate the postmerger waveform, but only at very late times [105, 106, 99, 107]. Indeed,

recent Numerical Relativity codes that focus on binary black hole coalescence have empiri-

cally verified this expectation [86, 78, 87, 98]. Numerical studies that focus specifically on

solving Teukolsky’s equation do find that power-law tails are physically meaningful, but

only at late times, and at amplitudes that are very likely inaccessible to codes that solve

Einstein’s equations in full [103, 107].

While the current study, in part, seeks to describe ringdown in unprecedented detail,

we also find that for the systems considered, power-law decay can be neglected.5

For simplicity we have written Equation (81) as a sum over the first order QNM indices

only. If written explicitly, the second order QNM terms, being proportional to products of

two first order QNMs, would be labeled by six indices, (l1,m1, n1)(l2,m2, n2) [85, 94, 95].

We have also neglected to explicitly write the conjugate or mirror-mode terms which arise

from Teukolsky’s azimuthal equation having two linearly independent solutions that, due

4 In contrast to the current study, which evolves the full Einstein equations, studies that are able to
resolve late-time power-law decay evolve Teukolsy’s equation (e.g. [103]), which is motivated by first-order
departures from the Kerr space-time [104].

5This is readily visible in Figure (12)’s lower panel where, if power-law tails did contribute significantly,
they would cause a localized feature near zero frequency.
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to nonzero black hole spin, are not the complex conjugates of each other [40, 89].

An additional consequence of nonzero black hole spin is that the spheroidal harmonics,

while orthogonal in m, are not orthogonal in l for the complex QNM frequencies of ring-

down6, making a spectral decomposition of the form of Equation (80) not possible. However,

just as the Kerr metric reduces to the Schwarzschild metric for nonspinning black holes,

so do the spheroidal harmonics reduce to the sphericals. Substituting Equation (81) into

Equation (80) illustrates this point by revealing that the spherical multipoles of Numerical

Relativity are each a sum of many spheroidal QNMs where, in the j → 0 limit, only the

l = l′ term survives

ψNR
l′m (t) ≈

∑
n,l

Almn σl′lmn e
iω̃lmnt (83)

σl′lmn ≡
∫

Ω
−2Slm(jf ω̃lmn, θ, φ)−2Ȳl′m(θ, φ) dΩ . (84)

This was first noted in 1973 by Press and Teukolsky [77] who used standard operator

perturbation theory to show that

−2Slm = −2Ylm + jf ω̃lmn
∑
l 6=l′

−2Yl′m cl′lm

+ O(jf ω̃lmn)2 . (85)

Here cl′lm are related to the Clebsch-Gordon coefficients [89, 48].

Equations 83 through 85 motivate two approaches to characterize QNM excitations,

Almn: single-mode and multimode fitting.

Single-mode fitting.— The first category makes the practical assumption that Equa-

tion (83) is dominated by the l = l′ term, and thereby estimates the QNM amplitudes by

fitting a single mode to ψNR
lm . Although this single-mode approach has been shown to be

effective for the first few l = m multipoles [9, 78], in principle, it neglects the presence of

overtones and black hole spin [90, 83]. Moreover, because Equation (85) says that the mix-

ing between spherical and spheroidal harmonics becomes more prevalent for higher spins, we

6 Specifically, we are concerned with spheroidal harmonics with complex frequency and of spin weight
s = −2, which correspond to exponentially damped time-domain waveforms.[100, 108]
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may hypothesize that single-mode fitting incurs residuals that are qualitatively proportional

to the remnant black hole’s spin. In particular, Figure (11) shows that initially nonspinning,

quasicircular binary black hole systems coalesce to form a remnant black holes whose final

spin is proportional to the initial binary’s symmetric mass-ratio. We would therefore expect

single-mode fitting of these systems to perform better for low mass-ratios (m1 � m2), and

worse at higher mass-ratios (m1 ≈ m2).

Specifically, while it has been shown that Equation (84)’s σl′lmn can be on the order of

0.10 for moderate values of jf [100], Equation (83) communicates that the relative values

of different Almn ultimately determine the significance of each QNM term [83].
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Figure 11: Remnant black hole spin for initially nonspinning systems of varying mass-ratio.

The black dots are final spin values calculated using the isolated horizon formalism [8]. The

trend is monotonic and well fitted with a fourth order polynomial (Appendix C).

Multimode fitting.— The second category attempts to fit each term in Eqn. (83), and

therefore requires the simultaneous fitting of multiple QNMs within each spherical multipole.

Although this multimode approach is more faithful to the fact that the black holes of interest
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are spinning, current fitting methods have had limited success [87, 109, 110]. The difficulty is

primarily due to complexity: within each ψNR
lm , a multimode fitting algorithm must optimize

over {Re[Almn], Im[Almn], ωlmn, τlmn} as well as the total number of significant QNMs, N .

There are secondary difficulties arising from data accuracy and numerical artifacts. As a

result, the multimode approach is a 4×N dimensional optimization problem of combinatoric

complexity whose solution must be robust against numerical errors. It is a lot like trying

to identify a musical chord by ear.

5.1.3 Structure of the Chapter

In the current study we present a multimode fitting method, and apply it to the Nu-

merical Relativity ringdown of 68 initially nonspinning, unequal mass-ratio binaries with

symmetric mass-ratios between η = 0.2500 and η = 0.0586.

We report estimates for the QNM excitations of not only fundamental modes, but also

for overtones and what appear to be second order modes. We go on to discuss our results

in the context of phenomenological ringdown models and future detection scenarios. First,

in Sec. 5.2.1 we review the single-mode approach, and report fit residuals. As described in

Sec. 5.2.2, for nominal fitting regions, we find that single-mode fitting incurs roughly 1%

fitting errors for the best case scenario, and greater 10% error in the worst case scenarios.

We also review the systemic dependence of residuals with final black hole spin. In Sec. 5.3.1

we introduce our multimode fitting method, and compare it with other approaches using

mock data in noise, then review found QNM amplitudes and residual errors. In Sec. 5.4,

we present post-Newtonian inspired fits to the dominant QNM excitations across the range

of mass-ratios. In Sec. 5.5 we discuss the limitations of our results, and their consistency

with perturbation theory. Finally, in Sec. 5.6, we discuss our results in the contexts of

analytic (nonlinear) perturbation theory, and review the significance of our findings to a

mock detection scenario.
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5.2 Motivations for multimode Fitting
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Figure 12: As demonstrated by this set of 2:1 mass-ratio nonspinning waveforms, fitting

a single decaying sinusoid to ψNRlm incurs systematic residuals. Top Panel: The time-

domain envelopes for (2, 2), (3, 3), (3, 2), (4, 4) spherical multipoles and related fits, starting

10M after the peak luminosity of ψNR22 . Bottom Panel: The frequency-domain envelopes,

|ψ̃NR
l,m |. All fits correspond to the lowest, n = 0, QNMs. While the (2, 2) and (3, 3) multipole

waveforms are best described by a single QNM fit, all fits display visible deviations from

the raw data.
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Let us first consider the single-mode fitting approach discussed in Sec. 5.1.2. Figure 12

shows single-mode fits for a 2:1 mass-ratio binary. While we can see that in this case the

subdominant ψNR
lm (t) are not all simple functions, the dominant multipoles do appear to

have exponentially decaying envelopes, and so are well modeled by a single QNM. Indeed,

previous studies have found success in treating the dominant multipoles as single QNMs

during ringdown [9, 78]. In particular, this approach has led to effective numerical esti-

mates of black hole final spin and mass, as well as the characterizations of fundamental

QNM amplitudes with mass-ratio, and initial spin magnitude [111, 98]. It is therefore

fair to suppose that more detailed QNM information is not needed in order to capture

ringdown’s dominant physics. In what follows, we test this heurism by first outlining the

single-mode approach, and then investigating the dependence of fit residuals with initial

binary parameters (Figure (13)).

5.2.1 Single-mode fits

First, we outline a qualitatively general single-mode fitting procedure to estimate the

fundamental (n = 0) QNM excitations:

a. Given the set of ψNR
lm , we define ringdown to be the region {T0 ≤ t ≤ T1} relative to the

peak luminosity7 of ψNR
22 [9].

b. To calculate the waveform’s phase, θlm(t), and envelope, Ψlm(t), we then consider the

standard representation for the fit:

ψFitlm |{T0≤t≤T1} = Ψlm e
i θlm .

c. We then use linear least-squares fitting to model θlm(t) and Log[ Ψlm(t) ] as lines in the

time domain:

θlm = t ωFitlm + δFitlm (86)

Log[ Ψlm(t) ] = −t/τFitlm + Log|AFitlm | (87)

7 As will be discussed in Sec. 5.3.1, we consider multiple fitting regions in order to characterize both the
data and fit. In the case of single-mode fitting, fitting regions were chosen to encompass between 86 and 74
(M). For the multimode fitting approach to be discussed in Sec. 5.3.1, each waveform was windowed and
padded after the onset of numerical noise to maintain a consistent frequency domain resolution.
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where δFitlm is the complex phase of AFitlm .

d. Upon calculating the fit parameters, {AFitlm , ωFitlm , τFitlm }, we calculate the fractional root-

mean-square error,

εlm ≡
∣∣∣∣∣〈 (ψNR

lm − ψFitlm )2 〉
〈ψNR

lm
2 〉

∣∣∣∣∣
1/2

. (88)

Here εlm is typically much less than 1 for good fits, and of order 1 or greater for poor fits.

More carefully, as discussed in Sec.5.2.3, εlm is susceptible to being biased by numerical

noise. In the worst case scenario, where noise dominates the data to be fit, εlm ≈ 1 may

correspond to a minimum residual with respect to fit parameters.

Typical single-mode fits are shown in Figure (12) for a 2 : 1 mass-ratio binary, with

the fitting region starting T0 = 10M after the peak luminosity in ψNR
22 . Here, as well as

throughout this chapter, the Fourier transform of waveforms, ψ(t), will be denoted as ψ̃(ω).

Note that the l = m multipoles are well fit, with associated errors εlm ≈ 0.08. However,

a notable exception is the l = m = 4 multipole with ε44 and order of magnitude higher at

≈ 0.65.

Moreover, as has been found in previous studies, we also find that the l 6= m multipoles

are generally not well fit by a single QNM. For example, the (l,m) = (3, 2) multipole,

ψNR
32 , is known to have a significant contribution from the (l,m, n) = (2, 2, 0) term in

Equation (83) [83, 87, 78, 112]. This may be recognized in the lower panel of Figure (12),

where ψNR
32 is seen have its dominant peak not at ψPT

32 ’s central frequency8 of Mω = 0.73,

but at Mω = 0.50, directly under the peak of |ψ̃NR
22 |.

In what follows we discuss the residual error of the single-mode approach. In particular,

we ask if the errors are dominated by numerical artifacts (e.g. resolution related errors

[111]), or if the errors are dominated by the effects of nonzero black hole spin.

