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SUMMARY

Particulate matter, especially that smaller than rBicrons in diameter (PM),
has been associated with adverse health effectsnantlity in studies covering more
than 150 cities. Studies of the effects of air yodin on human health are typically
conducted using ambient measurements to reprdseirtquality over cities or regions.
However, the use of ambient data for such studigeduces several limitations such as
spatial representativeness of the monitoring siémalytical uncertainties, and
incompleteness and lack of continuity in data. Thenplex chemical composition of
PM,s and associated analytical uncertainties pose tadurchallenge when trying to
investigate species-specific health effects. A dementary approach is to examine
associations between health outcomes and sourogéisbating to ambient Pk, which
can provide regulators with important informatiantighten controls on sources more
prone to causing health effects.

Air-quality modeling tools may be useful in suchvestigations of the health
effects of air-pollution and Pp4 specifically. Emissions-based three-dimensional ai
guality models may introduce several benefits whpplied in epidemiologic studies,
such as improved spatial representativeness anlalailiy/continuity of data, as well as
information on source impacts. Receptor-based msodgk a common tool for
apportioning of ambient levels of pollutants amdhg major contributing sources, and
can be useful in discerning the relative healthaotp of different sources.

Results from a long term air quality simulationngsiEPA’'s Models-3 suite of

models (MM5/SMOKE/CMAQ) were analyzed in terms dfetmodel’'s ability to
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simulate temporal and spatial variability in corications of both secondary and primary
PM,s components in Atlanta, GA. Seasonal variations sulfate and nitrate
concentrations were well captured by the model, thet model’s ability to capture
shorter-term (e.g., daily) variations, typically ioterest in time-series health studies of
acute outcomes, was limited. Moreover, the spati@mogeneity in ambient
concentrations of secondary RPMconstituents (such as sulfate and nitrate), sugges
limited benefit in applying simulated concentratibelds for these species in a time-
series health study when ambient measurements/ailatde. Concentrations of primary
PM, s constituents (such as elemental carbon), on therdtand, have much greater
spatial variability, and the short-term variabilitythese species is better captured by the
air quality model.

A modified approach to receptor-based BMsource apportionment was
developed, using source indicative FM,s5, CO/PMs and NQ/PM,s ratios as
constraints, in addition to the commonly used paléte-phase source profiles.
Additional information from using gas-to-particlatios assists in reducing collinearity
between source profiles, a problem that often $rtiie source-identification capabilities
and accuracy of traditional receptor models. Theosequations for the Pp Chemical
Mass Balance (CMB) receptor model were solved uaimggobal-optimization program,
Lipschitz Global Optimizer (LGO), subject to cormstts on ambient gas-phase
concentrations. Application of the CMB-LGO modelt@5 month dataset of daily BM
measurements (total mass and composition) at tlamtatJefferson Street SEARCH site
yielded source-contributions that seem more indieaif the named sources compared to

particulate-phase source apportionment methodssdbas correlations of the source
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impacts and tracer species. Furthermore, collihedreétween source-categories (e.g.,
soil-dust and primary Ppg from coal-burning; wood burning and “other” OC) sva
reduced based on higher source inter-correlatioas ih the “regular” CMB model.

A further expansion of the CMB-LGO approach for R\Mource apportionment
was developed in which both the local source coimipas and corresponding
contributions were determined from ambient measardsn and initial estimates of
source compositions. Such an approach can serveanasalternative to using
predetermined (measured) source profiles, as iwadity used in CMB applications,
which are not always representative of the regiod/@ time period of interest. This
technique was applied to a dataset of,Rkeasurements at the former Atlanta supersite
(Jefferson Street site), to apportion PMmass into nine source categories. Good
agreement is found when these source impacts anpared with those derived based on
measured source profiles as well as those derised) @ factor analytical technique.

Two conceptually different approaches to sourcegmmment were compared: a
receptor model and an emissions-based air-qualdgietn The receptor model captured
more of the temporal variation in source impacta apecific receptor site compared to
the emissions-based model. Driven by data at desiite, receptor models may have
some shortcomings with respect to spatial reprasigahess (unless a reduced study area
is used or data from multiple sites are availabl&ely attenuating the observed
association in a health study. Source apportionmesntits from emissions-based models,
such as CMAQ, may be more spatially representatsvéney represent an average grid-
cell value. Limitations in the ability to model dafluctuations in emissions, however,

lead to results being driven mainly by regional ewetlogical trends, likely
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underestimating the true daily variations in logalirce impacts. These effects will likely
introduce an attenuation of observed associatioa mealth study and limit the model’s
usefulness in discerning the relative impacts efg¢burces on health outcomes.

Results from a preliminary source-specific PMepidemiologic analysis were
presented and analyzed for inter-method variabilityrisk-ratio estimates, based on
source apportionment results from the Positive M&tactorization (PMF) and Chemical
Mass Balance model incorporating the Lipschitz @ldbptimizer (CMB-LGO) models,
as well as the direct application of tracer speaiethe epidemiologic study. Despite
methodological differences and uncertainties in #ggortionment process, good
agreement was observed between the CMB-LGO and PA4Ed risk ratios, suggesting
the usefulness of applying apportionment methodshé&alth studies. Preliminary
epidemiologic analysis found mobile-source rela®dd, 5 significantly associated with
cardiovascular outcomes; wood burning 2Mignificantly associated with respiratory
outcomes; soil dust significantly associated witsthema. “Other” OC was found
significantly associated with various respiratoggtammes with high risk-ratios, though
further analyses, such as based on longer datasets)eeded to support this finding.
Analysis of temporal patterns in source impactggssted that “other” OC is associated
with secondary formation. Despite generally goagteament between risk-ratios
estimates based on source-contributions and tsgpmEsies, source-apportionment and
sensitivity analyses are needed to determine thst swatable tracers for each source-

category.
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CHAPTER 1

INTRODUCTION

Particulate matter, especially particles smalleant2.5 microns in diameter
(PMzs), has been associated with adverse health eti@ctsnortality in studies covering
more than 150 cities (Dockery et al. 1993; Popal.€2002; Pope et al. 1995). Both acute
and chronic exposures to BMhave been associated with increased mortalitys rael
hospital visits, as well as cardiopulmonary diseheart attacks, decreased lung function,
and asthma (Dockery et al. 1993; Ebelt et al. 26@fers et al. 2001; Pope et al. 1995;
Vedal 1997). Studies of the effects of air pollation human health are typically
conducted using ambient measurements to reprdseairtquality over cities or regions.
However, the use of ambient data for such studisoduces several limitations:
monitoring sites might not adequately representjaality over the health study domain
(a single central site is often used) or captuee gpatial variability in concentration
fields; measurement errors, especially for compheasurements of P species, might
introduce noise to the epidemiologic analysis; mpteteness of data and lack of
continuity in data might diminish the ability ofd@tepidemiologic analysis to detect such
health related associations; the need for largesdéd often leads to conducting
measurements over a multi-year period, but obtgimimbient measurements of PM
species is costly and time-consuming. In additeince PM s is chemically complex
(comprised of numerous primary and secondary coemsnincluding ionic and organic
compounds and dozens of trace elements), recetiramlogic studies also investigate

whether specific components of RPMare more prone to cause specific health effects



(Hauck et al. 2004; Heal et al. 2005; Metzger e2@04; Metzger et al. 2004; Peel et al.
2005). However, the association between healthoouts and specific PM components
raises several issues: it is not obvious that tlagomcause for the health outcome is
actually measured (it is impractical to measuraegengle PM s species) or is possibly
measured inaccurately due to analytical issuesathgal health effects may be due to a
combination of pollutants; many species are caedlavhich limits the ability to isolate
species health impacts. A complementary approath examine associations between
health outcomes and sources contributing to ambikbs (Laden et al. 2000;
Manchester-Neesvig et al. 2003; Mar et al. 200@i € al. 2000). By means of source
apportionment, source impacts on the receptor eagqulantified, and their health impacts
examined. A source-impact oriented approach coald target and regulate the sources
that contribute most to adverse health effectscolild also allow for better multi-
component epidemiologic modeling, as the numbeanajor source-impact categories is
typically far fewer than the number of PM compomseriinally, this approach can help
identify health effects of unmeasured species pteiseemissions from specific source
categories. For example, preliminary studies haved an association between mortality
and combustion-related BM(from motor vehicles, coal combustion and woodhing),
but not soil-related P4, in both cohort (Laden et al. 2000) and time-se(Mar et al.
2000) studies.

Air-quality modeling tools may be useful in suchvestigations of the health
effects of air-pollution and Pp4 specifically. Emissions-based three-dimensional ai
guality models may introduce several benefits whpplied in epidemiologic studies.

First, an average value over a model cell of tyscze (e.g., 36km x 36km or 12km x 12



km) may better represent the air quality over apliegble area as compared to a
measurement at a single point within that areah@uealue can also assist in evaluating
the representativeness and quality of measurenand#ferent locations (stations) all
residing within the range of the same model celéoAthe ability to model episodes for
which no measurements were performed may allow redipg the epidemiologic study
to geographical areas for which no data were availdo past (historic) episodes, and to
complete and extend existing datasets. Using aalitjumodels is also less time-
consuming and resource intensive as compared to réa-time required for
measurements, often spanning several years. Aalitgunodels can also provide
information on source impacts, can simulate atmespltoncentrations for shorter time
periods than many measurement techniques, androatate the levels of pollutants that
are very difficult to measure (e.g., species foahdery trace levels). Emissions-based,
three dimensional photochemical air-quality modghsulate the formation, transport and
fate of atmospheric chemical constituents, bothegas and in particulate form, by

solving the conservation equation expressed as:
oc C .
a—t' +00Uc) = D,oDiD(—'] +R(c,¢C,,...,.C,, T,t) + S(x1) 1=12,...,n
Yo,

where: ¢ is the concentration of species i; U is the wirglogity vector; D is the
molecular diffusivity of species i;iRs the rate of concentration change of specigs i b
chemical reaction; ix,t) is the source/sink of i at location x anthéi t; p is the air
density; n is the number of predicted species. ddreservation equation describes the
formation, transport and fate of air pollutantsclugding components for processing
emissions, meteorology, topography, and atmosplraremistry (Russell and Dennis

2000). Source apportionment can be performed udimegt sensitivity methods such as



Direct Decoupled Method (DDM) (Dunker 1981; Hakaeti al. 2003), inert tracer
methods, or by multiple applications of the modehvand without emissions from target
sources (“brute force”). Here we applied the US-EPModels-3 suite of models,
including MM5 (Grell et al. 1999) as the meteoratad model to simulate atmospheric
physical dynamics; SMOKE (Houyoux et al. 2003) &g tmissions processor to
calculate spatial and temporal trends in emissibased on the annual emissions
inventory; and the Community Multiscale Air Quali@MAQ) model (Byun and Ching
1999) to simulate atmospheric reactivity, transpahd deposition of chemical
contaminants.

Chemical Mass Balance (CMB) receptor models areomnton tool for
apportioning of ambient levels of pollutants amaimg major contributing sources. CMB
combines the chemical and physical characterisifcparticles or gases measured at
sources and receptors to quantify the source @Goitbons to the receptor. The
guantification is based on the solution to a sefimdar equations that express each
receptor's ambient chemical concentration as afis@m of products of source-profile

abundances and source contributions (US-EPA 1998EBA 2001), as expressed by:
C = z fiS; + ¢
j=1

where:C; is the ambient concentration of chemical specigs/m®); fij is the fraction of

species in emissions from sourde § is the contribution (source-strength) of souyce
(Mg/m’); n is the total number of sources; is the error term. The source profile
abundancesii, the mass fraction of a chemical in the emissfoms each source type)

and the receptor concentratioi®})( along with uncertainty estimates, serve as ijatia



to the CMB model. The output consists of the ctwitibn of each source categof§) (to
the measured concentration of different specid¢iseateceptor.

CMB models are based on the following assumptiat&EPA 1998)Ycompositions
of source emissions are constant over the periodnufient and source sampling;
chemical species do not react with each other,they add linearly® all sources with a
potential for significantly contributing to the egator are included in the analysfsthe
source compositions are linearly independent ohesber;® the number of sources or
source categories is less that or equal to the rumbchemical specief measurement
uncertainties are random, uncorrelated, and noyndadtributed.

In terms of PM s source apportionment, the major difference betwaeesaceptor
model and an emissions-based air quality modehesstarting point. While a receptor
model’s starting point is the ambient measureméwoin there going backwards to
estimate source contributions, the starting poirthe air-quality model is the processed
emissions inventory, going forward by simulating ttnansport and transformation of

pollutants and ultimate air quality impact.

Structure and scope of thesis
* Chapter 2. Temporal and spatial variability in measured and simulated
PM .5 constituents in Atlanta, GA, and implications for time-series health
studies. Temporal and spatial patterns in both observed similated PMs
constituents are analyzed and an emissions-basequality model (CMAQ)
evaluated in terms of simulating short-term tempdqidaily) variations in

concentrations of both primary and secondary, PEbmponents, to assess the



potential of using simulated PM concentrations in health studies, in lieu of
measured data and/or to improve spatial represesii@lss compared to point
measurements.

Chapter 3: Optimization based sour ce apportionment of PM 5 I ncorporating
gas-to-particle ratios. A modified approach to Pp source apportionment is
developed, using source indicative M, 5, CO/PM s and NQ/PM; 5 ratios as
constraints, in addition to the commonly used paléte-phase source profiles.
Additional information from using gas-to-particlatios assists in reducing
collinearity between source profiles, a problemt tbéten limits the source-
identification capabilities and accuracy of traafital receptor models.

Chapter 4. Optimized variable source-profile approach for source
apportionment. An expanded Chemical Mass Balance (CMB) approach fo
PM,s source apportionment is developed in which botke tbcal source
compositions and corresponding contributions arégerdened from ambient
measurements and initial estimates of source coimpos using a global-
optimization mechanism. Such an approach can sesvan alternative to using
predetermined (measured) source profiles, as iwadity used in CMB
applications and which are not always represemtativthe region and/or time
period of interest.

Chapter 5: Source apportionment of PM 5 in the Southeastern United States
using receptor and emissions-based models: conceptual differences and
implications for time-series health studies. Two conceptually different

approaches to PM source apportionment are compared: a receptor Inmaodean



emissions-based air-quality model. Daily source dotp are calculated using
CMB-LGO (Chemical Mass Balance model incorporatthg Lipschitz Global
Optimizer), an extended CMB receptor model, and EModels-3 emissions-
based air-quality modeling system (MM5-SMOKE-CMAQhe temporal trends
in source-impacts based on the two methods is aedlyand compared and
implications to time-series health studies areufised.

Chapter 6: Intermethod variability in associations between source-
apportioned PM,5 and daily emergency-department visits in Atlanta, GA.
Results from a preliminary source-specific PMepidemiologic analysis are
presented and analyzed for intermethod variahititysk-ratio estimates based on
source apportionment results from the Positive Mdtactorization and CMB-
LGO models, as well as the direct application cdcér species in the
epidemiologic study. Advantages and disadvantagésapmplying source-
apportionment results and tracer species in epmleqitc studies are discussed.
Chapter 7: Conclusions and future research. Air-quality models, both
emissions and receptor based, may be useful fateepologic studies of the
health-effects of air-pollution. Emissions-baseddelse such as CMAQ may help
address some of the issues pertaining to spatiebity and representativeness
of primary PM s constituents. Receptor-based models can help antifgling
whether specific sources of BMare more prone to causing certain types of
health effects. An application of source-apportieninresults in a preliminary

epidemiologic analysis found associations betweeurce-specific PMs and



various health endpoints, and showed relativelydgagreement in risk-ratio

estimates across several source-apportionment aeetho
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CHAPTER 2
TEMPORAL AND SPATIAL VARIABILITY IN MEASURED AND
SIMULATED PM,5 CONSTITUENTSIN ATLANTA, GA, AND

IMPLICATIONSFOR TIME-SERIESHEALTH STUDIES

(A. Marmur, Y.Hu, J.A. Mulholland, P.E. Tolbert aAdG. Russell, prepared for the

Journal of the Air and Waste Management Association

Abstract

Time-series health studies rely on the availaboityong-term, accurate, spatially
representative air quality data. This study examimdnether an emissions-based air
guality model (CMAQ) may be used, in lieu of measudata and/or to improve spatial
representativeness compared to point measureniedslts from a long term air quality
simulation are analyzed in terms of the model'ditghio simulate temporal and spatial
variability in concentrations of both secondary g@nighary PM s components in Atlanta,
GA, as part of an ongoing health study (ARIES).sBeal variations in sulfate and nitrate
concentrations were well captured by the model, thet model's ability to capture
shorter-term (e.g., daily) variations, typicallyioferest in time-series health studies, was
limited. Moreover, the spatial homogeneity in amibieoncentrations of secondary PM
constituents (such as sulfate and nitrate), sugdesited benefit in applying simulated

concentration fields for these species in a timéesehealth study when ambient
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measurements are available. Concentrations of pyirRdM,s constituents (such as
elemental carbon), on the other hand, have muchtgrepatial variability, and short-
term variability in these species is better camtuby the air quality model. Thus,
modeled concentrations of elemental carbon andnargearbon, which consists of
primary and secondary components, may be more sepiaive of a study area than
point measurements. A comparison between estin@tesecondary organic aerosol
(SOA) concentrations from an air-quality model &nam a Chemical Mass Balance
analysis showed good agreement. As SOA formati@metry continues to be studied
and models updated accordingly, these may becosfalusols for analyzing the health

effects associated with SOA.

Key words: Air quality model, CMAQ, PM, epidemiologic study, health study, time

series.

2.1 Introduction

In time-series studies of the effects of air patlot on human health, an
association between a health endpoint of interestshort-term (e.g., daily) variability in
species concentrations is sought. Typically, suclliss are conducted using ambient
measurements to represent the air quality oveescitr regions. Specifically, many
studies have been conducted to assess the he@thsedssociated with fine particulate
matter (aerodynamic diameter less thamquh5PM 5) (Dockery et al. 1993; Pope et al.
2002; Pope et al. 1995), and more recently, healticomes associated with species-

specific PM s are being investigated (Hauck et al. 2004; Heall.e2005; Metzger et al.
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2004; Metzger et al. 2004; Peel et al. 2005). Haxethe use of ambient data for such
studies introduces several limitations: monitorsigs might not adequately represent air
guality over the health study domain (a single @@ dite is often used) or capture the
spatial variability in concentration fields; meamment errors, especially for complex
measurements of PM species, might introduce noise to the epidemiclagialysis;
incompleteness of data and lack of continuity itadaight diminish the ability of the
epidemiologic analysis to detect such health rdlassociations; the need for large
datasets often leads to conducting measurementsaowvelti-year period, but obtaining
ambient measurements of Pdspecies is costly and time-consuming. Use of aonss
based three-dimensional air quality models maythice several benefits when applied
in epidemiologic studies. First, an average valuer @ model cell of typical size (e.g.,
36km x 36km or 12km x 12 km) may better represkatdir quality over an applicable
area as compared to a measurement at a single witiirt that area. Such a value can
also assist in evaluating the representativenedgjaality of measurements at different
locations (stations) all residing within the rargfehe same model cell. Also, the ability
to model episodes for which no measurements weaferpgeed may allow expanding the
epidemiologic study to geographical areas for whichdata were available, to past
(historic) episodes, and to complete and extendtieg datasets. Using air quality
models is also less time-consuming and resouremsinte as compared to the real-time
required for measurements, often spanning seveaisy Air quality models can also
provide information on source impacts, can simulatieospheric concentrations for
shorter time periods than many measurement tecasjcand can simulate the levels of

pollutants that are very difficult to measure (egpecies found at very trace levels).
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However, to be useful for time-series health stsidilee air-quality model must be able to
capture the temporal variability in pollutant contrations. The focus on the temporal
variability is different than in regulatory applteans of air quality models, in which they
are typically applied to compare the average respom changes in emissions for control
strategy development.

The focus of this study is on application of anquality model to simulate P
components in Atlanta, GA, as part of an ongoinglthestudy (ARIES: Aerosol
Research Inhalation Epidemiologic Study). As pdrtARIES, species specific PM
health outcomes are being investigated (Metzgat. &004; Metzger et al. 2004; Peel et
al. 2005), along with the temporal and spatial afatity of PM, s species (Wade et al.
2004; Wade et al. 2006). The latter analysis inditathat the difference between
measured ambient pollutant level and true ambietiugant level, represented by the
sum of instrument error and noise due to spatiahldity, is greatest for primary PM
constituents (EC and to a degree, OC), which ctenadte a health association with
primary PM s constituents. Currently, source-specific fMmpacts are also being
investigated, to assess whether specific sourcéd3Mbfs appear to be more related to
specific health outcomes than others. As part isf dnalysis, source apportionment has
been performed for the Atlanta aerosol using varimethods, both receptor-based (such
as Chemical Mass Balance) and emissions-based ésidhodels-3 modeling system)
(Kim et al. 2004; Marmur et al. 2006; Marmur et 2005). The current study evaluates
air-quality model performance and addresses is®lated specifically to application of

such models in time-series health studies.
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2.2 Methods

2.2.1 Air quality modeling

Fine particulate matter (PM) modeling was performed using components of the
US-EPA’s Models-3 modeling system, including thenfe&tate/NCAR Meteorological
Model (MM5) (Grell et al. 1999), the Carolina EmMimental Program’s (CEP) Sparse
Matrix Operator Kernel Emissions (SMOKE) Modelingsg&m version 1.5 (Houyoux et
al. 2003), and CMAQ version 4.3, a three-dimendi¢8®) air quality model (Byun and
Ching 1999). Speciated RMand gas phase pollutants were simulated for a-tear
period, 1999-2001, using a grid of 36km by 36 krliscélhe grid covered the entire
eastern and central US, and was comprised of 786bgells laterally, and six vertical
layers (Liu et al. 2006; Park et al. 2006). A suidtgf 12km by 12km cells was placed
over the northern part of Georgia, centered arcMtehta (14 by 14 cells laterally), and
modeling using this grid was performed for the y2@01l. Meteorological fields (e.g.,
temperature, relative humidity, three directionahdvprofiles etc.) were generated by
MM5. Emissions from each grid cell were generatgdSMOKE based on the 1999
National Emission Inventory, and subject to temptends (hour of day, day of week
etc.) and meteorological parameters. Finally, patitt concentrations, in the form of
hourly averages, were calculated by CMAQ. The dsaxovertical layers and might lead
to underestimation of concentrations of PMcomponents in cases where the actual
mixing-height is lower than that of the model batttayer. To address this issue, we also
examined results from model simulations by the By Improvement State and Tribal
Association of the Southeast (VISTAS) (Morris et 2004), in which a finer vertical

layer structure was used. Other differences incltlie use of the CBIV chemical
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mechanism (instead of SAPRC99), and the inclusioadditional formation pathways

for secondary organic aerosol (SOA) (Morris e2806).

2.2.2 PM 5 measurements

Total PMys mass, major ions (SG, NOs, NH,") and carbon fractions (elemental
carbon, EC; organic carbon, OC) were measured dailpur locations in the Atlanta
metropolitan area. Monitoring sites from which det@re used are part of two different
networks: SEARCH (Southeastern Aerosol Research @hdracterization) network
(Hansen et al. 2003), which includes the JefferStreet (JST) site in Atlanta, and
ASACA (Assessment of Spatial Aerosol CompositiorAttanta) network (Butler et al.
2003), which includes the South Dekalb (SD), FodP¥erson (FM) and Tucker (TU)
sites (Figure 2-1). Measurements began in Augud8 B9 JST, and in August 1999 at the
ASACA sites. A third site used was the South Del@beciation Trends Network (STN)
site, co-located at the SD ASACA site; howeveradatllection at the STN site started
only on March 2001, on an every third day basisr Eomparison with model
simulations, the ambient data from August 1999-A1f2001 were used (data from the
ASACA network was not available for the latter pafr001 and 2002). Results from the
VISTAS modeling (available for 2002 only) were caangd with the ambient data from

JST and with the SD-STN data.
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Figure 2-1. Location of SEARCH and ASACA RBMmonitoring stations in the Atlanta
Metropolitan, overlaid by model grid cells corresdmg to these sites (36 km and 12 km
domains). Jefferson St. (JST) is a part of the SEMRetwork; Fort McPherson (FM),
South-Dekalb (SD), Tucker (TU) are a part of theAE& network. In 2001, a Pbk
STN site was co-located at the South-Dekalb sitesifes are co-located within one 36
km model grid-cell, but are located in differentkif grid cells.

Total PMps mass was measured by means of TEOM (Tapered Elemen
Oscillating Microbalance). The JST site includesbah gravimetric measurement of total
PM, s mass. For the speciation of the PiMa manual, filter-based Particle Composition
Monitor (PCM) was operated on a daily schedule. PIiM included three channels to
collect 24 hour integrated samples for analysisnajor ions, trace metals and organic
and elemental carbon in the PMsize range. lon chromatography (IC) was used to
guantify water soluble ionic species. Elemental anghnic carbon collected on quartz
filters were measured by Thermal Optical Transmdea(TOT) in the ASACA network,
and by Thermal Optical Reflectance (TOR) in the 8EA network (Butler et al. 2003;

Hansen et al. 2003). Comparison of these two tectasi indicates that while the total
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carbon (TC) measurements are in good agreemengy IB® and higher OC values are

obtained using TOT, compared to TOR (Chow et a0420

2.3 Results

2.3.1 Air-quality model simulations

Concentrations of S&J, NOs, NH,*, EC, OC simulated using CMAQ for ARIES
were compared with observations at four differetgssin the Atlanta metropolitan area
(JST, FM, SD, TU). All four sites used here areated within the same 36km CMAQ
grid cell (Figure 2-1), allowing two issues to bddeessed: evaluation of CMAQ
performance (using a 36km grid resolution), anguggest whether a single site exists
which is more representative of the health studyala (the Atlanta metropolitan area)
and hence more suitable for use in the epidemiolagudy. Comparing model
performance for major PM components (Table 2-1) indicates that performamtetter
for sulfate than for nitrate and ammonium. Averagdfate concentrations are well
simulated (same average for the JST site, sligderprediction for the other sites), and
the correlation coefficient at JST is relativelgini(0.72, 0.59-0.61 at the other sites). On
the other hand, nitrate is substantially overpredidoy CMAQ, and the daily variations
are not captured as well (as indicated by theivelgtlow correlations, in the range of
0.45-0.52). Similar findings have been reporte@wlsere (Morris et al. 2005). EC and
OC are underpredicted in this application of CMARely due to the relatively coarse
vertical layer structure. This may cause artifiaigpersion of primary P emitted
locally at the ground level (such as EC and a ilmacof OC), especially during strong,

low-level inversion events. In contrast, sulfateels are well predicted using the same
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vertical layer structure, being a regional secopganliutant. JST seems to be the most
consistent with the model simulated concentratwhen comparing model performance
at the four sites. This is evident in the higherrelation and lower RMSE for sulfate,
compared to FM, TU and SD sites, as well as inhilgber correlations of EC and OC.
This may be an indication of JST being more sggtrapresentative than the other sites,
or of better data quality (smaller measurementreigompared the other sites/datasets.
To address the issue of grid resolution, resuttsifa simulation using a 12km grid were

used, but model performance did not change sulsigir{Table 2-2).

Table 2-1. Model performance statistics for 36km AM modeling of the Atlanta
aerosol (for ARIES). For each site, the averagly @aincentration for the period of 8/99-
8/01 is given (obspg/m®), along with the correlation (R), and the root meguare error

(RMSE, ug/m°) compared with the daily CMAQ simulated concertrag (1g/m°). Data
for the SD site are from the ASACA network.

Species CMAQ JST FM TU SD (ASACA)
(avg. modeled conc.) (obs./ R/ RMSE) (obs. /R /RMSE) (obs./R/RMSE) (obs. /R /RMSE)
SO,” 5.2 5.2/0.72/ 2.7 4.7/0.60/ 3.1 46/0.61/31 6/8.59/3.2
NOs 3.4 1.1/0.52/ 4.2 1.0/ 0.50/ 4.9 1.2/0.50/4.8 9000.45/4.8
NH," 2.8 2.7/10.42/ 1.6 1.7/0.44/ 2.0 1.7/0.42/2.0 6/0.44/2.1
EC 11 1.6/ 0.66/ 1.0 1.4/ 0.40/0.74 1.2/0.3670. 1.7/0.52/1.0
oC 2.6 4.2/ 0.58/ 2.5 4.5/0.43/ 3.3 4.6/ 0.45/3.2 4.7/0.47/ 3.3

Table 2-2. Comparison between model performanaggusi36km and a 12km modeling
grid (1/01-8/01), for ARIES. For each site, theretation coefficients between observed
and modeled values (both at 36km and 12 km), alditlythe RMSE jig/m?®, calculated

for both 36 km and 12 km modeling) are given. Oatahe SD site are from the ASACA
network.

