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 SUMMARY 

 

Particulate matter, especially that smaller than 2.5 microns in diameter (PM2.5), 

has been associated with adverse health effects and mortality in studies covering more 

than 150 cities. Studies of the effects of air pollution on human health are typically 

conducted using ambient measurements to represent the air quality over cities or regions. 

However, the use of ambient data for such studies introduces several limitations such as 

spatial representativeness of the monitoring site, analytical uncertainties, and 

incompleteness and lack of continuity in data. The complex chemical composition of 

PM2.5 and associated analytical uncertainties pose a further challenge when trying to 

investigate species-specific health effects. A complementary approach is to examine 

associations between health outcomes and sources contributing to ambient PM2.5, which 

can provide regulators with important information to tighten controls on sources more 

prone to causing health effects. 

Air-quality modeling tools may be useful in such investigations of the health 

effects of air-pollution and PM2.5 specifically. Emissions-based three-dimensional air 

quality models may introduce several benefits when applied in epidemiologic studies, 

such as improved spatial representativeness and availability/continuity of data, as well as 

information on source impacts. Receptor-based models are a common tool for 

apportioning of ambient levels of pollutants among the major contributing sources, and 

can be useful in discerning the relative health impacts of different sources. 

Results from a long term air quality simulation using EPA’s Models-3 suite of 

models (MM5/SMOKE/CMAQ) were analyzed in terms of the model’s ability to 



 xiv 

simulate temporal and spatial variability in concentrations of both secondary and primary 

PM2.5 components in Atlanta, GA. Seasonal variations in sulfate and nitrate 

concentrations were well captured by the model, but the model’s ability to capture 

shorter-term (e.g., daily) variations, typically of interest in time-series health studies of 

acute outcomes, was limited. Moreover, the spatial homogeneity in ambient 

concentrations of secondary PM2.5 constituents (such as sulfate and nitrate), suggests 

limited benefit in applying simulated concentration fields for these species in a time-

series health study when ambient measurements are available. Concentrations of primary 

PM2.5 constituents (such as elemental carbon), on the other hand, have much greater 

spatial variability, and the short-term variability in these species is better captured by the 

air quality model.  

A modified approach to receptor-based PM2.5 source apportionment was 

developed, using source indicative SO2/PM2.5, CO/PM2.5 and NOx/PM2.5 ratios as 

constraints, in addition to the commonly used particulate-phase source profiles. 

Additional information from using gas-to-particle ratios assists in reducing collinearity 

between source profiles, a problem that often limits the source-identification capabilities 

and accuracy of traditional receptor models. The set of equations for the PM2.5 Chemical 

Mass Balance (CMB) receptor model were solved using a global-optimization program, 

Lipschitz Global Optimizer (LGO), subject to constraints on ambient gas-phase 

concentrations. Application of the CMB-LGO model to a 25 month dataset of daily PM2.5 

measurements (total mass and composition) at the Atlanta Jefferson Street SEARCH site 

yielded source-contributions that seem more indicative of the named sources compared to 

particulate-phase source apportionment methods, based on correlations of the source 
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impacts and tracer species. Furthermore, collinearity between source-categories (e.g., 

soil-dust and primary PM2.5 from coal-burning; wood burning and “other” OC) was 

reduced based on higher source inter-correlations than in the “regular” CMB model. 

A further expansion of the CMB-LGO approach for PM2.5 source apportionment 

was developed in which both the local source compositions and corresponding 

contributions were determined from ambient measurements and initial estimates of 

source compositions. Such an approach can serve as an alternative to using 

predetermined (measured) source profiles, as traditionally used in CMB applications, 

which are not always representative of the region and/or time period of interest. This 

technique was applied to a dataset of PM2.5 measurements at the former Atlanta supersite 

(Jefferson Street site), to apportion PM2.5 mass into nine source categories. Good 

agreement is found when these source impacts are compared with those derived based on 

measured source profiles as well as those derived using a factor analytical technique.  

Two conceptually different approaches to source apportionment were compared: a 

receptor model and an emissions-based air-quality model. The receptor model captured 

more of the temporal variation in source impacts at a specific receptor site compared to 

the emissions-based model. Driven by data at a single site, receptor models may have 

some shortcomings with respect to spatial representativeness (unless a reduced study area 

is used or data from multiple sites are available), likely attenuating the observed 

association in a health study. Source apportionment results from emissions-based models, 

such as CMAQ, may be more spatially representative as they represent an average grid-

cell value. Limitations in the ability to model daily fluctuations in emissions, however, 

lead to results being driven mainly by regional meteorological trends, likely 
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underestimating the true daily variations in local source impacts. These effects will likely 

introduce an attenuation of observed association in a health study and limit the model’s 

usefulness in discerning the relative impacts of the sources on health outcomes. 

Results from a preliminary source-specific PM2.5 epidemiologic analysis were 

presented and analyzed for inter-method variability in risk-ratio estimates, based on 

source apportionment results from the Positive Matrix Factorization (PMF) and Chemical 

Mass Balance model incorporating the Lipschitz Global Optimizer (CMB-LGO) models, 

as well as the direct application of tracer species in the epidemiologic study. Despite 

methodological differences and uncertainties in the apportionment process, good 

agreement was observed between the CMB-LGO and PMF based risk ratios, suggesting 

the usefulness of applying apportionment methods in health studies. Preliminary 

epidemiologic analysis found mobile-source related PM2.5 significantly associated with 

cardiovascular outcomes; wood burning PM2.5 significantly associated with respiratory 

outcomes; soil dust significantly associated with asthma. “Other” OC was found 

significantly associated with various respiratory outcomes with high risk-ratios, though 

further analyses, such as based on longer datasets, are needed to support this finding. 

Analysis of temporal patterns in source impacts suggested that “other” OC is associated 

with secondary formation.  Despite generally good agreement between risk-ratios 

estimates based on source-contributions and tracer-species, source-apportionment and 

sensitivity analyses are needed to determine the most suitable tracers for each source-

category.   
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CHAPTER 1 

INTRODUCTION 

 

Particulate matter, especially particles smaller than 2.5 microns in diameter 

(PM2.5), has been associated with adverse health effects and mortality in studies covering 

more than 150 cities (Dockery et al. 1993; Pope et al. 2002; Pope et al. 1995). Both acute 

and chronic exposures to PM2.5 have been associated with increased mortality rates and 

hospital visits, as well as cardiopulmonary disease, heart attacks, decreased lung function, 

and asthma (Dockery et al. 1993; Ebelt et al. 2000; Peters et al. 2001; Pope et al. 1995; 

Vedal 1997). Studies of the effects of air pollution on human health are typically 

conducted using ambient measurements to represent the air quality over cities or regions. 

However, the use of ambient data for such studies introduces several limitations: 

monitoring sites might not adequately represent air quality over the health study domain 

(a single central site is often used) or capture the spatial variability in concentration 

fields; measurement errors, especially for complex measurements of PM2.5 species, might 

introduce noise to the epidemiologic analysis; incompleteness of data and lack of 

continuity in data might diminish the ability of the epidemiologic analysis to detect such 

health related associations; the need for large datasets often leads to conducting 

measurements over a multi-year period, but obtaining ambient measurements of PM2.5 

species is costly and time-consuming. In addition, since PM2.5 is chemically complex 

(comprised of numerous primary and secondary components, including ionic and organic 

compounds and dozens of trace elements), recent epidemiologic studies also investigate 

whether specific components of PM2.5 are more prone to cause specific health effects 
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(Hauck et al. 2004; Heal et al. 2005; Metzger et al. 2004; Metzger et al. 2004; Peel et al. 

2005). However, the association between health outcomes and specific PM2.5 components 

raises several issues: it is not obvious that the major cause for the health outcome is 

actually measured (it is impractical to measure every single PM2.5 species) or is possibly 

measured inaccurately due to analytical issues; the actual health effects may be due to a 

combination of pollutants; many species are correlated which limits the ability to isolate 

species health impacts. A complementary approach is to examine associations between 

health outcomes and sources contributing to ambient PM2.5 (Laden et al. 2000; 

Manchester-Neesvig et al. 2003; Mar et al. 2000; Tsai et al. 2000). By means of source 

apportionment, source impacts on the receptor can be quantified, and their health impacts 

examined. A source-impact oriented approach could help target and regulate the sources 

that contribute most to adverse health effects. It could also allow for better multi-

component epidemiologic modeling, as the number of major source-impact categories is 

typically far fewer than the number of PM components. Finally, this approach can help 

identify health effects of unmeasured species present in emissions from specific source 

categories. For example, preliminary studies have found an association between mortality 

and combustion-related PM2.5 (from motor vehicles, coal combustion and wood burning), 

but not soil-related PM2.5, in both cohort (Laden et al. 2000) and time-series (Mar et al. 

2000) studies.  

Air-quality modeling tools may be useful in such investigations of the health 

effects of air-pollution and PM2.5 specifically. Emissions-based three-dimensional air 

quality models may introduce several benefits when applied in epidemiologic studies. 

First, an average value over a model cell of typical size (e.g., 36km x 36km or 12km x 12 



 3 

km) may better represent the air quality over an applicable area as compared to a 

measurement at a single point within that area. Such a value can also assist in evaluating 

the representativeness and quality of measurements at different locations (stations) all 

residing within the range of the same model cell. Also, the ability to model episodes for 

which no measurements were performed may allow expanding the epidemiologic study 

to geographical areas for which no data were available, to past (historic) episodes, and to 

complete and extend existing datasets. Using air quality models is also less time-

consuming and resource intensive as compared to the real-time required for 

measurements, often spanning several years.  Air quality models can also provide 

information on source impacts, can simulate atmospheric concentrations for shorter time 

periods than many measurement techniques, and can simulate the levels of pollutants that 

are very difficult to measure (e.g., species found at very trace levels). Emissions-based, 

three dimensional photochemical air-quality models simulate the formation, transport and 

fate of atmospheric chemical constituents, both gaseous and in particulate form, by 

solving the conservation equation expressed as:  

 nitxStTcccR
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DUc
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c
ini

i
ii

i ,...,2,1),(),,,...,,()( 21 =++
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where: ci is the concentration of species i; U is the wind velocity vector; Di is the 

molecular diffusivity of species i; Ri is the rate of concentration change of species i by 

chemical reaction; Si (x,t) is the source/sink of i at location x and time t; ρ is the air 

density; n is the number of predicted species. The conservation equation describes the 

formation, transport and fate of air pollutants, including components for processing 

emissions, meteorology, topography, and atmospheric chemistry (Russell and Dennis 

2000). Source apportionment can be performed using direct sensitivity methods such as 
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Direct Decoupled Method (DDM) (Dunker 1981; Hakami et al. 2003), inert tracer 

methods, or by multiple applications of the model with and without emissions from target 

sources (“brute force”). Here we applied the US-EPA’s Models-3 suite of models, 

including MM5 (Grell et al. 1999) as the meteorological model to simulate atmospheric 

physical dynamics; SMOKE (Houyoux et al. 2003) as the emissions processor to 

calculate spatial and temporal trends in emissions based on the annual emissions 

inventory; and the Community Multiscale Air Quality (CMAQ) model (Byun and Ching 

1999) to simulate atmospheric reactivity, transport, and deposition of chemical 

contaminants. 

Chemical Mass Balance (CMB) receptor models are a common tool for 

apportioning of ambient levels of pollutants among the major contributing sources. CMB 

combines the chemical and physical characteristics of particles or gases measured at 

sources and receptors to quantify the source contributions to the receptor. The 

quantification is based on the solution to a set of linear equations that express each 

receptor’s ambient chemical concentration as a linear sum of products of source-profile 

abundances and source contributions (US-EPA 1998; US-EPA 2001), as expressed by:  

∑
=

+=
n

j
ijiji eSfC

1

           

where: Ci is the ambient concentration of chemical species i (µg/m3); fi,j is the fraction of 

species i in emissions from source j; Sj is the contribution (source-strength) of source j 

(µg/m3); n is the total number of sources; ei is the error term. The source profile 

abundances (fij, the mass fraction of a chemical in the emissions from each source type) 

and the receptor concentrations (Ci), along with uncertainty estimates, serve as input data 
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to the CMB model. The output consists of the contribution of each source category (Sj) to 

the measured concentration of different species at the receptor. 

CMB models are based on the following assumptions (US-EPA 1998): 1)compositions 

of source emissions are constant over the period of ambient and source sampling; 2) 

chemical species do not react with each other, i.e., they add linearly; 3) all sources with a 

potential for significantly contributing to the receptor are included in the analysis; 4) the 

source compositions are linearly independent of each other; 5) the number of sources or 

source categories is less that or equal to the number of chemical species; 6) measurement 

uncertainties are random, uncorrelated, and normally distributed. 

In terms of PM2.5 source apportionment, the major difference between a receptor 

model and an emissions-based air quality model is the starting point. While a receptor 

model’s starting point is the ambient measurement, from there going backwards to 

estimate source contributions, the starting point of the air-quality model is the processed 

emissions inventory, going forward by simulating the transport and transformation of 

pollutants and ultimate air quality impact.  

 

Structure and scope of thesis 

• Chapter 2: Temporal and spatial variability in measured and simulated 

PM2.5 constituents in Atlanta, GA, and implications for time-series health 

studies. Temporal and spatial patterns in both observed and simulated PM2.5 

constituents are analyzed and an emissions-based air quality model (CMAQ) 

evaluated in terms of simulating short-term temporal (daily) variations in 

concentrations of both primary and secondary PM2.5 components, to assess the 
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potential of using simulated PM2.5 concentrations in health studies, in lieu of 

measured data and/or to improve spatial representativeness compared to point 

measurements.  

• Chapter 3: Optimization based source apportionment of PM2.5 Incorporating 

gas-to-particle ratios. A modified approach to PM2.5 source apportionment is 

developed, using source indicative SO2/PM2.5, CO/PM2.5 and NOx/PM2.5 ratios as 

constraints, in addition to the commonly used particulate-phase source profiles. 

Additional information from using gas-to-particle ratios assists in reducing 

collinearity between source profiles, a problem that often limits the source-

identification capabilities and accuracy of traditional receptor models.  

• Chapter 4: Optimized variable source-profile approach for source 

apportionment. An expanded Chemical Mass Balance (CMB) approach for 

PM2.5 source apportionment is developed in which both the local source 

compositions and corresponding contributions are determined from ambient 

measurements and initial estimates of source compositions using a global-

optimization mechanism. Such an approach can serve as an alternative to using 

predetermined (measured) source profiles, as traditionally used in CMB 

applications and which are not always representative of the region and/or time 

period of interest.  

• Chapter 5: Source apportionment of PM2.5 in the Southeastern United States 

using receptor and emissions-based models:  conceptual differences and 

implications for time-series health studies. Two conceptually different 

approaches to PM2.5 source apportionment are compared: a receptor model and an 
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emissions-based air-quality model. Daily source impacts are calculated using 

CMB-LGO (Chemical Mass Balance model incorporating the Lipschitz Global 

Optimizer), an extended CMB receptor model, and EPA’s Models-3 emissions-

based air-quality modeling system (MM5-SMOKE-CMAQ). The temporal trends 

in source-impacts based on the two methods is analyzed and compared and 

implications to time-series health studies are discussed. 

• Chapter 6: Intermethod variability in associations between source-

apportioned PM2.5 and daily emergency-department visits in Atlanta, GA. 

Results from a preliminary source-specific PM2.5 epidemiologic analysis are 

presented and analyzed for intermethod variability in risk-ratio estimates based on 

source apportionment results from the Positive Matrix Factorization and CMB-

LGO models, as well as the direct application of tracer species in the 

epidemiologic study. Advantages and disadvantages of applying source-

apportionment results and tracer species in epidemiologic studies are discussed. 

• Chapter 7: Conclusions and future research. Air-quality models, both 

emissions and receptor based, may be useful for epidemiologic studies of the 

health-effects of air-pollution. Emissions-based models such as CMAQ may help 

address some of the issues pertaining to spatial variability and representativeness 

of primary PM2.5 constituents. Receptor-based models can help in identifying 

whether specific sources of PM2.5 are more prone to causing certain types of 

health effects. An application of source-apportionment results in a preliminary 

epidemiologic analysis found associations between source-specific PM2.5 and 
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various health endpoints, and showed relatively good agreement in risk-ratio 

estimates across several source-apportionment methods. 
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CHAPTER 2 

TEMPORAL AND SPATIAL VARIABILITY IN MEASURED AND 

SIMULATED PM2.5 CONSTITUENTS IN ATLANTA, GA, AND 

IMPLICATIONS FOR TIME-SERIES HEALTH STUDIES 

 

(A. Marmur, Y.Hu, J.A. Mulholland, P.E. Tolbert and A.G. Russell, prepared for the 

Journal of the Air and Waste Management Association) 

 

 

 

Abstract  

Time-series health studies rely on the availability of long-term, accurate, spatially 

representative air quality data. This study examines whether an emissions-based air 

quality model (CMAQ) may be used, in lieu of measured data and/or to improve spatial 

representativeness compared to point measurements. Results from a long term air quality 

simulation are analyzed in terms of the model’s ability to simulate temporal and spatial 

variability in concentrations of both secondary and primary PM2.5 components in Atlanta, 

GA, as part of an ongoing health study (ARIES). Seasonal variations in sulfate and nitrate 

concentrations were well captured by the model, but the model’s ability to capture 

shorter-term (e.g., daily) variations, typically of interest in time-series health studies, was 

limited. Moreover, the spatial homogeneity in ambient concentrations of secondary PM2.5 

constituents (such as sulfate and nitrate), suggests limited benefit in applying simulated 

concentration fields for these species in a time-series health study when ambient 
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measurements are available. Concentrations of primary PM2.5 constituents (such as 

elemental carbon), on the other hand, have much greater spatial variability, and short-

term variability in these species is better captured by the air quality model. Thus, 

modeled concentrations of elemental carbon and organic carbon, which consists of 

primary and secondary components, may be more representative of a study area than 

point measurements. A comparison between estimates of secondary organic aerosol 

(SOA) concentrations from an air-quality model and from a Chemical Mass Balance 

analysis showed good agreement. As SOA formation chemistry continues to be studied 

and models updated accordingly, these may become useful tools for analyzing the health 

effects associated with SOA. 

 

Key words: Air quality model, CMAQ, PM2.5, epidemiologic study, health study, time 

series. 

 

2.1 Introduction 

In time-series studies of the effects of air pollution on human health, an 

association between a health endpoint of interest and short-term (e.g., daily) variability in 

species concentrations is sought. Typically, such studies are conducted using ambient 

measurements to represent the air quality over cities or regions. Specifically, many 

studies have been conducted to assess the health effects associated with fine particulate 

matter (aerodynamic diameter less than 2.5µm, PM2.5) (Dockery et al. 1993; Pope et al. 

2002; Pope et al. 1995), and more recently, health outcomes associated with species-

specific PM2.5 are being investigated (Hauck et al. 2004; Heal et al. 2005; Metzger et al. 
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2004; Metzger et al. 2004; Peel et al. 2005). However, the use of ambient data for such 

studies introduces several limitations: monitoring sites might not adequately represent air 

quality over the health study domain (a single central site is often used) or capture the 

spatial variability in concentration fields; measurement errors, especially for complex 

measurements of PM2.5 species, might introduce noise to the epidemiologic analysis; 

incompleteness of data and lack of continuity in data might diminish the ability of the 

epidemiologic analysis to detect such health related associations; the need for large 

datasets often leads to conducting measurements over a multi-year period, but obtaining 

ambient measurements of PM2.5 species is costly and time-consuming. Use of emissions-

based three-dimensional air quality models may introduce several benefits when applied 

in epidemiologic studies. First, an average value over a model cell of typical size (e.g., 

36km x 36km or 12km x 12 km) may better represent the air quality over an applicable 

area as compared to a measurement at a single point within that area. Such a value can 

also assist in evaluating the representativeness and quality of measurements at different 

locations (stations) all residing within the range of the same model cell. Also, the ability 

to model episodes for which no measurements were performed may allow expanding the 

epidemiologic study to geographical areas for which no data were available, to past 

(historic) episodes, and to complete and extend existing datasets. Using air quality 

models is also less time-consuming and resource intensive as compared to the real-time 

required for measurements, often spanning several years.  Air quality models can also 

provide information on source impacts, can simulate atmospheric concentrations for 

shorter time periods than many measurement techniques, and can simulate the levels of 

pollutants that are very difficult to measure (e.g., species found at very trace levels). 
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However, to be useful for time-series health studies, the air-quality model must be able to 

capture the temporal variability in pollutant concentrations. The focus on the temporal 

variability is different than in regulatory applications of air quality models, in which they 

are typically applied to compare the average response to changes in emissions for control 

strategy development. 

The focus of this study is on application of an air-quality model to simulate PM2.5 

components in Atlanta, GA, as part of an ongoing health study (ARIES: Aerosol 

Research Inhalation Epidemiologic Study). As part of ARIES, species specific PM2.5 

health outcomes are being investigated (Metzger et al. 2004; Metzger et al. 2004; Peel et 

al. 2005), along with the temporal and spatial variability of PM2.5 species (Wade et al. 

2004; Wade et al. 2006). The latter analysis indicated that the difference between 

measured ambient pollutant level and true ambient pollutant level, represented by the 

sum of instrument error and noise due to spatial variability, is greatest for primary PM2.5 

constituents (EC and to a degree, OC), which can attenuate a health association with 

primary PM2.5 constituents. Currently, source-specific PM2.5 impacts are also being 

investigated, to assess whether specific sources of PM2.5 appear to be more related to 

specific health outcomes than others. As part of this analysis, source apportionment has 

been performed for the Atlanta aerosol using various methods, both receptor-based (such 

as Chemical Mass Balance) and emissions-based (such as Models-3 modeling system) 

(Kim et al. 2004; Marmur et al. 2006; Marmur et al. 2005). The current study evaluates 

air-quality model performance and addresses issues related specifically to application of 

such models in time-series health studies. 

 



 15 

2.2 Methods 

2.2.1 Air quality modeling 

Fine particulate matter (PM2.5) modeling was performed using components of the 

US-EPA’s Models-3 modeling system, including the Penn-State/NCAR Meteorological 

Model (MM5) (Grell et al. 1999), the Carolina Environmental Program’s (CEP) Sparse 

Matrix Operator Kernel Emissions (SMOKE) Modeling System version 1.5 (Houyoux et 

al. 2003), and CMAQ version 4.3, a three-dimensional (3-D) air quality model (Byun and 

Ching 1999). Speciated PM2.5 and gas phase pollutants were simulated for a three-year 

period, 1999-2001, using a grid of 36km by 36 km cells. The grid covered the entire 

eastern and central US, and was comprised of 78 by 66 cells laterally, and six vertical 

layers (Liu et al. 2006; Park et al. 2006). A sub-grid of 12km by 12km cells was placed 

over the northern part of Georgia, centered around Atlanta (14 by 14 cells laterally), and 

modeling using this grid was performed for the year 2001. Meteorological fields (e.g., 

temperature, relative humidity, three directional wind profiles etc.) were generated by 

MM5. Emissions from each grid cell were generated by SMOKE based on the 1999 

National Emission Inventory, and subject to temporal trends (hour of day, day of week 

etc.) and meteorological parameters. Finally, pollutant concentrations, in the form of 

hourly averages, were calculated by CMAQ. The use of six vertical layers and might lead 

to underestimation of concentrations of PM2.5 components in cases where the actual 

mixing-height is lower than that of the model bottom layer. To address this issue, we also 

examined results from model simulations by the Visibility Improvement State and Tribal 

Association of the Southeast (VISTAS) (Morris et al. 2004), in which a finer vertical 

layer structure was used. Other differences include the use of the CBIV chemical 
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mechanism (instead of SAPRC99), and the inclusion of additional formation pathways 

for secondary organic aerosol (SOA) (Morris et al. 2006). 

 

2.2.2 PM2.5 measurements 

Total PM2.5 mass, major ions (SO4
-2, NO3

-, NH4
+) and carbon fractions (elemental 

carbon, EC; organic carbon, OC) were measured daily at four locations in the Atlanta 

metropolitan area. Monitoring sites from which data were used are part of two different 

networks: SEARCH (Southeastern Aerosol Research and Characterization) network 

(Hansen et al. 2003), which includes the Jefferson Street (JST) site in Atlanta, and 

ASACA (Assessment of Spatial Aerosol Composition in Atlanta) network (Butler et al. 

2003), which includes the South Dekalb (SD), Fort McPherson (FM) and Tucker (TU) 

sites (Figure 2-1). Measurements began in August 1998 at JST, and in August 1999 at the 

ASACA sites. A third site used was the South Dekalb Speciation Trends Network (STN) 

site, co-located at the SD ASACA site; however, data collection at the STN site started 

only on March 2001, on an every third day basis. For comparison with model 

simulations, the ambient data from August 1999-August 2001 were used (data from the 

ASACA network was not available for the latter part of 2001 and 2002). Results from the 

VISTAS modeling (available for 2002 only) were compared with the ambient data from 

JST and with the SD-STN data. 
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Figure 2-1. Location of SEARCH and ASACA PM2.5 monitoring stations in the Atlanta 
Metropolitan, overlaid by model grid cells corresponding to these sites (36 km and 12 km 
domains). Jefferson St. (JST) is a part of the SEARCH network; Fort McPherson (FM), 
South-Dekalb (SD), Tucker (TU) are a part of the ASACA network. In 2001, a PM2.5 
STN site was co-located at the South-Dekalb site. All sites are co-located within one 36 
km model grid-cell, but are located in different 12 km grid cells. 
 

Total PM2.5 mass was measured by means of TEOM (Tapered Element 

Oscillating Microbalance). The JST site included also a gravimetric measurement of total 

PM2.5 mass. For the speciation of the PM2.5, a manual, filter-based Particle Composition 

Monitor (PCM) was operated on a daily schedule. The PCM included three channels to 

collect 24 hour integrated samples for analysis of major ions, trace metals and organic 

and elemental carbon in the PM2.5 size range.  Ion chromatography (IC) was used to 

quantify water soluble ionic species. Elemental and organic carbon collected on quartz 

filters were measured by Thermal Optical Transmittance (TOT) in the ASACA network, 

and by Thermal Optical Reflectance (TOR) in the SEARCH network (Butler et al. 2003; 

Hansen et al. 2003). Comparison of these two techniques indicates that while the total 
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carbon (TC) measurements are in good agreement, lower EC and higher OC values are 

obtained using TOT, compared to TOR (Chow et al. 2004).  

 

2.3 Results 

2.3.1 Air-quality model simulations 

Concentrations of SO4
-2, NO3

-, NH4
+, EC, OC simulated using CMAQ for ARIES 

were compared with observations at four different sites in the Atlanta metropolitan area 

(JST, FM, SD, TU). All four sites used here are located within the same 36km CMAQ 

grid cell (Figure 2-1), allowing two issues to be addressed: evaluation of CMAQ 

performance (using a 36km grid resolution), and to suggest whether a single site exists 

which is more representative of the health study domain (the Atlanta metropolitan area) 

and hence more suitable for use in the epidemiologic study. Comparing model 

performance for major PM2.5 components (Table 2-1) indicates that performance is better 

for sulfate than for nitrate and ammonium. Average sulfate concentrations are well 

simulated (same average for the JST site, slight underprediction for the other sites), and 

the correlation coefficient at JST is relatively high (0.72, 0.59-0.61 at the other sites). On 

the other hand, nitrate is substantially overpredicted by CMAQ, and the daily variations 

are not captured as well (as indicated by the relatively low correlations, in the range of 

0.45-0.52). Similar findings have been reported elsewhere (Morris et al. 2005). EC and 

OC are underpredicted in this application of CMAQ, likely due to the relatively coarse 

vertical layer structure. This may cause artificial dispersion of primary PM2.5 emitted 

locally at the ground level (such as EC and a fraction of OC), especially during strong, 

low-level inversion events. In contrast, sulfate levels are well predicted using the same 
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vertical layer structure, being a regional secondary pollutant. JST seems to be the most 

consistent with the model simulated concentrations when comparing model performance 

at the four sites. This is evident in the higher correlation and lower RMSE for sulfate, 

compared to FM, TU and SD sites, as well as in the higher correlations of EC and OC. 

This may be an indication of JST being more spatially representative than the other sites, 

or of better data quality (smaller measurement error) compared the other sites/datasets. 

To address the issue of grid resolution, results from a simulation using a 12km grid were 

used, but model performance did not change substantially (Table 2-2). 

 

Table 2-1. Model performance statistics for 36km CMAQ modeling of the Atlanta 
aerosol (for ARIES). For each site, the average daily concentration for the period of 8/99-
8/01 is given (obs., µg/m3), along with the correlation (R), and the root mean square error 
(RMSE, µg/m3) compared with the daily CMAQ simulated concentrations (µg/m3). Data 
for the SD site are from the ASACA network. 

Species CMAQ 
(avg. modeled conc.) 

JST 
(obs./ R/ RMSE) 

FM 
(obs. /R /RMSE) 

TU 
(obs. /R /RMSE) 

SD (ASACA) 
(obs. /R /RMSE) 

SO4
-2 5.2 5.2/ 0.72/ 2.7 4.7/ 0.60/ 3.1 4.6/ 0.61/ 3.1 4.6/ 0.59/ 3.2 

NO3
- 3.4 1.1/ 0.52/ 4.2 1.0/ 0.50/ 4.9 1.2/ 0.50/ 4.8 0.90/ 0.45/ 4.8 

NH4
+ 2.8 2.7/ 0.42/ 1.6 1.7/ 0.44/ 2.0 1.7/ 0.42/ 2.0 1.6/ 0.44/ 2.1 

EC 1.1 1.6/ 0.66/ 1.0 1.4/ 0.40/ 0.74 1.2/ 0.31/ 0.67 1.7/ 0.52/ 1.0 
OC 2.6 4.2/ 0.58/ 2.5 4.5/ 0.43/ 3.3 4.6/ 0.45/ 3.2 4.7/ 0.47/ 3.3 

 
 

Table 2-2. Comparison between model performance using a 36km and a 12km modeling 
grid (1/01-8/01), for ARIES. For each site, the correlation coefficients between observed 
and modeled values (both at 36km and 12 km), along with the RMSE (µg/m3, calculated 
for both 36 km and 12 km modeling) are given. Data for the SD site are from the ASACA 
network. 