5.2.2 Single-mode fits: Results and residuals

To investigate the residuals incurred by single-mode fitting, we consider 36 initially

nonspinning, unequal mass binaries with η between 0.2500 and 0.0586. The left panel

8The central frequency is given by the real part of the QNM frequency.
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of Figure (13) shows typical fit excitation amplitudes, |AFitlm |, and the right panel shows

the corresponding residual errors (Equation (88)). The left panel of Figure (13) shows

that QNM excitation appears regular with symmetric mass-ratio with the n = 0 mode

dominating. The fitting model proposed in Ref. [9] is also plotted. The lower left panel

of Figure (13) indicates that the (`,m, n) = (4, 4, 0) has a significant local minimum at

η ≈ 0.22 (m1/m2 ≈ 2) for the resolution in η considered here. The (`,m, n) = (3, 2, 0)

QNM has been found to exhibit a similar local minimum [83].

Turning to the right panel of Figure (13), the (`,m, n) = (2, 2, 0) and (3, 3, 0) cases show

monotonically decreasing trends. This trend may be due to the difference between spherical

and spheroidal harmonics, which is proportional to final black hole spin (Equation 85), and

is therefore also proportional to symmetric mass-ratio (Figure 11); thus, single-mode fitting

may incur systematic errors that decrease with η.

While the ε21 and ε44 estimates display a more complicated behavior, their overall

decrease with η suggests that these cases may be significantly affected not only by QNMs

beyond the fundamentals, but also by other sources of errors.
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5.2.3 Sources of error
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Figure 13: Here we see the fundamental QNM excitations estimated by single-mode fitting.

Left: The black dots are the excitation amplitudes estimated from fitting. For reference,

the dashed grey lines are phenomenological fits from Kamaretsos et. al. [9], and the solid

red lines are phenomenological fits from the more recent study by Meidam et. al.[10]. The

error bars were calculated as described in Sec. 5.3.1- f. The right set of panels shows the

related fractional residual errors calculated via Equation (88).

To contrast how much of each εlm is attributed to nonfundamental QNMs rather than

other factors, we briefly review the primary numerical sources of error: finite resolution and

extraction radius. In aggregate, we find that the overall effect of these errors contributes

to a noise floor that, at ∼ 10−6 (1/rM), is typically 2 orders of magnitude lower than the

relative fit errors shown in the right panel of Figure (13). As a general consequence, εlm

is increasingly biased by numerical noise as |ψNR
lm | approaches the noise floor. This is most

evident for ε44, which displays a pronounced increase as |AFit44 | sweeps through its local

minimum.

For the waveforms used here, the simulation grid is structured so that there is a central

grid of maximal resolution within peripheral grids whose resolution decreases by a factor of

2 at each outward extension. The result is an inherent tension between the finite extraction
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radius, and the finest grid resolution (see Sec. 5.5.3 for an expanded discussion of finite

extraction radius and related gauge effects.). In effect, this means that ψNR
lm up to ` = m = 5

are resolved spatially, with ∼ 7 points oscillation cycle, and temporally with ∼ 42 points

per cycle9. In particular, we find that duplication of Figure (13) at η = {0.25, 0.19, 0.16}

is consistent with resolutions {0.62,1.125,1.25} times that of the values quoted above, and,

therefore, the right panel of Figure (13) is not dominated by resolution effects.

Our post-merger data contain low amplitude, high frequency oscillations that contribute

at most 5% to our estimates of residual error, εlm, and appear to be an effect of discretiza-

tion. This high frequency contribution is visible in Figure (12) as low amplitude features

to the right of each central frequency. While the high frequency of these oscillations means

that their contribution to the mean residual difference is small, the magnitude of these os-

cillations is also marginal across multipoles, and appears at comparable power at the same

positive and negative frequency. As seen in Figure (12), this frequency varies from multipole

to multipole. Despite their pervasiveness, these features are too high to be pertinent QNM

frequencies [Eq. 84], and are likely artifacts due to our simulation’s containing nonzero

power at frequencies beyond the resolvable limit. Comparison with public NINJA waveforms

[45] reveals that these features show up inconsistently across NR implementations, which

suggests that they are both spurious effects due to discretization, and independent of the

dominant physics at play10.

As a result, we conclude that the fit errors in Figure (13) are not dominated by numerical

artifacts, but instead primarily due to choice of representation: the spherical representation

of Equation (79), versus the spheroidal representation of Equation (81). Kelly et al recently

came to a similar conclusion by considering only the (`,m) = (3, 2) spherical multipole.

9 These figures were calculated using the ` = m = 5 QNM frequency for an equal mass nonspinning
binary black hole coalescence. In the same case, we find that there are ∼ 111 points temporally and ∼ 14
points spatially within the typical amplitude decay rate. Because QNM frequency decreases as final spin
decreases, these numbers increase as the initial binary becomes more unequal (e.g. Figure (11)).

10 Importantly, as will be discussed in Sec. 5.3.1, they are also well localized in the frequency domain,
which allows us to effectively filter them out during multimode fitting.
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5.3 Multimode Fitting: From Spherical to Spheroidal

As discussed in the previous section, the single-mode fitting of spherical multipoles,

ψNR
lm , results in relatively significant residual errors (greater than 5%) that are systematic in

final black hole spin. This spin-systematic behavior verifies the hypothesis encapsulated by

Equation (83): Numerical Relativity ringdown is not a single QNM, but a sum of QNMs. We

are therefore motivated to pursue a multimode fitting approach to describe QNM excitations

for different mass-ratios. In particular, we will seek to extract spheroidal information from

the spherical harmonic multipoles of Numerical Relativity waveforms.

By noting that the general fitting problem is multilinear in the set of decaying sinusoids

given by perturbation theory (Equation 83), we present a method based upon ordinary linear

least-squares fitting (OLS) to estimate spheroidal QNM amplitudes within each spherical

multipole. We find that this particular choice of fitting routine (e.g. the least-squares

approach used here) is not as important as its surrounding algorithm which aims to sig-

nificantly reduce the problem’s complexity. This is, in part, accomplished by utilizing a

standard greedy algorithm in addition to OLS fitting. We refer to our approach as the

greedy-OLS method.

For reference, we test our method with artificial data within artificial numerical noise

to present a brief comparison between our greedy-OLS method and the modified Prony

method [109, 113] in Sec.5.3.2. We then present estimates of the QNM excitations due to

initially nonspinning black hole binaries of variable mass ratio.

5.3.1 Multimode fitting method

We have developed and implemented the following fitting procedure to estimate QNM

amplitudes:

a. Given the set of ψNR
lm , we define ringdown to be the region {T0 ≤ t ≤ T1} relative to

the peak luminosity of ψNR
22 [79]. Because the following procedure involves taking the

discrete Fourier transform, each ringdown waveform is appropriately windowed at the

noise floor, and padded to ensure consistent frequency domain resolution.
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b. Following Equation (83), we assert that Numerical Relativity ringdown, ψNR
l′m , may be

well approximated by sum of QNMs. As our numerical waveforms are of limited accuracy,

we consider this sum to be finite:

ψFitj (t) =
N∑
k

AFitk σkj e
iω̃kt (89)

≈ ψNR
l′m

where

j ←→ {l′,m} (90)

and

k ←→ {l,m, n}. (91)

While Equation (89)’s AFitk is the estimate QNM amplitude, for notational simplicity we

will henceforth refer to it as Ak. Moreover, the above summation is only over {l, l′, n},

as m is fixed by Equation (83).

Here, the apparent horizon may be used to estimate the black hole’s final mass and spin,

Mf and jf =
sf
M2
f

[8]. Alternatively, one may estimate the final black hole mass and spin

by optimizing the multimode fit of a single ψNR
lm , as each QNM frequency is determined

by Mf and jf (Appendix C). Specifically, the dependence of the QNM frequencies on

Mf and jf may be utilized by either direct calculation (e.g. [40]), as used here, or by

phenomenological fit (e.g. [89])11.

c. In the language of least-squares fitting, we seek to cast Equation (89) in the form of a

set of normal equations:

αij =

N∑
k

µik βkj (92)

or equivalently,

~αj = µ̂ ~βj . (93)

11We find these two approaches to nominally agree to within 1% of each other (Appendix C).
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To do so, we choose to make the following series of definitions:

βkj ≡ Ak σkj (94)

αij ≡
1

ω̃i

∫ T1

T0

e−iωit · ψNR
j (t) dt (95)

µik ≡
1

ω̃i

∫ T1

T0

e−iωit · eiω̃kt dt (96)

where i↔ {l,m, n} and µ̂ is an N ×N complex valued matrix. The consistency of Eqs.

(94)-(96) with Equation (92) is evident upon plugging Equation (89) into Equation (95).

If µ̂ is nonsingular, then the complex fitting amplitudes are given by

~βj = µ̂−1 ~αj . (97)

Recalling that Equation (94) defines ~βj in terms of the complex QNM amplitudes, we

equivalently have that estimates for the spheroidal coefficients in Equation (89) are given

by the kth element of ~βj

Ak σkj = (~βj)k = (µ̂−1
N ~αj)k .

In effect, Eqs. (94)-(96) entail taking the Fourier transform of the ringdown waveform,

and performing semianalytic, linear least-squares fitting in the basis of damped sinusoids

allowed by perturbation theory.

This approach imposes that ψNR
lm be composed of the QNM frequencies of perturbation

theory rather than treating them as fitting parameters, and therefore, the total dimen-

sionality of the fitting problem is reduced from 4×N to 2×N : {Re[βkj], Im[βkj], N}.

However, since Equation (97) allows for the simultaneous determination of βkj’s real and

imaginary parts, the problem has effectively been reduced to 1 × N dimensions. But

note that the problem is not truly linear in N , as the fit must be optimized over all likely

combinations of QNMs allowed by perturbation theory (Equation 83).

d. To manage this last optimization, we first limit the set of allowed QNMs to those whose

σl′lmn is above 5 · 10−3 (Equation 84). This choice is practically equivalent to only

allowing l to differ from l′ by at most 2, and simultaneously limits the largest allowed
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fitting frequency to be well below that of the non-QNM features discussed in Sec. 5.2.3.

We then use a greedy 12 algorithm to estimate the optimal set of N QNMs for each ψNR
lm .

We choose to guide the greedy process by using Equation (88) averaged over different

overlapping fitting regions 13.

e. Once the optimal set of QNMs has been found, we estimate the spheroidal QNM ampli-

tudes from Eq. 94),

Ak =
βkj

σkj
. (98)

f. To quantify the effect14 of T0 onAk, we perform the above process for T0 = {6, 7, 8, ..11, 12}(M)

and then rescale each Ak|T0 using the corresponding QNM decay rate such that Ak is

relative to T0 = 10(M). The resulting set, {Ak}T0 , describes how much each recovered

Ak agrees with our assumption that the choice of fitting regions corresponds to QNM

dominated ringdown. For example, in the ideal case, where the fitting region contains

only QNMs, every element {Ak}T0 would have the same value.

Throughout this chapter, we describe the fitting region dependence of our results using

error bars of width 1
2Range({Ak}T0), where Range({xk}) = max({xk}) − min({xk}). In

Figure (13), a scaling factor of 1
6 is used. Error bars for nonamplitude quantities have been

calculated in a similar fashion. We choose to represent the error bars according to the range

of values because the data of interest are inherently systematic, not random (Appendix B).

Now, for reference, we proceed by touching base with an alternative multimode approach

of interest [109, 115], the modified Prony method [113].

