A Second Generation User
Interface Design Environment:
The Model and The Runtime
Architecture
by
Piyvawadee "Noi" Sukaviriya

James D. Foley
Todd Griffith

GIT-GVU-92-24
September 1992

Graphics, Visualization & Usability
Center

Georgia Institute of Technology
Atlanta GA 30332-0280

A Second Generation User Interface Design Environment:

The Model and The Runtime Architecture

Piyawadee "Noi" Sukaviriya
James D. Foley
Todd Griffith

Graphics, Visualization, and Usability Center
Georgia Institute of Technology
E-mail: {noi, foley, griffith}@cc.gatech.edu

ABSTRACT

Several obstacles exist in the user interface design process
which distract a developer from designing a good user
interface. One of the problems is the lack of an application
model to keep the designer in perspective with the
application. The other problem is having to deal with
massive user interface programming to achieve a desired
interface and to provide users with correct help information
on the interface. In this paper, we discuss an application
model which captures information about an application at a
high level, and maintains mappings from the application to
specifications of a desired interface. The application model
is then used to control the dialogues at runtime and can be
used by a help component to automatically generate
animated and textual help. Specification changes in the
application model will automatically result in behavioral
changes in the interface.

KEYWORDS: Application Model, User Interface Model,
User Interface Generation, User Interface Design
Environment, Automatic Help Generation

1. INTRODUCTION

1t is desirable to have user interface system which allows
application programmers and interface designers to create
interfaces without programming and without having o
painfully learn tedious details of underlying toolkits. In
1988, we reported on UIDE, the User Interface Design
Environment, which utilizes a model of an application to
automatically create an interface [4]. Our vision however
goes far beyond removing the programming burden from
the user interface design process. We envision an
environment which utilizes the model of an application to
assist designers in the design process. We also see an
environment where, not only are interfaces generated
automatically, but also generated is procedural help on the
interface utilizing the same model of the application in
question.

UIDE emphasizes a model-based approach where the

existence of an application model enables several benefits
[14]. An application model enables an interface to be
designed and analyzed based on application tasks. The
runtime environment can, in the case of UIDE, use the
application model to sequence user dialogues based on task
descriptions. The application model also enables the
runtime environment, which knows about application
tasks, to help the user in a more task-oriented fashion. We
are currently using the model to automatically construct
individual user models for user performance analysis [23],
the results of which will be used to support adaptive
interfaces and adaptive help.

We realized that the first generation model as reported in [4,
5] was just a start, and as yet is far from being sufficient to
provide sophisticated interface features. Since then, we
have invested our efforts in revising the model and
strengthening both design-time and runtime support
capabilities. In 1992, UIDE consists of a much more
refined model describing not only the application, but also
detailed interface features for the application interface. Its
implementation platform evolved, from the Automatic
Reasoning Tool [8], to Smalltalk-80, and now to C++. In
this paper, we will only focus the description of UIDE's
application model and will give an overview of the UIDE
C++ runtime architecture.

2. BACKGROUND ON UIDE

UIDE is designed to allow interface designers to easily
create, modify, and generate an interface to an application
through high-level specifications. The purpose of the
environment is to support the interface design process
through its life cycle — from its inception to its execution.
This support is made possible using a model which
describes various details of an application interface
including partial application semantics. In the past, our
emphasis has been on the design support. Within the past
few years, we have expanded our research to strengthen the
quality of runtime support which can be automatically
provided using the model. Design assistance includes
automatic layout of menus and dialogue boxes [3,9], and
transformations on interface styles using a compositional
model of the user interface [10]. Runtime support includes
using pre- and post-conditions to control interface objects
[6], automatic generation of animated help [20], and
automatic generation of textual help [22]. Should the

specifications in the knowledge base change, the generated
interface and help at run-time will change accordingly.

Through UIDE, a designer creates an interface for an
application by first describing objects and operations in the
application. The designer then chooses various interface
functional components which best fit the application by
linking them to application operations. Interface functional
components include interface actions, interface objects,
presentation objects representing application objects, and
interaction techniques to be used with presentation and
interface objects. These components will be described in
more detail in Section 4.

Though the model has descriptions of both application
tasks, and interface tasks and objects, we often refer to it as
"application model.” The terms "model” and "application
model" will be used interchangeably throughout this paper.