 JST FM TU SD (ASACA) 

Species 
R 

(36/12) 
RMSE 
(36/12) 

R 
(36/12) 

RMSE 
(36/12) 

R 
(36/12) 

RMSE 
(36/12) 

R 
(36/12) 

RMSE 
(36/12) 

SO4
-2 0.81/0.79 2.0/2.1 0.66/0.66 2.4/2.5 0.70/0.71 2.2/2.3 0.65/0.62 2.5/2.6 

NO3
- 0.60/0.57 3.1/3.2 0.72/0.71 3.3/3.2 0.70/0.69 3.1/3.2 0.61/0.61 3.4/3.3 

NH4
+ 0.40/0.41 1.3/1.3 0.49/0.50 1.5/1.7 0.54/0.53 1.4/1.5 0.50/0.49 1.5/1.5 

EC 0.58/0.59 0.9/0.8 0.31/0.34 0.9/0.8 0.30/0.30 0.7/0.7 0.50/0.47 1.0/1.0 
OC 0.56/0.59 1.9/1.8 0.37/0.36 3.9/4.1 0.46/0.44 3.8/3.5 0.46/0.45 3.8/3.9 

 



 20 

We also compared model simulations from the VISTAS 12 km modeling (Morris 

et al. 2004; Morris et al. 2005), in which a finer vertical layer structure was used (19 

layers), with observations during 2002. In this modeling campaign, the CB-IV chemical 

mechanism and an updated SOA module (Morris et al. 2006) were used. Model 

performance (Table 2-3) is somewhat improved compared to the results presented 

previously (Tables 2-1 and 2-2), but the general trends remain the same, with sulfate 

performance being the highest, followed by EC/OC, and nitrate and ammonium 

performance being the poorest. However, these results do not exhibit an underprediction 

of carbonaceous PM2.5 components, due to a combination of more detailed vertical 

layering (EC and primary fraction of OC), and an enhanced SOA module which includes 

additional SOA formation and polymerization processes (Morris et al. 2006). Another 

difference is the improved model performance at the SD grid cell (data from the STN site 

were used), but similar patterns were also observed when the CMAQ modeling done as 

part of ARIES was evaluated using the available STN data for 2001 (instead of the 

ASACA data). Based on these findings from the model evaluation process, there is no 

evidence to support that the JST site is more/less spatially representative than the SD-

STN site. 
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Table 2-3. Model performance statistics for VISTAS 12km modeling (Morris et al. 2004; 
Morris et al. 2005) of the Atlanta aerosol. For each site, the average daily concentration 
for the period of 1/02-12/02 is given (observed, µg/m3), along with the correlation (R), 
and the root mean square error (RMSE, µg/m3) compared with the daily CMAQ 
simulated concentrations (modeled, µg/m3). Data for SD site are from the EPA STN. 

 JST SD (EPA STN) 
Species Observed Modeled R RMSE  Observed Modeled R RMSE  
SO4

-2 4.3 5.2 0.68 2.8 4.6 4.8 0.82 1.7 
NO3

- 1.0 1.8 0.65 1.9 0.9 1.5 0.60 1.8 
NH4

+ 2.1 2.1 0.53 1.0 1.3 1.9 0.62 0.9 
EC 1.3 1.5 0.63 0.8 0.9 1.1 0.75 0.5 
OC 4.2 5.6 0.63 2.6 5.4 5.2 0.70 2.0 

 
  

2.3.2 Daily vs. seasonal variations 

Correlation coefficients reported in Tables 2-1 - 2-3 represent temporal variations 

on both the daily scale (24 hour data are used for the comparison) and seasonal scale. As 

previously mentioned, to be applied in a time-series health study, it is important that the 

model capture the daily variability in concentrations of PM2.5 components (seasonal 

variability is typically controlled for in the health study). Previous studies indicated that 

meteorological (MM5) and air-quality (CMAQ, applied to ozone) models capture inter-

annual (seasonal) and synoptic-scale (lasting several days and longer) variability, while 

the magnitude of fluctuations on shorter time scales is underestimated (Hogrefe et al. 

2004; Hogrefe et al. 2001). To address this issue specifically for PM2.5 components, we 

computed correlations for running blocks of 30 days each during the period of 8/99-8/01 

(731 blocks during a 762 day period). This allowed evaluating the variability captured by 

the model on shorter time scales, emphasizing daily and synoptic variability over 

seasonal/interannual variability. The average of these shorter time-scale correlation 

coefficients was compared to the correlations based on the entire dataset (Table 2-4). 
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Also provided are similar comparisons for observations at JST vs. SD-STN (3/01-12/02). 

For species with a strong seasonal pattern, such as sulfate and nitrate, the correlations 

between simulated and observed concentrations drop sharply when shorter time scales are 

used. For example, the correlation coefficient for sulfate based on the entire dataset is 

0.72, and only 0.56 based on the average of 25 monthly coefficients. A similar pattern is 

observed for nitrate. This means that the model better simulates seasonal patterns (e.g., 

high sulfate levels in summer and low sulfate levels in winter) than daily fluctuations in 

concentrations (Figure 2-2). For species lacking a strong seasonal pattern, such as EC 

(Figure 2-3) and OC, no substantial difference between the two coefficients is observed. 

This implies that the previously reported correlation coefficients are likely driven by the 

model’s ability to simulate daily fluctuations in concentrations of EC and OC. Also 

shown in Table 2-4 are correlation coefficients using the measurements at JST and SD-

STN sites. These results address whether inter-site correlations are also driven by 

seasonal patterns for the major PM2.5 constituents. The long-term and short-term 

correlation coefficients between sites are similar, with the largest difference observed for 

nitrate. This result suggests that the daily variability is as spatially correlated as the 

seasonal variability. The amount of short-term temporal variability (as represented by the 

variance) captured by the model relative to that common to both sites (inter-site 

correlation) for the various species indicates that the model captures more of the short-

term variability of primary components than that of secondary components. For example, 

the model captures 74% of the temporal variability (represented by the variance) in EC 

concentrations, compared to only 34% of the temporal variability in sulfate 

concentrations. Although different periods were used for model versus JST comparison 
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and the inter-site comparison due to availability of data, the results are informative on a 

comparative basis. Hence, despite similar short-term correlations between model results 

and JST measurements for EC and sulfate (0.64 and 0.56, respectively), we estimate that 

the model is capturing a substantially larger fraction of the spatially representative short-

term variation in EC (75%) than in sulfate (34%). 

 
Table 2-4 Comparison between correlation coefficients (R) (modeled vs. observed 
concentrations at JST, 8/99-8/01) based on the entire simulated dataset (daily and 
seasonal patterns represented) and shorter (30 day) subparts of the dataset (emphasis on 
daily variations). Also provided is a similar comparison for correlations between 
observations at JST and SD-STN sites (3/01-12/02) 

 
CMAQ (modeled) vs. JST (obs.), 

8/99-8/01 
JST (obs.) vs. SD-STN (obs.), 

3/01-12/02 

Species 
Correlation 

based on entire 
dataset 

Average of  
30 day 

correlations 

Correlation 
based on entire 

dataset 

Average of    
30 day 

correlations 

Short-term 
temporal 

variability1 
captured by the 

model2 (%) 
SO4

-2 0.72 0.56 0.98 0.96 34% (e.g., 0.562/0.962) 
NO3

- 0.52 0.41 0.91 0.80 26% 
NH4

+ 0.42 0.48 0.77 0.81 35% 
EC 0.66 0.64 0.77 0.74 75% 
OC 0.58 0.65 0.79 0.80 66% 

1 - represented by the variance 
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Figure 2-2. Comparison between daily modeled (36km grid) and measured (JST) sulfate 
concentrations, for the period of August 1999 – August 2001. Seasonal patterns are well 
captured by the model, but model performance is poor when shorter time scales are 
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considered. The correlation coefficient (R) for all data is 0.72; 0.36 for the period of July-
September 2000; and 0.48 for the period of December 2000 - February 2001. 
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Figure 2-3. Comparison between daily modeled (36km grid) and measured (JST) EC 
concentrations, for the period of August 1999 – August 2001. Modeled EC is generally 
under predicted. With regards to temporal variations, in lieu of a strong seasonal pattern, 
no substantial difference in model performance is observed between shorter and longer 
time scales (as also indicated in Table 2-5). 
 

2.3.3 Spatial representativeness of modeled grid-cell concentrations vs. point 

measurements 

Ambient measurements at a single location might not be representative of air-

quality over a larger domain if the measurements are influenced by local sources. This is 

of special concern for primary PM2.5 constituents, such as EC, as demonstrated by the 

data in Table 2-4. In contrast, air-quality models calculate volume average 

concentrations. These differences in spatial scales can contribute to the discrepancies 

between measured and simulated concentrations. Park et al. (2006) demonstrated that 
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model performance improves when it is compared with ambient data from several 

measurement sites (weighting for distance from the central site), compared to a single 

site, and that the improvement was the largest for primary PM2.5 components. To address 

the issue of spatial representativeness within the Atlanta metropolitan area, we compared 

model performance with single site measurements and an average of sites, JST and SD-

STN. The question then is whether a spatial average of data from these two sites is more 

correlated with the model than any single measurement. Given only two sites, and the 

fact that they both reside in the same 36km grid cell, we used a simple average of the two 

sites, for the period 3/01-12/01 (the overlapping period between the 36km modeling and 

the SD-STN measurements). For elemental carbon, the correlation between CMAQ 

modeled concentrations and measurements at JST was 0.69, the correlation between the 

model and the SD-STN data was 0.66, and the correlation with the average of these two 

sites was 0.72. These differences are subtle, likely indicating that neither of these sites is 

strongly influenced by local sources (the intersite correlation was 0.80), and that the 

model is only slightly more spatially representative than any of these single 

measurements. For sulfate, these correlations were 0.79, 0.80 and 0.80, respectively, with 

an intersite correlation of 0.98, indicating that the model is not more spatially 

representative than any single measurement. 

 

2.3.3 Secondary organic aerosol 

Of the secondary PM2.5 components, secondary organic aerosol (SOA) is of 

special interest, as is comprises a large fraction of ambient PM2.5, but cannot be measured 

directly. Thus, in order to study the health effects of SOA, indirect methods must be 
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applied. One such common method is the EC-tracer method (Turpin and Huntzicker 

1995), in which ambient data are analyzed to identify an OC/EC ratio typical of 

emissions in the region, and secondary OC is then estimated as the difference between 

total OC and the product of EC and this primary OC/EC ratio. Another approach is to 

apply a Chemical Mass Balance (CMB) model, and to estimate secondary OC as the 

difference between total OC and OC apportioned to emission sources (Marmur et al. 

2005; Zheng et al. 2002). This can be viewed as an “expanded” EC-tracer method, as the 

primary OC/EC ratio can vary based on the daily fluctuations in source impacts (e.g., 

biomass burning and diesel emissions have very different OC/EC ratios, and as their 

relative impact on the monitor changes, so will the primary OC/EC ratio). One drawback 

of this approach, however, is that this estimate is more accurately an estimate of 

unapportioned OC, which might not necessarily be entirely SOA (any sources of primary 

OC not included in the CMB analysis may be lumped into this category). Further, errors 

in the CMB source apportionment will impact the SOA allocation in an unknown fashion. 

A conceptually different approach would be to use an emissions-based air quality model, 

such as CMAQ, to generate concentration fields of SOA. Since the chemistry of SOA 

formation is not fully understood, not all processes leading to SOA formation are 

currently included in models such as CMAQ. In addition, it is not trivial to evaluate the 

performance of SOA modules, as a direct comparison with ambient data is not yet 

possible. Model performance for total OC is often evaluated, but it is then difficult to 

distinguish between performance for primary and secondary OC (e.g., overprediction of 

primary OC may compensate for an underprediction in SOA etc.). Morris et al. (2006) 

developed an enhanced SOA module for CMAQ, which includes the formation of SOA 
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from sesquiterpenes and isoprene, in addition to the monoterpenes oxidation processes 

accounted for in the current version of CMAQ. In addition, this module includes 

polymerization of SOA into non-volatile particles. Using this enhanced SOA module, 

Morris et al. (2006) report substantial improvements in model performance for OC. Even 

with the inclusion of these processes in the SOA module, much remains unknown 

regarding the chemistry leading to SOA formation. Recent evidence suggests a 

substantial contribution of anthropogenic volatile organic compounds (VOC) to SOA 

formation in the Atlanta area (Sullivan, 2006), in contrast to findings from CMAQ, in 

which the vast majority of SOA is formed from biogenic precursors (e.g., 90% of SOA is 

of biogenic origin, on an annual basis, based on modeling results presented here). Here 

we compare results from the VISTAS simulations (daily values for 2002) with results 

from a CMB analysis (Marmur et al. 2006; Marmur et al. 2005). A comparison of 

unapportioned organic matter (OM) (OC not apportioned to any of the sources of primary 

OC; multiplied by 1.4 to account for OM/OC ratio) and SOA from CMAQ shows similar 

trends (Figure 2-4) except for several outliers in the CMB analysis (extremely high 

unapportioned OM levels on specific winter days). Focusing on summertime (April-

October), CMAQ SOA is slightly overestimated compared to the CMB unapportioned 

OM (4.3 vs. 3.6 µg/m3, respectively), though an OM/OC ratio higher than 1.4 (used in the 

CMB analysis), as may be more suitable for SOA (Turpin and Lim 2001) would have 

made these more similar. The correlation coefficient (R) between these two methods is 

0.70, slightly higher than the coefficient for total OC (Table 2-3). Comparing this 

correlation coefficient for all data between April-October 2002 with an average of the 

correlation coefficients during running 30 day blocks (to dampen out seasonal/long-term 
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effects) revealed no difference (both are equal to 0.70). Thus, there is substantial 

agreement in the daily variability of SOA levels estimated by these two methods, for the 

time period considered. This finding is somewhat surprising, given the limited 

understanding of SOA formation chemistry. However, as SOA formation chemistry 

continues to be studied and models updated accordingly, these may become useful tools 

in health studies. 
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Figure 2-4. Comparison between CMAQ modeled SOA (Morris et al., 2005) and 
unapportioned OM from a CMB analysis (Marmur et al., 2006) for 2002 at the JST site 
 
 

2.4 Discussion 

An analysis of spatial and temporal variability in concentration fields (Wade et al. 

2006) has indicated that the spatial variation in concentrations of secondary PM2.5 

components is lower than that of primary components. This can also be observed in the 

inter-site correlations presented here (JST and SD-STN, Table 2-4), being higher for 

sulfate (0.98) than for EC (0.77). This implies that the error introduced into the 

epidemiologic analysis due to spatial variability of ambient concentration fields would be 
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higher for primary than for secondary PM2.5 components, possibly attenuating observed 

associations with health-outcomes. In practice, these findings may also imply that the 

location of measurement is not of great significance when secondary PM2.5 components 

are of interest (e.g., measurements at any sampling site within the health study domain 

would likely be representative of the daily variability in sulfate concentrations), while the 

sampling location may be of greater significance when primary PM2.5 components are of 

interest (different sites might exhibit different daily variability in concentrations,  

possibly influencing the epidemiologic analysis). In terms of applying air-quality models 

in the epidemiologic analysis, these data suggest that such an application might not 

introduce much benefit for secondary PM2.5 components, if ambient data are available. A 

sensitivity analysis of the epidemiologic model would be needed in order to estimate the 

effect of dampened temporal variability of a given (simulated) pollutant on the derived 

health risk-ratios. Such information may be helpful in determining whether applying air-

quality models in-lieu of ambient data would serve as a reasonable surrogate. Based on 

the results presented here (Table 2-4), the ability of CMAQ to model short term 

variations in concentrations of sulfate, nitrate and ammonium is limited, while for EC and 

OC, the model does capture more of the short-term variability in these concentrations. 

Regarding spatial representativeness, model performance has been shown to improve 

when model results are compared with a spatial average of ambient data, rather than one 

site, especially for primary PM2.5 components (slightly in this study, more substantially in  

(Park et al. 2006). This implies that a volume average concentration, as from the output 

of an air-quality model, may be more spatially representative than any individual point 

measurement. These findings regarding the spatial and temporal variability suggest that 
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there may be some benefit in applying simulated concentrations of EC (and to a degree, 

OC) in time-series health studies, if the increased spatial representativeness outweighs the 

loss of some of the temporal variability.  
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CHAPTER 3 

OPTIMIZATION BASED SOURCE APPORTIONMENT OF PM2.5  

INCORPORATING GAS-TO-PARTICLE RATIOS 

(A. Marmur, A. Unal, J.A. Mulholland, and A.G. Russell, Environmental Science and 

Technology, 39, 3245-3254, 2005) 

 

Abstract 

A modified approach to PM2.5 source apportionment is developed, using source 

indicative SO2/PM2.5, CO/PM2.5 and NOx/PM2.5 ratios as constraints, in addition to the 

commonly used particulate-phase source profiles. Additional information from using gas-

to-particle ratios assists in reducing collinearity between source profiles, a problem that 

often limits the source-identification capabilities and accuracy of traditional receptor 

models. This is especially true in the absence of speciated organic-carbon measurements. 

In the approach presented here, the solution is based on a global optimization mechanism, 

minimizing the weighted-error between apportioned and ambient levels of PM2.5 

components, while introducing constraints on calculated source contributions that assure 

that the ambient gas-phase pollutants (SO2, CO and NOy) are reasonable. This technique 

was applied to a 25 month dataset of daily PM2.5 measurements (total mass and 

composition) at the Atlanta Jefferson Street SEARCH site. Results indicate that this 

technique was able to split the contributions of mobile sources (gasoline and diesel 

vehicles) more accurately than particulate-phase source apportionment methods. 
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Furthermore, this technique was able to better quantify the direct contribution (primary 

PM2.5) of coal-fired power-plants to ambient PM2.5 levels.  

 

Keywords: CMB, LGO, optimization, source-apportionment, PM2.5, two-phase-source-

profile. 

 

3.1 Introduction 

Chemical Mass Balance (CMB) receptor models are a common tool for 

apportioning of ambient levels of pollutants (mainly particulate matter) among the major 

contributing sources. CMB combines the chemical and physical characteristics of 

particles or gases measured at sources and receptors to quantify the source contributions 

to the receptor. The quantification is based on the solution to a set of linear equations that 

express each receptor’s ambient chemical concentration as a linear sum of products of 

source-profile abundances and source contributions (1,2), as expressed by:  

∑
=

+=
n

j
ijiji eSfC

1

            (3-1) 

where: 

Ci = ambient concentration of chemical species i (µg/m3); 

fi,j = fraction of species i in emissions from source j; 

Sj = contribution (source-strength) of source j (µg/m3); 

n = total number of sources; 

ei = error term; 
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The source profile abundances (fij, the mass fraction of a chemical in the 

emissions from each source type) and the receptor concentrations (Ci), along with 

uncertainty estimates, serve as input data to the CMB model. The output consists of the 

contribution of each source category (Sj) to the measured concentration of different 

species at the receptor. 

In CMB8 (2), the effective variance (EV) weighing for least squares calculations is 

applied, to find the best solution to the set of equations given by Equation 1. The 

effective weighing method takes into account both the uncertainties in the ambient 

measurements and the uncertainties in the source-profile compositions. In practice, 

CMB8 performs a series of matrix operations to minimize χ2, given as (3): 
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where: 

iCσ = one standard deviation precision of the Ci measurement; 

ijfσ = one standard deviation of the fij measurement; 

m = total number of species; 

 

If the
ijfσ are set to zero, the solution reduces to the ordinary weighted least square 

(OWLS) solution (3), taking only the uncertainties in the ambient measurements into 

account. 
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CMB models are based on the following assumptions (2): 

1. Compositions of source emissions are constant over the period of ambient and 

source sampling. 

2. Chemical species do not react with each other, i.e., they add linearly. 

3. All sources with a potential for significantly contributing to the receptor are 

included in the analysis. 

4. The source compositions are linearly independent of each other. 

5. The number of sources or source categories is less that or equal to the number of 

chemical species. 

6. Measurement uncertainties are random, uncorrelated, and normally distributed. 

 

Of these, one of the major assumptions limiting the ability of CMB models to identify 

and quantitatively provide impacts of the major sources is the linear independence of 

source profiles, when those profiles are based solely on traditional species. For 

apportionment of PM2.5 (particulate matter with a diameter less than 2.5µm), source 

profiles including major ions (SO4
-2, NO3

-, NH4
+, Cl-), elemental and organic carbon 

fractions (EC, OC) and trace metals are typically used. Some source categories share 

relatively similar profiles (e.g. diesel and gasoline vehicles), limiting the ability of CMB 

to accurately and consistently apportion the PM mass between those sources, particularly 

in the presence of other sources of OC and EC. To address this issue, recent source-

apportionment studies make use of speciated organic compounds (“organic markers”) to 

apportion OC (4-6), a major component in emissions from mobile sources, vegetative 

burning and meat-charbroiling. However, some sources share organic markers (e.g., 
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hopanes and steranes in both gasoline and diesel vehicles), making it difficult to 

accurately and consistently apportion the OC mass between those sources. In addition, 

speciated ambient OC data are not yet commonly available. 

 

3.2 Model description 

3.2.1 Incorporating gas-to-particle ratios in PM2.5 source-apportionment 

Here we apply an extended CMB approach for PM2.5 source-apportionment which 

incorporates source-indicative SO2/PM2.5, CO/PM2.5 and NOx/PM2.5 ratios, in addition to 

the commonly used PM2.5 source profiles. Such ratios, along with ambient gas phase data, 

can further assist in identifying sources, as sources that may have fairly similar PM2.5 

emissions, may have significantly different gaseous emissions. Such gas-to-particle ratios 

may vary during transport from source to receptor, due to different deposition rates and 

reactivity. However, the atmospheric lifetimes of SO2 (about a week), CO (1-4 months), 

and NOx (1-7 days) (7) are long enough to assume that no major change in the gas-to-

particle ratio will occur within an urban to regional airshed, given that the typical lifetime 

of a fine particle is in the order of days to weeks, as well (8). Even so, variations in the 

gas-to-particle ratios, along with uncertainties in the initial estimate used, need to be 

considered.  

A few studies have shown the increased resolution in source apportionment of 

two-phase receptor models (9-13), though this is not a common practice in the source 

apportionment literature. Applying a two-phase receptor model for PM10 and non-

methane-hydro-carbons (NMHC) has shown to significantly reduce the collinearity 

problem (9). A study dealing with decay-adjusted receptor modeling (13) has shown 
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small improvements in the agreement between CMB-predicted and observed 

concentrations of individual VOCs, but did not significantly change the estimated 

emissions contributions. These studies made use of two phase source profiles in which 

the profile included the fractional composition of both PM and gas phase data (speciated 

VOC, NOx, SO2 and CO) in a single profile, and χ2 was minimized based on all these 

species. However, when Equation 1 is solved in this manner, several issues arise. First, 

since these gas phase species are reactive, the numerator in χ2 cannot be simply expected 

to approach zero. In addition, the uncertainty in the measured ambient concentration is 

likely lower for major gas phase species, compared to speciated PM2.5 components. 

Hence these major gaseous species are likely to drive the minimization of χ2 (assuming 

uncertainties in the source profile compositions are comparable), despite the fact that for 

many sources of PM2.5, the fraction of PM2.5 emissions is much smaller than that of gas 

phase emissions. For example, data from the national emission inventory for the USA 

(14) indicate that only about 0.6% of the total mass emissions from coal power-plants are 

PM2.5, the remaining and major part being gases (SO2 and NOx).  

To avoid inaccuracies evolving from the use of two-phase source profiles and the 

straight forward minimization of χ2 including gaseous species as fitting species, we 

suggest using ratios of SO2/PM2.5, CO/PM2.5 and NOx/PM2.5 in emissions from the 

various sources to bound acceptable solutions to the source apportionment problem 

(Equation 1), without directly including these data in the process of minimizing χ2. That 

is, this information is used as a constraint, but not directly in the source profiles used by 

CMB.  This information adds three constraint equations to the apportionment process, 
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based on the same principles as in equation 1. The ambient SO2 levels can then be 

expressed as: 
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2 = SO2/PM2.5 ratio in emissions from source j (mass/mass); 

Sj = contribution (source-strength) of source j (µg/m3) to the PM2.5 loading; 

n = total number of sources; 

 

Similar equations can be expressed also for ambient CO and NOx. Due to 

uncertainties in the initial estimate of the gas-to-particle ratio at the source, and to 

account for possible changes to these ratios during transport, we suggest using these 

equations (Equation 3) to bound acceptable solutions to the PM2.5 source-apportionment 

problem (Equation 1), but not as part of the error minimization process. In practice, we 

suggest that such an acceptable solution is one that predicts the ambient SO2, CO and 

NOx concentrations within a factor of three (under or over prediction) of the observed 

value (sensitivity to this factor is addressed shortly). Hence, the goal is to find an 

optimum solution based on the particulate-phase data, which adheres to somewhat more 

flexible constraints on the gaseous side. 
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3.2.2 Use of global optimization models for source-apportionment 

To solve the PM2.5 source-apportionment problem (Equation 1), subject to gas-

phase constraints, we use a global optimization program. A large variety of quantitative 

decision problems in the applied sciences, engineering and economics can be described 

by constrained optimization models. In these models, the best decision is sought that 

satisfies all stated feasibility constraints and maximizes (or minimizes) the value of a 

given objective function. The general mathematical form of these models is summarized 

as (15,16): 

max f(x); a ≤ x ≤ b; g(x)  ≤ 0            (3-4) 

 

where: 

x = a real n-vector (to describe feasible decisions)  

a,b  =  finite, component-wise vector bounds imposed on x  

f(x)  =  a continuous function (to describe the model objective)  

g(x) = a continuous vector function (to describe the model constraints; the inequality 

is interpreted component-wise).  

 

The objective of global optimization is to find the best solution of nonlinear decision 

models, in the possible presence of multiple locally optimal solutions. Here, LGO 

(Lipschitz(-Continuous) Global Optimizer) is used (15,16). LGO integrates a suite of 

robust and efficient global and local scope solvers. These include: global adaptive 

partition and search (branch-and-bound); adaptive global random search; local (convex) 



 42 

unconstrained optimization; and local (convex) constrained optimization. The LGO 

implementation of these methods does not require derivative information. Their 

operations are based exclusively on the computation of the objective and constraint 

function values, at algorithmically selected search points.  

Here, LGO was applied to identify and quantify the sources contributing to ambient 

levels of particulate matter. In practice, LGO was applied to solve the set of equations 

represented by Equation 1 (22 equations for 4 ions, 2 carbon fractions, and 16 trace 

metals), by setting χ2 (Equation 2) as the objective function to be minimized. The 

solution was set subject to the constraint that the total apportioned levels of SO2, CO and 

NOx (as calculated by Equation 3) lie within a factor of three of the observed ambient 

levels. 

 

3.3 Model implementation 

3.3.1 Test Case: SEARCH 25 month dataset, Jefferson St., Atlanta, Georgia 

To evaluate this modified approach for source-apportionment, we used the 

SEARCH (Southeastern Aerosol Research and Characterization) 25 month (8/98-8/00) 

dataset for Jefferson St. (JST) site in Atlanta, GA (17,18), which included data on total 

PM2.5 mass (gravimetric measure) and its components. The JST site is located 4 km 

northwest of downtown Atlanta, in an industrial and commercial area. The main 

objectives of SEARCH include the understanding of composition and sources of PM in 

the southeast (17,18). SEARCH data is being used for the Aerosol Research Inhalation 

Epidemiological Study (ARIES) air-quality health study in Atlanta, GA (17), and one 

motivation of this work is to assess the possibility of using source information derived 
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from receptor modeling in epidemiologic studies.. For the speciation of PM2.5, a manual, 

filter-based, Particle Composition Monitor (PCM) was operated daily. The PCM included 

three channels to collect 24 hour integrated samples for analysis of major ions, trace 

metals, organic and elemental carbon in PM2.5 size range (17).  Ion Chromatography (IC) 

was used to quantify water soluble ionic species. Elemental and organic carbon collected 

on quartz filters were measured by Thermal Optical Reflectance (TOR). Trace metals 

were measured by x-ray fluorescence (XRF). Ambient values of daily SO2, CO and NOy 

were reported as well. Mean values and standard deviations measured at the JST site, for 

the species and time period (8/98-8/00) used in this analysis, are given in Table 1. Note 

that NOy was used rather than NOx, to account for the amount of NO and NO2 oxidized to 

other nitrogen forms, such as HNO3 and Peroxy Acetyl Nitrate (PAN). The average 

NOx/NOy mass ratio was 0.89, indicating “fresh” local emissions (compared to 0.63 at the 

rural Yorkville site, 55 km west northwest of Atlanta). The concentration values were 

used for the measured data, and the summation of the analytical uncertainty and 1/3 of 

the detection limit value was used as the overall uncertainty assigned to each measured 

value (18). Values below the detection limit were replaced by half of the detection limit 

values, and their overall uncertainties were set at 5/6 of the detection limit values (18). 

Missing values were replaced by the geometric mean of the measured values, and their 

accompanying uncertainties were set at 4 times this geometric mean value (18). 
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Table 3-1. Mean, standard-deviation, minimum, maximum of ambient levels of the 
species used for the source apportionment, JST site, Atlanta, GA 

Species Mean (µg/m3) StDev (µg/m3) Min (µg/m3) Max (µg/m3) 
PM2.5 19.1 8.9 1.9 54.6 
SO4

-2 5.41 3.65 0.53 20.8 
NO3

- 1.12 0.87 0.00 7.49 
Cl- 0.11 0.08 0.02 0.83 

NH4
+ 2.79 1.60 0.30 10.3 

EC 1.98 1.36 0.17 11.9 
OC 4.46 2.21 0.66 18.4 
Al 1.61E-02 4.52E-02 6.16E-03 9.00E-01 
As 1.42E-03 1.35E-03 5.05E-04 1.51E-02 
Ba 1.81E-02 8.01E-03 1.45E-02 5.69E-02 
Br 4.04E-03 7.97E-03 2.60E-04 2.07E-01 
Ca 5.37E-02 4.48E-02 4.04E-03 5.02E-01 
Cu 3.70E-03 4.57E-03 6.15E-04 4.19E-02 
Fe 8.92E-02 7.45E-02 5.34E-03 1.05E+00 
K 6.51E-02 5.86E-02 6.37E-03 8.27E-01 

Mn 1.91E-03 1.54E-03 4.00E-04 1.31E-02 
Pb 6.40E-03 7.49E-03 1.17E-03 7.83E-02 
Sb 3.34E-03 4.40E-03 2.13E-03 1.07E-01 
Se 1.32E-03 1.26E-03 3.50E-04 1.01E-02 
Si 1.12E-01 1.15E-01 1.05E-02 1.83E+00 
Sn 4.32E-03 1.92E-03 3.53E-03 1.72E-02 
Ti 4.78E-03 4.38E-03 2.14E-03 5.46E-02 
Zn 1.63E-02 1.61E-02 4.23E-04 2.11E-01 
SO2 16.6 12.3 1.4 98.1 
CO 560 423 180 4020 
NOy 108 68.2 12.4 590 

 
The major source categories used to in the source apportionment included light 

duty gasoline vehicles (LDGV), heavy duty diesel vehicles (HDDV), fugitive soil dust 

(SDUST), vegetative burning (BURN), coal fired power plants (CFPP) and cement kilns 

(CEM). To address the formation of secondary pollutants, we also included theoretical 

profiles based on the molecular weight fractions, for ammonium-sulfate (AMSULF), 

ammonium-bisulfate (AMBSLF), ammonium-nitrate (AMNIT) and secondary/other OC 

(OTHEROC). The secondary/other OC category will include any OC not apportioned to 

one of the primary source categories above. Of special note are emissions from meat 

charbroiling, dominated almost solely by OC emissions (19), with no unique inorganic 

marker, and characterized by low SO2/PM2.5 and CO/PM2.5 ratios (19,20). This makes it 
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very difficult to distinguish between emissions from meat charbroiling and secondary OC 

formation. For this reason, meat charbroiling emissions were not apportioned directly, but 

were rather lumped into the secondary/other OC category. 