JST FM TU SD (ASACA)
species R RMSE R RMSE R RMSE R RMSE
(36/12)  (36/12) (36/12) (36/12) (36/12) (36/12) (36/12)  (36/12)
SO, 0.81/0.79 20/21 066/0.66 2.4/25 0.70/0.71 22/2 0.65/0.62 2.5/2.6
NO; 0.60/057 3.1/3.2 0.72/0.71 3.3/3.2 0.70/0.69 321/3 0.61/0.61 3.4/3.3
NH,” 0.40/0.41 1.3/1.3 0.49/050 15/1.7 0.54/0.53 154/1 0.50/0.49 1.5/1.5
EC 058059 0.9/0.8 0.31/0.34 0.9/0.8 0.30/0.30 7/007  0.50/0.47  1.0/1.0
OC  056/059 1.9/1.8 0.37/0.36 3.9/41 0.46/0.44 8/335  0.46/0.45 3.8/3.9
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We also compared model simulations from the VISTI®&m modeling (Morris
et al. 2004; Morris et al. 2005), in which a fineartical layer structure was used (19
layers), with observations during 2002. In this mloty campaign, the CB-IV chemical
mechanism and an updated SOA module (Morris et2@06) were used. Model
performance (Table 2-3) is somewhat improved coegpao the results presented
previously (Tables 2-1 and 2-2), but the generahds remain the same, with sulfate
performance being the highest, followed by EC/O@d anitrate and ammonium
performance being the poorest. However, thesetsedal not exhibit an underprediction
of carbonaceous PM components, due to a combination of more detaledical
layering (EC and primary fraction of OC), and aha&amced SOA module which includes
additional SOA formation and polymerization pro@ssgMorris et al. 2006). Another
difference is the improved model performance at3begrid cell (data from the STN site
were used), but similar patterns were also obsewleeh the CMAQ modeling done as
part of ARIES was evaluated using the available S¥th for 2001 (instead of the
ASACA data). Based on these findings from the madelluation process, there is no
evidence to support that the JST site is moreSesdially representative than the SD-

STN site.
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Table 2-3. Model performance statistics for VISTAZmM modeling (Morris et al. 2004;
Morris et al. 2005) of the Atlanta aerosol. Forleade, the average daily concentration
for the period of 1/02-12/02 is given (observad/m?®), along with the correlation (R),
and the root mean square error (RMSEY/m®) compared with the daily CMAQ
simulated concentrations (modeled/m®). Data for SD site are from the EPA STN.

JST SD (EPA STN)

Species Observed Modeled R RMSE Observed Modeled R RMSE
% 4.3 5.2 0.68 2.8 4.6 4.8 0.82 1.7
NOs 1.0 1.8 0.65 1.9 0.9 15 0.60 1.8
NH," 2.1 2.1 0.53 1.0 1.3 1.9 0.62 0.9
EC 1.3 15 0.63 0.8 0.9 11 0.75 0.5
oC 4.2 5.6 0.63 2.6 5.4 5.2 0.70 2.0

2.3.2 Daily vs. seasonal variations

Correlation coefficients reported in Tables 2-13 Bepresent temporal variations
on both the daily scale (24 hour data are usethfocomparison) and seasonal scale. As
previously mentioned, to be applied in a time-sehealth study, it is important that the
model capture the daily variability in concentragsoof PM s components (seasonal
variability is typically controlled for in the hehl study). Previous studies indicated that
meteorological (MM5) and air-quality (CMAQ, appliéd ozone) models capture inter-
annual (seasonal) and synoptic-scale (lasting abdays and longer) variability, while
the magnitude of fluctuations on shorter time scateunderestimated (Hogrefe et al.
2004; Hogrefe et al. 2001). To address this ispeeifically for PM 5 components, we
computed correlations for running blocks of 30 dagish during the period of 8/99-8/01
(731 blocks during a 762 day period). This allovesdluating the variability captured by
the model on shorter time scales, emphasizing darg synoptic variability over
seasonal/interannual variability. The average asé¢h shorter time-scale correlation

coefficients was compared to the correlations basedhe entire dataset (Table 2-4).
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Also provided are similar comparisons for obseoraiat JST vs. SD-STN (3/01-12/02).
For species with a strong seasonal pattern, suduléste and nitrate, the correlations
between simulated and observed concentrationsdivayply when shorter time scales are
used. For example, the correlation coefficient dalfate based on the entire dataset is
0.72, and only 0.56 based on the average of 25hhootefficients. A similar pattern is
observed for nitrate. This means that the modekbstmulates seasonal patterns (e.g.,
high sulfate levels in summer and low sulfate Isvelwinter) than daily fluctuations in
concentrations (Figure 2-2). For species lackingifrang seasonal pattern, such as EC
(Figure 2-3) and OC, no substantial difference leetwthe two coefficients is observed.
This implies that the previously reported corr@atcoefficients are likely driven by the
model’s ability to simulate daily fluctuations iromcentrations of EC and OC. Also
shown in Table 2-4 are correlation coefficientsngsihe measurements at JST and SD-
STN sites. These results address whether interesiteelations are also driven by
seasonal patterns for the major PMconstituents. The long-term and short-term
correlation coefficients between sites are simihath the largest difference observed for
nitrate. This result suggests that the daily valitgbis as spatially correlated as the
seasonal variability. The amount of short-term terapvariability (as represented by the
variance) captured by the model relative to thammon to both sites (inter-site
correlation) for the various species indicates thatmodel captures more of the short-
term variability of primary components than thatssetondary components. For example,
the model captures 74% of the temporal variab{ligpresented by the variance) in EC
concentrations, compared to only 34% of the tenlporariability in sulfate

concentrations. Although different periods weredu® model versus JST comparison
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and the inter-site comparison due to availabilityata, the results are informative on a
comparative basis. Hence, despite similar shont-teorrelations between model results
and JST measurements for EC and sulfate (0.64 &fd i@spectively), we estimate that

the model is capturing a substantially larger foacbf the spatially representative short-

term variation in EC (75%) than in sulfate (34%).

Table 2-4 Comparison between correlation coeffisie(R) (modeled vs. observed

concentrations at JST, 8/99-8/01) based on theaeesimulated dataset (daily and
seasonal patterns represented) and shorter (30sdapprts of the dataset (emphasis on
daily variations). Also provided is a similar comigan for correlations between

observations at JST and SD-STN sites (3/01-12/02)

CMAQ (modeled) vs. JST (obs.), JST (obs.) vs. SD-STN (obs.), Short-term

8/99-8/01 3/01-12/02 temporal
Correlation Average of Correlation Average of variability"
Species based on entire 30 day based on entire 30 day captured by the
dataset correlations dataset correlations modef (%)
so,” 0.72 0.56 0.98 0.96 34%e.g., 0.580.96)
NOg 0.52 0.41 0.91 0.80 26%
NH," 0.42 0.48 0.77 0.81 35%
EC 0.66 0.64 0.77 0.74 75%
ocC 0.58 0.65 0.79 0.80 66%

- represented by the variance
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Figure 2-2. Comparison between daily modeled (3kit) and measured (JST) sulfate
concentrations, for the period of August 1999 — #8tg2001. Seasonal patterns are well
captured by the model, but model performance isr padnen shorter time scales are
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considered. The correlation coefficient (R) foradlta is 0.72; 0.36 for the period of July-
September 2000; and 0.48 for the period of Decer2®@® - February 2001.
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Figure 2-3. Comparison between daily modeled (3@kid) and measured (JST) EC
concentrations, for the period of August 1999 — #8ig?001. Modeled EC is generally
under predicted. With regards to temporal variajon lieu of a strong seasonal pattern,

no substantial difference in model performanceliseoved between shorter and longer
time scales (as also indicated in Table 2-5).

2.3.3 Spatial representativeness of modeled grid-cell concentrations vs. point
measurements

Ambient measurements at a single location might betepresentative of air-
quality over a larger domain if the measuremengsirg@ftuenced by local sources. This is
of special concern for primary BM constituents, such as EC, as demonstrated by the
data in Table 2-4. In contrast, air-quality modetslculate volume average
concentrations. These differences in spatial scedes contribute to the discrepancies

between measured and simulated concentrations. daak (2006) demonstrated that
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model performance improves when it is compared veithbient data from several

measurement sites (weighting for distance fromddetral site), compared to a single
site, and that the improvement was the largespfimnary PM s components. To address
the issue of spatial representativeness withirAtlenta metropolitan area, we compared
model performance with single site measurementsaanaverage of sites, JST and SD-
STN. The question then is whether a spatial aveohgiata from these two sites is more
correlated with the model than any single measunént@iven only two sites, and the

fact that they both reside in the same 36km grikj e used a simple average of the two
sites, for the period 3/01-12/01 (the overlappiegqd between the 36km modeling and
the SD-STN measurements). For elemental carbon,ctineelation between CMAQ

modeled concentrations and measurements at JSD.8@sthe correlation between the
model and the SD-STN data was 0.66, and the ctioelaith the average of these two
sites was 0.72. These differences are subtleylikelicating that neither of these sites is
strongly influenced by local sources (the intersiterelation was 0.80), and that the
model is only slightly more spatially representatithan any of these single
measurements. For sulfate, these correlations &égs 0.80 and 0.80, respectively, with
an intersite correlation of 0.98, indicating thdtetmodel is not more spatially

representative than any single measurement.

2.3.3 Secondary organic aer osol
Of the secondary PM components, secondary organic aerosol (SOA) is of
special interest, as is comprises a large fracifambient PMs, but cannot be measured

directly. Thus, in order to study the health effeof SOA, indirect methods must be
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applied. One such common method is the EC-tracghade(Turpin and Huntzicker
1995), in which ambient data are analyzed to ifierdin OC/EC ratio typical of
emissions in the region, and secondary OC is tlsimated as the difference between
total OC and the product of EC and this primary EXC/ratio. Another approach is to
apply a Chemical Mass Balance (CMB) model, andsiimate secondary OC as the
difference between total OC and OC apportionedniis&on sources (Marmur et al.
2005; Zheng et al. 2002). This can be viewed a®®gpanded” EC-tracer method, as the
primary OC/EC ratio can vary based on the dailgtflations in source impacts (e.g.,
biomass burning and diesel emissions have vergréifit OC/EC ratios, and as their
relative impact on the monitor changes, so will phienary OC/EC ratio). One drawback
of this approach, however, is that this estimatemigre accurately an estimate of
unapportioned OC, which might not necessarily deap SOA (any sources of primary
OC not included in the CMB analysis may be lump®d this category). Further, errors
in the CMB source apportionment will impact the S@kcation in an unknown fashion.
A conceptually different approach would be to useemissions-based air quality model,
such as CMAQ, to generate concentration fields ©ASSince the chemistry of SOA
formation is not fully understood, not all procesdeading to SOA formation are
currently included in models such as CMAQ. In addit it is not trivial to evaluate the
performance of SOA modules, as a direct comparisdh ambient data is not yet
possible. Model performance for total OC is oftemleated, but it is then difficult to
distinguish between performance for primary andsdary OC (e.g., overprediction of
primary OC may compensate for an underpredictioB@A etc.). Morris et al. (2006)

developed an enhanced SOA module for CMAQ, whidtuohes the formation of SOA
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from sesquiterpenes and isoprene, in addition ¢éontlonoterpenes oxidation processes
accounted for in the current version of CMAQ. Indiidn, this module includes
polymerization of SOA into non-volatile particledsing this enhanced SOA module,
Morris et al. (2006) report substantial improvensentmodel performance for OC. Even
with the inclusion of these processes in the SOAdul®y much remains unknown
regarding the chemistry leading to SOA formationecét evidence suggests a
substantial contribution of anthropogenic volatdeganic compounds (VOC) to SOA
formation in the Atlanta area (Sullivan, 2006),dontrast to findings from CMAQ, in
which the vast majority of SOA is formed from biogeprecursors (e.g., 90% of SOA is
of biogenic origin, on an annual basis, based odeating results presented here). Here
we compare results from the VISTAS simulations l{daalues for 2002) with results
from a CMB analysis (Marmur et al. 2006; Marmur aét 2005). A comparison of
unapportioned organic matter (OM) (OC not apposto any of the sources of primary
OC; multiplied by 1.4 to account for OM/OC ratiag)daSOA from CMAQ shows similar
trends (Figure 2-4) except for several outliersthe CMB analysis (extremely high
unapportioned OM levels on specific winter dayspclsing on summertime (April-
October), CMAQ SOA is slightly overestimated congzhto the CMB unapportioned
OM (4.3 vs. 3.8ug/m°, respectively), though an OM/OC ratio higher thash (used in the
CMB analysis), as may be more suitable for SOA firuand Lim 2001) would have
made these more similar. The correlation coeffic({@) between these two methods is
0.70, slightly higher than the coefficient for tot@C (Table 2-3). Comparing this
correlation coefficient for all data between Apdittober 2002 with an average of the

correlation coefficients during running 30 day le¢to dampen out seasonal/long-term
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effects) revealed no difference (both are equal0ft0). Thus, there is substantial
agreement in the daily variability of SOA levelsiested by these two methods, for the
time period considered. This finding is somewhatpssing, given the limited

understanding of SOA formation chemistry. Howevas, SOA formation chemistry
continues to be studied and models updated acgbydithese may become useful tools

in health studies.

12.0 —

10.0

8.0

6.0

ug/m3

4.0

2.0 +

0.0 T T T T T T T T T T T
Jan-02 Feb-02 Mar-02 Apr-02 May-02 Jun-02 Jul-02 Aug-02 Sep-02 Oct-02 Now-02 Dec-02

‘ — CMAQ SOA (Morris et al., 2005) CMB unapportioned OM (Marmur et al., 2006) ‘

Figure 2-4. Comparison between CMAQ modeled SOA rfidoet al., 2005) and
unapportioned OM from a CMB analysis (Marmur et 2006) for 2002 at the JST site

2.4 Discussion
An analysis of spatial and temporal variabilitycmncentration fields (Wade et al.
2006) has indicated that the spatial variation amoentrations of secondary BM
components is lower than that of primary componehiss can also be observed in the
inter-site correlations presented here (JST andS$N; Table 2-4), being higher for
sulfate (0.98) than for EC (0.77). This implies tthhe error introduced into the

epidemiologic analysis due to spatial variabilifyambient concentration fields would be
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higher for primary than for secondary PMcomponents, possibly attenuating observed
associations with health-outcomes. In practicese¢hindings may also imply that the
location of measurement is not of great signifieandien secondary P components
are of interest (e.g., measurements at any samgiiagwithin the health study domain
would likely be representative of the daily varlahiin sulfate concentrations), while the
sampling location may be of greater significancemprimary PMs components are of
interest (different sites might exhibit differentaily variability in concentrations,
possibly influencing the epidemiologic analysis).térms of applying air-quality models
in the epidemiologic analysis, these data sugdest such an application might not
introduce much benefit for secondary PMomponents, if ambient data are available. A
sensitivity analysis of the epidemiologic model Wwbbe needed in order to estimate the
effect of dampened temporal variability of a giy@mulated) pollutant on the derived
health risk-ratios. Such information may be helpfutletermining whether applying air-
guality models in-lieu of ambient data would seagea reasonable surrogate. Based on
the results presented here (Table 2-4), the abdityCMAQ to model short term
variations in concentrations of sulfate, nitrated ammonium is limited, while for EC and
OC, the model does capture more of the short-tearability in these concentrations.
Regarding spatial representativeness, model pediocen has been shown to improve
when model results are compared with a spatialageeof ambient data, rather than one
site, especially for primary PM components (slightly in this study, more substdiytin
(Park et al. 2006). This implies that a volume agerconcentration, as from the output
of an air-quality model, may be more spatially esgntative than any individual point

measurement. These findings regarding the spattlt@mporal variability suggest that
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there may be some benefit in applying simulateccentrations of EC (and to a degree,
OC) in time-series health studies, if the increaseatial representativeness outweighs the

loss of some of the temporal variability.
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CHAPTER 3
OPTIMIZATION BASED SOURCE APPORTIONMENT OF PM 5

INCORPORATING GAS-TO-PARTICLE RATIOS

(A. Marmur, A. Unal, J.A. Mulholland, and A.G. Red#ls Environmental Science and

Technology39, 3245-3254, 2005)

Abstract

A modified approach to Pp4 source apportionment is developed, using source
indicative SQ/PM,s, CO/PM s and NQ/PM; s ratios as constraints, in addition to the
commonly used particulate-phase source profileslithohal information from using gas-
to-particle ratios assists in reducing collineabgtween source profiles, a problem that
often limits the source-identification capabiliti@®d accuracy of traditional receptor
models. This is especially true in the absenceetisted organic-carbon measurements.
In the approach presented here, the solution isdbas a global optimization mechanism,
minimizing the weighted-error between apportionead eambient levels of P4
components, while introducing constraints on caltad source contributions that assure
that the ambient gas-phase pollutants (STD and N@) are reasonable. This technique
was applied to a 25 month dataset of daily .BMneasurements (total mass and
composition) at the Atlanta Jefferson Street SEARSItd. Results indicate that this
technique was able to split the contributions ofbite sources (gasoline and diesel

vehicles) more accurately than particulate-phasearcgo apportionment methods.
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Furthermore, this technique was able to better tifyaite direct contribution (primary

PM, s) of coal-fired power-plants to ambient RMevels.

Keywords: CMB, LGO, optimization, source-apporticamh PM s two-phase-source-

profile.

3.1 Introduction
Chemical Mass Balance (CMB) receptor models areomnton tool for
apportioning of ambient levels of pollutants (mgiphrticulate matter) among the major
contributing sources. CMB combines the chemical ghysical characteristics of
particles or gases measured at sources and resdéptquantify the source contributions
to the receptor. The quantification is based orstiiation to a set of linear equations that
express each receptor's ambient chemical concemtras a linear sum of products of

source-profile abundances and source contribu{ib23, as expressed by:
Ci = z fij Sj +€ (3'1)
j=1

where:

C; = ambient concentration of chemical speti@sy/m®);
fij = fraction of speciesin emissions from sourge

S = contribution (source-strength) of soujdgg/m’);

n = total number of sources;

€ = error term;
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The source profile abundancef, (the mass fraction of a chemical in the
emissions from each source type) and the recepiacentrations @;), along with
uncertainty estimates, serve as input data to M8 Godel. The output consists of the
contribution of each source categor§) (to the measured concentration of different
species at the receptor.

In CMB8 (2), the effective variance (EV) weighingrfleast squares calculations is
applied, to find the best solution to the set otiatpns given by Equation 1. The
effective weighing method takes into account bdib tincertainties in the ambient
measurements and the uncertainties in the souofgepicompositions. In practice,

CMBS8 performs a series of matrix operations to migex?, given as (3):

(C zfs]
= (3-2)

where:
0., = one standard deviation precision of @eneasurement;

o, = one standard deviation of themeasurement;

m = total number of species;

If theafij are set to zero, the solution reduces to the orgwaighted least square

(OWLS) solution (3), taking only the uncertaintiesthe ambient measurements into

account.
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CMB models are based on the following assumpti@its (

1. Compositions of source emissions are constant theeperiod of ambient and
source sampling.

2. Chemical species do not react with each other they add linearly.

3. All sources with a potential for significantly coibuting to the receptor are
included in the analysis.

4. The source compositions are linearly independeetoh other.

5. The number of sources or source categories ishesor equal to the number of
chemical species.

6. Measurement uncertainties are random, uncorrelatetinormally distributed.

Of these, one of the major assumptions limitingahiity of CMB models to identify
and quantitatively provide impacts of the majorrses is the linear independence of
source profiles, when those profiles are basedlysada traditional species. For
apportionment of PMs (particulate matter with a diameter less thanu@}h source
profiles including major ions (SG3, NOs, NH,", CI), elemental and organic carbon
fractions (EC, OC) and trace metals are typicabgdi Some source categories share
relatively similar profiles (e.g. diesel and gaselivehicles), limiting the ability of CMB
to accurately and consistently apportion the PMaeetween those sources, particularly
in the presence of other sources of OC and EC. dilveas this issue, recent source-
apportionment studies make use of speciated orgampounds (“organic markers”) to
apportion OC (4-6), a major component in emissifsosm mobile sources, vegetative

burning and meat-charbroiling. However, some saursikeare organic markers (e.g.,
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hopanes and steranes in both gasoline and dies$etle®, making it difficult to
accurately and consistently apportion the OC matwden those sources. In addition,

speciated ambient OC data are not yet commonlyadolai

3.2 Model description

3.2.1 Incorporating gas-to-particleratiosin PM 5 sour ce-appor tionment

Here we apply an extended CMB approach for, Psburce-apportionment which
incorporates source-indicative 3BM, 5, CO/PM s and NQ/PM; 5 ratios, in addition to
the commonly used PM source profiles. Such ratios, along with ambiexst ghase data,
can further assist in identifying sources, as semrhiat may have fairly similar RM
emissions, may have significantly different gaseemsssions. Such gas-to-particle ratios
may vary during transport from source to recepdoe to different deposition rates and
reactivity. However, the atmospheric lifetimes @.Sabout a week), CO (1-4 months),
and NQ (1-7 days) (7) are long enough to assume that amechange in the gas-to-
particle ratio will occur within an urban to regadrairshed, given that the typical lifetime
of a fine particle is in the order of days to weeks well (8). Even so, variations in the
gas-to-particle ratios, along with uncertaintiestlwe initial estimate used, need to be
considered.

A few studies have shown the increased resolutioeource apportionment of
two-phase receptor models (9-13), though this tsanoommon practice in the source
apportionment literature. Applying a two-phase peoe model for PMy and non-
methane-hydro-carbons (NMHC) has shown to sigmfiyareduce the collinearity

problem (9). A study dealing with decay-adjustedepor modeling (13) has shown
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small improvements in the agreement between CMBipied and observed
concentrations of individual VOCs, but did not sfgrantly change the estimated
emissions contributions. These studies made use@phase source profiles in which
the profile included the fractional compositionbafth PM and gas phase data (speciated
VOC, NQ, SO and CO) in a single profile, angf was minimized based on all these
species. However, when Equation 1 is solved in ithésner, several issues arise. First,
since these gas phase species are reactive, treratominy? cannot be simply expected
to approach zero. In addition, the uncertaintyhe measured ambient concentration is
likely lower for major gas phase species, compdmedpeciated Pls components.
Hence these major gaseous species are likely ve ¢ie minimization ok? (assuming
uncertainties in the source profile compositiors @mparable), despite the fact that for
many sources of Py, the fraction of PMs emissions is much smaller than that of gas
phase emissions. For example, data from the natemésion inventory for the USA
(14) indicate that only about 0.6% of the total smamissions from coal power-plants are
PM s, the remaining and major part being gases, @@ NQ).

To avoid inaccuracies evolving from the use of piase source profiles and the
straight forward minimization of? including gaseous species as fitting species, we
suggest using ratios of $®M,s, CO/PMs and NQ/PM,5 in emissions from the
various sources to bound acceptable solutions ¢osthurce apportionment problem
(Equation 1), without directly including these datathe process of minimizing®. That
is, this information is used as a constraint, lttdirectly in the source profiles used by

CMB. This information adds three constraint equaito the apportionment process,
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based on the same principles as in equation 1.ahhigient SQ levels can then be

expressed as:

[50] = Z[ 2 J s @3)

where:

[SQ,] = ambient S@concentrationy(g/m’);

o

=Y J = SO/PM; 5 ratio in emissions from sourgémass/mass);
25 i

S = contribution (source-strength) of soujdpg/m’) to the PM s loading;

n = total number of sources;

Similar equations can be expressed also for ambdtand NQ. Due to
uncertainties in the initial estimate of the gagpé#oticle ratio at the source, and to
account for possible changes to these ratios duremgsport, we suggest using these
equations (Equation 3) to bound acceptable solsittorthe PMs source-apportionment
problem (Equation 1), but not as part of the emomimization process. In practice, we
suggest that such an acceptable solution is orteptiedicts the ambient SOCO and
NO, concentrations within a factor of three (underower prediction) of the observed
value (sensitivity to this factor is addressed #itpr Hence, the goal is to find an
optimum solution based on the particulate-phasa, detich adheres to somewhat more

flexible constraints on the gaseous side.
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3.2.2 Use of global optimization modelsfor source-apportionment

To solve the PMs source-apportionment problem (Equation 1), subjeajas-
phase constraints, we use a global optimizatiognara. A large variety of quantitative
decision problems in the applied sciences, engimgemnd economics can be described
by constrained optimization models. In these mqdils best decision is sought that
satisfies all stated feasibility constraints andximizes (or minimizes) the value of a
given objective function. The general mathematioah of these models is summarized
as (15,16):

max f(x); a<x < b; g(x) <0 (3-4)

where:

x = a real n-vector (to describe feasible decigions

a,b

f(x)

finite, component-wise vector bounds implose x

a continuous function (to describe the mlogbjective)
g(x) = a continuous vector function (to describe thodel constraints; the inequality

is interpreted component-wise).

The objective of global optimization is to find thest solution of nonlinear decision
models, in the possible presence of multiple lgcalptimal solutions. Here, LGO
(Lipschitz(-Continuous) Global Optimizer) is usetb(16). LGO integrates a suite of
robust and efficient global and local scope solvéisese include: global adaptive

partition and search (branch-and-bound); adaptiebal random search; local (convex)
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unconstrained optimization; and local (convex) t¢a@sed optimization. The LGO
implementation of these methods does not requirsvat&re information. Their

operations are based exclusively on the computatiothe objective and constraint
function values, at algorithmically selected searonts.

Here, LGO was applied to identify and quantify dmrces contributing to ambient
levels of particulate matter. In practice, LGO vegplied to solve the set of equations
represented by Equation 1 (22 equations for 4 i@nsarbon fractions, and 16 trace
metals), by setting¢? (Equation 2) as the objective function to be mizd. The
solution was set subject to the constraint thataoked apportioned levels of SOCO and
NOx (as calculated by Equation 3) lie within a factdrthree of the observed ambient

levels.

