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SUMMARY 

 

In years past, aircraft conceptual design centered around creating a feasible 

aircraft that could be built and could fly the required missions. More recently, aircraft 

viability entered into conceptual design, allowing that the product’s potential to be 

profitable should also be examined early in the design process. While examining an 

aerospace system’s feasibility and viability early in the design process is extremely 

important, it is also important to examine system risk. In traditional aerospace systems 

risk analysis, risk is examined from the perspective of performance, schedule, and cost. 

Recently, safety and reliability analysis have been brought forward in the design process 

to also be examined during late conceptual and early preliminary design. While these 

analyses work as designed, existing risk analysis methods and techniques are not 

designed to examine an aerospace system’s external operating environment and the risks 

present there. A new method has been developed here to examine, during the early part of 

concept design, the risk associated with not meeting assumptions about the system’s 

external operating environment. The risks are examined in five categories: employment, 

culture, government and politics, economics, and technology. The risks are examined 

over a long time-period, up to the system’s entire life cycle.  

The method consists of eight steps over three focus areas. The first focus area is 

Problem Setup. During problem setup, the problem is defined and understood to the best 

of the decision maker’s ability. There are four steps in this area, in the following order: 

Establish the Need, Scenario Development, Identify Solution Alternatives, and 

Uncertainty and Risk Identification. There is significant iteration between steps two 



 xix

through four. Focus area two is Modeling and Simulation. In this area the solution 

alternatives and risks are modeled, and a numerical value for risk is calculated. A risk 

mitigation model is also created. The four steps involved in completing the modeling and 

simulation are: Alternative Solution Modeling, Uncertainty Quantification, Risk 

Assessment, and Risk Mitigation. Focus area three consists of Decision Support. In this 

area a decision support interface is created that allows for game playing between solution 

alternatives and risk mitigation. A multi-attribute decision making process is also 

implemented to aid in decision making. 

A demonstration problem inspired by Airbus’ mid 1980s decision to break into 

the widebody long-range market was developed to illustrate the use of this method. The 

results showed that the method is able to capture additional types of risk than previous 

analysis methods, particularly at the early stages of aircraft design. It was also shown that 

the method can be used to help create a system that is robust to external environmental 

factors.  

The addition of an external environment risk analysis in the early stages of 

conceptual design can add another dimension to the analysis of feasibility and viability. 

The ability to take risk into account during the early stages of the design process can 

allow for the elimination of potentially feasible and viable but too-risky alternatives. The 

addition of a scenario-based analysis instead of a traditional probabilistic analysis 

enabled uncertainty to be effectively bound and examined over a variety of potential 

futures instead of only a single future. There is also potential for a product to be groomed 

for a specific future that one believes is likely to happen, or for a product to be steered 

during design as the future unfolds.  



 xx

 



 

1 

CHAPTER 1  

INTRODUCTION 

 The nature of engineering design has changed significantly since the dawn of 

powered flight in 1903. In the early 1900s, aircraft were often home-built and flown by 

amateurs. The First World War ushered in the era of professional aircraft designers, 

manufacturers, and pilots, many of whom continued to work in the aircraft industry boom 

during the roaring 20s. During the Second World War, aircraft design and production 

increased tremendously to meet the demand of the United States and allied armies and 

navies. After World War II, flying became a more common mode of transportation. The 

advent of commercial jetliners in the 1950s created an era of convenient, relatively low-

cost, long-range transportation. 

1.1 Changing Times 

During the early years of commercially available aircraft, both military and 

civilian aircraft were, with some exceptions, designed and fabricated by private 

companies. These companies often began with a few partners designing or manufacturing 

a single airplane or engine, and then grew in size as demand for their products increased. 

Since the men who owned these companies often started out designing and building their 

own products, they were, like Jack Northrop for example, generally engineers by training. 

When these engineers became company owners and stopped doing engineering design, 

manufacturing, and testing, they hired more engineers to be in charge of design and 

manufacturing. During the pre and post World War II time period, employees were hired 

for life. There was little job turnover; once an employee was trained, there was little 

worry that he would leave and take his skills elsewhere.  

During these time periods, before, during, and just after World War II, design 

cycles were very short, in some cases as short as a few months from design to production. 
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Companies used a large, motivated workforce to quickly turn paper designs into flying 

aircraft for testing. When a design did not work, it was modified, rebuilt, and tested 

again. Since the design cycles were short and companies had little overhead, presidents 

with large personal fortunes, and more government funding for research and 

development, they were often able to fund their own design cycles and consequently 

borrowed little money, which helped keep costs and overhead low.  

These companies had significant numbers of engineers, designers, and drafters 

working on their aircraft. This large workforce was necessary as most work was 

completed by hand. Designs were completed using point performances calculation with 

little uncertainty. The focus was on increasing performance, with little worry about cost. 

Design freedom greatly decreased early on, with much of design cost locked in very early 

in the design process.  

While the 1940s and 1950s may have been the golden years for aircraft design 

and innovation, much has changed since then. Many of the old aircraft manufacturers 

have either gone bankrupt or been bought by mega-corporations, such as Boeing and 

Lockheed Martin. These companies, while run by Chief Executive Officers (CEOs) and 

boards of directors, are publicly owned and traded. Designers and engineers, instead of 

satisfying the company owner, now must satisfy the board of directors, who, in turn, must 

satisfy the company’s shareholders desire for increasing return on investment. Since 

engineers are no longer in decision making positions in these corporations, aircraft design 

decisions are being made by managers and marketing teams that often have little 

engineering knowledge. This desire to satisfy shareholders, coupled with increasing 

system complexity, ever more stringent certification requirements and lack of 

engineering input into design decisions, has led to an increase in design cycle time and 

design cost for large, multi-national corporations that make decisions less quickly than in 

years past. As the companies become less efficient and have longer design cycle times, 

they take on more debt to meet their obligations and end up with larger workforce 
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turnover. The increased debt means debt repayment becomes prominent in a program’s 

budget and the increased workforce turnover has led to increased training costs. Aircraft 

design programs, both commercial and military, are more expensive and time-consuming 

than ever before. An example of this phenomenon, for commercial aircraft, is illustrated 

below in Figure 1, taken from Augustine’s Laws (Augustine 1997). The unit cost of 

commercial aircraft is increasing by one order of magnitude approximately every 18 

years. Such an exponential increase in aircraft unit cost means that it is more important 

now than ever before to make sure that aircraft will be economically viable before 

beginning design. 

 

Figure 1: Increasing Unit Cost of Commercial Aircraft (Augustine 1997) 
 
 While much has changed with the design process over the past 60 years, the parts 

of design that take place before the engineers receive design requirements have changed 

little. For many years, marketing and finance departments at aerospace corporations have 

determined new design requirements. These groups or departments identify the market 

for a new commercial product, and then create a set of requirements and constraints for 
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the engineers to meet. As design cycles are very long in the commercial aerospace 

industry, and it can take many years to create a new product, identifying a product’s 

market is a difficult task. The marketing and finance team seeks to narrow the entire 

range of potential products into a more focused set of requirements to give to the 

engineers who are designing the aircraft. This narrowing of the design space is 

undertaken by trying to predict a market for a new product, and then designing a product 

to fit that market. The market needs to be predicted over a 15+ year timeframe, and some 

of the driving forces in the market, including technology and competition, are likely to 

deviate significantly from their current states over such a long period of time. The 

marketing team that undertakes the responsibility of identifying new product potential 

uses forecasting and scenario analysis tools to try to predict the market for a new product. 

These tools are able to take into account external risks that engineering designer tools 

cannot, including economic, political, and social risk. Since some of these tools are 

qualitative in nature, a human decision maker is required to interpret and determine the 

future market that should be filled with a new product. Once the marketing team 

determines the requirements and constraints for a new product, these requirements are 

handed over to the engineering design team. There is little or no interaction between the 

marketing team and the design team thereafter.   

1.2 Traditional Design Process 

 The traditional design process, as outlined in countless undergraduate engineering 

texts, consists of conceptual, preliminary and detailed design, in that order (Anderson 

1999, Raymer 1999). While definitions differ slightly from resource to resource, 

conceptual design consists of creating a “fuzzy outline” of the product (Anderson 1999). 

In this phase of product design, the overall performance, size and shape are determined 

and an initial feasibility question is answered. This phase of design was traditionally done 

by hand or with the aid of quick-running computer codes—during this design phase it is 
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not necessary to get the perfect answer to all performance and sizing questions, just a 

reasonable estimate. During this phase of design, there is a lot of iteration between 

requirements and configuration settings and performance calculations as the 

configuration is set and the performance is calculated. Anderson (1999) lays out his 

Seven Intellectual Pivot Points for Conceptual Design for the design of an aircraft, as 

illustrated in Figure 2. The decision maker feels that basic performance parameters and 

configuration should be laid out before conceptual design is completed and that a 

performance analysis should be carried out to insure that the aircraft is on track to meet 

performance requirements.  

1. Requirements

2. Weight of the airplane—first estimate

3. Critical performance parameters

a. Maximum lift coefficient CLmax

b. Lift to drag ratio L/D
c. Wing loading W/S
d. Thrust to weight ratio T/W

4. Configuration layout—shape and size of the 
airplane on a drawing

5. Better weight estimate

6. Performance Analysis—does the design meet or 
exceed requirements?

7. Optimization—is this the best design?

Yes

No

It
er

at
e

1. Requirements

2. Weight of the airplane—first estimate

3. Critical performance parameters

a. Maximum lift coefficient CLmax
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Figure 2: Seven Intellectual Pivot Points for Conceptual Design (Anderson 1999) 
 

Assuming the product is deemed feasible at the end of the conceptual design 

phase, the product moves into the preliminary design phase. During the preliminary 

design phase, more details of the product’s design are formulated. For an aircraft design, 
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this phase includes more detailed performance analysis and component placement. 

During this phase, more detailed aerodynamic and structural performance calculations are 

carried out, more detailed drawings are created, and components are precisely placed 

(Raymer 1999). Computer models are more time consuming to use at this stage, but give 

better, more accurate answers. During this design phase, legacy codes, in the form of 

computational fluid dynamics (CFD) and finite element analysis (FEA) codes are often 

used to aide in performance evaluation. Wind tunnel or other models may be built and 

tested for aerodynamic and structural properties or to validate computer models. Each of 

these tasks are done by different individuals or teams: the aerodynamicists do the 

aerodynamics calculations, structural engineers do the structural calculations, guidance, 

navigation and control (GNC) engineers design the GNC system, etc. While there is some 

interaction between disciplines, traditional disciplinarians rule this phase of design. At 

the end of this phase, performance, size and component placement are set, and the 

company must decide whether to continue to detailed design.  

During detailed design, detailed drawings of the product are created that show 

how it is to be manufactured. For aircraft design, detailed design consists of things like 

fastener placement and the determination of the order in which parts should be 

manufactured and assembled in order to maximize efficiency and minimize rebuilding 

and redesign. If there are any manufacturing processes that need to be created or updated, 

that is also done in the detailed design phase (Anderson 1999).  