Source profiles used for LDGV and HDDV were based on measurements as part 

of the Northern Front Range Air Quality Study (NFRAQS) (21). The profiles used for 

vegetative burning, power plants, and cement kilns were based on measurements done as 

part of the Big Bend Regional Aerosol Visibility and Observational (BRAVO) study 

(19). The soil dust profile used was from more regionally-representative measurements in 

Alabama (22). A summary of the source-profiles used in this study is given in Table 2. 

The LDGV profile is characterized by high carbon content and a high OC/EC ratio (2.3). 

The HDDV profile is also characterized by high carbon content, but there the OC/EC 

ratio is much lower (0.27). The LDGV had a higher abundance of trace metals, compared 

to the HDDV profile. However, the relative amounts of EC and OC in emissions from 

both gasoline and diesel vehicles is highly variable, and there is significant overlap in the 

range of values between the  two mobile source types (23). Therefore, trying to 

distinguish gasoline and diesel contributions separately on the basis of just EC and OC 

mass fractions is suspect (23). This further indicates the need for additional markers to 

accurately separate the emissions from each of these sources. The BURN profile is 

characterized by high carbon content and a high OC/EC ratio (4.1), but also by a high K 

content (0.057), which can serve as a marker for vegetative burning. Crustal elements, Al, 

Ca, Fe and Si, along with OC, are abundant in the SDUST profile. The CFPP is 

characterized by high fractions of SO4
-2, OC, Al, Ca and Si, and by a relatively high Se 

content, compared to other sources. Selenium can therefore serve as a marker for coal-
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fired power plants. Emissions from cement kilns are characterized by high fractions of 

SO4
-2, NO3

-, OC, Al, Ca, Fe, K, and Si. This shows that differentiating emissions from 

power plants, cement kilns and fugitive soil dust might be subject to collinearity. 

Adding information on gaseous emissions, in the form of gas-to-particle ratios, 

can further assist in identifying sources. Gas-to-particle ratios for mobile-sources 

(LDGV, HDDV), based on the 1999 National Emissions Inventory (14), show very 

different patterns, LDGV being characterized by a significantly higher CO/PM2.5 ratio 

than HDDV (Table 3). Uncertainties in these ratios were not available, but are likely not 

large enough to mask the major differences between gaseous emissions from gasoline and 

diesel vehicles. Ratios for vegetative burning, coal-fired power plants, and cement-kilns 

were determined based on data from the BRAVO study (19) and the emission inventory 

for the State of Georgia (24). CO and NOx ratios for cement kilns were modified to 

describe the kiln, rather than the entire plant emissions, as given by the inventory (which 

includes high particulate matter emissions from all grinding operations). The 

modification was based on the SO2 ratio for kilns (19), compared to the SO2 ratio 

obtained from the inventory. The high SO2/PM2.5 ratios in power plants and cement 

plants (Table 3) can assist in separating these emissions from fugitive soil dust (no 

gaseous emissions). The higher NOx emissions from cement kilns, along with the 

differences in PM emissions, can assist in separating cement kilns and coal-fired power 

plant emissions. The relatively low CO/PM2.5 ratios in vegetative burning emissions can 

serve as an additional marker to assist in separating this source from LDGV emissions 

(along with potassium). 
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Table 3-2. Particulate source-profiles used in the apportionment process (fraction of total 
PM2.5 emissions and standard deviations over multiple measurements) 

Species LDGV1 HDDV1 SDUST2 BURN3 CFPP3 
SO4

-2 0.0133±0.0056 0.0046±0.0048 0.0010±0.0004 0.0239±0.0227 0.2874±0.2256 
NO3

- 0.0000±0.0052 0.0020±0.0014 0.0010±0.0004 0.0024±0.0018 0.0069±0.0109 
Cl- 0.0000±0.0100 0.0011±0.0003 0.0007±0.0005 0.0761±0.0730 0.0089±0.0157 

NH4
+ 0.0000±0.0100 0.0000±0.0100 0.0000±0.0000 0.0165±0.0253 0.0179±0.0213 

EC 0.2355±0.0277 0.7351±0.1014 0.0060±0.0040 0.1575±0.1545 0.0138±0.0222 
OC 0.5486±0.0642 0.1981±0.0774 0.0440±0.0170 0.6441±0.1645 0.2718±0.2577 
Al 0.0019±0.0024 0.0000±0.0100 0.0950±0.0010 0.0011±0.0010 0.0530±0.0326 
As 0.0000±0.0006 0.0000±0.0001 0.0000±0.0000 0.0002±0.0007 0.0000±0.0006 
Ba 0.0000±0.0100 0.0000±0.0100 0.0000±0.0000 0.0000±0.0003 0.0107±0.0101 
Br 0.0000±0.0003 0.0000±0.0000 0.0000±0.0000 0.0008±0.0009 0.0003±0.0006 
Ca 0.0118±0.0016 0.0006±0.0005 0.0180±0.0040 0.0040±0.0050 0.1655±0.1053 
Cu 0.0004±0.0006 0.0000±0.0001 0.0003±0.0003 0.0000±0.0000 0.0009±0.0007 
Fe 0.0120±0.0016 0.0002±0.0001 0.0530±0.0060 0.0007±0.0008 0.0361±0.0202 
K 0.0001±0.0015 0.0001±0.0002 0.0092±0.0033 0.0573±0.0563 0.0052±0.0026 

Mn 0.0001±0.0008 0.0000±0.0001 0.0016±0.0007 0.0000±0.0000 0.0012±0.0011 
Pb 0.0006±0.0008 0.0000±0.0001 0.0001±0.0000 0.0000±0.0000 0.0006±0.0009 
Sb 0.0000±0.0100 0.0000±0.0100 0.0000±0.0000 0.0000±0.0001 0.0001±0.0005 
Se 0.0000±0.0003 0.0000±0.0001 0.0000±0.0000 0.0000±0.0000 0.0058±0.0083 
Si 0.0121±0.0193 0.0000±0.0100 0.2660±0.0140 0.0030±0.0032 0.1069±0.0681 
Sn 0.0000±0.0100 0.0000±0.0100 0.0000±0.0000 0.0000±0.0001 0.0001±0.0004 
Ti 0.0001±0.0067 0.0000±0.0011 0.0100±0.0010 0.0001±0.0001 0.0085±0.0052 
Zn 0.0091±0.0010 0.0006±0.0003 0.0001±0.0000 0.0003±0.0002 0.0031±0.0033 

Species CEM3 AMSULF4 AMBSLF4 AMNITR4 OTHEROC4 
SO4

-2 0.3138±0.0837 0.727±0.036 0.835±0.042 0.000±0.000 0.00±0.00 
NO3

- 0.0891±0.0734 0.000±0.000 0.000±0.000 0.775±0.039 0.00±0.00 
Cl- 0.0712±0.1255 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 

NH4
+ 0.0236±0.0187 0.273±0.014 0.156±0.008 0.225±0.011 0.00±0.00 

EC 0.0296±0.0250 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
OC 0.1278±0.0603 0.000±0.000 0.000±0.000 0.000±0.000 1.00±0.00 
Al 0.0106±0.0035 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
As 0.0000±0.0002 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
Ba 0.0004±0.0012 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
Br 0.0011±0.0013 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
Ca 0.1748±0.0526 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
Cu 0.0002±0.0001 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
Fe 0.0134±0.0052 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
K 0.1159±0.0618 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 

Mn 0.0010±0.0004 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
Pb 0.0006±0.0008 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
Sb 0.0000±0.0003 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
Se 0.0001±0.0000 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
Si 0.0426±0.0219 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
Sn 0.0001±0.0002 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
Ti 0.0015±0.0007 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 
Zn 0.0041±0.0059 0.000±0.000 0.000±0.000 0.000±0.000 0.00±0.00 

1- from the NFRAQS study (21)   
2- from Cooper (22)  
3- from Chow et al. (19)  
4- based on molecular-weight fractions 
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Table 3-3. Gas-to-PM2.5 ratios used as constraints in the optimization process 
(mass/mass) 

Source SO2/PM2.5 CO/PM2.5 NOx/PM2.5 

LDGV 4.0 1 800 1 83.7 1 

HDDV 0.71 1 13.4 1 21.9 1 

BURN 0.013 ± 0.0004 2 10.1 ± 1.1  2 0.24 ± 0.06  2 

CFPP 128 ± 29.4 3 2.1 ± 0.7 3 41.0 ± 14.5 3 

CEM 316 ± 210 3,4 5.3 ± 6.5 3,4 270 ± 344 3,4 

1- based on emission inventory data, no variability provided 
2- based on emission inventory data; standard deviations based on county level, therefore low 
3- based on emission inventory data; standard deviations based on plant-level, therefore higher 
4- based on source-profile measurements (19)  

 

3.4 Results 

Source apportionment was performed on the SEARCH 25 month dataset using 

three different techniques. First, CMB8 (1,2) was used, applying effective variance 

weighting for least squares (EV) calculations (3) for PM2.5 components only (i.e., gaseous 

species were not used as fitting species). Then, the uncertainties in the source profiles 

were set equal to zero, and CMB8 was run again, using the ordinary weighted least 

square (OWLS) solution (3) (once more, without using gaseous species in the weighing 

procedure). Finally, the Lipschitz(-Continuous) Global Optimizer (LGO) (15,16) was 

applied to perform the OWLS solution, forcing constraints on the calculated levels of 

SO2, CO and NOx. An LGO derived OWLS solution without forcing gas-phase 

constraints was similar to the CMB OWLS solution. Applying an EV solution to LGO 

and forcing gas-phase constraints turned out to be too irregular, due to the rigidity of the 

EV weighing function. The measures used to evaluate each individual solution achieved 

were the chi-square (Equation 2), the correlation coefficient, the fraction of total PM2.5 

mass apportioned and the calculated-to-observed ratios for the individual ratios. 

However, the chi-square values from EV are not comparable with the ones achieved by 
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OWLS, since the denominator in its formula is different. Therefore, as a convenient 

uniform measure of the quality of the fit, we also calculated daily values for the 

normalized-mean-square-error (NMSE), given as: 
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The NMSE has a range of 0≤NMSE≤∞, 0 meaning perfect agreement in value 

between modeled and ambient values. A NMSE value of 0.5 represents a factor of two, 

on the average, between the two sets of data.  

The average source-contributions, based on the entire 25 month dataset (average 

of 762 daily values) and using these three techniques, indicate that a major part of the 

ambient PM2.5 is of secondary origin (Figure 3-1; Table 3-4. The apportionment of the 

primary pollutants differed among the three techniques used. The CMB8 EV solution 

apportioned 3.4 µg/m3 to mobile sources, with a diesel-to-gasoline ratio of 0.97. A 

slightly lower contribution was apportioned to mobile sources using the OWLS solution 

(3.3 µg/m3), with a similar diesel-to-gasoline ratio. The LGO based mobile source 

contribution was slightly lower (3.2 µg/m3), with a higher diesel-to-gasoline ratio (1.53). 

This lower gasoline-vehicle contribution is also evident in the lower calculated-to-

observed ratio for CO based on the LGO solution, compared to the EV and OWLS 

solutions (all over predicted). Another notable difference between the three solutions was 

the amount of PM2.5 attributed to power-plants. CMB8-EV estimated that contribution at 
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0.29 µg/m3, CMB-OWLS at 0.62 µg/m3, while LGO estimated the contribution at 0.15 

µg/m3. These differences are also evident in the calculated-to-observed ratios for SO2, 

which are significantly overpredicted in the EV and OWLS solutions. The amount 

attributed to vegetative burning was fairly similar in the EV and OWLS solutions (1.9 

and 2.0 µg/m3 respectively), significantly higher than in the LGO solution (1.1 µg/m3). 

Potassium, a marker for vegetative burning, is overpredicted in the EV and OWLS 

solutions (calculated-to-observed ratios of 2.2), and better predicted in the LGO solution 

(ratio of 1.2). Differences were also notices in the fugitive soil dust contributions. The 

amount attributed to the “Other OC” category was lower in the two CMB applications 

compared to the LGO solution, most likely due to over estimation of the OC contribution 

from gasoline vehicles and vegetative burning. 

Interesting to note that all three solutions are characterized by high correlation 

coefficients for the fit obtained (0.97-0.99), good mass closure (91-93 %), and calculated-

to-observed ratios nearing one for the major PM2.5 components. In the EV solution, the 

average chi-square value, and most individual values, lied within the acceptable range 

(<4) (1,2). The chi-square values based on the OWLS and LGO solutions are not 

comparable to that of the EV solution. The chi-square based on the LGO solution is 

significantly higher than in the OWLS solution, and reflects the “penalty” of bounding 

acceptable solutions based on the gas phase species. However, the correlation coefficient 

is higher, and the overall and trace-metal based NMSE values are lower for the LGO 

solution compared to the OWLS solution. 

To address the sensitivity of the solution obtained to the factor used as a 

constraint for the gas phase species, we also conducted the same analysis using a factor of 
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two (instead of three). Results obtained were nearly identical, with mass contributions 

differing by less than 7% for most sources. The major difference observed was for the 

average LDGV contribution, 0.2 µg/m3 (18%). The source cross correlations between 

these two sets of solution were higher than 0.92 for all sources but cement kilns (R=0.62, 

but mass contribution being extremely low). 
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Figure 3-1. Source-contributions to PM2.5 levels at JST site, Atlanta, GA, using CMB8 
EV solution, CMB8 OWLS solution and LGO 
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Table 3-4. Average and standard deviation of the source-contributions to PM2.5 levels 
measured at JST site, Atlanta, GA, using CMB8-EV, CMB8-OWLS and LGO. Also 
reported are the correlation (R), NMSE, % total mass, chi-square and calculated-to-
observed ratios 

 CMB8-EV CMB8-OWLS LGO 
 Mean  (StDev) Mean  (StDev) Mean   (StDev) 

R 1 0.9734 (0.0298) 0.9661 (0.0357) 0.9879 (0.0324) 
NMSE PM2.5 

1 0.161 (0.362) 0.0327 (0.131) 0.026 (0.096) 
NMSE metals 2 0.801 (0.966) 0.714 (0.901) 0.249 (0.346) 
% total mass 3 93.4 (18.2) 93.1 (18.7) 90.5 (17.4) 
Chi-square 4 3.16 (3.47) 4.475 (6.447) 20.3 (16.8) 

LDGV (µg/m3) 1.72 (1.61) 1.68 (1.55) 1.28 (0.90) 
HDDV (µg/m3) 1.66 (1.53) 1.62 (1.52) 1.96 (1.63) 
SDUST (µg/m3) 0.55 (0.61) 0.28 (0.45) 0.39 (0.48) 
BURN (µg/m3) 1.90 (1.29) 2.01 (1.50) 1.13 (0.69) 
CFPP (µg/m3) 0.29 (0.48) 0.62 (0.74) 0.15 (0.12) 
CEM (µg/m3) 0.006 (0.04) 0.012 (0.08) 0.004 (0.02) 

AMSULF (µg/m3) 7.23 (5.20) 7.19 (5.17) 7.03 (5.12) 
AMBSLF (µg/m3) 0.54 (1.30) 0.50 (1.28) 0.64 (1.46) 
AMNITR  (µg/m3) 1.57 (1.25) 1.55 (1.25) 1.60 (1.34) 
OTHEROC (µg/m3)

 
1.86 (1.55) 1.76 (1.50) 2.59 (1.64) 

SO4
-2 ratio 5 1.16 (0.47) 1.10 (0.12) 1.07 (0.07) 

NO3
- ratio 5 1.25 (1.02) 1.14 (0.75) 1.18 (0.87) 

Cl- ratio 5 1.81 (1.49) 1.85 (1.36) 1.06 (0.63) 
NH4

+ ratio 5 0.93 (0.38) 0.89 (0.14) 0.88 (0.15) 
EC ratio 5 1.09 (0.78) 0.97 (0.14) 0.98 (0.13) 
OC ratio 5 1.06 (0.51) 1.01 (0.19) 1.00 (0.03) 
Al ratio 5,6 7.82 (6.37) 6.64 (5.11) 4.67 (2.81) 
As ratio 5 0.53 (0.47) 0.55 (0.51) 0.32 (0.25) 
Ba ratio 5 0.18 (0.28) 0.38 (0.45) 0.10 (0.08) 
Br ratio 5 0.68 (0.92) 0.68 (0.84) 0.39 (0.38) 
Ca ratio 5 1.87 (1.48) 2.92 (2.60) 1.15 (0.34) 
Cu ratio 5 0.59 (0.57) 0.60 (0.52) 0.42 (0.39) 
Fe ratio 5 0.84 (0.66) 0.73 (0.38) 0.55 (0.17) 
K ratio 5 2.23 (1.72) 2.20 (1.55) 1.19 (0.49) 

Mn ratio 5 1.06 (1.08) 0.94 (0.88) 0.69 (0.58) 
Pb ratio 5 0.37 (0.38) 0.36 (0.36) 0.27 (0.23) 
Sb ratio 5 0.02 (0.02) 0.03 (0.03) 0.01 (0.01) 
Se ratio 5 1.99 (4.05) 4.66 (7.72) 1.11 (1.20) 
Si ratio 5 2.18 (1.54) 1.64 (0.77) 1.28 (0.12) 
Sn ratio 5 0.02 (0.02) 0.02 (0.02) 0.01 (0.00) 
Ti ratio 5 2.12 (1.59) 2.01 (1.57) 1.27 (0.70) 
Zn ratio 5 1.42 (1.95) 1.22 (0.73) 1.01 (0.35) 

SO2 ratio 5,6 4.37 (8.73) 8.24 (23.4) 1.99 (0.97) 
CO ratio 5,6 3.18 (3.43) 3.07 (3.56) 2.06 (0.83) 
NOy ratio 5,6 2.11 (1.83) 2.07 (1.51) 1.58 (0.66) 

1- calculated based on all PM2.5 components 
2- calculated based on trace metals only  
3- % of apportioned mass to total PM2.5  
4- chi-square is not comparable for the EV case and the two OWLS cases, as the denominator in its formula is different  
5- ratio of apportioned mass to ambient level (ideally would approach 1 for all species) 
6- not used as a fitting species 
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To analyze the driving forces in the apportionment process, we calculated the 

correlations between the daily contributions of the various sources and the daily ambient 

levels of the different species. These correlations (R values, Table 5) indicate which are 

the species most highly correlated with each source category, therefore driving the 

apportionment.  This is done on the entire dataset, as opposed to the transpose of the 

normalized modified pseudo-inverse matrix (MPIN) (2), which indicates the degree of 

influence each species concentration has on the contribution, on a case by case basis. 

Note that the correlations used here are not normalized, hence the species with the 

highest correlations are considered the ones most influential, even if the actual correlation 

is somewhat low. The following is stated based on these correlations: 

LDGV: The LDGV contribution based on the CMB-EV solution is correlated mainly 

with Zn, OC and EC. A low correlation with CO and NOy is observed in the EV solution. 

The OWLS solution showed a fairly similar pattern, with slightly higher correlations with 

CO and NOy, and a fairly high correlation with Pb. However, the LGO solution was 

highly correlated with CO and NOy, along with much of the same PM species as the EV 

and OWLS solutions. 

HDDV: The HDDV contribution generated by all three source-apportionment techniques 

used here was most correlated with EC, which is the major component of diesel 

emissions. Stronger correlations with EC were observed in the OWLS and LGO 

solutions. Correlation with NOy was the highest in the LGO solution. Such a correlation 

is expected as NOx emissions from diesel vehicles, on a per-mile basis, are higher than 

from gasoline vehicles (25,26). 
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BURN: The vegetative burning contribution from the EV and OWLS solution was 

correlated with chlorine, potassium, EC, OC and bromine. The LGO solution was 

correlated with the same species but bromine. The correlation with potassium was much 

higher in the LGO solution (0.62), compared to the EV and OWLS solutions (0.37 and 

0.43 respectively). 

SDUST: Soil-dust is characterized by a high abundance of crustal elements, such as Al, 

Ca, Fe, Si and Ti. Results from the all three solutions are correlated with these elements. 

However, the EV solution is most correlated with Fe, and to a degree with Si, Ti and Mn, 

while the OWLS and LGO solutions are correlated mainly with Si, Al, Ti and Fe. As 

expected, low correlations with the gaseous species were found. However, the EV 

solution seems to have picked a contribution associated with motor vehicles (possibly 

resuspended paved road dust), as it is somewhat correlated with EC and CO, as opposed 

to the OWLS and LGO solutions. 

CFPP: The EV-generated power-plant contribution is mostly correlated with Cu, SO4
-2,  

Ca, and to a degree with Se and Fe. The OWLS solution is mostly correlated with Cu, Fe 

and Mn. Both these solutions show no correlation with SO2, and the OWLS solution 

shows a correlation with CO and NOy, indicative of mobile sources. The LGO solution, 

however, is mostly correlated with Ca, Se and SO2. Se is a unique marker for coal-fired 

power plant emissions (2). The LGO solution, being correlated with both Se and SO2, is 

likely truly indicative of power plants.  

CEM: It is difficult to evaluate the driving species for the cement kiln contribution, as it 

is very low. Non-zero contributions were generated in only 33, 36 and 65 cases (out of 

762 cases), using EV, OWLS and LGO respectively. Based on this limited data, the EV 
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solution was mainly correlated with Ca; the OWLS solution with Br; and the LGO 

solution with Ca and the NOx. 

OTHEROC: The other OC category includes any OC not apportioned to one of the 

previous categories. If most of the primary OC was accounted for, this category would 

include mainly secondary OC. Since EC and OC often share the same sources (25), a 

high correlation of the OTHEROC category with either EC or OC would indicate a 

primary OC contribution. A good reference point is the correlation between OC and EC 

in the ambient data, which is 0.82. The correlations between EC and the contributions to 

the OTHEROC category are lower: 0.44, 0.60 and 0.65 for the EV, OWLS and LGO 

solutions, respectively. This indicates a secondary component in the OTHEROC 

category. These values, along with the correlations with OC and the magnitude of the 

contribution, suggest that LGO solution includes more primary OC than the EV and 

OWLS solutions. This is likely due to an over estimation of the mobile-source 

contribution by both EV and OWLS, leaving less OC to be apportioned to the 

OTHEROC category. This does mean, however, that there is an unexplained source of 

OC in the LGO solution. One likely source would be meat charbroiling, which as 

previously mentioned, emits almost solely OC, and is characterized by low gas-to-

particle ratios. For this reason, it is difficult to distinguish meat charbroiling from 

secondary OC formation using either CMB (without organic markers) or this application 

of LGO. An organic marker, such as cholesterol, is needed to identify and quantify meat-

charbroiling emissions. 
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AMSULF, AMBSLF, AMNITR: These secondary “sources” were all correlated with 

their major components, and low correlations with gaseous pollutants were observed, for 

all three cases.  

 

To further illustrate the differences between the EV, OWLS and LGO solutions, 

we also calculated source inter-correlations using these three solutions (Table 6). The 

diagonal terms in these matrices indicate that the contributions of ammonium-sulfate, 

ammonium-bisulfate, and ammonium-nitrate are fairly similar in all three cases. 

However, major differences are observed for the primary source categories. The EV and 

OWLS gasoline vehicle contribution is significantly different than the LGO LDGV 

contribution, as shown by the low correlations. The differences in the HDDV 

contributions are more subtle. Another major difference is observed in the CFPP 

contribution: The OWLS CFPP contribution is correlated more with the LDGV 

contribution from LGO than the corresponding CFPP contributions, likely due to 

collinearity.  
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Table 3-5. Correlations (R) between source-contributions and ambient-levels of fitting 
species 

 LDGV HDDV BURN 
 CMB EV CMBOWLS LGO CMB EV CMBOWLS LGO CMB EV CMBOWLS LGO 

SO4
-2 0.03 0.01 0.04 0.22 0.22 0.21 0.10 0.07 0.14 

NO3
- 0.22 0.31 0.30 0.14 0.18 0.19 0.15 0.23 0.33 

Cl- 0.16 0.17 0.09 0.05 0.04 0.11 0.35 0.45 0.52 
NH4

+ 0.08 0.05 0.04 0.27 0.25 0.26 0.22 0.23 0.18 
EC 0.42 0.53 0.39 0.69 0.94 0.96 0.34 0.43 0.41 
OC 0.45 0.55 0.45 0.53 0.68 0.74 0.35 0.49 0.49 
Al 0.00 0.04 0.07 0.05 0.09 0.08 0.03 0.04 0.13 
As 0.26 0.32 0.27 0.21 0.23 0.29 0.30 0.42 0.29 
Ba -0.01 0.01 0.03 0.09 0.13 0.10 0.04 0.05 0.10 
Br 0.13 0.15 0.13 0.35 0.34 0.17 0.38 0.41 0.14 
Ca 0.24 0.30 0.39 0.25 0.34 0.32 0.17 0.19 0.19 
Cu 0.38 0.50 0.36 0.25 0.30 0.38 0.22 0.38 0.29 
Fe 0.36 0.46 0.40 0.45 0.56 0.60 0.24 0.34 0.33 
K 0.23 0.27 0.22 0.24 0.30 0.35 0.37 0.43 0.62 

Mn 0.41 0.51 0.36 0.41 0.53 0.58 0.24 0.34 0.32 
Pb 0.42 0.65 0.34 0.19 0.22 0.33 0.18 0.32 0.33 
Sb 0.06 0.06 0.06 0.06 0.11 0.07 0.25 0.26 0.00 
Se 0.13 0.17 0.13 0.34 0.38 0.41 0.23 0.27 0.17 
Si 0.12 0.17 0.20 0.22 0.27 0.27 0.12 0.16 0.22 
Sn 0.16 0.21 0.16 0.13 0.14 0.14 0.08 0.13 0.11 
Ti 0.14 0.18 0.18 0.27 0.35 0.37 0.19 0.25 0.29 
Zn 0.58 0.86 0.46 0.31 0.38 0.42 0.20 0.37 0.33 
SO2 0.18 0.23 0.25 0.21 0.31 0.33 0.17 0.20 0.20 
CO 0.31 0.36 0.74 0.23 0.37 0.32 0.15 0.25 0.24 
NOy 0.31 0.40 0.66 0.28 0.42 0.45 0.19 0.29 0.25 

 SDUST CFPP CEM 
 CMB EV CMBOWLS LGO CMB EV CMBOWLS LGO CMB EV CMBOWLS LGO 

SO4
-2 0.20 0.17 0.24 0.43 0.28 0.28 -0.11 0.15 0.02 

NO3
- 0.01 -0.09 -0.09 0.07 0.17 0.14 0.29 0.37 0.04 

Cl- 0.02 -0.01 -0.01 0.01 0.10 0.08 -0.08 0.15 -0.18 
NH4

+ 0.29 0.21 0.28 0.43 0.33 0.24 -0.12 0.10 -0.06 
EC 0.40 0.21 0.25 0.34 0.54 0.42 -0.15 0.06 0.13 
OC 0.33 0.13 0.19 0.27 0.48 0.38 -0.13 0.17 0.17 
Al 0.29 0.91 0.87 0.03 0.13 0.09 0.09 -0.09 -0.13 
As 0.16 0.05 0.05 0.07 0.23 0.18 0.24 0.46 0.23 
Ba 0.11 0.21 0.22 0.23 0.25 0.12 -0.04 -0.08 0.12 
Br 0.24 0.04 0.01 0.10 0.16 0.12 0.01 0.58 0.11 
Ca 0.33 0.62 0.57 0.43 0.46 0.56 0.44 0.37 0.56 
Cu 0.37 0.31 0.24 0.46 0.74 0.21 0.24 0.14 -0.03 
Fe 0.57 0.76 0.77 0.36 0.62 0.40 0.18 0.28 0.05 
K 0.30 0.42 0.29 0.17 0.34 0.17 -0.15 0.05 -0.05 

Mn 0.46 0.53 0.53 0.33 0.61 0.33 0.18 0.23 -0.05 
Pb 0.24 0.07 0.06 0.13 0.49 0.11 -0.07 0.18 0.16 
Sb 0.05 0.00 -0.01 0.08 0.13 0.08 -0.28 0.04 0.11 
Se 0.15 0.12 0.15 0.36 0.29 0.50 0.12 -0.01 0.24 
Si 0.48 0.95 0.99 0.22 0.34 0.28 0.22 0.07 0.02 
Sn 0.08 0.06 0.12 0.02 0.21 0.05 -0.07 0.12 0.15 
Ti 0.44 0.83 0.84 0.27 0.43 0.27 0.05 0.06 -0.13 
Zn 0.29 0.08 0.12 0.14 0.50 0.27 0.29 0.24 0.25 
SO2 0.09 -0.03 -0.03 0.11 0.21 0.45 0.18 -0.12 0.25 
CO 0.23 0.11 0.14 0.17 0.43 0.19 0.11 0.06 0.18 
NOy 0.20 0.04 0.07 0.16 0.41 0.31 0.14 0.11 0.40 
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Table 3-5 (cont.). Correlations (R) between source-contributions and ambient-levels of 
fitting species 