3.3 Mode implementation

3.3.1 Test Case: SEARCH 25 month dataset, Jefferson St., Atlanta, Georgia

To evaluate this modified approach for source-ajpument, we used the
SEARCH (Southeastern Aerosol Research and Chawatten) 25 month (8/98-8/00)
dataset for Jefferson St. (JST) site in Atlanta, GA,18), which included data on total
PM,s mass (gravimetric measure) and its components. J8¥e site is located 4 km
northwest of downtown Atlanta, in an industrial asdmmercial area. The main
objectives of SEARCH include the understanding ahposition and sources of PM in
the southeast (17,18). SEARCH data is being useth& Aerosol Research Inhalation
Epidemiological Study (ARIES) air-quality healthugdy in Atlanta, GA (17), and one

motivation of this work is to assess the possipitif using source information derived
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from receptor modeling in epidemiologic studiesr Ehe speciation of Pp4, a manual,
filter-based, Particle Composition Monitor (PCM)snvaperated daily. The PCM included
three channels to collect 24 hour integrated sasnfde analysis of major ions, trace
metals, organic and elemental carbon in,BBlze range (17). lon Chromatography (IC)
was used to quantify water soluble ionic speciésmEntal and organic carbon collected
on quartz filters were measured by Thermal OptReflectance (TOR). Trace metals
were measured by x-ray fluorescence (XRF). Ambiaftes of daily S@ CO and NQ
were reported as well. Mean values and standarititavs measured at the JST site, for
the species and time period (8/98-8/00) used m dhalysis, are given in Table 1. Note
that NG, was used rather than NQo account for the amount of NO and Néxidized to
other nitrogen forms, such as Hj@nd Peroxy Acetyl Nitrate (PAN). The average
NO,/NO, mass ratio was 0.89, indicating “fresh” local estosas (compared to 0.63 at the
rural Yorkville site, 55 km west northwest of Attaj. The concentration values were
used for the measured data, and the summationeadirtalytical uncertainty and 1/3 of
the detection limit value was used as the ovenmatlettainty assigned to each measured
value (18). Values below the detection limit weeplaced by half of the detection limit
values, and their overall uncertainties were sdi/@tof the detection limit values (18).
Missing values were replaced by the geometric nidahe measured values, and their

accompanying uncertainties were set at 4 timegg#osnetric mean value (18).
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Table 3-1. Mean, standard-deviation, minimum, maximof ambient levels of the
species used for the source apportionment, JSTAtlenta, GA

Species Mean (1g/m°) StDev (1g/m’) Min (ug/n) Max (ug/m?°)
PM; 5 19.1 8.9 1.9 54.6
so,? 5.41 3.65 0.53 20.8
NOs 1.12 0.87 0.00 7.49

cr 0.11 0.08 0.02 0.83
NH,* 2.79 1.60 0.30 10.3
EC 1.98 1.36 0.17 11.9
oC 4.46 2.21 0.66 18.4
Al 1.61E-02 4.52E-02 6.16E-03 9.00E-01
As 1.42E-03 1.35E-03 5.05E-04 1.51E-02
Ba 1.81E-02 8.01E-03 1.45E-02 5.69E-02
Br 4.04E-03 7.97E-03 2.60E-04 2.07E-01
Ca 5.37E-02 4.48E-02 4.04E-03 5.02E-01
Cu 3.70E-03 4.57E-03 6.15E-04 4.19E-02
Fe 8.92E-02 7.45E-02 5.34E-03 1.05E+00
K 6.51E-02 5.86E-02 6.37E-03 8.27E-01
Mn 1.91E-03 1.54E-03 4.00E-04 1.31E-02
Pb 6.40E-03 7.49E-03 1.17E-03 7.83E-02
Sb 3.34E-03 4.40E-03 2.13E-03 1.07E-01
Se 1.32E-03 1.26E-03 3.50E-04 1.01E-02
Si 1.12E-01 1.15E-01 1.05E-02 1.83E+00
Sn 4.32E-03 1.92E-03 3.53E-03 1.72E-02
Ti 4.78E-03 4.38E-03 2.14E-03 5.46E-02
Zn 1.63E-02 1.61E-02 4.23E-04 2.11E-01
SO 16.6 12.3 1.4 98.1
(6{0) 560 423 180 4020
NO, 108 68.2 12.4 590

The major source categories used to in the soyperaonment included light
duty gasoline vehicles (LDGV), heavy duty diesehiees (HDDV), fugitive soil dust
(SDUST), vegetative burning (BURN), coal fired povptdants (CFPP) and cement kilns
(CEM). To address the formation of secondary patitg, we also included theoretical
profiles based on the molecular weight fractiors, &mmonium-sulfate (AMSULF),
ammonium-bisulfate (AMBSLF), ammonium-nitrate (AMNIand secondary/other OC
(OTHEROC). The secondary/other OC category willuide any OC not apportioned to
one of the primary source categories above. Ofigpeote are emissions from meat
charbroiling, dominated almost solely by OC emissig¢19), with no unigue inorganic

marker, and characterized by low #M, s and CO/PM; ratios (19,20). This makes it
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very difficult to distinguish between emissionsrfraneat charbroiling and secondary OC
formation. For this reason, meat charbroiling ermisswere not apportioned directly, but
were rather lumped into the secondary/other OCgocaye

Source profiles used for LDGV and HDDV were basacheasurements as part
of the Northern Front Range Air Quality Study (NFR8) (21). The profiles used for
vegetative burning, power plants, and cement kilage based on measurements done as
part of the Big Bend Regional Aerosol Visibility cirDbservational (BRAVO) study
(19). The soil dust profile used was from more oegily-representative measurements in
Alabama (22). A summary of the source-profiles usethis study is given in Table 2.
The LDGYV profile is characterized by high carbomiemt and a high OC/EC ratio (2.3).
The HDDV profile is also characterized by high a@arlcontent, but there the OC/EC
ratio is much lower (0.27). The LDGV had a highkuadance of trace metals, compared
to the HDDV profile. However, the relative amounfsEC and OC in emissions from
both gasoline and diesel vehicles is highly vagabhd there is significant overlap in the
range of values between the two mobile source sty{®3). Therefore, trying to
distinguish gasoline and diesel contributions saedy on the basis of just EC and OC
mass fractions is suspect (23). This further indi€dhe need for additional markers to
accurately separate the emissions from each oktkesrces. The BURN profile is
characterized by high carbon content and a highEQGAtio (4.1), but also by a high K
content (0.057), which can serve as a marker fgetagive burning. Crustal elements, Al,
Ca, Fe and Si, along with OC, are abundant in tB&JST profile. The CFPP is
characterized by high fractions of $OC, Al, Ca and Si, and by a relatively high Se

content, compared to other sources. Selenium ceneftre serve as a marker for coal-
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fired power plants. Emissions from cement kilns enaracterized by high fractions of
SO%, NOs, OC, Al, Ca, Fe, K, and Si. This shows that défeiating emissions from
power plants, cement kilns and fugitive soil duggimh be subject to collinearity.

Adding information on gaseous emissions, in thenfaf gas-to-particle ratios,
can further assist in identifying sources. Gasddiple ratios for mobile-sources
(LDGV, HDDV), based on the 1999 National Emissidnsentory (14), show very
different patterns, LDGV being characterized byignificantly higher CO/PM5 ratio
than HDDV (Table 3). Uncertainties in these ratieye not available, but are likely not
large enough to mask the major differences betwaseous emissions from gasoline and
diesel vehicles. Ratios for vegetative burning,|-¢mad power plants, and cement-kilns
were determined based on data from the BRAVO s{@éy and the emission inventory
for the State of Georgia (24). CO and Nfatios for cement kilns were modified to
describe the kiln, rather than the entire plantssions, as given by the inventory (which
includes high particulate matter emissions from glinding operations). The
modification was based on the S@tio for kilns (19), compared to the S@atio
obtained from the inventory. The high $PM,s ratios in power plants and cement
plants (Table 3) can assist in separating thesesseomis from fugitive soil dust (no
gaseous emissions). The higher ;N@missions from cement kilns, along with the
differences in PM emissions, can assist in sepagratement kilns and coal-fired power
plant emissions. The relatively low CO/RMratios in vegetative burning emissions can
serve as an additional marker to assist in separaltiis source from LDGV emissions

(along with potassium).

46



Table 3-2. Particulate source-profiles used inapportionment process (fraction of total

PM, s emissions and standard deviations over multiplasuements)

Species LDGV HDDV! SDUST BURN® CFPP
ok 0.01330.0056 0.00460.0048 0.0010+0.0004 0.0239+0.0227 0.2874%0.2256
NOs 0.000G3:0.0052 0.00260.0014 0.0010+0.0004 0.0024+0.0018 0.0069+0.0109
cr 0.0003:0.0100 0.001:#0.0003 0.0007+0.0005 0.0761+0.0730 0.0089+0.0157
NH," 0.000@:0.0100 0.000£0.0100 0.0000+0.0000 0.0165+0.0253 0.01790.0213
EC 0.23550.0277 0.735%0.1014 0.0060+0.0040 0.1575+0.1545 0.0138+0.0222
ocC 0.5486:0.0642 0.198%0.0774 0.0440+0.0170 0.6441+0.1645 0.2718+0.2577
Al 0.00190.0024 0.000£0.0100 0.0950+0.0010 0.0011+0.0010 0.0530%0.0326
As 0.0003:0.0006 0.000£0.0001 0.0000+0.0000 0.0002+0.0007 0.00000.0006
Ba 0.0003:0.0100 0.000£0.0100 0.0000+0.0000 0.0000+0.0003 0.0107+0.0101
Br 0.000@:0.0003 0.000£0.0000 0.0000+0.0000 0.0008+0.0009 0.00030.0006
Ca 0.01180.0016 0.00060.0005 0.0180+0.0040 0.0040+0.0050 0.165520.1053
Cu 0.0004:0.0006 0.000£0.0001 0.00030.0003 0.0000+0.0000 0.0009+0.0007
Fe 0.0123:0.0016 0.00020.0001 0.0530+0.0060 0.0007+0.0008 0.0361+0.0202
K 0.000%0.0015 0.00040.0002 0.0092+0.0033 0.0573+0.0563 0.0052+0.0026
Mn 0.00010.0008 0.000£0.0001 0.0016+0.0007 0.0000+0.0000 0.0012+0.0011
Pb 0.0006:0.0008 0.000£0.0001 0.0001+0.0000 0.0000+0.0000 0.0006+0.0009
Sb 0.000@:0.0100 0.000£0.0100 0.0000+0.0000 0.0000+0.0001 0.0001%0.0005
Se 0.000@:0.0003 0.000£0.0001 0.0000+0.0000 0.0000+0.0000 0.00580.0083
Si 0.01210.0193 0.000£0.0100 0.2660+0.0140 0.0030+0.0032 0.1069+0.0681
Sn 0.0003:0.0100 0.000£0.0100 0.0000+0.0000 0.0000+0.0001 0.00010.0004
Ti 0.00010.0067 0.000£0.0011 0.0100+0.0010 0.0001+0.0001 0.0085+0.0052
Zn 0.009%0.0010 0.00060.0003 0.0001+0.0000 0.0003+0.0002 0.0031+0.0033
Species CEM AMSULF* AMBSLF* AMNITR* OTHEROC
SQ;? 0.31380.0837 0.727+0.036 0.835+0.042 0.000+0.000 .0040.00
NOs 0.0891x0.0734 0.0000.000 0.0000.000 0.775+0.039 .0040.00
cr 0.0712+0.1255 0.000+0.000 0.000+0.000 0.0000.000 .0040.00
NH," 0.0236x0.0187 0.273+0.014 0.156+0.008 0.225+0.011 .004D.00
EC 0.029620.0250 0.0000.000 0.000+0.000 0.000:D.00 0.000.00
ocC 0.12780.0603 0.0000.000 0.000+0.000 0.000:0.00 1.00+0.00
Al 0.0106+0.0035 0.000+0.000 0.000+0.000 0.0000.00 0.000.00
As 0.000020.0002 0.0000.000 0.0000.000 0.000:0.00 0.000.00
Ba 0.0004+0.0012 0.0000.000 0.000+0.000 0.000:0.00 0.000.00
Br 0.0011+0.0013 0.000+0.000 0.000+0.000 0.000:.00 0.000.00
Ca 0.1748+0.0526 0.000+0.000 0.000+0.000 0.000:£0.00 0.000.00
Cu 0.0002+0.0001 0.0000.000 0.000+0.000 0.000:0.00 0.000.00
Fe 0.0134+0.0052 0.000+0.000 0.000+0.000 0.000:0.00 0.000.00
K 0.1159+0.0618 0.0000.000 0.000+0.000 0.0000.000 0.000.00
Mn 0.0010+0.0004 0.000+0.000 0.000+0.000 0.000:0.00 0.00+0.00
Pb 0.0006+0.0008 0.000+0.000 0.000+0.000 0.000:0.00 0.00+0.00
Sb 0.0000+0.0003 0.000+0.000 0.000+0.000 0.000:£0.00 0.000.00
Se 0.0001+0.0000 0.000+0.000 0.0000.000 0.000£0.00 0.00+0.00
Si 0.0426x0.0219 0.000+0.000 0.000+0.000 0.000:.00 0.00+0.00
Sn 0.0001+0.0002 0.000+0.000 0.000+0.000 0.000:£0.00 0.000.00
Ti 0.00150.0007 0.000+0.000 0.000+0.000 0.0000.00 0.00+0.00
Zn 0.0041+0.0059 0.0000.000 0.000+0.000 0.000:.00 0.000.00

1- from the NFRAQS study (21)

2- from Cooper (22)
3- from Chow et al. (19)
4- based on molecular-weight fractions
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Table 3-3. Gas-to-Ppt ratios used as constraints in the optimization cgse

(mass/mass)
Source SQ@PM, 5 CO/PM g NO,/PM; 5
LDGV 4.0° 800" 83.7!
HDDV 0.71* 13.4¢ 21.9!
BURN 0.013+ 0.0004 10.1+1.1°7 0.24+ 0.06 *
CFPP 128+ 29.4° 2.1+0.7° 41.0+ 14.5°
CEM 316+ 210%* 5.3+6.5%* 270+ 34434

1- based on emission inventory data, no variahlityvided

2- based on emission inventory data; standard tlengabased on county level, therefore low
3- based on emission inventory data; standard tiengabased on plant-level, therefore higher
4- based on source-profile measurements (19)

3.4 Results

Source apportionment was performed on the SEARCHN2Ath dataset using
three different techniques. First, CMB8 (1,2) wasedy applying effective variance
weighting for least squares (EV) calculations 8)PM. scomponents only (i.e., gaseous
species were not used as fitting species). Thenutitertainties in the source profiles
were set equal to zero, and CMB8 was run agaimgusiie ordinary weighted least
square (OWLS) solution (3) (once more, without gsjaseous species in the weighing
procedure). Finally, the Lipschitz(-Continuous) db Optimizer (LGO) (15,16) was
applied to perform the OWLS solution, forcing caasits on the calculated levels of
SO, CO and N@ An LGO derived OWLS solution without forcing gpbase
constraints was similar to the CMB OWLS solutiorpplying an EV solution to LGO
and forcing gas-phase constraints turned out timdérregular, due to the rigidity of the
EV weighing function. The measures used to evalaatd individual solution achieved
were the chi-square (Equation 2), the correlatioefftcient, the fraction of total P4
mass apportioned and the calculated-to-observesrdbr the individual ratios.

However, the chi-square values from EV are not cadple with the ones achieved by
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OWLS, since the denominator in its formula is diiet. Therefore, as a convenient
uniform measure of the quality of the fit, we alsalculated daily values for the

normalized-mean-square-error (NMSE), given as:

(3.4)

The NMSE has a range oKRMSE<wx, 0 meaning perfect agreement in value
between modeled and ambient values. A NMSE valug ®fepresents a factor of two,
on the average, between the two sets of data.

The average source-contributions, based on theee2ii month dataset (average
of 762 daily values) and using these three teclasgindicate that a major part of the
ambient PM5 is of secondary origin (Figure 3-1; Table 3-4. Tdpportionment of the
primary pollutants differed among the three tecbagjused. The CMB8 EV solution
apportioned 3.4ug/m® to mobile sources, with a diesel-to-gasoline raifo0.97. A
slightly lower contribution was apportioned to mlelsources using the OWLS solution
(3.3 pg/m®), with a similar diesel-to-gasoline ratio. The LQ@sed mobile source
contribution was slightly lower (3.@g/m’), with a higher diesel-to-gasoline ratio (1.53).
This lower gasoline-vehicle contribution is alsoident in the lower calculated-to-
observed ratio for CO based on the LGO solutiommared to the EV and OWLS
solutions (all over predicted). Another notabldeatiénce between the three solutions was

the amount of PMs attributed to power-plants. CMB8-EV estimated tbattribution at
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0.29 pg/m®, CMB-OWLS at 0.62ug/m°, while LGO estimated the contribution at 0.15
ug/m>. These differences are also evident in the caleditn-observed ratios for SO
which are significantly overpredicted in the EV a@WLS solutions. The amount
attributed to vegetative burning was fairly similarthe EV and OWLS solutions (1.9
and 2.0ug/m® respectively), significantly higher than in the @Golution (1.1ug/m®).
Potassium, a marker for vegetative burning, is pnesficted in the EV and OWLS
solutions (calculated-to-observed ratios of 2.2y hetter predicted in the LGO solution
(ratio of 1.2). Differences were also notices ie thgitive soil dust contributions. The
amount attributed to the “Other OC” category wasdoin the two CMB applications
compared to the LGO solution, most likely due temgstimation of the OC contribution
from gasoline vehicles and vegetative burning.

Interesting to note that all three solutions ararabterized by high correlation
coefficients for the fit obtained (0.97-0.99), gaodss closure (91-93 %), and calculated-
to-observed ratios nearing one for the major,BRomponents. In the EV solution, the
average chi-square value, and most individual &llied within the acceptable range
(<4) (1,2). The chi-square values based on the OWh8 LGO solutions are not
comparable to that of the EV solution. The chi-squbased on the LGO solution is
significantly higher than in the OWLS solution, areflects the “penalty” of bounding
acceptable solutions based on the gas phase spdoigsver, the correlation coefficient
is higher, and the overall and trace-metal basedSEMalues are lower for the LGO
solution compared to the OWLS solution.

To address the sensitivity of the solution obtairiedthe factor used as a

constraint for the gas phase species, we also ctelthe same analysis using a factor of
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two (instead of three). Results obtained were gedentical, with mass contributions

differing by less than 7% for most sources. Theamdjfference observed was for the

average LDGV contribution, 0.ag/m® (18%). The source cross correlations between

=0.62,

these two sets of solution were higher than 0.92llcsources but cement kilns (R

but mass contribution being extremely low).
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Figure 3-1. Source-contributions to PMevels at JST site, Atlanta, GA, using CMB8

EV solution, CMB8 OWLS solution and LGO
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Table 3-4. Average and standard deviation of th@c@contributions to Pl levels
measured at JST site, Atlanta, GA, using CMBS8-EW/BB-OWLS and LGO. Also
reported are the correlation (R), NMSE, % total snashi-square and calculated-to-
observed ratios

CMBS8-EV CMB8-OWLS LGO
Mean (StDev) Mean (StDev) Mean (StDev)
R! 0.9734 (0.0298) 0.9661 (0.0357) 0.9879 (0.0324)
NMSE PMs* 0.161 (0.362) 0.0327 (0.131) 0.026 (0.096)
NMSE metals 0.801 (0.966) 0.714 (0.901) 0.249 (0.346)
% total mas$ 93.4 (18.2) 93.1 (18.7) 90.5 (17.4)
Chi-squaré 3.16 (3.47) 4.475 (6.447) 20.3 (16.8)
LDGV (ug/nt) 1.72 (1.61) 1.68 (1.55) 1.28 (0.90)
HDDV (ug/n?) 1.66 (1.53) 1.62 (1.52) 1.96 (1.63)
SDUST (ug/nt) 0.55 (0.61) 0.28 (0.45) 0.39 (0.48)
BURN (ug/nt) 1.90 (1.29) 2.01 (1.50) 1.13 (0.69)
CFPP(ug/n?) 0.29 (0.48) 0.62 (0.74) 0.15 (0.12)
CEM (ug/nt) 0.006 (0.04) 0.012 (0.08) 0.004 (0.02)
AMSULF (ug/n?) 7.23 (5.20) 7.19 (5.17) 7.03 (5.12)
AMBSLF (ug/m) 0.54 (1.30) 0.50 (1.28) 0.64 (1.46)
AMNITR (ug/n?) 1.57 (1.25) 1.55 (1.25) 1.60 (1.34)
OTHEROC (pg/n?) 1.86 (1.55) 1.76 (1.50) 2.59 (1.64)
SO,” ratio” 1.16 (0.47) 1.10 (0.12) 1.07 (0.07)
NO; ratio® 1.25 (1.02) 1.14 (0.75) 1.18 (0.87)
Cl ratio® 1.81 (1.49) 1.85 (1.36) 1.06 (0.63)
NH," ratio® 0.93 (0.38) 0.89 (0.14) 0.88 (0.15)
EC ratio® 1.09 (0.78) 0.97 (0.14) 0.98 (0.13)
OC ratio® 1.06 (0.51) 1.01 (0.19) 1.00 (0.03)
Al ratio >° 7.82 (6.37) 6.64 (5.11) 4.67 (2.81)
As ratio® 0.53(0.47) 0.55 (0.51) 0.32 (0.25)
Ba ratio® 0.18 (0.28) 0.38 (0.45) 0.10 (0.08)
Br ratio® 0.68 (0.92) 0.68 (0.84) 0.39 (0.38)
Ca ratio® 1.87 (1.48) 2.92 (2.60) 1.15 (0.34)
Cu ratio® 0.59 (0.57) 0.60 (0.52) 0.42 (0.39)
Fe ratio® 0.84 (0.66) 0.73(0.38) 0.55 (0.17)
K ratio” 2.23(1.72) 2.20 (1.55) 1.19 (0.49)
Mn ratio® 1.06 (1.08) 0.94 (0.88) 0.69 (0.58)
Pb ratio® 0.37 (0.38) 0.36 (0.36) 0.27 (0.23)
Sb ratio® 0.02 (0.02) 0.03 (0.03) 0.01 (0.01)
Se ratio’ 1.99 (4.05) 4.66 (7.72) 1.11 (1.20)
Si ratio® 2.18 (1.54) 1.64 (0.77) 1.28 (0.12)
Sn ratio® 0.02 (0.02) 0.02 (0.02) 0.01 (0.00)
Ti ratio® 2.12 (1.59) 2.01 (1.57) 1.27 (0.70)
Zn ratio® 1.42 (1.95) 1.22 (0.73) 1.01 (0.35)
SO, ratio>® 4.37 (8.73) 8.24 (23.4) 1.99 (0.97)
CO ratio™® 3.18 (3.43) 3.07 (3.56) 2.06 (0.83)
NO, ratio>® 2.11 (1.83) 2.07 (1.51) 1.58 (0.66)
1- calculated based on all Blicomponents
2- calculated based on trace metals only
3- % of apportioned mass to total PM
4- chi-square is not comparable for the EV casethadwo OWLS cases, as the denominator in its ddaris different
5- ratio of apportioned mass to ambient level (igegould approach 1 for all species)
6- not used as a fitting species
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To analyze the driving forces in the apportionmprdcess, we calculated the
correlations between the daily contributions of ¥aeious sources and the daily ambient
levels of the different species. These correlatighyalues, Table 5) indicate which are
the species most highly correlated with each sowategory, therefore driving the
apportionment. This is done on the entire datas®topposed to the transpose of the
normalized modified pseudo-inverse matrix (MPIN), (@hich indicates the degree of
influence each species concentration has on theilootion, on a case by case basis.
Note that the correlations used here are not nizedl hence the species with the
highest correlations are considered the ones miygential, even if the actual correlation
is somewhat low. The following is stated basedr@sé correlations:

LDGV: The LDGV contribution based on the CMB-EV solutis correlated mainly
with Zn, OC and EC. A low correlation with CO an®s observed in the EV solution.
The OWLS solution showed a fairly similar pattesth slightly higher correlations with
CO and NQ, and a fairly high correlation with Pb. HowevengtLGO solution was
highly correlated with CO and NQalong with much of the same PM species as the EV
and OWLS solutions.

HDDV: The HDDV contribution generated by all three sedapportionment techniques
used here was most correlated with EC, which is riegor component of diesel
emissions. Stronger correlations with EC were oleserin the OWLS and LGO
solutions. Correlation with NOwas the highest in the LGO solution. Such a catiah

is expected as NCemissions from diesel vehicles, on a per-mile famie higher than

from gasoline vehicles (25,26).
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BURN: The vegetative burning contribution from the EX{daOWLS solution was
correlated with chlorine, potassium, EC, OC andnbne. The LGO solution was
correlated with the same species but bromine. Dnelation with potassium was much
higher in the LGO solution (0.62), compared to EM and OWLS solutions (0.37 and
0.43 respectively).

SDUST: Soil-dust is characterized by a high abundancerudtal elements, such as Al,
Ca, Fe, Si and Ti. Results from the all three sohst are correlated with these elements.
However, the EV solution is most correlated with &ed to a degree with Si, Ti and Mn,
while the OWLS and LGO solutions are correlatedntyawith Si, Al, Ti and Fe. As
expected, low correlations with the gaseous spewiese found. However, the EV
solution seems to have picked a contribution aasediwith motor vehicles (possibly
resuspended paved road dust), as it is somewhalated with EC and CO, as opposed
to the OWLS and LGO solutions.

CFPP: The EV-generated power-plant contribution is nyosorrelated with Cu, S§F,
Ca, and to a degree with Se and Fe. The OWLS saligimostly correlated with Cu, Fe
and Mn. Both these solutions show no correlatiothv8Q, and the OWLS solution
shows a correlation with CO and MGOndicative of mobile sources. The LGO solution,
however, is mostly correlated with Ca, Se angd.S2 is a unique marker for coal-fired
power plant emissions (2). The LGO solution, beingelated with both Se and Qs
likely truly indicative of power plants.

CEM: It is difficult to evaluate the driving speciax the cement kiln contribution, as it
is very low. Non-zero contributions were generatednly 33, 36 and 65 cases (out of

762 cases), using EV, OWLS and LGO respectivelyzeHaon this limited data, the EV
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solution was mainly correlated with Ca; the OWLSuson with Br; and the LGO
solution with Ca and the NO

OTHEROC: The other OC category includes any OC not apmoetl to one of the
previous categories. If most of the primary OC wasounted for, this category would
include mainly secondary OC. Since EC and OC ofteswre the same sources (25), a
high correlation of the OTHEROC category with ertieC or OC would indicate a
primary OC contribution. A good reference pointhge correlation between OC and EC
in the ambient data, which is 0.82. The correlaibetween EC and the contributions to
the OTHEROC category are lower: 0.44, 0.60 and @o83he EV, OWLS and LGO
solutions, respectively. This indicates a secondeoynponent in the OTHEROC
category. These values, along with the correlatioita OC and the magnitude of the
contribution, suggest that LGO solution includesrenprimary OC than the EV and
OWLS solutions. This is likely due to an over estiron of the mobile-source
contribution by both EV and OWLS, leaving less O€ lie apportioned to the
OTHEROC category. This does mean, however, thaetlsean unexplained source of
OC in the LGO solution. One likely source would teeat charbroiling, which as
previously mentioned, emits almost solely OC, asdcharacterized by low gas-to-
particle ratios. For this reason, it is difficulb distinguish meat charbroiling from
secondary OC formation using either CMB (withougasic markers) or this application
of LGO. An organic marker, such as cholesterohgsded to identify and quantify meat-

charbroiling emissions.
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AMSULF, AMBSLF, AMNITR: These secondary “sources” were all correlated with
their major components, and low correlations wiisepus pollutants were observed, for

all three cases.