Once the application model is mapped to interface
functional components, the UIDE runtime environment
uses the specifications in the model to generate a desired
interface. The specifications are also used to control user
interactions and status of interface objects at run time.
While the interface is running, context-sensitive animated
help on "how" to perform actions can be constructed from
the specifications upon user request [20]. Help on "why" a
certain widget is disabled can also be generated using pre-
condition information associated with actions and
interaction techniques related to the disabled widget [6].

3. RELATED WORK

Direct manipulation user interface builders such as
DevGuide [24] and Prototyper [2] make designing an
interface one step easier. Some direct manipulation tools
such as DialogEditor [1] and Peridot [12] are intelligent and
they make the interface design process less tedious and less
repetitive. These tools facilitate a bottom-up approach of
interface design while UIDE emphasizes a top-down
approach. That is, designing a conceptual design of an
application before designing its interface. Also, these tools
mainly assist with layouts and do not incorporate
application aspects in their assistance.

Cousin [7], MIKE [16], MICKEY [17], UofA* UIMS
[19], and HUMANOID [26] use descriptions of commands
and parameters to automatically generate interfaces. The
same approach is used in UIDE. It is used, however, with
a more sophisticated representation structure. Except for
HUMANOID and UIDE, the systems above parse textual
descriptions of commands and parameters, either embedded
in a program structure or stored in a file, and use them as
inputs to interface generators in their systems. UIDE and
HUMANOID store descriptions of application actions and
parameters as objects in their application model.

All these systems except UIDE do not explicitly model
detailed descriptions of interface tasks beyond application
commands and parameters. We explicitly model interface
actions and interaction techniques, which are intended to be

used by designers as ways to specify interaction styles for
an application. UIDE's application model allows the
mapping of application actions to interfaces to be changed .
without changing application actions. The model also
allows an application action to be mapped to multiple
interface actions; this results in multiple access to a single
application command, for example.

Both HUMANOID and UIDE have explicit descriptions of
application objects. They also have pre-conditions for
actions which are used to determine when an action is
enabled and can be performed by the user. Only UIDE uses
post-conditions of actions as a way to capture application
action semantics, and uses them to reason in the design
process and to provide help at runtime.

4. APPLICATION MODEL

We view the application model as consisting of three layers
which describe interface functionality at different levels of
abstraction. At the highest level, the model captures
semantics of application actions. The mid-level captures
actions which exist in various interface paradigms but are
independent of any specific application. The lowest level
describes mouse and keyboard interactions and is designed
to capture lexical groupings which define related lexical
input and output. Through these layers, designers have
different granularity of control over interface features which
they can choose for an application. Ideally, changing an
interface style is a matter of manipulating connections
between these layers.

UIDE provides generic classes of various entities in the
application model. These classes will be introduced in the
next 5 subsections — Application Objects, Application
Actions, Interface Actions, Interaction Techniques, and
Interface Objects. The application model consists of
instances of these classes; each instance contains
information specific to an application aspect it represents or
the particular interface features chosen for the application.
The power of the model comes from the specific contents
of these instances and also the semantic connections among
these instances.

Application Objects

General
Objects

— .

Application Interface
Objects Objects

oo o 0
Figure 1 UIDE Object Class Hierarchy

Figure 1 shows a predefined object class-subclass hierarchy
in UIDE. Application objects are specific entities in an
application; they are entities on which application actions
operate. Interface objects are entities which users perceive
and sometimes interact with, such as a window, an icon of

a NAND gate, or an audio output, etc. We will discuss
more details on interface objects later in this section.

The application designer defines object classes in an
application by subclassing from the UIDE application
object class. Attributes of these classes are added by the
designer. Figure 2 shows an example of an extended class
hierarchy for a digital circuit design application. In this
application, end-users create different kinds of gates and
connect them to form a functional digital circuit. This
application will be used throughout this paper.

General
Objects

— .

Application Interface
Objects Objects

Nand Nor

Figure 2 Object Class Hierarchy for a Digital Circuit
Layout Application

The extended class hierarchy for application objects is often
referred to as the data model. We consider the data model to
be part of the application model. In an application such as
the circuit design program where objects are instantiated at
runtime by end-users, the designer only designs class
definitions of objects. Operations to create instances of
these objects should be provided in the interface. In
different applications where there are a fixed number of
objects pre-created for end-users to interact with, the class
definitions of these objects must be defined and instances
created during the design process.