 AMSULF AMBSULF AMNITR 
 CMB EV CMBOWLS LGO CMB EV CMBOWLS LGO CMB EV CMBOWLS LGO 

SO4
-2 0.85 0.94 0.93 0.46 0.52 0.54 0.04 0.05 0.06 

NO3
- -0.06 -0.01 -0.01 -0.01 0.04 0.05 0.68 0.87 0.82 

Cl- 0.04 0.07 0.07 -0.05 0.03 0.05 0.22 0.30 0.26 
NH4

+ 0.85 0.95 0.94 0.29 0.36 0.40 0.08 0.11 0.11 
EC 0.16 0.22 0.22 -0.07 0.03 0.00 0.17 0.22 0.21 
OC 0.22 0.28 0.28 0.01 0.09 0.06 0.20 0.23 0.23 
Al 0.00 0.03 0.03 0.09 0.15 0.09 -0.04 -0.03 -0.04 
As -0.02 0.00 0.00 -0.06 -0.01 -0.02 0.10 0.14 0.14 
Ba 0.14 0.18 0.18 0.09 0.06 0.01 0.01 0.02 0.02 
Br -0.02 0.01 0.01 0.00 0.07 0.09 0.08 0.09 0.09 
Ca 0.24 0.30 0.30 0.07 0.16 0.17 0.04 0.06 0.05 
Cu 0.07 0.10 0.10 -0.02 0.06 -0.02 0.08 0.12 0.11 
Fe 0.20 0.27 0.27 0.04 0.14 0.08 0.07 0.12 0.10 
K 0.12 0.15 0.15 0.04 0.09 0.04 0.09 0.10 0.11 

Mn 0.17 0.23 0.23 0.01 0.07 0.02 0.13 0.18 0.16 
Pb -0.05 -0.03 -0.02 -0.05 0.05 -0.04 0.14 0.22 0.20 
Sb -0.06 -0.05 -0.04 -0.07 0.02 -0.01 -0.01 0.01 0.01 
Se 0.32 0.37 0.37 0.14 0.18 0.23 0.12 0.12 0.12 
Si 0.23 0.28 0.28 0.22 0.25 0.23 -0.04 -0.04 -0.05 
Sn 0.01 0.03 0.03 0.07 0.09 0.03 0.10 0.08 0.07 
Ti 0.25 0.31 0.30 0.11 0.28 0.22 -0.03 -0.01 -0.01 
Zn 0.01 0.04 0.05 -0.07 -0.03 -0.06 0.16 0.19 0.17 
SO2 -0.12 -0.08 -0.08 -0.08 0.00 -0.02 0.16 0.18 0.18 
CO -0.03 0.00 0.00 -0.05 -0.02 -0.01 0.13 0.15 0.16 
NOy -0.10 -0.07 -0.07 -0.09 -0.05 -0.06 0.18 0.22 0.21 

 OTHER OC   
 CMB EV CMBOWLS LGO       

SO4
-2 0.22 0.23 0.29       

NO3
- 0.08 0.08 0.14       

Cl- 0.05 -0.01 0.08       
NH4

+ 0.25 0.23 0.29       
EC 0.44 0.60 0.65       
OC 0.63 0.81 0.92       
Al -0.03 0.00 -0.04       
As 0.12 0.15 0.27       
Ba 0.06 0.12 0.10       
Br 0.29 0.30 0.14       
Ca 0.15 0.20 0.21       
Cu 0.30 0.28 0.32       
Fe 0.32 0.36 0.37       
K 0.33 0.45 0.36       

Mn 0.24 0.23 0.34       
Pb 0.25 0.25 0.35       
Sb 0.03 0.07 0.07       
Se 0.09 0.12 0.24       
Si 0.15 0.21 0.16       
Sn 0.09 0.11 0.12       
Ti 0.17 0.23 0.21       
Zn 0.27 0.24 0.39       
SO2 0.08 0.12 0.24       
CO 0.24 0.27 0.24       
NOy 0.19 0.26 0.29       
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Table 3-6. Source inter-correlations (R) using CMB8-EV, CMB8-OWLS and LGO 
  EV 
  LDGV    HDDV   SDUST   BURN    CFPP    CEM     AMSULF   AMBSLF   AMNITR   OTHROC   

LDGV    0.64 0.30 0.31 0.22 0.14 0.23 -0.03 -0.05 0.19 0.25 
HDDV     0.26 0.69 0.33 0.21 0.34 -0.20 0.16 -0.10 0.12 0.39 
SDUST    0.00 0.13 0.42 0.08 0.15 -0.10 0.16 0.25 -0.08 0.07 
BURN     0.37 0.26 0.28 0.69 0.17 -0.08 0.07 -0.06 0.15 0.21 
CFPP     0.41 0.40 0.41 0.28 0.65 0.15 0.25 -0.09 0.13 0.24 
CEM      0.29 0.24 0.32 0.21 0.00 0.81 0.11 0.25 0.31 0.61 

AMSULF   0.04 0.25 0.26 0.15 0.46 -0.14 0.90 0.19 -0.01 0.22 
AMBSLF   -0.03 0.00 0.16 -0.05 0.02 0.13 0.22 0.91 0.01 0.10 
AMNITR   0.18 0.12 0.01 0.11 0.06 0.18 -0.04 0.01 0.77 0.10 

O
W

L
S 

OTHROC   0.16 0.44 0.16 0.15 0.17 -0.29 0.17 0.05 0.08 0.68 
  LGO 
  LDGV    HDDV   SDUST   BURN    CFPP    CEM     AMSULF   AMBSLF   AMNITR   OTHROC   

LDGV    0.44 0.36 0.07 0.30 0.16 0.15 0.04 -0.02 0.16 0.32 
HDDV     0.17 0.74 0.19 0.28 0.31 0.19 0.25 0.00 0.11 0.45 
SDUST    0.23 0.38 0.47 0.23 0.16 -0.03 0.26 0.08 0.00 0.23 
BURN     0.16 0.32 0.10 0.46 0.16 0.07 0.14 0.04 0.11 0.24 
CFPP     0.14 0.33 0.20 0.13 0.37 0.31 0.46 0.02 0.06 0.21 
CEM      0.18 -0.23 0.20 -0.06 0.25 1.00 -0.14 0.22 0.16 -0.23 

AMSULF   -0.01 0.16 0.23 0.07 0.21 -0.05 0.89 0.27 -0.03 0.22 
AMBSLF   -0.03 -0.09 0.22 0.00 0.02 0.24 0.18 0.86 0.00 0.04 
AMNITR   0.20 0.12 -0.07 0.24 0.06 -0.05 -0.01 0.05 0.76 0.13 

E
V

 

OTHROC   0.18 0.43 0.13 0.26 0.17 0.35 0.21 0.09 0.09 0.66 
  LGO 
  LDGV    HDDV   SDUST   BURN    CFPP    CEM     AMSULF   AMBSLF   AMNITR   OTHROC   

LDGV    0.54 0.45 0.11 0.33 0.25 0.20 0.01 -0.03 0.24 0.40 
HDDV     0.24 0.93 0.23 0.29 0.40 0.13 0.23 0.01 0.17 0.58 
SDUST    0.08 0.18 0.96 0.16 0.16 -0.02 0.20 0.19 -0.08 0.06 
BURN     0.26 0.40 0.13 0.59 0.16 0.12 0.12 0.02 0.16 0.34 
CFPP     0.43 0.51 0.31 0.31 0.37 0.00 0.32 -0.08 0.17 0.33 
CEM      0.06 0.11 0.09 0.29 0.13 0.30 0.11 0.45 0.35 0.08 

AMSULF   0.02 0.23 0.28 0.13 0.26 -0.02 0.99 0.27 0.00 0.28 
AMBSLF   -0.02 0.02 0.24 0.09 0.13 0.51 0.20 0.95 0.05 0.14 
AMNITR   0.25 0.19 -0.07 0.27 0.10 0.03 -0.02 0.09 0.97 0.16 

O
W

L
S 

OTHROC   0.18 0.58 0.18 0.24 0.21 0.31 0.20 0.08 0.12 0.88 

 
Results from the LGO solution (based on inorganic markers and inorganic gases) were 

also compared with results from an organic-markers source apportionment study (4) and 

the five county Atlanta metropolitan area emissions inventory (24) (Table 7). In the 

Zheng et al. study (4), average monthly contributions to PM2.5 were calculated for the 

months of April, July, August, October of 1999, and January 2002, for the JST site, and 

are averaged here. Source categories included were: diesel exhaust; gasoline exhaust; 

vegetative detritus; meat cooking; road dust; wood combustion; and natural gas 

combustion. Both the LGO solution and the Zheng et al. (4) results indicate the 

dominance of contributions from mobile sources to primary PM2.5 levels, but the 

magnitude is somewhat different (66% and 58%, respectively). The split between 
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gasoline and diesel vehicles also was different: a diesel-to-gasoline ratio of 1.5 using 

LGO and 6.7 using organic tracers. For comparison, the diesel-to-gasoline ratio in the 

emissions inventory for the five-county Atlanta metropolitan area is 3.0 (22). Other 

differences were the somewhat lower vegetative burning contribution using LGO 

compared to organic markers (23% and 30%), the higher LGO soil dust contribution 

(7.9% compared to 2.5%), and the meat-charbroiling contribution identified by the 

organic markers study (6.4%). The LGO solution generated a higher “secondary/other 

OC” contribution compared to the organic marker study (not presented in Table 7), which 

may include meat cooking emissions (characterized almost solely by OC emissions). In 

contrast to the receptor model results, the emissions inventory is dominated by area 

sources other than soil dust and wood combustion (44% of total PM2.5 emissions). Wood 

combustion and road dust are the next two major sources in the inventory (15% each), 

followed by diesel and gasoline engines (11.5% and 3.9% respectively). The road dust 

emissions seem to be over estimated, as shown by the receptor model results and 

measured levels of crustal species. Incorporating preliminary data on emissions from 

meat charbroiling (27) into the inventory suggests these emissions contribute 5% of total 

PM2.5 emissions (not formally reported in the inventory, 24). Given the dominance of 

“other” area sources (waste disposal treatment, recovery and incineration; industrial oil 

and gas production; agriculture production; other sources) in the emissions inventory, it is 

difficult to compare the inventory to the source apportionment results directly. It seems 

that the “other” area source category is over estimated, as four different sets of source 

apportionment results presented here (CMB EV, CMB OWLS, LGO and the Zheng et al. 

study from 2002) indicate to the dominance of contributions from diesel and gasoline 
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engines to primary PM2.5 levels (58-66% of PM2.5 emissions, compared to 15% in the 

inventory). The contributions of coal-fired power plants and cement kilns, as indicated by 

the inventory, are relatively small, similar to findings from the LGO solution.  

 
Table 3-7. Comparison between percent contributions to primary PM2.5 levels based on 
LGO, organic-marker CMB (4), and the five-county Atlanta metropolitan area emissions 
inventory (24). The Zheng et al. results (4) were averaged to represent a yearly pattern by 
weighting July and August results as “summer”, October as “fall”, January as “winter” 
and April as “spring”. Cooking emissions reported here are based on a preliminary 
estimate (27), and are not reported in the inventory (24).  Inventoried emissions are given 
with and without “other” sources for more direct comparison.   

Source category (% contribution) LGO 
CMB using organic tracers 

(4)  

Five county Atlanta metro 
emissions inventory 

(with / without “other” sources) 
Gasoline engines 26.0 7.5 3.9 / 7.6 
Diesel engines 39.9 50.3 11.5 / 22 

Fugitive soil dust 7.9 2.5 15.1 / 29 5 
Vegetative burning/ 
Wood combustion 

23.0 29.7 15.1 / 29 

Coal-fired power plants 3.1 - 0.8 / 1.5 
Cement kilns 0.1 - 0.3 / 0.4 

Meat charbroiling - 6.4 5.0 / 9.7 4 
Vegetative detritus - 2.7 - 

Natural gas combustion - 1.0 - 
Other area sources 1 - - 43.9 
Other point sources 2 - - 2.7 

Other non-road sources 3 - - 1.8 
1- other than soil dust and wood combustion 
2- other than coal-fired power plants and cement kilns 
3- other than gasoline and diesel engines 
4- based on a preliminary estimate by Baek et al. (26)  
5- A large fraction of the fugitive dust emissions are expected to be removed locally  
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CHAPTER 4 

OPTIMIZED VARIABLE SOURCE-PROFILE APPROACH FOR 

SOURCE APPORTIONMENT 

(A. Marmur, J.A. Mulholland, and A.G. Russell, Atmospheric Environment, in press) 

 

Abstract 

An expanded Chemical Mass Balance (CMB) approach for PM2.5 source 

apportionment is presented in which both the local source compositions and 

corresponding contributions are determined from ambient measurements and initial 

estimates of source compositions using a global-optimization mechanism. Such an 

approach can serve as an alternative to using predetermined (measured) source profiles, 

as traditionally used in CMB applications, which are not always representative of the 

region and/or time period of interest. Constraints based on ranges of typical source 

profiles are used to ensure that the compositions identified are representative of sources 

and are less ambiguous than the factors/sources identified by typical Factor Analysis 

(FA) techniques. Gas-phase data (SO2, CO and NOy) are also used, as these data can 

assist in identifying sources. Impacts of identified sources are then quantified by 

minimizing the weighted-error between apportioned and measured levels of the fitting 

species. This technique was applied to a dataset of PM2.5 measurements at the former 

Atlanta Supersite (Jefferson Street site), to apportion PM2.5 mass into nine source 

categories. Good agreement is found when these source impacts are compared with those 
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derived based on measured source profiles as well as those derived using a current FA 

technique, Positive Matrix Factorization. The proposed method can be used to assess the 

representativeness of measured source-profiles and to help identify those profiles that 

may be in significant error, as well as to quantify uncertainties in source-impact 

estimates, due in part to uncertainties in source compositions.  

 

Keywords: CMB-LGO, optimization, source-apportionment, PM2.5, PMF, health-study. 

 

4.1 Background 

Chemical Mass Balance (CMB) receptor models are a common tool for 

apportioning ambient levels of pollutants (mainly particulate matter) among the major 

contributing sources. CMB combines the chemical and physical characteristics of 

particles or gases measured at sources and receptors to quantify the source contributions 

to the receptor. Quantification is based on the solution to a set of linear equations that 

express each receptor’s ambient chemical concentration as a linear sum of products of 

source-profile fractions and source contributions (US-EPA, 2004a; US-EPA, 2004b), as 

expressed by:  

∑
=

+=
n

j
ijiji eSfC

1

            (4-1) 

where: 

Ci = ambient concentration of chemical species i (µg/m3); 

fi,j = fraction of species i in emissions from source j; 

Sj = contribution (source-strength) of source j (µg/m3); 
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n = total number of sources; 

ei = error term. 

 

Source profile fractions (fij) and the receptor concentrations (Ci), along with 

uncertainty estimates, serve as input data to the CMB model. Results consist of the 

contribution of each source category (Sj) to the measured concentration of different 

species at the receptor. A frequent source of uncertainty in the implementation of CMB is 

the choice of source profiles used as input. There is a wide variety of source profiles in 

the literature, but these are not always representative of the region and/or time of interest. 

Some examples of this are as follows: soil (dust) composition often varies 

geographically; emission composition from biomass burning is dependent on the type of 

vegetation or wood burned (e.g. agriculture burning, soft or hard wood residential 

combustion); emissions from coal-fired power plants may vary depending on the types of 

coal used; mobile source emissions can vary from region to region and temporally due to 

different fuels, fleet composition, or driving conditions. To date, the most common 

approach to addressing this variability has been to select profiles that are most 

representative of the region and time period of interest from those that are available. In 

many cases, however, specific profiles are not available. Moreover, a profile derived 

from any one source at one time may not be representative due to variability in time and 

space. Due to these reasons, Factor Analysis (FA) techniques have been developed 

(Hopke, 1988; Paatero and Tapper, 1994) and are often applied to characterize and 

quantify the sources contributing to ambient particulate matter levels (Kim et al., 2003; 

Kim et al., 2004a; Kim et al., 2004b; Maykut et al., 2003). FA models do not require the 
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use of predetermined source profiles, but results are often difficult to interpret as factors 

do not necessarily represent specific sources (Seinfeld and Pandis, 1998). The underlying 

assumption in all FA models is that the chemical composition of ambient particulate 

samples includes information about the fingerprints of the sources affecting the receptor, 

and that this information can be used to derive the source compositions. The procedure 

for characterizing these sources (or factors) is based on correlations between ambient 

levels of the different species, a high correlation indicating that the species share a 

common source (Seinfeld and Pandis, 1998). One of the more commonly used FA 

methods in recent years is Positive Matrix Factorization (PMF) (Paatero and Tapper, 

1994). In PMF, factors are constrained to have non-negative fi,j’s, and no sample can have 

a negative source contribution. Application of PMF requires that error estimates for the 

data be chosen judiciously so that the estimates reflect the quality and reliability of each 

of the data points. A critical step in PMF analysis is the determination of the number of 

factors (Paatero, 2004). 

 

4.2 Methods 

4.2.1 CMB model expansion to include variable source compositions 

This study combines concepts from FA and CMB applications to calculate source 

contributions to ambient PM2.5 without relying solely on emissions composition studies 

or on interpretation of factors obtained by FA as sources. The technique is based on 

solving the same set of equations used in CMB modeling (Equation 4-1), but instead of 

using predetermined source profiles, ranges for different fractions in source-indicative 

profiles are used as input. The model then optimizes the fractions of different species 
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within each profile by minimizing residual mass, subject to several constraints. Lower 

and upper bounds for the fractions of species in the various source profiles are set based 

on knowledge of typical compositions of various sources. Instead of deriving the 

contributing factors by FA, and then identifying (interpreting) them as sources based on 

knowledge of typical composition, this information is used beforehand to constrain the 

model while searching for the best combination of sources to describe the ambient levels 

of PM2.5. The choice of source categories to include likewise is made beforehand, in 

contrast to FA. 

As a basis for setting the constraints for the fractions of various species in the 

source profiles, suggested values are taken from in the validation protocol for CMB8.2 

(US-EPA, 2004b) (Table 4-1).   

 

Table 4-1. Chemicals from particles in different emissions sources (US-EPA, 1998) 
Chemical fractions 

Source Type 
Dominant 

Particle Size <0.001 0.001 - 0.01 0.01 - 0.1 >0.1 
Motor vehicles Fine Cr, Ni, Y NH4

+, Si, Cl, 
Al, Si, P, Ca, 

Mn, Fe, Zn, Br, 
Pb 

Cl-, NO3
-, SO4

-

2, NH4
+, S 

OC, EC 

Vegetative 
burning 

Fine Ca, Mn, Fe, Zn, 
Br, Rb, Pb 

NO3
-, SO4

-2, 
NH4

+, Na+, S 
Cl-¸K+, Cl, K OC, EC 

Coal-fired 
boiler 

Fine Cl, Cr, Mn, Ga, 
As, Se, Br, Rb, 

Zr 

NH4
+, P, K, Ti, 

V, Ni, Zn, Sr, 
Ba, Pb 

SO4
-2, OC, EC, 

Al, S, Ca, Fe 
Si 

Road dust Course NO3
-, NH4

+, P, 
Zn, Sr, Ba 

SO4
-2, Na+, K+, 

P, S, Cl, Mn, 
Ba, Ti 

EC, OC, Al, K, 
Ca, Fe 

OC, Si 

 
These bounds on the abundance of species were slightly modified (Table 4-2) and 

several additional constraints were added to better characterize the different sources. 
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Table 4-2: Lower and upper bounds for chemical fractions of total PM2.5 mass emitted in 
source profiles 

Gasoline vehicles 
(GV) 

Diesel vehicles 
(DV) 

Road dust 
(DUST) 

Vegetative burning 
(BURN) 

Coal power plants 
(CFPP) Species 

lower upper lower upper lower upper lower upper lower upper 
EC 0.05 1 0.4 1 0 0.01 0.01 0.3 0.01 0.1 
OC 0.3 1 0.1 1 0.01 0.1 0.3 1 0.01 0.3 

SO4
-2 0.01 0.1 0.01 0.1 10-3 0.01 10-3 0.01 0.01 0.3 

NO3
- 0.01 0.1 0.01 0.1 0 10-3 10-3 0.01 0 0 

Cl‑ 0.01 0.1 0.01 0.1 10-3 0.01 0.01 0.1 0 0.01 
NH4

+ 10-3 0.01 10-3 0.01 0 10-3 10-3 0.01 10-3 0.01 
Al 10-3 0.05 10-4 10-3 0.01 0.2 0 0 0.01 0.1 
As 0 0 0 0 0 0 0 0 0 10-3 
Ba 0 0 0 0 10-3 0.01 0 0 10-3 0.01 
Br 10-4 0.01 10-5 10-3 0 0 0 10-3 0 10-3 
Ca 10-3 0.05 10-4 10-3 0.01 0.2 0 10-3 0.01 0.2 
Fe 10-3 0.05 10-4 10-3 0.01 0.2 0 10-3 0.01 0.1 
K 0 10-3 0 10-4 0.01 0.1 0.01 0.1 10-3 0.01 

Mn 10-4 0.01 10-4 10-3 10-3 0.05 0 10-3 0 0.005 
Pb 0 10-3 0 10-3 0 0 0 10-3 0 0.01 
Se 0 0 0 0 0 0 0 0 10-4 0.01 
Si 10-3 0.05 10-4 0.01 0.1 1 0 0 0.05 0.2 
Ti 0 0 0 0 10-3 0.05 0 0 10-3 0.01 
Zn 10-3 0.02 10-4 10-3 0 10-3 0 10-3 10-3 0.01 

Additional 
constraints  

Sum≤1; 
OC/EC≥1; 
TC≥0.5; 

OM/OC≥1.4 

Sum≤1; 
OC/EC≤1; 
TC≥0.5; 

OM/OC≥1.4 

Sum≤1; 
Sum metal oxides≤1 

Sum≤1; 
OC/EC≥3; 
TC≥0.5; 

OM/OC≥1.4 

Sum≤1; 
Sum metal oxides≤1; 

 
 

Emissions from light-duty gasoline vehicles (LDGVs) usually contain more OC 

than EC (Gillies and Gertler, 2000), so a constraint of OC/EC≥1 was used for LDGVs, 

and an opposite constraint was used for heavy duty diesel vehicles (HDDVs). However, 

the relative amount of EC and OC components in PM emissions from both gasoline and 

diesel vehicles is highly variable (Gillies and Gertler, 2000), and there is significant 

overlap in the range of values between the two mobile source types. Therefore, trying to 

distinguish gasoline and diesel contributions separately on the basis of just EC and OC 

mass fractions is suspect (Gillies and Gertler, 2000). For this reason, we also incorporated 

information on typical CO/PM2.5, NOx/PM2.5 and SO2/PM2.5 ratios in the emissions from 

these, as well as other sources (Marmur et al., 2005). Higher bounds for trace metals are 

set for gasoline vehicles, compared to diesel vehicles (HEI, 2002; Manchester-Neesvig et 



 71 

al., 2003). For vegetative burning, a constraint of OC/EC≥3 was used, as this source is 

characterized by high OC to EC ratios (US-EPA, 2004b). A relatively large fraction 

(0.01-0.1) of potassium in biomass burning emissions (US-EPA, 2004b) is also used. For 

all sources, the sum of fractions over all species was constrained to be less than or equal 

to unity. In the case of soil dust and power-plants, oxidized forms of the metals are 

assumed (such as Al2O3, SiO2 etc.). Organic material (OM) fractions in the primary 

emissions were bounded by a minimum contribution of 1.4 times the fraction of OC in 

the profile. These constraints are summarized by the following equations: 

fi,j lower ≤ fi.j ≤ fi,j upper         (4-2) 

fOC,j/fEC,j ≥ ROC/EC         (4-3) 

fOC,j+fEC,j ≥ RTC          (4-4) 

1.4fOC,j + fi(excluding OC),j ≤ 1.0         (4-5) 

(for all sources but soil-dust and power-plants)   

1.89fAl,j+1.40fCa,j+1.43fFe,j+1.20fK,j+2.14fSi,j+1.67fTi,j+1.4fOC,j + fother,j ≤ 1.0 (4-6) 

(for soil-dust and power-plants) 

where: 

fi,j lower, fi,j upper = lower and upper bound on fraction of species i in source j (Table 4-2); 

ROC/EC = bound on OC/EC ratio (≥1 for gasoline vehicles; ≥3 for vegetative burning; ≤1 

for diesel vehicles; Table 4-2); 

RTC = bound on TC (EC+OC) fraction (≥0.5 for gasoline and diesel vehicles, vegetative 

burning; Table 4-2); 

1.89, 1.40, 1.43, 1.20, 2.14, 1.67= ratios of molecular weights of metal-oxide/metal for 

Al 2O3, CaO, Fe2O3, K2O, SiO2 and TiO2, respectively. 
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To address the formation of secondary pollutants, four pure component profiles 

were used for ammonium-sulfate (AMSULF; 73% SO4
-2, 27% NH4

+), ammonium-

bisulfate (AMBSLF; 84% SO4
-2, 16% NH4

+), ammonium-nitrate (AMNITR; 78% NO3
-, 

22% NH4
+) and other/secondary OC (OTHROC; 100% OC), based on the molecular 

weights of the components (Marmur et al., 2005). 

For each sample, Equation 1 was solved by minimizing χ2: 

 ∑
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where: 

iCσ   is the uncertainty of the Ci measurement.  This is solved subject to the constraints on 

the PM2.5 source compositions (Equations 4-2 - 4-6 and Table 4-2), as well as the 

requirement to reasonably reconstruct ambient gas-phase (SO2, CO, and NOy) 

concentrations: 
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 where: 

 [GS] = ambient concentration of gaseous-species (CO, SO2, NOy; µg/m3); 

j5.2PM
GS









= GS/PM2.5 mass ratio in emissions from source j (see Marmur et al., 2005 for 

values used); 

Sj = contribution (source-strength) of source j (µg/m3) to the PM2.5 loading; 
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n = total number of sources; 

b = bound for gas-species mass reconstruction (typically b=3, to account for uncertainties 

in initial GS/PM2.5 ratios and changes in these ratios during transport from source to 

receptor; (Marmur et al., 2005)) 

 

This latter requirement has been shown to reduce collinearity between source-

compositions and to achieve more plausible source-apportionment results (Marmur et al., 

2005). 

A global optimization program, Lipschitz global optimizer (LGO) (Pinter, 1996; 

Pintér, 1997), was utilized to find the optimal solution (by minimizing χ2), subject to the 

above mentioned constrains. In LGO, the best solution is sought that satisfies all stated 

feasibility constraints and maximizes (or minimizes) the value of a given objective 

function (Pinter, 1996; Pintér, 1997). The objective of global optimization is to find the 

best solution of nonlinear decision models, in the possible presence of multiple locally 

optimal solutions. LGO integrates a suite of robust and efficient global and local scope 

solvers. These include: global adaptive partition and search (branch-and-bound); adaptive 

global random search; local (convex) unconstrained optimization; and local (convex) 

constrained optimization. The LGO implementation of these methods does not require 

derivative information. Their operations are based exclusively on the computation of the 

objective and constraint function values, at algorithmically selected search points.
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4.2.2 SEARCH 25 month dataset, Jefferson St., Atlanta, Georgia 

Evaluation of this expanded CMB approach involved using the SEARCH 

(Southeastern Aerosol Research and Characterization) 25 month (8/98-8/00) dataset for 

the Jefferson St. (JST) monitoring site in Atlanta, GA (Hansen et al., 2006; Hansen et al., 

2003; Kim et al., 2003; Marmur et al., 2005), which includes data on total PM2.5 mass 

(gravimetric measure) and its components (major ions by Ion Chromatography; trace 

metals by x-ray fluorescence; organic and elemental carbon by Thermal Optical 

Reflectance), as well as ambient concentrations of SO2, CO and NOy. Summation of the 

analytical uncertainty and 1/3 of the detection limit value was used as the overall 

uncertainty assigned to each measured value. Values below the detection limit were 

replaced by half of the detection limit values, and their overall uncertainties were set at 

5/6 of the detection limit values. Missing values were replaced by the geometric mean of 

the measured values, and their accompanying uncertainties were set at 4 times this 

geometric mean value (Marmur et al., 2005). Five variable source-profiles (GV, DV, 

DUST, BURN, CFPP; Table 4-2) and four constant ones (AMSULF, AMBSLF, 

AMNITR, OTHROC) were included in the analysis. 

4.3 Results 

4.3.1 Derived source-profiles 

First, source profile compositions were determined (for five sources: GV, DV, 

DUST, BURN, CFPP; for the species in Table 4-2) using, initially, a subset of the data. 

In this way, a separate set of data could be used in the evaluation. Out of the total of 762 

days, we identified 447 days in which all of the data (all ions, carbon fractions, metals, 

CO, SO2, NOy) were available. From those 447 days, we chose all the January, April, 
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July and October samples (133 days) to represent the four seasons. LGO then was applied 

to find the optimal solution (Equation 4-1) based on the ordinary weighted least-squares 

(OWLS) approach (Equation 4-7) (Christensen and Gunst, 2004; Friedlan, 1973) while 

adjusting the source profile fractions within the allowable bounds (Table 4-2, Equations 

4-2 – 4-6) and subject to the gas-phase constraints (Equation 4-8). This becomes an 

optimization problem with more than one hundred decision variables (fractions and 

contributions), requiring several minutes of computational workload (on a Pentium 4.0 

PC) and several tens of thousands of iterations per sample to reach a global minimum 

point. The computational workload for a solution using predetermined source-profiles is 

much smaller, reaching convergence within several seconds and several hundreds of 

iterations per sample.  Source profiles obtained are analyzed for how often bounds (lower 

or upper) on individual species are met and for compositional variability between 

samples. The process was evaluated by repeating the analysis using all the February, 

May, August (excluding 1998), and November samples (149 days). No significant 

seasonal variability in source composition was observed. Therefore, the comparison will 

focus on average source compositions for each of the two test cases.  

Average source-profile compositions for the two scenarios (two subsets of the 

data: Case 1 based on 133 samples; Case 2 based on 149 samples) show little difference 

(Figures 4-1 – 4-5). When compared to several source profiles from the literature (Chow 

et al., 2004; Cooper, 1981; Zielinska et al., 1998) differences arise, but the species 

driving source apportionment modeling (Marmur et al., 2006) are the same. Major 

differences are observed for primary sulfate, nitrate and ammonium content in various 

sources because LGO assigns most of that mass into the secondary sulfate and nitrate 
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categories. These estimates of primary sulfate and nitrate content are therefore highly 

uncertain; however, these species do not serve as markers for any of the sources of 

primary emissions. Hence, the effect of this uncertainty on the overall source-

apportionment process is likely a bias in predicted impacts rather than uncertainty in the 

prediction of day-to-day variation in source impacts. 

LGO generated gasoline-vehicle profiles (GV1 and GV2 in Figure 4-1) are 

comparable to the profile from NFRAQS (Zielinska et al., 1998), being characterized by 

an OC/EC ratio of 1.6 on average (a constraint of ≥1.0 was used), compared to 2.3 in the 

NFRAQS profile. The total carbon content (TC) is 0.67 (a constraint of ≥0.5 was used), 

compared to 0.78, in the NFRAQS profile. Content of Zn, a good marker for gasoline 

vehicles (Marmur et al., 2006; Marmur et al., 2005), is similar (average of 0.008 vs. 

0.009). The content of other trace metals (Al, Ca, Fe, Si) is similar. 