To further illustrate the differences between thg BWLS and LGO solutions,
we also calculated source inter-correlations ushege three solutions (Table 6). The
diagonal terms in these matrices indicate thatciatributions of ammonium-sulfate,
ammonium-bisulfate, and ammonium-nitrate are faigynilar in all three cases.
However, major differences are observed for then@ry source categories. The EV and
OWLS gasoline vehicle contribution is significanttjfferent than the LGO LDGV
contribution, as shown by the low correlations. Tdd#ferences in the HDDV
contributions are more subtle. Another major ddfexre is observed in the CFPP
contribution: The OWLS CFPP contribution is corteth more with the LDGV
contribution from LGO than the corresponding CFPéhtgbutions, likely due to

collinearity.
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Table 3-5. Correlations (R) between source-contioins and ambient-levels of fitting

species
LDGV HDDV BURN
CMB EV CMBOWLS LGO CMB EV CMBOWLS LGO CMBEV CMBOWLS LGO

SO, 0.03 0.01 0.04 0.22 0.22 0.21 0.10 0.07 0.14
NOs 0.22 0.31 0.30 0.14 0.18 0.19 0.15 0.23 0.33
cr 0.16 0.17 0.09 0.05 0.04 0.11 035 0.45 0.52
NH,* 0.08 0.05 0.04 0.27 0.25 0.26 0.22 0.23 0.18
EC 0.42 0.53 0.39 0.69 0.94 0.96 0.34 0.43 0.41

oc 0.45 0.55 0.45 0.53 0.68 0.74 0.35 0.49 0.49

Al 0.00 0.04 0.07 0.05 0.09 0.08 0.03 0.04 0.13
As 0.26 0.32 0.27 0.21 0.23 0.29 0.30 0.42 0.29
Ba -0.01 0.01 0.03 0.09 0.13 0.10 0.04 0.05 0.10

Br 0.13 0.15 0.13 0.35 0.34 0.17 0.8 0.41 0.14

Ca 0.24 0.30 0.39 0.25 0.34 0.32 0.17 0.19 0.19
Cu 0.38 0.50 0.36 0.25 0.30 0.38 0.22 0.38 0.29

Fe 0.36 0.46 0.40 0.45 0.56 0.60 0.24 0.34 0.33

K 0.23 0.27 0.22 0.24 0.30 0.35 0.37 0.43 0.62

Mn 0.41 0.51 0.36 0.41 0.53 0.58 0.24 0.34 0.32

Pb 0.42 0.65 0.34 0.19 0.22 0.33 0.18 0.32 0.33
Sh 0.06 0.06 0.06 0.06 0.11 0.07 0.25 0.26 0.00
Se 0.13 0.17 0.13 0.34 0.38 0.41 0.23 0.27 0.17

Si 0.12 0.17 0.20 0.22 0.27 0.27 0.12 0.16 0.22
Sn 0.16 0.21 0.16 0.13 0.14 0.14 0.08 0.13 0.11

Ti 0.14 0.18 0.18 0.27 0.35 0.37 0.19 0.25 0.29
Zn 0.58 0.86 0.46 0.31 0.38 0.42 0.20 0.37 0.33
SO, 0.18 0.23 0.25 0.21 0.31 0.33 0.17 0.20 0.20
co 0.31 0.36 0.74 0.23 0.37 0.32 0.15 0.25 0.24
NO, 0.31 0.40 0.66 0.28 0.42 0.45 0.19 0.29 0.25

SDUST CFPP CEM
CMB EV CMBOWLS LGO CMB EV CMBOWLS LGO CMB EV CMBOWLS LGO

SO, 0.20 0.17 024 043 0.28 0.28 -0.11 0.15 0.02
NOs 0.01 -0.09 -0.09 0.07 0.17 0.14 0.29 0.37 0.04
cr 0.02 -0.01 -0.01 0.01 0.10 0.08 -0.08 0.15 -0.18
NH,* 0.29 0.21 0.28 0.43 0.33 0.24 -0.12 0.10 -0.06
EC 0.40 0.21 025 034 0.54 0.42 -0.15 0.06 0.13
ocC 0.33 0.13 019 027 0.48 0.38 -0.13 0.17 0.17

Al 0.29 0.91 0.87 0.03 0.13 0.09 0.09 -0.09 -0.13
As 0.16 0.05 0.05 0.07 0.23 0.18 0.24 0.46 0.23
Ba 0.11 0.21 0.22 0.23 0.25 0.12 -0.04 -0.08 0.12

Br 0.24 0.04 0.01 0.10 0.16 0.12 0.01 058 0.11

Ca 0.33 0.62 057 043 0.46 0.56 0.44 0.37 0.56

Cu 0.37 0.31 0.24 0.46 0.74 0.21 0.24 0.14 -0.03

Fe 0.57 0.76 0.77 0.36 0.62 0.40 0.18 0.28 0.05

K 0.30 0.42 0.29 0.17 0.34 0.17 -0.15 0.05 -0.05
Mn 0.46 0.53 0.53 0.33 0.61 0.33 0.18 0.23 -0.05

Pb 0.24 0.07 0.06 0.13 0.49 0.11 -0.07 0.18 0.16
Sb 0.05 0.00 -0.01 0.08 0.13 0.08 -0.28 0.04 0.11
Se 0.15 0.12 0.15 036 0.29 0.50 0.12 -0.01 0.24

Si 0.48 0.95 0.99 0.22 0.34 0.28 0.22 0.07 0.02
Sn 0.08 0.06 0.12 0.02 0.21 0.05 -0.07 0.12 0.15

Ti 0.44 0.83 0.84 0.27 0.43 0.27 0.05 0.06 -0.13
Zn 0.29 0.08 0.12 0.14 0.50 0.27 0.29 0.24 0.25
SO, 0.09 -0.03 -0.03 0.11 0.21 0.45 0.18 -0.12 0.25
co 0.23 0.11 0.14 0.17 0.43 0.19 0.11 0.06 0.18
NO, 0.20 0.04 0.07 0.16 0.41 0.31 0.14 0.11 0.40
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Table 3-5 (cont.). Correlations (R) between sowmstributions and ambient-levels of
fitting species

AMSULF AMBSULF AMNITR

CMBEV CMBOWLS |GO CMBEV CMBOWLS |[|GO CMBEV CMBOWLS LGO
SQ,? 0.85 0.94 0.93 0.46 0.52 0.54 0.04 0.05 0.06
NO5 -0.06 -0.01 -0.01 -0.01 0.04 0.05 0.68 0.87 0.82
cr 0.04 0.07 0.07 -0.05 0.03 0.05 0.22 0.30 0.26
NH," 0.85 0.95 0.94 0.29 0.36 0.40 0.08 0.11 0.11
EC 0.16 0.22 0.22 -0.07 0.03 0.00 0.17 0.22 0.21
ocC 0.22 0.28 0.28 0.01 0.09 0.06 0.20 0.23 0.23
Al 0.00 0.03 0.03 0.09 0.15 0.09 -0.04 -0.03 -0.04
As -0.02 0.00 0.00 -0.06 -0.01 -0.02 0.10 0.14 0.14
Ba 0.14 0.18 0.18 0.09 0.06 0.01 0.01 0.02 0.02
Br -0.02 0.01 0.01 0.00 0.07 0.09 0.08 0.09 0.09
Ca 0.24 0.30 0.30 0.07 0.16 0.17 0.04 0.06 0.05
Cu 0.07 0.10 0.10 -0.02 0.06 -0.02 0.08 0.12 0.11
Fe 0.20 0.27 0.27 0.04 0.14 0.08 0.07 0.12 0.10
K 0.12 0.15 0.15 0.04 0.09 0.04 0.09 0.10 0.11
Mn 0.17 0.23 0.23 0.01 0.07 0.02 0.13 0.18 0.16
Pb -0.05 -0.03 -0.02 -0.05 0.05 -0.04 0.14 0.22 00.2
Sb -0.06 -0.05 -0.04 -0.07 0.02 -0.01 -0.01 0.01  o010.
Se 0.32 0.37 0.37 0.14 0.18 0.23 0.12 0.12 0.12
Si 0.23 0.28 0.28 0.22 0.25 0.23 -0.04 -0.04 -0.05
Sn 0.01 0.03 0.03 0.07 0.09 0.03 0.10 0.08 0.07
Ti 0.25 0.31 0.30 0.11 0.28 0.22 -0.03 -0.01 -0.01
Zn 0.01 0.04 0.05 -0.07 -0.03 -0.06 0.16 0.19 0.17
SO, -0.12 -0.08 -0.08 -0.08 0.00 -0.02 0.16 0.18 0.18
co -0.03 0.00 0.00 -0.05 -0.02 -0.01 0.13 0.15 0.16
NO, -0.10 -0.07 -0.07 -0.09 -0.05 -0.06 0.18 0.22 0.21

OTHER OC

CMBEV CMBOWLS LGO
Yok 0.22 0.23 0.29
NO5 0.08 0.08 0.14
cr 0.05 -0.01 0.08
NH,* 0.25 0.23 0.29
EC 0.44 0.60 0.65
ocC 0.63 0.81 0.92
Al -0.03 0.00 -0.04
As 0.12 0.15 0.27
Ba 0.06 0.12 0.10
Br 0.29 0.30 0.14
Ca 0.15 0.20 0.21
Cu 0.30 0.28 0.32
Fe 0.32 0.36 0.37
K 0.33 0.45 0.36
Mn 0.24 0.23 0.34
Pb 0.25 0.25 0.35
Sb 0.03 0.07 0.07
Se 0.09 0.12 0.24
Si 0.15 0.21 0.16
Sn 0.09 0.11 0.12
Ti 0.17 0.23 0.21
Zn 0.27 0.24 0.39
SO, 0.08 0.12 0.24
co 0.24 0.27 0.24
NO, 0.19 0.26 0.29
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Table 3-6. Source inter-correlations (R) using CMB8 CMB8-OWLS and LGO

EV
LDGV HDDV SDUST BURN CFPP CEM AMSULF AMBSLF AMNITR OTHROC
LDGV 0.64 0.30 0.31 0.22 0.14 0.23 -0.03 -0.05 0.19 0.25
HDDV 0.26 0.69 0.33 0.21 0.34 -0.20 0.16 -0.10 0.12 0.39
SDUST 0.00 0.13 0.42 0.08 0.15 -0.10 0.16 0.25 -0.08 0.07
0 BURN 0.37 0.26 0.28 0.69 0.17 -0.08 0.07 -0.06 0.15 0.21
I~ CFPP 0.41 0.40 0.41 0.28 0.65 0.15 0.25 -0.09 0.13 0.24
% CEM 0.29 0.24 0.32 0.21 0.00 0.81 0.11 0.25 0.31 0.61
AMSULF 0.04 0.25 0.26 0.15 0.46 -0.14 0.90 0.19 -0.01 0.22
AMBSLF -0.03 0.00 0.16 -0.05 0.02 0.13 0.22 0.91 0.01 0.10
AMNITR 0.18 0.12 0.01 0.11 0.06 0.18 -0.04 0.01 0.77 0.10
OTHROC 0.16 0.44 0.16 0.15 0.17 -0.29 0.17 0.05 0.08 0.68
LGO
LDGV HDDV SDUST BURN CFPP CEM AMSULF AMBSLF AMNITR OTHROC
LDGV 0.44 0.36 0.07 0.30 0.16 0.15 0.04 -0.02 0.16 0.32
HDDV 0.17 0.74 0.19 0.28 0.31 0.19 0.25 0.00 0.11 0.45
SDUST 0.23 0.38 0.47 0.23 0.16 -0.03 0.26 0.08 0.00 0.23
BURN 0.16 0.32 0.10 0.46 0.16 0.07 0.14 0.04 0.11 0.24
> CFPP 0.14 0.33 0.20 0.13 0.37 0.31 0.46 0.02 0.06 0.21
w CEM 0.18 -0.23 0.20 -0.06 0.25 1.00 -0.14 0.22 0.16 -0.23
AMSULF -0.01 0.16 0.23 0.07 0.21 -0.05 0.89 0.27 -0.03 0.22
AMBSLF -0.03 -0.09 0.22 0.00 0.02 0.24 0.18 0.86 0.00 0.04
AMNITR 0.20 0.12 -0.07 0.24 0.06 -0.05 -0.01 0.05 0.76 0.13
OTHROC 0.18 0.43 0.13 0.26 0.17 0.35 0.21 0.09 0.09  0.66
LGO
LDGV HDDV SDUST BURN CFPP CEM AMSULF AMBSLF AMNITR OTHROC
LDGV 0.54 0.45 0.11 0.33 0.25 0.20 0.01 -0.03 0.24 0.40
HDDV 0.24 0.93 0.23 0.29 0.40 0.13 0.23 0.01 0.17 0.58
SDUST 0.08 0.18 0.96 0.16 0.16 -0.02 0.20 0.19 -0.08 0.06
0 BURN 0.26 0.40 0.13 0.59 0.16 0.12 0.12 0.02 0.16 0.34
~ CFPP 0.43 0.51 0.31 0.31 037 0.00 0.32 -0.08 0.17 0.33
% CEM 0.06 0.11 0.09 0.29 0.13 0.30 0.11 0.45 0.35 0.08
AMSULF 0.02 0.23 0.28 0.13 0.26 -0.02 099 0.27 0.00 0.28
AMBSLF -0.02 0.02 0.24 0.09 0.13 0.51 0.20 0.95 0.05 0.14
AMNITR 0.25 0.19 -0.07 0.27 0.10 0.03 -0.02 0.09 097 0.16
OTHROC 0.18 0.58 0.18 0.24 0.21 0.31 0.20 0.08 0.12 0.88

Results from the LGO solution (based on inorganarkars and inorganic gases) were

also compared with results from an organic-markergce apportionment study (4) and

the five county Atlanta metropolitan area emissiomgntory (24) (Table 7). In the

Zheng et al. study (4), average monthly contrimgi®co PM s were calculated for the

months of April, July, August, October of 1999, alahuary 2002, for the JST site, and

are averaged here. Source categories included warsel exhaust; gasoline exhaust;

vegetative detritus; meat cooking; road dust; wammbustion; and natural gas

combustion. Both the LGO solution and the Zhengakt (4) results indicate the

dominance of contributions from mobile sources wmpry PM s levels, but the

magnitude is somewhat different (66% and 58%, mspdy). The split between
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gasoline and diesel vehicles also was differentiesel-to-gasoline ratio of 1.5 using
LGO and 6.7 using organic tracers. For comparisioa,diesel-to-gasoline ratio in the
emissions inventory for the five-county Atlanta nopblitan area is 3.0 (22). Other
differences were the somewhat lower vegetative ibgrrcontribution using LGO

compared to organic markers (23% and 30%), theehiglGO soil dust contribution

(7.9% compared to 2.5%), and the meat-charbroitogtribution identified by the

organic markers study (6.4%). The LGO solution gateel a higher “secondary/other
OC” contribution compared to the organic markedgt(not presented in Table 7), which
may include meat cooking emissions (characterizewst solely by OC emissions). In
contrast to the receptor model results, the emissiaventory is dominated by area
sources other than soil dust and wood combustid#o(df total PM s emissions). Wood

combustion and road dust are the next two majorcesuin the inventory (15% each),
followed by diesel and gasoline engines (11.5% 2u986 respectively). The road dust
emissions seem to be over estimated, as shown éyeteptor model results and
measured levels of crustal species. Incorporatirginpinary data on emissions from
meat charbroiling (27) into the inventory suggehltsse emissions contribute 5% of total
PM, s emissions (not formally reported in the inventa?y). Given the dominance of
“other” area sources (waste disposal treatmengvesy and incineration; industrial olil

and gas production; agriculture production; otlmmrses) in the emissions inventory, it is
difficult to compare the inventory to the sourceagtionment results directly. It seems
that the “other” area source category is over egtah as four different sets of source
apportionment results presented here (CMB EV, CMBLS, LGO and the Zheng et al.

study from 2002) indicate to the dominance of dbaotrons from diesel and gasoline
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engines to primary Ppk levels (58-66% of Pl emissions, compared to 15% in the
inventory). The contributions of coal-fired powdamts and cement kilns, as indicated by

the inventory, are relatively small, similar todings from the LGO solution.

Table 3-7. Comparison between percent contributtongrimary PM s levels based on
LGO, organic-marker CMB (4), and the five-countyahtta metropolitan area emissions
inventory (24). The Zheng et al. results (4) wereraged to represent a yearly pattern by
weighting July and August results as “summer”, @etoas “fall’, January as “winter”
and April as “spring”. Cooking emissions reporteeréh are based on a preliminary
estimate (27), and are not reported in the invgn@4). Inventoried emissions are given
with and without “other” sources for more direchgearison.

CMB using organic tracers Five county Atlanta metro

Source category (% contribution) LGO @) emissions inventory
(with / without “other” sources)
Gasoline engines 26.0 7.5 39/7.6
Diesel engines 39.9 50.3 115/22
Fugitive soil dust 7.9 25 15.1/39
Vegetative burning/
Wood combustion 23.0 29.7 15.1/29
Coal-fired power plants 3.1 - 0.8/15
Cement kilns 0.1 - 0.3/04
Meat charbroiling - 6.4 5.0/9%
Vegetative detritus - 2.7 -
Natural gas combustion - 1.0 -
Other area sourcés - - 43.9
Other point sources - - 2.7
Other non-road sourcés - - 1.8

- other than soil dust and wood combustion

- other than coal-fired power plants and cemenstki

- other than gasoline and diesel engines

- based on a preliminary estimate by Baek e28) (

- A large fraction of the fugitive dust emissiare expected to be removed locally

OO WNEF
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CHAPTER 4
OPTIMIZED VARIABLE SOURCE-PROFILE APPROACH FOR

SOURCE APPORTIONMENT

(A. Marmur, J.A. Mulholland, and A.G. Russeltmospheric Environmenin press)

Abstract

An expanded Chemical Mass Balance (CMB) approaah bl s source
apportionment is presented in which both the losalurce compositions and
corresponding contributions are determined from iantbmeasurements and initial
estimates of source compositions using a globafrpation mechanism. Such an
approach can serve as an alternative to using fereci@ed (measured) source profiles,
as traditionally used in CMB applications, whicle arot always representative of the
region and/or time period of interest. Constraibésed on ranges of typical source
profiles are used to ensure that the compositidastified are representative of sources
and are less ambiguous than the factors/sourcetifidd by typical Factor Analysis
(FA) techniques. Gas-phase data {SOO and N@) are also used, as these data can
assist in identifying sources. Impacts of identifisources are then quantified by
minimizing the weighted-error between apportioned aneasured levels of the fitting
species. This technique was applied to a datas€tVbfs measurements at the former
Atlanta Supersite (Jefferson Street site), to apporPM,s mass into nine source

categories. Good agreement is found when thesees@upacts are compared with those
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derived based on measured source profiles as wehase derived using a current FA
technique, Positive Matrix Factorization. The preged method can be used to assess the
representativeness of measured source-profilest@relp identify those profiles that
may be in significant error, as well as to quantifgcertainties in source-impact

estimates, due in part to uncertainties in souorepositions.

Keywords: CMB-LGO, optimization, source-apportiommd®M: 5, PMF, health-study.

4.1 Background
Chemical Mass Balance (CMB) receptor models areomnwon tool for
apportioning ambient levels of pollutants (mainlgriculate matter) among the major
contributing sources. CMB combines the chemical giysical characteristics of
particles or gases measured at sources and resdptquantify the source contributions
to the receptor. Quantification is based on theitgsm to a set of linear equations that
express each receptor's ambient chemical concemtras a linear sum of products of
source-profile fractions and source contributiodS{EPA, 2004a; US-EPA, 2004b), as

expressed by:
Ci = z fij Sj +€ (4'1)
j=1

where:
C; = ambient concentration of chemical speti@sy/m®);
fij = fraction of speciesin emissions from sourge

S = contribution (source-strength) of soujdpg/m’);
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n = total number of sources;

€ = error term.

Source profile fractionsfi) and the receptor concentratiorns;)( along with
uncertainty estimates, serve as input data to thH @nodel. Results consist of the
contribution of each source categor§) (to the measured concentration of different
species at the receptor. A frequent source of taogy in the implementation of CMB is
the choice of source profiles used as input. Tiee wide variety of source profiles in
the literature, but these are not always represeataf the region and/or time of interest.
Some examples of this are as follows: soil (dusgmgosition often varies
geographically; emission composition from biomasmig is dependent on the type of
vegetation or wood burned (e.g. agriculture burniagft or hard wood residential
combustion); emissions from coal-fired power planesy vary depending on the types of
coal used; mobile source emissions can vary fragioreto region and temporally due to
different fuels, fleet composition, or driving cotons. To date, the most common
approach to addressing this variability has beensétect profiles that are most
representative of the region and time period oéredt from those that are available. In
many cases, however, specific profiles are notlabi@. Moreover, a profile derived
from any one source at one time may not be reptatses due to variability in time and
space. Due to these reasons, Factor Analysis (E#)niques have been developed
(Hopke, 1988; Paatero and Tapper, 1994) and aen dpplied to characterize and
guantify the sources contributing to ambient patéite matter levels (Kim et al., 2003;

Kim et al., 2004a; Kim et al., 2004b; Maykut et 2003). FA models do not require the
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use of predetermined source profiles, but resuésoften difficult to interpret as factors
do not necessarily represent specific sources f@diand Pandis, 1998). The underlying
assumption in all FA models is that the chemicahposition of ambient particulate
samples includes information about the fingerproftthe sources affecting the receptor,
and that this information can be used to derivesih@ce compositions. The procedure
for characterizing these sources (or factors) setiaon correlations between ambient
levels of the different species, a high correlatindicating that the species share a
common source (Seinfeld and Pandis, 1998). Oneh@fnmiore commonly used FA
methods in recent years is Positive Matrix Facaimn (PMF) (Paatero and Tapper,
1994). In PMF, factors are constrained to have megativef;;'s, and no sample can have
a negative source contribution. Application of Pkéguires that error estimates for the
data be chosen judiciously so that the estimatiésctehe quality and reliability of each
of the data points. A critical step in PMF analyisishe determination of the number of

factors (Paatero, 2004).

4.2 Methods

4.2.1 CMB model expansion to include variable sour ce compositions

This study combines concepts from FA and CMB aptilimis to calculate source
contributions to ambient PM without relying solely on emissions compositiondsés
or on interpretation of factors obtained by FA asirses. The technique is based on
solving the same set of equations used in CMB niogl€Equation 4-1), but instead of
using predetermined source profiles, ranges fdemint fractions in source-indicative

profiles are used as input. The model then optismithe fractions of different species
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within each profile by minimizing residual masspgct to several constraints. Lower
and upper bounds for the fractions of species @énvtrious source profiles are set based
on knowledge of typical compositions of various reaes. Instead of deriving the
contributing factors by FA, and then identifyingit@rpreting) them as sources based on
knowledge of typical composition, this informatiemused beforehand to constrain the
model while searching for the best combinationafrses to describe the ambient levels
of PM,s The choice of source categories to include likewis made beforehand, in
contrast to FA.

As a basis for setting the constraints for thetfoms of various species in the
source profiles, suggested values are taken frothanvalidation protocol for CMB8.2

(US-EPA, 2004b) (Table 4-1).

Table 4-1. Chemicals from patrticles in differentigsions sources (US-EPA, 1998)

Dominant Chemical fractions
Source Type . .
Particle Size <0.001 0.001- 0.01 0.01-0.1 >0.1
Motor vehicles Fine Cr,Ni, Y NH, Si, Cl, | CI, NOy, SO/ OC, EC
Al, Si, P, Ca, 2 NH,", S
Mn, Fe, Zn, Br,
Pb
Vegetative Fine Ca, Mn, Fe, Zn,| NOj, SQ7, ClI K*, Cl, K OC, EC
burning Br, Rb, Pb NH,, N&’, S
Coal-fired Fine Cl, Cr, Mn, Ga,| NH,", P, K, Ti, | SO, OC, EC, Si
boiler As, Se, Br, Rb, | V, Ni, Zn, Sr, Al, S, Ca, Fe
Zr Ba, Pb
Road dust Course NONH,", P, | SO Na', K*, | EC, OC, Al, K, OC, Si
Zn, Sr, Ba P, S, Cl, Mn, Ca, Fe
Ba, Ti

These bounds on the abundance of species werd\shgbdified (Table 4-2) and

several additional constraints were added to bekiaracterize the different sources.
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Table 4-2: Lower and upper bounds for chemicaltioas of total PM s mass emitted in

source profiles
Gasoline vehicles Diesel vehicles Road dust Vegetative burning Coal power plants
Species (GV) (DV) (DUST) (BURN) (CFPP)
lower upper lower upper lower uppe lowe| upp8§r dow| upper
EC 0.05 1 0.4 1 0 0.01 0.01 0.3 0.01 0.1
oC 0.3 1 0.1 1 0.01 0.1 0.3 1 0.01 0.3
SO, 0.01 0.1 0.01 0.1 10 0.01 10° 0.01 0.01 0.3
NOs 0.01 0.1 0.01 0.1 0 10 10° 0.01 0 0
Cl- 0.01 0.1 0.01 0.1 10° 0.01 0.01 0.1 0 0.01
NH," 10° 0.01 10° 0.01 0 10 10° 0.01 10° 0.01
Al 10° 0.05 10" 10° 0.01 0.2 0 0 0.01 0.1
As 0 0 0 0 0 0 0 0 0 10
Ba 0 0 0 0 10 0.01 0 0 10 0.01
Br 10* 0.01 10 10° 0 0 0 10° 0 10°
Ca 10° 0.05 10" 10° 0.01 0.2 0 19 0.01 0.2
Fe 10° 0.05 10° 10° 0.01 0.2 0 18 0.01 0.1
K 0 10° 0 10* 0.01 0.1 0.01 0.1 10 0.01
Mn 10* 0.01 10 10° 10° 0.05 0 10 0 0.005
Pb 0 10° 0 10° 0 0 0 10 0 0.01
Se 0 0 0 0 0 0 0 0 10 0.01
Si 10° 0.05 10" 0.01 0.1 1 0 0 0.05 0.2
Ti 0 0 0 0 10 0.05 0 0 10 0.01
Zn 10° 0.02 10° 10° 0 10° 0 10° 10° 0.01
Sunxl; Sunxl,; Sunxl,; Sunxl,; Sunxl,;
Additional OC/ECT; OC/ET,; Sum metal oxidesl OC/EC3; Sum metal oxidesl;
constraints TC>0.5; TC>0.5; TC>0.5;
OM/OC>1.4 OM/OC>1.4 OM/OC>1.4

Emissions from light-duty gasoline vehicles (LDGMWsually contain more OC
than EC (Gillies and Gertler, 2000), so a constraffrOC/ECG1 was used for LDGVs,
and an opposite constraint was used for heavy diesel vehicles (HDDVs). However,
the relative amount of EC and OC components in R¥s&ons from both gasoline and
diesel vehicles is highly variable (Gillies and Bt 2000), and there is significant
overlap in the range of values between the two ladmurce types. Therefore, trying to
distinguish gasoline and diesel contributions sagedy on the basis of just EC and OC
mass fractions is suspect (Gillies and Gertler020Bor this reason, we also incorporated
information on typical CO/Pls, NO/PM, s and SQ/PM; s ratios in the emissions from
these, as well as other sources (Marmur et al5R@gher bounds for trace metals are

set for gasoline vehicles, compared to diesel Vehi¢HEl, 2002; Manchester-Neesvig et
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al., 2003). For vegetative burning, a constrainO@/EC=3 was used, as this source is
characterized by high OC to EC ratios (US-EPA, 2004 relatively large fraction
(0.01-0.1) of potassium in biomass burning emissitWS-EPA, 2004b) is also used. For
all sources, the sum of fractions over all spewias constrained to be less than or equal
to unity. In the case of soil dust and power-plamtsdized forms of the metals are
assumed (such as Az, SIO, etc.). Organic material (OM) fractions in the paim
emissions were bounded by a minimum contributior.dftimes the fraction of OC in

the profile. These constraints are summarized eydhowing equations:

fij lower < fij <fij upper (4-2)
foc ffecj= Rocrec (4-3)
focjtfecj= Rrc (4-4)
1.4%c,j + fitexcluding oc),i< 1.0 (4-5)

(for all sources but soil-dust and power-plants)
1.89fy+1.40fa j+1.43 e j+1.20% j+2. 145 +1.6 7fri j+1.4foc + foter; < 1.0 (4-6)
(for soil-dust and power-plants)
where:
i lower, fij upper = lOWer and upper bound on fraction of specigssourcg (Table 4-2);
Roc/ec = bound on OC/EC ratic>( for gasoline vehicles3 for vegetative burningsl
for diesel vehicles; Table 4-2);
Rrc = bound on TC (EC+OC) fractiorz.5 for gasoline and diesel vehicles, vegetative
burning; Table 4-2);
1.89, 1.40, 1.43, 1.20, 2.14, 1:67atios of molecular weights of metal-oxide/mefta

Al,O3, CaO, Fe0s, K70, SIG and TiQ, respectively.
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To address the formation of secondary pollutardsr pure component profiles
were used for ammonium-sulfate (AMSULF; 73% ,3027% NH,"), ammonium-
bisulfate (AMBSLF; 84% S¢¥, 16% NH"), ammonium-nitrate (AMNITR; 78% NQ
22% NH;") and other/secondary OC (OTHROC; 100% OC), basedhe molecular
weights of the components (Marmur et al., 2005).

For each sample, Equation 1 was solved by minimigin

m [ci S s]

2 j=1
= 4-7
X Zl) o (4-7)
where:

o is the uncertainty of thé; measurement. This is solved subject to the cainssron

the PMs source compositions (Equations 4-2 - 4-6 and Ta@bR, as well as the

requirement to reasonably reconstruct ambient base (S@ CO, and NQ)

concentrations:

%[GS]s n [ S j S, <b[GY (4-8)

j=1 25/

where:

[GS] = ambient concentration of gaseous-speci€s &3, NO,; ug/n);

[PT\;/IS j = GS/PM s mass ratio in emissions from soujosee Marmur et al., 2005 for
25 /j

values used);

S = contribution (source-strength) of soujdpg/m’) to the PM s loading;
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n = total number of sources;
b = bound for gas-species mass reconstructionc@ilpib=3, to account for uncertainties
in initial GS/PM 5 ratios and changes in these ratios during trah$pon source to

receptor; (Marmur et al., 2005))

This latter requirement has been shown to redudenearity between source-
compositions and to achieve more plausible souppe@onment results (Marmur et al.,
2005).

A global optimization program, Lipschitz global opizer (LGO) (Pinter, 1996;
Pintér, 1997), was utilized to find the optimalwg@n (by minimizingx?), subject to the
above mentioned constrains. In LGO, the best soius sought that satisfies all stated
feasibility constraints and maximizes (or minimijge¢ke value of a given objective
function (Pinter, 1996; Pintér, 1997). The objeetof global optimization is to find the
best solution of nonlinear decision models, in plossible presence of multiple locally
optimal solutions. LGO integrates a suite of robarstl efficient global and local scope
solvers. These include: global adaptive partitiod aearch (branch-and-bound); adaptive
global random search; local (convex) unconstraioptimization; and local (convex)
constrained optimization. The LGO implementationttidse methods does not require
derivative information. Their operations are basgdlusively on the computation of the

objective and constraint function values, at akhonically selected search points.
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4.2.2 SEARCH 25 month dataset, Jefferson St., Atlanta, Georgia

Evaluation of this expanded CMB approach involvesing the SEARCH
(Southeastern Aerosol Research and Characteriy&®month (8/98-8/00) dataset for
the Jefferson St. (JST) monitoring site in Atlar@#® (Hansen et al., 2006; Hansen et al.,
2003; Kim et al., 2003; Marmur et al., 2005), whickludes data on total P mass
(gravimetric measure) and its components (majos ibyp lon Chromatography; trace
metals by x-ray fluorescence; organic and elemeotabon by Thermal Optical
Reflectance), as well as ambient concentratiorS@f CO and NQ. Summation of the
analytical uncertainty and 1/3 of the detectionitimalue was used as the overall
uncertainty assigned to each measured value. Vdiaksv the detection limit were
replaced by half of the detection limit values, dhdir overall uncertainties were set at
5/6 of the detection limit values. Missing valuesr& replaced by the geometric mean of
the measured values, and their accompanying untéeta were set at 4 times this
geometric mean value (Marmur et al.,, 2005). Fiveabde source-profiles (GV, DV,
DUST, BURN, CFPP; Table 4-2) and four constant of&MSULF, AMBSLF,

AMNITR, OTHROC) were included in the analysis.