Application Actions

To complete the application model, the designer describes
the functionality of an application which will be available
to the user as a set of actions. UIDE provides action,
parameter, parameter constraint, pre-condition, and post-
condition classes to capture application actions and their
semantics.

An action is a unit of activity which is meaningful to an
application. Executing an action may affect objects,
attribute values of objects, or object classes. An action
may require parameters, hence the parameter class is defined
to describe a parameter of an action. Constraints on
parameter types and parameter values are defined as
instances of the parameter constraint class. More detailed
information about parameter constraint classes can be found
in [21]. The pre-condition class is defined to capture what
needs to be true before an action can be executed and the
post-condition class is defined to capture what will be true
after an action is executed. Both pre- and post-conditions

use first order predicate logic (but do not yet handle
universal and existential qualifiers), and their class
definitions capture such a representation. An action which
requires parameters has pointers to its parameter instances.
Each parameter points to the constraint instances associated
with it. An action also points to pre- and post-condition
instances associated with it. Figure 3 depicts a graphical
view of an action with links to its parameters, its pre-
conditions, and its post-conditions. Each parameter is also

linked to its constraints.

\

Figure 3 A View of an Action and its Associated
Components.

Examples of application actions and their parameters in the
digital circuit design application are:

create-NAND-gate (location)
create-NOR-gate (location)

delete-gate (gate)

move-gate (gate, new-location)
rotate-gate (gate, angle-of-rotation)
connect (gate-1, gate-2)

Figure 4 shows the "connect” action instance with its

related entities.
gate-1=gate-2

] class=GATE [

exist (gate-2)
exist (gate-1)

connect

[connected (gatel, gate2)

The connect Action from a Digital Circuit
Design Application.

Figure 4

Interface Actions

Mapping from application components — actions and their
parameters — to an interface is specified as links from these
components to interface actions. The designer does not
really define interface actions. There are instances of
different interface actions already defined in UIDE from
which the designer can clone. Multiple interface actions
can be linked to application components of one action. For
example, the "rotate” action may be linked to a "select-
action" interface action. Its parameters, object and angle-of-
rotation, may be linked to "select-object” and "enter-integer-
in-dialogue-box" interface actions respectively. On the

current C++ platform, linking is done through C++ code.
We do not yet have a friendly interface to the model
acquisition process.

Interface actions may have pre- and post-conditions. Some
pre-conditions are concerned with the status of an interface
prior to performing interface actions. For example, the
dialogue box, which contains the numeric input widget for
entering an angle of rotation, must be visible before a
number can be entered. Some pre- and post-conditions are
concerned with sequencing of interface actions. For
instance, an angle of rotation cannot be entered unless an
object has been selected, and an object cannot be selected
unless the rotate action has been selected. Sequencing pre-
and post-conditions can be automatically derived by UIDE
from the application semantics [10].

Interaction Techniques

Interaction techniques specify how interface actions are 10
be carried out by the user. Interaction technique instances
are linked to interface actions. For example, if the "select-
object” action is to be performed by using the mouse to
click on an object, a "mouse-click-object” technique must
be linked to the action. More than one interaction
technique can be linked to an interface action to designate
possible alternative interactions. For instance, an object
can also be selected by typing in the object name. In this
case, a "type-string” technique is attached to the "select-
object” action.

UIDE's interaction techniques are similar in function to
Myers' interactors [13]. We, however, do not model
feedback as objects in UIDE. We treat feedback as different
behaviors of presentation objects. Also, we do not treat an
object as a parameter of an interaction technique. Rather,
as will be described later, interaction techniques are attached
to objects.

Pre—co‘%c—@
Action aram
Post-cond — LeDer

—— e — - —— o e e o] - . ——

SONUBWING
uoneorddy

Post-cond Pést Pést

=.
2

Post-cond

uonoeIAU]

Figure 5 Specifications Layers in the Application Model

Interaction techniques may also have pre- and post-
conditions. Their pre- and post-conditions tie closely to the
screen context, for example, the numeric input widget must
be enabled for a type-in-number technique, and will be
disabled after a number is entered. Interface objects such as
dialogue boxes, menus, buttons, etc., must be created

beforehand so their references can be used in the
specifications in the application model.