Traditional engineering design focused on and was driven by, performance, with 

cost, supportability, and so on as an afterthought. Much of design was completed on 

paper or old, slow computers. There was little integration of design tools and personnel, 

but each design group was able to make its own decisions. In order to complete designs 

in a reasonable amount of time, design was completed in a deterministic manner without 

including uncertainty, or including little, and only performance, uncertainty. Since 

requirements were limited primarily to performance requirements, requirements were not 



 7 

often conflicting and there weren’t an overwhelming number of them. Significant design 

choices were made based on the limited amount of information available. Decision 

makers, both engineering and managerial, relied on intuition and heuristics to make 

design decisions.  

1.3 Modern System Design Processes 

 Traditional design processes, while a nice remnant of an earlier era, simply do not 

reflect how design is conducted today. These three phases of design ignore economics, or 

finance, safety, and other things, while today’s engineers and scientists know that life 

cycle cost is a large contributing factor in a design process (“Boeing…” 2003) and safety 

is necessary for certification. By the end of Research, Development, Testing and 

Evaluation (RDT&E), 70% of the life cycle cost is locked in (Porter, Navarre, and 

Hewitson 2005) for a design, so designing for cost has the potential to greatly reduce cost 

over a product’s life cycle. 

The level of effort spent during conceptual design on different aspects of the 

design has changed from traditional design to modern design. One of the goals of modern 

design processes and tools is to bring more information forward during conceptual design 

and to expand the scope of design to take into account a product’s entire life cycle. The 

effort to bring information forward in is shown in Figure 3. 

Today, designers are decision makers; they choose which metrics to base their 

design decisions on. Cost is one of the most important metrics for designers today. 

Deregulation forced airlines to compete with each other, which drove down ticket prices 

and increased competition. At the same time, there was an oil shortage that increased the 

price of fuel and forced airlines into decreasing profits. Increasing government 

regulations for emissions, safety, and reliability have forced manufacturers to increase the 

length of design cycles and design for more stringent requirements. All of these factors 

drive up costs for airlines and aircraft manufacturers. 
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Figure 3: Effort Changes during Conceptual Design 
 

For the private sector, using cost as a major driver makes sense: a company has 

the responsibility to its owners or shareholders to be profitable and a company’s 

resources are not infinite; therefore, a product that is too costly will decrease shareholder 

return. A similar principle applies to the public sector: the supply of tax money is finite, 

and when the general public becomes aware of government waste, programs that are too 

costly get cut out of the budget. Safety, from a liability perspective, is more important 

now than ever before: a negative safety record can mean investigations, fines, and loss of 

business (“Jetliner Safety” 2003), which most aerospace manufacturing companies and 

airlines cannot afford if they are to compete in today’s environment.  

 Traditional design is also discipline-specific, with discipline integration, 

synthesis, and manufacturing as an afterthought. Modern design processes incorporate 

system engineering as a sort of overarching discipline that integrates the results from 

each discipline into a coherent, optimized product. The goal of the design engineers is to 

incorporate disciplines as early in the design process as possible. Turning design into a 

social, rather than an individual activity adds value to the design project: more of the 
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correct people will bring more ideas and concepts to the project (Callopy 2001). Such as 

design process for conceptual and preliminary design is illustrated in Figure 4.  
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Figure 4: Sizing and Synthesis Process (Mavris et al 1998) 
 

The design engineers, who are the sizing and synthesis experts, sit at the top of 

the pyramid. Their job is to pass down information about the aircraft geometry, mission 

and any other special needs or functions. During conceptual design, they take information 

from first-order analyses and refine the aircraft with that information. When the aircraft 

configuration is optimized, they send information down to the disciplinarians that 

complete the preliminary design analyses using more refined, more accurate methods. 

During both conceptual and preliminary design, the sizing and synthesis team passes 

information between disciplines and makes sure that each discipline is incorporated into 

the design process and as much information as possible is gathered. 

Many changes over the years have allowed for an increased role for systems and 

design engineers. Newer, faster computers have paved the way for the creation of better 

system models and better modeling and simulation environments. Newer computers have 
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allowed for a decrease in design engineering personnel, decreased design turnaround 

time, and an increased number of disciplines to be taken into account early in the design 

process. While this increasing amount of information has had many benefits, there is now 

the problem of an overwhelming amount of information that a decision maker must sort 

through and a set of conflicting requirements between performance, cost, safety, and so 

on. With the increased focus on cost, design synthesis, and product life cycle, several 

tools and methods have been developed to aid in conceptual design. 

1.3.1 Design for Life Cycle Cost 

 The advent of the Department of Defense’s (DoD) design for life cycle cost and 

National Aeronautics and Space Administration’s (NASA) faster, better, cheaper 

philosophy in the 1990s (Porter and Hewitson 2005) created a shift toward designing for 

life cycle cost instead of designing for performance with cost as an afterthought. With 

cost as an overriding factor in modern design, the definition of the design process needs 

to be modified. Unlike the traditional design process, which ended at detailed design, 

newer design processes take into account the entire product life cycle as illustrated in 

Figure 5.  
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Figure 5: Modern Product Life-Cycle 
 

For a commercial aircraft, the first three phases of the product design are similar 

to those detailed above; however, beginning with conceptual design, a cost analysis is 

included with all the discipline analyses. Now the designer must also project future costs 

as early in the design as possible and take into account the costs and problems associated 

with the rest of the life cycle: manufacture, operations and support, and disposal.  For 

large-scale aerospace systems, such as commercial aircraft, the manufacturing phase of 

the design sounds pretty straightforward: someone has to build the aircraft. The 
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manufacturing phase of the product’s life cycle takes into account all the manufacturing 

processes and any associated problems, such as product storage, before the product is 

purchased and shipped. The operations and support phase begins when the aircraft enters 

service. While operations costs are generally absorbed by the customer (the airlines, in 

this case), it must still be taken into account during the initial design phases. Preliminary 

and detailed design can impact operations costs a great deal. Design changes that 

decrease drag, increase fuel efficiency, or make an aircraft easier to load and unload are 

made during these phases can decrease operations costs for the airline. Support costs can 

be airline or manufacturer costs. Support includes maintenance, and while airlines often 

do their own maintenance, engines are generally maintained by the engine company. 

Small increases between scheduled engine down-times can decrease maintenance costs 

and increase profit for both engine manufacturers and airlines. The final life cycle phase 

is disposal. During this phase, the aircraft is either mothballed and stored out in the desert 

for future use, or cannibalized for parts and destroyed. For a new aircraft family, the three 

design phases of the life cycle can take up to ten years, with orders for manufacture 

coming for many years after that. The operations part of the life cycle is generally 

scheduled for approximately twenty years, and after disposal an aircraft can sit in the 

desert indefinitely. A new aircraft family can expect its total life cycle to be forty years or 

more, with some updates along the way.  

1.3.2 Integrated Product and Process Development  

Integrated Product and Process Development (IPPD) was a design trend that came 

into use by the Department of Defense in the 1990s (Department of Defense 1996). Like 

design for life cycle cost, IPPD takes into account the product’s entire life cycle during 

the conceptual design process. The IPPD process involves the development of an 

integrated product team (IPT) that has members from all disciplines throughout the 
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product’s entire life cycle (Marx 1994, Department of Defense 1996). An example of the 

IPPD process is illustrated in Figure 6 and Figure 7. 
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Figure 6: IPPD Process (Schrage and Mavris 1995) 
 

The purpose of IPPD is to bring together people from all life cycle phases of both 

product and manufacturing process development and in order to optimize life cycle cost 

and performance. The net goal of IPPD is to reduce design time and life cycle cost. One 

way IPPD is able to do this through product and manufacturing process trades and 

analyses (Department of Defense 1996). By using functional and process decomposition, 

the IPT is able to develop the manufacturing and support processes necessary to build and 

maintain the product at the same time as the product is being designed. This 

decomposition and recomposition process decreases product redesign during the 

manufacturing and support stages and thus saves the designing company and customer 

time and money.  
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Bringing people from all life cycle phases together early in the design process 

also reduces programmatic risk. Having team members from all disciplines will help 

create realistic performance, cost and scheduling milestones, reducing the potential for 

cost overruns and scheduling conflicts (Department of Defense 1996). Creating an IPT 

also reduces friction between disciplinarians within a company or design group, since 

every discipline will have its voice heard. Disciplinarians from all over the company will 

be able to see and understand the entire product life cycle process. A greater 

understanding of how all the life cycle pieces fit together should allow for more sharing 

of ideas and less territorial behavior among different disciplines.  

 

 
Figure 7: IPPD Process II (Schrage 1999) 

1.3.3 Robust Design 

 Since cost has become as important as performance, design quality, or a 

combination of performance and cost, has become important. Robust design has 

traditionally been a synonym for quality. The traditional robust design process was 

developed by Japanese manufacturers in the 1980s and involved using statistics to 

decrease product variability and improve quality (Dieter 2000). Robust design was 
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originally concerned with manufacturing processes and products; the question at hand 

was what could be done to reduce manufacturing variability while also creating a product 

as close to the design specification as possible. 

 An extension of the traditional definition of robust design is to extend robustness 

from variability in manufacturing to potential variability in the future (DeLaurentis and 

Mavris 2000). Since design requirements change, a product that can do not only the job it 

is was originally designed to do but also many other jobs that may or may not be 

necessary in the future is a robustly designed product. These designers were able to 

foresee a future where new uses would be developed, and designed the product around 

potential changes in requirements and future uses. This is not to say that these designers 

were able to predict the future; instead, these designers created their product to handle 

foreseeable upgrades and perform well in a variety of situations beyond the original 

design specification.  

 The overriding idea behind robust design, using either definition, is to reduce cost 

and increase performance by having as much information as possible as early in the 

design process as possible. Costs can be reduced and performance can be increased 

through the use of statistical methods or by creating modular products that are easily 

adapted to new situations. Robust design, by both definitions, is practiced by many 

companies today. The Six Sigma process as used by General Electric is built on these 

principles (Breyfogle 1999), and they were used extensively by Toyota in the 1980s to 

create high quality, competitively priced products (Dieter 2000).  

1.3.4 Increases in Computing Resources 

 For the past century, there has been a push toward automation in engineering 

design and manufacturing. From the time Henry Ford created his first assembly line to 

produce the Model T, this process has been used to standardize products and reduce labor 

requirements and their associated costs (“Henry Ford” 1996). For many years, the push 
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for automation was mostly limited to manufacturing. Companies wanted to make 

manufacturing processes standardized and safer. Automated manufacturing reduced the 

need for highly skilled craftsmen and created a market for lower skilled, lower wage 

workers that don’t need to spend seven to ten years learning a trade. 

 While most design used to be done with pencil and paper, the advent of faster, 

better and cheaper computers has led to more automation during the design process. 

However, the new and better automation technology can also leave the human out of the 

loop. Just as skilled craftsmen were no longer necessary when machines became 

powerful enough to manufacture everyday items, some engineers are afraid of being left 

out of the design process by computers codes that are too complicated to understand and 

too much trouble to use. If the computer codes used to aid in the design process are not 

transparent to the user, and the user doesn’t know all the inputs, outputs, and 

assumptions, the design process can become too daunting for the designer and the 

product will not be as good as it can be.  