4.3 Reaults

4.3.1 Derived sour ce-profiles

First, source profile compositions were determiiii@d five sources: GV, DV,
DUST, BURN, CFPP; for the species in Table 4-2hgsinitially, a subset of the data.
In this way, a separate set of data could be us#aki evaluation. Out of the total of 762
days, we identified 447 days in which all of théadéall ions, carbon fractions, metals,

CO, SQ, NOy) were available. From those 447 days, we chos¢hallJanuary, April,
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July and October samples (133 days) to represerfotlr seasons. LGO then was applied
to find the optimal solution (Equation 4-1) basedtbe ordinary weighted least-squares
(OWLS) approach (Equation 4-7) (Christensen andsGu004; Friedlan, 1973) while
adjusting the source profile fractions within tHewable bounds (Table 4-2, Equations
4-2 — 4-6) and subject to the gas-phase constréfgsation 4-8). This becomes an
optimization problem with more than one hundredigien variables (fractions and
contributions), requiring several minutes of congpional workload (on a Pentium 4.0
PC) and several tens of thousands of iterationsspemple to reach a global minimum
point. The computational workload for a solutionngspredetermined source-profiles is
much smaller, reaching convergence within seveeabisds and several hundreds of
iterations per sample. Source profiles obtainedaawalyzed for how often bounds (lower
or upper) on individual species are met and for mositional variability between
samples. The process was evaluated by repeatingrihlgsis using all the February,
May, August (excluding 1998), and November samB49 days). No significant
seasonal variability in source composition was ok Therefore, the comparison will
focus on average source compositions for eacheoftb test cases.

Average source-profile compositions for the twonsces (two subsets of the
data: Case 1 based on 133 samples; Case 2 bade® samples) show little difference
(Figures 4-1 — 4-5). When compared to several soprofiles from the literature (Chow
et al.,, 2004; Cooper, 1981; Zielinska et al., 19€8)erences arise, but the species
driving source apportionment modeling (Marmur et &@006) are the same. Major
differences are observed for primary sulfate, tetrand ammonium content in various

sources because LGO assigns most of that masshieteecondary sulfate and nitrate
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categories. These estimates of primary sulfate ratrdte content are therefore highly
uncertain; however, these species do not serve akens for any of the sources of
primary emissions. Hence, the effect of this uraety on the overall source-

apportionment process is likely a bias in predigtedacts rather than uncertainty in the
prediction of day-to-day variation in source imgact

LGO generated gasoline-vehicle profiles (GV1 and2GM Figure 4-1) are
comparable to the profile from NFRAQS (Zielinskaakét 1998), being characterized by
an OC/EC ratio of 1.6 on average (a constraintlo® was used), compared to 2.3 in the
NFRAQS profile. The total carbon content (TC) i60(a constraint 0£0.5 was used),
compared to 0.78, in the NFRAQS profile. ContenZaf a good marker for gasoline
vehicles (Marmur et al., 2006; Marmur et al., 2Q005) similar (average of 0.008 vs.
0.009). The content of other trace metals (Al, E&3,Si) is similar.

Diesel vehicle profiles generated by LGO (DV1 and2pare characterized by an
OC/EC ratio of 0.36 (a constraint 81.0 was used) compared to 0.27 in the NFRAQS
profile (Zielinska et al., 1998). The TC content0i§F7 on average (a constraint>gf.5
was used), compared to 0.93. Metal content is amainong all diesel vehicle profiles.

Vegetative burning profiles from LGO were fairlyrsiar to the BURN profile
from BRAVO (Chow et al., 2004), with an OC/EC ratb4.7 on average, compared to
4.1 from BRAVO. Potassium content in the LGO pesiis 0.063 on average, compared
to 0.056 in the BRAVO profile. The LGO profiles’ ldhine content is roughly half of
that in the measured profile (0.037 compared t@&).0

The LGO-derived soil dust profiles are similar bee tAlabama soil-dust profile

from Cooper et al. (Cooper, 1981) with respectitol§ Mn and Fe content, but Al, Ca
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and K content differed significantly. The high Alrdent in the Alabama profile (Cooper,
1981) seems to be an overestimate for Atlanta ab(®&rmur et al., 2005).

Some differences arise when comparing the LGO ddrivFPP profile to the one
from BRAVO (Chow et al., 2004), which are basedmeasurements in Texas. $0
EC, OC, Al, Ca, Fe and Si are the most abundartiespén both sets of profiles, but
differences in their content is evident, especiall$Q,? and OC content, though neither
is an important tracer for primary CFPP PMAs previously mentioned, LGO assigns
most of the SG7 to the secondary “ammonium-sulfate” category, ljikenderestimating
sulfate content in primary emissions. OC is appogd to carbon-rich source-categories
such as GV, DV and BURN based on constraints oh && content and OC/EC ratios,
and to the “other OC” category (secondary and ywegmpned organic carbon). For
relatively carbon-lean source-categories, such@S™Dand CFPP, for which knowledge
on typical OC/EC ratios is limited, LGO tends taygast a lower fraction of OC. The
content of selenium, a unique tracer for CFPP, @sy\similar, 0.0061 in the LGO

profiles, compared to 0.0058 in the BRAVO profile.
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Figure 4-1. Source profiles generated by LGO faofjae-fueled vehicles (GV1 based
on 133 cases, GV2 based on 149 cases), compaeedrtdile from the NFRAQS study
(Zielinska et al., 1998), previously used to apportPM,s in Atlanta (Marmur et al.,
2005). Bars represertbne standard-deviation of the LGO estimated (083 dnd 149
cases) or measured fractions.
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Figure 4-2. Source profiles generated by LGO fesédi-fueled vehicles (DV1 based on
133 cases, DV2 based on 149 cases), compared tofiee from the NFRAQS study
(Zielinska et al., 1998), previously used to apportPM,s in Atlanta (Marmur et al.,
2005). Bars represertbne standard-deviation of the LGO estimated (083 dnd 149
cases) or measured fractions.
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Figure 4-3. Source profiles generated by LGO fayetative burning (BURN1 based on
133 cases, BURNZ2 based on 149 cases), comparegdgesative burning profile from
the BRAVO study (Chow et al., 2004), previously dige apportion PMs in Atlanta
(Marmur et al., 2005). Bars represerdne standard-deviation of the LGO estimated
(over 133 and 149 cases) or measured fractions.
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Figure 4-4. Source profiles generated by LGO fakdst (DUST1 based on 133 cases,
DUST2 based on 149 cases), compared to an Alabaindust profile (Cooper, 1981),
previously used to apportion BMin Atlanta (Marmur et al., 2005). Bars represenne
standard-deviation of the LGO estimated (over 188149 cases) or measured fractions.
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Figure 4-5. Source profiles generated by LGO fal-dwed power plants (CFPP1 based
on 133 cases, CFPP2 based on 149 cases), compaeseEPP profile measured in
Texas (Chow et al., 2004), previously used to d@ppoiPM,sin Atlanta (Marmur et al.,
2005). Bars represertbne standard-deviation of the LGO estimated (0\8% dnd 149
cases) or measured fractions.

The role of the constraints/bounds used to defigesburce compositions were
analyzed using the entire dataset of derived sepnofles (447 cases), in terms of
percent of cases in which either bound (lower/uppere found limiting (Table 4-3).
These data indicate that the constraints are nftest dimiting for species that are not
unique tracers or key driving species of a givetegary. Examples are sulfate, nitrate
and ammonium content in all sources of primary,BMDC and non-crustal elements in
soil dust, and various metals such as Al, K, Mn &nah both types of mobile sources.
However, a key success of the source-profile dedmaprocess is LGO’s ability to
estimate the fraction of unique/key species wethimithe allowable range in most cases.
Examples are EC, OC, TC, OC/EC ratio and Zn foolyas vehicles; EC, OC, TC and
OC/EC ratio for diesel vehicles; EC, OC, TC, OC/i&@o and K for wood burning; Ca,

Fe, Si, and Ti for dust; and Ca and Se for coaldfipower plants.
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Table 4-3: Percent of cases (447 total) in whiah derived species fraction was at the
lower limit / within the allowable range / at thpper limit.

Species LDGV HDDV BURN DUST CFPP
(low/within /upper) (low/within /upper) (low/within /upper) (low/within /upper) (low/within /upper)
EC 20/80/0 23/77/0 18/82/0 63/17/20 2592/ 23
OoC 0/100/0 35/65/0 0/100/0 66/2717 1979/3
OC/EC 15/85/0 0/100/0 3/97/0 - -
TC 1/99/0 4/96/0 1/99/0 - -
SQ,” 92/7/1 90/8/2 89/9/2 84/14/2 2/
NO3 88/9/3 82/13/4 83/10/7 78/15/7 -
Cl 457522 39/59/2 41/50/9 66/20/14 59/25/16
NH4 11/7/82 11/6/83 11/11/78 13/ B3/ 11/13/76
Al 64/35/1 51/31/19 - 80/20/0 53/4%/
As - - - - 1/11/88
Ba - - - 7/15/78 2/12/87
Br 18/81/1 30/48/23 34/34/32 - 37 /33/ 24
Ca 30/66/ 3 36/39/25 38/27/35 384/3 3/87/10
Fe 14 /7818 32/40/28 26/32/42 181/ 6 6 /63 /32
K 35/33/32 38/23/39 6/6/19 14 /57 /28 30/25/46
Mn 54/45/0 46/48/6 55/35/9 66/34/0 66/31/3
Pb 20/39/41 15/48/ 37 23 /28 /44 - 19/33
Se - - - - 2/71]26
Si 44 /5373 41/49/10 - 1B9/0 8/81/11
Ti - - - 2317413 15/41/44
Zn 4/89/7 22142/ 36 25/30/45 32/27/41 19 |/ 36

4.3.2 Sour ce apportionment based on the derived PM 5 sour ce profiles

Using LGO-derived source profiles (LDSP) based brawzailable samples (447

cases for the period of 8/1/1998-8/31/2000, Tab# #o apportion daily PMs levels

measured at the Jefferson Street site in Atlagtacally led to similar results as when

measurement-based source profiles (MBSP) were (Ma&anur et al., 2005) (Figure 4-6;

Tables 4-5 — 4-7), though with a couple major défees.

PM, 5 attributed to wood burning was 0.A6/m®, on average, using LDSP versus

1.1 pg/m® using MBSP. This is driven, in part, by the higlpetassium fraction in the

LGO derived DUST profile, compared to the measurgrbased DUST profile. Other

81



differences include diesel PM (2.3 pg/m® using LDSP, 1.9ug/m® using MBSP) and
“other OC” (3.1 and 2.5ig/m’, respectively).
Table 4-4: LGO derived Pp4 source profiles based on 447 days in which advaht

data (ions, EC, OC, metals, CO, S®0O,) were available (GV- gasoline vehicles; DV-
diesel vehicles; BURN- vegetative burning; DUSTH stust; CFPP- coal fired power

plants)

Species GV DV DUST BURN CFPP
sQ” 0.0129+ 0.0138 0.012& 0.0139 0.0013 0.0015 0.0013 0.0016 0.030% 0.0563
NOs 0.0144+ 0.0174 0.016%* 0.0205 0.000%* 0.0003 0.001& 0.0025 0.000@& 0.0000

cr 0.0240+ 0.0236 0.023& 0.0222 0.0026: 0.0033 0.0374 0.0320 0.0023 0.0039
NH, 0.0088+ 0.0031 0.008& 0.0030 0.000& 0.0004 0.0086& 0.0032 0.008% 0.0031
EC 0.2575+ 0.1323 0.5654 0.1570 0.0024 0.0041 0.1093 0.0609 0.0522 0.0357
OoC 0.4176% 0.0914 0.2063 0.1059 0.015@ 0.0301 0.5225% 0.0626 0.128@ 0.1036
Al 0.0032+ 0.0073 0.0003 0.0004 0.015@ 0.0154 0.000& 0.0000 0.0253 0.0238
As 0.0000+ 0.0000 0.000@ 0.0000 0.000@ 0.0000 0.000@ 0.0000 0.001@ 0.0002
Ba 0.0000+ 0.0000 0.000& 0.0000 0.008% 0.0028 0.000@& 0.0000 0.009% 0.0019
Br 0.0014+ 0.0018 0.0005: 0.0004 0.000@ 0.0000 0.000% 0.0005 0.0004 0.0005
Ca 0.0109+ 0.0133 0.0005% 0.0004 0.046% 0.0469 0.000% 0.0005 0.115% 0.0552
Fe 0.0210+ 0.0157 0.0005: 0.0004 0.086# 0.0582 0.000& 0.0005 0.0745 0.0280
K 0.0005+ 0.0005 0.000% 0.0000 0.066& 0.0342 0.062& 0.0304 0.0066 0.0041
Mn 0.0003+ 0.0007 0.0003 0.0003 0.0025 0.0046 0.0002 0.0004 0.0004 0.0011
Pb 0.0006+ 0.0004 0.000& 0.0004 0.000@& 0.0000 0.000& 0.0005 0.0063 0.0043
Se 0.0000+ 0.0000 0.000@& 0.0000 0.000@ 0.0000 0.000@ 0.0000 0.006%* 0.0035
Si 0.0076+ 0.0130 0.0026: 0.0037 0.2419 0.0897 0.000@& 0.0000 0.134% 0.0475
Ti 0.0000+ 0.0000 0.000@ 0.0000 0.012@ 0.0125 0.000@ 0.0000 0.006% 0.0036
Zn 0.0074+ 0.0054 0.000& 0.0004 0.000% 0.0005 0.000& 0.0005 0.0075% 0.0037
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Figure 4-6. Average source contributions (8/1/98t8J0) to PMs at the Atlanta
Jefferson Street site, using LGO-derived sourcéipso(this study) and measurement-
based source-profiles (Marmur et al., 2005) (G\sajjae vehicles; DV- diesel vehicles;
BURN- vegetative burning; DUST- soil dust; CFPPalcired power plants; AMSULF-
ammonium sulfate; AMBSLF- ammonium-bisulfate; AMNRT ammonium-nitrate;
OTHROC — Other OC; UNSPEC — unspecified)

Comparing the quality of fit achieved in the twosea (Table 4-5), finds a
significantly lower chi-square value (error functitbeing minimized) (Marmur et al.,
2005) using LDSP (12.6) compared to MBSP (20.3)sTi& driven by several trace
species, such as Br, Ca, Fe, K, Pb and Si, fortwthieir ambient concentrations were
better reconstructed using LDSP (Al was not usedch diting species in the MBSP
solution). However, EC, Cand Zn were better fit using the MBSP. The impobfiefor

potassium using LDSP can partially explain the lomass contribution of BURN using

LDSP, compared to MBSP. The improved fit for Si,dfel Al using LDSP may indicate

83



that the DUST profile derived by LGO is more repmstive of Atlanta soil dust,
compared to the Alabama solil profile used (Coop881). Aluminum was excluded as a
fitting species in the MBSP study (Marmur et al002) because including it did not
improve the fit significantly (calculated/observedio for Al was 4.0 when included, 4.7
when excluded), but the chi-square increased (22.420.3), indicating that the DUST
impact was driven by another species (Si) (Marmual.e 2006), and that the Al/Si ratio
in the soil profile is too high compared to ambiergasurements in Atlanta.

To assess the difference in daily variability iusi® impacts based on LDSP and
MBSP, we also computed correlations between thewsisource-contribution estimates
(Table 4-6). Of the five source categories for whjarofiles have been derived, the
source inter-correlations are high for DUST (0.93Y, (0.93), and CFPP (0.89), slightly
lower for BURN (0.83), and relatively low for DV @B). DV and BURN were
previously mentioned for differences in their ag&aource contributions based on the
two methods (Figure 4-6). The correlations fortakk secondary PM categories are

high (0.95-1.00).
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Table 4-5. Performance measures for the LDSP an@&mMBolutions: Chi-square (error
function), correlation (R) between ambient and nstaucted PMs, percent of total mass
explained, and calculated-to-observed ratios (idembuld approach 1). Bolded values
are superior compared to the other solution.

LDSP (this study) MBSP (Marmur et al., 2005)
Mean (StDev) Mean (StDev)
Chi-squarégerror function) 12.4(12.0) 20.3 (16.8)
R 0.9836 (0.0349) 0.9879 (0.0324)
% total mass 92.3 (18.7) 90.5 (17.4)
SO,” ratio 1.06 (0.07) 1.07 (0.07)
NO; ratio 1.16 (0.79) 1.18 (0.87)
ClI ratio 1.31 (0.77) 1.06 (0.63)
NH," ratio 0.88 (0.15) 0.88 (0.15)
EC ratio 0.94 (0.37) 0.98 (0.13)
OC ratio 1.00 (0.03) 1.00 (0.03)
Al ratio * 1.50 (0.86) 4.67 (2.81)
As ratio 0.19 (0.18) 0.32 (0.25)
Ba ratio 0.26 (0.20) 0.10 (0.08)
Br ratio 1.26 (1.36) 0.39 (0.38)
Ca ratio 1.08 (0.34) 1.15 (0.34)
Fe ratio 0.85(0.19) 0.55 (0.17)
K ratio 1.05 (0.46) 1.19 (0.49)
Mn ratio 1.57 (1.23) 0.69 (0.58)
Pb ratio 1.12 (0.95) 0.27 (0.23)
Se ratio 1.25 (1.27) 1.11 (1.20)
Si ratio 1.07 (0.19) 1.28 (0.12)
Ti ratio 1.16 (0.70) 1.27 (0.70)
Zn ratio 0.92 (0.37) 1.01 (0.35)
SO, ratio 2.13 (0.89) 1.99 (0.97)
CO ratio 1.75 (0.84) 2.06 (0.83)
NO, ratio 1.63 (0.68) 1.58 (0.66)

1 - Al was not included as a fitting species in MiBSP solution (Marmur et al., 2005). To allow #ofull
comparison, we also reran the MBSP analysis withag\lfitting species. Al fit was slightly improved
(calculated/observed ratio of 4.0 vs. 4.7), thosgh very much overestimated, while the overall (s
expressed by chi-square) worsened (22.4 vs. 20.3).

Table 4-6. Correlation matrix (R) of source-conitibns based on LDSP and MBSP
solutions

L DSP (this study)
GV DV DUST | BURN | CFPP [ AMSULF | AMBSLF [ AMNITR | OTHROC
; GV 0.93 0.43 0.12 0.33 0.12 0.07 -0.02 0.30 0.29
< DV 0.22 0.68 0.19 0.62 0.22 0.26 -0.03 0.21 0.41
§ DUST 0.17 0.33] 097 0.17 0.22 0.33 -0.08 -0.08 0.17
g - BURN 0.10 0.02 -0.15 [ 0.83 -0.08 -0.04 0.05 0.22 0.12
85 CFPP 0.28 0.39 0.15 0.14 0.89 0.21 0.06 0.08 0.31
% AMSULF 0.03 0.23 0.29 0.13 0.24 100 -0.08 -0.03 0.30
& AMBSLF 0.03 -0.04 -0.07 0.05 0.07] -0.12 0.95 0.17 0.01
s AMNITR 0.26 0.15 -0.09 0.25 0.02] -0.05 0.18 0.98 0.11
OTHROC 0.42 0.70 0.20 0.28 0.30 0.29 0.03 0.14 0.97
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Further analyzing differences in the DV and BURNurse contributions
predicted by the two methods, MBSP DV source impsdtighly correlated with EC
(0.96) whereas the LDSP DV source impact has arloaeelation with EC (0.72). This
indicates that EC is more of a driving force in &SP solution than in the LDSP
solution. For BURN, the correlations with K were mcimilar, 0.62 based on the MBSP
solution, 0.67 based on LDSP. Effects of fluctuagian tracer concentrations on source
contributions are investigated further by a sewgjtianalysis, in which the ambient
concentrations of one P\ component at a time were increased by 50% ancetudting
effects on the source-attributions (using the fexivkd source profiles) were analyzed.
These results are compared to a similar analysitrpged on the MBSP solution
(Marmur et al., 2006) (Table 4-7). DV source cdnitions are driven mainly by EC in
both solutions (62% and 70% increase in DV contidrubased on LDSP and MBSP due
to a 50% increase in EC concentrations), but th&Rs less sensitive to EC and more
sensitive to Si compared to the MBSP solution.ddigon, EC has a bigger effect on the
spilt between gasoline and diesel vehicles in tB&R solution, scavenging more mass
from the GV category compared to the MBSP caseil&iyy mass is scavenged from
the BURN category using the LDSP, not so using MB8ire BURN impact based on

the LDSP solution is more sensitive to K.
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Table 4-7. Percent change in average source-datomtsu for a 50% increase in

concentrations of several tracer species (increasedt a time)
% change in sour ce-attribution for a 50% increasein the corresponding species-concentration (LDSP / MBSP)

Species GV DV DUST BURN CFPP OTHROC
EC 17/ 68 62/70 28/1.2 6.7/0 05/12  51/56
ocC 0/06 0/0 0/0 0.1/06 0/0 73182
Al 06/0 -0.1/03 05/0.7 0411 08/1.4 0.1/1.7
Br 4810 31/-05 1.2/-05 41128 207 1.5/-0.9
Ca 15/1.3 05/-13 17/-2 27113 82p/ -0.1/-0.7
Fe 67/0 4910 143/0 13970 -0.9/0 o1
K 4710 5.6/-85 13/-17 110/ 40 0743 7.9/-12
Mn 04/0 06/0 4213 1.1/0 1410 Y
Pb 0/1.0 01/-0.3 -0.7/0 12/0.3 07/-03  -0.3/-03
Se 1.5/-0.9 05/0 1.2/-1.4 081/0 3.16'8. 02/0
Si 5.0/-1.0 53/0.7 27137 21/-1.4 1.85 15/0.3
Ti 1.5/-0.9 0710 6.6/7.3 2410 0/0.9 600
Zn 38/13 6.9/ -4 6.1/-2.3 6106 6.2 B2. 2.9/-28
SO, 25/-0.8 04/05 71-4.6 48113 48132 -0.2/-0.3
co 7.0/56 1.8/-21 0/-0.7 0/0 15/-28  -03/-14
NO, 32/3.4 09/17 2.6/-0.6 -0.3/-0.6 24an -0.41-0.6

The selection of bounds is a critical step in thalysis, and this choice can have
an effect on the solutions obtained. However, gtthe bounds based on well based
knowledge of typical source compositions (such ragables 4-1 — 4-2) reduces the
possibility of noise or randomness in the sourtekattions. To assess the effect of
bound selection on the source-apportionment resuttsrepeated the analysis, this time
relaxing both the lower (dividing) and upper (mpijing) species fraction bounds by a
factor of two. This had little effect on the temabpatterns in source contributions, with
source inter-correlations of 0.93, 0.88, 0.99, 0&t 0.97 for GV, DV, DUST, BURN,
and CFPP, respectively, for the sensitivity andebas cases. Inter-correlations for the
four secondary Pl categories were near perfect (0.98-1.00). Averagss attributions
changed by 10% or less for all source categoriesxGV (23% reduction compared to
base-case) and DV (31% reduction). To assess whsathdions obtained are unique, we
also repeated the analysis this time changing gtenzation starting point. Changing
the initial estimate of the mass apportioned toheeategory (while keeping source

compositions fixed) had no effect on the final tesobtained, but changing the initial
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estimate of the source compositions (from the miudpof the allowed range to the
extreme) did change the results slightly, with seunter-correlations of 0.95 and above

for all sources except for GV (0.88).

4.3.3 Comparison with FA results

Both sets of source apportionment results (LDSPMB&P) provide reasonable
estimates of the impacts of various sources on em#tM s levels, as reflected by the
sensitivity analysis results and correlations véthbient tracer concentrations (Marmur
et al., 2006; Marmur et al., 2005). For most sosirdbere is significant agreement
between the two, indicating that the approach mitesehere is capable of deriving source
profiles from the receptor data and producing seuimmpacts without the use of
predetermined (measured) source profiles spedifibé regions or exceptionally recent.
There are, however, some differences in both totats apportioned to some of the
categories (e.g., BURN and HDDV) and the in the mitage of the driving force for
some of the species. While there is no standamdtigh to compare the accuracies of the
LDSP and MBSP results, a comparison of these sesulih FA results provides an
indication of consistency across methods. We coempfag LDSP and MBSP results to
those from a PMF study (Kim et al., 2004a) for 38T site for the period of 11/98-8/00
(Table 4-8). Only overlapping source categories @mpared (gasoline, diesel, soill,
wood). There is more agreement between the rdsatsd on PMF and MBSP than PMF
and LDSP for diesel vehicles, wood burning and gogt. This is expressed by both the
average mass apportioned to the various categanigédy the correlations between the
various source-apportionment methods (Table 4mpakts of gasoline vehicles and the

split between diesel and gasoline vehicles (digastline ratio of 1.6, 1.7 and 1.2 based
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on PMF, LDSP and MBSP results, respectively) aregemalike in PMF and LDSP
results. The overall greater agreement between BiMIFthe MBSP results is surprising
given that in theory LDSP and PMF are more aliketl{bderive source compositions
using the ambient data). However, the differencesvéen method inter-correlations
(Table 4-8) are minor, and are a reflection ofshall differences between the LDSP and
MBSP results. These results might also suggestthigatifferences between CMB and
FA results are more due to what the sources andri&aagespectively, represent than due

to the accuracy of the source profiles used in CMB.

Table 4-8. Comparison between source apportionmesults (total mass and
correlations) based on PMF (Kim et al., 2004a), PSfhis study), and MBSP (Marmur
et al., 2005)

Source LDSP/PMF MBSP/PMF Correlation (R):| Correlation (R):
category mass ratio mass ratio PMF, LDSP PMF, MDSP
Gasoline 1.15 1.31 0.52 0.50
Diesel 1.23 0.98 0.72 0.78
Soil 0.57 0.72 0.93 0.97
Wood 0.62 1.00 0.71 0.78

4.4 Conclusions
Results from an expanded CMB approach derivingcauaompositions based on
ambient data were compared with CMB results basedtheasured source-profiles. For
most sources, there is significant agreement betvilee two methods. Despite overall
lower residual mass obtained by the expanded apiprpaesented here, there is no
standard by which to compare the accuracy of thesanethods, especially in how well
they capture the temporal trends in source impadsuch, the approach presented here

can be viewed as one method to assess the re@semess of measured source-profiles
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and to help identify those profiles that may besignificant error. It can also be used to
guantify uncertainties in source-impact estimatdsch are in part due to uncertainties in

source compositions.
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CHAPTER S

SOURCE APPORTIONMENT OF PM,5IN THE SOUTHEASTERN
UNITED STATESUSING RECEPTOR AND EMISSIONS-BASED
MODELS: CONCEPTUAL DIFFERENCESAND IMPLICATIONS

FOR TIME-SERIESHEALTH STUDIES

(A. Marmur, S.K. Park, J.A. Mulholland, P.E. Tolband A.G. Russellitmospheric

Environment40, 2533-2551, 2006)

Abstract

Elevated levels of fine particulate matter (M have been associated with
adverse effects on human health, but whether specdmponents of Pl are
responsible for specific health effects is stillden investigation. A complementary
approach to examining species-specific associatisrn® assess associations between
health outcomes and sources contributing te PMhis approach could help target and
regulate the sources that contribute most to adveeslth effects. Various techniques
have been developed to quantify source impactsroguality, allowing examination of
their health impacts. We compare two conceptualfferent approaches to source
apportionment: a receptor model and an emissiossebair-quality model. Daily source
impacts for July 2001 and January 2002 at fourssite the southeastern US were
calculated using CMB-LGO (Chemical Mass Balance ehaacorporating the Lipschitz
Global Optimizer), an extended CMB receptor modell EPA’s Models-3 emissions-

based air-quality modeling system (MM5-SMOKE-CMAQThe receptor model
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captured more of the temporal variation in sourogdcts at a specific receptor site
compared to the emissions-based model. Driven by alaa single site, receptor models
may have some significant shortcomings with resfgespatial representativeness (unless
a reduced study area is used or data from multgiles are available). Source
apportionment results from emissions-based modrlsh as CMAQ, may be more
spatially representative as they represent an geegad-cell value. Limitations in the
ability to model daily fluctuations in emissiongviever, lead to results being driven
mainly by regional meteorological trends, likelydenestimating the true daily variations
in local source impacts. Using results from eitlggproach in a health study would likely
introduce an attenuation of the observed assoniatidue to limited spatial
representativeness in receptor modeling resultd@hhited temporal representativeness

in emissions-based models results.