Diesel vehicle profiles generated by LGO (DV1 and DV2) are characterized by an 

OC/EC ratio of 0.36 (a constraint of ≤1.0 was used) compared to 0.27 in the NFRAQS 

profile (Zielinska et al., 1998). The TC content is 0.77 on average (a constraint of ≥0.5 

was used), compared to 0.93. Metal content is similar among all diesel vehicle profiles. 

Vegetative burning profiles from LGO were fairly similar to the BURN profile 

from BRAVO (Chow et al., 2004), with an OC/EC ratio of 4.7 on average, compared to 

4.1 from BRAVO. Potassium content in the LGO profiles is 0.063 on average, compared 

to 0.056 in the BRAVO profile. The LGO profiles’ chlorine content is roughly half of 

that in the measured profile (0.037 compared to 0.076). 

The LGO-derived soil dust profiles are similar to the Alabama soil-dust profile 

from Cooper et al. (Cooper, 1981) with respect to Si, Ti, Mn and Fe content, but Al, Ca 
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and K content differed significantly. The high Al content in the Alabama profile (Cooper, 

1981) seems to be an overestimate for Atlanta aerosol (Marmur et al., 2005). 

Some differences arise when comparing the LGO derived CFPP profile to the one 

from BRAVO (Chow et al., 2004), which are based on measurements in Texas. SO4
-2, 

EC, OC, Al, Ca, Fe and Si are the most abundant species in both sets of profiles, but 

differences in their content is evident, especially in SO4
-2 and OC content, though neither 

is an important tracer for primary CFPP PM2.5. As previously mentioned, LGO assigns 

most of the SO4
-2 to the secondary “ammonium-sulfate” category, likely underestimating 

sulfate content in primary emissions. OC is apportioned to carbon-rich source-categories 

such as GV, DV and BURN based on constraints on both OC content and OC/EC ratios, 

and to the “other OC” category (secondary and un-apportioned organic carbon). For 

relatively carbon-lean source-categories, such as DUST and CFPP, for which knowledge 

on typical OC/EC ratios is limited, LGO tends to suggest a lower fraction of OC. The 

content of selenium, a unique tracer for CFPP, is very similar, 0.0061 in the LGO 

profiles, compared to 0.0058 in the BRAVO profile.   
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Figure 4-1. Source profiles generated by LGO for gasoline-fueled vehicles (GV1 based 
on 133 cases, GV2 based on 149 cases), compared to a profile from the NFRAQS study 
(Zielinska et al., 1998), previously used to apportion PM2.5 in Atlanta (Marmur et al., 
2005). Bars represent ±one standard-deviation of the LGO estimated (over 133 and 149 
cases) or measured fractions. 
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Figure 4-2. Source profiles generated by LGO for diesel-fueled vehicles (DV1 based on 
133 cases, DV2 based on 149 cases), compared to a profile from the NFRAQS study 
(Zielinska et al., 1998), previously used to apportion PM2.5 in Atlanta (Marmur et al., 
2005). Bars represent ±one standard-deviation of the LGO estimated (over 133 and 149 
cases) or measured fractions. 
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Figure 4-3. Source profiles generated by LGO for vegetative burning (BURN1 based on 
133 cases, BURN2 based on 149 cases), compared to a vegetative burning profile from 
the BRAVO study (Chow et al., 2004), previously used to apportion PM2.5 in Atlanta 
(Marmur et al., 2005). Bars represent ±one standard-deviation of the LGO estimated 
(over 133 and 149 cases) or measured fractions. 
 
 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

SO4--
x10

NO3-
x10

Cl- x10 NH4+
x10

EC 
x10

OC Al Br
x100

Ca Fe K Mn 
x10

Pb 
x100

Se 
x100

Si Ti   
x10

Zn 
x100

Fr
ac

tio
n 

of
 P

M
2.

5 
e

m
is

si
on

s

DUST1 DUST2 SDUST (Cooper et al., 1981)
 

Figure 4-4. Source profiles generated by LGO for soil-dust (DUST1 based on 133 cases, 
DUST2 based on 149 cases), compared to an Alabama soil dust profile (Cooper, 1981), 
previously used to apportion PM2.5 in Atlanta (Marmur et al., 2005). Bars represent ±one 
standard-deviation of the LGO estimated (over 133 and 149 cases) or measured fractions. 
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Figure 4-5. Source profiles generated by LGO for coal-fired power plants (CFPP1 based 
on 133 cases, CFPP2 based on 149 cases), compared to a CFPP profile measured in 
Texas (Chow et al., 2004), previously used to apportion PM2.5 in Atlanta (Marmur et al., 
2005). Bars represent ±one standard-deviation of the LGO estimated (over 133 and 149 
cases) or measured fractions. 
 

The role of the constraints/bounds used to derive the source compositions were 

analyzed using the entire dataset of derived source-profiles (447 cases), in terms of 

percent of cases in which either bound (lower/upper) were found limiting (Table 4-3). 

These data indicate that the constraints are most often limiting for species that are not 

unique tracers or key driving species of a given category. Examples are sulfate, nitrate 

and ammonium content in all sources of primary PM2.5, OC and non-crustal elements in 

soil dust, and various metals such as Al, K, Mn and Si in both types of mobile sources. 

However, a key success of the source-profile derivation process is LGO’s ability to 

estimate the fraction of unique/key species well within the allowable range in most cases. 

Examples are EC, OC, TC, OC/EC ratio and Zn for gasoline vehicles; EC, OC, TC and 

OC/EC ratio for diesel vehicles; EC, OC, TC, OC/EC ratio and K for wood burning; Ca, 

Fe, Si, and Ti for dust; and Ca and Se for coal-fired power plants. 
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Table 4-3: Percent of cases (447 total) in which the derived species fraction was at the 
lower limit / within the allowable range / at the upper limit. 

Species LDGV 
(low/within /upper) 

HDDV 
(low/within /upper) 

BURN 
(low/within /upper) 

DUST 
(low/within /upper) 

CFPP 
(low/within /upper) 

EC 20 / 80 / 0 23 / 77 / 0 18 / 82 / 0 63 / 17 / 20 25 / 52 / 23 
OC 0 / 100 / 0 35 / 65 / 0 0 / 100 / 0 66 / 27 / 7 19 / 79 / 3 

OC/EC 15 / 85 / 0 0 / 100 / 0 3 / 97 / 0 - - 
TC 1 / 99 / 0 4 / 96 / 0 1 / 99 / 0 - - 

SO4
-2 92 / 7 / 1 90 / 8 / 2 89 / 9 / 2 84 / 14 / 2 77 / 22 / 1 

NO3
- 88 / 9 / 3 82 / 13 / 4 83 / 10 / 7 78 / 15 / 7 - 

Cl 45 / 52 / 2 39 / 59 / 2 41 / 50 / 9 66 / 20 / 14 59 / 25 / 16 
NH4 11 / 7 / 82 11 / 6 / 83 11 / 11 / 78 13 / 18 / 69 11 / 13 / 76 
Al 64 / 35 / 1 51 / 31 / 19 - 80 / 20 / 0 53 / 45 / 3 
As - - - - 1 / 11 / 88 
Ba - - - 7 / 15 / 78 2 / 12 / 87 
Br 18 / 81 / 1 30 / 48 / 23 34 / 34 / 32 - 37 / 33 / 29 
Ca 30 / 66 / 3 36 / 39 / 25 38 / 27 / 35 33 / 64 / 3 3 / 87 / 10 
Fe 14 / 78 / 8 32 / 40 / 28 26 / 32 / 42 14 / 81 / 6 6 / 63 / 32 
K 35 / 33 / 32 38 / 23 / 39 6 / 75 / 19 14 / 57 / 28 30 / 25 / 46 

Mn 54 / 45 / 0 46 / 48 / 6 55 / 35 / 9 66 / 34 / 0 66 / 31 / 3 
Pb 20 / 39 / 41 15 / 48 / 37 23 / 28 / 49 - 19 / 34 / 47 
Se - - - - 2 / 71 / 26 
Si 44 / 53 / 3 41 / 49 / 10 - 11 / 89 / 0 8 / 81 / 11 
Ti - - - 23 / 74 / 3 15 / 41 / 44 
Zn 4 / 89 / 7 22 / 42 / 36 25 / 30 / 45 32 / 27 / 41 19 / 25 / 56 

 
 

4.3.2 Source apportionment based on the derived PM2.5 source profiles 

Using LGO-derived source profiles (LDSP) based on all available samples (447 

cases for the period of 8/1/1998-8/31/2000, Table 4-4) to apportion daily PM2.5 levels 

measured at the Jefferson Street site in Atlanta, typically led to similar results as when 

measurement-based source profiles (MBSP) were used (Marmur et al., 2005) (Figure 4-6; 

Tables 4-5 – 4-7), though with a couple major differences. 

PM2.5 attributed to wood burning was 0.66 µg/m3, on average, using LDSP versus 

1.1 µg/m3 using MBSP. This is driven, in part, by the higher potassium fraction in the 

LGO derived DUST profile, compared to the measurement-based DUST profile. Other 
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differences include diesel PM2.5 (2.3 µg/m3 using LDSP, 1.9 µg/m3 using MBSP) and 

“other OC” (3.1 and 2.5 µg/m3, respectively).  

Table 4-4: LGO derived PM2.5 source profiles based on 447 days in which all relevant 
data (ions, EC, OC, metals, CO, SO2, NOy) were available (GV- gasoline vehicles; DV- 
diesel vehicles; BURN- vegetative burning; DUST- soil dust; CFPP- coal fired power 
plants) 

Species GV DV DUST BURN CFPP 

SO4
-2 0.0129 ± 0.0138 0.0128 ± 0.0139 0.0013 ± 0.0015 0.0013 ± 0.0016 0.0307 ± 0.0563 

NO3
- 0.0144 ± 0.0174 0.0161 ± 0.0205 0.0001 ± 0.0003 0.0018 ± 0.0025 0.0000 ± 0.0000 

Cl- 0.0240 ± 0.0236 0.0238 ± 0.0222 0.0026 ± 0.0033 0.0374 ± 0.0320 0.0023 ± 0.0039 

NH4 0.0088 ± 0.0031 0.0088 ± 0.0030 0.0008 ± 0.0004 0.0086 ± 0.0032 0.0087 ± 0.0031 

EC 0.2575 ± 0.1323 0.5654 ± 0.1570 0.0024 ± 0.0041 0.1093 ± 0.0609 0.0522 ± 0.0357 

OC 0.4176 ± 0.0914 0.2063 ± 0.1059 0.0150 ± 0.0301 0.5225 ± 0.0626 0.1280 ± 0.1036 

Al 0.0032 ± 0.0073 0.0003 ± 0.0004 0.0150 ± 0.0154 0.0000 ± 0.0000 0.0253 ± 0.0238 

As 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0010 ± 0.0002 

Ba 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0089 ± 0.0028 0.0000 ± 0.0000 0.0095 ± 0.0019 

Br 0.0014 ± 0.0018 0.0005 ± 0.0004 0.0000 ± 0.0000 0.0005 ± 0.0005 0.0004 ± 0.0005 

Ca 0.0109 ± 0.0133 0.0005 ± 0.0004 0.0467 ± 0.0469 0.0005 ± 0.0005 0.1157 ± 0.0552 

Fe 0.0210 ± 0.0157 0.0005 ± 0.0004 0.0867 ± 0.0582 0.0006 ± 0.0005 0.0745 ± 0.0280 

K 0.0005 ± 0.0005 0.0001 ± 0.0000 0.0668 ± 0.0342 0.0628 ± 0.0304 0.0066 ± 0.0041 

Mn 0.0003 ± 0.0007 0.0003 ± 0.0003 0.0025 ± 0.0046 0.0002 ± 0.0004 0.0004 ± 0.0011 

Pb 0.0006 ± 0.0004 0.0006 ± 0.0004 0.0000 ± 0.0000 0.0006 ± 0.0005 0.0063 ± 0.0043 

Se 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0061 ± 0.0035 

Si 0.0076 ± 0.0130 0.0026 ± 0.0037 0.2419 ± 0.0897 0.0000 ± 0.0000 0.1341 ± 0.0475 

Ti 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0120 ± 0.0125 0.0000 ± 0.0000 0.0069 ± 0.0036 

Zn 0.0074 ± 0.0054 0.0006 ± 0.0004 0.0005 ± 0.0005 0.0006 ± 0.0005 0.0075 ± 0.0037 
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Figure 4-6. Average source contributions (8/1/98-8/31/00) to PM2.5 at the Atlanta 
Jefferson Street site, using LGO-derived source-profiles (this study) and measurement-
based source-profiles (Marmur et al., 2005) (GV- gasoline vehicles; DV- diesel vehicles; 
BURN- vegetative burning; DUST- soil dust; CFPP- coal fired power plants; AMSULF- 
ammonium sulfate; AMBSLF- ammonium-bisulfate; AMNITR- ammonium-nitrate; 
OTHROC – Other OC; UNSPEC – unspecified) 
 

Comparing the quality of fit achieved in the two cases (Table 4-5), finds a 

significantly lower chi-square value (error function being minimized) (Marmur et al., 

2005) using LDSP (12.6) compared to MBSP (20.3). This is driven by several trace 

species, such as Br, Ca, Fe, K, Pb and Si, for which their ambient concentrations were 

better reconstructed using LDSP (Al was not used as a fitting species in the MBSP 

solution). However, EC, Cl- and Zn were better fit using the MBSP. The improved fit for 

potassium using LDSP can partially explain the lower mass contribution of BURN using 

LDSP, compared to MBSP. The improved fit for Si, Fe and Al using LDSP may indicate 
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that the DUST profile derived by LGO is more representative of Atlanta soil dust, 

compared to the Alabama soil profile used (Cooper, 1981). Aluminum was excluded as a 

fitting species in the MBSP study (Marmur et al., 2005) because including it did not 

improve the fit significantly (calculated/observed ratio for Al was 4.0 when included, 4.7 

when excluded), but the chi-square increased (22.4 vs. 20.3), indicating that the DUST 

impact was driven by another species (Si) (Marmur et al., 2006), and that the Al/Si ratio 

in the soil profile is too high compared to ambient measurements in Atlanta. 

To assess the difference in daily variability in source impacts based on LDSP and 

MBSP, we also computed correlations between the various source-contribution estimates 

(Table 4-6). Of the five source categories for which profiles have been derived, the 

source inter-correlations are high for DUST (0.97), GV (0.93), and CFPP (0.89), slightly 

lower for BURN (0.83), and relatively low for DV (0.68). DV and BURN were 

previously mentioned for differences in their average source contributions based on the 

two methods (Figure 4-6). The correlations for all the secondary PM2.5 categories are 

high (0.95-1.00). 
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Table 4-5. Performance measures for the LDSP and MBSP solutions: Chi-square (error 
function), correlation (R) between ambient and reconstructed PM2.5, percent of total mass 
explained, and calculated-to-observed ratios (ideally would approach 1). Bolded values 
are superior compared to the other solution. 

 LDSP (this study) MBSP (Marmur et al., 2005) 
 Mean  (StDev) Mean   (StDev) 

Chi-square (error function)
 12.4 (12.0) 20.3 (16.8) 

R 0.9836 (0.0349) 0.9879 (0.0324) 
% total mass 92.3 (18.7) 90.5 (17.4) 
SO4

-2 ratio 1.06 (0.07) 1.07 (0.07) 
NO3

- ratio 1.16 (0.79) 1.18 (0.87) 
Cl- ratio 1.31 (0.77) 1.06 (0.63) 

NH4
+ ratio 0.88 (0.15) 0.88 (0.15) 

EC ratio 0.94 (0.37) 0.98 (0.13) 
OC ratio 1.00 (0.03) 1.00 (0.03) 
Al ratio 1 1.50 (0.86) 4.67 (2.81) 
As ratio 0.19 (0.18) 0.32 (0.25) 
Ba ratio 0.26 (0.20) 0.10 (0.08) 
Br ratio 1.26 (1.36) 0.39 (0.38) 
Ca ratio 1.08 (0.34) 1.15 (0.34) 
Fe ratio 0.85 (0.19) 0.55 (0.17) 
K ratio 1.05 (0.46) 1.19 (0.49) 

Mn ratio 1.57 (1.23) 0.69 (0.58) 
Pb ratio 1.12 (0.95) 0.27 (0.23) 
Se ratio 1.25 (1.27) 1.11 (1.20) 
Si ratio 1.07 (0.19) 1.28 (0.12) 
Ti ratio 1.16 (0.70) 1.27 (0.70) 
Zn ratio 0.92 (0.37) 1.01 (0.35) 
SO2 ratio 2.13 (0.89) 1.99 (0.97) 
CO ratio 1.75 (0.84) 2.06 (0.83) 
NOy ratio 1.63 (0.68) 1.58 (0.66) 

1 – Al was not included as a fitting species in the MBSP solution (Marmur et al., 2005). To allow for a full 
comparison, we also reran the MBSP analysis with Al as fitting species. Al fit was slightly improved 
(calculated/observed ratio of 4.0 vs. 4.7), though still very much overestimated, while the overall fit (as 
expressed by chi-square) worsened (22.4 vs. 20.3). 
 

Table 4-6. Correlation matrix (R) of source-contributions based on LDSP and MBSP 
solutions 

  LDSP (this study) 
  GV    DV    DUST    BURN    CFPP    AMSULF   AMBSLF   AMNITR   OTHROC   

GV    0.93 0.43 0.12 0.33 0.12 0.07 -0.02 0.30 0.29 
DV     0.22 0.68 0.19 0.62 0.22 0.26 -0.03 0.21 0.41 

DUST    0.17 0.33 0.97 0.17 0.22 0.33 -0.08 -0.08 0.17 
BURN     0.10 0.02 -0.15 0.83 -0.08 -0.04 0.05 0.22 0.12 
CFPP     0.28 0.39 0.15 0.16 0.89 0.21 0.06 0.08 0.31 

AMSULF   0.03 0.23 0.29 0.13 0.24 1.00 -0.08 -0.03 0.30 
AMBSLF   0.03 -0.04 -0.07 0.05 0.07 -0.12 0.95 0.17 0.01 
AMNITR   0.26 0.15 -0.09 0.25 0.02 -0.05 0.18 0.98 0.11 M

B
SP

 (M
a

rm
u

r 
et

 a
l.,

 
2

00
5

) 

OTHROC   0.42 0.70 0.20 0.28 0.30 0.29 0.03 0.14 0.97 
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Further analyzing differences in the DV and BURN source contributions 

predicted by the two methods, MBSP DV source impact is highly correlated with EC 

(0.96) whereas the LDSP DV source impact has a lower correlation with EC (0.72). This 

indicates that EC is more of a driving force in the MBSP solution than in the LDSP 

solution. For BURN, the correlations with K were more similar, 0.62 based on the MBSP 

solution, 0.67 based on LDSP. Effects of fluctuations in tracer concentrations on source 

contributions are investigated further by a sensitivity analysis, in which the ambient 

concentrations of one PM2.5 component at a time were increased by 50% and the resulting 

effects on the source-attributions (using the fix derived source profiles) were analyzed. 

These results are compared to a similar analysis performed on the MBSP solution 

(Marmur et al., 2006) (Table 4-7). DV source contributions are driven mainly by EC in 

both solutions (62% and 70% increase in DV contribution based on LDSP and MBSP due 

to a 50% increase in EC concentrations), but the LDSP is less sensitive to EC and more 

sensitive to Si compared to the MBSP solution. In addition, EC has a bigger effect on the 

spilt between gasoline and diesel vehicles in the LDSP solution, scavenging more mass 

from the GV category compared to the MBSP case. Similarly, mass is scavenged from 

the BURN category using the LDSP, not so using MBSP. The BURN impact based on 

the LDSP solution is more sensitive to K. 
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Table 4-7. Percent change in average source-attributions for a 50% increase in 
concentrations of several tracer species (increased one at a time) 

% change in source-attribution for a  50% increase in the corresponding species-concentration (LDSP / MBSP) Species 
GV DV DUST BURN CFPP OTHROC 

EC -17 / -6.8 62 / 70 2.8 / 1.2 -6.7 / 0 0.5 / -1.2 -5.1 / -5.6 
OC 0 / 0.6 0 / 0 0 / 0 -0.1 / 0.6 0 / 0 73 / 82 
Al 0.6 / 0 -0.1 / 0.3 0.5 / 0.7 -0.4 / 1 0.8 / 1.4 -0.1 / 1.7 
Br 4.8 / 0 3.1 / -0.5 -1.2 / -0.5 4.1 / 2.8 -2.7 / 0 -1.5 / -0.9 
Ca 1.5 / 1.3 -0.5 / -1.3 1.7 / -2 -2.7 / 1.3 8.1 / 29 -0.1 / -0.7 
Fe 6.7 / 0 -4.9 / 0 14.3 / 0 -13.9 / 0 -0.9 / 0 0.1 / 0 
K -4.7 / 0 -5.6 / -8.5 1.3 / -1.7 110 / 40 0.7 / -3.4 -7.9 / -12 

Mn 0.4 / 0 0.6 / 0 4.2 / 3 -1.1 / 0 -1.4 / 0 -0.2 / 0 
Pb 0 / 1.0 0.1 / -0.3 -0.7 / 0 1.2 / 0.3 0.7 / -0.3 -0.3 / -0.3 
Se -1.5 / -0.9 0.5 / 0 -1.2 / -1.4 0.8 / 0 3.1 / 8.6 0.2 / 0 
Si -5.0 / -1.0 5.3 / 0.7 27 / 37 -21 / -1.4 -1.8 / -5.5 1.5 / 0.3 
Ti -1.5 / -0.9 0.7 / 0 6.6 / 7.3 -2.4 / 0 0 / 0.9 0.6 / 0 
Zn 38 / 13 -6.9 / -4 -6.1 / -2.3 6 / 0.6 -6.2 / -2.8 -2.9 / -2.8 
SO2 -2.5 / -0.8 0.4 / 0.5 -7 / -4.6 4.8 / 1.3 48 / 32 -0.2 / -0.3 
CO 7.0 / 5.6 -1.8 / -2.1 0 / -0.7 0 / 0 -1.5 / -2.8 -0.3 / -1.4 
NOy 3.2 / 3.4 0.9 / 1.7 -2.6 / -0.6 -0.3 / -0.6 -2.9 / -1.1 -0.4 / -0.6 

 
 

The selection of bounds is a critical step in the analysis, and this choice can have 

an effect on the solutions obtained. However, setting the bounds based on well based 

knowledge of typical source compositions (such as in Tables 4-1 – 4-2) reduces the 

possibility of noise or randomness in the source-attributions. To assess the effect of 

bound selection on the source-apportionment results, we repeated the analysis, this time 

relaxing both the lower (dividing) and upper (multiplying) species fraction bounds by a 

factor of two. This had little effect on the temporal patterns in source contributions, with 

source inter-correlations of 0.93, 0.88, 0.99, 0.90, and 0.97 for GV, DV, DUST, BURN, 

and CFPP, respectively, for the sensitivity and baseline cases. Inter-correlations for the 

four secondary PM2.5 categories were near perfect (0.98-1.00). Average mass attributions 

changed by 10% or less for all source categories except GV (23% reduction compared to 

base-case) and DV (31% reduction). To assess whether solutions obtained are unique, we 

also repeated the analysis this time changing the optimization starting point. Changing 

the initial estimate of the mass apportioned to each category (while keeping source 

compositions fixed) had no effect on the final results obtained, but changing the initial 



 88 

estimate of the source compositions (from the midpoint of the allowed range to the 

extreme) did change the results slightly, with source inter-correlations of 0.95 and above 

for all sources except for GV (0.88). 

 

4.3.3 Comparison with FA results 

Both sets of source apportionment results (LDSP and MBSP) provide reasonable 

estimates of the impacts of various sources on ambient PM2.5 levels, as reflected by the 

sensitivity analysis results and correlations with ambient tracer concentrations (Marmur 

et al., 2006; Marmur et al., 2005). For most sources, there is significant agreement 

between the two, indicating that the approach presented here is capable of deriving source 

profiles from the receptor data and producing source impacts without the use of 

predetermined (measured) source profiles specific to the regions or exceptionally recent. 

There are, however, some differences in both total mass apportioned to some of the 

categories (e.g., BURN and HDDV) and the in the magnitude of the driving force for 

some of the species. While there is no standard by which to compare the accuracies of the 

LDSP and MBSP results, a comparison of these results with FA results provides an 

indication of consistency across methods. We compare the LDSP and MBSP results to 

those from a PMF study (Kim et al., 2004a) for the JST site for the period of 11/98-8/00 

(Table 4-8). Only overlapping source categories are compared (gasoline, diesel, soil, 

wood). There is more agreement between the results based on PMF and MBSP than PMF 

and LDSP for diesel vehicles, wood burning and soil dust. This is expressed by both the 

average mass apportioned to the various categories and by the correlations between the 

various source-apportionment methods (Table 4-8). Impacts of gasoline vehicles and the 

split between diesel and gasoline vehicles (diesel/gasoline ratio of 1.6, 1.7 and 1.2 based 
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on PMF, LDSP and MBSP results, respectively) are more alike in PMF and LDSP 

results. The overall greater agreement between PMF and the MBSP results is surprising 

given that in theory LDSP and PMF are more alike (both derive source compositions 

using the ambient data). However, the differences between method inter-correlations 

(Table 4-8) are minor, and are a reflection of the small differences between the LDSP and 

MBSP results. These results might also suggest that the differences between CMB and 

FA results are more due to what the sources and factors, respectively, represent than due 

to the accuracy of the source profiles used in CMB. 

 

Table 4-8. Comparison between source apportionment results (total mass and 
correlations) based on PMF (Kim et al., 2004a), LSDP (this study), and MBSP (Marmur 
et al., 2005) 
 

Source 
category 

LDSP/PMF 
mass ratio  

MBSP/PMF 
mass ratio 

Correlation (R): 
PMF, LDSP 

Correlation (R): 
PMF, MDSP 

Gasoline 1.15 1.31 0.52 0.50 
Diesel 1.23 0.98 0.72 0.78 
Soil 0.57 0.72 0.93 0.97 

Wood 0.62 1.00 0.71 0.78 

 

4.4 Conclusions 

Results from an expanded CMB approach deriving source-compositions based on 

ambient data were compared with CMB results based on measured source-profiles. For 

most sources, there is significant agreement between the two methods. Despite overall 

lower residual mass obtained by the expanded approach presented here, there is no 

standard by which to compare the accuracy of these two methods, especially in how well 

they capture the temporal trends in source impacts. As such, the approach presented here 

can be viewed as one method to assess the representativeness of measured source-profiles 
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and to help identify those profiles that may be in significant error. It can also be used to 

quantify uncertainties in source-impact estimates, which are in part due to uncertainties in 

source compositions. 
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CHAPTER 5 

SOURCE APPORTIONMENT OF PM2.5 IN THE SOUTHEASTERN 

UNITED STATES USING RECEPTOR AND EMISSIONS-BASED 

MODELS:  CONCEPTUAL DIFFERENCES AND IMPLICATIONS 

FOR TIME-SERIES HEALTH STUDIES 

(A. Marmur, S.K. Park, J.A. Mulholland, P.E. Tolbert and A.G. Russell, Atmospheric 

Environment, 40, 2533-2551, 2006) 

Abstract 

 Elevated levels of fine particulate matter (PM2.5) have been associated with 

adverse effects on human health, but whether specific components of PM2.5 are 

responsible for specific health effects is still under investigation. A complementary 

approach to examining species-specific associations is to assess associations between 

health outcomes and sources contributing to PM2.5. This approach could help target and 

regulate the sources that contribute most to adverse health effects. Various techniques 

have been developed to quantify source impacts on air quality, allowing examination of 

their health impacts. We compare two conceptually different approaches to source 

apportionment: a receptor model and an emissions-based air-quality model. Daily source 

impacts for July 2001 and January 2002 at four sites in the southeastern US were 

calculated using CMB-LGO (Chemical Mass Balance model incorporating the Lipschitz 

Global Optimizer), an extended CMB receptor model, and EPA’s Models-3 emissions-

based air-quality modeling system (MM5-SMOKE-CMAQ). The receptor model 
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captured more of the temporal variation in source impacts at a specific receptor site 

compared to the emissions-based model. Driven by data at a single site, receptor models 

may have some significant shortcomings with respect to spatial representativeness (unless 

a reduced study area is used or data from multiple sites are available). Source 

apportionment results from emissions-based models, such as CMAQ, may be more 

spatially representative as they represent an average grid-cell value. Limitations in the 

ability to model daily fluctuations in emissions, however, lead to results being driven 

mainly by regional meteorological trends, likely underestimating the true daily variations 

in local source impacts. Using results from either approach in a health study would likely 

introduce an attenuation of the observed association, due to limited spatial 

representativeness in receptor modeling results and to limited temporal representativeness 

in emissions-based models results. 

 

Keywords: CMAQ, CMB, LGO, source-apportionment, health-effects, PM2.5 

 

5.1 Introduction 

 Particulate matter, especially particles smaller than 2.5 microns in diameter 

(PM2.5), has been associated with  adverse health effects and mortality in studies covering 

more than 150 cities (Dockery et al., 1993; Pope et al., 2002; Pope et al., 1995). Both 

acute and chronic exposures to PM2.5 have been associated with increased mortality rates 

and hospital visits, as well as cardiopulmonary disease, heart attacks, decreased lung 

function, and asthma (Dockery et al., 1993; Ebelt et al., 2000; Peters et al., 2001; Pope et 

al., 1995; Vedal, 1997). Particulate matter is chemically complex, being comprised of 
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numerous primary and secondary components, including ionic and organic compounds 

and dozens of trace elements. It is still unknown which specific components of PM2.5 are 

more prone to cause specific health effects, although recent studies have started to 

address this issue (e.g., Metzger et al. 2004a; Metzger et al. 2004b; Peel et al. 2005; 

Hauck et al. 2004; Heal et al. 2005). However, the association between health outcomes 

and specific PM2.5 components raises several issues: it is not obvious that the major cause 

for the health outcome is actually measured (it is impractical to measure every single 

PM2.5 species) or is possibly measured inaccurately due to analytical issues; the actual 

health effects may be due to a combination of pollutants; many species are correlated 

which limits the ability to isolate species health impacts. A complementary approach is to 

examine associations between health outcomes and sources contributing to ambient PM2.5 

(Laden et al., 2000; Manchester-Neesvig et al., 2003; Mar et al., 2000; Tsai et al., 2000). 

By means of source apportionment (SA), source impacts on the receptor can be 

quantified, and their health impacts examined. A source-impact oriented approach could 

help target and regulate the sources that contribute most to adverse health effects. It could 

also allow for better multi-component epidemiologic modeling, as the number of major 

source-impact categories is typically far fewer than the number of PM components. 