1.4 Decision Making in Design 

 Decision making factors heavily in design. Modern conceptual design processes 

require decision making to settle on a product design. These decisions are made with 

uncertain information early in the design process. While there is information from many 

disciplines, and that information seems vast, much of it is uncertain and will change 

before the system is completely designed. Traditionally, there was less information that 

had to be taken into account during design, and so decisions were more easily made. 

Today, design decisions can be more difficult to make.  

1.4.1 Where, When, and How 

With the continued push toward better computer products, one might believe that 

computers create designs and make design decisions; however, this is not the case. 
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Computers are very useful tools later in the design process, but during the early parts of 

the design process, when many important design decisions are being made, a piece of 

software is of limited use: there is too much uncertainty in the design and evaluation for a 

machine to make a decision. A human has more tools at his disposal when making 

decisions than a computer does. A human decision maker has the accumulated 

knowledge of a lifetime, as well as the ability to learn, and the ability to use intuition; a 

machine is not yet capable of using intuition and has only a limited ability to learn and 

apply new ideas. A computer is also incapable of taking credit for a job completed well 

or blame for a job completed poorly; a machine is also difficult to fire or promote. 

Human beings are the center of design decisions and will be for the foreseeable future. 

However, humans can still have difficulty making design decisions. When a large amount 

of information is available the decision maker may have difficulty distinguishing between 

options and may rely on traditional engineering methods to make decisions.  

Small design decisions are made continuously throughout the design process. 

Small changes to a wing or fuselage design, component placements, etc, are all refined on 

an almost daily basis during conceptual design. These decisions are made on a small 

scale, often by lower or mid-level engineers or managers approval. They can be made on 

the basis of a conversation or short document or illustration and generally affect only a 

small number of people.  

Larger-scale design decisions are often made by managers or committees and 

occur less frequently. Such decisions include initial product launch, final configuration 

selection, selection of major partners or suppliers, and so forth. These decisions take 

more time to make and more time to prepare. They can be made on the basis of 

documents, presentations, or decision making and support tools. Since these decisions are 

often made by people who have little day-to-day contact with the designers and 

engineering decisions, it is important to display information in such a fashion that it is 

useful to someone whose background is not engineering or design. What types of 
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information are displayed and how much information is displayed become crucial 

questions to answer before giving a presentation for decision making purposes. It is 

important to display cost information for each alternative, since cost is a very important 

decision making attribute; however, it is also important to display other pieces of 

information about design alternatives, such as pertinent performance, maintenance, and 

manufacturability data. Too much information can make decision making difficult, so 

presented data should be kept to a minimum and presented in graphical, rather than 

tabular, form as large tables of numbers can easily overwhelm even the most experienced 

decision maker. 

1.4.2 Decision Making 

 Traditional decision theory suggests that the best way to choose between options 

is to evaluate each option to the fullest extent possible and then choose the optimal 

solution based on a pre-defined objective function that maximizes the outcome utility 

(Hsee et al. 2003). This type of decision making is called strategic decision making. 

However, in real life the decision maker often does not have the time or resources 

available to investigate each option to the fullest extent possible (Simon 1955), and is 

also unable to limit uncertainty in future conditions. Also, decision makers are usually 

unclear about how they make decisions: they cannot describe their decision making 

process or the figures of merit used. Instead, decision makers don’t use utility 

maximization decision making processes and may end up at non-optimal solutions.  

 Even though engineering projects in the aerospace industry are long in scope and 

planning, decision makers still are not be able to fully take advantage of the strategic 

decision making process. The decision maker usually has a limited period of time in 

which to gather information and make a decision; therefore, the decision maker does not 

have the ability to gather as much information as he would like on every option. Often, he 

must cut down a large list of available options into a manageable number of options that 
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he is willing to consider. He must choose to investigate further the options he believes 

have the greatest potential to meet the company’s needs and the smallest potential of 

decreasing the company’s value. He is doing this with almost no information except his 

engineering intuition and experience.  

 The decision maker is also limited by his ability to foresee the future, and is 

further compounded by the types of predictions he is required to make. This decision 

maker must not only anticipate the availability of future technology and the future 

economic conditions, he must also anticipate future political and social conditions that 

could affect his product. All of the future predictions that he uses when making decisions 

have a degree of uncertainty in them. The further in the future he is trying to predict, the 

greater the uncertainty. Unfortunately, engineering projects often require decision makers 

to try to make predictions for many years in the future, when uncertainty is large and the 

value of such predictions is small. Traditional engineering design decision making 

doesn’t take these factors into account; instead, the marketing and finance teams that set 

initial design requirements deal with non-engineering factors. However, these factors can 

be design drivers and should be dealt with during concept design. 

 In aerospace programs, incorrect decisions can lead to significant consequences 

for a decision maker and a company. Companies are forced to sink billions of dollars into 

these projects before realizing any profit. The long timeframe for aerospace projects 

couples with future uncertainty to compound the decision making process. If a company 

makes the incorrect decision, it could lose a great deal of money and potentially go out of 

business. The consequences arising from future uncertainty create risk for a company and 

a decision maker. While definitions of risk differ slightly between industries and sources, 

all definitions contain the ideas of probabilities of occurrence and consequences arising 

from not being able to fully predict the future (Kuhn and Budescu 1996). So the decision 

maker must not only contend with the uncertain future, but also be responsible for any 

consequences that arise from the decisions. 
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 How is a decision maker able to make these decisions? The decision maker must 

rely on experience and judgment to do a risk-benefit analysis and discard the options that 

are too risky or have too low a payoff. Even though the decision was made with little, 

uncertain or qualitative information, the decision must be defendable when questioned. 

He needs to be able to show why he discarded some choices before putting time and 

effort into researching them and why he kept others. Current decision making theories 

seek to understand the real-life context in which people make decisions, but do not 

provide a framework for making quick decisions with little and uncertain information. A 

framework that enables a decision maker to systematically explain why some decision 

options were discarded and others were kept and help explain and defend why his 

decisions were made and what his judgments were in the time leading up to the decision 

would fill an existing gap in conceptual design phase decision making. Such a framework 

needs to take into account the different ways people downselect between design options.  

1.4.3 Information for Decision Making 

 Decisions are made based on available information. When too little information is 

available, design decision makers use what information is available and are left to infer 

additional information using a best guess or engineering intuition (Dieter 2000). While 

this approach works well for experienced designers, it is difficult for an inexperienced 

designer to implement with a high degree of accuracy.  

On the other hand, too much information can be just as damaging. Too much 

information or too many disparate pieces of information can make it difficult to 

determine whether the information is correct or incorrect and figure out what pieces of 

information are actually useful for the decision at hand (Ashford 2005). Since it is the 

decision makers job to complete a “sanity check” to determine whether the information 

presented makes sense and is useful, additional information requires more human time to 

make such determinations. While the multi-attribute decision making tools and 
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procedures prefer more information over less and seek to help the user determine what 

information is actually important, increasing information still leads to increasing problem 

complexity and more difficult tradeoffs.  

While decision makers will have some level of information about each alternative, 

there is often a dearth of information about the analysis process for alternative 

comparison. Even if all the information the decision maker wants is available, if design 

concepts are not all analyzed the same way than design comparisons may provide 

misleading information. Each concept design has a list of assumptions that the initial 

designer or design team should be aware of. If the decision maker is unaware of these 

assumptions, he may not be able to accurately compare products. The same theory holds 

true for analysis tools and concept analysis: each analysis tool and concept model has 

many built-in assumptions. These assumptions could be technical performance 

assumptions such as cruise altitude or component weights or economic performance 

assumptions such as interest or inflation rates. If these assumptions differ between 

concepts or the assumptions are not well defined, concept comparison for decision 

making can be difficult.  

1.4.4 Information Wanted during Conceptual Design 

 In general, a decision maker wants all the information available about the design 

options. For long time-scale projects such as those found in the aerospace industry, there 

is significant pressure on decision makers to make the “right” decision—generally the 

one that maximizes corporate profit. Since most people feel that the amount of 

information they possess correlates to how well they understand a problem, having more 

information makes decision makers feel that they can make better decisions. As explained 

above, having more information does not necessarily correlate to being able to make 

better decisions and too much information, in fact, correlate to worse decisions.  
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 For aerospace systems, the information that decision makers want is related to 

performance feasibility and economic viability. Performance and feasibility information 

comes from the engineering design team, while economic and viability information 

comes from the marketing and business team. In a perfect world, the engineering team, 

marketing team, business management team, and the final decision makers would all 

work together to provide the information necessary to compare products; however, this 

perfect scenario rarely occurs. Often, the engineers design to the requirements they 

receive and do not interact, or rarely interact, with the marking team and almost never 

interact with the business managers, whose job is to determine product viability 

(Augustine 1997). In real-life cases, the decision maker is often left with disjointed, non-

overlapping information about product feasibility and viability.  

 The decision maker also wants information about customer requirements and 

preferences, and would like this information to be as specific as possible. Some 

requirements are very specific, such as regulatory requirements, but often a customer 

wants a product to be “better” than an existing product or to complete a mission that an 

existing product cannot complete. In these cases, forming specific requirements is 

sometimes left to the design engineers and final decision makers.  

 This desire for specific information also extends to specific information from the 

design engineers, marketing team, and business team. Ideally, a decision maker would 

like a 100% confident prediction of the product’s performance and economic metrics. 

Since the product is not yet designed and built, such a prediction is impossible to make. 

Most times, everyone working on the design problem, from the design engineers to the 

business case analyst to the final go/no-go decision maker must content himself with less 

than perfect information.  
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1.4.5 Information Available during Conceptual Design 

 The information actually available during conceptual design can be vastly 

different than the information wanted by designers and decision makers. The first, and 

one of the most troubling, points of difference is in the elucidation of design 

requirements. As stated above, many times the customer has a specific problem to solve 

and wants a product that solves that problem. While the creation of such a product is a 

laudable goal, the problem at hand may not lend itself to the dictation of specific 

requirements. For example, a customer wants a product to transport 300 people from 

New York to San Francisco. This problem can be solved in a variety of ways: train, 

caravan of cars, aircraft, ship, etc; however, more information is needed to provide the 

customer with the service he desires. At this stage of design, customer requirements are 

often fuzzy and changing. While there may be some specific performance or economic 

requirements, often the requirements are some variation of faster, better, cheaper, and it is 

up to the designer and decision maker to translate these requirements into something that 

is useful. 

 Once the customer requirements and wants are agreed upon and initial solutions 

are identified, solution modeling can take place. During conceptual design, modeling is 

often crude; zero- or first-order models that can be quickly created and run are generally 

used since requirements change often. These models produce the performance and 

economic characteristics of the identified solutions. While the technical and economic 

characteristics of each solution are a simulation output and are deterministic, there is 

some fuzziness associated with these numbers due to the limited amount of data available 

to use for model creation.   

 For the designers and decision makers, there is generally both quantitative and 

qualitative information available to use for design and decision making. Some of this 

information is fixed and/or deterministic, while much of it is still changing until later in 

the design process. 
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1.4.6 Decision Evaluation 

 After a decision is made, an evaluation of the decision ensues. Decision 

evaluation is most often based on the outcome of the decision (Chater et al. 2003), not the 

thought process that let up to the decision, although a case can be made for evaluating 

decisions based on either set of criteria.  