Keywords: CMAQ, CMB, LGO, source-apportionment, llie@ffects, PM s

5.1 Introduction
Particulate matter, especially particles smalleant;s microns in diameter
(PM.5), has been associated with adverse health etiecksnortality in studies covering
more than 150 cities (Dockery et al., 1993; Popalet2002; Pope et al., 1995). Both
acute and chronic exposures to R2Mave been associated with increased mortality rate
and hospital visits, as well as cardiopulmonaryeaé®, heart attacks, decreased lung
function, and asthma (Dockery et al., 1993; Ebiettle 2000; Peters et al., 2001; Pope et

al., 1995; Vedal, 1997). Particulate matter is cicaity complex, being comprised of
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numerous primary and secondary components, ingudinic and organic compounds
and dozens of trace elements. It is still unknovimchv specific components of Riare
more prone to cause specific health effects, aghotecent studies have started to
address this issue (e.g., Metzger et al. 2004azdédetet al. 2004b; Peel et al. 2005;
Hauck et al. 2004; Heal et al. 2005). However,ahsociation between health outcomes
and specific PMls components raises several issues: it is not obuioat the major cause
for the health outcome is actually measured (itmpractical to measure every single
PM. s species) or is possibly measured inaccuratelytdusnalytical issues; the actual
health effects may be due to a combination of patits; many species are correlated
which limits the ability to isolate species heattipacts. A complementary approach is to
examine associations between health outcomes amdesocontributing to ambient BM
(Laden et al., 2000; Manchester-Neesvig et al. 328ar et al., 2000; Tsai et al., 2000).
By means of source apportionment (SA), source inspan the receptor can be
guantified, and their health impacts examined. Arse-impact oriented approach could
help target and regulate the sources that con¢rilmatst to adverse health effects. It could
also allow for better multi-component epidemiologiodeling, as the number of major
source-impact categories is typically far fewernththe number of PM components.
Finally, this approach can help identify healtheet§ of unmeasured species present in
emissions from specific source categories. For @@npreliminary studies have found
an association between mortality and combusticstedl PM s (from motor vehicles,
coal combustion and wood burning), but not soigtedl PM 5, in both cohort (Laden et

al., 2000) and time-series (Mar et al., 2000) stsdito et al. (2004) mention that source-
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oriented evaluation of PM health effects need ke tmto consideration the uncertainty
associated with spatial representativeness offfeeies measured at a single monitor.
Here we compare two conceptually different appneacto PMs source
apportionment, receptor-based modeling (representtds study by the Chemical Mass
Balance model, or CMB) and emissions-based airdyuaiodels (represented in this
study by EPA’s Models-3 suite of models). We adslissues associated with using these
techniques for time-series health studies, witlcigpemphasis on the degree to which
these approaches provide source impact estimaaést@ both spatially and temporally
representative. So far, the focus in the sourcexagjgmment and health literature has
been on the use of various factor analytical (FEchhiques (such as PCA or PMF), to
associate health outcomes with factors associatéd ssurces of PMs (Laden et al.,
2000; Manchester-Neesvig et al., 2003; Mar et 2000; Tsai et al., 2000). Here we
address a slightly different approach, using theBa®ceptor model, which, especially in
its extended form presented here (CMB-LGO), is nex@icit in terms of identifying the
sources in question. The main difference betweerB@Nd factor analytical approaches
is that CMB uses emission composition data to @esweurce impacts, whereas FA
techniques derive the source compositions fromdsen the ambient data during the
process of estimating source impacts. In an FA ieggbdn, the investigator assigns
names to the obtained factors (i.e., identifies fibetors as sources) based on their
chemical composition; the factors are unique fahedataset/site analyzed. For example,
Ito et al. (2004) illustrate that uncertainties“imaming” the factors in FA applications
might cause source impacts to appear less spateggisesentative than the true case

because the derived factor for a given source ogyegill be different at each site. Both
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approaches have advantages and disadvantages;drawéerms of assessing the spatial
and temporal representativeness of receptor ansisems-based models for use in health
studies, FA techniques share many of the same aasdics and issues as presented

here for CMB (both being based on measured amtegal).

5.2 Methods

We used both receptor-based (Chemical Mass Baland@MB) and emissions-
based (EPA’'s Models-3) air-quality modeling apptoesc to conduct source
apportionment of PMs in Atlanta, GA and other sites in the southeasté®n The CMB
receptor-based model (US-EPA, 2001) makes use @iciaed ambient PH4
measurements (major ions, carbon fractions, tremaents) and typical compositions of
emissions from various source categories to quatité source contribution to measured
concentrations at the receptor. It is based orfidlh@ving mass balance equation, which

is solved for§ (a vector of source contributions) (US-EPA, 2001):
C =) 1S +¢ (5-1)
j=1

where:

Ci = ambient concentration of chemical species i (mg in PM s);
fij = fraction of species i in emissions from source j

S = contribution (source-strength) of source j (M@ nm PM; 5);

n = total number of sources;

€ = error term;
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Here we applied both an extended version of CMferred to as CMB-LGO
(Marmur et al., 2005) and the standard CMB. CMB-LQ@dpschitz Global Optimizer)
uses measured ambient gaseous concentrations C&0D and NGQ) to bound acceptable
solutions to the mass balance equation above. &ar solution obtained, ambient SO
CO and N@ concentrations are calculated based on the olotalPkLs source
contribution and typical gas-to-particle ratiosthé source (e.g., S{PM, s from the
various sources). The calculated value is then emetpto the ambient measurement and,
in case of significant differences (e.g., underfguediction of more than a factor 3), the
model then searches for the next best fit to thesnmalance equation that would also
adhere to the gas-phase constraints (Marmur et28D5). This approach reduces
collinearity between sources, which is one of thejan limitations to source
identification using CMB (i.e., the inability to stinguish between sources with similar
PM, s emissions compositions). The reduced collineastypecause sources that share
fairly similar PM,s composition may have very different gaseous ewomssi For
example, gasoline and diesel engines have fairilasi PM,s compositions (rich in
organic and elemental carbon), but differ signifitta with regards to CO and NO
emissions. Likewise, collinearity caused by cruslaiments found in both soil dust and
coal-fired power plant emissions is significantigduced with the introduction of the 5O
constraint (S@is abundant in power plant emissions, but notgaem resuspended soil
dust). However, use of CMB-LGO has some limitatioeeme of which might be
important in time-series health studies. Firstlige&rity is not eliminated completely,
and part of the daily fluctuations in the amountnedss apportioned between several

sources might be due to collinearity, hence intooay an error to the time-series
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epidemiologic analysis. There are also uncertandigsociated with the source profiles
used. The composition might not necessarily reptetsgical local source compositions
since locally accurate source profiles are not gdnavailable. The composition may vary
temporally (e.g., the effect of driving mode on t#temposition of PMs from mobile
sources) whereas constant values are used. Fitfadlynodel relies on local (receptor)
ambient measurements which might be significarffigcéed by local sources within 1-2
km and, therefore, might not represent the hedltdysarea, and might also contain
measurement errors.

For these reasons, we also evaluated the use wfsiens-based air-quality
models for epidemiologic analyses. Such models hbgen used for gas-phase
simulations and source-impact analysis of ozonedferades, and are typically three-
dimensional representations of the atmosphere. verently, they are being applied to
PM., s source apportionment as well, apportioning mass dither sources or regions
(Boylan et al., 2002; Held et al., 2005; Odman let2004). The three-dimensional air
guality model simulates the source impacts by sglvihe conservation equation

expressed as:

% +00Uc) = DpDiD(%j *R(CCr G T +S(X) 15120 (5-2)

where:

Ci = concentration of species i;

U = wind velocity vector;

Di = molecular diffusivity of species i,

Ri = rate of concentration change of species i byrmta reaction;
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S (x,t) = source/sink of i at location x and time t;
p = air density;

n = number of predicted species;

The conservation equation describes the formaticansport and fate of air
pollutants, including components for processingssions, meteorology, topography, and
atmospheric chemistry (Russell and Dennis, 200@ur& apportionment can be
performed using direct sensitivity methods suchDagct Decoupled Method (DDM)
(Dunker, 1981; Hakami et al., 2003), inert tracetmods, or by multiple applications of
the model with and without emissions from targetirses (“brute force”). Here we
applied brute-force to the US-EPA’s Models-3 switenodels, including MM5 (Grell et
al., 1999) as the meteorological model to simulateospheric physical dynamics;
SMOKE (Houyoux et al., 2003) as the emissions @soe to calculate spatial and
temporal trends in emissions based on the annuassems inventory; and the
Community Multiscale Air Quality (CMAQ) model (Byuand Ching, 1999) to simulate
atmospheric reactivity, transport, and depositiboh@mical contaminants.

In terms of PM s source apportionment, the major difference betwaeeeceptor
model and an emissions-based air quality modehesstarting point. While a receptor
model’s starting point is the ambient measureméwoitn there going backwards to
estimate source contributions, the starting poirthe air-quality model is the processed
emissions inventory, going forward by simulating ttransport and transformation of
pollutants and ultimate air quality impact. The ssions used are typically processed

from annual, county level emissions, using statstidaily/weekly/seasonal temporal
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trends (such as peak morning rush hour and lowexkered emissions from mobile
sources) and spatial information. Starting fromestimate of expected emissions at a
location and time, atmospheric processes takingepthuring transport from source to
receptor are simulated. CMAQ results provide meganally representative values than
those provided by an analysis based on a local uneaent. However, results from air
guality models include uncertainties arising froatcle step of the process (meteorological
modeling, emission estimates, air quality modelin§judies have shown that the
emission inventory is one of the more uncertairt,dasticularly important, inputs to the
air quality modeling process (NRC, 1991; Seinfd®88). This is especially important in

the current application where daily variabilitysaurce impacts is sought.

5.2.1 Model application

Source apportionment using CMAQ was performed odady basis for the
months of July 2001 and January 2002. For actagplying either of these methods to a
time series health study, a much larger datasgssed (typically, several years of data).
However, focusing on the reduced time periods alowre detailed examination of the
issues involved in using results from either apphodlso, obtaining several years of
CMAQ-based source apportionment results using th&edorce method requires
significant computational resources. As tracer atiter direct source-apportionment
methods become available in CMAQ, it will be possito expand this type of analysis
by tracking source impacts efficiently, without hay to re-apply to model for each
source category examined. A longer CMB-LGO analys&s been completed and

analyzed (Marmur et al., 2005).
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The Models-3 air-quality modeling system was agaplover much of the US
using a 36 km grid, and a finer 12 km grid was useel northern Georgia (Figure 5-1).
More detailed model information is presented elsel{Park et al., 2006a; Park et al.,
2006b; Park et al., 2006c). We focused on two ufBdlanta, GA and Birmingham, AL)
and two rural (Yorkville, GA and Centerville, AL)o8theastern Aerosol Research and
Characterization (SEARCH) sites (Figure 1), whicklude data on total PM mass
(gravimetric measure) and its components (Hanseal.,e2003; Kim et al., 2003). The
main objectives of SEARCH include the understandhgomposition and sources of
PM in the southeast (Hansen et al., 2003; Kim gt28I03). The SEARCH data are also
being used for health studies in Atlanta in whislsaiations of Pl with respiratory
illnesses and cardiovascular disease have beenvelds@etzger et al., 2004; Peel et al.,
2005). In the southeastern US, a major part ofdted PM, 5 is secondary (Hansen et al.,
2003; Kim et al., 2003; Marmur et al., 2005), ifermed in the atmosphere from
precursor gases. The major secondary Pédmponents are sulfate from the oxidation of
SO, and secondary OC particles formed from VOC (vidatrganic compounds)
emissions. The emphasis in this paper is on sowtgsimary PM s, i.e. particulate
matter emitted directly from emissions sources, uthe fact that receptor models are
limited in their ability to link secondary compountb emission sources (Burnett et al.,
1998). We focused on primary BMemissions from five source categories: gasoline
vehicles, diesel vehicles, soil dust, vegetativ@avburning and coal-fired power plants
(in the CMB-LGO analysis these were noted as LDG&NDDV, SDUST, BURN and
CFPP, respectively). These categories were prelyiadsntified as affecting the Atlanta

airshed (Kim et al., 2004; Marmur et al., 2005; dfet al., 2002). Other categories, such
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as meat cooking, were not quantified due to lackiraters and collinearity issues
(Marmur et al., 2005), and were likely apportiortedthe unexplained fraction of OC
(which also includes secondary organic aerosoljaRkng the major secondary RM
compounds, relating ambient sulfate concentrationpower-plant emissions is fairly
straight forward since these account for the vaajority of SQ emissions (US-EPA,
1999). The sources and chemistry of secondarynargeerosol (SOA) are still being
investigated; biogenic compounds, such as monaterpenissions from vegetation, are
believed to be a major source of SOA (Carreras-&trspet al., 2005; Lim and Turpin,
2002). As the chemistry of SOA becomes better wtded, air-quality models such as
CMAQ may be able to provide a useful tool to assesdealth outcomes associated with

elevated levels of SOA.

3Bkm
{)f Rural Py
B }SEkm
YRE
P J8T
L |
BHM
|
CTR
Gaorgia
Alabama

Figure 5-1. Locations of SEARCH monitoring sites Georgia (JST and YK) and
Alabama (BHM and CTR), over plotted by the gridék@®) of the air quality model

(only a part of the 36 km domain is shown here)e Téctangle that contains the YRK
and JST sites is the sub-domain of the air quatibglel with a grid size of 12km (12km
grids are not shown here).
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For each one of the primary source categoriesstigaged, emissions from
SMOKE were tracked separately, and the air-quatibglel was applied six times: a base-
case run including all sources, and five additiaonals withholding one source category
at a time (domain-wide exclusion) (Park et al., @f0Park et al., 2006c). A “source-
category” in this case is defined as a summatioeroissions from numerous source
classification codes (SCC) from the emissions itwgn Specifically, the “gasoline”
SMOKE category is a summation of emissions fromraad and off-road gasoline-
engine powered vehicles; the “diesel” categoryssimmation of emissions from on-road
and off-road diesel-engine powered vehicles; “dustiiissions are a summation of
emissions from both paved and unpaved roads; “Wnoding” emissions are a
summation of emissions from industrial and redidénwood burning, prescribed
burning and wildfires; “power-plant” emissions aesummation of emissions from all
coal-fired boilers. Emissions from natural-gas castlon and meat charbroiling were
tracked separately as well (Park et al., 2006bk Bamal., 2006c), but are not presented
here, as they were not resolved by the receptorem@llarmur et al., 2005).
Withholding emissions of primary PM particles may shift secondary formation
products to other particles, changing their size @eposition velocities and change their
rate of coagulation with particles from other s@sicHowever, a comparison of the
results obtained by the brute force method anda@etrmethod (where no sources are
being withheld) showed very minor differences ie #@imount of mass apportioned to
each source category and near perfect agreemenbdeled daily variability of source
impacts (Baek et al., 2005). CMB-LGO (Marmur et 2005) was also applied for the

same time periods, using source profiles reprasgiiiese five source categories (Chow
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et al., 2004b; Cooper, 1981; Zielinska et al., J998e compared the two models used
here in terms of their ability to estimate longate{monthly) and short-term (daily)
source impacts, the degree of correlation betwbkenvérious source categories, and the
factors driving each model. In addition, we alsdradsed the issue of spatial variability
in source impacts using concentrations of major, PNMacers from an additional

monitoring site in the Atlanta metropolitan areagh-Dekalb site).

5.3 Results

Source apportionment results were analyzed foragee source contributions,
daily variability, and factors/species driving thygportionment process. Source impacts at
four sites were studied using CMB-LGO and CMAQ:féesion Street (JST), an urban
site in Atlanta, GA; Yorkville (YK), a rural siteni northwestern GA; Birmingham
(BHM), urban site in Birmingham, AL; and Centerei{CTR), a rural site in AL (Figure
5-1). We report the calculated source contributiasiag CMB-LGO and CMAQ, as well
as those using regular CMB (without incorporating gaseous data as in CMB-LGO) for
reference.

When analyzing these results for use in a timegsdrealth study, it is important
to consider two aspects: temporal (daily) variatiand spatial representativeness.
Inaccuracies in either introduce errors in the epitblogic analysis. The temporal (daily,
in this case) variation in source impacts is thgomgactor driving a time-series health
study, as short-term health effects are soughe(dtiends in the data, such as seasonal
effects, are controlled for). For other purposeghsas air quality management and

control strategy development, longer term resutg.( seasonal) can be used. Obtaining
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such results involves less uncertainty; as demaitestr below (Figure 5-2), the two
approaches agree reasonably well on a monthly gedrasis, but differences in the daily
source impacts are evident (Figures 5-3 - 5-6)ti&lpeepresentativeness of air quality
data is an important issue when such data areindsghlth and exposure studies. This is
especially true in this type of application becatise spatial heterogeneity of source
impacts is likely higher than that of individualespes. Though there are not many data
available to fully investigate this issue, consitter extreme example of two different but
constant sources, both emitting significant amowhthe same pollutant (e.g., OC from
wood burning and meat charbroiling), each locatext o a monitoring site. Both sites
will show an OC impact and likely follow similar t@®rological trends, resulting in high
correlations between OC levels at the two siteswél@r, the dominant source
contributing to the OC is completely different. $meed for increased temporal and
spatial accuracy places greater burdens on theppfoach than might be demanded for

air quality management that focuses on reducingarawveraged levels.
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Figure 5-2. Average source contributiops (M°) to primary PM2.5 over a two month
period (July 2001 and January 2002) of gasolineicleh (LDGV), diesel vehicles
(HDDV), soil dust (SDUST), vegetative/wood burnifiGURN) and coal fired power
plants (CFPP) at four SEARCH sites in Georgia alabama

5.3.1Average sour ce impacts

Analyzing the average source contributions atfthe sites examined (Figure 5-
2), biomass burning appears to be a major sourgeimfary PM s in the region, with
contributions ranging between 27%-77% (higher fom in the rural sites). Average
wood burning contributions obtained using the thieshniques were fairly similar at
YRK and BHM, while CMAQ values were significantlyigher at CTR and JST.
Calculated average source contributions of prinR¥ s from coal-fired power plants
are small, less than 4% for all sites using alhteégues, and the average values obtained
using the various techniques are in good agreentmtulated impacts from diesel

vehicles were quite different at JIST (CMAQ valughar) and BHM (CMB-LGO value
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higher). The average contribution ranged betweer3%% of the primary PMs, with
higher fractions at the urban sites. Major differes were observed for the gasoline
vehicle primary PMs contributions, with consistently higher valuesabéd by CMB
compared to CMB-LGO. This is likely caused by saro#inearity between the gasoline
vehicle source profile (OC fraction of 0.55) ane thecondary/other OC profile (OC
fraction of 1.0), included to account for second@@ (and any OC not apportioned to
one of the primary sources included in the analysdfgithout bounding acceptable
solutions based on the gaseous species, the ostohaion obtained by CMB contains a
high gasoline vehicle contribution, likely includisome secondary OC formation. Such
a high gasoline vehicle contribution would suggestich higher ambient CO
concentrations should be present than are measWeen the acceptable solutions are
bounded by CO, as done in CMB-LGO, lower gasoliakiele contributions and higher
secondary/other OC contributions are obtained u8.In> on average, compared to 1.2
ug m* using regular CMB. The solutions obtained by CMBicate that even at the rural
sites (YK and CTR), the contributions from mobiteisces comprise approximately 50%
of the primary PM;s, and that the gasoline vehicle contribution at Bidhhearly 70% of
the primary PMs, with an extremely high gasoline to diesel ratid0.4. On the other
hand, solutions obtained by CMB-LGO and CMAQ intlicthat the gasoline-to-diesel
ratio is smaller than 1 and that wood burning &s tiajor source of primary P) at the
rural sites. These results demonstrate the colityeproblem often encountered with
regular CMB source apportionment. Significant diéfeces in the soil-dust contribution
are observed when CMAQ estimates are comparedet€B and CMB-LGO results.

CMAQ soil-dust impacts seem to be extremely ovetigted, up to ten times compared
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to the receptor based results (the ambient datavshouch lower levels of crustal
elements than is modeled using CMAQ). This is a webwn issue in CMAQ, where
resuspended dust is assumed to be uniformly véyticaxed in the bottom layer of the
model grid, while in practice, much of the resugjssh dust is removed locally by
impaction to surfaces (vehicles, leaves etc.). O&e/5% removal factor (DRI, 2000) is

applied for soil dust (as in this case); howeveil, dust impacts are still over-predicted.

5.3.2 Conceptual differences between CMB and CMAQ

To illustrate the conceptual differences betweeuarse apportionment from a
receptor model and a 3-D air quality model, we wadus on the results from CMB-LGO
and CMAQ for the Atlanta urban site (JST). Differesource impacts using CMAQ
follow a similar day-to-day trend (Figure 5-3), \d#n mainly by meteorology (mixing
height and ventilation). This trend is also similarthe temporal trend in modeled EC
levels (also shown in Figure 5-3), which furtherdicates the strong effect of
meteorology on the temporal variation. CMB-LGO teswon the other hand, exhibit less
correlated source category trends (Figure 5-4bhéncase of CMB-LGO, the trends in the
diesel source-category and measured EC levels gatson in Figure 5-4) are similar, but
these trends are different than the trends of atberce categories. These differences
between the daily trends in CMAQ and CMB-LGO arerenolearly shown when the
fraction of each source category’s contributionthe total is plotted as a time series
(Figures 5-5 and 5-6). CMAQ source apportionmersults show little variation in

relative source impact while CMB-LGO results shawstantial variation.
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Another useful way of interpreting these resufisby means of a correlation
matrix (R values in Table 5-1). Relatively high ations between the CMAQ source
categories and low correlations between the CMB-L&@egories are observed. As an
example, in terms of the health study, the highretation (0.94) between the gasoline
and diesel categories using CMAQ might limit theligbto distinguish between the
health outcomes of these two categories (everededlhwere a true reflection of the source
impacts), while the results from CMB-LGO (signifitly lower correlation, R=0.54) will
allow such differentiation (even if these variasowere mainly a reflection of
collinearity). These correlations (Table 5-1) alsdicate the level of agreement between
the two techniques. The sources of the discrepamdyde errors of both CMAQ and
CMB results. However, these have different magmsudith respect to different sources.
Correlations between the corresponding source itapeing the two techniques are poor
for soil dust (-0.24), wood burning (0.18), and gowlants (0.16), and more reasonable
for the mobile sources (0.58 for gasoline vehic®52 for diesel vehicles, and 0.59 for
the sum of these two categories).

One of the major sources of possible error inltestom CMAQ comes from the
uncertainty in emissions estimates. Emissions asethput to CMAQ have little daily
variation (Figure 5-7). Soil dust, wood burningdgmower plant PMs daily emissions
are assumed to be constant (except for power ptantbe 4th of July and New Year’'s
Day holidays). Mobile source emissions are givenveekly trend, with emissions
modified on the 4th of July and New Year’'s Day Hals. In reality, soil dust emissions
would depend on wind speed, humidity and recentfadl, all having a significant effect

on the amount of soil resuspended into the airr{Hital., 2002). Stronger winds will
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lead to increased resuspension of dust (thoughatbsleads to increased mixing of the
atmosphere, lowering concentrations of pollutar®).the other hand, relatively small
amounts of dust will be resuspended following m®nents. Such effects are not captured
by SMOKE, which can explain the low correlation hvihe CMB-LGO results (-0.24).
Also, wood burning is a source with varying aciyitincluding prescribed and
agricultural burning, residential wood combustiamd industrial use of wood bark as
fuel, that is not captured by SMOKE (unless spedififormation about wild fires and
prescribed burning is incorporated). The constamisgion rate used might explain the
low correlation with the receptor model results18). The differences between the
variations in power plant contributions may palidde due to a relatively coarse plume
characterization using a 12 km grid (and a 36knd dor the Alabama sites), though
uncertainties in the Se measurement and sourcdepfcdction may contribute to the
discrepancy as well. The temporal pattern of mailerces emissions have been studied
in detail (Sawyer et al., 2000). Therefore, actmabile source emissions are probably
more like the typical trends used in the model ttr@nemissions from other sources. So
it is not surprising that the correlations for thbile sources are significantly higher
(0.59 for the sum of the mobile sources). Furtimeopile source emissions are more
ubiquitous, so a specific local source will havenaaller effect. Results from the other
three sites studied, BHM, CTR and YK, show simileends in differences between

CMAQ and CMB-LGO results, as shown by correlatiostmees (Tables 5-2 — 5-4).
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Table 5-1. Correlations (R) between CMB-LGO and QMBAased source contributions
to PMpsat JST

LDGV HDDV SDUST BURN CFPP  gasoline  diesel dust Wood- power-
(CMB- (CMB- (CMB- (CMB- (CMB- (CMAQ)  (CMAQ)  (CMAQ burnning plant
LGO) LGO) LGO) LGO) LGO) (CMAQ)  (CMAQ)
LDGV 1.00
(CMB-LGO)
HDDV 0.53 1.00
(CMB-LGO)
SDUST -0.32 -0.16 1.00
(CMB-LGO)
BURN 0.31 0.10 -0.04 1.00
(CMB-LGO)
CFPP -0.13 0.06 0.10 -0.06 1.00
(CMB-LGO)
gasoline 0.58 0.52 -0.05 0.28 -0.01 1.00
(CMAQ)
diesel 0.49 0.52 0.03 0.27 0.05 0.94 1.00
(CMAQ)
dust 0.70 0.59 -0.24 0.30 -0.06 0.85 0.85 1.00
(CMAQ)
wood- 0.62 0.61 -0.33 0.18 -0.02 0.67 0.63 0.86 1.00
burning
(CMAQ)
power- 0.25 0.42 -0.10 -0.10 0.16 0.40 0.49 0.39 0.38 1.00
plant
(CMAQ)
Table 5-2. Correlations (R) between CMB-LGO and QMAased source contributions
to PMysat YK
LDGV HDDV SDUST BURN CFPP  gasoline  diesel  dust Wood- power-
(CMB- (CMB- (CMB- (CMB- (CMB- (CMAQ)  (CMAQ)  (CMAQ burnning plant
LGO) LGO) LGO) LGO) LGO) (CMAQ) (CMAQ)
LDGV 1.00
(CMB-LGO)
HDDV 0.14 1.00
(CMB-LGO)
SDUST -0.35 -0.18 1.00
(CMB-LGO)
BURN 0.10 -0.09 0.02 1.00
(CMB-LGO)
CFPP 0.33 0.11 -0.26 -0.07 1.00
(CMB-LGO)
gasoline 0.47 0.64 -0.29 0.15 0.11 1.00
(CMAQ)
diesel 0.42 0.57 -0.29 0.24 0.15 0.97 1.00
(CMAQ)
dust 0.57 0.41 -0.31 0.29 0.15 0.83 0.88 1.00
(CMAQ)
wood- 0.33 0.29 -0.26 0.26 0.03 0.66 0.72 0.77 1.00
burning
(CMAQ)
power- 0.13 0.45 -0.17 0.10 0.00 0.70 0.70 0.56 0.28 1.00
plant
(CMAQ)
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Table 5-3. Correlations (R) between CMB-LGO and QBAased source contributions
to PMy s at BHM

LDGV HDDV SDUST BURN CFPP  gasoline  diesel dust Wood- power-
(CMB- (CMB- (CMB- (CMB- (CMB- (CMAQ)  (CMAQ)  (CMAQ burnning plant
LGO) LGO) LGO) LGO) LGO) (CMAQ)  (CMAQ)

LDGV 1.00

(CMB-LGO)

HDDV 0.65 1.00

(CMB-LGO)

SDUST -0.03 0.08 1.00

(CMB-LGO)

BURN 0.20 0.16 0.11 1.00

(CMB-LGO)

CFPP 0.58 0.71 0.00 0.12 1.00

(CMB-LGO)

gasoline 0.42 0.52 -0.07 0.31 0.37 1.00

(CMAQ)

diesel 0.39 0.48 -0.05 0.29 0.35 0.97 1.00

(CMAQ)

dust 0.50 0.50 -0.21 0.22 0.41 0.86 0.88 1.00

(CMAQ)

wood- 0.38 0.47 -0.02 0.28 0.39 0.76 0.80 0.79 1.00

burning

(CMAQ)

power- - - - - - - - - - -

plant

(CMAQ)

Table 5-4. Correlations (R) between CMB-LGO and QMAased source contributions
to PMpsat CTR

LDGV HDDV SDUST BURN CFPP  gasoline  diesel dust Wood- power-
(CMB- (CMB- (CMB- (CMB- (CMB- (CMAQ)  (CMAQ)  (CMAQ burnning plant
LGO) LGO) LGO) LGO) LGO) (CMAQ) (CMAQ)

LDGV 1.00

(CMB-LGO)

HDDV 0.36 1.00

(CMB-LGO)

SDUST -0.27 -0.19 1.00

(CMB-LGO)

BURN -0.12 -0.16 -0.02 1.00

(CMB-LGO)

CFPP 0.72 0.34 -0.20 -0.12 1.00

(CMB-LGO)

gasoline 0.36 0.30 -0.23 0.25 0.47 1.00

(CMAQ)

diesel 0.35 0.34 -0.23 0.28 0.47 0.94 1.00

(CMAQ)

dust 0.57 0.44 -0.36 0.19 0.56 0.81 0.85 1.00

(CMAQ)

wood- 0.20 0.39 -0.22 0.29 0.20 0.65 0.64 0.74 1.00

burning

(CMAQ)

power- 0.18 -0.07 -0.09 0.01 0.28 0.48 0.46 0.25 0.10 1.00

plant

(CMAQ)
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Figure 5-7. Average daily modeled emissions inntioelel cell where the JST site is
located
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When comparing the results it is important to ggepe some of the limitations
and issues arising from the use of CMB-LGO, countiiig to the discrepancy between
the two sets of results. First, as previously noadd, there is some collinearity between
the source categories, introducing more fluctuationsource impacts than is likely true.
In addition, CMB-LGO is limited by the availabilityf ambient data. One such example
is the zero contribution of diesel vehicles on J28y 2001 estimated using CMB-LGO
(see Figure 4), which is unlikely. This “error’ the result of there being no EC
measurement on that day, so EC concentration wasaded as the monthly average.
The high uncertainty associated with that valueilted in a low EC weighting in the
error function; thus, EC levels were very poorlgaestructed for that day (17% of the
filled-in value) and nearly no mass was apportiotzethe HDDV category.