Finally, this approach can help identify health effects of unmeasured species present in 

emissions from specific source categories. For example, preliminary studies have found 

an association between mortality and combustion-related PM2.5 (from motor vehicles, 

coal combustion and wood burning), but not soil-related PM2.5, in both cohort (Laden et 

al., 2000) and time-series (Mar et al., 2000) studies. Ito et al. (2004) mention that source-
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oriented evaluation of PM health effects need to take into consideration the uncertainty 

associated with spatial representativeness of the species measured at a single monitor. 

 Here we compare two conceptually different approaches to PM2.5 source 

apportionment, receptor-based modeling (represented in this study by the Chemical Mass 

Balance model, or CMB) and emissions-based air-quality models (represented in this 

study by EPA’s Models-3 suite of models). We address issues associated with using these 

techniques for time-series health studies, with special emphasis on the degree to which 

these approaches provide source impact estimates that are both spatially and temporally 

representative. So far, the focus in the source-apportionment and health literature has 

been on the use of various factor analytical (FA) techniques (such as PCA or PMF), to 

associate health outcomes with factors associated with sources of PM2.5 (Laden et al., 

2000; Manchester-Neesvig et al., 2003; Mar et al., 2000; Tsai et al., 2000). Here we 

address a slightly different approach, using the CMB receptor model, which, especially in 

its extended form presented here (CMB-LGO), is more explicit in terms of identifying the 

sources in question. The main difference between CMB and factor analytical approaches 

is that CMB uses emission composition data to derive source impacts, whereas FA 

techniques derive the source compositions from trends in the ambient data during the 

process of estimating source impacts. In an FA application, the investigator assigns 

names to the obtained factors (i.e., identifies the factors as sources) based on their 

chemical composition; the factors are unique for each dataset/site analyzed. For example, 

Ito et al. (2004) illustrate that uncertainties in “naming” the factors in FA applications 

might cause source impacts to appear less spatially representative than the true case 

because the derived factor for a given source category will be different at each site. Both 
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approaches have advantages and disadvantages; however in terms of assessing the spatial 

and temporal representativeness of receptor and emissions-based models for use in health 

studies, FA techniques share many of the same characteristics and issues as presented 

here for CMB (both being based on measured ambient data). 

 

5.2 Methods 

 We used both receptor-based (Chemical Mass Balance, or CMB) and emissions-

based (EPA’s Models-3) air-quality modeling approaches to conduct source 

apportionment of PM2.5 in Atlanta, GA and other sites in the southeastern US. The CMB 

receptor-based model (US-EPA, 2001) makes use of speciated ambient PM2.5 

measurements (major ions, carbon fractions, trace elements) and typical compositions of 

emissions from various source categories to quantify the source contribution to measured 

concentrations at the receptor. It is based on the following mass balance equation, which 

is solved for Sj (a vector of source contributions) (US-EPA, 2001):  

 ∑
=

+=
n

j
ijiji eSfC

1

              (5-1) 

where: 

Ci = ambient concentration of chemical species i (mg m-3 in PM2.5); 

fi,j = fraction of species i in emissions from source j; 

Sj = contribution (source-strength) of source j (mg m-3 in PM2.5); 

n = total number of sources; 

ei = error term; 
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 Here we applied both an extended version of CMB, referred to as CMB-LGO 

(Marmur et al., 2005) and the standard CMB. CMB-LGO (Lipschitz Global Optimizer) 

uses measured ambient gaseous concentrations (SO2, CO, and NOy) to bound acceptable 

solutions to the mass balance equation above. For each solution obtained, ambient SO2, 

CO and NOy concentrations are calculated based on the obtained PM2.5 source 

contribution and typical gas-to-particle ratios at the source (e.g., SO2/PM2.5 from the 

various sources). The calculated value is then compared to the ambient measurement and, 

in case of significant differences (e.g., under/over prediction of more than a factor 3), the 

model then searches for the next best fit to the mass balance equation that would also 

adhere to the gas-phase constraints (Marmur et al., 2005). This approach reduces 

collinearity between sources, which is one of the major limitations to source 

identification using CMB (i.e., the inability to distinguish between sources with similar 

PM2.5 emissions compositions). The reduced collinearity is because sources that share 

fairly similar PM2.5 composition may have very different gaseous emissions. For 

example, gasoline and diesel engines have fairly similar PM2.5 compositions (rich in 

organic and elemental carbon), but differ significantly with regards to CO and NOx 

emissions. Likewise, collinearity caused by crustal elements found in both soil dust and 

coal-fired power plant emissions is significantly reduced with the introduction of the SO2 

constraint (SO2 is abundant in power plant emissions, but not present in resuspended soil 

dust). However, use of CMB-LGO has some limitations, some of which might be 

important in time-series health studies. First, collinearity is not eliminated completely, 

and part of the daily fluctuations in the amount of mass apportioned between several 

sources might be due to collinearity, hence introducing an error to the time-series 



 99 

epidemiologic analysis. There are also uncertainties associated with the source profiles 

used. The composition might not necessarily represent typical local source compositions 

since locally accurate source profiles are not always available. The composition may vary 

temporally (e.g., the effect of driving mode on the composition of PM2.5 from mobile 

sources) whereas constant values are used. Finally, the model relies on local (receptor) 

ambient measurements which might be significantly affected by local sources within 1-2 

km and, therefore, might not represent the health study area, and might also contain 

measurement errors. 

 For these reasons, we also evaluated the use of emissions-based air-quality 

models for epidemiologic analyses. Such models have been used for gas-phase 

simulations and source-impact analysis of ozone for decades, and are typically three-

dimensional representations of the atmosphere. More recently, they are being applied to 

PM2.5 source apportionment as well, apportioning mass the either sources or regions 

(Boylan et al., 2002; Held et al., 2005; Odman et al., 2004). The three-dimensional air 

quality model simulates the source impacts by solving the conservation equation 

expressed as:  
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where: 

ci = concentration of species i; 

U = wind velocity vector; 

Di = molecular diffusivity of species i; 

Ri = rate of concentration change of species i by chemical reaction; 
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Si (x,t) = source/sink of i at location x and time t; 

ρ = air density; 

n = number of predicted species; 

 

 The conservation equation describes the formation, transport and fate of air 

pollutants, including components for processing emissions, meteorology, topography, and 

atmospheric chemistry (Russell and Dennis, 2000). Source apportionment can be 

performed using direct sensitivity methods such as Direct Decoupled Method (DDM) 

(Dunker, 1981; Hakami et al., 2003), inert tracer methods, or by multiple applications of 

the model with and without emissions from target sources (“brute force”). Here we 

applied brute-force to the US-EPA’s Models-3 suite of models, including MM5 (Grell et 

al., 1999) as the meteorological model to simulate atmospheric physical dynamics; 

SMOKE (Houyoux et al., 2003) as the emissions processor to calculate spatial and 

temporal trends in emissions based on the annual emissions inventory; and the 

Community Multiscale Air Quality (CMAQ) model (Byun and Ching, 1999) to simulate 

atmospheric reactivity, transport, and deposition of chemical contaminants. 

 In terms of PM2.5 source apportionment, the major difference between a receptor 

model and an emissions-based air quality model is the starting point. While a receptor 

model’s starting point is the ambient measurement, from there going backwards to 

estimate source contributions, the starting point of the air-quality model is the processed 

emissions inventory, going forward by simulating the transport and transformation of 

pollutants and ultimate air quality impact. The emissions used are typically processed 

from annual, county level emissions, using statistical daily/weekly/seasonal temporal 
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trends (such as peak morning rush hour and lower weekend emissions from mobile 

sources) and spatial information. Starting from an estimate of expected emissions at a 

location and time, atmospheric processes taking place during transport from source to 

receptor are simulated. CMAQ results provide more regionally representative values than 

those provided by an analysis based on a local measurement. However, results from air 

quality models include uncertainties arising from each step of the process (meteorological 

modeling, emission estimates, air quality modeling). Studies have shown that the 

emission inventory is one of the more uncertain, but particularly important, inputs to the 

air quality modeling process (NRC, 1991; Seinfeld, 1988). This is especially important in 

the current application where daily variability in source impacts is sought. 

5.2.1 Model application 

 Source apportionment using CMAQ was performed on a daily basis for the 

months of July 2001 and January 2002. For actually applying either of these methods to a 

time series health study, a much larger dataset is desired (typically, several years of data). 

However, focusing on the reduced time periods allows more detailed examination of the 

issues involved in using results from either approach. Also, obtaining several years of 

CMAQ-based source apportionment results using the brute-force method requires 

significant computational resources. As tracer and other direct source-apportionment 

methods become available in CMAQ, it will be possible to expand this type of analysis 

by tracking source impacts efficiently, without having to re-apply to model for each 

source category examined. A longer CMB-LGO analysis has been completed and 

analyzed (Marmur et al., 2005). 
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 The Models-3 air-quality modeling system was applied over much of the US 

using a 36 km grid, and a finer 12 km grid was used over northern Georgia (Figure 5-1).  

More detailed model information is presented elsewhere (Park et al., 2006a; Park et al., 

2006b; Park et al., 2006c). We focused on two urban (Atlanta, GA and Birmingham, AL) 

and two rural (Yorkville, GA and Centerville, AL) Southeastern Aerosol Research and 

Characterization (SEARCH) sites (Figure 1), which include data on total PM2.5 mass 

(gravimetric measure) and its components (Hansen et al., 2003; Kim et al., 2003). The 

main objectives of SEARCH include the understanding of composition and sources of 

PM in the southeast (Hansen et al., 2003; Kim et al., 2003). The SEARCH data are also 

being used for health studies in Atlanta in which associations of PM2.5 with respiratory 

illnesses and cardiovascular disease have been observed (Metzger et al., 2004; Peel et al., 

2005). In the southeastern US, a major part of the total PM2.5 is secondary (Hansen et al., 

2003; Kim et al., 2003; Marmur et al., 2005), i.e. formed in the atmosphere from 

precursor gases. The major secondary PM2.5 components are sulfate from the oxidation of 

SO2 and secondary OC particles formed from VOC (volatile organic compounds) 

emissions. The emphasis in this paper is on sources of primary PM2.5, i.e. particulate 

matter emitted directly from emissions sources, due to the fact that receptor models are 

limited in their ability to link secondary compounds to emission sources (Burnett et al., 

1998). We focused on primary PM2.5 emissions from five source categories: gasoline 

vehicles, diesel vehicles, soil dust, vegetative/wood burning and coal-fired power plants 

(in the CMB-LGO analysis these were noted as LDGV, HDDV, SDUST, BURN and 

CFPP, respectively). These categories were previously identified as affecting the Atlanta 

airshed (Kim et al., 2004; Marmur et al., 2005; Zheng et al., 2002). Other categories, such 
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as meat cooking, were not quantified due to lack of tracers and collinearity issues 

(Marmur et al., 2005), and were likely apportioned to the unexplained fraction of OC 

(which also includes secondary organic aerosol). Regarding the major secondary PM2.5 

compounds, relating ambient sulfate concentrations to power-plant emissions is fairly 

straight forward since these account for the vast majority of SO2 emissions (US-EPA, 

1999).  The sources and chemistry of secondary organic aerosol (SOA) are still being 

investigated; biogenic compounds, such as monoterpene emissions from vegetation, are 

believed to be a major source of SOA (Carreras-Sospedra et al., 2005; Lim and Turpin, 

2002). As the chemistry of SOA becomes better understood, air-quality models such as 

CMAQ may be able to provide a useful tool to assess the health outcomes associated with 

elevated levels of SOA. 

Figure 5-1. Locations of SEARCH monitoring sites in Georgia (JST and YK) and 
Alabama (BHM and CTR), over plotted by the grids (36km) of the air quality model 
(only a part of the 36 km domain is shown here). The rectangle that contains the YRK 
and JST sites is the sub-domain of the air quality model with a grid size of 12km (12km 
grids are not shown here). 
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 For each one of the primary source categories investigated, emissions from 

SMOKE were tracked separately, and the air-quality model was applied six times: a base-

case run including all sources, and five additional runs withholding one source category 

at a time (domain-wide exclusion) (Park et al., 2006b; Park et al., 2006c).  A “source-

category” in this case is defined as a summation of emissions from numerous source 

classification codes (SCC) from the emissions inventory. Specifically, the “gasoline” 

SMOKE category is a summation of emissions from on-road and off-road gasoline-

engine powered vehicles; the “diesel” category is a summation of emissions from on-road 

and off-road diesel-engine powered vehicles; “dust” emissions are a summation of 

emissions from both paved and unpaved roads; “wood-burning” emissions are a 

summation of emissions from industrial and  residential wood burning, prescribed 

burning and wildfires; “power-plant” emissions are a summation of emissions from all 

coal-fired boilers. Emissions from natural-gas combustion and meat charbroiling were 

tracked separately as well (Park et al., 2006b; Park et al., 2006c), but are not presented 

here, as they were not resolved by the receptor model (Marmur et al., 2005).  

Withholding emissions of primary PM2.5 particles may shift secondary formation 

products to other particles, changing their size and deposition velocities and change their 

rate of coagulation with particles from other sources. However, a comparison of the 

results obtained by the brute force method and a tracer method (where no sources are 

being withheld) showed very minor differences in the amount of mass apportioned to 

each source category and near perfect agreement in modeled daily variability of source 

impacts (Baek et al., 2005). CMB-LGO (Marmur et al., 2005) was also applied for the 

same time periods, using source profiles representing these five source categories (Chow 
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et al., 2004b; Cooper, 1981; Zielinska et al., 1998). We compared the two models used 

here in terms of their ability to estimate long-term (monthly) and short-term (daily) 

source impacts, the degree of correlation between the various source categories, and the 

factors driving each model. In addition, we also addressed the issue of spatial variability 

in source impacts using concentrations of major PM2.5 tracers from an additional 

monitoring site in the Atlanta metropolitan area (South-Dekalb site). 

  

5.3 Results 

 Source apportionment results were analyzed for average source contributions, 

daily variability, and factors/species driving the apportionment process. Source impacts at 

four sites were studied using CMB-LGO and CMAQ: Jefferson Street (JST), an urban 

site in Atlanta, GA; Yorkville (YK), a rural site in northwestern GA; Birmingham 

(BHM), urban site in Birmingham, AL; and Centerville (CTR), a rural site in AL (Figure 

5-1). We report the calculated source contributions using CMB-LGO and CMAQ, as well 

as those using regular CMB (without incorporating the gaseous data as in CMB-LGO) for 

reference. 

 When analyzing these results for use in a time-series health study, it is important 

to consider two aspects: temporal (daily) variation and spatial representativeness. 

Inaccuracies in either introduce errors in the epidemiologic analysis. The temporal (daily, 

in this case) variation in source impacts is the major factor driving a time-series health 

study, as short-term health effects are sought (other trends in the data, such as seasonal 

effects, are controlled for). For other purposes, such as air quality management and 

control strategy development, longer term results (e.g., seasonal) can be used. Obtaining 
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such results involves less uncertainty; as demonstrated below (Figure 5-2), the two 

approaches agree reasonably well on a monthly average basis, but differences in the daily 

source impacts are evident (Figures 5-3 - 5-6). Spatial representativeness of air quality 

data is an important issue when such data are used in health and exposure studies. This is 

especially true in this type of application because the spatial heterogeneity of source 

impacts is likely higher than that of individual species. Though there are not many data 

available to fully investigate this issue, consider the extreme example of two different but 

constant sources, both emitting significant amounts of the same pollutant (e.g., OC from 

wood burning and meat charbroiling), each located next to a monitoring site. Both sites 

will show an OC impact and likely follow similar meteorological trends, resulting in high 

correlations between OC levels at the two sites. However, the dominant source 

contributing to the OC is completely different. This need for increased temporal and 

spatial accuracy places greater burdens on the SA approach than might be demanded for 

air quality management that focuses on reducing annual averaged levels. 
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Figure 5-2. Average source contributions (µg m-3) to primary PM2.5 over a two month 
period (July 2001 and January 2002) of gasoline vehicles (LDGV), diesel vehicles 
(HDDV), soil dust (SDUST), vegetative/wood burning (BURN) and coal fired power 
plants (CFPP) at four SEARCH sites in Georgia and Alabama 
 

5.3.1Average source impacts 

 Analyzing the average source contributions at the four sites examined (Figure 5-

2), biomass burning appears to be a major source of primary PM2.5 in the region, with 

contributions ranging between 27%-77% (higher fractions in the rural sites). Average 

wood burning contributions obtained using the three techniques were fairly similar at 

YRK and BHM, while CMAQ values were significantly higher at CTR and JST. 

Calculated average source contributions of primary PM2.5 from coal-fired power plants 

are small, less than 4% for all sites using all techniques, and the average values obtained 

using the various techniques are in good agreement. Calculated impacts from diesel 

vehicles were quite different at JST (CMAQ value higher) and BHM (CMB-LGO value 
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higher). The average contribution ranged between 5%-31% of the primary PM2.5, with 

higher fractions at the urban sites.  Major differences were observed for the gasoline 

vehicle primary PM2.5 contributions, with consistently higher values obtained by CMB 

compared to CMB-LGO. This is likely caused by some collinearity between the gasoline 

vehicle source profile (OC fraction of 0.55) and the secondary/other OC profile (OC 

fraction of 1.0), included to account for secondary OC (and any OC not apportioned to 

one of the primary sources included in the analysis). Without bounding acceptable 

solutions based on the gaseous species, the optimal solution obtained by CMB contains a 

high gasoline vehicle contribution, likely including some secondary OC formation. Such 

a high gasoline vehicle contribution would suggest much higher ambient CO 

concentrations should be present than are measured. When the acceptable solutions are 

bounded by CO, as done in CMB-LGO, lower gasoline vehicle contributions and higher 

secondary/other OC contributions are obtained, 3.1 µg m-3 on average, compared to 1.2 

µg m-3 using regular CMB. The solutions obtained by CMB indicate that even at the rural 

sites (YK and CTR), the contributions from mobile sources comprise approximately 50% 

of the primary PM2.5, and that the gasoline vehicle contribution at BHM is nearly 70% of 

the primary PM2.5, with an extremely high gasoline to diesel ratio of 10.4.  On the other 

hand, solutions obtained by CMB-LGO and CMAQ indicate that the gasoline-to-diesel 

ratio is smaller than 1 and that wood burning is the major source of primary PM2.5 at the 

rural sites. These results demonstrate the collinearity problem often encountered with 

regular CMB source apportionment. Significant differences in the soil-dust contribution 

are observed when CMAQ estimates are compared to the CMB and CMB-LGO results. 

CMAQ soil-dust impacts seem to be extremely overpredicted, up to ten times compared 
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to the receptor based results (the ambient data shows much lower levels of crustal 

elements than is modeled using CMAQ). This is a well known issue in CMAQ, where 

resuspended dust is assumed to be uniformly vertically mixed in the bottom layer of the 

model grid, while in practice, much of the resuspended dust is removed locally by 

impaction to surfaces (vehicles, leaves etc.). Often a 75% removal factor (DRI, 2000) is 

applied for soil dust (as in this case); however, soil dust impacts are still over-predicted. 

5.3.2 Conceptual differences between CMB and CMAQ 

 To illustrate the conceptual differences between source apportionment from a 

receptor model and a 3-D air quality model, we will focus on the results from CMB-LGO 

and CMAQ for the Atlanta urban site (JST). Different source impacts using CMAQ 

follow a similar day-to-day trend (Figure 5-3), driven mainly by meteorology (mixing 

height and ventilation). This trend is also similar to the temporal trend in modeled EC 

levels (also shown in Figure 5-3), which further indicates the strong effect of 

meteorology on the temporal variation. CMB-LGO results, on the other hand, exhibit less 

correlated source category trends (Figure 5-4). In the case of CMB-LGO, the trends in the 

diesel source-category and measured EC levels (also shown in Figure 5-4) are similar, but 

these trends are different than the trends of other source categories.  These differences 

between the daily trends in CMAQ and CMB-LGO are more clearly shown when the 

fraction of each source category’s contribution to the total is plotted as a time series 

(Figures 5-5 and 5-6). CMAQ source apportionment results show little variation in 

relative source impact while CMB-LGO results show substantial variation. 
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Figure 5-3. Daily source-specific contributions (µg m-3) to primary PM2.5 at JST from 
gasoline vehicles, diesel vehicles, soil dust, vegetative/wood burning and coal fired 
power plants for the periods July 2001 (a) and January 2002 (b) using CMAQ. Also 
plotted are modeled EC levels at JST. 
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Figure 5-4. Daily source-specific contributions (µg m-3) to primary PM2.5 at JST from 
gasoline vehicles (LDGV), diesel vehicles (HDDV), soil dust (SDUST), vegetative/wood 
burning (BURN) and coal fired power plants (CFPP) for the periods July 2001 (a) and 
January 2002 (b) using CMB-LGO. Also plotted are measured EC levels at JST. 
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Figure 5-5. Daily fractional source contribution (relative to overall contribution from the 
five categories examined) at JST using CMAQ 
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Figure 5-6. Daily fractional source contribution (relative to overall contribution from the 
five categories examined) at JST using CMB-LGO
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 Another useful way of interpreting these results is by means of a correlation 

matrix (R values in Table 5-1). Relatively high correlations between the CMAQ source 

categories and low correlations between the CMB-LGO categories are observed. As an 

example, in terms of the health study, the high correlation (0.94) between the gasoline 

and diesel categories using CMAQ might limit the ability to distinguish between the 

health outcomes of these two categories (even if these were a true reflection of the source 

impacts), while the results from CMB-LGO (significantly lower correlation, R=0.54) will 

allow such differentiation (even if these variations were mainly a reflection of 

collinearity). These correlations (Table 5-1) also indicate the level of agreement between 

the two techniques. The sources of the discrepancy include errors of both CMAQ and 

CMB results. However, these have different magnitudes with respect to different sources. 

Correlations between the corresponding source impacts using the two techniques are poor 

for soil dust (-0.24), wood burning (0.18), and power plants (0.16), and more reasonable 

for the mobile sources (0.58 for gasoline vehicles, 0.52 for diesel vehicles, and 0.59 for 

the sum of these two categories).  

 One of the major sources of possible error in results from CMAQ comes from the 

uncertainty in emissions estimates. Emissions used as input to CMAQ have little daily 

variation (Figure 5-7). Soil dust, wood burning, and power plant PM2.5 daily emissions 

are assumed to be constant (except for power plants on the 4th of July and New Year’s 

Day holidays). Mobile source emissions are given a weekly trend, with emissions 

modified on the 4th of July and New Year’s Day holidays. In reality, soil dust emissions 

would depend on wind speed, humidity and recent rain fall, all having a significant effect 

on the amount of soil resuspended into the air (Hien et al., 2002). Stronger winds will 
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lead to increased resuspension of dust (though this also leads to increased mixing of the 

atmosphere, lowering concentrations of pollutants). On the other hand, relatively small 

amounts of dust will be resuspended following rain events. Such effects are not captured 

by SMOKE, which can explain the low correlation with the CMB-LGO results (-0.24). 

Also, wood burning is a source with varying activity, including prescribed and 

agricultural burning, residential wood combustion, and industrial use of wood bark as 

fuel, that is not captured by SMOKE (unless specific information about wild fires and 

prescribed burning is incorporated). The constant emission rate used might explain the 

low correlation with the receptor model results (0.18). The differences between the 

variations in power plant contributions may partially be due to a relatively coarse plume 

characterization using a 12 km grid (and a 36km grid for the Alabama sites), though 

uncertainties in the Se measurement and source profile fraction may contribute to the 

discrepancy as well. The temporal pattern of mobile sources emissions have been studied 

in detail (Sawyer et al., 2000). Therefore, actual mobile source emissions are probably 

more like the typical trends used in the model than the emissions from other sources. So 

it is not surprising that the correlations for the mobile sources are significantly higher 

(0.59 for the sum of the mobile sources).  Further, mobile source emissions are more 

ubiquitous, so a specific local source will have a smaller effect. Results from the other 

three sites studied, BHM, CTR and YK, show similar trends in differences between 

CMAQ and CMB-LGO results, as shown by correlation matrices (Tables 5-2 – 5-4). 
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Table 5-1. Correlations (R) between CMB-LGO and CMAQ based source contributions 
to PM2.5 at JST 

 LDGV 
(CMB-
LGO) 

HDDV 
(CMB-
LGO) 

SDUST 
(CMB-
LGO) 

BURN 
(CMB-
LGO) 

CFPP 
(CMB-
LGO) 

gasoline 
(CMAQ) 

diesel 
(CMAQ) 

dust 
(CMAQ 

Wood-
burnning 
(CMAQ) 

power-
plant 

(CMAQ) 
LDGV 

(CMB-LGO) 
1.00          

HDDV 
(CMB-LGO) 

0.53 1.00         

SDUST 
(CMB-LGO) 

-0.32 -0.16 1.00        

BURN 
(CMB-LGO) 

0.31 0.10 -0.04 1.00       

CFPP 
(CMB-LGO) 

-0.13 0.06 0.10 -0.06 1.00      

gasoline 
(CMAQ) 

0.58 0.52 -0.05 0.28 -0.01 1.00     

diesel 
(CMAQ) 

0.49 0.52 0.03 0.27 0.05 0.94 1.00    

dust 
(CMAQ) 

0.70 0.59 -0.24 0.30 -0.06 0.85 0.85 1.00   

wood-
burning 
(CMAQ) 

0.62 0.61 -0.33 0.18 -0.02 0.67 0.63 0.86 1.00  

power-
plant 

(CMAQ) 

0.25 0.42 -0.10 -0.10 0.16 0.40 0.49 0.39 0.38 1.00 

 

 

Table 5-2. Correlations (R) between CMB-LGO and CMAQ based source contributions 
to PM2.5 at YK 

 LDGV 
(CMB-
LGO) 

HDDV 
(CMB-
LGO) 

SDUST 
(CMB-
LGO) 

BURN 
(CMB-
LGO) 

CFPP 
(CMB-
LGO) 

gasoline 
(CMAQ) 

diesel 
(CMAQ) 

dust 
(CMAQ 

Wood-
burnning 
(CMAQ) 

power-
plant 

(CMAQ) 
LDGV 

(CMB-LGO) 
1.00          

HDDV 
(CMB-LGO) 

0.14 1.00         

SDUST 
(CMB-LGO) 

-0.35 -0.18 1.00        

BURN 
(CMB-LGO) 

0.10 -0.09 0.02 1.00       

CFPP 
(CMB-LGO) 

0.33 0.11 -0.26 -0.07 1.00      

gasoline 
(CMAQ) 

0.47 0.64 -0.29 0.15 0.11 1.00     

diesel 
(CMAQ) 

0.42 0.57 -0.29 0.24 0.15 0.97 1.00    

dust 
(CMAQ) 

0.57 0.41 -0.31 0.29 0.15 0.83 0.88 1.00   

wood-
burning 
(CMAQ) 

0.33 0.29 -0.26 0.26 0.03 0.66 0.72 0.77 1.00  

power-
plant 

(CMAQ) 

0.13 0.45 -0.17 0.10 0.00 0.70 0.70 0.56 0.28 1.00 
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Table 5-3. Correlations (R) between CMB-LGO and CMAQ based source contributions 
to PM2.5 at BHM 

 LDGV 
(CMB-
LGO) 

HDDV 
(CMB-
LGO) 

SDUST 
(CMB-
LGO) 

BURN 
(CMB-
LGO) 

CFPP 
(CMB-
LGO) 

gasoline 
(CMAQ) 

diesel 
(CMAQ) 

dust 
(CMAQ 

Wood-
burnning 
(CMAQ) 

power-
plant 

(CMAQ) 
LDGV 

(CMB-LGO) 
1.00          

HDDV 
(CMB-LGO) 

0.65 1.00         

SDUST 
(CMB-LGO) 

-0.03 0.08 1.00        

BURN 
(CMB-LGO) 

0.20 0.16 0.11 1.00       

CFPP 
(CMB-LGO) 

0.58 0.71 0.00 0.12 1.00      

gasoline 
(CMAQ) 

0.42 0.52 -0.07 0.31 0.37 1.00     

diesel 
(CMAQ) 

0.39 0.48 -0.05 0.29 0.35 0.97 1.00    

dust 
(CMAQ) 

0.50 0.50 -0.21 0.22 0.41 0.86 0.88 1.00   

wood-
burning 
(CMAQ) 

0.38 0.47 -0.02 0.28 0.39 0.76 0.80 0.79 1.00  

power-
plant 

(CMAQ) 

- - - - - - - - - - 

 

 

Table 5-4. Correlations (R) between CMB-LGO and CMAQ based source contributions 
to PM2.5 at CTR 

 LDGV 
(CMB-
LGO) 

HDDV 
(CMB-
LGO) 

SDUST 
(CMB-
LGO) 

BURN 
(CMB-
LGO) 

CFPP 
(CMB-
LGO) 

gasoline 
(CMAQ) 

diesel 
(CMAQ) 

dust 
(CMAQ 

Wood-
burnning 
(CMAQ) 

power-
plant 

(CMAQ) 
LDGV 

(CMB-LGO) 
1.00          

HDDV 
(CMB-LGO) 

0.36 1.00         

SDUST 
(CMB-LGO) 

-0.27 -0.19 1.00        

BURN 
(CMB-LGO) 

-0.12 -0.16 -0.02 1.00       

CFPP 
(CMB-LGO) 

0.72 0.34 -0.20 -0.12 1.00      

gasoline 
(CMAQ) 

0.36 0.30 -0.23 0.25 0.47 1.00     

diesel 
(CMAQ) 

0.35 0.34 -0.23 0.28 0.47 0.94 1.00    

dust 
(CMAQ) 

0.57 0.44 -0.36 0.19 0.56 0.81 0.85 1.00   

wood-
burning 
(CMAQ) 

0.20 0.39 -0.22 0.29 0.20 0.65 0.64 0.74 1.00  

power-
plant 

(CMAQ) 

0.18 -0.07 -0.09 0.01 0.28 0.48 0.46 0.25 0.10 1.00 
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Figure 5-7. Average daily modeled emissions in the model cell where the JST site is 
located  

(a) July 2001
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 When comparing the results it is important to recognize some of the limitations 

and issues arising from the use of CMB-LGO, contributing to the discrepancy between 

the two sets of results. First, as previously mentioned, there is some collinearity between 

the source categories, introducing more fluctuations in source impacts than is likely true. 

In addition, CMB-LGO is limited by the availability of ambient data. One such example 

is the zero contribution of diesel vehicles on July 28, 2001 estimated using CMB-LGO 

(see Figure 4), which is unlikely. This “error” is the result of there being no EC 

measurement on that day, so EC concentration was estimated as the monthly average. 