Figure 5 depicts the overall layers in the application model
for each action and figure 6 shows a graphical view of the
semantic links of the "rotate” action. We omit pre- and
post-condition details, and parameter information to keep
the figures clear. The application semantics level serves as
a starting point in the design process and is independent of
the end-user interface. The application model consists of
several application actions described in this structure. The
same application can be mapped to multiple sets of
interface actions and techniques for different environments.

pulldown- mouse-"\ /type-in- type-
menu click string / \numbe;

Figure 6 A Rotate Action Instance

interface Objects

T

Application Interface
Objects Objects
/\
® o o Presentation System Interface
Objects Objects
Py
Bitmapped Vector /\ ;
Objects Drawn | | OLIT | | Motif
Obijects
Composite
Objects

Figure 7 Interface Object Subclasses

Figure 7 illustrates the UIDE class-subclass hierarchy down
from the interface object class. The 2 major subclasses of
interface objects are: presentation objects, which represent
application objects and are presented to the user through
various forms or media; and system interface objects, which
are standard objects in interface toolkits such as OLIT [25]
or Motif [18]. Currently we are only working on the OLIT
widget set.

The system interface object allows common interface
objects to be referred to as buttons, scrollbars, etc.,
regardless of the underlying toolkits. Many of our interface
object classes are similar to interactor classes in InterViews
[11] and we maintain a part-whole structure for composite
objects such as dialogue boxes in a similar fashion.

However, unlike InterViews, we allow interactive behaviors
to be programmed on interface objects by attaching
interaction techniques to interface object classes or
instances. This is used more in the case of presentation
objects where different behaviors may be desired for
different forms of presentation. We have not yet supported
adding behaviors to standard widgets, though this can be
done using our current underlying mechanisms.

To make this point clear, let's assume that the designer
wishes to make all gates movable by dragging, but only
double clicking on a NAND gate would allow the user to
change the time delay in nanoseconds of that gate. To
achieve such a design, the designer first creates a subclass
of the Bitmapped object class called GATE, then attaches a
"mouse-drag” interaction technique to the class. Notice that
this "mouse-drag" technique is the same instance which is
linked to the "move-gate” application action. The designer
then creates a NAND subclass of the GATE presentation
class and attaches a "double-clicking” technique to the class.
This "double-clicking" technique would be one which is
linked to a "change-NAND-time-delay” action.

Creating the Model

The designer furnishes an application model for UIDE by
first defining application actions, application and interface
objects, then choosing interface actions and interaction
techniques as she sees appropriate. This process creates the
declarative model which serves as specifications for UIDE
to sequence dialogues for the application. Currently,
defining the model in the C++ version of UIDE is still
done through the standard C++ declaration and instantiation
syntax. A visual tool to create an application model has
been planned.

There are constraints on which interface actions and
techniques are appropriate for which types of interface
objects. There are also constraints on which interface
actions are appropriate for which parameter types with
which they are associated. These constraints vary from
rigid rules, such as a radio button bank cannot be used for
entering a floating point numeric value, to style guide-like
rules such as a long list of choices should be presented in a
scrolling list. Declaring the model using the C++ syntax
does not prevent the designer from using interface actions
and interaction techniques inappropriately. It is important
to incorporate this kind of constraints to assist designers in
a tool for creating the model.

In addition to the model, the designer also provides, for
each application action, an application routine which will
be invoked at runtime when all parameter values for the
action have been entered or selected. Application routines
are responsible for handling necessary computations and
manipulations in an application. Occasionally, application
routines may need to address contextual changes in the
interface. Currently, once an application object is created
and registered, its corresponding presentation object will be
displayed. This works well for the circuit design
application we are using. More sophisticated dependencies

between application data and its interface need to be
modeled.

With application routines in place, UIDE is ready to .
support the runtime execution of an application interface.