There are also issues pertaining to the use gbdealy constant source profiles
in CMB applications. For instance, BMcomposition from mobile sources depends on
driving mode (Shah et al.,, 2004), and the compmsivof PM,s from wood burning
depends on the type of wood and the burning pexti€how et al., 2004b). Also, any
receptor-based analysis is driven by point measeiésn with very local influences.
Finally, measurement error of BMcomponents introduces noise to the apportionment

process.

5.3.3 Temporal variation in source impacts

To assess the degree to which results from CMB-L&@ CMAQ track the
temporal variation in expected source tracer speci® calculated the correlations
between these modeled daily source impacts andaiheambient species concentrations

at JST (Table 5-5). CMB-LGO source impacts areatated with the expected tracers:
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EC, OC, Zn, CO, and NJor gasoline and diesel vehicles; crustal eleméntp Si and
Al) for the soil dust contribution; potassium (Korfwood burning; selenium (Se) and
SO, for power plants. CMAQ source apportionment is lmeded on the ambient data, but
a similar test gives additional insight to the &ast driving the CMAQ source
apportionment results. All of the source impacts @ost correlated with EC. EC is the
most abundant component of PMhat is entirely primary, and, therefore, is intpan
indicator of atmospheric stability. (Other major PAMomponents, such as sulfate or OC,
are either nearly entirely secondary in nature,contain a large portion that is
secondary.) Variations in CMAQ-based source impactsmainly due to variations in
meteorology, and more specifically to the resultsan@teorological modeling; hence,
these impacts are mostly correlated with measu@dREvalues ranging between 0.36-
0.64). (Hogrefe et al., 2001) showed that metegiold models, and hence air quality
simulations based on those results, do not cafine scale temporal and spatial
variations.

We also performed a sensitivity analysis for thdB=LGO solution, changing
the ambient concentrations of one Pj\domponent by onetf standard-deviation of the
log-normalized values per analysis. Results from #malysis (Table 5-6) indicate that
the gasoline vehicle contribution is most sensitov&n, CO and NQconcentrations (Zn
is present in the lubricating oil of both gasolar&d diesel vehicles; however, its fraction
in emissions from gasoline vehicles is higher.) Tdesel vehicle category is most
sensitive to EC. Soil-dust is most sensitive te@@icentrations (Al was not included in
the model error function (Marmur et al., 2005) atiterefore, was not included in the

sensitivity analysis). Vegetative burning is moshstive to K levels. The power-plant
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contribution is most sensitive to $@nd Ca. The sensitivity of the secondary/other OC
category to OC levels, and the lack of such seisitin the other categories, indicates
that OC is not a driver of the source apportionmehtrimary PMs (OC is first
apportioned to the sources of primary Pjvand only thereafter any OC unaccounted for
is apportioned to the other/secondary OC categoeyice, any change in OC levels
would affect the other/secondary OC category first)

It is important to analyze the measurement acguiEcthe driving species,
especially in the case of trace level metals, susnthat they are significantly above the
detection limit. Average ratios of ambient concatitms to the minimum detection limits
for various trace metals (Table 5-7) indicate tAatconcentrations are typically well
above the detection limit, adding confidence inglsoline-vehicle source attribution; so
are the concentrations of Si, K and Ca, which wdsmntified as key species in the
attribution to the soil-dust, vegetative burningl gsower-plant categories, respectively.
One interesting result of the sensitivity analyses that the CFPP contribution was not
very sensitive to Se levels, even though Se is iguenmarker for coal combustion.
However, the data in Table 7 indicate that the &muof the Se measurement is low
compared to Ca, and in some cases Se concentratiapsbe near or lower than the
detection limit. This explains why lowering the $encentrations did not cause a
reduction in the CFPP contribution (as the conediain approaches the detection limit,
the weight in the error function is reduced), andywncreasing Se concentration did
cause an increase in this contribution (as Se demerease above the detection limit, so

does the weight in the error function).

120



Table 5-5. Correlations (R) between source coniiobg and ambient species
concentrations measured at JST

CMB-LGO CMAQ
LDGV  HDDV ~ SDUST BURN  CFPP  Gasoline  Diesel Dust B\ﬁ/r?u?r?g E?ﬁ:’r"g
EC 067 0.94 022 0.25 0.00 0.56 055 0.64 064 360
oc 069 0.76 -0.25 0.34 013 0.48 0.45 0.58 057  300.
Al -0.23 012 0.96 -0.02 0.06 -0.03 0.03 018 2. -0.07
As 021 0.23 -0.01 0.15 0.34 0.15 0.14 0.19 015 060
B 059 0.40 -0.24 0.46 -0.02 0.41 0.40 0.46 043 290
Ca  -0.08 0.17 0.63 0.19 0.53 0.18 0.28 0.00 005 000
Fe 037 0.42 0.60 0.29 0.18 0.42 0.44 0.30 016 501
K 046 0.24 0.09 071 0.01 0.25 0.24 0.29 023 040,
Mn 019 0.29 0.43 0.14 0.24 0.42 0.41 0.20 015 402
Pb -0.04 0.03 0.03 -0.03 0.51 -0.02 0.02 007 060.  -0.07
Se  -0.08 0.15 0.13 0.08 0.58 0.07 0.09 -0.05 003 001
s -019 -0.10 0.98 0.03 0.19 0.02 0.10 0.14 026 -0.06
T -0.12 0.00 0.90 0.09 0.15 0.07 0.12 -0.10 023 -0.06
zn 082 0.44 032 0.41 011 0.54 0.42 0.58 053 170
s 041 0.24 2015 0.34 0.58 032 0.28 0.40 0.31 0.20
co o081 0.67 -0.24 0.34 -0.06 0.58 0.53 0.77 067 310
NO,  0.90 0.63 -0.23 0.33 -0.09 0.57 0.49 0.73 0.64 0.17

Table 5-6. Change in average species concentraimhgsverage source-attributions
corresponding to a decrease/increase of one stid@aration of the log normalized
species concentrations Correlations (R) betweerceaontributions and ambient

species concentrations measured

Average conc. relative

to base case

Average source-attribution relative to base ¢asg, / +0iog)

(-Giog / +0icg) LDGV HDDV SDUST BURN CFPP OtherOC
EC 0.55/1.81 1.04/0.89 0.34/2.13 0.99/1.02 01980 1.03/0.98 1.06/ 0.91
oc 0.57/1.77 0.97/1.01 1.02/1.00 1.00/ 1.00 Joitecil 1.01/1.00 0.30/2.27
As 0.45/2.22 1.00/1.00 1.00/0.99 1.00/1.00 0.99/1.0  1.00/1.00 1.01/0.99
Br 0.48/2.07 1.00/1.00 1.01/0.99 1.01/0.99 0.941.0  1.00/1.00 1.02/0.98
Ca 0.57/1.76 0.98/1.02 1.01/0.98 1.01/0.97 ks 0.72/ 1.44 1.01/0.99
Cu 0.31/3.20 0.99/1.03 1.00/0.99 1.00/1.00 1.00/1.0  1.00/1.00 1.00/0.99
Fe 0.60/ 1.67 0.98/ 1.00 1.01/1.00 0.91/ 1.00 /11000 0.99/ 1.00 1.00/ 1.00
K 0.63/ 1.59 1.01/1.00 1.06/ 0.90 1.01/0.98 01697 1.03/0.96 1.09/ 0.86
Mn 0.46/2.18 1.00/1.00 1.00/1.00 0.95/1.07 1.001.0  1.00/1.00 1.00/1.00
Pb 0.34/2.93 0.99/1.04 1.00/0.99 1.00/1.00 1.00/1.0  1.00/0.99 1.00/0.99
Se 0.48/2.10 1.00/ 0.98 1.00/ 1.00 1.00/ 0.97 JiT0) 1.03/1.19 1.00/ 1.00
Si 0.41/ 2.46 1.01/0.97 0.99/ 1.02 0.40/ 2.07 10026 1.04/ 0.84 0.99/1.01
Ti 0.64/1.55 1.01/0.99 1.00/1.00 0.94/1.08 1.001.0  0.99/1.01 1.00/1.00
Zn 0.53/1.88 0.62/1.23 1.12/0.93 1.05/ 0.96 11001 1.22/0.95 1.07/0.95
SO, 0.34/2.95 0.89/0.97 0.99/1.02 1.10/0.82 1.6861  0.37/2.23 1.00/ 0.99
co 0.58/ 1.72 0.72/1.08 1.14/0.97 1.03/0.99 01930 1.19/0.96 1.05/0.98
NO,  0.53/1.88 0.71/ 1.06 0.93/1.03 1.05/ 0.99 1.0890  1.06/0.98 1.04/0.99
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Table 5-7. Average and standard deviation of thie cd ambient concentration (Conc.)
to minimum detection limit (MDL). The higher thetig the more accurate the
measurement.

Species (Conc./MDlg)g

As 1.82+2.01
Ba 0.58+0.25
Br 5.55t3.26
Ca 4,15+2.59
Fe 161+89.1
K 8.68t4.58
Mn 2.01+1.43
Pb 4.02:11.63
Se 2.11+1.86
Si 9.91+11.5
Ti 0.770.56
Zn 14.5:8.81

In terms of the number of species influencing ezatiegory, if each category was
driven by only one species, one might consider gitive health analysis using ambient
concentrations of that species, without the appontient into categories. However, most
of these key species are not unique indicatorssirfigle source category; they are present
in emissions from several categories (e.g., Si @adn both soil dust and power plant
emissions) and do not represent one specific saategory. Some of the categories are
driven by more than one species, such as Zn, CON&ydor LDGV and SQ and Ca for
CFPP, and others have “secondary” driving spesiesh as Fe and Mn for SDUST and
Br for BURN. Finally, source-apportionment resudts be used to reveal which are the
species most associated with various source cadsgaf one were to interpret an

association with a species as an indication ofuacserelated health outcome.

5.3.4 Spatial representativeness
A major issue regarding the use of receptor-basedce apportionment results in

health studies is the spatial representativenesiseosite. For example, Ito et al. (2004)
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report that the temporal correlation of source intpacross three monitors in New-York
city, 2-6 miles apart, varied significantly for soas of primary particulate matter. To
address this issue for the Atlanta study, we aksonened speciated PM data from the
EPA-STN (Speciation Trends Network) monitor (US-BP#& South-Dekalb (SDK),
located 15.3 km south east of the JST site. The SIX is located near the 1-285
interstate (“perimeter”) that encircles much of #ganta metropolitan area, while the
JST site is located more towards the center ofrddlaapproximately 2 km east of the I-
75/85 interstate (Figure 5-8). As the STN and SEAR®@tworks differ with respect to
the carbon analyses method, Thermal Optical Trattesngie (TOT) and Thermal Optical
Reflectance (TOR), respectively (Chow et al., 2Q004tais not possible to conduct a
CMB analysis of the SDK data using the same soproéles used for the JST case
(these were based on TOR carbon measurements).2s@nd CO were not monitored
at the SDK site, so CMB-LGO cannot be used. Instemel compared levels and
variations in major tracers for the various categpnat the two sites. Data from March
2001 through December 2002 were used (sampleskat&ide collected every third day,
so 220 samples were available for comparison). dgkdd at K as an indicator for wood
burning, Si and Fe as indicators for soil dust, &edfor coal fired power plants (even
though the CFPP contributions were more sensitv€a concentrations, Ca is by no
means a unique tracer for CFPP, and is often epeetlwith elements such as Si and Fe,
indicative of soil dust). There is no unique PMnarker to separate gasoline and diesel
vehicles contributions. To evaluate mobile sou@es whole, EC seems to be the most
suitable (OC is patrtially secondary), but the congom between EC at JST and SDK

will include some noise due to the two differentheiques used (TOR and TOT). EC is
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also emitted from wood burning and other processest cannot be view entirely as
mobile-source related. We also examine Zn datait agas correlated with gasoline

vehicles impacts at the other sites examined.

Figure 5-8. Location of JST and SDK monitoring Siéth respect to major interstates in
Atlanta

Potassium levels at JST and SDK are highly caedl@Figure 5-9). This likely
indicates a spatially homogeneous source (resmléndustrial wood combustion) or
distant plume sources (prescribed agricultural imghrhitting the two monitors similarly.
Crustal elements (Si, Fe) are also highly corrdlatedicating regional/global dust
events, and/or soil moisture resuspension effeassuming that rain events occur
similarly at the two sites, and that soil moistared wind speed have a strong influence
on the resuspension of local dust. However, wheh I8i events are excluded, the
correlation is lower, indicating local effects (tlgh Fe correlations still remain high). Se

is poorly correlated between the two sites, likegpresenting the directionality of
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impacts from power plant plumes. This is also destrated in (Wade et al., 2004),
where SQ@ concentrations (as a power plant marker) were lémst spatially
homogeneous of the primary gaseous pollutants. &€lations are surprisingly high,
considering the differences in measurement (TORT@S[) and location in proximity to
major highways. One possible explanation for thghhtorrelation can be the role of
atmospheric stability in daily variations of EC @aather pollutants) concentrations. Zn
correlations are also relatively high, but drop wineitliers are excluded. These findings
are in overall agreement with data from (Wade gt2804) in which CO (as a mobile
source tracer) measurements at three sites intAtlat.5-16.8 km apart, were correlated
at levels of 0.65-0.76. Such results provide infation about spatial variability of source
impacts and site representativeness in the Atlané@. Wood burning and soil dust
contributions found at either site seem to be inadbt spatially representative of the
Atlanta urban area, as indicated by the correlatminpotassium, silicon and iron. Power
plant impacts seem to be local, based on the |der-site selenium correlations. It is
difficult to draw conclusions regarding the spati@presentativeness of mobile source
impacts due to the lack of a unique marker and @@.dowever, weighing both the EC
and zinc correlations, it seems that mobile sourtepacts are “intermediately”
representative, i.e., likely more spatially repreagve than power plant impacts, but less
than wood burning and soil dust impacts. Note tthese results are based on a

preliminary analysis of two sites in Atlanta, andymepresent a local phenomenon.
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Figure 5-9. Time series comparison between ambigmtentrations at two Atlanta
monitoring sites located 15.3 km apart (SDK and)J8iTK (a), Si (b), Fe (c), Se (d), EC
(e) and Zn (f)

5.4 Discussion
Associating health outcomes with sources, rathan tpollutants, may have
several advantages relating to both the epidemimlogodeling process and the
regulatory process. For such analyses, source is\tizat capture both the temporal and
spatial variability need to be generated. Receptodels, such as CMB-LGO, capture
more of the temporal variation in source impacta apecific receptor site, compared to
emissions-based models, though this variation nbghtverestimated due to collinearity
between sources. Being driven by data at a sintge receptor models may have some
significant shortcomings with respect to spatigiresentativeness and exposure issues.

Source apportionment results from emission-basedempsuch as CMAQ, may be more

126



spatially representative, as they represent an ageergrid-cell value. However,
limitations in the ability to model fine-scale metelogical fluctuations and daily
fluctuations in emissions lead to results beingetrimainly by regional meteorological
trends (atmospheric stability), likely underestimgtthe true daily variations in source
impacts.

The impact of a lack of spatial representativersfsestimated source impacts,
anticipated in receptor modeling output, would Ifjkentroduce a bias to the null in
epidemiologic models (i.e., an attenuation of thsesved association). The degree of
spatial representativeness varies by source, auitsdor those sources with poor spatial
representativeness (such as power plants) will lsagesater degree of bias to the null.
By characterizing the degree of spatial represeetatss, investigators can take
measures to handle this issue, such as reducirgjutig area included in analyses for the
less representative sources, or possibly using ftata several monitoring sites, if
available. The impact of relatively limited camuof true day-to-day variation in the
source impacts, anticipated to be more of an iggitie emissions-based models than
receptor models (though these may over-estimateethporal variation), is also likely to
be a bias to the null in the epidemiologic moddisthe case of emissions-based models,
the fact that the day-to-day variation in the seuapportionment estimates is in large part
a result of the meteorological conditions, and atgluenced to a lesser extent by fixed
day-of-week and seasonal patterns in the estinetadsions input, could lead to model
instability, intractable confounding by meteoroloagi conditions and temporal factors
such as day-of-week and season, as well as limgefulness in discerning the relative

impacts of the sources on health outcomes.
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CHAPTER G
INTERMETHOD VARIABILITY IN ASSOCIATIONS BETWEEN
SOURCE-APPORTIONED PM,s AND DAILY EMERGENCY -

DEPARTMENT VISITSIN ATLANTA, GA

Abstract

Recent particulate-matter (PM) health effects netehas focused on identifying
the specific components of aerosol that pose theatgst health risks, but few
epidemiologic studies have included source apparient data in their examinations of
PM health effects. This paper presents and analyesslts from source-specific
epidemiologic analyses in Atlanta, Georgia, usingtad from several source
apportionment methods (Positive Matrix FactorizaipMF] and the first application of
a Chemical Mass Balance [CMB] model in a healtligfuAtlanta is a unique location
for conducting this type of health effects studyegi the existence of an extensive time-
series of daily chemically-resolved aerosol measerds, detailed gaseous pollutant
monitoring and corresponding hospital records. Respethodological differences and
uncertainties in the apportionment process, gogdemgent was observed between the
CMB-LGO (Lipschitz Global Optimizer) and PMF basask ratios, indicating to the
usefulness of applying apportionment methods in Itlhheatudies. Preliminary
epidemiologic analysis found mobile-source rela@d, s significantly associated with
cardiovascular outcomes; wood burning 2Mignificantly associated with respiratory

outcomes; soil dust significantly associated witsthena. “Other” OC was found
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significantly associated with various respiratomytammes, with high risk-ratios (RR),
though further analyses, such as based on longasata, are needed to support this
finding. Temporal patterns in source impacts sutgggt “other” OC is associated with
secondary formation. Despite generally good agesrbetween RR estimates based on
source contributions and tracer species, sourcerappment and sensitivity analyses are
needed to determine the most suitable tracers #&wh esource-category. Source
apportionment methods (CMB-LGO in this case) cavo a@erve as a useful tool for
estimating SOA concentrations (especially, in @ SOA tracer) and associated health

effects.

6.1 Introduction

Recent particulate matter (PM) health effects netehas focused on identifying
the specific components of aerosol that pose thatgst health risks (Hauck et al., 2004;
Heal et al., 2005; Mar et al., 2000; Metzger et 2004a; Metzger et al., 2004b; Peel et
al., 2005). Few epidemiologic studies, however ghacluded source apportionment data
in their examinations of PM health effects (Ladémale 2000; Mar et al., 2000; Thurston
et al.,, 2005). Associating health outcomes with reespecific PM has several
advantages relating to the epidemiologic modelinecgss, such as better treatment of
multi-component interactions, and can provide ingar information to regulators to
tighten controls on sources more prone to caus@aitih outcomes. There are, however,
uncertainties regarding optimal methods for condgcPM source apportionment, as
well as a lack of suitable air quality and healtte@s data for analysis. A recent study

examined the association between mortality andcesrgsolved PM measurements using
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several principal components and factor analysmagrhes (Thurston et al., 2005), and
found that variability among the source-specific rtality risks was small when
compared to overall model uncertainty, suggesthmg these apportionment methods
may be useful in discerning source-specific healtacts. These findings were based on
a relatively limited sample size and, thus, wer¢ alodle to robustly identify specific
source categories (e.g., mobile sources). Quest@is® remain concerning the
generalizability of these findings to other locasowith different aerosol compositions
and whether analyses using other source apportioinmethods, notably chemical mass
balance (CMB) and source-based modeling, will sHewsame pattern of agreement.

In this chapter, results from source-specific epiddogic analyses in Atlanta,
Georgia, using data from several source apportiomnmeethods are presented and
compared. Atlanta is a unique location for condwgtihis type of health effects study
given the existence of an extensive time-serieslaly chemically-resolved aerosol
measurements and corresponding hospital recordehwiave been characterized in
several atmospheric dynamics (Hansen et al., 260ffi)sen et al., 2003), source
apportionment (Kim et al., 2004; Marmur et al., @0Marmur et al., 2005) and

epidemiologic analyses (Metzger et al., 2004a; Matzt al., 2004b; Peel et al., 2005).

6.2 Methods

6.2.1 Sour ce apportionment of the Atlanta aer osol
Several source-apportionment studies have beenucted on speciated RM
(PM smaller than 2.5m in size) data collected at the SEARCH Jeffersimae$ (Hansen

et al., 2006; Hansen et al., 2003), which alsoestias the former Atlanta PM Supersite
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(Solomon, 2003). Source-apportionment methods egpinclude both the traditional
Chemical Mass Balance (CMB) model and an expandstB Gnodel (CMB-LGO,
incorporating the Lipschitz Global Optimizer) (Marmet al., 2005), Positive Matrix
Factorization (PMF) (Kim et al., 2004) and Model&BIAQ (Community Multiscale
Air Quality model), an emissions-based air-qualipdeling system (Marmur et al.,
2006). Findings from these studies assisted irséhection of the most suitable source-
apportionment results to be applied in the epidérgio study.

A comparison of results based on CMB and CMB-LGQalMur et al., 2005)
indicated that collinearity in source compositiomsght lead to “misplacement” of
emissions between source-categories and to incteksly variability in source impacts
when using the traditional CMB model. Such issuesdampened out significantly when
the CMB-LGO approach is applied, as shown for gaselehicles (GV) and primary
PM, s coal-fired power plant (CFPP) contributions (Fg-1). By applying the CMB-
LGO approach, more plausible results were alsoimédafor soil-dust, which is anti-
correlated with the CFPP contributions (both richcrustal material) in CMB (R=-0.23
for the period of 8/1998-8/2000, as it is zeroetlwhenever CFPP contribution peaks),
and not correlated with CFPP in CMB-LGO (R=0.07pected, due to the episodic
nature of these two categories, expressed by dmshs and plume fumigation events).
More plausible results were also obtained for vaget-burning (BURN) and “other”
(unapportioned) OC. “Other” OC includes secondaigaaic aerosol (SOA) as well as
any primary OC of sources not accounted for (ifspre). It is therefore unlikely to
observe no “other” OC/SOA in Atlanta during sumrmed, as estimated by CMB on

specific August days (Figure 6-2). This is likelhetresult of overprediction of the BURN
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impacts (rich in OC) by CMB, as also observed eydkier-allocation of K on those days
(Figure 6-2). These trends are also observed irconelations (R) between the BURN
and “other” OC categories (-0.14 in CMB; 0.30 in BNIGO). These increased source-

intercorrelations are an indication of reduced inebrity in the CMB-LGO solution

compared to “regular” CMB.
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Figure 6-1. Daily PMs source impacts of gasoline vehicles (GV; a) aral-ticed power
plants (CFPP; b) for select periods. CMB resultsilgik more variability in daily source
impacts than results based on CMB-LGO, with extrametributions accompanied by
extreme over-predictions of CO and Sf@ncentrations.
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Figure 6-2. Daily PMs source impacts of vegetative-burning (BURN) andhéo’
(unapportioned) OC based on CMB and CMB-LGO, alaiyy the ratio of calculated-
to-observed K.

Source apportionment of the Atlanta aerosol has bé&en performed using the
PMF model (Kim et al., 2004). Comparing these rsstd those based on CMB-LGO
(Marmur et al., 2005) for the period of Novembe®839 August 2000, average source
contributions are in good agreement (Table 6-1m&differences arise regarding which
specific categories are identified such as coaldffpower plants, identified in CMB-LGO
only, and cement, railroad, bus/highway and meiedsessing factors, identified in PMF
only. One of the major differences between PMF @MB-LGO is the treatment of
secondary organic aerosol (SOA). In PMF, no speddctor was identified as SOA;
rather, SOA mass is distributed between severagoaies, primarily the secondary
sulfate 2 factor as well as other factors (Kim let 2004). In CMB-LGO, SOA mass is
apportioned to the “other” (unapportioned) orgamigterial category, which accounts for
nearly 20% of the Pl mass. Comparing the correlations between dailycgommpacts
based on these two methods (Table 6-2), good agraeis1observed for the diesel, soll

dust, wood burning, ammonium-sulfate/secondary-sulf and ammonium-
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nitrate/secondary-nitrate source-categories/faciResatively poor agreement is observed
for the gasoline vehicle contributions (R=0.50) fdiot, gasoline vehicle PM based on
PMF is relatively highly correlated with CMB-LGO tleer” OC (R=0.79). Scatter plots
of CMB-
LGO versus PMF source contributions (Figure 6-3vwsimumerous cases when the PMF
based diesel contribution is zero, as well as adewilar cases for both the PMF and
CMB-LGO gasoline contributions. Such results arékety to be the case in the center
of a large metropolitan city such as Atlanta. Alduserved are several outliers in the
CMB-LGO wood/vegetative burning contributions. Te@spresent samples collected on
the days surrounding July"4of 1999 and 2000, and contained high concentrsitizfn
potassium due to fireworks. As no “fireworks” soeirevas included in the analysis,
CMB-LGO apportions much of the potassium into thegetative-burning category,
resulting in high PMs contributions due to the associated OC in thecsoprofile for
this category. In the PMF analysis, potassium aunteas adjusted to exclude the
contribution of fireworks, resulting in negligiblerood burning contributions. Also
evident (Figure 6-3) is the higher correlation betw CMB-LGO “other” OC and PMF-

gasoline, compared to the inter-method gasolinéritanions.
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Table 6-1. Average source contributions to ;RNh Atlanta (Jefferson St.) based on
CMB-LGO and PMF for the period of November 1998 ugést 2000

Source category % of P\, CMB-LGO % of PM, 5, PMF
Gasoline vehicles 7.6 5.8
Diesel vehicles 9.1 9.3
Soil dust 1.9 2.7
Vegetative/wood burning 5.8 5.8
Coal-fired power plants (CMB-LGO) 0.8 -
Cement (PMF) - 1.8
Ammonium-sulfate (CMB-LGO) /
Secondary sulfate 1 (PMF) 38.5 46.3
Ammonium-bisulfate (CMB-LGO) /
Secondary sulfate 2 (PMF) 2.6 5.5
Ammonium-nitrate (CMB-LGO) /
Secondary nitrate 1 (PMF) 8.6 7.7
Railroad (PMF) - 2.3
Bus/Highway (PMF) - 1.6
Metal processing (PMF) - 2.9
"Other" organic material (CMB-LGO) 19.8 -
Unspecified mass 5.2 8.2

Table 6-2. Correlation matrix (R) of daily sourcentributions to PMs in Atlanta
(Jefferson St.) based on CMB-LGO (columns) and PWtws) for the period of
November 1998 — August 2000

Gasoline  Diesel Soil Burn. CFPP  AmSulf AmBsIf AmNi OtherOC
Gasoline 0.50 0.62 0.12 0.54 0.05 0.03 -0.02 0.21 .790
Diesel 0.64 0.78 0.15 0.50 0.22 0.14 0.02 0.17 0.68
Soil 0.19 0.15 0.97 0.22 0.19 0.08 -0.05 -0.14 0.10
Wood 0.31 0.25 0.03 0.78 -0.04 0.05 0.05 0.16 0.39
Cement 0.43 0.19 0.18 0.10 0.51 0.20 -0.06 0.00 50.0
Sec.Sulfl] 0.02 0.17 0.22 0.16 0.24 0.95 0.21 -0.11 0.30
Sec.Sulf2] -0.05 0.11 0.08 0.02 0.17 0.42 -0.01 -0.07 0.34
Sec. Nitr 0.26 0.09 -0.27 0.17 -0.01 -0.15 0.22 20.8 0.01
Railroad -0.12 0.16 0.04 -0.38 0.02 0.09 -0.13 20.2 0.00
Bus/Hwy 0.44 0.33 0.13 0.26 0.06 0.05 -0.01 0.08 200.
Metal prc|] 0.67 0.31 0.10 0.27 0.13 0.06 -0.01 0.21 0.31
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Figure 6-3. CMB-LGO vs. PMF source contributionsgaifsoline vehicles (a; R=0.50),
diesel vehicles (b; R=0.78), soil dust (c; R=0.9¥pod/vegetative burning (d; R=0.78,
R=0.87 when July % fireworks related samples are excluded) and CMESL®ther”
OC/PMF gasoline (e; R=0.79) for the period of Nobkem1998 — August 2000

To better understand what the “other” (unapportiyn®@C category represents,
we analyzed the weekly and seasonal patterns hefbOC contributions, as well as in
other carbon-rich categories (gasoline, diesel, dvo&igure 6-4). “Other” OC
contributions exhibit a fairly flat weekly patternin contrast to the strong
weekday/weekend pattern exhibited for mobile saurckn addition, “other” OC
contributions peak in summertime (quarter 3 in Feg6-4b), while the other categories
peak in winter, likely due to reduced atmospherigimg and increased emissions (wood
combustion and cold-start emissions from mobilerses). These trends support the
assumption that “other” OC is indicative of SOA centrations. Similarly, a sensitivity

analysis for CMB-LGO (Marmur et al., 2006) indicatéhat “other” OC is strongly
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sensitive to OC levels, and weakly sensitive toagsium and EC, which strongly
influence the wood burning and diesel contributicgspectively. An equivalent analysis
for gasoline, diesel and wood burning contributidbesed on PMF indicated similar
seasonal patterns, but the weekly patterns werasypical (Figure 6-5).