The high uncertainty associated with that value resulted in a low EC weighting in the 

error function; thus, EC levels were very poorly reconstructed for that day (17% of the 

filled-in value) and nearly no mass was apportioned to the HDDV category. 

 There are also issues pertaining to the use of temporally constant source profiles 

in CMB applications. For instance, PM2.5 composition from mobile sources depends on 

driving mode (Shah et al., 2004), and the composition of PM2.5 from wood burning 

depends on the type of wood and the burning practices (Chow et al., 2004b). Also, any 

receptor-based analysis is driven by point measurements, with very local influences. 

Finally, measurement error of PM2.5 components introduces noise to the apportionment 

process. 

5.3.3 Temporal variation in source impacts 

 To assess the degree to which results from CMB-LGO and CMAQ track the 

temporal variation in expected source tracer species, we calculated the correlations 

between these modeled daily source impacts and the daily ambient species concentrations 

at JST (Table 5-5). CMB-LGO source impacts are correlated with the expected tracers: 
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EC, OC, Zn, CO, and NOy for gasoline and diesel vehicles; crustal elements (e.g. Si and 

Al) for the soil dust contribution; potassium (K) for wood burning; selenium (Se) and 

SO2 for power plants. CMAQ source apportionment is not based on the ambient data, but 

a similar test gives additional insight to the factors driving the CMAQ source 

apportionment results. All of the source impacts are most correlated with EC. EC is the 

most abundant component of PM2.5 that is entirely primary, and, therefore, is in part an 

indicator of atmospheric stability. (Other major PM2.5 components, such as sulfate or OC, 

are either nearly entirely secondary in nature, or contain a large portion that is 

secondary.) Variations in CMAQ-based source impacts are mainly due to variations in 

meteorology, and more specifically to the results of meteorological modeling; hence, 

these impacts are mostly correlated with measured EC (R values ranging between 0.36-

0.64). (Hogrefe et al., 2001) showed that meteorological models, and hence air quality 

simulations based on those results, do not capture fine scale temporal and spatial 

variations. 

 We also performed a sensitivity analysis for the CMB-LGO solution, changing 

the ambient concentrations of one PM2.5 component by one (±) standard-deviation of the 

log-normalized values per analysis. Results from this analysis (Table 5-6) indicate that 

the gasoline vehicle contribution is most sensitive to Zn, CO and NOy concentrations (Zn 

is present in the lubricating oil of both gasoline and diesel vehicles; however, its fraction 

in emissions from gasoline vehicles is higher.) The diesel vehicle category is most 

sensitive to EC. Soil-dust is most sensitive to Si concentrations (Al was not included in 

the model error function (Marmur et al., 2005) and, therefore, was not included in the 

sensitivity analysis). Vegetative burning is most sensitive to K levels. The power-plant 
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contribution is most sensitive to SO2 and Ca. The sensitivity of the secondary/other OC 

category to OC levels, and the lack of such sensitivity in the other categories, indicates 

that OC is not a driver of the source apportionment of primary PM2.5 (OC is first 

apportioned to the sources of primary PM2.5, and only thereafter any OC unaccounted for 

is apportioned to the other/secondary OC category; hence, any change in OC levels 

would affect the other/secondary OC category first). 

 It is important to analyze the measurement accuracy of the driving species, 

especially in the case of trace level metals, to ensure that they are significantly above the 

detection limit. Average ratios of ambient concentrations to the minimum detection limits 

for various trace metals (Table 5-7) indicate that Zn concentrations are typically well 

above the detection limit, adding confidence in the gasoline-vehicle source attribution; so 

are the concentrations of Si, K and Ca, which were identified as key species in the 

attribution to the soil-dust, vegetative burning and power-plant categories, respectively. 

One interesting result of the sensitivity analysis was that the CFPP contribution was not 

very sensitive to Se levels, even though Se is a unique marker for coal combustion. 

However, the data in Table 7 indicate that the accuracy of the Se measurement is low 

compared to Ca, and in some cases Se concentrations may be near or lower than the 

detection limit. This explains why lowering the Se concentrations did not cause a 

reduction in the CFPP contribution (as the concentration approaches the detection limit, 

the weight in the error function is reduced), and why increasing Se concentration did 

cause an increase in this contribution (as Se levels increase above the detection limit, so 

does the weight in the error function).    
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Table 5-5. Correlations (R) between source contributions and ambient species 
concentrations measured at JST 

 CMB-LGO    CMAQ     

 LDGV HDDV SDUST BURN CFPP Gasoline Diesel Dust 
Wood 

Burning 
Power 
Plants 

EC 0.67 0.94 -0.22 0.25 0.00 0.56 0.55 0.64 0.64 0.36 

OC 0.69 0.76 -0.25 0.34 0.13 0.48 0.45 0.58 0.57 0.30 

Al -0.23 -0.12 0.96 -0.02 0.06 -0.03 0.03 -0.18 -0.25 -0.07 

As 0.21 0.23 -0.01 0.15 0.34 0.15 0.14 0.19 0.15 -0.06 

Br 0.59 0.40 -0.24 0.46 -0.02 0.41 0.40 0.46 0.43 0.29 

Ca -0.08 0.17 0.63 0.19 0.53 0.18 0.28 0.00 -0.05 0.00 

Fe 0.37 0.42 0.60 0.29 0.18 0.42 0.44 0.30 0.16 0.15 

K 0.46 0.24 0.09 0.71 -0.01 0.25 0.24 0.29 0.23 -0.04 

Mn 0.19 0.29 0.43 0.14 0.24 0.42 0.41 0.20 0.15 0.24 

Pb -0.04 0.03 0.03 -0.03 0.51 -0.02 -0.02 -0.07 -0.06 -0.07 

Se -0.08 0.15 0.13 0.08 0.58 0.07 0.09 -0.05 -0.03 0.01 

Si -0.19 -0.10 0.98 0.03 0.19 0.02 0.10 -0.14 -0.26 -0.06 

Ti -0.12 0.00 0.90 0.09 0.15 0.07 0.12 -0.10 -0.23 -0.06 

Zn 0.82 0.44 -0.32 0.41 -0.11 0.54 0.42 0.58 0.53 0.17 

SO2 0.41 0.24 -0.15 0.34 0.58 0.32 0.28 0.40 0.31 0.20 

CO 0.81 0.67 -0.24 0.34 -0.06 0.58 0.53 0.77 0.67 0.31 

NOy 0.90 0.63 -0.23 0.33 -0.09 0.57 0.49 0.73 0.64 0.17 

 
 
Table 5-6. Change in average species concentrations and average source-attributions 
corresponding to a decrease/increase of one standard-deviation of the log normalized 
species concentrations Correlations (R) between source contributions and ambient 
species concentrations measured 

Average source-attribution relative to base case (-σσσσlog / +σσσσlog) 
Average conc. relative 

to base case 
(-σσσσlog / +σσσσlog) LDGV HDDV SDUST BURN CFPP OtherOC 

EC 0.55/ 1.81 1.04/ 0.89 0.34/ 2.13 0.99/ 1.02 0.98/ 1.00 1.03/ 0.98 1.06/ 0.91 

OC 0.57/ 1.77 0.97/ 1.01 1.02/ 1.00 1.00/ 1.00 0.95/ 1.01 1.01/ 1.00 0.30/ 2.27 

As 0.45/2.22 1.00/1.00 1.00/0.99 1.00/1.00 0.98/1.04 1.00/1.00 1.01/0.99 

Br 0.48/2.07 1.00/1.00 1.01/0.99 1.01/0.99 0.94/1.06 1.00/1.00 1.02/0.98 

Ca 0.57/ 1.76 0.98/ 1.02 1.01/ 0.98 1.01/ 0.97 0.98/ 1.02 0.72/ 1.44 1.01/ 0.99 

Cu 0.31/3.20 0.99/1.03 1.00/0.99 1.00/1.00 1.00/1.01 1.00/1.00 1.00/0.99 

Fe 0.60/ 1.67 0.98/ 1.00 1.01/ 1.00 0.91/ 1.00 1.01/ 1.00 0.99/ 1.00 1.00/ 1.00 

K 0.63/ 1.59 1.01/ 1.00 1.06/ 0.90 1.01/ 0.98 0.69/ 1.47 1.03/ 0.96 1.09/ 0.86 

Mn 0.46/2.18 1.00/1.00 1.00/1.00 0.95/1.07 1.00/1.00 1.00/1.00 1.00/1.00 

Pb 0.34/2.93 0.99/1.04 1.00/0.99 1.00/1.00 1.00/1.01 1.00/0.99 1.00/0.99 

Se 0.48/ 2.10 1.00/ 0.98 1.00/ 1.00 1.00/ 0.97 1.03/ 1.00 1.03/ 1.19 1.00/ 1.00 

Si 0.41/ 2.46 1.01/ 0.97 0.99/ 1.02 0.40/ 2.07 1.02/ 0.96 1.04/ 0.84 0.99/ 1.01 

Ti 0.64/1.55 1.01/0.99 1.00/1.00 0.94/1.08 1.00/1.00 0.99/1.01 1.00/1.00 

Zn 0.53/ 1.88 0.62/ 1.23 1.12/ 0.93 1.05/ 0.96 1.00/ 1.01 1.22/ 0.95 1.07/ 0.95 

SO2 0.34/ 2.95 0.89/ 0.97 0.99/ 1.02 1.10/ 0.82 1.66/ 1.05 0.37/ 2.23 1.00/ 0.99 

CO 0.58/ 1.72 0.72/ 1.08 1.14/ 0.97 1.03/ 0.99 0.99/ 1.00 1.19/ 0.96 1.05/ 0.98 

NOy 0.53/ 1.88 0.71/ 1.06 0.93/ 1.03 1.05/ 0.99 1.09/ 0.99 1.06/ 0.98 1.04/ 0.99 
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Table 5-7. Average and standard deviation of the ratio of ambient concentration (Conc.) 
to minimum detection limit (MDL). The higher the ratio, the more accurate the 
measurement. 
 
Species (Conc./MDL)avg 

As 1.82±2.01 
Ba 0.58±0.25 
Br 5.55±3.26 
Ca 4.15±2.59 
Fe 161±89.1 
K 8.68±4.58 

Mn 2.01±1.43 
Pb 4.02±11.63 
Se 2.11±1.86 
Si 9.91±11.5 
Ti 0.77±0.56 
Zn 14.5±8.81 

 

 In terms of the number of species influencing each category, if each category was 

driven by only one species, one might consider doing the health analysis using ambient 

concentrations of that species, without the apportionment into categories. However, most 

of these key species are not unique indicators of a single source category; they are present 

in emissions from several categories (e.g., Si and Ca in both soil dust and power plant 

emissions) and do not represent one specific source category. Some of the categories are 

driven by more than one species, such as Zn, CO and NOy for LDGV and SO2 and Ca for 

CFPP, and others have “secondary” driving species, such as Fe and Mn for SDUST and 

Br for BURN. Finally, source-apportionment results can be used to reveal which are the 

species most associated with various source categories, if one were to interpret an 

association with a species as an indication of a source-related health outcome.  

5.3.4 Spatial representativeness 

 A major issue regarding the use of receptor-based source apportionment results in 

health studies is the spatial representativeness of the site. For example, Ito et al. (2004) 
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report that the temporal correlation of source impacts across three monitors in New-York 

city, 2-6 miles apart, varied significantly for sources of primary particulate matter. To 

address this issue for the Atlanta study, we also examined speciated PM2.5 data from the 

EPA-STN (Speciation Trends Network) monitor (US-EPA) at South-Dekalb (SDK), 

located 15.3 km south east of the JST site. The SDK site is located near the I-285 

interstate (“perimeter”) that encircles much of the Atlanta metropolitan area, while the 

JST site is located more towards the center of Atlanta, approximately 2 km east of the I-

75/85 interstate (Figure 5-8). As the STN and SEARCH networks differ with respect to 

the carbon analyses method, Thermal Optical Transmittance (TOT) and Thermal Optical 

Reflectance (TOR), respectively (Chow et al., 2004a), it is not possible to conduct a 

CMB analysis of the SDK data using the same source profiles used for the JST case 

(these were based on TOR carbon measurements). Also, SO2 and CO were not monitored 

at the SDK site, so CMB-LGO cannot be used. Instead, we compared levels and 

variations in major tracers for the various categories at the two sites. Data from March 

2001 through December 2002 were used (samples at SDK were collected every third day, 

so 220 samples were available for comparison). We looked at K as an indicator for wood 

burning, Si and Fe as indicators for soil dust, and Se for coal fired power plants (even 

though the CFPP contributions were more sensitive to Ca concentrations, Ca is by no 

means a unique tracer for CFPP, and is often correlated with elements such as Si and Fe, 

indicative of soil dust). There is no unique PM2.5 marker to separate gasoline and diesel 

vehicles contributions. To evaluate mobile sources as a whole, EC seems to be the most 

suitable (OC is partially secondary), but the comparison between EC at JST and SDK 

will include some noise due to the two different techniques used (TOR and TOT). EC is 
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also emitted from wood burning and other processes, so it cannot be view entirely as 

mobile-source related. We also examine Zn data, as it was correlated with gasoline 

vehicles impacts at the other sites examined. 

 

SDK

JST

SDK

JST

 

Figure 5-8. Location of JST and SDK monitoring sites with respect to major interstates in 
Atlanta  
 

 Potassium levels at JST and SDK are highly correlated (Figure 5-9). This likely 

indicates a spatially homogeneous source (residential/industrial wood combustion) or 

distant plume sources (prescribed agricultural burning) hitting the two monitors similarly. 

Crustal elements (Si, Fe) are also highly correlated, indicating regional/global dust 

events, and/or soil moisture resuspension effects, assuming that rain events occur 

similarly at the two sites, and that soil moisture and wind speed have a strong influence 

on the resuspension of local dust. However, when high Si events are excluded, the 

correlation is lower, indicating local effects (though Fe correlations still remain high). Se 

is poorly correlated between the two sites, likely representing the directionality of 
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impacts from power plant plumes. This is also demonstrated in (Wade et al., 2004), 

where SO2 concentrations (as a power plant marker) were the least spatially 

homogeneous of the primary gaseous pollutants. EC correlations are surprisingly high, 

considering the differences in measurement (TOR vs. TOT) and location in proximity to 

major highways. One possible explanation for the high correlation can be the role of 

atmospheric stability in daily variations of EC (and other pollutants) concentrations. Zn 

correlations are also relatively high, but drop when outliers are excluded. These findings 

are in overall agreement with data from (Wade et al., 2004) in which CO (as a mobile 

source tracer) measurements at three sites in Atlanta, 11.5-16.8 km apart, were correlated 

at levels of 0.65-0.76. Such results provide information about spatial variability of source 

impacts and site representativeness in the Atlanta area. Wood burning and soil dust 

contributions found at either site seem to be relatively spatially representative of the 

Atlanta urban area, as indicated by the correlations of potassium, silicon and iron. Power 

plant impacts seem to be local, based on the low inter-site selenium correlations. It is 

difficult to draw conclusions regarding the spatial representativeness of mobile source 

impacts due to the lack of a unique marker and CO data. However, weighing both the EC 

and zinc correlations, it seems that mobile sources impacts are “intermediately” 

representative, i.e., likely more spatially representative than power plant impacts, but less 

than wood burning and soil dust impacts. Note that these results are based on a 

preliminary analysis of two sites in Atlanta, and may represent a local phenomenon. 
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a) K, R=0.86 (0.80 when excluding values greater th an 0.15 ug/m3)
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b) Si, R=0.82 (0.60 when excluding values greater t han 0.3 ug/m3)
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c) Fe, R=0.80 (0.77 when excluding values greater t han 0.2 ug/m3)
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d) Se, R=0.36 (0.29 when excluding values greater t han 0.003 ug/m3)
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e) EC, R=0.76 (0.68 when excluding values greater t han 3.0 ug/m3)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

3/
2/

01

4/
2/

01

5/
2/

01

6/
2/

01

7/
2/

01

8/
2/

01

9/
2/

01

1
0/

2/
01

1
1/

2/
01

1
2/

2/
01

1/
2/

02

2/
2/

02

3/
2/

02

4/
2/

02

5/
2/

02

6/
2/

02

7/
2/

02

8/
2/

02

9/
2/

02

1
0/

2/
02

1
1/

2/
02

1
2/

2/
02

ug
/m

3

JST

SDK

f) Zn, R=0.77 (0.56 when excluding values greater t han 0.02 ug/m3)
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Figure 5-9. Time series comparison between ambient concentrations at two Atlanta 
monitoring sites located 15.3 km apart (SDK and JST) for K (a), Si (b), Fe (c), Se (d), EC 
(e) and Zn (f)  
 

5.4 Discussion 

 Associating health outcomes with sources, rather than pollutants, may have 

several advantages relating to both the epidemiologic modeling process and the 

regulatory process. For such analyses, source impacts that capture both the temporal and 

spatial variability need to be generated. Receptor models, such as CMB-LGO, capture 

more of the temporal variation in source impacts at a specific receptor site, compared to 

emissions-based models, though this variation might be overestimated due to collinearity 

between sources. Being driven by data at a single site, receptor models may have some 

significant shortcomings with respect to spatial representativeness and exposure issues. 

Source apportionment results from emission-based models, such as CMAQ, may be more 
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spatially representative, as they represent an average grid-cell value. However, 

limitations in the ability to model fine-scale meteorological fluctuations and daily 

fluctuations in emissions lead to results being driven mainly by regional meteorological 

trends (atmospheric stability), likely underestimating the true daily variations in source 

impacts. 

 The impact of a lack of spatial representativeness of estimated source impacts, 

anticipated in receptor modeling output, would likely introduce a bias to the null in 

epidemiologic models (i.e., an attenuation of the observed association).  The degree of 

spatial representativeness varies by source, and results for those sources with poor spatial 

representativeness (such as power plants) will have a greater degree of bias to the null.  

By characterizing the degree of spatial representativeness, investigators can take 

measures to handle this issue, such as reducing the study area included in analyses for the 

less representative sources, or possibly using data from several monitoring sites, if 

available.  The impact of relatively limited capture of true day-to-day variation in the 

source impacts, anticipated to be more of an issue with emissions-based models than 

receptor models (though these may over-estimate the temporal variation), is also likely to 

be a bias to the null in the epidemiologic models.  In the case of emissions-based models,  

the fact that the day-to-day variation in the source apportionment estimates is in large part 

a result of the meteorological conditions, and also influenced to a lesser extent by fixed 

day-of-week and seasonal patterns in the estimated emissions input, could lead to model 

instability, intractable confounding by meteorological conditions and temporal factors 

such as day-of-week and season, as well as limited usefulness in discerning the relative 

impacts of the sources on health outcomes. 
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CHAPTER 6 

INTERMETHOD VARIABILITY IN ASSOCIATIONS BETWEEN 

SOURCE-APPORTIONED PM2.5 AND DAILY EMERGENCY-

DEPARTMENT VISITS IN ATLANTA, GA 

 

Abstract 

Recent particulate-matter (PM) health effects research has focused on identifying 

the specific components of aerosol that pose the greatest health risks, but few 

epidemiologic studies have included source apportionment data in their examinations of 

PM health effects. This paper presents and analyzes results from source-specific 

epidemiologic analyses in Atlanta, Georgia, using data from several source 

apportionment methods (Positive Matrix Factorization [PMF] and the first application of 

a Chemical Mass Balance [CMB] model in a health-study). Atlanta is a unique location 

for conducting this type of health effects study given the existence of an extensive time-

series of daily chemically-resolved aerosol measurements, detailed gaseous pollutant 

monitoring and corresponding hospital records. Despite methodological differences and 

uncertainties in the apportionment process, good agreement was observed between the 

CMB-LGO (Lipschitz Global Optimizer) and PMF based risk ratios, indicating to the 

usefulness of applying apportionment methods in health studies. Preliminary 

epidemiologic analysis found mobile-source related PM2.5 significantly associated with 

cardiovascular outcomes; wood burning PM2.5 significantly associated with respiratory 

outcomes; soil dust significantly associated with asthma. “Other” OC was found 
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significantly associated with various respiratory outcomes, with high risk-ratios (RR), 

though further analyses, such as based on longer datasets, are needed to support this 

finding. Temporal patterns in source impacts suggests that “other” OC is associated with 

secondary formation.  Despite generally good agreement between RR estimates based on 

source contributions and tracer species, source apportionment and sensitivity analyses are 

needed to determine the most suitable tracers for each source-category. Source 

apportionment methods (CMB-LGO in this case) can also serve as a useful tool for 

estimating SOA concentrations (especially, in lieu of a SOA tracer) and associated health 

effects. 

 

6.1 Introduction 

Recent particulate matter (PM) health effects research has focused on identifying 

the specific components of aerosol that pose the greatest health risks (Hauck et al., 2004; 

Heal et al., 2005; Mar et al., 2000; Metzger et al., 2004a; Metzger et al., 2004b; Peel et 

al., 2005). Few epidemiologic studies, however, have included source apportionment data 

in their examinations of PM health effects (Laden et al., 2000; Mar et al., 2000; Thurston 

et al., 2005). Associating health outcomes with source-specific PM has several 

advantages relating to the epidemiologic modeling process, such as better treatment of 

multi-component interactions, and can provide important information to regulators to 

tighten controls on sources more prone to causing health outcomes. There are, however, 

uncertainties regarding optimal methods for conducting PM source apportionment, as 

well as a lack of suitable air quality and health effects data for analysis. A recent study 

examined the association between mortality and source-resolved PM measurements using 
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several principal components and factor analysis approaches (Thurston et al., 2005), and 

found that variability among the source-specific mortality risks was small when 

compared to overall model uncertainty, suggesting that these apportionment methods 

may be useful in discerning source-specific health effects. These findings were based on 

a relatively limited sample size and, thus, were not able to robustly identify specific 

source categories (e.g., mobile sources). Questions also remain concerning the 

generalizability of these findings to other locations with different aerosol compositions 

and whether analyses using other source apportionment methods, notably chemical mass 

balance (CMB) and source-based modeling, will show the same pattern of agreement.  

In this chapter, results from source-specific epidemiologic analyses in Atlanta, 

Georgia, using data from several source apportionment methods are presented and 

compared. Atlanta is a unique location for conducting this type of health effects study 

given the existence of an extensive time-series of daily chemically-resolved aerosol 

measurements and corresponding hospital records, which have been characterized in 

several atmospheric dynamics (Hansen et al., 2006; Hansen et al., 2003), source 

apportionment (Kim et al., 2004; Marmur et al., 2006; Marmur et al., 2005) and 

epidemiologic analyses (Metzger et al., 2004a; Metzger et al., 2004b; Peel et al., 2005).  

 

6.2 Methods 

6.2.1 Source apportionment of the Atlanta aerosol 

Several source-apportionment studies have been conducted on speciated PM2.5 

(PM smaller than 2.5 µm in size) data collected at the SEARCH Jefferson Street (Hansen 

et al., 2006; Hansen et al., 2003), which also served as the former Atlanta PM Supersite 
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(Solomon, 2003). Source-apportionment methods applied include both the traditional 

Chemical Mass Balance (CMB) model and an expanded CMB model (CMB-LGO, 

incorporating the Lipschitz Global Optimizer) (Marmur et al., 2005), Positive Matrix 

Factorization (PMF) (Kim et al., 2004) and Models-3/CMAQ (Community Multiscale 

Air Quality model), an emissions-based air-quality modeling system (Marmur et al., 

2006). Findings from these studies assisted in the selection of the most suitable source-

apportionment results to be applied in the epidemiologic study. 

A comparison of results based on CMB and CMB-LGO (Marmur et al., 2005) 

indicated that collinearity in source compositions might lead to “misplacement” of 

emissions between source-categories and to increased daily variability in source impacts 

when using the traditional CMB model. Such issues are dampened out significantly when 

the CMB-LGO approach is applied, as shown for gasoline-vehicles (GV) and primary 

PM2.5 coal-fired power plant (CFPP) contributions (Figure 6-1). By applying the CMB-

LGO approach, more plausible results were also obtained for soil-dust, which is anti-

correlated with the CFPP contributions (both rich in crustal material) in CMB (R=-0.23 

for the period of 8/1998-8/2000, as it is zeroed-out whenever CFPP contribution peaks), 

and not correlated with CFPP in CMB-LGO (R=0.07; expected, due to the episodic 

nature of these two categories, expressed by dust storms and plume fumigation events). 

More plausible results were also obtained for vegetative-burning (BURN) and “other” 

(unapportioned) OC. “Other” OC includes secondary organic aerosol (SOA) as well as 

any primary OC of sources not accounted for (if present). It is therefore unlikely to 

observe no “other” OC/SOA in Atlanta during summertime, as estimated by CMB on 

specific August days (Figure 6-2). This is likely the result of overprediction of the BURN 
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impacts (rich in OC) by CMB, as also observed by the over-allocation of K on those days 

(Figure 6-2). These trends are also observed in the correlations (R) between the BURN 

and “other” OC categories (-0.14 in CMB; 0.30 in CMB-LGO). These increased source-

intercorrelations are an indication of reduced collinearity in the CMB-LGO solution 

compared to “regular” CMB. 
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Figure 6-1. Daily PM2.5 source impacts of gasoline vehicles (GV; a) and coal-fired power 
plants (CFPP; b) for select periods. CMB results exhibit more variability in daily source 
impacts than results based on CMB-LGO, with extreme contributions accompanied by 
extreme over-predictions of CO and SO2 concentrations.  
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Figure 6-2. Daily PM2.5 source impacts of vegetative-burning (BURN) and “other” 
(unapportioned) OC based on CMB and CMB-LGO, along with the ratio of calculated-
to-observed K. 

 

Source apportionment of the Atlanta aerosol has also been performed using the 

PMF model (Kim et al., 2004). Comparing these results to those based on CMB-LGO 

(Marmur et al., 2005) for the period of November 1998 - August 2000, average source 

contributions are in good agreement (Table 6-1). Some differences arise regarding which 

specific categories are identified such as coal-fired power plants, identified in CMB-LGO 

only, and cement, railroad, bus/highway and metals processing factors, identified in PMF 

only. One of the major differences between PMF and CMB-LGO is the treatment of 

secondary organic aerosol (SOA). In PMF, no specific factor was identified as SOA; 

rather, SOA mass is distributed between several categories, primarily the secondary 

sulfate 2 factor as well as other factors (Kim et al., 2004). In CMB-LGO, SOA mass is 

apportioned to the “other” (unapportioned) organic material category, which accounts for 

nearly 20% of the PM2.5 mass. Comparing the correlations between daily source impacts 

based on these two methods (Table 6-2), good agreement is observed for the diesel, soil 

dust, wood burning, ammonium-sulfate/secondary-sulf-1 and ammonium-
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nitrate/secondary-nitrate source-categories/factors. Relatively poor agreement is observed 

for the gasoline vehicle contributions (R=0.50). In fact, gasoline vehicle PM2.5 based on 

PMF is relatively highly correlated with CMB-LGO “other” OC (R=0.79). Scatter plots 

of CMB- 

LGO versus PMF source contributions (Figure 6-3) show numerous cases when the PMF 

based diesel contribution is zero, as well as a few similar cases for both the PMF and 

CMB-LGO gasoline contributions. Such results are unlikely to be the case in the center 

of a large metropolitan city such as Atlanta. Also observed are several outliers in the 

CMB-LGO wood/vegetative burning contributions. These represent samples collected on 

the days surrounding July 4th of 1999 and 2000, and contained high concentrations of 

potassium due to fireworks. As no “fireworks” source was included in the analysis, 

CMB-LGO apportions much of the potassium into the vegetative-burning category, 

resulting in high PM2.5 contributions due to the associated OC in the source profile for 

this category. In the PMF analysis, potassium content was adjusted to exclude the 

contribution of fireworks, resulting in negligible wood burning contributions. Also 

evident (Figure 6-3) is the higher correlation between CMB-LGO “other” OC and PMF-

gasoline, compared to the inter-method gasoline contributions. 
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Table 6-1. Average source contributions to PM2.5 in Atlanta (Jefferson St.) based on 
CMB-LGO and PMF for the period of November 1998 – August 2000 

Source category % of PM2.5, CMB-LGO % of PM2.5, PMF 
Gasoline vehicles 7.6 5.8 
Diesel vehicles 9.1 9.3 
Soil dust 1.9 2.7 
Vegetative/wood burning 5.8 5.8 
Coal-fired power plants (CMB-LGO) 0.8 - 
Cement (PMF) - 1.8 
Ammonium-sulfate (CMB-LGO) / 
Secondary sulfate 1 (PMF) 38.5 46.3 
Ammonium-bisulfate (CMB-LGO) / 
Secondary sulfate 2 (PMF) 2.6 5.5 
Ammonium-nitrate (CMB-LGO) / 
Secondary nitrate 1 (PMF) 8.6 7.7 
Railroad (PMF) - 2.3 
Bus/Highway (PMF) - 1.6 
Metal processing (PMF) - 2.9 
"Other" organic material (CMB-LGO) 19.8 - 
Unspecified mass 5.2 8.2 

 
 

 

Table 6-2. Correlation matrix (R) of daily source contributions to PM2.5 in Atlanta 
(Jefferson St.) based on CMB-LGO (columns) and PMF (rows) for the period of 
November 1998 – August 2000 

 Gasoline Diesel Soil Burn. CFPP AmSulf AmBslf AmNit OtherOC 
Gasoline 0.50 0.62 0.12 0.54 0.05 0.03 -0.02 0.21 0.79 
Diesel 0.64 0.78 0.15 0.50 0.22 0.14 0.02 0.17 0.68 
Soil 0.19 0.15 0.97 0.22 0.19 0.08 -0.05 -0.14 0.10 

Wood 0.31 0.25 0.03 0.78 -0.04 0.05 0.05 0.16 0.39 
Cement 0.43 0.19 0.18 0.10 0.51 0.20 -0.06 0.00 0.05 

Sec.Sulf1 0.02 0.17 0.22 0.16 0.24 0.95 0.21 -0.11 0.30 
Sec.Sulf2 -0.05 0.11 0.08 0.02 0.17 0.42 -0.01 -0.07 0.34 
Sec. Nitr 0.26 0.09 -0.27 0.17 -0.01 -0.15 0.22 0.82 0.01 
Railroad -0.12 0.16 0.04 -0.38 0.02 0.09 -0.13 -0.22 0.00 
Bus/Hwy 0.44 0.33 0.13 0.26 0.06 0.05 -0.01 0.08 0.20 
Metal prc 0.67 0.31 0.10 0.27 0.13 0.06 -0.01 0.21 0.31 
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Figure 6-3. CMB-LGO vs. PMF source contributions of gasoline vehicles (a; R=0.50), 
diesel vehicles (b; R=0.78), soil dust (c; R=0.97), wood/vegetative burning (d; R=0.78, 
R=0.87 when July 4th fireworks related samples are excluded) and CMB-LGO “other” 
OC/PMF gasoline (e; R=0.79) for the period of November 1998 – August 2000 

 

To better understand what the “other” (unapportioned) OC category represents, 

we analyzed the weekly and seasonal patterns in “other” OC contributions, as well as in 

other carbon-rich categories (gasoline, diesel, wood; Figure 6-4). “Other” OC 

contributions exhibit a fairly flat weekly pattern, in contrast to the strong 

weekday/weekend pattern exhibited for mobile sources. In addition, “other” OC 

contributions peak in summertime (quarter 3 in Figure 6-4b), while the other categories 

peak in winter, likely due to reduced atmospheric mixing and increased emissions (wood 

combustion and cold-start emissions from mobile sources). These trends support the 

assumption that “other” OC is indicative of SOA concentrations. Similarly, a sensitivity 

analysis for CMB-LGO (Marmur et al., 2006) indicated that “other” OC is strongly 
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sensitive to OC levels, and weakly sensitive to potassium and EC, which strongly 

influence the wood burning and diesel contributions respectively. An equivalent analysis 

for gasoline, diesel and wood burning contributions based on PMF indicated similar 

seasonal patterns, but the weekly patterns were not as typical (Figure 6-5). 