12Our greedy algorithm builds a list of N QNMs by starting with N = 1, and adding only QNMs to
µ̂N that reduce the fit error (Equation 88). This process continues iteratively until the addition of at most
two QNMs does not better the fit significantly, or causes the fit to become worse. A broader description of
greedy algorithms may be found in [114].

13In particular, we average εlm over 15 fitting regions whose starting time is equally spaced between T0

and T0 + 20(M). Each εlm is calculated by evaluating Equation (97) and Equation (88) on the sub-region.
14Please see Sec. 5.5.1 for a somewhat expanded discussion.
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Figure 14: Time domain comparison of different fitting methods for artificial multimode

data.

5.3.2 Multimode fits

Before using the greedy-OLS algorithm developed in the preceding Sec., we compare

it with a popular method for recovering damped sinusoids within noise that linearizes the

fitting problem by framing each QNM as the root of a complex polynomial. If the number

of data points is greater than the number of modes, this approach is called the modified

Prony algorithm [113, 109]. In this Sec. we consider test data to demonstrate what we find

to be the typical advantages of approaches like the the greedy-OLS algorithm. In particular,

we ask: given fake data, ψ Fake
22 , of known QNM composition, which algorithm returns the

input QNMs and achieves the best fit?

To portray a typical answer to this question, we construct ψ Fake
22 to be composed of

the (`,m, n) = {(2, 2, 0), (3, 2, 0), (2, 2, 1)} QNMs with the addition of Gaussian noise[109]

that is 10−5 times smaller than the largest component amplitude. As the modified Prony

algorithm treats QNM frequency and decay time as free parameters, we label each output
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Table 1: Recovered QNMs and errors when applying different fitting methods to arti-
ficial ringdown data composed of the (`,m, n) = {(2, 2, 0), (3, 2, 0), (2, 2, 1)} QNMs within
Gaussian noise. Residual errors were calculated using Equation (88).

Method Recovered QNMs (l,m, n) ε

Single (Sec.5.2.1) (2,2,0) 6.00× 10−1

Modified Prony[113, 116] (2,2,0),(3,2,0) 4.49× 10−3

Greedy-OLS (Sec.5.3.1) (2,2,0),(3,2,0),(2,2,1) 1.19× 10−3

frequency by its nearest QNM frequency.

Figure 14 compares the output of the greedy-OLS method to the results of the modified

Prony algorithm [113] and the single-mode fitting algorithm described in Sec.5.2.1. Table

1 lists the recovered QNMs and corresponding residual errors (Equation (88)). While both

the modified Prony and greedy-OLS methods produce qualitatively precise fits, the inset of

Figure (14) shows that the Prony method incurs a noticeably higher residual error. Turning

to Table 1, we see that this larger residual error corresponds to the Prony method’s not

capturing the (`,m, n) = (2, 2, 1) overtone. This missing mode illuminates two related

disadvantages of Prony methods when applied to QNM analysis:

a. The treatment of QNM frequency (Equation (78)) as a free parameter increases the

difficulty in assigning output frequencies to those predicted by perturbation theory.

b. The method’s output frequencies are susceptible to spurious deviations from the structure

predicted by black hole perturbation theory. This aspect of the algorithm complicates

the process of estimating black hole final mass and spin [89].

For these reasons, throughout the sections that follow, we favor the greedy-OLS algo-

rithm. However, we must also note that any fitting algorithm that uses prior information

from perturbation theory to perform multimode fitting may be just as effective. For exam-

ple, we find that using the Levenberg-Marquardt algorithm[117], in place of Equation (97), is

just as potent at estimating the QNM terms in Equation (89), but only if fitting frequencies

are limited to those predicted by perturbation theory.

Now, with some confidence in the greedy-OLS method’s faithfulness to the QNM content
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of ringdown data, let us consider two applications to Numerical Relativity ringdown. Figure

15 shows results for the l = m = 2 (top row) and l = m = 4 (bottom row) spherical

multipoles of a 2:1 mass-ratio initially nonspinning binary black hole system. The four dots

in Figure (15)’s top left panel are the recovered QNMs for ψNR
22 , indicating that ψNR

22 is

dominated by four QNMs.
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Figure 15: Top Panels: multimode fitting results for ψNR
22 . Bottom Panels: multimode

fitting results for ψNR
44 . Left: QNMs recovered, plotted in central frequency and decay

time. Each point is labeled with its QNM index in (`,m, n) format. Right: Frequency

domain envelopes of component QNMs (color), Numerical Relativity data (grey), and total

fit (black). Within each right panel, the shaded region denotes the frequency cut-off. Points

in the left panels correspond to curves in the right panels of the same color and QNM label.

For reference, we have overlayed the results of the modified Prony method in Figure (15)’s

lower left panel.
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Similarly, ψNR
44 appears to be dominated by five QNM terms. As expected from single-

mode fitting, the fundamental modes generally dominate. However, multimode fitting re-

veals overtones, and in the case of ψNR
44 , an apparent second order QNM. For reference, we

have overlayed the results of the modified Prony method in Figure (15)’s lower left panel.

Importantly, like our test case (Table 1), the residual errors for these cases are ∼ 10 times

smaller than single-mode fitting. We find this to be generally true for initially nonspinning

binary black hole systems of symmetric mass-ratio between 0.2500 and 0.0586. In the

following section, we use these cases to peer into the new information captured by multimode

fitting. We model the mapping between initial binary mass-ratio and QNM excitation.

5.4 Mapping QNM Excitation with Symmetric mass-ratio

We apply the greedy-OLS algorithm to the ringdown of quasicircular initially nonspin-

ning binary black hole systems of symmetric mass-ratio between 0.2500 and 0.0586. The

result is a map between η and Almn. Just as in the case of inspiral, with its reflective sym-

metry about the orbital plane, we find that |Almn| = |Al−mn| for all systems considered;

therefore, we only focus on the m > 0 multipoles.

By applying the greedy-OLS algorithm to our Numerical Relativity ringdown, we are

able to catalog the mass-ratio dependence of overtones and apparent second order QNM.

We find that, for the initially nonspinning systems studied here, the mirror modes are not

significantly excited.15 While many well-resolved QNMs are recovered, for practicality, we

only focus on those needed to represent ψ4 ringdown up to marginal accuracy. We consider

these to be QNMs found within the dominant l = m and l = m + 1 spherical multipoles

(e.g. ψNR
lm ), where l ≤ 4 [9, 112, 118]. We go on to present a robust phenomenological model

for the mapping between η and Almn. We start by touching base with current models for

Almn(η).

The phenomenological models proposed by [9] are shown in Figure (13). This class

of model is derived from the single-mode fitting approach mentioned in Sec.5.2, and only

15We will discuss in Sec. 5.5 that imposing these modes detracts from the consistency of our results with
perturbation theory
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handles |Almn| while leaving its complex phase to be matched to the phase of ψNR
lm after

merger 16. While the model functions used in [9] capture the qualitative behavior of the

first few fundamental QNMs, the current study’s increased resolution in mass-ratio reveals

clear systematic deviations from Numerical Relativity results (Figure (13), left panel). Most

prominently, the local minimum in |A440| is not captured by

|A440| = a |ω̃440|2
(

m1

m2

) 3
4

e
− b m1

m2 .

The more recent work of [83] focuses on the (l,m, n) = (3, 2, 0) mode, and proposes a

qualitatively precise model for |A320(η)|,

|A320| =
√

(a− b e−λ/η)2 + c2 , (99)

where a, b, c, and λ are real valued constants. Despite the success of this map17, it is not

immediately clear why this functional form works so well, and how its effectiveness may be

extended to the other QNMs.

Ultimately, a thorough analytic study of QNM excitation, akin to [101], may be needed

to derive the mapping between η and Almn. While such a pursuit is beyond the current

study, a connection between Almn(η) and known physics is appropriate.

To approach this problem, we maintain that QNM excitations are, like their Post-

Newtonian counterparts, best described by an expansion in the initial binary’s parameters.

Here we expand upon [93] by considering a beyond leading order summation in symmetric

mass-ratio.

16On the other hand, a multimode representation of each ψNR
l′m (Equation (83)) requires information about

both |Almn| and its complex phase
17Please see Figure (10) of [83].
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Figure 16: Select fundamental Quasinormal Mode amplitudes. The error bars were

calculated as described in Sec. 5.3.1- f.
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First, we note that the relevant18 Post-Newtonian strain multipole moments may be

written in the form

hlm = η e−imφ(t) δm(m1,m2)
∑
u=0

bu η
u (100)

where

δm(m1,m2) ≡ |m1 + (−1)mm2|
m1 + m2

(101)

and φ is the time dependent part of the waveform’s complex phase [119, 25]. In seeking to

generalize Equation (100) to ψ4 QNM excitations, we may begin by expecting that during

ringdown, φ(t) becomes φlmn = ω̃lmnt + constants (we revisit this idea in Sec. 5.4.1).

Furthermore, since ψ4 and strain are related through two time derivatives, the ψ4 ringdown

analogue of Equation (100) would pick up a factor of

ω̃2
lmn = |ω̃2

lmn|e−ϕlmn .

Lastly, rather than Equation (100)’s overall scaling by η, we find it useful to impose that

the excitation of each nth overtone be proportional to ηn.

Gathering all of these ideas, we propose that, for ψ4 QNM excitations, Equation (100)

generalizes to

Almn = ω̃2
nlm δm(m1,m2) η1+n

∑
u=0

au η
u (102)

= e−iφlmn |Almn|

where

φlmn ≡ ϑlmn + 2ϕlmn (103)

and

au = |au|eiαu . (104)

While we have chosen to encapsulate the intrinsic αu contribution (Equation (104))

within ϑlmn, one might also expect additional extrinsic contributions to ϑlmn from the

18nonspinning, non-precessing, quasicircular compact binaries.
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construction of each simulation (e.g. initial binary separation) [111]. Our approach to these

dependencies is outlined in Sec.5.4.1.

We also notice that our Post-Newtonian inspired model has the immediate advantage of

constraining the QNM amplitudes to be zero in the extreme mass-ratio limit, η → 0, while

imposing that only even m QNMs are excited in the equal-mass case where δm = 0. As

a more phenomenological point, we have chosen to model the overtone dependence as an

increasing proportionality in η to better fit the Numerical Relativity data.

With these conceptual tools at hand, we may now apply Equation (102) to Numerical

Relativity ringdown by constructing a fit for the complex valued Almn, as a function of η.

5.4.1 Constructing a fit for Almn on η

In order to accurately model ringdown according to Equation (81), both |Almn| and the

overall phase, φlmn must be represented. To do so, let us start by focusing on the aspects

of Equation (102) not given by perturbation theory. First, we rearrange Equation (102) to

define

Clmn ≡
Almn

η1+n ω̃2
lmn δm(m1,m2)

(105)

=
∑
u=0

au η
u .

= |Clmn| ei ϑlmn

As we expect Clmn to be a polynomial with complex coefficients, it might be well captured

by standard least-squares fitting methods; however, we are wary that this approach will be

ineffective if ϑlmn is not dominated by the phase of the polynomial sum19.

19For simplicity, we will not separate the Kerr eigenvalues (e.g. the excitation factors [120]) out from
the net QNM excitation, Almn. The result is that the polynomial in question approximates the product of
two functions. One, the excitation factor, is independent on the initial parameters. The other is entirely
dependent on the initial parameters.
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Figure 17: Examples of phases relative to mφ22/2.