 Since decision evaluation is based on decision outcome, this evaluation can take 

many years and can change depending on the current circumstances of the world. Since 

the initial decision involved future predictions, decision evaluation based upon decision 

outcome is really evaluation based upon how good the decision maker was at predicting 

the future from a specific point in time. Increasing time between decision making and 

evaluation correlates with increasing chance that the predicted future differs from the 

actual future. One of the problems with evaluating decisions using outcomes as the 

criteria is that “good” decision making can be based on nothing more than luck, which 

makes it difficult to separate decision makers who will be able to consistently make good 

decisions from those who may randomly make lucky decisions that end up being good. 

1.4.7 Decision Support 

  There are many decision support tools available. The goal of many of these tools 

is to organize and display information for the decision maker.  

One tool is quality function deployment (QFD), which is a process and a tool that 

allows a designer to translate the customer’s wants and needs into “engineer-speak” to 

facilitate the design of the correct product for the customer (Dieter 2000, “Quality 

Function Deployment” 2006). Its goal is to increase customer satisfaction with products 

by enabling the engineer to understand what the customer wants from the product 

through the use of a singe visualization interface. The interface helps facilitate 

communication between the customer and the engineer: the customer is also able to 
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understand what variables the engineers can use to satisfy his wants and is also able to 

see any conflicting requirements.  

 An example house of quality is depicted in Figure 8. A QFD process works by 

first letting the customer determine what he wants: the customer requirements, which fill 

out the list in the yellow section numbered one. Once all the customer requirements have 

been determined and ranked, the engineer must brainstorm ways he can address these 

requirements through engineering characteristics, represented by the orange section, 

number two. When both the customer requirements and the engineering characteristics 

have been identified, the next step is to see how they are related in the matrix shown in 

green, section number three. Other pieces of the QFD process allow for importance 

ranking of the customer requirements and a matrix that demonstrates the relationships 

between different engineering characteristics.  
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Figure 8: Quality Function Deployment 

 
Another tool is a matrix of alternatives, sometimes called a morphological matrix, 

aids the user to choose a product configuration. It lists out all the major components of a 

system and the important subsystems, and the user is able to see all the available 
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configuration options for a system. Its purpose, along with the rest of the tools, is to 

decrease project planning and development time and increase project knowledge early in 

the design process. As a conceptual design tool, it was first proposed by Fritz Zwicky in 

1948 (Zwicky 1948) as a way of creating revolutionary design concepts. It is not often 

used in this form, since most designs are evolutionary instead of revolutionary; however, 

a morphological chart can still add value to the conceptual design process. It allows the 

designer to quickly and easily see many alternative solutions to the design problem and 

allows the designer to downselect each part of the system separately while still keeping 

the entire system design development in mind. An example morphological chart is 

illustrated in Figure 9. 
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Figure 9: Morphological Matrix (Kirby 2002) 
 

While the traditional morphological chart has several advantages over the 

traditional “go down a path until it fails” design, it also has some shortcomings that any 

user should understand. The first shortcoming to understand is that all options listed are 

discrete. Having only discrete options works well when deciding whether an aircraft 

should have one, two, three or four engines, but for continuous variables, such as engine 

overall pressure ratio, having only discrete options is a disadvantage. Another problem of 

the traditional morphological chart is that it provides no logic showing how different 

design choices interact. For instance, when launching a missile, choosing a fighter 

aircraft over a long-range bomber or land-based launch platform will have an impact on 

the maximum allowable size and weight of the missile.  
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 There are many other available tools to aid in decision making and support. One 

of these tools is the Ishikawa, or fishbone diagram, which helps to break down a system. 

Flow charts can help visualize and regulate the flow of information in a system. A 

conflict analysis matrix helps to determine whether conflicting requirements exist within 

a system. Benchmarking processes help to determine what parts of the system are 

existing and what need to be created. Gantt charts can aid in creating a project schedule. 

Prioritization tools help groups of decision makers determine which parts of the system 

or design are most important, or which concerns are most important to address.  

1.5 Risk and Uncertainty in Design 

 Large, complicated engineering systems, like those seen in the aerospace industry, 

have some additional issues associated with their design and development. As Miller 

noted, “Large engineering projects are high-stakes games characterized by substantial 

irreversible commitments, skewed reward structures in case of success, and high 

probabilities of failure.” (Miller and Lessard 2001). The initial cost of designing and 

building a new system is very large, and any profit is years away. If the system cannot be 

designed, or cannot be sold for the anticipated profit, the company can lose a substantial 

amount of money and potentially go out of business. This future uncertainty in potential 

outcome leads into the concept of risk.  

 There are many definitions of risk used by different industries, but all use some 

measure of the probability of an event’s occurrence and the severity of its consequences. 

Risk is generally something that companies, as well as people, want as little of as 

possible. Large companies can be risk averse when dealing with large potential monetary 

losses (Callopy 2003). These companies strive to plan projects and choose alternatives 

with as little technical and economic risk as possible; for example, airframers will often 

choose to keep creating derivative aircraft to meet new missions instead of designing an 

entirely new aircraft for each new mission. Along with being risk averse, companies also 
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try to eliminate risk. Risk elimination can take many forms, including specifying a design 

as quickly as possible and lining up suppliers and project partners as early in the design 

process as possible in order to eliminate uncertainty. Uncertainty is the state of not 

knowing something. Airlines try to eliminate uncertainty in future fuel prices by fuel 

hedging and in labor prices by signing multi-year contracts with union laborers. 

Companies will also choose to cooperate in order to spread the risk and cost of doing 

business. While decreasing project risk is always a worthy goal, the choices made to 

decrease project risk can also decrease potential project return and stifle innovation 

within companies. 

 Uncertainty has been dealt with differently in traditional and modern design 

processes. The traditional design process treats design deterministically. There is little 

uncertainty examined, and what is examined is entirely performance-based. In modern 

design processes, uncertainty and risk are examined. Robust solutions are desired, so 

uncertainty in performance due to technology development and changing requirements is 

examined. Methods exist to examine uncertainty and risk associated with technology 

development time and cost and technology impact. On the economic side, methods have 

been developed to examine some economic uncertainty and risk. In general, these 

methods are less well developed for use by engineers than those on the performance side. 

Robust solutions can be developed with respect to some economic factors, including fuel 

cost and labor rates. When handling uncertainty, on both the performance and economic 

metrics of interest, the focus to date has been on bounding uncertainty. In general, the 

best and worst cases of the future are used to give uncertainty bounds. While bounding 

uncertainty leads to an increase in design fidelity over a deterministic design, simply 

setting uncertainty bounds doesn’t allow for examination of circumstances that provide 

the uncertainty and lead to risk. There is also a large number of sources of uncertainty 

that are not examined by engineers. Some of these sources are examined by marketing 
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and finance teams before design requirements are set; however, these sources can have a 

significant impact on engineering design.  

1.6 Motivation 

 The inspiration for this research comes primarily from changes in the role of 

design decision makers. No longer is a product design carried out by an engineer able to 

work alone in his cubicle designing his small part of the overall plan. Now this engineer 

must interact with other engineers, managers, customers and end users. Each member of 

the design team works with others to meet time, cost and performance goals for the 

overall system. The days of drawing an aircraft on the back of a napkin and going down 

to the shop to build it are gone, while the days of global competition and small profit 

margins are here to stay (“Return on Equity” 2005).  

 From both a cost and performance perspective, the most important phase of the 

design process is the earliest; as the design progresses, more and more of the performance 

and cost parameters are locked in, leaving less design freedom (Mavris 1998).   

1.6.1 Research Goals 

The recurring themes throughout conceptual design are that there is a large 

amount of uncertain information, there is risk from a great variety of sources, and that 

there is uncertainty about the future as it relates to the system design. The use of so much 

information requires a human decision maker in the loop to exercise judgment as to 

which information should be used for decision making. Some different facets of risk are 

already dealt with during design, particularly technical risk. Others are not. Some aspects 

of risk that engineers typically do not address during design are those that the marketing 

and finance teams address before setting performance requirements for engineers, 

including economic, employment, political, and social aspects of risk. Engineers typically 
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do not know how, or even whether, these risks are addressed, but these types of risk can 

have a significant impact on the future of any engineering design.  

A method for the examination of programmatic risk including employment, 

political, social, and economic risk would be a useful addition to the modern design 

process. Research questions were created to help identify necessary pieces of this 

process. To create such a method, one would need to understand how decision makers 

use judgment to make decisions under uncertain conditions with large amounts of 

conflicting information, which makes research question one: 

Is it possible to harness the act of human judgment and use it as a 

conceptual design decision aid for an aerospace system design? 

Since the goal of such a method is to complete a risk analysis, current risk analysis 

methods also need to be researched to see what methods, if any, are applicable to this 

problem. To complete a risk analysis, research question two is:  

Do any systems or methods currently exist that allow the user’s judgment 

to make decisions in the beginning stages of conceptual design? While 

using a risk-benefit type of approach? 

Aerospace systems design processes are long time-scale designs, with predictions about 

the future made 15+ years in advance. Uncertainty about the future must be bound and 

understood, which leads into research question three: 

How do we deal with uncertainty in the early phases of design when doing 

a risk-benefit analysis? 

These three research questions will be examined in more detail in the following chapters. 

The information in those chapters will aid in the creation of a risk analysis process that 

will help engineers create aerospace products that are robust to external environment 

factors.  
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CHAPTER 2 

JUDGMENT AND DECISION MAKING 

 The previous chapter described the motivation for the creation of a new risk 

analysis process. Decision making and judgment are necessary pieces of a risk analysis 

process. In this chapter, the first research question will be explored: 

Is it possible to harness the act of human judgment and use it as a 

conceptual design decision aid for an aerospace system design? 

Human decision making models and theories will be examined to determine whether any 

can be used to help in the creation of the new risk analysis process. Some traditional 

engineering and mathematical multi-attribute decision making models will also be 

explored and contrasted with the human decision making models for usefulness in the 

creation of a risk analysis.  

2.1 Strategic Decision Making 

 Decision making is defined as the selection between options. There are many 

levels of decision making and many ways that humans can make decisions. Borrowing 

from Hollnagel’s model of cognitive contextual control (Hollnagel 1993), four ways that 

model how humans make decisions can be identified, and are listed in Table I. Each 

decision making model is used in a different decision making environment. Scattered 

decision making is random, and is associated with a person who is in a panic and has no 

time or ability to do anything more than just react to the environment. Opportunistic 

decision making involves more time and opportunity to make a decision. The 

opportunistic decision maker does not plan for the future; he just reacts to his current 

situation. Unlike the scattered decision maker, who is chaotic, the opportunistic decision 

maker searches for a decision to make. This decision maker takes the first option 

available, and then continues to react to the environment. The choices, while they have 
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some reasoning behind them, are not usually the most efficient way to reach his goal. The 

tactical decision maker has more time to make decisions than the opportunistic decision 

maker. He is able to search for a solution to a problem and is able to analyze many 

solutions until he finds a solution that fits his criteria. This decision maker can take into 

account many aspects of the context and can do some future analysis. The strategic 

decision maker has a lot of time to make his decisions. This decision maker can search 

the complete design space and can optimize his decision to fit the criteria he has laid out 

(Hollnagel 1993). 