5. RUNTIME ARCHITECTURE

Controlling the Interface Through the Model
Most components in the application model are instances of
a C++ class. In addition to members and member
functions which are used to maintain specific information
contents and semantic relationships in the model, these
instances are designed to support runtime execution of the
interface. Some examples are: 1) each system interface
object has the actual calls to corresponding OLIT widgets
to create or modify themselves; 2) parameter instances
maintain current parameter values; and 3) parameter
constraints are used to validate parameter values, etc. The
UIDE runtime architecture is designed such that application
action semantics are used to guide the dialogue sequencing.
This means that UIDE does not hard-wire the dialogue
sequence and bindings to interaction techniques in the
runtime code. When the application specification in the
model changes, the interface sequencing and behaviors
change accordingly. In addition to instance behaviors in the
model, UIDE has a "dialogue manager” which maintains
the current interface context, sequences the dialogues, and
updates the context when appropriate.

=

£ 8 UIDE <

¢ . 1 o

é § _ Applicationy/ | Dialogue Manager %

&2 Model / g

N \ 2
Help e

Figure 8 UIDE's Runtime Architecture

Figure 8 shows information flow among various
components in UIDE's runtime architecture. The dialogue
manager updates the screen context appropriately after the
user finishes an interface action — an interface action could
be the user has just selected an action or an object. The
dialogue manager maintains the user interface context to
keep track of which action the user is performing. Each
application action has a pointer to its corresponding
application routine. Once all parameter values of an action
have been entered by the user, it invokes the application
routine for that action. The application routine may update
data in the data model which resides in the application
model. For an application which resides on the same C++
platform such as the circuit application we use, the data
model can be directly used as the data structure of the
application.

A general theme for controlling the interface is as follow.
First, the dialogue manager checks to see whether each
application action has all its pre-conditions satisfied. A
combination of: 1) traditional unification and resolution
mechanisms for the predicate language [15], and 2) treating
pre-condition as functions for checking conditions on

Figure 9 Interface to the Circuit Design Application

Figure 10 Interface to the Circuit Design Application with some Gates in the Design.

objects, are used for handling pre- and post-conditions. An
action with all its pre-conditions satisfied is enabled, and an
action with at least one pre-condition unsatisfied is
disabled. This situation is reflected in the interface through
links in the model. That is, the interface actions and
interaction techniques associated with enabled actions are
enabled. Interface objects associated with enabled
interaction techniques are also enabled and their statuses are
changed (i.e, from invisible to visible). Interface objects
associated with disabled interaction techniques are disabled
and their status are also changed (i.e, from solid to greyed-
out). Figure 9 and 10 illustrate examples of some of these
conditions.

Notice from the interface to the circuit design application in
figure 9 that the gate icons on the left are for invoking
application actions which instantiate the corresponding gate
types. When one of these icons is selected, UIDE waits for
a location input in the current design space. Once a
location is given by the user, a gate is instantiated and its
graphical view is placed at the given location. In figure 9,
since there are no gates in the system, all actions in the
"Gates" menu are disabled because all of them require that
some gates exist in the design. This interface assumes a
prefix interface paradigm — an action is selected first before
objects and/or parameter values for the action are selected.
Figure 10 shows the menu changed as some gates have
been created.

This design can be changed so that an object must be
selected before some actions on gates, "delete” and "rotate”
for example, are enabled. This is done by making "select-
object” interface action an action by itself (as opposed to
linking to an application action), which results in a post-
condition that an object exists as the current selected object
(CSO as referred to in [4]). The resulting interface would
be one that, though gates exist, "delete” and "rotate” menu
items are not enabled unless one of the gates is selected.

Automatic Generation of How and Why Help

Two kinds of help can be automatically generated from the
application model: how to perform an action and why an
interface object is disabled. We use 2 types of help
presentation modes, textual and animated help.

It should be obvious now that procedural steps for
completing an application action can be inferred from the
application model. For example, rotating an object can be
done by first selecting the rotate action, selecting an object
to be rotated, and then entering the degree of rotation. To
animate this action, UIDE chooses an object of type GATE
from the current context using the constraint for the
"object" parameter which state that the object must be of
type GATE. An integer number between 0 to 360 is
chosen for the "angle of rotation" parameter according to its
constraints. UIDE then illustrates the procedure by
showing a mouse icon on the screen, the left mouse button
being pressed while pulling down the menu where the
"rotate” item is located, releasing the mouse button at the
"rotate” item, clicking on the chosen object, and typing the

number chosen for the "angle-of-rotation” in the dialogue
box designed for this action.