With this in mind, if we refer to the intrinsic polynomial phase as ϑ In.lmn, and the addi-

tional extrinsic contribution as ϑEx.lmn, then

ϑlmn = ϑEx.lmn + ϑ In.lmn . (106)

Physically, if there is a preferred azimuthal direction postmerger, then one might expect it

to dominate ϑEx.lmn.

In practice, we find this preferred direction is set by the kick velocity. For the simulations

considered here, the kick velocity is always within the orbital plane of the initial binary,

giving ~vkick = vxx̂ + vyŷ. The direction of the kick velocity with respect to the simulation

frame is then φkick = tan−1(vy/vx). In this sense, we find that the extrinsic part of Clmn’s

complex phase is given by

ϑEx.lmn = m (φkick + φ0) . (107)

Together with Equation (106) and Equation (103), we now have that

φlmn = ϑ In.lmn + m (φkick + φ0) + 2ϕlmn . (108)
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Note that changes in the line of sight about the black hole’s final spin direction affect φlmn

and mφkick in the same way. Put differently, redefining Equation (80)’s to be φ = φ′ − δφ

effectively adds mδφ to both sides of Equation (108). This leaves Equation (108)’s φ0 as an

orientation independent quantity (e.g. independent of the observer’s location in the initial

binaries orbital plane).

However, φ0 is not purely intrinsic. As we have written it in Equation (108), φ0 not

only encapsulates the difference between the final kick orientation and QNM phase, but

also how each QNM’s phase has evolved up to the start of the fitting region , t∗ = T0. This

is discussed further in Sec. 5.5.1.

Using the (l,m, n) = (2, 2, 0) QNM, we find that

φ0 ≡
ϑEx.lmn

m
− φkick ≈

φ220

2
− φkick . (109)

This gives φ0 = −2.39 ± 0.10 rad. The regularity of approximation across different mass-

ratios is briefly discussed in Sec. 5.5.3.

Together, Eqs. (103)-(109) reveal the intrinsic polynomial phase to be

ϑIn.lmn ≈ φlmn − (2ϕlmn +m(φkick + φ0)) (110)

≈ φlmn − (2ϕlmn +m
φ220

2
) .

We may therefore construct Clmn by evaluating Equation (110), and applying it to the

magnitude of |Clmn| given by Equation (105). This allows for the simultaneous least-squares

fitting of Clmn’s magnitude and phase. Here we have used MATLAB’s polyfit.m. By increasing

the order of the polynomial fit until the residual error (Equation 88) changes by less than

10%, we find that Clmn are well fit by polynomials of order ` − 1 for the considered range

of η. Figure 16 displays the broad effectiveness of our fitting Clmn, and then transforming

back to Almn to calculate |Almn|. Similarly, Figure (17) displays the corresponding intrinsic

phases and their fits.

For each local minimum in Figure (16), there is a corresponding phase transition in Fig-

ure (17). In an approximate sense, this suggests that each Clmn may be more appropriately

represented as a polynomial function of (η − η0), which would force η = η0 to be a local
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minimum. However, for simplicity, we have tabulated all fitting coefficients according to

Equation (105).

All fitting coefficients are given in Appendix A.

5.4.2 Beyond the fundamentals: overtones & second order modes

Figure 18 displays estimates for the QNM amplitudes of overtones (top panel) and

second order modes (bottom panel) as recovered by the greedy-OLS algorithm. While their

existence has been discussed in previous studies (e.g [85, 94, 95, 96, 97, 82, 86, 80, 87]), we

present for the first time their characterization with symmetric mass ratio.

The fitting polynomials for the overtones were found to be of order l − 1 in η. The

(l,m, n) = (4, 4, 1) case is a clear exception, requiring at least an eighth order fit. While

we find that many of our estimates of |Almn| display a localized increase between 0.18 ≥

η ≥ 0.17, |A441| displays a significant decrease which makes its η dependence possibly

inconsistent with Equation (102). As discussed in Sec.5.5.1, this is likely due to the definition

of ringdown start time in terms of the initial rather than final mass scale.

Given the limitations of our Numerical Relativity runs, we consider these oscillations to

be numerical, rather than physical. A similar oscillating trend is observed in the apparent

(l1,m1, n1)(l2,m2, n2) = (2, 2, 0)(2, 2, 0) excitation (Figure 18). We discuss the likely source

for these oscillations in the next section (Sec. 5.5.3).
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Figure 18: Estimated overtone (Top) and second order (Bottom) excitation amplitudes

via multimode fitting. The error bars were calculated as described in Sec. 5.3.1- f.
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While the overtones decay faster (e.g. Figure 15), their functional form largely mirrors

their n = 0 counterparts (Figure 16). Similarly, the functional form of the second order

modes appears consistent with the notion that each second order mode is largely driven by

products of two first order modes [95]. Quantitatively, we expect that each A(l1m1n1)(l2m2n2)

should be proportional to the product of some Al1m1n1 and Al2m2n2

A(l1m1n1)(l2m2n2) ∝ Al1m1n1 Al2m2n2 . (111)

Under this caveat, we model the second order modes according to

A(l1m1n1)(l2m2n2) = µ(l1m1n1)(l2m2n2) (112)

× Al1m1n1 Al2m2n2 ,

where, given Al1m1n1 and Al2m2n2 from the first order fits, µ(l1m1n1)(l2m2n2) is the only

undetermined parameter.

Upon using a standard root finding algorithm to solve for µ(l1m1n1)(l2m2n2), we find quali-

tatively good agreement between our raw estimates for A(l1m1n1)(l2m2n2) and Equation (112).

While Figure (18) displays (l1m1n1)(l2m2n2) = (2, 2, 0)(2, 2, 0) and (2, 2, 0)(3, 3, 0) cases,

other less dominant and poorly resolved candidates were detected.

All fitting coefficients are given in Appendix A.
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5.5 Consistency with Perturbation Theory and Result Lim-

itations
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Figure 19: Top, bottom left, right: Ratio of inner-products between spherical and

spheroidal harmonics estimated via multimode fitting and direct calculation. The error

bars were calculated as described in Sec. 5.3.1- f.

While we have developed a method for the estimation of QNM excitation coefficients,

this alone does not guarantee the consistency of our results with perturbation theory. This

is primarily due to the fact that the QNMs and their related functions are not complete

93



(e.g. [121]). In particular, the decaying sinusoids are overcomplete, making it, in principle,

possible to achieve an arbitrarily good fit to Equation (83) with many different combina-

tions of decaying sinusoids. However, the effectiveness of the greedy-OLS method described

in Sec. 5.3 hinges not on the completeness of the QNMs, but on the uniqueness of the

Fourier transform (Equation 95), which the algorithm seeks to approximate up to numer-

ical accuracy by focusing only on the sparse QNM frequencies suggested by perturbation

theory20.
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Figure 20: Difference between phase of (l,m, n) = (2, 2, 0) QNM excitation (10M after the

peak luminosity in ψNR
22 ) and the scaled kick direction, mφkick (Sec.5.4).

Even so, results for Almn may be intrinsically biased if the data are not actually dom-

inated by QNMs. This is the case if the fitting region is chosen either too close to the

merger regime, or so far away that irregular numerical noise dominates. For this reason,

independent measures of the |Almn|’s consistency with perturbation theory are needed. In

20 The greedy-OLS algorithm uses only a handful of frequencies to estimate the Fourier Transform at all
frequencies. We find that applying the greedy-OLS algorithm with the QNM frequencies corresponding to a
different physical spin does not yield good fits.
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this section we consider two such measures, and discuss the limitations of our results.

5.5.1 Fitting region effects

The first estimate of consistency is mentioned at the end of Sec. 5.3.1-f: the effect of

ringdown start time, T0, on Almn. Here we will discuss the effect of T0 on Almn from two

perspectives.

Changing Scales.— On one hand, we may ask why defining T0 relative to the peak

luminosity of ψNR
22 has been found to yield well-behaved maps between initial binary pa-

rameters and QNM excitations. For example, if one defines T0 relative to the peak of ψNR
22

rather than its luminosity, then seemingly irregular oscillations are introduced into the de-

pendence of each fundamental mode’s Almn on symmetric mass-ratio. This suggests that

there is something about the peak luminosity that serves as a consistent reference for how

the system is evolving in the ringdown regime. This postulate is supported by our analysis

of each Almn phase in Sec. 5.4, where we found that when using the peak luminosity as a

reference point, the complex phase of each Almn was dependent on m time the systems final

kick direction with an offset of mφ0 that is largely independent of initial parameters (Equa-

tion 110). This means that the phase evolution of each ringdown waveform, relative to the

time of the peak luminosity, is approximate for the systems considered here. In other words,

the choice to measure time relative to the peak luminosity appears to be approximately the

same as choosing T0 such that φ0 is constant.

However, there is a discrepancy here: we have chosen T0 = 10M in units of the system’s

Arnowitt-Deser-Misner (ADM) mass [98], not the final black hole mass Mf , meaning that

while the physical scale of the system(Mf ) changes, our reference length T0 stays fixed.

This along with the dependence of each QNM frequency on the final system state, {Mf , jf},

should contribute to a systematically varying φ0. The systematic dependence of φ0 is shown

in Figure (20) against η ( η is proportional to jf ).

As with choosing the peak of ψNR
22 rather than its luminosity as a reference point, we

might expect seemingly irregular oscillations to appear in the dependence of some |Almn|(η).
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In particular, while further study is needed, the above argument is a likely explanation for

the fluctuations of some modes around η = 0.18 (e.g. |A320| and |A210| in Figure (16), and

the modes in Figure (18)).

Different Start Times.— On the other hand, different fitting regions incur different

amounts of numerical noise which may bias results. Therefore we have chosen to quantify

this measurement error by considering different fitting regions, and then rescaling our results

to be relative to T0 = 10M after the peak in ψNR
22 ’s luminosity. This measure of consistency

answers the question “How much does the recovered QNM behave like a damped sinusoid?”

and may be quantified by rescaling Almn|T0 according to its complex QNM frequency

Almn|T0 ≈ Almn|T ′0 e
iω̃lmn (T0−T ′0) . (113)

In the ideal case, where the estimated Almn behaves exactly as a decaying sinusoid from

T0 to T ′0, Equation (113) becomes an equality. This method was utilized to make the error

bars throughout this chapter.

While we find that the effects of choosing different T0 are inherently systematic21, they

are also indicative of an optimal start of ringdown that is generally about 10M after the

peak luminosity in ψNR
22 (Appendix B); however, in some cases the effective ringdown fitting

may be performed up to 2M after the peak luminosity. An expanded description of fitting

region effects is given in Appendix B.

5.5.2 Inner-product ratios

An additional consistency test may be performed by taking advantage of Equation (83)

for different ψNR
lm [83]. Noting that any QNM may be found within multiple ψNR

lm of the

same m, it follows that the ratio of their mixing coefficients may be estimated from fitting

results, and then compared to analytic calculations via Equation (84).

For example, in the case of ψNR
33 and ψNR

43 , Equation (83) gives that

ψNR
33 (t) = A330 σ3330 e

iω̃330t + ...