Table I: Decision Making Models 

 Scattered Opportunistic Tactical Strategic 

Type of 
Search 

None 
Jump on 1st 

available option 

Search until find 
“good enough” 

solution 

Complete design 
space search 

Type of 
Solution 

Unrelated 
to problem 

Whatever is 
available 

Satisficing Optimal 

 

 In recent years, there has been a movement toward strategic decision making 

techniques and numerical optimization procedures. Engineers and managers want an 

ordered, rational, mathematical approach to design for justification purposes and in case 

of litigation. The development of good engineering intuition and judgment are taking a 

back seat to the development of ever more sophisticated pieces of engineering 

optimization software and strategic decision making initiatives. Even though most 

optimization processes are treated as strategic decision making techniques, no decision 

making technique is entirely strategic (Harrison 1993). Most of the optimization 

procedures used are actually satisficing procedures, and would fall under the umbrella of 

tactical decision making. Taken to the extreme, strategic decisions would take infinite 

time and consume infinite resources to fully understand the problem and solution space; 

these decisions would produce no value to the decision maker. Real life decisions and 

decision makers, on the other hand, don’t have infinite time or resources to commit to a 
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decision. Therefore, in a practical sense, most decisions made are tactical, not strategic 

(Harrison 1993).  

 It is the hope that design decisions for large-scale, aerospace engineering projects 

are tactical to strategic in nature. Hopefully, the designers and decision makers do their 

best to examine as much of the design space as can be reasonably handled with the 

amount of time and other resources they have available. In general, designers will claim 

that designs are optimized; however, designers do not, and should not be expected to, use 

a global optimization procedure. One cannot examine all the design options in the entire 

design space, so the designers examine as many as they can until they find one that meets 

their criteria and constraints.  

2.2 Judgment  

 Before a tactical or strategic decision is made, a judgment must take place where 

a decision maker differentiates between options and determines a ranking and/or 

differentiation between options. While the multi-attribute decision making techniques and 

decision aids, which will be described in later sections, can give a list of answers and a 

computer can differentiate between larger and smaller numbers, a human must still be 

present to make some judgments and determine whether the computer’s answers are 

legitimate. The human judgment may take place on the input end, the output end, or both, 

but it will always be present. There are an abundance of models, methods and theories on 

human judgment and human decision making. The questions regarding how people make 

decisions and what factors they take into account when making decisions are being 

debated and many will be discussed in the following sections.  

2.2.1 Bounded Rationality 

 One complaint about human decision making and judgment is that humans are not 

rational decision makers (Leland 1998, Hsee et al. 2003) and don’t use logical processes 
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to make decisions. With probability theory and expected utility as the standard for 

rationality in decision making and judgment, this is obviously true. Human decision 

makers are “irrational” in the sense that they do not generally use a computed expected 

utility to make decisions. However, since most decisions are made under some degree of 

uncertainty, and “rational” decision making techniques don’t allow for uncertainty, most 

decisions are made by humans using a process that doesn’t end with traditional utility 

theory. To get around the “irrationality” complaint, and to begin to help explain how 

humans actually make decisions, Herbert Simon developed the theory of Bounded 

Rationality (Simon 1955). Simon proposed that humans are adaptive organisms, but are 

limited cognitively by what they can remember and predict, and the calculations they can 

perform. Instead of a full optimization procedure that analyzed the entire problem and 

solution space, Simon proposed a search procedure in which a decision option is chosen 

as soon as one is found that meets all criteria and constraints (Simon 1972). This decision 

is carried out within a physical and operational environment, which should also be 

studied. Bounded rationality requires an understanding of both the human and the 

environment: decisions are made in context, and decisions that appear irrational from the 

perspective of maximization of expected utility often appear rational when viewed with 

respect to both the goal and the environment (Todd and Gigerenzer 2003).  

 Bounded rationality was one of the first attempts to explain human decision 

making behavior within the limits of cognitive processes. While it is a utility-based 

theory, bounded rationality was one of the first economic theories to treat both the human 

and the environment as if they were one unit instead of separate and non-interacting.  

2.2.2 Intuition 

Even with the current trend of having design and optimization be computerized, 

conceptual design level decision makers often have little time and money to invest in 

design investigation and so cannot always use or create optimization tools. As a result, a 
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good designer will often use “intuition” to arrive at an acceptable answer, making design 

both an art and a science (Anderson 1999). This intuition is the heart of many design 

decisions, yet it is difficult to quantify and explain fully. As human beings are learning, 

adaptive animals, some intuition is the result of previous experience (Simon 1955). 

Humans judge behavior by its results, and learn from those results. Humans are able to 

quickly assess patterns and determine, without using any rational modeling or 

optimization methods, what a future outcome will be and can make decisions and act 

accordingly (Arthur 1994). Such use of quick, unconscious pattern recognition is often 

called intuition, since the decision maker cannot generally articulate his decision method 

(Chater et al. 2003). Previous experiences will lead a designer to develop preferences for 

or against certain aspects of a design or certain evaluation criteria.  

A designer’s intuition may also allow him the ability to use attributes he feels are 

important to the design but the company’s management would not feel is important (Hsee 

1996). If the designer understands the environment, he may know that the manager or 

executive is most concerned about the money-making potential of a product, while, as the 

designer, he may feel that aesthetic appeal (a “coolness” factor in the aircraft and missile 

world) is also important and will influence the company’s bottom line. If the designer is 

in a situation where there is uncertainty in the cost analysis, he may know that he can use 

“coolness” as a type of tiebreaker in the event that there is no clear-cut best design 

(Schweitzer and Hsee 2002).  

2.2.3 Fallacies and Heuristics 

Decision makers for large-scale aerospace projects want to have as much 

information as possible in order to make decisions. Unfortunately, decision makers often 

find that the information wanted isn’t available and the available information does not 

allow them to use rational decision making models, such as analytic hierarchy process 
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(AHP) or utility theory. Therefore, these decision makers either fall into the trap of 

decision making fallacies or they use decision making heuristics.  

There are many decision making fallacies that designers can fall victim to. A 

common one for scientists or engineers is using small amounts of data as representative 

of large amounts of data (Tversky and Kahneman 1974). An engineer may gather a small 

amount of data for several design options and assume that, because this limited data 

points to one option as the best that that option is, in fact, the best. If the designer had 

gathered more data, he may have come up with a different solution. When a design 

decision maker is trained as an engineer, he may unconsciously decide that he cannot 

justify a decision unless he has hard data to back up his decision. He may believe that 

making a decision based on facts is more scientific and believable even if the decision 

wasn’t made that way (Saaty 1994), and search for facts to back up any decision that he 

makes.  

Other decision makers will fall victim to the sunk cost fallacy, which says that 

human are more likely to continue a project if a significant amount of time, money and 

other resources have already been spent even if the projected outcome is poor (McCray et 

al. 2002). Due to organizational constraints, many managers and designers are pressured 

to continue failing projects (Rizzi 2003), and the design decision maker may not want to 

admit a failure (Main and Rambo 1998) or feel as though money would be wasted if a 

new, untested design were suggested (Arkes and Ayton 1999). Another fallacy that can 

be a problem for strategic decision makers, particularly those whose decisions involve a 

large amount of uncertainty, is overconfidence. The overconfidence fallacy occurs when 

decision makers and managers believe that the future can be predicted with better 

accuracy than is actually possible (Lovallo and Kahneman 2003). The inability to 

correctly predict the future creates risk (Miller and Lessard 2001), especially if one 

doesn’t understand how inaccurate predictions may be (Gigerenzer 2004). A designer 

who made good predictions in the past may believe that a project outcome was due to 
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good decision making and predictive capabilities, rather than just luck (Newell et al. 

2004) and so he becomes overconfident in his abilities. He increases programmatic risk 

not only by being unable to accurately predict the future, but by being overconfident in 

his ability to make those predictions (McCray et al. 2002).  NASA’s space shuttle 

program and Concorde are examples of designers, managers, and politicians falling 

victim to the sunk cost and overconfidence fallacies (Arkes and Ayton 1999).  

Decision makers are often tasked to make decisions quickly with little 

information and a large degree of uncertainty. One way to manage the uncertainty in the 

decision making process is through the use of heuristics, or rules of thumb. There are 

many heuristics that have been identified in many different decision making fields; 

however, only those deemed useful in this context are highlighted here.  

One heuristic that can aid decision making is availability. When decision makers 

are looking over a large number of design choices, they can be more likely to choose a 

design that they have information about (Tversky and Kahneman 1974). The availability, 

or the ease at which information can be found or brought to mind, may have an impact on 

the final choice. When a decision maker can readily recall the pertinent information about 

system A but cannot recall pertinent information about system B, the decision maker may 

prefer system A since it is the more well-known and experienced system. The designer 

“perceives” less uncertainty in performance from the known system, than from the 

unknown system (Wickham 2003). An additional heuristic is recognition: the decision 

maker is more likely to choose a design that is recognized, rather than a design that is 

unknown, even if little is known about both designs (Gigerenzer and Goldstein 1996). 

The use of recognition and availability heuristics depends on the person making the 

decisions. A person is more likely to recall or recognize something from a situation that 

involves strong emotions (Muramatsu and Hanoch 2005), and that recollection makes a 

decision maker more likely to use the information, whether or not it accurately represents 

the situation at hand (McCray et al. 2002).  
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2.2.4 Biases 

Biases can push a decision maker toward a particular decision at the expense of 

other, perhaps better decisions. Many of the above fallacies and heuristics could also fall 

under the definition of biases, but these are presented as occurring in the original 

literature. Some biases were discussed earlier: a decision maker is biased toward the 

company’s product over the competitor’s.  

Other biases include status quo bias, whereby the decision maker sees less risk in 

continuing the status quo than in making a decision that would create a new product 

(Kahneman et al 1991). The new product design would have substantial start-up costs 

even before a determination could be made whether or not the project will be feasible and 

viable. If the project is successful, the reward may be great, but the probability or 

consequences of failure may be too large. It is much safer to just keep updating the 

existing designs than to risk bankruptcy if a new design goes poorly.  

Corporate decision makers also face the anchoring bias, where the decision 

makers base what they think will happen on plans and scenarios rather than a reliable 

future assessment (Tversky and Kahneman 1972). Often the anchoring bias provides 

decision makers with the ability to make overly optimistic predictions based on future 

plans that may never materialize (Kahneman and Lovallo 1993). Because so many people 

believe that developing a future plan is important, other individuals are discouraged from 

questioning the plan and providing negative feedback; therefore, the future plan is used 

more and more often and the true situation outcome is a surprise instead of being 

expected.  

2.3 Multi-Attribute Decision Making Techniques 

As mentioned in the previous chapter, decisions made during the conceptual 

phase of product design and development have lasting consequences on system design. A 

design engineer would like to be able to do an exhaustive design space search and gather 
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all available information about each and every design alternative before making a 

decision, but this is not practical. In contrast, most of these decisions are made with little 

or uncertain information and without examining all the possible alternatives for each 

situation.  

Even when decision makers have only a limited set of options, engineering 

decision making is often modeled as an optimization problem using some multi-attribute 

decision making technique with attributes such as system performance and cost. 

Traditional techniques often assume that the user has a plethora of information about the 

system and its environment both now and in the future. For multi-attribute decision 

making techniques in general, the designer needs to know both preference weightings for 

attributes and future outcomes of a design choice, and these values are fixed in the 

assessment (Drake 1992).  