Pre- and post-conditions are used to evaluate whether a |
context is ready for animating an action. For example, to
rotate a gate, a gate must exist. If there is no gate in the
current context, a planner is invoked to search for an action
in the application model which will create a gate. The
animation will show creating a gate first, and then rotating
the gate.

A interface object is disabled if the interaction techniquc
associated with it is disabled. An explanation of why an
interface object is disabled can be generated using pre-
conditions [22]. The explanation also includes which
actions must be performed the make the object enabled.

6. IMPLEMENTATION

The 1992 UIDE is written in C++ using the OLIT widgel
set. It runs on Sun's X Server. Though we use OLIT,
UIDE does not generaie conventional code with callbacks
for application programmers to add their application code.
All application routines must be written separately and arc
connected to UIDE through application actions.

A subset of the OLIT widget set has been incorporated in
UIDE's interface object structure. Our major efforts have
been placed on connections from the application model to
the actual execution of the interface. The animated help
was developed earlier in Smalltalk-80 and is now being
ported to C++. Generation of WHY explanations has been
developed separately in C++ but has not yet been integrated
into UIDE.

7. CONCLUSIONS

The application model in UIDE consists of entities which
describe an application through actions, action semantics,
objects, and interface details of its interface. We have
explained the structure of a model which captures the
semantic relationships among these entities. We also
described the runtime architecture which 1) controls the
dialogue sequencing, and 2) automatically generates how
and why help using the model.

Taking away the burden of having to program an interfacc
is already a major relief to most of us who need to create an
interface and who have no interest in unnecessary details
which distract us from the design process. However, a
greater contribution of UIDE lies in the fact that it allows
application designers to focus on modeling the application
even before being hassled by interface design issues. The
designer can later link the high-level model of the
application to interface details, and can therefore focus on
tasks and communication means provided to users through
the interface. This contribution is one of many benefits
enabled by the model-based user interface design approach.

ACKNOWLEDGEMENTS

This work has been supported by the Siemens Corporate
R&D System Ergonomics and Interaction group of
Siemens Central Research Laboratory, Munich, Germany,

and the Human Interface Technology Group of Sun
Microsystems through their Collaborative Research
Program. The work builds on earlier UIDE research
supported by the National Science Foundation grants IRI-
88-131-79 and DMC-84-205-29, and by the Software
Productivity Consortium. We thank the members of the
Graphics, Visualization, and Usability Center for their
contributions to various aspects of the UIDE project: I.].
"Hans" de Graaff, Martin Frank, Mark Gray, Srdjan
Kovacevic, Ray Johnson, and Krishna Bharat. We also
thank colleagues and former students at the George
Washington University who contributed to UIDE: Hikmet
Senay, Christina Gibbs, Won Chul Kim, Lucy Moran, and
Kevin Murray. We also thank Thomas Kuehme, John
Stasko, John Shilling, and the reviewers for their
comments.

REFERENCES

1. Cardelli, L. Building User Interfaces by Direct
Manipulation. In Proceedings of the ACM
SIGGRAPH Symposium on User Interface Software
and Technology. Banff, Alberta, Canada. October,
1988, 152-166.

2. Cossey, G. Prototyper. SmetherBarnes, Portland,
Oregon, 1989.

3. de Baar, D.; I.D. Foley; and K.E. Mullet. Coupling
Application Design and User Interface Design. In
Proceedings of Human Factors in Computing
Systems, CHI'92. May 1992, 259-266.

4. Foley, I.D.; C. Gibbs; W.C. Kim; and S. Kovacevic.
A Knowledge-based User Interface Management
System. In Proceedings of Human Factors in
Computing Systems, CHI'88. May 1988, 67-72.

5. Foley, J.D.; W.C. Kim; S. Kovacevic; and K. Murray.
UIDE-An Intelligent User Interface Design
Environment. In Architectures for Intelligent
Interfaces: Elements and Prototypes. Eds. J. Sullivan
and S. Tyler, Reading, MA: Addison-Wesley, 1991.