21To the left of ringdown is the nonlinear merger, and to the right is numerical noise.
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and

ψNR
43 (t) = A330 σ4330 e

iω̃330t

+A430 σ4430 e
iω̃430t + ...

By comparing terms, and recalling that the greedy-OLS algorithm gives a measure for terms

in the above sum via Equation (94)

βl′lmn = AEst.
lmn σ

Est.
l′lmn ,

we see that the ratio, σl′lmn/σllmn may be estimated directly from the results of multimode

fitting. For brevity, we shall limit our discussion to the fundamental modes. For clarity, we

will make a distinction between the perturbation theory result derived from Equation (84)

λPT
l′m =

σl′lm0

σllm0
, (114)

and the multimode fitting estimate

λNR
l′m =

βl′lm0

βllm0
(115)

=
σEst.l′lm0A

Est.
lm0

σEst.llm0 A
Est.
lm0

.

The three panels of Figure (19) compare λNR
lm to λPT

lm for l = m = {2, 3, 4}. Because

λNR
lm is insensitive to waveform phase, we have included results for three waveforms with

lower symmetric mass-ratios.

While consistency between perturbation theory and our numerical results is seen in all

cases, our estimate λNR
44 does systematically deviate from λPT

lm by roughly 10% on 0.20 <

η < 0.25. As suggested by our discussion in Sec. 5.2.3, we consider this deviation to be

the result of |A440| approaching the magnitude of numerical noise. Moreover, this deviation

was found to be exacerbated by the addition of mirror modes(Sec. 5.1.2), the removal of

the second order modes, or both.

5.5.3 Limitations of results

While finite spatial and temporal Numerical Relativity resolution limits the frequencies

and multipoles that we are able to consider, we find that our results are stable with respect
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to the resolutions discussed in Sec. 5.2.3. This also suggests that gauge and near-field effects

are not significantly manifested for the majority of our results22. However our consideration

of the apparent second order modes carries a more basic limitation: we currently lack

detailed knowledge about their structure. Moreover, our lacking many simulations in the

very unequal mass-ratio regime presents another limitation.

Second Order Modes.— As analytic calculations of second order Kerr QNMs are lack-

ing, there exists a tension in the existing literature.

On one hand, analytic studies such as that of Ioka and Nakano [95] suggest that second

order perturbations result in QNMs proportional by products of two first order modes. On

the other hand, Pazos et al [96] found that, for spherically symmetric initial data, scalar

wave scattering off of a Schwarzschild black hole results in second order excitations whose

frequencies are the same as those of first order modes.

22See [83] for an expanded discussion.
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Figure 21: Comparison of the Post–Newtonian strain amplitudes with QNM amplitudes.

Top: Amplitude of dimensionless Post-Newtonian strain for a selection of (`,m) spherical

multipoles. Values were calculated at Mω = 0.18 using reference [11]. Bottom: Amplitude

only fits for fundamental QNM excitations.

In this study (Sec. 5.4.2) we find second order excitations that appear to be largely

driven by two first order QNMs, with frequencies that are sums of two first order frequencies.

However, as our analysis approach has been designed to only extract spheroidal information
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post-merger, it cannot directly untangle mode coupling effects that would be consistent

with [96]. Therefore, our findings may indeed be consistent with both [96] and [95]. We

expect that an analytic study, analogous to Leaver’s work [40], but for second order Kerr

perturbations [38], may elucidate the matter.

Among the subtleties that should be addressed, we expect the degeneracy of the sum

and difference tone spectrum to play an important role: when considering the entire set of

possible second order modes, one quickly finds exact or near degeneracies between QNM

frequencies with l1 6= l2 and m1 6= m2. Here, the second order modes with the lowest l = m

indices, such as (2,2,0)(2,2,0) and (2,2,0)(3,3,0), are not only free from degeneracy at this

level, but appear to be the most prominent.

On a more rudimentary note, we do caution that, for the apparent second order modes

discussed in Sec. 5.4.2, the overall proportionality constants (see Appendix A) are surely

biased by the numerical limitations discussed in this and previous sections.

Very unequal mass-ratios.— Lastly, in regards to our fits for QNM excitation on

symmetric mass-ratio, a more basic limitation is the inability to include many points in the

very unequal mass-ratio regime (η < 0.15). Therefore, while the fits presented in Sec. 5.4

have been constructed to adhere to the extreme mass-ratio limit, they are, conservatively,

only valid within the presented range of η.

5.6 Discussion of Results

In this section, we comment on the potential relevance of subdominant QNMs to ring-

down templates and the relevance of our results to perturbation theory.

5.6.1 Perturbation theory comments

Pending an analytic description of QNM excitation for initially nonspinning, quasicir-

cular binary black hole merger, akin to [101], and a better understanding of the higher

order Kerr spectrum, akin to [122], we have found that a Post-Newtonian-like prescription
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effectively models QNM excitation for the systems studied. The success of this model sug-

gests that a well-defined analytic description exists, and that its predictions may be directly

compared to the fitting coefficients in Tables 4 and 5. When directly compared to its Post-

Newtonian counterparts, our model also illuminates the qualitative differences between the

inspiral regime, where Post-Newtonian is valid, and the postmerger ringdown regime.

Figure 22: Frequency domain envelopes of strain and fitted QNM amplitudes for a 2:1

mass-ratio system (η = 0.22) of 350 M�, at a distance of 100 Mpc. Left: Signal for line

of sight along final spin direction (e.g. (θ, φ) = (0, 0)). Right: Line of sight π/3 rad with

respect to final spin direction, (θ, φ) = (π/3, 0). Noise curves for the Einstein Telescope and

Adv. LIGO are shown for reference. For each panel, the color of each quasinormal mode

curve, along with its relative position, label the mode’s contribution to total signal to noise

ratio. In each case, the (l,m, n) = (2, 2, 0) mode is the most dominant.

In particular, Figure (21) shows the qualitative differences between the spherical mul-

tipolar gravitational wave emission predicted by Post-Newtonian (top panel), and the fun-

damental spheroidal emission (bottom panel) presented here. On one hand, similarities
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between the (l,m, n) = {(2, 2, 0), (2, 1, 0)} QNMs and their Post-Newtonian counterparts

may suggest that they are connected by a largely linear process. On the other hand,

the clear differences between Post-Newtonian predictions, and the (l,m, n) = (3, 2, 0) and

(4, 4, 0) QNMs may suggest a region of nonlinear response between η = 0.1 and η = 0.24.

Further study is needed to precisely clarify whether or not this is the case.

Despite our current limited understanding of the underlying physics, the local minima

seen in Figure (21) suggest that the (l,m, n) = (3, 2, 0) and (4, 4, 0) QNMs are less likely

to be relevant for detection in the ∼2:1 mass-ratio (η ≈ 0.22) regime. This point, in

addition to our descriptions of the overtones and second order modes (Sec. 5.4), allows us

to make qualitative comments on the relevance of QNMs to template accuracy and mode

detectability.

5.6.2 Template comments

While template accuracy and mode detectability are topics whose full treatment is

beyond the current work, we are able to briefly comment on the impact of subdominant

QNMs on the SNR of ringdown signals. To do so, we will reconsider the 2:1 mass-ratio

binary discussed in the introduction (Figure (10)).

Specifically, let us contemplate an idealized scenario where a ringdown-only template

is being used to search for a potential signal as observed by either the Einstein Telescope

(ET), or Adv. LIGO. For simplicity we will assume that either detector is equally sensitive

over the solid angle, and that there are no glitches in detector sensitivities as presented in

Refs. [21, 20]. To completely constrain our example, we will consider only templates made

with binary parameters identical to that of the signal: final mass 350 M�, at a distance of

100 Mpc, initially nonspinning, η = 0.22, and quasicircular. We are only interested in the

effect of subdominant QNMs on the estimated SNR.

If the signal, s̃(f), is the frequency domain counterpart of Figure (10)’s waveform, and

the template, h̃(f), is composed of some superposition of QNMs according to the Fourier
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transform of Equation (81), then the SNR is given by

ρ =
(s̃(f)|h̃(f))√
(h̃(f)|h̃(f))

(116)

where

(a(f)|b(f)) ≡ 2

∫ ∞
−∞

a∗(f) b(f)

Sn(f)
df (117)

and Sn is the power spectral density (PSD) of the detected noise [123, 21, 20].

In the best case scenario, where the signal and template are identical, ρ takes on its

maximal value, ρmax. Table 2 lists the values of ρmax for the orientations shown in Fig-

ure (10).

Table 2: Maximal SNR values, ρmax, for ET and Advanced LIGO (Adv. LIGO) detectors

at two different orientations with respect to the final black hole’s spin direction: (θ, φ) =

{(0, 0), (π/3, 0)}. Final mass 350 M�, distance 100 Mpc, initially nonspinning, η = 0.22,

quasicircular.

(θ, φ) ρmax

Adv. LIGO ET

(0, 0) 10.58 160.79

(π/3, 0) 6.20 94.29

We now ask which QNMs contribute the most to the total SNR for each of the cases

above. To answer this question, we sequentially determine which N -mode template recovers

the largest percent of ρmax. For example, if we denote the recovered SNR of each N -mode

template to be ρ∗, then in the case of Adv. LIGO, the 1-mode template that recovers the

largest percentage of ρmax contains only the (l,m, n) = (2, 2, 0) QNM. This is the case for

θ = 0, where ρ∗ = 0.9986ρmax, and for θ = π/3, where ρ∗ = 0.9749ρmax. If we ask which

additional QNM results in the largest ρ∗ at θ = π/3, then (3, 3, 0) proves to be the next

most important, with ρ∗ = 0.9837ρmax. Taking another step forward, we find that the
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best 3-mode template for Adv. LIGO at θ = π/3 includes the (2, 2, 0), (3, 3, 0) and (2, 2, 1)

QNMs, with an SNR of ρ∗ = 0.9902ρmax.

Table 3: Recovered QNMs and estimated fractional SNR values for Advanced LIGO (Adv.

LIGO) and the Einstein Telescope. Under each detector heading, values for the SNR found

using only one mode, ρ1, and values for using many modes, ρ∗, are shown. In the case of

ρ∗, the number of QNMs used in the template increases from top to bottom. This may be

seen in the first row of each case, where ρ∗ = ρ1.

(θ, φ) Mode Adv. LIGO ET

(l,m, n) ρ1 (%) ρ∗ (%) ρ1 (%) ρ∗ (%)

(0, 0)

(2, 2, 0) 99.865 99.865 99.880 99.880

(2, 2, 1) 89.461 99.986 86.956 99.989

(3, 2, 0) 62.561 99.997 59.026 99.998

(π3 , 0)

(2, 2, 0) 97.494 97.494 98.348 98.348

(3, 3, 0) 63.946 98.365 60.932 98.801

(2, 2, 1) 86.457 99.023 85.537 99.349

(2, 1, 0) 41.464 99.558 92.670 99.685

(2, 2, 0)(2, 2, 0) 92.069 99.795 40.896 99.886

(2, 2, 0)(3, 3, 0) 30.870 99.934 27.192 99.957

Table 3 lists the percentages of ρmax recovered up to the 6-mode template for θ = π/3

and up to the 3-mode template for θ = 0. Figure 22 is a graphical representation of Table 3,

and displays each frequency domain QNM against the ET and Adv. LIGO PSDs.