2.3.1 Overall Evaluation Criterion 

 The overall evaluation criterion (OEC) is a multi-attribute decision making 

technique that allows the user to compare designs using many different design features in 

the same equation and on a similar scale. Hwang (1981) calls such techniques scoring 

models, since these techniques yield a model with the highest score or best utility. The 

OEC provides one number as a comparison, and can be set up such that either the 

maximum or minimum is the best solution, although it is usually set up as a maximization 

problem. The OEC equation needs a baseline design to use for comparison, and then 

information from any other models. The baseline can be a model or can be the best or 

worst for each criterion. An example generic OEC equation is given in Equation 1. 
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The criteria to be used can vary from problem to problem, but for aerospace programs are 

generally performance and cost metrics. For criteria to be maximized—“benefit” criteria, 
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such as profit, the equation is maximized when the criteria for the new design is divided 

by the criteria for the baseline, while for criteria to be minimized—“cost” criteria, the 

baseline is divided by the new design. The Greek letters are the weighting factors that 

allow for some criteria to be more important than others (Roy 2001) in order to rank 

customer preferences.  

 The OEC is very useful in that it provides a single metric with which to compare 

different designs. The single metric is simple and easy to use and understand. The OEC is 

easy to set up and transparent to use, since it involves a single step and simple 

mathematics. However, it cannot support trade studies showing which criteria are more 

important and can have scale problems if one criterion varies orders of magnitude from 

the baseline and others vary only 10%. As it is one equation, it is also difficult to show 

which criteria are driving the design and are having the biggest impact on the OEC. The 

OEC equation also assumes a linear relationship between criterion improvement and 

importance: a criterion may only be important if it is below or above a certain threshold, 

i.e. must meet minimum range requirements, but the OEC will continue to treat any 

increase in range above that value as important as a range increase below that value. The 

OEC also has the problem of only being able to use criterion that have quantitative 

values, so a mapping process is necessary for qualitative metrics.  

2.3.2 Technique for Order Preference by Similarity to Ideal Solution 

 Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a 

multi-attribute decision making technique that allows for easy comparison between 

design solutions. Like an OEC, TOPSIS breaks down the different design attributes into 

one number that can be compared between designs. Also like an OEC, a TOPSIS 

problem is a maximization problem. The TOPSIS methodology is able to rank design 

alternatives based on their distance from a Euclidean ideal solution. Like an OEC, it uses 
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criterion weightings to take into account customer preferences. Unlike the OEC, which is 

one equation, the TOPSIS analysis is a series of steps. 

 The first step is to create a decision matrix, as illustrates in Table II. This matrix 

has a list of the alternative designs and their attributes or evaluation criteria.  

Table II: TOPSIS Decision Matrix 

Low Average 7.516.92.2Concept 4

AverageAverage 7.714.71.8Concept 3

HighLow 6.411.62.1Concept 2

AverageLow 6.218.41.6Concept 1

Attribute 5Attribute 4Attribute 3Attribute 2Attribute 1
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Objective Subjective
 

Evaluation criteria can be quantitative or qualitative. Qualitative criteria must be 

quantified using a mapping process over an interval scale—for example: excellent=9, 

good=5, poor=1. Now each box in the decision matrix is normalized by diving each 

attribute value by the norm of the total output vector of the criterion at hand; for the first 

attribute of Concept 1, this formula would be the one given in Equation 2.  
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     (2)  

Once the matrix has been normalized, the relative importance of each criterion is 

established using customer weightings and all values in each column are multiplied by 

the relative importance of that criterion. Then each criterion is determined to be either a 

benefit or a cost. The goal is to maximize the benefits and minimize the costs, so the 

positive ideal solution is the one that takes the maximum value of each benefit criterion 

and the minimum value of each cost criterion while the negative ideal solution is the one 

that has the minimum value of each benefit criterion and the maximum value of each cost 

criterion. The distance from each new concept or design to the positive and negative ideal 

solutions are calculated using Equation 3, and then the relative closeness to the ideal 

solution is calculated using Equation 4. 
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The alternatives are then ranked by the relative closeness to the ideal solution. All 

alternatives will fall on a zero to one scale, with larger values being better.  

 The TOPSIS methodology is a good multi-attribute decision technique for simple 

concepts where the results can be generated and regenerated very quickly. Its answers are 

very sensitive to changes in the mapping process for qualitative criteria and the customer 

preference weightings. It also only gives an overall “best” answer and alternative ranking, 

so a person with no knowledge of the process would be unable to figure out where that 

answer came from. The mathematics involved are more complicated than the OEC 

evaluation, but there is more information to be gleaned for the experienced user. A user 

familiar with the TOPSIS evaluation would be able to see which attributes contribute the 

most to the solution and whether any tradeoffs can or should be made in the customer 

preference weightings. TOPSIS, as an evaluation and decision support tool, is quick and 

easy to use and provides a great deal of information for the experienced user. 

Unfortunately, it can difficult to use qualitative information with TOPSIS due to the 

sensitivity in mapping. When many concepts are close in rankings, the uncertainty in 

attributes that is inherent early in the design process may make it difficult, if not 

impossible, to accurately distinguish between alternative concepts.  

2.3.3 Expected Value and Utility Theory 

 The idea of an expected value was born of probability theory in the 1720’s 

(Apostol 1969). It is a measure of the value or, often, the “goodness” of a potential 

outcome. Expected value is often used in risk analyses and optimization procedures for 

complex engineering systems. Expected value is nothing more than the sum of the 
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probabilities of a series of outcomes times the value of the outcomes, as given in 

Equation 5 (Hayter 1996). 

( ) ∑=
i

ii xpXE         (5) 

In a technical situation, expected value can be used to calculate the expected outcome of 

a set of solutions or a set of potential situations. Probability theory was also used to 

determine monetary values for engineering projects, but it had many drawbacks. 

Probability theory requires certain probability and outcome information, while in reality 

information is often uncertain. Just as with TOPSIS, uncertainty can overwhelm the 

differences between design options. Another problem with using probability theory and 

expected value to determine monetary value is that people are not rational when dealing 

with possibilities of gains and losses. The expected value function treats gains and losses 

as exactly the same in terms of value: an expected gain of $100 of one already possesses 

$1000 has exactly the same increase in value an expected gain of $100 if one already has 

$100,000, with the losses being the opposite.  

In real life, people do not generally behave this way, and so utility theory was 

developed to better model how people behave. Utility theory was developed by Daniel 

Bernoulli in the 1730’s (“Judgment, Choice and Decision Making” 2001). It is similar to 

expected value, except that Bernoulli postulated that marginal monetary increases have 

decreasing utility as the initial monetary value increases, with the same being true for 

decreases. He postulated that these increases and decreases will follow a logarithmic 

rather than a linear scale (“Judgment, Choice and Decision Making” 2001). A graph 

illustrating Bernoulli’s theory is shown below in Figure 10. Expected utility allows for a 

more accurate representation of how people think than probability theory does, however, 

it also has some drawbacks. Along with the drawbacks associated with probability theory, 

a logarithmic function is more difficult to handle than a linear function, and different 

people argue over what, exactly, the function should be. People also have a difficult time 
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understanding and handling the probabilities necessary to use utility theory (Gilboa and 

Schmiedler 2002). Human decision makers also understand, intuitively, that a monetary 

loss and a monetary gain should not be treated the same way, which they are in 

Bernoulli’s utility theory (Schweitzer and Hsee 2002). This criticism is addressed later, 

by more cognitive theories of decision making and judgment.  

Utility

Monetary value

Utility

Monetary value

 

Figure 10: Utility vs. Monetary Value 
 

For all the problems with utility theory, it is still the “gold standard” of decision 

making techniques (Gilboa and Schmiedler 1995). The majority of modern decision 

making techniques are based, in some way, on utility theory. Economists use it, with a 

few updates, to predict how people will behave in different economic situations. 

Marketing experts and businessmen can use it to determine how much to charge for a 

new product, and risk analysts can use it to determine and compare different risks.  
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CHAPTER 3 

RISK BACKGROUND AND ASSESSMENT METHODOLOGIES 

 Risk is present throughout almost all aspects of life; as human beings, people 

often try to reduce risk but cannot eliminate it. Many different risk analysis methods exist 

in different industries. The goal of this chapter is to benchmark existing risk assessment 

systems or methodologies in an effort to answer research question two: 

RQ4: Do any systems or methods currently exist that allow the user’s 

judgment to make decisions in the beginning stages of conceptual design? 

While using a risk-benefit type of approach? 

To answer this question, a basic understanding of risk is necessary. Risk will be defined 

and the aspects of risk that influence decision making will be introduced and briefly 

reviewed. Then, several industries will be reviewed for current risk assessment practices 

to determine whether these methods meet the criteria laid out in research question two: 

allowing the user’s judgment to help make decisions while using both risks and benefits. 

If such a methodology is found to exist, then it needs to be tailored to the needs of the 

aerospace industry, and if such a methodology does not exist, what methods or 

information can be borrowed from other industries to help build this type of method?   

3.1 Background and Literature Review 

Risk is generally defined in terms of a probability and a consequence: the 

probability of some situation occurring and the outcome, or consequence, if that situation 

does occur. In a practical sense, the probabilities are generally small (significantly less 

than one) and the consequences are generally negative (Winfrey and Budd 1997). Risk 

assessors and decision makers rarely talk about the risk that an outcome will be better 

than projected, but often spend a significant amount of time and money to determine the 

risk of a project outcome that is worse than expected.  
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Due to the large design costs and, in the commercial world, a concern for 

customer safety, risk is inherent for large, long-term aerospace projects, so a risk 

management strategy is necessary for these projects. Risk management must take several 

forms: technical, managerial, operational, social, and financial risks, for example, must 

all be examined and managed (Winfrey and Budd 1997). While the risks of interest to a 

company are monetary, even those risks can take many different forms. Many of these 

risks are known risks with some certainties. For military systems, the direct monetary 

consequences are relatively certain: the DoD states the monetary value of the contract 

before it is signed and is required to adhere to contract stipulations. Technical risks, such 

as performance uncertainty, are also monetary in nature.  Evolutionary designs also have 

less performance uncertainty than revolutionary designs, but again, for military systems 

the contract amount is dictated before the design is tested. For other new designs that use 

newly developed processes and/or products, there is uncertainty in the new technology 

performance and costs. When making new products, companies also must worry about 

the social risks, such as health consequences for both the workers and the general public. 

Healthcare costs for sick workers can be financially devastating for a company. Long-

term projects in and of themselves can also have indirect monetary consequences for a 

company. Publicly traded companies, which American aerospace companies generally 

are, must also make money for their investors. Investors want to see stock price increases 

and dividends every quarter, so a company cannot choose to create a product that will put 

it in the red for an extended period of time. Large-scale engineering systems take many 

years to develop, so a company cannot devote too many resources to any one project and 

expect to continue to make money.  