In addition to the receptor-based source apporterirmethods (CMB, PMF), an
emissions-based approach to source-apportionmest also considered. However,
analyzing source apportionment results from an sons-based air quality model
(Models-3/CMAQ) and comparing those to ambient llevef tracer species and to
receptor based source-apportionment results (Maehwal., 2006) found that the air-
qguality model is driven in large by regional metdogical trends and likely
underestimates the temporal variability in sounegacts, and may therefore be less
useful in discerning the relative impacts of soaro@ health outcomes in time-series

studies of acute outcomes.
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6.2.2 Epidemiologic time-series analysis of source-apportioned PM, s and daily
emer gency-department visits

Based on the findings regarding the temporal trandsource impacts from the
various methods presented (CMB, CMB-LGO, PMF, Mee®ICMAQ), epidemiologic
analysis was conducted by collaborators at theif®&o®chool of Public-Health at Emory
University, using source-apportionment results fraB-LGO and PMF, as well as
ambient levels of source-indicative tracer speies Zn and EC as possible tracers for
mobile sources, Si and coarse-PM for soil-dustpKwood burning; Se for power plants;
Ca for cement) (Sarnat et al., 2006). RelativesriéRRs) associated with 3-day moving
averages of Pl levels were estimated using Poisson generalinedidimodels (Sarnat
et al., 2006), comparable to those used in prevamatyses of Atlanta data (Metzger et
al., 2004b; Peel et al.,, 2005). Respiratory outrmmeluded were asthma, chronic
obstructive pulmonary disease (COPD), pneumonigeupespiratory infection (URI)
and the sum of these outcomes (“all respiratorg€ardiovascular outcomes included
were cardiac arrest (CA), congestive heart fail@eF), dysrhythmia (DYS), ischemic
heart disease (IHD), myocardial infarction (Ml) ripleral vascular and cerebrovascular
disease (PERI), the sum of these categories (CviD}l@e sum of all circulatory diseases
(CIRC) between codes 390-459 in the Internationassification of Disease (ICD) codes
(i.e., the CVD chapter in the ICD codes). The emiddogic analysis was conducted for
the period of 11/19/1998-8/31/2000, with 503 daysluded (149 of the 652 days had

incomplete data).
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6.3 Results

Source-specific risk-ratios (RR) were computed f@msoline vehicles, diesel
vehicles, a combined mobile-source impact, wooddtadtye burning, soil dust,
ammonium-sulfate (secondary sulfate 1,2) and amumomitrate (secondary nitrate)
based on both CMB-LGO and PMF, for various respisaiand cardiovascular health
outcomes. Also computed were RR for coal-fired poplants and other/unapportioned
OC (CMB-LGO only), and cement, railroad, bus/highveand metals processing factors
(PMF only). RR for EC, OC, Zn, Fe, Si, BM PMarse K, SQ?, NO3, Se, CO and SO
were computed as well, to allow a comparison to sharce-specific RR. Since the
emphasis here is on source-specific health-outcom&sratios and associations are
sorted and presented by the various PM source amatsg(e.g., soil Pl was found to
be significantly associated with asthma). Howewaecausal relationship, if such exists,
would be in the opposite direction (e.g., shortaéncrease in incidence of asthma could
be partially explained by elevated levels of sdilf2).

Diesel and total mobile-source (sum of gasoline digsel) related Pt was
found to be significantly associated with the sumalbCVD (Figure 6-6), with an RR of
1.03 per change in one inter-quartile range (IQHR.for specific outcomes such as CA,
DYS, IHD, and MI were usually found to be insignédnt, possibly due to the increased
uncertainties from the smaller sample pools. Redati strong associations were found
between both gasoline and diesel 2Mind CHF, with RR in the range of 1.08-1.14
(Figure 6-6). PMF derived gasoline RPMwas found significantly associated with the

sum of all respiratory diseases (RR=1.02), and WethF-gasoline and PMF-diesel
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related PMs were found significantly associated with URI (Figu6-7). Significant
associations with pneumonia, asthma and COPD wetdound. In general, RR for
respiratory outcomes based on the PMF results wigieer than those based on CMB-
LGO results. When comparing mobile source relat®l tB those based on possible
tracers such as Zn, Fe and EC, as well as totalsP&els, better agreement was found
with Fe and EC, than Zn in CVD RR (Figure 6-6). significant difference was found
between RR based on total Pdand that based on mobile source related £fdr both
cardiovascular and respiratory outcomes, with #teeption of URI (Figure 6-7). CO was
generally more significantly associated with resfgry health outcomes than
cardiovascular outcomes.

Wood/vegetative burning related RPMwas found to be significantly associated
with several respiratory outcomes, such as COPD) & pneumonia. RR for total
respiratory ED visits were in the range of 1.0351(Bigure 6-8). Significant associations
with cardiovascular outcomes were not found (FigG¢8). An opposite trend was
observed for OC and total BM Associations with potassium followed the samedse
as the apportioned wood-burning Py but potassium-based RR were typically lower
than those based on CMB-LGO and PMF. RR based oB-C®IO results were typically
higher than those based on PMF.

Soil related PMs was found to be significantly associated with asth in
contrast to total PMs, and CMB-LGO derived soil Ppt was also significantly
associated with the sum of all respiratory outconfEgure 6-9). No significant
association was found with any of the cardiovascdia visits (Figure 6-9). Associations

with Si in the PMs size range were fairly similar, while no signifrtaassociations, both
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respiratory and cardiovascular, were found withreeaPM (PMs.19. RR based on
CMB-LGO results were typically higher than thosedhon PMF.

No significant associations, for both respiratond aardiovascular, were found
with coal-burning related PM (CMB-LGO) and the cement, bus/highway, railroad an
metals-processing factors (PMF), except for CHFhviabth cement and bus/highway.
However, primary PMs contributions from point sources, such as coadfipower
plants, have been shown to vary spatially (Marniwal.e 2006), which could potentially
attenuate a true association, if such exists.

Associations between both cardiovascular and naspy ED visits and sulfate
related PM s were insignificant (Figure 6-10), in contrast kmse with total Pils. This
included both the CMB-LGO AmSulf contributions, atte PMF secondary sulfate 1
and 2 factors, and is consistent with previousifigd from the Atlanta epidemiologic
study (Metzger et al., 2004b; Peel et al., 200S)milar patterns were also observed for
nitrate-related PMs from both CMB-LGO and PMF, but ambient nitrate wasnd
significantly associated with asthma/wheeze andstima of all respiratory outcomes
(Figure 6-11).

Strong significant associations were found betw&her’/unapportioned OC from
CMB-LGO and several respiratory outcomes (asthmeédzl, URI, pneumonia and sum
of all respiratory ED visits; RR between 1.04-1.1F)gure 6-12), in contrast to the
associations with total OC and with Rband these respiratory outcomes, though further
analyses, such as based on longer datasets, adednde support this finding.
Associations between cardiovascular ED visits asttiér” OC were also significant, but

similar to those with total OC and with BM(Figure 6-12).
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No significant associations were found betweenddrtiiese PM s source-categories

and two control outcomes (appendicitis, finger was)n(Figure 6-13).
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Figure 6-6. Preliminary cardiovascular related-ratos (95% confidence interval [CI])
for gasoline, diesel and total mobile-source rel&®®h s per change of one inter-quartile
range (IQR). Also shown are the RR for Zn, Fe, 8@l PMys and CO. Associations in
which the error bar does not encompass RR=1.06carsidered significant.
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Figure 6-7. Preliminary respiratory related riskaa (95% CI) for gasoline, diesel and
total mobile-source related BMper change of one IQR. Also shown are the RR for Z
Fe, EC, total PMs and CO. Associations in which the error bar doets ancompass
RR=1.00 are considered significant.
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Figure 6-8. Preliminary respiratory and cardiovédacuelated risk-ratios (95% CI) for
wood/vegetative burning related RMper change of one IQR. Also shown are the RR
for potassium (K), OC and total BN Associations in which the error bar does not
encompass RR=1.00 are considered significant.
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Figure 6-9. Preliminary respiratory and cardiovdacuelated risk-ratios (95% CI) for
soil PM, s per change of one IQR. Also shown are the equivd®R for Si, coarse PM
and PMs Associations in which the error bar does not emmass RR=1.00 are
considered significant.
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Figure 6-10. Preliminary respiratory and cardiowdescrelated risk-ratios (95% CI) for
sulfate-related and total P per change of one IQR. Associations in which therebar
does not encompass RR=1.00 are considered signtifica
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Figure 6-11. Preliminary respiratory and cardiowdescrelated risk-ratios (95% CI) for
nitrate-related and total P per change of one IQR. Associations in which therebar
does not encompass RR=1.00 are considered sigrtifica
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Figure 6-12. Preliminary respiratory (asthma, CORIRI, pneumonia, all respiratory)
and cardiovascular related risk-ratios (95% CI) @vIB-LGO “other’/unapportioned
OC, total OC and total PM per change of one IQR. Associations in which thierebar
does not encompass RR=1.00 are considered sigrtifica
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Figure 6-13. Control outcome (appendicitis, fingerunds) related risk-ratios (95% CI)
for various CMB-LGO source categories and totalBler change of one IQR. None of
the associations are significant.
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6.4 Discussion

Several significant associations were found betwesith-outcomes and source-
specific PM in this preliminary analysis. Mobile-source retht®M,s was found
significantly associated with cardiovascular outesirthough the RR were fairly similar
to those based on total BMand tracers such as EC and Fe. Associations withaZ
species which has been shown to strongly affealig@svehicles contributions in CMB-
LGO (Marmur et al., 2006), were largely insigniftaWood burning PMs was found
significantly associated with respiratory outcomegh higher RR compared to K, OC
(insignificant association) and total BM(barely significant association). Soil dust and Si
were found significantly associated with asthmajlevithe association between total
PM, s and asthma was not significant. “Other’/unappoid OC was found significantly
associated with various respiratory outcomes, ¥atily high RR (1.04-1.12), while the
equivalent associations with total OC and with 2Mere insignificant, though further
analyses, such as based on longer datasets, @aedrieesupport this finding.

Comparing the RR estimates based on CMB-LGO and PMgure 6-14), a
fairly high correlation is observed across all seucategories (R=0.84), except for the
nitrate related RR (surprising considering the goddr-method correlation between the
nitrate source contributions; see Table 6-2). Mglsi method consistently provides more
significant associations or higher RR. This is adigation that collinearity-generated
“noise” in CMB-LGO was minimal, likely not substaaity higher than in PMF, in which
orthogonality between factors is maximized. Theralehigh correlation between RR
based on CMB-LGO and PMF may be interpreted as rahication that despite

methodological differences and uncertainties, ssamportionment methods may be
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useful in discerning source-specific health effeSisilar findings have been reported by
(Thurston et al., 2005), however their analysis Waged to factor analytical techniques
(PCA, PMF, UNMIX). To our knowledge, this is thesfi time that a CMB model (CMB-

LGO, in this case) has been applied in a healtdystand the findings presented here
suggest that despite larger methodological diffeeenbetween PMF and CMB-LGO
compared to the methods used in (Thurston et @05R the conclusion regarding the

usefulness of applying source-apportionment methotsalth studies holds.
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Figure 6-14. Scatter plot of preliminary risk-ratidfor various respiratory and
cardiovascular health-outcomes based on PMF and-CGIB source contributions.

An alternative approach to applying source-apportient methods is to use

concentrations of tracer species directly in thaltheanalysis. For example, associations
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and risk-ratios for Fe and EC were found fairly gamto those based on mobile-source
contributions (Figure 6-6, 6-7), and similaritieer& also observed between K and wood
burning PM s (Figure 6-8) and Si and soil RMI(Figure 6-9). However, the RR based on
Zn, which has been shown to strongly affect gaseli@hicles contributions in CMB-
LGO (Marmur et al., 2006), exhibited a differenttpen compared to that of the mobile-
sources based RR. This serves as an example thetpaated tracer might not always
yield similar associations and RR as its suspeassdmed source. This is likely the
result of that tracer not being a unique tracerdaspecific source-category (i.e., it is
being emitted from various source categories). Aalysis of the source-apportionment
results based on (Marmur et al., 2005) revealeceraévdays in which (high) Zn
concentrations could not be explained by contrdngi of gasoline-vehicles, likely
indicating the presence of another source of Zntlwmse days (though on average,
gasoline vehicles contributed 82% of the ambientcdncentrations). If each source
category emitted a tracer unique to that categtivgn there would be no benefit in
applying source-apportionment estimates in theeapidlogic analysis, as the temporal
variation in the source-estimates would be idehticathat of each category’s unique
tracer. Given that potassium (K) is present in dadt as well as in wood burning PM
and that Fe is emitted from many sources other mthalpile sources, one cannot conclude
a priori that these can be used as surrogates for woodhiguamd mobile sources in a
health analysis. The validity of such a determorativould depend on the dominant
sources and source mixture in each air-shed/regjiatied. In the case of Atlanta based
on CMB-LGO results, 92% of K and 89% of Si are frarnod-burning and soil dust,

respectively. This can explain the good agreemetwden the species and source-impact
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based RR for wood burning and soil PMOnN the other hand, mobile sources contribute
only 23% of total ambient Fe (41% of apportioned ¢y 55% of Fe is accounted for
by the various source impacts), hence the goodeawgrt between the Fe and mobile-
sources based RR is surprising. In addition, Fe mid affect the mobile-source
contributions in CMB-LGO, based on a sensitivityalysis (Marmur et al., 2006). In
summary, despite generally good agreement betwdere®imates based on source-
impacts and tracer species, one cannot assupn®ri what tracer species can be used as
surrogates (unless these have been proven to Qeeuper source-category). Instead, it is
recommended to perform a source-apportionment ansitg/ity analysis, to identify the
key species driving the apportionment process,aqpdly both tracers and source impacts
in the health study.

Another interesting finding of the health study wWas strong association between
“other” OC and various respiratory outcomes (Figbfg2). “Other” OC includes both
secondary organic aerosol (SOA) and any primaryr@@Caccounted for by the other
source categories. While it is impossible to estinvehat portion of “other” OC is indeed
SOA, weekly and seasonal patterns (Figure 6-4)vedksas the results from a sensitivity
analysis (Marmur et al., 2006) and the fact that sburces of primary OC included in
this analysis comprise most of the OC in the emssinventory (Park et al., 2006) are
all indicative of SOA. If so, this serves as a gexdmple of the usefulness of applying
source-estimates in a health studies, as tracerS@® are still being investigated and
measurement techniques developed and refined. Heangd potential tracers are
oxidation products of terpenes (pinonic acid, piamd and nopinone) and isoprene

(methyl vinyl ketone and methacrolein), as tracefsbiogenic SOA. However, the
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sources of SOA and the relative contributions aheopogenic vs. biogenic SOA are still
being investigated and debated (Sullivan, 2006gs€hissue are further complicated by
the fact that speciation studies often identifyyohD-20% of the organic compounds
present, because the organic fraction covers a wiege of chemical and
thermodynamic properties (Maria, 2003). One coudstder applying the EC-tracer
approach (Turpin and Huntzicker, 1995) to estin®@A concentrations, but would then
need to assume a constant mixture of primary sewt®©C and EC (constant primary

OC to EC ratio), an assumption not needed/madévB-CGO.

6.5 Summary

Source-contributions based on CMB-LGO and PMF hlbsen applied in an
emergency-department health study. Despite metbgaal differences and
uncertainties in the apportionment process, goodesgent was observed between the
CMB-LGO and PMF based risk ratios, supporting theefulness of applying
apportionment methods in health studies. Prelipingpidemiologic analysis found
mobile-sources related RM significantly associated with cardiovascular outes;
wood burning PMs significantly associated with respiratory outcomesil dust
significantly associated with asthma and “other” Q@dicative of SOA) was found
significantly associated with various respiratontammes, with high risk-ratios, though
further analyses, such as based on longer datasets)eeded to support this finding.
Despite generally good agreement between RR estniased on source-contributions
and tracer-species, source-apportionment and satysiinalyses are needed to determine

which are the most suitable tracers for each seceit®gory. Source-apportionment
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methods (CMB-LGO in this case) can also serve asedul tool for estimating SOA

concentrations (especially, in lieu of a SOA trae@ard associated health effects.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

Conclusions

Particulate matter, especially particles smalleant2.5 microns in diameter
(PMzs), has been associated with adverse health eti@ctsnortality in studies covering
more than 150 cities. Studies of the effects opaitution on human health are typically
conducted using ambient measurements to reprdseairtquality over cities or regions.
However, the use of ambient data for such studigsduces several limitations such as
spatial representativeness of the monitoring siémalytical uncertainties, and
incompleteness and lack of continuity in data. Thenplex chemical composition of
PM,s and associated analytical uncertainties pose tadurchallenge when trying to
investigate species specific health effects. A dempntary approach is to examine
associations between health outcomes and sourogéisbeing to ambient Plg, which
can provide regulators with important informatiantighten controls on sources more

prone to causing health effects.

Temporal and spatial variability in measured and simulated PM 5 constituentsin
Atlanta, GA, and implicationsfor time-series health studies
Results from a long term air quality simulation weanalyzed in terms of the

model’s ability to simulate temporal and spatialiafility in concentrations of both

160



secondary and primary P components in Atlanta, GA. Seasonal variationsultiate
and nitrate concentrations were well captured gy rttodel, but the model's ability to
capture shorter-term (e.g., daily) variations, ¢gfly of interest in time-series health
studies of acute outcomes, was limited. Moreoves, gpatial homogeneity in ambient
concentrations of secondary RPMconstituents (such as sulfate and nitrate), sugges
limited benefit in applying simulated concentratibelds for these species in a time-
series health study when ambient measurements/aillalde. Concentrations of primary
PM, s constituents (such as elemental carbon), on therdtand, have much greater
spatial variability, and short-term variability ihese species is better captured by the air

guality model.

Optimization-based sour ce apportionment of PM 5 incor porating gas-to-particle
ratios

A modified approach to Pp4 source apportionment was developed, using source
indicative SQ/PM,5, CO/PM s and NQ/PM, s ratios as constraints, in addition to the
commonly used particulate-phase source profileslithohal information from using gas-
to-particle ratios assists in reducing collineabBtween source profiles, a problem that
often limits the source-identification capabilitiesnd accuracy of traditional receptor
models. The set of equations for the RMChemical Mass Balance (CMB) receptor
model were solved using a global-optimization paogy Lipschitz Global Optimizer
(LGO), subject to constraints on ambient gas-plaseentrations. Application of the
CMB-LGO model to a 25 month dataset of daily FjMneasurements (total mass and

composition) at the Atlanta Jefferson Street SEARS yielded source-contributions
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that seem more indicative of the named sources amedpto particulate-phase source
apportionment methods, based on correlations okthece impacts and tracer species.
Furthermore, collinearity between source-categofeeg., soil-dust and primary BM
from coal-burning; wood burning and “other” OC) wasluced in CMB-LGO, based on

higher source inter-correlations than in the “reguCMB model.

Optimized variable sour ce-profile approach for source apportionment

A further expansion of the CMB-LGO approach for R\Mource apportionment
was developed in which both the local source coimipas and corresponding
contributions were determined from ambient measardgsn and initial estimates of
source compositions. Such an approach can serveanasalternative to using
predetermined (measured) source profiles, as iwadity used in CMB applications,
which are not always representative of the regiod/@ time period of interest. This
technique was applied to a dataset of,Bkheasurements at the former Atlanta supersite
(Jefferson Street site), to apportion PMmass into nine source categories. Good
agreement is found when these source impacts anpared with those derived based on

measured source profiles as well as those derised) @ factor analytical technique.

Sour ce apportionment of PM s in the Southeastern United States using receptor
and emissions-based models: conceptual differences and implications for time-
series health studies
Two conceptually different approaches to sourcegmmnment were compared: a

receptor model and an emissions-based air-qualdgtetn The receptor model captured
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more of the temporal variation in source impacta apecific receptor site compared to
the emissions-based model. Driven by data at desisite, receptor models may have
some shortcomings with respect to spatial reprasigahess (unless a reduced study area
is used or data from multiple sites are availabl&ely attenuating the observed
association in a health study. Source apportionmesntits from emissions-based models,
such as CMAQ, may be more spatially representatsvéney represent an average grid-
cell value. Limitations in the ability to model dafluctuations in emissions, however,
lead to results being driven mainly by regional ewetlogical trends, likely
underestimating the true daily variations in logalirce impacts. These effects will likely
introduce an attenuation of observed associatiam realth study and limit the model's

usefulness in discerning the relative impacts efsburces on health outcomes.

I ntermethod variability in associations between sour ce-apportioned PM ;5 and daily
emer gency-department visitsin Atlanta, GA

Results from a preliminary source-specific PMepidemiologic analysis were
presented and analyzed for inter-method variabilityrisk-ratio estimates based on
source apportionment results from the Positive Mdtactorization (PMF) and CMB-
LGO models, as well as the direct application afcér species in the epidemiologic
study. Despite methodological differences and ungdres in the apportionment
process, good agreement was observed between theL@® and PMF based risk
ratios, indicating the usefulness of applying afipament methods in health studies.
Preliminary epidemiologic analysis found mobileis®u related PMs significantly

associated with cardiovascular outcomes; wood hgritM 5 significantly associated
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with respiratory outcomes; soil dust significandgsociated with asthma. “Other” OC
was found significantly associated with variouspregory outcomes, with high risk-
ratios (RR), though further analyses, such as basetbnger datasets, are needed to
support this finding. Temporal patterns in sounsgacts suggest that “other” OC is
associated with secondary formation. Despite gdlyegood agreement between RR
estimates based on source-contributions and tspmEsies, source-apportionment and
sensitivity analyses are needed to determine thst swatable tracers for each source-

category.

Future Research

Application of CMB-LGO other regions/periods

The advantages of incorporating gas-phase datiliBource apportionment, as
done in CMB-LGO, were demonstrated throughout thiesis. However, such
information is typically not included in source-a@pponment studies. Moreover, ambient
measurements of CO and S@re limited in number, as very few areas throughbe
USA are in non-attainment of the National Ambiemt AQuality Standards (NAAQS) for
these pollutants. However, these pollutants ar&ulias tracers, even if their significance
from a direct regulatory standpoint has declineterent decades. The findings presented
in this dissertation should promote the use of gasealata in source-apportionment and
encourage states and other regulatory agencieohitan CO and S@as part of their
observational network for understanding the sounfeBM, s in their region. Applying

CMB-LGO for other periods and regions will allowpanding and conducting more
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epidemiologic studies to broaden our understandinthe associations between P

sources and health.

Application of CMB-L GO to organic tracer measurements

The use of organic tracers for PMsource-apportionment is an emerging-field,
and organic-tracer based source-apportionment mgthte becoming a more common
practice for apportioning OC mass between the dmritng sources based on detailed
organic source “fingerprints” (Lee et al. 2005; &gbr and Cass 2000; Schauer et al.
2001; Schauer et al. 2002; Schauer et al. 200)@keal. 2002; Zheng et al. 2006). The
ability to detect dozens of organic species entatioe source-identification capabilities
compared to inorganic-based source-apportionmeoiveider, as with inorganic-based
source-apportionment studies, organic-tracer b&d& analyses are often limited by
collinearity issues and uncertainties in represesgiaess of source-profiles, as well as
detection-level issues in ambient measurements. {C®B can be applied to organic-
tracer measurements in combination with gaseousun@aents, to reduce collinearity
issues in the same manner as demonstrated foramorgneasurements. For example,
mobile-source markers such as hopanes and steaa@gzresent in both gasoline and
diesel vehicles, and splitting the contributiongtefse two categories is a challenge even
with organic-tracers. As with inorganic tracers, @@d NQ data can be helpful in
reducing collinearity between these two sourcesddition, CMB-LGO can be applied
to derive estimates of source-compositions and khelplentifying suitable literature

based source-profiles to be applied.
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Enhanced emissions-based sour ce-apportionment

Comparison of emission and receptor based soueragpnment results found
relatively poor agreement in the temporal variatiosource-contributions. This is in part
due to little temporal variability in emission estites in the emissions-based approach
and to the relatively coarse grid-resolution usd@ (km) compared to a point
measurement. The purpose of this study is to emhahe source-apportionment
capabilities of the Models-3 emissions-based madediystem. Developing and applying
a neighborhood-scale (~1 km grid resolution) metiegical model (Dandou et al. 2005;
Otte et al. 2004) may enable simulating local floaiterns from sources to the receptor.
To improve the estimates of mobile-source contring, data from “Commute Atlanta”
(Guensler 2006; Li et al. 2004; Ogle et al. 2008hich includes the collection and
analysis of second-by-second vehicle speed, pos#ind engine operating data from 470
vehicles in representative Atlanta households, dolbé incorporated. Information
gathered by “Commute Atlanta” provides near realetinformation on traffic conditions
and will allow to compute more accurate estimategime-dependant mobile-source
emissions, in contrast to the “typical emissionppm@ach currently used in Models-3
(Mobile-6/SMOKE specifically), which is based oratstical analyses of traffic counts
and the generation of “typical’ temporal patternsemissions, without adjusting PM
emissions for driving speeds. Actual fire emissiamaild also be incorporated, based on
information on the occurrence of major fire evemstead of using typical emissions,
and may improve the source contribution estimatesttie biomass-burning category.

Soil-dust emissions would be estimated as a funotibsurface wind-speed and soil-
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moisture, not accounted for in the current verab8MOKE, to improve the estimates of

soil-dust contributions to P)4 levels.

The effect of dampened temporal variability on risk-ratio estimates

Evaluating spatial and temporal patterns in meabsu@nd simulated
concentrations of secondary Pdcomponents such as sulfate, nitrate and ammonium
indicated that when ambient data are availablaetlees not seem to be a benefit in
using simulated concentrations of these species health study. This conclusion was
based on the ability of the air-quality model (CMAQ capture the short-term variations
in species concentrations and on the spatial hgemty in ambient concentrations of
secondary PMjs species. One direction for future research woeldobexamine the effect
of reduced temporal variability in species concaiins on robustness of findings from
an epidemiologic study. Adjustments would be madethe temporal variability in
ambient data to dampen out the variations arouedatlerage in different levels of
adjustment. Then, the sensitivity of the risk-ragigtimates to the temporal variability
would be analyzed. The expected effect of dampetesdporal variability is an
attenuation of the risk-ratio estimates. Howevérsa@ne level of adjustment, the risk-
ratios are expected to become insignificant. Bylyapg different levels of dampening to
temporal variability in ambient data, a “cutoff’lua may be identified for when risk-
ratios become insignificant (depending on pollut@mi outcome). Such a “cutoff” value
can be useful in determining whether the use otikitad concentration fields, exhibiting
dampened temporal variability compared to the Wana in ambient data, are expected

to yield robust estimates of significance of riskios.
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The effect of analysis-period on risk-ratio estimates

To evaluate the robustness of risk-ratio estimadesensitivity analysis of risk-
ratios to the analysis-period will be performediridsthe “Jackknife” statistical process,
subsets of data would be systematically droppedooet at a time and the resulting
variation in the risk-ratio estimated will be asss This analysis will enable evaluating
whether the risk-ratios obtained were driven byagly small number of days within
dataset of source-apportioned PMand emergency-department visits, or are

representative of recurring patterns in the data.

Closing Remarks

While much work remains, important insights haverbderived from this thesis
regarding source contributions to PMevels in the southeastern U.S.; performance of
various air-quality modeling techniques, both ewrgt and newly developed, in
simulating short-term variations in concentratiansl source-contributions to BM and
the implementation of some of these methods in -8arees health studies of the
associations between BMand various health endpoints. The findings of tissis
along with the above recommendations open numeswasues for potentially fruitful

future investigation.
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