This simple numerical experiment suggests that the greater the angle between the de-

tector’s line of sight and the black hole’s final spin direction, the more QNM information

is needed to model the signal up to 99% of ρmax. While the orientation dependence and

impact of multipoles with l > 2 on detectability is a topic of active interest [118, 124, 125],
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and previous studies of adding fundamental QNMs of ` > 2 to ringdown-only templates

have suggested a significant effect on event loss [93, 91], our example demonstrates that the

(l,m, n) = (2, 2, 1) overtone may play a meaningful role. Further study, similar to [93], is

needed to better quantify its significance.

Intriguingly, although Table 3 shows that the second order QNMs may only add a

minuscule amount to the total SNR, their contribution to the frequency domain features in

Figure (22) raises the possibility of their being identified postdetection.

Finally, in light of the QNM amplitude and phase results presented in Sec. 5.3.2, our

toy example also allows us to consider what information about the remnant black hole

may be learned. It is well known that the scaling of QNM frequencies with remnant mass

means that the detection of at least two QNM frequencies is required to estimate the final

mass and spin of the system [90, 93, 89, 98, 126]. This information, along with the relative

amplitudes may also yield information about the initial binary, and perhaps even final spin

orientation [9, 98]. Of the current study, if two QNM frequencies are detected, allowing

for the identification of each frequency’s (l,m, n), then a rearrangement of Equation (109)

suggests that information about the recoil angle relative to the line of sight may also be

estimated via

φkick ≈
φ220

2
− φ0 . (118)

The applicability of this potential measure is the subject of a future study.

5.7 Conclusion

Our in-depth analysis of Numerical Relativity entrance into ringdown has provided us

with a wealth of information about the excitation of QNMs. We have found evidence for

nonfundamental spheroidal QNM excitations within the residuals of single-mode QNM fits

(Sec. 5.2.2). By developing a method to estimate these spheroidal components (Sec. 5.3.1),

we have presented a review of QNM excitations including and beyond the fundamentals,

and we have discovered that the phase of these excitations is affected by the remnant black

hole’s final kick direction (Sec. 5.4.1).
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QNM excitations are well modeled by a Post-Newtonian-like expansion (Sec. 5.4), and

that our estimates for the excitation amplitudes are largely consistent with perturbation

theory, within the limits of knowledge and numerical accuracy available at the time of this

study (Sec. 5.5).

To make our results available for the construction of ringdown related gravitational wave

templates, we have tabulated related fitting coefficients in Appendix A.

We studied the relevance of our results for gravitational wave detection with the ring-

down of a 2:1 mass-ratio system of initially nonspinning black holes. For this case, we find

that the l = m = 2, n = 1 overtone is the most dominant, and that that it is the second

most significant QNM when the remnant black hole is observed along its final spin axis

(Figure (22) left panel). This case also demonstrates that the apparent l = m = 2 second

mode, while minuscule in comparison to its first counterpart, may be more significant than

higher l QNMs at similar frequencies (Figure (22) right panel). Moreover, this case is con-

sistent with the expectation that as the line of sight deviates from the final black hole spin

direction, more QNMs are needed to accurately represent the signal (Table 3).

But as informative as our example 2:1 mass-ratio system may be, its shortcoming are

clear. It demonstrates that when modeling ringdown the (l,m, n) = (2, 2, 1) can play a

role comparable to that of the higher fundamental QNMs (Table 3), but to solidify this

statement, and it’s relevance to high mass templates, a full orientation study is needed. We

have also seen that apparent second order QNMs might contribute to ringdown’s frequency

domain features (Figure (22)), but the full extent to which these modes are relevant cannot

be assessed without more accurate Numerical Relativity simulation, and a better under-

standing of the second order structure of Kerr perturbations. Intriguingly, we have also

seen that QNM phase carries information of how the remnant black hole is oriented relative

to its recoil velocity. While our example system demonstrates that this might allow for an

estimation of the recoil direction relative to the line of sight, the scope of the estimation as

presented here is only a first step. We look forward to the exploration of this possibility in

future work.
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Chapter VI

VERY BRIEFLY ON THE NEED FOR PRECESSING

GRAVITATIONAL WAVE TEMPLATES

While preponderance of binary black hole Numerical Relativity work has focused on the

relatively simple nonprecessing cases, nature has no intrinsic bias towards these systems

[127]. Instead, although population estimates are rather uncertain, there is reason to expect

precessing binary black hole systems in future detection scenarios [18, 127, 128, 19, 20].

In this chapter we very briefly describe a previously-unknown “precession” of the peak

emission direction with time, both before and after the merger, about the total angular

momentum direction. We demonstrate the gravitational wave polarization encodes the

orientation of this direction to the line of sight. And we present contribute evidence that

non-precessing templates are insufficient to extract precessing gravitational wave signals

from noise using matched filtering. These results highlight the need for accurate models

of precessing gravitational wave signals from compact object coalescence. This work was

contributed to reference [129].

6.1 Precession During Merger

Here we describe the tenuous configuration of precessing systems. Specifically, for two

gravitationally bound compact objects (e.g. binary black holes), with spins {~S1, ~S2} and

angular momentum vectors {~L1, ~L2}, it is possible for the orientation of any of these axes of

ration to change in time. In particular, if ~S1 is not parallel with ~S2 or ~S1 + ~S2 is not parallel

with ~L1 + ~L2, then the system will experience precession, where the direction of ~S1 and

~S2 vary with time and the orbital plane wobbles throughout the evolution of the system.

Broadly put, the effect of precession on gravitational wave morphology is to modulate the

gravitational wave amplitude and frequencies, thus posing a significant increase in signal

complexity [129]. However, there have been proposed effective means by which we may “look
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Figure 23: Three snapshots of |ψ4| (top panel) for a m1/m2 = 4, |~S1/m1
2| = |~S2/m2

2 =
0.6|,where the angle between ~S1 and ~S2 is π/2, bracketing the time of peak amplitude and
demonstrating that the polarization content changes significantly during the merger event.
For aesthetic reasons, we only show the contributions from all l = 2 modes. The top panels
show the relative scale, with red indicating the largest |ψ4| at that time. For comparison,
the bottom panel panel illustrates when these snapshots occur, using a plot of |ψ22| versus
time.

at” precessing systems in a way that makes them appear to be, as much as possible, non-

precessing [130, 131, 129, 123]. In effect, this is accomplished by defining the decomposition

frame’s z-direction to always be along the direction of peak gravitational wave emission.

This is the so-called “co-rotating frame” (See Appendix (D), and reference [131] for a full

discussion). For example, the top three panels of Figure (23) display the magnitude of ψ4

over the solid angle. In the case of nonprecessing system, the red regions would always

be localized at the north and south poles; however, in precession, these regions drift with

time. The Bottom panel demonstrates that, upon choosing the co-rotating a frame, the

magnitude of ψ22 looks qualitatively like a nonprecessing waveform (e.g. 7), and tracks the

peak emission region. In this sense, the primary appeal of this so called co-rotating frame

is that it simplifies the morphology of the gravitational wave emission, and therefore make

modeling easier. That is, the original problem’s complexity is compartmentalized: one now
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Figure 24: Nonprecessing approximation omits signal power: Comparison of coro-
tating (2,±2) subspace with the sum of all l = 2 modes along each line of sight, for the
same simulation used previously simulation and M = 100M�. Top left panel:Contours

of normalized matches |(R, ψ̂R)| (white) and |(L, ψ̂L)| (black) for the initial LIGO noise
curve at 100Mpc. For comparison, the colors indicate proximity to the direction of peak
emission near merger. Top right panel: Contour plot shows the fraction of SNR lost in a
nonprecessing approximation. In directions nearly perpendicular to the preferred direction,
a nonprecessing approximation fails to capture all available signal information.

has to model the co-rotating frame waveform, as well as the spatial rotations needed to

represent how the physical waveform would appear in any frame.

6.2 Effect on Signal Detectability

One motivation for the systematic modeling of precessing systems is the high likelihood

that nonprecessing templates are not sufficiently like their precessing counterparts to allow

optimal extraction of gravitational wave signals from noise. This point may be illustrated

by comparing match estimates for a mock precessing template (i.e. a Numerical Relativity

simulation in the co-rotating frame) with its non co-rotating frame counterpart. The result is

displayed in Figure (24). Specifically, in the left panel, we imagine that one is able to model

the co-rotating frame waveform, then apply the appropriate non corotating rotations to the

model, then use the model as a gravitational wave template that accounts for precessing

morphology. This yields very high matches for all lines of sight. In contrast, as shown

in Figure (24)’s right panel, the using a nonprecessing template causes significant (greater

than 3%) losses in the signal’s fractional SNR, thus signaling a decrease in detection rate.
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6.3 Chapter Summary

These, as well as other results [128, 123] accentuate the practical need for effective

precessing gravitational wave models. However, at the level of Numerical Relativity, one

limiting factor is our inability to place simulation in a way that guarantees sufficient cov-

erage of all interesting regions of parameter space. In this context, a significant portion of

the author’s current and future work is directed towards the placement and modeling of

precessing binary black hole systems.
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Chapter VII

MODELING VIA UNSUPERVISED MACHINE LEARNING

While Numerical Relativity codes can simulate astrophysical systems across a highly

dimensional space of initial parameters, the high computational cost of each simulation

means that simulation placement within initial parameter space must be chosen with care.

Here we outline a machine learning approach for simulation placement with the aim of

optimizing waveform modeling while minimizing the necessary number of new Numerical

Relativity simulations. The procedure presented here has no dependency on analytic or

effective one body models that are tuned to numerical relativity and therefore incur some

of is limitations. For example, Effective One Body (EOB) effectiveness is know to diminish

in regions of increasingly unequal mass ratios where Numerical Relativity simulations are

sparse [54]. Here, principle component analysis is used to build accurate waveform models

directly from Numerical Relativity waveforms without the use of an intermediate model.

While an example is presented for the placement of initially nonspinning binary black holes

in mass ratio space, the principle of the procedure is applicable to the simulation placement

and related modeling of all gravitational waveforms from astrophysical sources.

7.1 Motivations

While the graviational wave community awaits first detection, our ability to detect

and learn from gravitational wave signals hinges on our understanding of gravitational

wave morphology across a highly dimensional space of system parameters. In the case

of binary black hole systems, with their 14 dimensional parameter space, the majority of

computational focus to date has been on the subset of this parameter space that corresponds

to nonprecessing binary black hole systems. However, as nature has no a prior bias to

nonprecessing binary systems, there is an ongoing need to efficiently and systematically

generate precessing waveforms with the aim of informing detection and modeling efforts.
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More broadly, while this work focuses on binary black hole systems simulated in Numerical

Relativity, there are similar needs in regards to binary neutron star and black hole neutron

star systems.

Concurrently, the astrophysics community seeks effective models for observables asso-

ciated with these systems. While, in general, it may not be possible to analytically model

every signal of interest, the utility of accurate models that can be quickly evaluated remains

of general interest. For the special cases of nonspinning, and spin aligned binary black hole

systems (both nonprecessing), analytic and semi-analytic phenomenological models such as

PhenB and EOB currently prevail [62, 56, 57]. However, the complexity of precessing sys-

tems has thus far balked a fully robust model for the related gravitational waveforms [130].