3.1.1 Definition of Uncertainty 

 There is often some confusion between the terms risk and uncertainty. Webster’s 

New World College Dictionary’s definition of uncertainty is lack of certainty, or doubt, 
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while the definition of risk is the chance of injury, damage or loss, or dangerous chance 

or hazard. While the sense of uncertainty conveys vagueness or doubt, the sense of risk 

conveys a chance for damage or loss. So while uncertainty about an event’s outcome 

means that the outcome is in doubt, the risk associated with that event means that the 

outcome is not only in doubt, but also that the outcome is potentially bad. In summary, 

uncertainty conveys only doubt or vagueness about an outcome or circumstance, while 

risk conveys that there is uncertainty about an outcome and that there are also potentially 

negative consequences associated with that outcome. 

3.1.2 Risk Perception 

Companies making commercial products, which include aerospace companies, 

must deal with the perceived risks of the customer base, which in many cases is the 

general public, as well as the actual risks associated with technical, financial, political, 

and other uncertainties. Risk perception is often more important than risk reality: after the 

terrorist attacks on September 11, 2001, many people thought that flying was very 

dangerous; however, even in 2001, a traveling American was 7.5 times more likely to be 

killed per passenger mile in a car than an aircraft (Bureau of Transportation Statistics 

2004). Even though the statistics say that it is safer to fly than drive, many people still 

choose to drive and say that they feel safer driving; this irrationality shows the difference 

between “risk perception” and “risk reality” (Slovic et al 1976). Decision makers must 

understand the risk perception part of the equation in order to create viable products.  

There are many factors that a decision maker should understand when learning 

about risk perception. The general public is concerned primarily about risks that fall into 

the following three categories (Crouch and Wilson 1982): 

• Known risks that have occurred and have the potential to occur in the future 

• Risks that are catastrophic, even if the probability is very small 

• Risks that conflict with long or strongly held opinions 
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Slovic, Fischhoff and Lichtenstein listed three factors that influence public perception of 

risk as familiarity, dread and exposure (Slovic et al 1979 and 1981), so there is some 

overlap between these two theories. Public perception of risk can have other components: 

the wording or framing of a potential risk can also have an effect on how the risk is 

perceived. A positively framed outcome will have a lower perceived risk than a 

negatively framed outcome (Gonzalez et al 2005). The media also helps frame risks for 

the general public. Attention by the media makes risks appear more real and more likely 

to many people. The media’s attention to some types of risk, and the consequential public 

perception of those risks, has led to large amounts of government money being spent to 

reduce already small risks at the expense of other, larger risks (Ashford 2005). Since 

there is often some disagreement within the scientific community about the exact nature 

of a particular risk, the general public with a comparatively lower level of scientific 

expertise, perceives many aspects of daily life to be more risky than he should (Fischhoff 

et al 1978); the public is not necessarily capable of making the distinction between 

possible risks and potential risks. Potential risks are actually plausible, while possible 

risks may only be a figment of the imagination, but public perception is often influenced 

by possible, not potential risks (Salaun-Bidart and Salaun 2002).  

Emotions, especially fear and trust, play a role in the perception of risk and 

choices people make (Muramatsu 2005). People often overestimate the risk of very 

emotional events, such as a commercial aircraft or space shuttle accident. Public 

perception of the safety of a product has an influence on whether or not customers 

purchase the product and therefore the company’s bottom line. Strategic marketing 

practices can help alleviate customer safety concerns in many cases (Slovic 2003), but 

not all. It has also been observed that happy decision makers are more optimistic and 

more inclined to take risks than unhappy decision makers. Happy decision makers 

anticipate feeling better after making a decision, whatever the outcome, than unhappy 
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decisions makers and so may be more risk taking than their depressed counterparts 

(Loewenstein and Hsee 2001).  

3.1.3 Risk Aversion 

 It has long been noted that, in general, people are risk averse: they prefer a “sure 

thing” over a chance outcome when expected values are the same (Kahneman and 

Lovallo 1993, Lane and Cherek 2000). People are also generally loss averse—most 

people feel that potential losses represent a larger risk than potential gains (Kahneman et 

al 1991, Thaler et al 1997). This is one of the places where utility theory fails to 

accurately portray real human behavior, since it assumes that gains and losses are 

perfectly offset. Understanding this behavior can help decision makers better evaluate 

their own sense of risk aversion and their management’s feelings on risk taking, since 

organizations, as much as people, tend to be risk averse (Callopy 2003). This theory on 

risk aversion helps explain some company inertia regarding the creation of revolutionary 

systems. Companies that are risk averse will continue to use and refine an existing system 

as long as possible before undertaking the design of a revolutionary system. The 

revolutionary system has too large a potential for loss, and the decision maker does not 

want to be responsible for such a large potential loss. 

 One caveat to the theory of risk aversion is Prospect theory. Prospect theory states 

that people are risk seeking with low probability gains and high probability losses while 

being risk averse over high probability gains and low probability losses (Kahneman and 

Tversky 1979). Prospect theory also postulates that people are more sensitive to small 

and moderate losses than they are to small and moderate gains (Byrns 2004). This theory 

helps explain why people continue to play the lottery even when the probability of wining 

is very low or why people will continue to gamble on gameshows even though the 

probability of winning a large amount of money is smaller than the expected value of the 

buyouts offered: there is no loss associated with failing to win the large prize.  
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3.1.4 Social and Political Risk 

 Social and political risks can have many definitions. A broad definition of 

political risk encompasses any and all impacts of the political process on business 

practices. In a more practical sense, political risk is the potential negative impact of 

politics and associated politicians on a product life cycle (Bremmer 2005). Social risk is 

more difficult to define. One definition, from Miller and Lessard, is that social 

acceptability risk is “the likelihood that sponsors will meet opposition from local groups, 

economic-development agencies, and influential pressure groups” (Miller and Lessard 

2001). Another definition is that social risk “refers to the impact of organized behavior—

business, the public sector or civil society—on society as a whole” (de Jongh 2004). By 

whatever definition is chosen, the behavior of the general public or subsets thereof will 

have an impact on the decision making processes of a company engaged in a design 

process.  

 Social risks have varying impacts across the decision making spectrum. Some 

decision makers worry about social risks from lobbying groups or other well-organized 

non-governmental organizations who challenge and try to change business practices, 

while other decision makers worry about the potential for grass-roots, unorganized 

groups to impact the company’s financial future (Yaziji 2004/2005). Worries in the 

aerospace industry can include social risks associated with groups who are opposed to 

overseas manufacturing and overseas labor practices, groups who are opposed to 

environmental practices here in the United States, and labor unions who are opposed to 

changes in business practices. Other company worries take the form of human and 

environmental health and safety. It is very costly for a company to do an environmental 

cleanup or to deal with a human safety issue, so most companies try to avoid these types 

of conflicts. Companies in the aerospace and other industries need to understand and take 

into account changes that may occur in the social landscape during their product’s life 

cycle.  
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 Political risks are generally more easily recognized than social risks. It is well 

known that political factors can influence decision making (Schwartz 2001), especially in 

the aerospace industry. Aerospace corporations worry about politicians and governments 

changing policies (Miller and Lessard 2001), and about changes in the politicians 

themselves during election years. The industry has pro-industry lobbies at the state and 

national levels, but companies still worry about lobbies that target the aerospace industry 

for vilification. Aerospace companies also worry about unintended consequences from 

other laws passed, such as those that regulate the environment or imports and exports of 

parts and labor.  

3.1.5 Calculating Risk – Risk Assessment 

 Risk calculation is an issue for any engineering project. The calculation of risk 

allows for comparison between risks and projects and enables the selection of risks for 

mitigation. The goal of a risk assessment is to help decision makers to understand risks 

and enable decision makers and managers to make more informed decisions (Black 

2001). While unfavorable risk assessments can sometimes cause projects to be 

downscaled or eliminated, it is not the goal of any risk assessment to eliminate risk; 

viable risk-free projects are non-existent and cannot be created (Callopy 2003, Manuele 

and Main 2002). Successful engineering projects aren’t necessarily the ones that are 

safest and have the lowest risk, but they are often the ones where the risk is understood 

and managed from early in the design process (Miller and Lessard 2001).  

 A risk assessment often takes the form of a single number that encompasses an 

expected loss (Yellman 2000, Winfrey and Budd 1997). Traditional decision theory uses 

utility theory to measure the expected loss or expected outcome for risks (Slovic et al 

1974). Utility theory is the most widely used risk assessment approach because it takes 

into account both probabilities and consequences for a risk and is able to collapse the risk 

into one number that is easily comparable across risks and projects. Utility is also an 



 51 

intuitive way to calculate risk and, due to its deterministic nature, is easy to understand 

and use.  

 However, the use of utility theory as a risk assessment approach has some 

limitations. One of the limitations, explained above in the utility theory section, is that it 

requires deterministic information for an assessment. Using average probabilities and 

consequences in a utility-based risk assessment can greatly underestimate actual risk 

(Elmaghraby 2005). Utility theory is difficult to use for low-probability, high 

consequence events (Chichilnisky 2000, Haimes 2004). When the probability of an event 

occurring goes to zero and the consequences go toward infinity, a mathematical 

assessment of risk becomes almost meaningless. There is difficulty in assessing both the 

probability and the consequences in such a situation. For example, since there has never 

been a large-scale, catastrophic nuclear accident in the United States, a risk assessment 

has no data to back it up. The assessors and decision makers know that the probability of 

such an event occurring is low but may not know how low: 1 in 109 vs. 1 in 1012 are both 

very small probabilities that may, in fact, be so small that it is difficult to differentiate 

between them even though there is a difference of three orders of magnitude. The same 

problem occurs on the other end with consequences: it can be difficult to differentiate 

between large consequences of different orders of magnitude. For example, a disaster 

could claim the lives of 1,000,000 civilians vs. a disaster that claims the lives of 

10,000,000 civilians could be treated equally even though the loss of life was an order of 

magnitude greater in the second example. These issues make it difficult to compare the 

risks of low-probability, high consequence events to the risks of other events. One of the 

ways to get around this problem is to add another term to the utility assessment that 

accounts for a decision maker’s desire to avoid a situation with catastrophic 

consequences (Chichilnisky 2000). Another problem with using utility theory as a risk 

assessment tool is the difficulty that one has placing a monetary value on human life and 

safety (Ashford 2005). It can be difficult for a company to accurately assess the value of 
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a particular life, even if a general formula is available for assessing the value of a human 

life.  

Another problem that is inherent to any risk assessment algorithm is that many 

times probabilities are not numerical but verbal. Risk assessors are often left trying to 

figure out the probability of a “low probability event.” Does that mean that the 

probability is 1 in 10, 1 in 1000, or 1 in 1,000,000? Since probability terms are vague, 

and differ between individuals, risk assessors can have a difficult time with this task 

(Gonzalez-Vallejo 1994). Risk assessors and decision makers generally want to quantify 

the probabilities of events occurring as much as possible in order to avoid vagueness 

(Kuhn and Budescu 1996). 

3.2 Current Risk Assessment Methodologies 

 Many industries complete risk assessments before providing a product or service. 

While Section 3.1 provides a brief literature review of different aspects and schools of 

thought on risk assessment and calculation, this section will provide a brief review of 

some industries and their current risk assessment practices. In an effort to provide a 

cross-section of assessment methodologies and practices, both technical and non-

technical examples will be cited. The purpose of this section is to see what methods 

currently exist and what information or suggestions can be borrowed from different 

industries and used for a conceptual design phase, business-case risk assessment in the 

aerospace industry. 