In addition to the receptor-based source apportionment methods (CMB, PMF), an 

emissions-based approach to source-apportionment was also considered. However, 

analyzing source apportionment results from an emissions-based air quality model 

(Models-3/CMAQ) and comparing those to ambient levels of tracer species and to 

receptor based source-apportionment results (Marmur et al., 2006) found that the air-

quality model is driven in large by regional meteorological trends and likely 

underestimates the temporal variability in source impacts, and may therefore be less 

useful in discerning the relative impacts of sources on health outcomes in time-series 

studies of acute outcomes. 
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Figure 6-4. Weekly (a) and seasonal (b) patterns in contributions of gasoline vehicles, 
diesel vehicles, wood burning and “other” OC to PM2.5 levels in Atlanta (Jefferson St.) 
based on CMB-LGO for the period of November 1998 – August 2000 
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Figure 6-5. Weekly (a) and seasonal (b) patterns in contributions of gasoline vehicles, 
diesel vehicles and wood burning to PM2.5 levels in Atlanta (Jefferson St.) based on PMF 
for the period of November 1998 – August 2000 
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6.2.2 Epidemiologic time-series analysis of source-apportioned PM2.5 and daily 

emergency-department visits 

Based on the findings regarding the temporal trends in source impacts from the 

various methods presented (CMB, CMB-LGO, PMF, Models-3/CMAQ), epidemiologic 

analysis was conducted by collaborators at the Rollins School of Public-Health at Emory 

University, using source-apportionment results from CMB-LGO and PMF, as well as 

ambient levels of source-indicative tracer species (Fe, Zn and EC as possible tracers for 

mobile sources, Si and coarse-PM for soil-dust; K for wood burning; Se for power plants; 

Ca for cement) (Sarnat et al., 2006). Relative risks (RRs) associated with 3-day moving 

averages of PM2.5 levels were estimated using Poisson generalized linear models (Sarnat 

et al., 2006), comparable to those used in previous analyses of Atlanta data (Metzger et 

al., 2004b; Peel et al., 2005). Respiratory outcomes included were asthma, chronic 

obstructive pulmonary disease (COPD), pneumonia, upper respiratory infection (URI) 

and the sum of these outcomes (“all respiratory”). Cardiovascular outcomes included 

were  cardiac arrest (CA), congestive heart failure (CHF), dysrhythmia (DYS), ischemic 

heart disease (IHD), myocardial infarction (MI), peripheral vascular and cerebrovascular 

disease (PERI), the sum of these categories (CVD) and the sum of all circulatory diseases 

(CIRC) between codes 390-459 in the International Classification of Disease (ICD) codes 

(i.e., the CVD chapter in the ICD codes). The epidemiologic analysis was conducted for 

the period of 11/19/1998-8/31/2000, with 503 days included (149 of the 652 days had 

incomplete data). 
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6.3 Results 

Source-specific risk-ratios (RR) were computed for gasoline vehicles, diesel 

vehicles, a combined mobile-source impact, wood/vegetative burning, soil dust, 

ammonium-sulfate (secondary sulfate 1,2) and ammonium-nitrate (secondary nitrate) 

based on both CMB-LGO and PMF, for various respiratory and cardiovascular health 

outcomes. Also computed were RR for coal-fired power plants and other/unapportioned 

OC (CMB-LGO only), and cement, railroad, bus/highway and metals processing factors 

(PMF only). RR for EC, OC, Zn, Fe, Si, PM2.5, PMcoarse, K, SO4
-2, NO3

-, Se, CO and SO2 

were computed as well, to allow a comparison to the source-specific RR. Since the 

emphasis here is on source-specific health-outcomes, risk-ratios and associations are 

sorted and presented by the various PM source categories (e.g., soil PM2.5 was found to 

be significantly associated with asthma). However, a causal relationship, if such exists, 

would be in the opposite direction (e.g., short-term increase in incidence of asthma could 

be partially explained by elevated levels of soil PM2.5).  

Diesel and total mobile-source (sum of gasoline and diesel) related PM2.5 was 

found to be significantly associated with the sum of all CVD (Figure 6-6), with an RR of 

1.03 per change in one inter-quartile range (IQR). RR for specific outcomes such as CA, 

DYS, IHD, and MI were usually found to be insignificant, possibly due to the increased 

uncertainties from the smaller sample pools. Relatively strong associations were found 

between both gasoline and diesel PM2.5 and CHF, with RR in the range of 1.08-1.14 

(Figure 6-6). PMF derived gasoline PM2.5 was found significantly associated with the 

sum of all respiratory diseases (RR=1.02), and both PMF-gasoline and PMF-diesel 
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related PM2.5 were found significantly associated with URI (Figure 6-7). Significant 

associations with pneumonia, asthma and COPD were not found. In general, RR for 

respiratory outcomes based on the PMF results were higher than those based on CMB-

LGO results. When comparing mobile source related RR to those based on possible 

tracers such as Zn, Fe and EC, as well as total PM2.5 levels, better agreement was found 

with Fe and EC, than Zn in CVD RR (Figure 6-6). No significant difference was found 

between RR based on total PM2.5 and that based on mobile source related PM2.5 for both 

cardiovascular and respiratory outcomes, with the exception of URI (Figure 6-7). CO was 

generally more significantly associated with respiratory health outcomes than 

cardiovascular outcomes. 

Wood/vegetative burning related PM2.5 was found to be significantly associated 

with several respiratory outcomes, such as COPD, URI and pneumonia. RR for total 

respiratory ED visits were in the range of 1.03-1.05 (Figure 6-8). Significant associations 

with cardiovascular outcomes were not found (Figure 6-8). An opposite trend was 

observed for OC and total PM2.5. Associations with potassium followed the same trends 

as the apportioned wood-burning PM2.5, but potassium-based RR were typically lower 

than those based on CMB-LGO and PMF. RR based on CMB-LGO results were typically 

higher than those based on PMF. 

Soil related PM2.5 was found to be significantly associated with asthma, in 

contrast to total PM2.5, and CMB-LGO derived soil PM2.5 was also significantly 

associated with the sum of all respiratory outcomes (Figure 6-9). No significant 

association was found with any of the cardiovascular ED visits (Figure 6-9). Associations 

with Si in the PM2.5 size range were fairly similar, while no significant associations, both 
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respiratory and cardiovascular, were found with coarse PM (PM2.5-10). RR based on 

CMB-LGO results were typically higher than those based on PMF. 

No significant associations, for both respiratory and cardiovascular, were found 

with coal-burning related PM2.5 (CMB-LGO) and the cement, bus/highway, railroad and 

metals-processing factors (PMF), except for CHF with both cement and bus/highway. 

However, primary PM2.5 contributions from point sources, such as coal-fired power 

plants, have been shown to vary spatially (Marmur et al., 2006), which could potentially 

attenuate a true association, if such exists. 

 Associations between both cardiovascular and respiratory ED visits and sulfate 

related PM2.5 were insignificant (Figure 6-10), in contrast to those with total PM2.5. This 

included both the CMB-LGO AmSulf contributions, and the PMF secondary sulfate 1 

and 2 factors, and is consistent with previous findings from the Atlanta epidemiologic 

study (Metzger et al., 2004b; Peel et al., 2005).  Similar patterns were also observed for 

nitrate-related PM2.5 from both CMB-LGO and PMF, but ambient nitrate was found 

significantly associated with asthma/wheeze and the sum of all respiratory outcomes 

(Figure 6-11). 

Strong significant associations were found between “Other”/unapportioned OC from 

CMB-LGO and several respiratory outcomes (asthma/wheeze, URI, pneumonia and sum 

of all respiratory ED visits; RR between 1.04-1.12) (Figure 6-12), in contrast to the 

associations with total OC and with PM2.5 and these respiratory outcomes, though further 

analyses, such as based on longer datasets, are needed to support this finding. 

Associations between cardiovascular ED visits and “other” OC were also significant, but 

similar to those with total OC and with PM2.5 (Figure 6-12). 
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No significant associations were found between any of these PM2.5 source-categories 

and two control outcomes (appendicitis, finger wounds) (Figure 6-13). 
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Figure 6-6. Preliminary cardiovascular related risk-ratios (95% confidence interval [CI]) 
for gasoline, diesel and total mobile-source related PM2.5 per change of one inter-quartile 
range (IQR). Also shown are the RR for Zn, Fe, EC, total PM2.5 and CO. Associations in 
which the error bar does not encompass RR=1.00 are considered significant. 
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Figure 6-7. Preliminary respiratory related risk-ratios (95% CI) for gasoline, diesel and 
total mobile-source related PM2.5 per change of one IQR. Also shown are the RR for Zn, 
Fe, EC, total PM2.5 and CO. Associations in which the error bar does not encompass 
RR=1.00 are considered significant. 
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Figure 6-8. Preliminary respiratory and cardiovascular related risk-ratios (95% CI) for 
wood/vegetative burning related PM2.5 per change of one IQR. Also shown are the RR 
for potassium (K), OC and total PM2.5. Associations in which the error bar does not 
encompass RR=1.00 are considered significant. 
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Figure 6-9. Preliminary respiratory and cardiovascular related risk-ratios (95% CI) for 
soil PM2.5 per change of one IQR. Also shown are the equivalent RR for Si, coarse PM 
and PM2.5. Associations in which the error bar does not encompass RR=1.00 are 
considered significant. 
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Figure 6-10. Preliminary respiratory and cardiovascular related risk-ratios (95% CI) for 
sulfate-related and total PM2.5 per change of one IQR. Associations in which the error bar 
does not encompass RR=1.00 are considered significant. 
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Figure 6-11. Preliminary respiratory and cardiovascular related risk-ratios (95% CI) for 
nitrate-related and total PM2.5 per change of one IQR. Associations in which the error bar 
does not encompass RR=1.00 are considered significant. 
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Figure 6-12. Preliminary respiratory (asthma, COPD, URI, pneumonia, all respiratory) 
and cardiovascular related risk-ratios (95% CI) for CMB-LGO “other”/unapportioned 
OC, total OC and total PM2.5 per change of one IQR. Associations in which the error bar 
does not encompass RR=1.00 are considered significant. 
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Figure 6-13. Control outcome (appendicitis, finger wounds) related risk-ratios (95% CI) 
for various CMB-LGO source categories and total PM2.5 per change of one IQR. None of 
the associations are significant. 
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6.4 Discussion 

Several significant associations were found between health-outcomes and source-

specific PM2.5 in this preliminary analysis. Mobile-source related PM2.5 was found 

significantly associated with cardiovascular outcomes, though the RR were fairly similar 

to those based on total PM2.5 and tracers such as EC and Fe. Associations with Zn, a 

species which has been shown to strongly affect gasoline-vehicles contributions in CMB-

LGO (Marmur et al., 2006), were largely insignificant. Wood burning PM2.5 was found 

significantly associated with respiratory outcomes, with higher RR compared to K, OC 

(insignificant association) and total PM2.5 (barely significant association). Soil dust and Si 

were found significantly associated with asthma, while the association between total 

PM2.5 and asthma was not significant. “Other”/unapportioned OC was found significantly 

associated with various respiratory outcomes, with fairly high RR (1.04-1.12), while the 

equivalent associations with total OC and with PM2.5 were insignificant, though further 

analyses, such as based on longer datasets, are needed to support this finding. 

Comparing the RR estimates based on CMB-LGO and PMF (Figure 6-14), a 

fairly high correlation is observed across all source categories (R=0.84), except for the 

nitrate related RR (surprising considering the good inter-method correlation between the 

nitrate source contributions; see Table 6-2). No single method consistently provides more 

significant associations or higher RR. This is an indication that collinearity-generated 

“noise” in CMB-LGO was minimal, likely not substantially higher than in PMF, in which 

orthogonality between factors is maximized. The overall high correlation between RR 

based on CMB-LGO and PMF may be interpreted as an indication that despite 

methodological differences and uncertainties, source-apportionment methods may be 
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useful in discerning source-specific health effects. Similar findings have been reported by 

(Thurston et al., 2005), however their analysis was limited to factor analytical techniques 

(PCA, PMF, UNMIX). To our knowledge, this is the first time that a CMB model (CMB-

LGO, in this case) has been applied in a health study, and the findings presented here 

suggest that despite larger methodological differences between PMF and CMB-LGO 

compared to the methods used in (Thurston et al., 2005), the conclusion regarding the 

usefulness of applying source-apportionment methods in health studies holds. 
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Figure 6-14. Scatter plot of preliminary risk-ratios for various respiratory and 
cardiovascular health-outcomes based on PMF and CMB-LGO source contributions.  

 

An alternative approach to applying source-apportionment methods is to use 

concentrations of tracer species directly in the health analysis. For example, associations 



 155 

and risk-ratios for Fe and EC were found fairly similar to those based on mobile-source 

contributions (Figure 6-6, 6-7), and similarities were also observed between K and wood 

burning PM2.5 (Figure 6-8) and Si and soil PM2.5 (Figure 6-9). However, the RR based on 

Zn, which has been shown to strongly affect gasoline-vehicles contributions in CMB-

LGO (Marmur et al., 2006), exhibited a different pattern compared to that of the mobile-

sources based RR. This serves as an example that an expected tracer might not always 

yield similar associations and RR as its suspected/assumed source. This is likely the 

result of that tracer not being a unique tracer for a specific source-category (i.e., it is 

being emitted from various source categories). An analysis of the source-apportionment 

results based on (Marmur et al., 2005) revealed several days in which (high) Zn 

concentrations could not be explained by contributions of gasoline-vehicles, likely 

indicating the presence of another source of Zn on those days (though on average, 

gasoline vehicles contributed 82% of the ambient Zn concentrations). If each source 

category emitted a tracer unique to that category, then there would be no benefit in 

applying source-apportionment estimates in the epidemiologic analysis, as the temporal 

variation in the source-estimates would be identical to that of each category’s unique 

tracer. Given that potassium (K) is present in soil dust as well as in wood burning PM2.5 

and that Fe is emitted from many sources other than mobile sources, one cannot conclude 

a priori that these can be used as surrogates for wood-burning and mobile sources in a 

health analysis. The validity of such a determination would depend on the dominant 

sources and source mixture in each air-shed/region studied. In the case of Atlanta based 

on CMB-LGO results, 92% of K and 89% of Si are from wood-burning and soil dust, 

respectively. This can explain the good agreement between the species and source-impact 
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based RR for wood burning and soil PM2.5. On the other hand, mobile sources contribute 

only 23% of total ambient Fe (41% of apportioned Fe; only 55% of Fe is accounted for 

by the various source impacts), hence the good agreement between the Fe and mobile-

sources based RR is surprising. In addition, Fe did not affect the mobile-source 

contributions in CMB-LGO, based on a sensitivity analysis (Marmur et al., 2006). In 

summary, despite generally good agreement between RR estimates based on source-

impacts and tracer species, one cannot assume a priori what tracer species can be used as 

surrogates (unless these have been proven to be unique per source-category). Instead, it is 

recommended to perform a source-apportionment and sensitivity analysis, to identify the 

key species driving the apportionment process, and apply both tracers and source impacts 

in the health study. 

Another interesting finding of the health study was the strong association between 

“other” OC and various respiratory outcomes (Figure 6-12). “Other” OC includes both 

secondary organic aerosol (SOA) and any primary OC not accounted for by the other 

source categories. While it is impossible to estimate what portion of “other” OC is indeed 

SOA, weekly and seasonal patterns (Figure 6-4), as well as the results from a sensitivity 

analysis (Marmur et al., 2006) and the fact that the sources of primary OC included in 

this analysis comprise most of the OC in the emissions inventory (Park et al., 2006) are  

all indicative of SOA. If so, this serves as a good example of the usefulness of applying 

source-estimates in a health studies, as tracers for SOA are still being investigated and 

measurement techniques developed and refined. Examples of potential tracers are 

oxidation products of terpenes (pinonic acid, pinic acid and nopinone) and isoprene 

(methyl vinyl ketone and methacrolein), as tracers of biogenic SOA. However, the 
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sources of SOA and the relative contributions of anthropogenic vs. biogenic SOA are still 

being investigated and debated (Sullivan, 2006). These issue are further complicated by 

the fact that speciation studies often identify only 10-20% of the organic compounds 

present, because the organic fraction covers a wide range of chemical and 

thermodynamic properties (Maria, 2003). One could consider applying the EC-tracer 

approach (Turpin and Huntzicker, 1995) to estimate SOA concentrations, but would then 

need to assume a constant mixture of primary sources of OC and EC (constant primary 

OC to EC ratio), an assumption not needed/made in CMB-LGO. 

 

6.5 Summary 

 Source-contributions based on CMB-LGO and PMF have been applied in an 

emergency-department health study. Despite methodological differences and 

uncertainties in the apportionment process, good agreement was observed between the 

CMB-LGO and PMF based risk ratios, supporting the usefulness of applying 

apportionment methods in health studies. Preliminary epidemiologic analysis found 

mobile-sources related PM2.5 significantly associated with cardiovascular outcomes; 

wood burning PM2.5 significantly associated with respiratory outcomes; soil dust 

significantly associated with asthma and “other” OC (indicative of SOA) was found 

significantly associated with various respiratory outcomes, with high risk-ratios, though 

further analyses, such as based on longer datasets, are needed to support this finding. 

Despite generally good agreement between RR estimates based on source-contributions 

and tracer-species, source-apportionment and sensitivity analyses are needed to determine 

which are the most suitable tracers for each source-category. Source-apportionment 



 158 

methods (CMB-LGO in this case) can also serve as a useful tool for estimating SOA 

concentrations (especially, in lieu of a SOA tracer) and associated health effects.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE RESEARCH 

 

Conclusions 

Particulate matter, especially particles smaller than 2.5 microns in diameter 

(PM2.5), has been associated with adverse health effects and mortality in studies covering 

more than 150 cities. Studies of the effects of air pollution on human health are typically 

conducted using ambient measurements to represent the air quality over cities or regions. 

However, the use of ambient data for such studies introduces several limitations such as 

spatial representativeness of the monitoring site, analytical uncertainties, and 

incompleteness and lack of continuity in data. The complex chemical composition of 

PM2.5 and associated analytical uncertainties pose a further challenge when trying to 

investigate species specific health effects. A complementary approach is to examine 

associations between health outcomes and sources contributing to ambient PM2.5, which 

can provide regulators with important information to tighten controls on sources more 

prone to causing health effects. 

 

Temporal and spatial variability in measured and simulated PM2.5 constituents in 

Atlanta, GA, and implications for time-series health studies 

Results from a long term air quality simulation were analyzed in terms of the 

model’s ability to simulate temporal and spatial variability in concentrations of both 
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secondary and primary PM2.5 components in Atlanta, GA. Seasonal variations in sulfate 

and nitrate concentrations were well captured by the model, but the model’s ability to 

capture shorter-term (e.g., daily) variations, typically of interest in time-series health 

studies of acute outcomes, was limited. Moreover, the spatial homogeneity in ambient 

concentrations of secondary PM2.5 constituents (such as sulfate and nitrate), suggests 

limited benefit in applying simulated concentration fields for these species in a time-

series health study when ambient measurements are available. Concentrations of primary 

PM2.5 constituents (such as elemental carbon), on the other hand, have much greater 

spatial variability, and short-term variability in these species is better captured by the air 

quality model.  

 

Optimization-based source apportionment of PM2.5 incorporating gas-to-particle 

ratios 

A modified approach to PM2.5 source apportionment was developed, using source 

indicative SO2/PM2.5, CO/PM2.5 and NOx/PM2.5 ratios as constraints, in addition to the 

commonly used particulate-phase source profiles. Additional information from using gas-

to-particle ratios assists in reducing collinearity between source profiles, a problem that 

often limits the source-identification capabilities and accuracy of traditional receptor 

models. The set of equations for the PM2.5 Chemical Mass Balance (CMB) receptor 

model were solved using a global-optimization program, Lipschitz Global Optimizer 

(LGO), subject to constraints on ambient gas-phase concentrations. Application of the 

CMB-LGO model to a 25 month dataset of daily PM2.5 measurements (total mass and 

composition) at the Atlanta Jefferson Street SEARCH site yielded source-contributions 
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that seem more indicative of the named sources compared to particulate-phase source 

apportionment methods, based on correlations of the source impacts and tracer species. 

Furthermore, collinearity between source-categories (e.g., soil-dust and primary PM2.5 

from coal-burning; wood burning and “other” OC) was reduced in CMB-LGO, based on 

higher source inter-correlations than in the “regular” CMB model. 

  

Optimized variable source-profile approach for source apportionment 

A further expansion of the CMB-LGO approach for PM2.5 source apportionment 

was developed in which both the local source compositions and corresponding 

contributions were determined from ambient measurements and initial estimates of 

source compositions. Such an approach can serve as an alternative to using 

predetermined (measured) source profiles, as traditionally used in CMB applications, 

which are not always representative of the region and/or time period of interest. This 

technique was applied to a dataset of PM2.5 measurements at the former Atlanta supersite 

(Jefferson Street site), to apportion PM2.5 mass into nine source categories. Good 

agreement is found when these source impacts are compared with those derived based on 

measured source profiles as well as those derived using a factor analytical technique.  

 

Source apportionment of PM2.5 in the Southeastern United States using receptor 

and emissions-based models:  conceptual differences and implications for time-

series health studies 

Two conceptually different approaches to source apportionment were compared: a 

receptor model and an emissions-based air-quality model. The receptor model captured 
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more of the temporal variation in source impacts at a specific receptor site compared to 

the emissions-based model. Driven by data at a single site, receptor models may have 

some shortcomings with respect to spatial representativeness (unless a reduced study area 

is used or data from multiple sites are available), likely attenuating the observed 

association in a health study. Source apportionment results from emissions-based models, 

such as CMAQ, may be more spatially representative as they represent an average grid-

cell value. Limitations in the ability to model daily fluctuations in emissions, however, 

lead to results being driven mainly by regional meteorological trends, likely 

underestimating the true daily variations in local source impacts. These effects will likely 

introduce an attenuation of observed association in a health study and limit the model’s 

usefulness in discerning the relative impacts of the sources on health outcomes. 

 

Intermethod variability in associations between source-apportioned PM2.5 and daily 

emergency-department visits in Atlanta, GA 

Results from a preliminary source-specific PM2.5 epidemiologic analysis were 

presented and analyzed for inter-method variability in risk-ratio estimates based on 

source apportionment results from the Positive Matrix Factorization (PMF) and CMB-

LGO models, as well as the direct application of tracer species in the epidemiologic 

study. Despite methodological differences and uncertainties in the apportionment 

process, good agreement was observed between the CMB-LGO and PMF based risk 

ratios, indicating the usefulness of applying apportionment methods in health studies. 

Preliminary epidemiologic analysis found mobile-source related PM2.5 significantly 

associated with cardiovascular outcomes; wood burning PM2.5 significantly associated 
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with respiratory outcomes; soil dust significantly associated with asthma. “Other” OC 

was found significantly associated with various respiratory outcomes, with high risk-

ratios (RR), though further analyses, such as based on longer datasets, are needed to 

support this finding. Temporal patterns in source impacts suggest that “other” OC is 

associated with secondary formation.  Despite generally good agreement between RR 

estimates based on source-contributions and tracer-species, source-apportionment and 

sensitivity analyses are needed to determine the most suitable tracers for each source-

category. 

 

Future Research 

Application of CMB-LGO other regions/periods 

The advantages of incorporating gas-phase data in PM2.5 source apportionment, as 

done in CMB-LGO, were demonstrated throughout this thesis. However, such 

information is typically not included in source-apportionment studies. Moreover, ambient 

measurements of CO and SO2 are limited in number, as very few areas throughout the 

USA are in non-attainment of the National Ambient Air Quality Standards (NAAQS) for 

these pollutants. However, these pollutants are useful as tracers, even if their significance 

from a direct regulatory standpoint has declined in recent decades. The findings presented 

in this dissertation should promote the use of gaseous data in source-apportionment and 

encourage states and other regulatory agencies to monitor CO and SO2 as part of their 

observational network for understanding the sources of PM2.5 in their region. Applying 

CMB-LGO for other periods and regions will allow expanding and conducting more 
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epidemiologic studies to broaden our understanding of the associations between PM2.5 

sources and health. 

 

Application of CMB-LGO to organic tracer measurements 

The use of organic tracers for PM2.5 source-apportionment is an emerging-field, 

and organic-tracer based source-apportionment methods are becoming a more common 

practice for apportioning OC mass between the contributing sources based on detailed 

organic source “fingerprints” (Lee et al. 2005; Schauer and Cass 2000; Schauer et al. 

2001; Schauer et al. 2002; Schauer et al. 2002; Zheng et al. 2002; Zheng et al. 2006). The 

ability to detect dozens of organic species enhances the source-identification capabilities 

compared to inorganic-based source-apportionment. However, as with inorganic-based 

source-apportionment studies, organic-tracer based CMB analyses are often limited by 

collinearity issues and uncertainties in representativeness of source-profiles, as well as 

detection-level issues in ambient measurements. CMB-LGO can be applied to organic-

tracer measurements in combination with gaseous measurements, to reduce collinearity 

issues in the same manner as demonstrated for inorganic measurements. For example, 

mobile-source markers such as hopanes and steranes are present in both gasoline and 

diesel vehicles, and splitting the contributions of these two categories is a challenge even 

with organic-tracers. As with inorganic tracers, CO and NOx data can be helpful in 

reducing collinearity between these two sources. In addition, CMB-LGO can be applied 

to derive estimates of source-compositions and help in identifying suitable literature 

based source-profiles to be applied.  
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Enhanced emissions-based source-apportionment  

Comparison of emission and receptor based source-apportionment results found 

relatively poor agreement in the temporal variation in source-contributions. This is in part 

due to little temporal variability in emission estimates in the emissions-based approach 

and to the relatively coarse grid-resolution used (12 km) compared to a point 

measurement. The purpose of this study is to enhance the source-apportionment 

capabilities of the Models-3 emissions-based modeling system. Developing and applying 

a neighborhood-scale (~1 km grid resolution) meteorological model (Dandou et al. 2005; 

Otte et al. 2004) may enable simulating local flow patterns from sources to the receptor. 

To improve the estimates of mobile-source contributions, data from “Commute Atlanta” 

(Guensler 2006; Li et al. 2004; Ogle et al. 2005), which includes the collection and 

analysis of second-by-second vehicle speed, position, and engine operating data from 470 

vehicles in representative Atlanta households, would be incorporated. Information 

gathered by “Commute Atlanta” provides near real-time information on traffic conditions 

and will allow to compute more accurate estimates of time-dependant mobile-source 

emissions, in contrast to the “typical emissions” approach currently used in Models-3 

(Mobile-6/SMOKE specifically), which is based on statistical analyses of traffic counts 

and the generation of “typical” temporal patterns in emissions, without adjusting PM 

emissions for driving speeds. Actual fire emissions would also be incorporated, based on 

information on the occurrence of major fire events, instead of using typical emissions, 

and may improve the source contribution estimates for the biomass-burning category. 

Soil-dust emissions would be estimated as a function of surface wind-speed and soil-



 167 

moisture, not accounted for in the current version of SMOKE, to improve the estimates of 

soil-dust contributions to PM2.5 levels. 

 

The effect of dampened temporal variability on risk-ratio estimates 

Evaluating spatial and temporal patterns in measured and simulated 

concentrations of secondary PM2.5 components such as sulfate, nitrate and ammonium 

indicated that when ambient data are available, there does not seem to be a benefit in 

using simulated concentrations of these species in a health study. This conclusion was 

based on the ability of the air-quality model (CMAQ) to capture the short-term variations 

in species concentrations and on the spatial heterogeneity in ambient concentrations of 

secondary PM2.5 species. One direction for future research would be to examine the effect 

of reduced temporal variability in species concentrations on robustness of findings from 

an epidemiologic study. Adjustments would be made to the temporal variability in 

ambient data to dampen out the variations around the average in different levels of 

adjustment. Then, the sensitivity of the risk-ratio estimates to the temporal variability 

would be analyzed. The expected effect of dampened temporal variability is an 

attenuation of the risk-ratio estimates. However, at some level of adjustment, the risk-

ratios are expected to become insignificant. By applying different levels of dampening to 

temporal variability in ambient data, a “cutoff” value may be identified for when risk-

ratios become insignificant (depending on pollutant and outcome). Such a “cutoff” value 

can be useful in determining whether the use of simulated concentration fields, exhibiting 

dampened temporal variability compared to the variations in ambient data, are expected 

to yield robust estimates of significance of risk-ratios. 



 168 

The effect of analysis-period on risk-ratio estimates 

To evaluate the robustness of risk-ratio estimates, a sensitivity analysis of risk-

ratios to the analysis-period will be performed. Using the “Jackknife” statistical process, 

subsets of data would be systematically dropped out one at a time and the resulting 

variation in the risk-ratio estimated will be assessed. This analysis will enable evaluating 

whether the risk-ratios obtained were driven by a fairly small number of days within 

dataset of source-apportioned PM2.5 and emergency-department visits, or are 

representative of recurring patterns in the data. 

 

Closing Remarks 

While much work remains, important insights have been derived from this thesis 

regarding source contributions to PM2.5 levels in the southeastern U.S.; performance of 

various air-quality modeling techniques, both existing and newly developed, in 

simulating short-term variations in concentrations and source-contributions to PM2.5; and 

the implementation of some of these methods in time-series health studies of the 

associations between PM2.5 and various health endpoints. The findings of this thesis 

along with the above recommendations open numerous avenues for potentially fruitful 

future investigation. 
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