6. Gieskens, D. and J.D. Foley. Controlling User
Interface Objects Through Pre- and Post-conditions. In
Proceedings of Human Factors in Computing
Systems, CHI'92. May 1992, 189-194.

7. Hayes, P.J.; P. A, Szekeley; and R.A. Lerner. Design
Alternatives for User Interface Management Systems
Based on Experience with COUSIN. In Proceedings of
Human Factors in Computing Systems, CHI'85. April
1985, 169-175.

8. Inference Corporation. ART Reference Manual.
Inference Corporation, Los Angeles, CA, 1987.

9. Kim, W.C., and J.D. Foley. DON: User Interface
Presentation Design Assistant. In Proceedings of the
ACM SIGGRAPH Symposium on User Interface
Software and Technology. October 1990,. 10-20.

10. Kovacevic, S. A Compositional Model of Human-
Computer Dialogues. In Multimedia Interface Design.
Eds. M.M. Blattner and R.B. Dannenberg, New York,
New York: ACM Press, 1992.

11. Linton, M.; J.M. Vlissides; and P.R. Calder.
Composing User Interfaces with InterViews. [EEE
Computer 22(2): 8-22, February, 1990.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Myers, B. Creating Interaction Techniques by
Demonstrations. [EEE Transactions on Computer
Graphics and Applications 7 (September 1987): 51-
60.

Myers, B.; D.A. Giuse; R.B. Dannenberg; B.V.
Zanden; D.S. Kosbie; E. Pervin; A. Mickish; and P.
Marchal. Garnet: Comprehensive Support for
Graphical, Highly-Interactive User Interfaces. /EEE
Computer 23(11): 71-85, November, 1990.

Neches, R.; J.D. Foley; P. Szekeley; P. Sukaviriya;
P. Luo; S. Kovacevic; and S. Hudson. Knowledgeable
Development Environments Using Shared Design
Models. To appear in Proceedings of Intelligent
Interfaces Workshop, Orlando, Florida, January 4-7,
1993.)

Nilsson, N.J. Principles of Artificial Intelligence.
Los Angeles, CA: Morgan Kaufmann Publishers, Inc,
1980.

Olsen, D. MIKE: The Menu Interaction Kontrol
Environment. ACM Transactions on Graphics 5,4
(1986): 318-344.

Olsen, D. A Programming Language Basis for User
Interface Management. In Proceedings of Human
Factors in Computing Systems, CHI'89. May 1989,
171-176.

Open Software Foundation. OSF/Motif Style Guide.
Revision 1.0. Englewood Cliffs, New Jersey: Prentice
Hall, Inc., 1990.

Singh, G. and Green, M. A High-Level User Interface
Management System. In Proceedings of Human
Factors in Computing Systems, CHI'89. May 1989,
133-138.

Sukaviriya, P., and J.D. Foley. Coupling a UI
Framework with Automatic Generation of Context-
Sensitive Animated Help. In Proceedings of the ACM
SIGGRAPH Symposium on User Interface Software
and Technology. October 1990, 152-166.

Sukaviriya, P. Automatic Generation of Context-
sensitive Animated Help. A Ds.C. Dissertation,
George Washington University, 1991.

Sukaviriya, P. and de Graaff, J. Automatic Generation
of Context-sensitive "Show & Tell” Help. Technical
Report GIT-GVU-92-18. Atlanta, Georgia: Graphics,
Visualization, and Usability Center, Georgia Institute
of Technology, 1992.

Sukaviriya, P. and J.D. Foley. Supporting Adaptive
Interfaces in a Knowledge-Based User Interface
Environments. To appear in Proceedings of Intelligent
Interfaces Workshop, Orlando, Florida, January 4-7,
1993.

SunSoft. OpenWindows™ Developer's Guide 3.0
User's Guide. Sun Microsystems, Inc. Part No:800-
6585-10, Revision A, November 1991.

SunSoft. OLIT 3.0.1 Reference Manual. Sun
Microsystems, Inc. Part-No: 800-6391-10, Revision
A, june 1992.

Szekeley, P.; P. Luo; and R. Neches. Facilitating the
Exploration of Interface Design Alternatives: the
HUMANOID Model of Interface Design. In

Proceedings of Human Factors in Computing
Systems, CHI’92. May 1992, 507-515.