Therefore a strategy for the simulation evaluation and modeling of the related gravitational

waveforms is of significant practical interest1.

7.2 Literature Review

Recently, there has been notable effort to develop semi-analytic reduced order model

(ROM) waveform models based upon basis representations of waveform time series: h(t) =∑kmax
k=0 µk êk(t) . Here, h(t) is the observable gravitational wave strain. The coefficients µk

are conceived to smoothly map to initial binary parameters, and can typically be modeled

with polynomial functions. The basis vectors, êk(t), are orthogonal with respect to the

inner product 〈êj , êk〉 =
∫∞
−∞ ê∗j (t) êk(t) dt = δjk, and can be constructed in a variety of

ways, including Gram-Schmidt othogonalization and Singular Value Decomposition (SVD)

(or equivalently. principle component analysis (PCA)). For a smooth and continuous initial

parameter space, Λ, the model is defined by knowing both the basis vector, êk, as well

as its coefficient, µk(λ), where λ ∈ Λ. The model is considered reduced as the summation

terminates at some finite kmax = N that is typically less than the number of input waveforms

used to construct the set of basis vectors.

While each basis vector êk(t) may, in principle, be developed directly from the results

1It is actually one of the author’s primary tasks in his upcoming post-doctoral position at Cardiff
University.
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Figure 25: A comparison of the mass ratio parameters selected by this work’s adaptive
regression algorithm gwlearn, and those parameters selected by the reduced basis method,
modelgrid, each starting with the same training set, and model tolerance.

of Numerical Relativity simulation, via methods such as gram-schmidt, or SVD, exorbi-

tant computation costs have mostly limited ROMs to utilizing phenomenological waveform

models in place of Numerical Relativity waveforms.

A recent exception is the work of Blackman et al. [68], which uses graham-schmidt

orthogonalization to calculate êk(t) directly from a small set Numerical Relativity wave-

forms (nonspinning, variable mass ratio). However, the placement of Numerical Relativity

waveforms used was first informed by many evaluations an EOB model.

Specifically, to determine which Numerical Relativity simulations should be evaluated, a

waveform of arbitrary mass ratio was chosen as the first basis vector ê1 = h1(t)/||h1(t)||, and

subsequent basis vectors where chosen to maximize ||hk+1 − Pk(hk+1)||, where Pk(hk+1) =∑k
j=1〈êj , hk+1〉 êj , and the set {êj}kj=1 is calculated via a Gram-Schmidt procedure [73]. To

perform the maximization, an EOB model served as an efficient stand-in for the computa-

tionally prohibitive Numerical Relativity waveforms.
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While this approach allows for the effective prediction of where to run Numerical Rela-

tivity simulations in order to create an effective waveform model, it is still underpinned by

an intermediate model developed from prior Numerical Relativity simulations.

In this work, we present an unsupervised learning approach to gravitational wave mod-

eling that uses adaptive regression to develop models directly from Numerical Relativity

simulations with no prior input from an intermediate waveform model.

7.3 Adaptive Regression

We consider the case were a small set of full Numerical Relativity simulations, {hk}nk=1,

can be computed across the parameter range of interest, {λk}nk=1. Starting with this sparse

training set, a PCA model may be constructed, and iteratively used to predict desired

placement of new Numerical Relativity simulations in the manner of the reduced basis

method [73]:

1. Generate an affordable catalog, C1, of Numerical Relativity waveforms that ranges

the parameter domain, {~µ}, of interest:

C1 = {h1, h2, ...hn} .

In the example that follows, the original catalog contains only three Numerical Rela-

tivity waveforms.

2. Perform PCA on the catalog to obtain the principle components, pk.

3. Construct an intermediate waveform model, M1, using the principle components as

basis vectors, hk = pk.

4. Determine the number of principle components needed to account for the desired

percentage of the variance within the current catalog: N . The corresponding principle

component, hN , will be referred to as the critical principle component.

5. Use this intermediate model to finely evaluate the coordinate values, cN . In this step,

more waveforms are generated from the intermediate model than were used in the

initial catalog.
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6. Estimate whether the points in the current catalog sufficiently populate the regions

in parameter space where cN has large curvature. These are the locations in initial

parameter space where more waveforms are needed to resolve the features in cN . If

cN is determined to be poorly resolved with the current waveform catalog C1, find

the single additional point in parameter space that yields the largest decrease in the

interpolation of cN : ~µ1. Otherwise, stop.

7. Generate a Numerical Relativity simulation at ~µ1, and add this simulation to the

catalog: C2 = C1
⋃
h(~µ1).

8. Return to step #2.

7.4 Discussion on a First Test Case: the Gravitational Waves

of NonSpinning Binary Black Hole Systems

To test the above algorithm, we consider the placement and modeling of nonspinning

binary black hole systems with variable mass ratio. As only mass ratio is changing between

simulations, this is a 1-dimensional parameter space. Moreover, in place of running new

simulations, a we use a reduced order PCA model that has been verified to be accurate

between mass ratios of 1:1 and 1:15. Specifically, the model has been verified to accurately

represent the training space (12 waveforms) as well many simulations outside of the training

space (46 waveforms). With this tool in hand, we apply 7.3 to an initial training set

consisting of only 3 waveforms. Here, we briefly describe our initial results.

Figure (25) displays the results of the test case. The waveform locations are plotted on

the y-axis using the symmetric mass ratio η = m1m2/(m1 + m2)2. This plotting choice is

motivated by eta’s known role as a nearly optimal variable for mass-ratio. This knowledge

is consistent with the result of our algorithm: when choosing η as a modeling variable,

simulations should be placed according to simple bisection in order to yield a ROM that

is the most effective over the continuous parameter range of interest. Here in lies a subtle,

but important point: the algorithm, having no inherent information about the optimality

of η was capable of extracting that information from the waveforms. This is an instance
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of optimal variable deduction [72]. Moreover, in proceeding from iteration 1 to iteration

5, the ability of the model to present the entire parameter space increased exponentially,

such that upon termination, only 0.01% of the variance within the given parameter range

was not accounted for. Unfortunately, it is beyond the constraints of the current document

to expand upon this, and other aspects of our test case. However, author looks forward to

rigorously vetting and expanding upon the given results.
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Chapter VIII

CONCLUDING REMARKS

This brief thesis catalogs the author’s current and humble contributions to gravitational

wave science. In Part (I), we reviewed the foundations of General Relativity, and paid

particular focus to the development of gravitational wave theory by incrementally discussing

the inspiral, merger and ringdown phases of binary black hole coalescence. In Part (II),

we connected our almost entirely theory based discussion with ongoing experimental efforts

to detect gravitational wave from compact object coalescence. Particular attention was

given to matched-filtering, and its central roll in motivating gravitational wave modeling.

A similar amount of focus was placed on a formal definition of modeling, and examples were

given of representative modeling and linear regression modeling.

Subsequently, in Part (III), the cumulative information of the preceding chapters was

utilized to present this thesis’ core results. In Chapter (5), it was demonstrated that by

interfacing Numerical Relativity, black hole perturbation theory, representative modeling,

and linear modeling, new information about the final moments of binary black hole merger

may be learned: overtones, possible nonlinear modes, and a possible new observable – the

black hole recoil direction. While these results are limited to nonspinning (nonprecessing)

binary black hole systems, in Chapter (6), we motivated the need for models of precessing

gravitational wave signals by discussing what will likely be a central modeling tool (the co-

rotating frame), and its promise for increasing the detection rate of astrophysical precessing

systems. Lastly, in Chapter (7) we discussed the author’s ongoing work aimed at simul-

taneously addressing simulation placement and gravitational wave modeling. Currently, is

it one of the authors immediate goals to refine this work, and apply it to the modeling of

precessing gravitational waveforms.

In closing, the author would like to communicate an important aspect of his personal

science that has supported, and at times been the sole motivation for, his progress to date.
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Put simply, the author find it extremely motivating, rewarding and useful to do science for

fun, even if the science is not directly related to his core research. While it is not appropriate

here to expand on this claim in detail, the author is confident that his willingness to cultivate

peripheral interests give needed practice to solving new problems, learning new techniques,

and asking relevant questions beyond the funnel of his academic community. While this

quality is surely not without risk, it is also the lesson of history that so much of truly good

science happens in our spare time.
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Appendix A

FIT COEFFICIENTS FOR QNM EXCITATIONS

For convenience, here we have collected all fitting formulas and related coefficients. In

particular, if one is interested in the QNM excitations from initially nonspinning, quasicir-

cular binary black hole coalescence, then we present the following algorithmic description

to apply the model presented in Sec. 5.4.

The primary inputs of our model are the binary’s component masses, m1 and m2. The

primary output of our model is the ringdown portion ψ4(t), starting 10 (M) after the peak

luminosity in the l = m = 2 spherical multipole. Therefore, throughout what follows, t = 0

corresponds to 10 (M) after the l = m = 2 spherical multipole, and values of t < 0 are to

generally be considered outside of the fit’s domain of applicability.

119



Table 4: Magnitude of fitting coefficients for Clmn.

(l,m, n) |a0| |a1| |a2| |a3| |a4|

(2, 1, 0) 0.2045 0.3554 1.034 0 0

(2, 2, 0) 0.184 0.1 5.088 0 0

(2, 2, 1) 0.8904 6.304 19.4 0 0

(2, 2, 2) 1.626 15.3 40.65 0 0

(3, 2, 0) 0.06907 0.4579 0.7754 2.476 0

(3, 3, 0) 0.07896 0.9093 5.345 20.66 0

(3, 3, 1) 0.7784 7.641 25.73 10.29 0

(4, 3, 0) 0.03099 0.3174 1.544 6.013 16.33

(4, 4, 0) 0.05596 0.7825 7.74 41.32 82.02

(5, 4, 0) 0.01222 0.1674 1.834 8.804 16.32

(5, 5, 0) 0.03257 0.4652 4.876 28.71 64.31
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Table 5: Phase of Clmn fitting coefficients.

(l,m, n) α0 α1 α2 α3 α4

(2, 1, 0) 2.417 −2.647 −2.042 0 0

(2, 2, 0) 0.05992 −2.208 0.2412 0 0

(2, 2, 1) −2.936 0.129 2.961 0 0

(2, 2, 2) 0.2528 −2.928 0.08554 0 0

(3, 2, 0) −0.7712 1.71 −2.036 −2.553 0

(3, 3, 0) −0.1153 1.528 −1.131 1.747 0

(3, 3, 1) −2.726 0.3594 −2.938 −1.683 0

(4, 3, 0) 2.285 −1.541 1.39 −1.077 1.897

(4, 4, 0) 0.008012 2.588 −0.4417 2.729 −0.5777

(5, 4, 0) 2.077 −2.134 0.1512 2.731 −0.8791

(5, 5, 0) 3.123 −0.5147 2.841 −0.1611 2.886

First, given m1 and m2, one may calculate the symmetric mass-ratio via

η =
m1m2

m1 + m2
.

With the symmetric mass-ratio, one may use a phenomenological fitting formula to quickly

estimate the remnant black hole’s final mass, M , and dimensionless spin, j = S/M2. While

we present fitting formulas in Appendix C, an alternative formula may be found in [132].

Now with the final black hole’s parameters at hand, individual QNM frequencies,

ω̃lmn = ωlmn + i/τlmn ,

may be most readily obtained by using the fitting formulas presented in [89]. Alternatively

one may use the tabulated values for Mωlmn available at [133].
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We have that estimates for the complex QNM excitation factors, Almn, may be found

by evaluating the following series of equations:

δm(m1,m2) ≡ |m1 + (−1)mm2|
m1 + m2

(119)

Almn = ω̃2
nlm δm(m1,m2) η1+n

∑
u=0

|au|eiαu ηu (120)

Values for |au| are listed in Table 4. Values for αu are listed in Table 5.

For the second order QNMs discussed in Sec. 5.4.2, we have that

A(l1,m1,n1)(l2,m2,n2) = µ(l1,m1,n1)(l2,m2,n2)Al1,m1,n1Al2,m2,n2 ,

where for the (2,2,0)(2,2,0) mode we find that

µ(2,2,0)(2,2,0) = 5.3956 ,

and for the (2,2,0)(3,3,0) mode,

µ(2,2,0)(3,3,0) = 4.6354 .

Keeping in mind that all tabulated coefficients correspond to T0 = 10 (M), the full time

domain ringdown waveform may be calculated by first evaluating the spheroidal harmonics,

−2Slm(jω̃lmn, θ, φ) (via [40]), then evaluating

ψ4(t, θ, φ) =
1

r

∑
l,m,n

ψ PT
lmn(t) [−2Slm(jω̃lmn, θ, φ)]

where

ψ PT
lmn(t) = Almn e

iω̃lmnt .

Alternatively, one may calculate the spherical multipole moments by evaluating

ψNR
l′m (t) =

∑
n,l

Almn σl′lmn e
iω̃lmnt

where

σl′lmn ≡
∫

Ω
−2Slm(jω̃lmn, θ, φ)−2Ȳl′m(θ, φ) dΩ .
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While we have suppressed the second order notation for simplicity, one may again impose the

notion that each full second order QNM corresponds to products of two first order modes.

With the two expressions for ψNR
l′m (t) and ψ PT

lmn(t) above, we have completed our algorithmic

description for calculating ringdown waveforms using the initial binary’s component masses.

While our discussion thus far has been limited to first and fundamental overtones, n = 0

and n = 1, it should also be noted that consistent evidence for the n = 2, l = m = 2,

overtone may be readily observed by considering fitting regions closer to the ψNR
lm luminosity.

Figure 26 displays this overtone scaled relative to T0 = 10 (M). Though the general trend

is reminiscent of the n = 0 and n = 1 overtones, the n = 2 mode’s faster decay rate

corresponds to larger variation with fitting region (e.g. larger error bars).
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Figure 26: The n = 0, 1 and 2 overtones of the l = m = 2 QNM excitation recovered
from Numerical Relativity ringdown if initially nonspinning unequal mass-ratio black hole
binaries. The error bars were calculated as described in Sec. 5.3.1- f.
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Appendix B

THE START OF RINGDOWN

While it is not possible to define an absolute start of ringdown, we may make a practical

definition by asking which potential ringdown region is best modeled by QNMs only. This
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Figure 27: Mean fractional root-mean-square error (Equation (88)) for the l = m = 2
multipole with respect to the fitting region start time, T0. Here the greedy-OLS (Sec. 5.3.1)
algorithm was used to used to perform a multimode fit for each fitting region.

question may be addressed by finding a local minimum in residual error with respect to

fitting region start time. To this end let us consider the multipole which is least effected

by numerical errors: ψNR
22 . Figure 27 shows its residual error [Equation (88)] on symmetric

mass-ratio. The trend observed here is inherently systematic as, when moving towards the

peak in radiation, the data are no longer dominated by QNMs, while, when moving away
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from the peak, numerical noise eventually dominates.

Consequently, although there is a visible minimum at T0 = 10 (M), it is not the global

minimum, as ε22 fluctuates in the numerical noise following T0 = 13 (M). However, 10 (M)

nevertheless gives us a practical starting point within which the majority of ψNR
lm is above

the numerical noise floor.

Table 6: Fitting coefficients for Mf (η) (Equation (122)) and jf (η) (Equation (121)).

t0 t1 t2 t3 t4 t5

M 1 −0.046297 −0.71006 1.5028 −4.0124 −0.28448

j 0 3.4339 −3.7988 5.7733 −6.378 0
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Appendix C

FINAL MASS AND SPIN

As noted in [132], the final mass and spin dependence on initial binary symmetric mass-

ratio may be well fit by a polynomial in η. Alternatively, the more recent study, Ref. [88],

shows that the final black hole parameters may also be well modeled as a power series in

m1 −m2. Here, we present a methodologically different fit than that presented in [132]

and [88], while maintaining the η parametrization of [132]. Specifically, when fitting final

dimensionless spin, jf , we choose to directly impose the boundary condition that as η → 0,

jf → 0. In particular, we fit

jf (η) = η
∑
k=1

tk η
k−1 (121)

Similarly, when fitting final mass, Mf , we choose to directly impose the boundary condition

that as η → 0, Mf → 1. In particular, we fit

Mf (η) = 1− η
∑
k=1

t′k η
k−1. (122)

The fitting result for jf (η) is shown in Figure (11). Fitting coefficients are tabulated in

Table 6. While the fitting results here are consistent with [132] and [88] within their fit’s

domain of applicability (deviations are within 1% of the values reported), we expect that

the forms given in 121 and 122 bias the fit towards the physically correct solution outside

of the fitting domain.

Consistency with multimode Fit.— The numerical values used to make the above

fits (Table 6) were calculated using the isolated horizon formalism [8]. However, final black

hole mass and spin may also be estimated using ringdown fitting (e.g. [111, 93]). For

the numerical runs considered here, we find that single mode fitting recovers the horizon

estimate to within ∼ 5%, while multimode fitting recovers the horizon estimate to within
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∼ 0.5%. This level of agreement is within the numerical error of the isolated horizon

estimate.
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Appendix D

PRECESSING BLACK HOLE BINARIES: EXTRACTING THE

COROTATING WAVEFORM

For ease of reference, the author has included a description of co-rotating frame extrac-

tion.

D.1 *Excerpt from reference [123]*:

Particularly early in the inspiral, the gravitational wave signal from merging binaries

can be approximated by the emission from instantaneously nonprecessing binaries, slowly

rotated with time as the orbital plane precesses. At late times, the gravitational wave signal

will reflect perturbations of a single black hole with a well-identified spin axis. In both cases

and in between, a well-chosen instantaneous or global frame can dramatically simplify the

decomposition of ψ4(n̂, t) in terms of spin-weighted harmonic functions ψ4l,m(t). These sim-

plifications make it easier to distinguish physically relevant from superfluous modulations;

to model emission and generate hybrids; and to formulate tests of general relativity itself.

In this paper, we adopt a preferred direction V̂ aligned with the principal axes of〈
L(aLb)

〉
. The tensor

〈
L(aLb)

〉
is defined by the following angular integral, acting on a

symmetric tensor constructed from the rotation group generators La acting on the asymp-

totic Weyl scalar:

〈
L(aLb)

〉
≡

∫
dΩψ4

∗(t)L(aLb)ψ4(t)∫
dΩ|ψ4|2

(123)

=

∑
lmm′ ψ4

∗
lm′ψ4lm

〈
lm′

∣∣L(aLb)
∣∣ lm〉∫

dΩ|ψ4|2

where in the second line we expand ψ4 =
∑

lm ψ4lm(t)Y
(−2)
lm (θ, φ) and perform the an-

gular integral. The action of the rotation group generators La on basis states |lm〉 is
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well-understood, allowing us to re-express the tensor
〈
L(aLb)

〉
as:

I2 ≡ 1

2
(ψ,L+L+ψ)

=
1

2

∑
l,m

cl,mcl,m+1ψ
∗
l,m+2ψl,m (124a)

I1 ≡ (ψ,L+(Lz + 1/2)ψ)

=
∑
l,m

cl,m(m+ 1/2)ψ∗l,m+1ψl,m (124b)

I0 ≡ 1

2

(
ψ|L2 − L2

z|ψ
)

=
1

2

∑
l,m

[l(l + 1)−m2]|ψl,m|2 (124c)

Izz ≡ (ψ,LzLzψ) =
∑
l,m

m2|ψl,m|2 (124d)

where cl,m =
√
l(l + 1)−m(m+ 1). In terms of these expressions, the orientation-averaged

tensor is

〈
L(aLb)

〉
=

1∑
l,m |ψl,m|2


I0 + Re(I2) ImI2 ReI1

I0 − Re(I2) ImI1

Izz

 (124e)

The dominant eigendirection V̂ of this tensor specifies two of the three Euler angles needed

to specify a frame:

V̂ = (cosα sinβ, sinα sinβ, cosβ) . (125)

To determine the remaining Euler angle (γ), we self-consistently adjoin a rotation in the

plane transverse to this orientation, to account for the gradual buildup of transverse phase

due to precession:

γ(t) = −
∫ t

0
cosβ

dα

dt
dt (126)

Having specified the three Euler angles that define a new frame, we rotate the simulation-

frame Y
(−2)
l,m coefficients of ψ4 to the new, time-dependent frame:

ψ4
ROT
l,m =

∑
m̄

Dl
mm̄(R(α, β, γ)−1)ψ4lm̄ (127)

=
∑
m̄

eim̄γdm̄m(β)eimαψ4lm̄ (128)
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where R(α, β, γ) carries the ẑ axis to V̂ , plus a rotation transverse to that direction by γ.

All simulations of the same physical system (with the same tetrad normalization) will

agree on ψ4(t, n̂). The choice of frame at future infinity reparameterizes the same results.

While our choice for the preferred frame continues to precess during and after merger,

to the extent our simulations have so far resolved, some future choice for the preferred

frame could conceivably converge to a fixed frame, aligned with the final total angular

momentum direction Ĵf . The choice of corotating frame depends on convention. As a

result, the corotating-frame waveforms we describe below can differ from those extracted

using other conventions, with differences increasing at late times. For the purposes of this

paper – comparison with nonprecessing binaries, principally of the leading-order mode – we

anticipate these differences are small.
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[75] M. Ruiz, M. Alcubierre, D. Núñez, and R. Takahashi, “Multiple expansions for energy
and momenta carried by gravitational waves,” General Relativity and Gravitation,
vol. 40, pp. 1705–1729, 2008.

135



[76] The LIGO Scientific Collaboration, the Virgo Collaboration, J. Aasi, B. P. Abbott,
R. Abbott, T. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, and
et al., “Narrow-band search of continuous gravitational-wave signals from Crab and
Vela pulsars in Virgo VSR4 data,” ArXiv e-prints, Oct. 2014.

[77] W. H. Press and S. A. Teukolsky, “Perturbations of a rotating black hole. ii. dynamical
stability of the kerr metric,” Astrophysical Journal, vol. 185, pp. 649–674, 1973.

[78] E. Berti, V. Cardoso, J. A. Gonzalez, U. Sperhake, M. Hannam, S. Husa, and
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