3.2.1 Commercial Aerospace Applications 

Commercial aerospace companies, such as the Boeing and Airbus Corporations, 

conduct risk analyses during the design, development, and certification of all new 

aircraft. For commercial aircraft, safety, reliability, and maintainability are of utmost 

importance (“ARP 4754” 1996). Safety and reliability are of particular importance to 
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government regulatory agencies, such as the FAA and the European Aviation Safety 

Agency (EASA), who eventually certify the aircraft as safe enough for commercial 

transport. Regulatory agencies are less worried about the business case than the 

corporation and do not complete a business case risk analysis. The corporation designing 

and building the aircraft completes a business case analysis for the aircraft’s potential life 

cycle; however, it is not necessarily in the form of a classical risk analysis. 

Since risk in the commercial aerospace sector is usually defined in terms of safety 

and reliability, the techniques developed to analyze risk use safety and reliability as their 

overarching metrics. The procedures for completing a safety assessment for a commercial 

aircraft are laid out in Aerospace Recommended Practice (ARP) 4761, compiled by the 

Society of Automotive Engineers (SAE) Technical Standards Board. The safety 

assessment process includes a functional hazard assessment (FHA), preliminary system 

safety assessment (PSSA) and a system safety assessment (SSA) (“ARP 4761” 1996). An 

FHA is defined as “a systematic, comprehensive examination of functions to identify and 

classify failure conditions of those functions according to their severity” (“ARP 4761” 

1996). FHAs are carried out on at least two levels, aircraft and system, and are updated as 

necessary throughout the design and redesign processes. The PSSA lists failure 

conditions and corresponding safety requirements while the SSA is used to evaluate 

whether the system design meets the safety requirements laid out in the PSSA. Tools for 

use at this level of safety and reliability assessment include failure modes and effects 

analysis (FMEA), fault tree analysis (FTA), dependence diagrams, and Markov analysis 

(“ARP 4761” 1996). 

Safety and reliability analyses of commercial aerospace systems are completed in 

a top-down fashion, going from system to sub-system to component. In the commercial 

aviation world, the goal is to create a fail-safe system: a system which can withstand 

multiple failures without a catastrophic effect (“ARP 4761” 1996). All of the approaches 
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and methods listed in the paragraph above are utility-based, numerical methods that do 

not take into account uncertain or changing data.  

Commercial space industries are similar to commercial aircraft transportation in 

that they also complete safety and reliability risk assessments; however, after the launch 

phase, the risk assessment almost totally involves component and system reliability with 

little thought to human safety. Boeing Corporation uses a total risk management 

procedure, in which the company completes a risk assessment not only for its own 

systems, but also for sub-contractors’ and financiers’ systems. (“The ‘Services’ at…” 

2003). 

At the corporate level, a significant amount of money is needed to finance the 

development of new commercial products and to bring new technologies to the point 

where they can be utilized. Having to acquire large sums of money necessitates a 

different sort of risk analysis than one dedicated toward safety and reliability. This type 

of financial risk analysis is carried out by both the corporation borrowing the money and 

the creditor lending the money and involves making a determination of whether the 

corporation will be able to pay back the money it has borrowed. Section 3.2.3 explains 

this process in further detail, but this process involves looking at the borrowers current 

assets, projected assets, and projected income to determine whether the borrower can 

repay the loan. 

In general, aerospace commercial risk analysis processes are designed to examine 

risk in the forms of safety and reliability. While these analyses are necessary, the analyses 

are not designed to examine risk arising from external factors, such as socio-political 

factors. 

3.2.2 Government Aerospace Applications  

The National Aeronautics and Space Administration and the Department of 

Defense have sets of risk assessment and mitigation policies and procedures for defense 
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department and aerospace missions. The DoD is charged with making sure that DoD 

personnel, including military personnel and civilian contractors, can complete their 

missions as safely and effectively as possible. NASA, similarly, is determined to see that 

NASA personnel, especially NASA astronauts, can complete their missions as safely and 

effectively as possible.  

NASA is the governmental branch charged with space exploration and 

aeronautics development. Since it involves completing missions no one has completed 

before, space exploration is risky; therefore, it is not surprising that there are procedures 

in place to calculate and mitigate risk. NASA has a continuous risk management plan in 

place that shows the five steps to risk management at NASA. An illustration if this plan is 

shown in Figure 11. The risk mitigation plan contains five steps and is iterative: identify, 

analyze, plan, track, and control risks. Interspersed throughout all the steps is 

communication and documentation (“Risk management…” 2004).  

 

Figure 11: NASA's Continuous Risk Management Plan (“Risk Management…” 2004) 
 

The purpose of this set of procedures is to first identify and analyze risks, then 

take steps to mitigate any risks that need mitigation, and, finally, to document the process 

for use by later projects. The continuous risk management process is outlined in more 

detail in Figure 12 below. The process begins with project outlines and constraints, and 

involves the identification of risks, risk mitigation plans and tracking requirements, risk 
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status reports as time goes on and the project moves forward, and decisions about a 

project’s risk. The goal of this process is to reduce the risk for a given project and to track 

the remaining risk. Elimination of all risk is not a feasible goal, and so risk reduction is 

considered to be the state of the art.  

 
Figure 12: NASA's Continuous Risk Management Process Steps (“NASA Program…” 2005) 

 

For each project, NASA completes a 10-step probabilistic risk assessment procedure 

(“Probabilistic Risk Assessment…” 2004): 

1. Definition of Objectives: state study objectives including time-frame, analysis 

goals, rules, and product configuration. Also state any undesirable consequences 

(end-states) that can occur. 

2. System Familiarization: understand the system in question through the use of 

drawings, operating and maintenance procedure manuals, and, if possible, an 

actual inspection of the system. 
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3. Identification of Initiating Events: identify and analyze any events that can cause 

accident scenarios. Event identification can take the form of logic trees, FMEA, 

etc during different phases of the mission. 

4. Scenario Modeling: using event trees or similar tools/techniques, break down 

each accident scenario into a series of events that ultimately lead to the accident 

or system breakdown. 

5. Failure Modeling: model failure causes identified in the scenario models above 

using fault trees or similar tools.  

6. Quantification: link fault trees and scenario modeling to estimate the probability 

and consequence of end-states that are undesirable, using the scale in Figure 13. 

7. Uncertainty Analysis: through the use of Monte Carlo simulation or related 

methods, add uncertainty to probabilities and consequences determined above. 

8. Sensitivity Analysis: analyze uncertainties in assumptions and models. 

9. Ranking: identification of dominant contributors to the project risk. 

10. Data Analysis: collection and analysis of data to support the risk assessment. 

 

Figure 13: NASA's likelihood and consequence risk estimate (“Risk Management…” 2004) 
 

The probabilistic risk assessment is designed to be able to be completed for every 

project. The amount of risk will differ from project to project, and the risk tolerance 

differs between manned and unmanned space project. As a human life is more important 

than a computer, risk tolerance is lower for manned space projects than for unmanned. 
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However, since astronauts are specially trained professionals and volunteered for their 

positions, risk tolerance for manned space programs is much higher than risk tolerance 

for commercial airline traffic. NASA considers the safety of crew and ground personnel 

to be of utmost importance when completing a risk assessment.  

The DoD has a risk management procedure for acquisitions that is similar to the 

NASA procedure. It has five steps, and is an iterative process through these steps: risk 

identification, risk analysis, risk mitigation planning, risk mitigation plan 

implementation, and risk tracking (“Risk Management Guide…” 2006). These five steps 

are similar to those listed in NASA’s Continuous Risk Management Plan. An illustration 

depicting the DoD’s risk management process is in Figure 14.  

 

Figure 14: DoD Risk Management Process (“Risk Management Guide…” 2006) 
 

The five key activities are carried out over the life of the program. The DoD does 

not consider a risk analysis to be static, rather, it should be something that is continuously 

updated as new information is available. The goal of the risk management process is not 

to eliminate risk, rather, it is to track the risk associated with a project and determine 

whether the risk falls into an acceptable range. Tracking the risk of a project through time 
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is an important component of the DoD risk management process (“Risk Management 

Guide…” 2006). 

The first key activity in this process is risk identification. This task identifies the 

risk associated with technical, cost, and schedule parameters and goals as well as the root 

causes of a risk. This task breaks down risk into root causes that can be identified and 

explained. After this, the risk is analyzed in terms of performance, cost, and schedule 

parameters. Levels of likelihood and consequences of each risk are determined, similar to 

the NASA procedure, and the corresponding level of risk is also determined using a risk 

reporting diagram similar to the one in Figure 15. The risk reporting diagram is then 

amended to include the risk mitigation plan. Once the plan has been determined, it can be 

carried out and the result tracked (“Risk Management Guide…” 2006). Since NASA and 

the DoD are both part of the federal government, it is not surprising that their risk 

analysis and mitigation plan procedures have some similarity.  
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Figure 15: Risk Reporting Diagram (“Risk Management Guide…” 2006) 

 
NASA and the DoD, along with other government agencies, do their best to 

decrease risk as much as possible. If risk cannot be decreased, it must be tracked to the 

fullest extent possible. Like the commercial sector, the goal of both communities, 
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particularly NASA, is to ensure the health and safety of their personnel, and the agency 

feels that risk analysis, mitigation, and tracking is the best way to do this. Again, these 

risk analysis processes were not designed to be used to determine risk levels from outside 

sources.  

3.2.3 Nuclear Industry 

 The nuclear industry, including the Nuclear Regulatory Commission, is in the 

business of creating a very safe, very reliable energy source. Since there is a lot of fear 

among the general public about nuclear reactor safety (Slovic, Fischhoff, and 

Lichtenstein 1976), safety is a top priority. Risks in the nuclear industry fall into the 

category of low-probability, high-consequence events. These types of events are not well-

served by traditional measures of risk, such as utility. Since the potential damage done by 

a nuclear reactor accident is so large, the consequences of such an event outweigh the 

small probability of such an accident. No matter how small the probability of an accident 

may be, many people will continue to fear nuclear power and the industry will continue 

to try to reduce the risk of an accident. 

Risk assessment in the nuclear industry involves copious amounts of data and 

analysis of that data. Risk assessors, along with reactor workers, managers, and 

regulators, try to assess what situations could cause a failure, evaluate the likelihood of 

such a situation, and reduce the likelihood that a particular situation occurs. Plant 

workers, assessors, and statisticians evaluate each piece of the nuclear reactor and plant 

to determine what is most likely to fail and when that should happen. The risk assessment 

is usually carried out by statisticians and government officials from the nuclear regulatory 

commission, who determine what pieces of equipment should be tested and monitored 

and how often this should happen (“What We Do” 2007). The emphasis is on reducing 

the probability that an adverse event will happen, not on decreasing the consequences of 

that event. Since a massive nuclear accident has not happened in the United States, the 
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exact nature of the consequences of such an accident is largely unknown, but can be 

inferred by looking at data from other, overseas, nuclear accidents. No matter how much 

time and effort is put into evaluating the safety of nuclear power plants and fixing any 

known flaws, the probability of a catastrophic event will always be greater than zero; 

therefore, many people will always consider the creation of electricity by nuclear fission 

to be a very risky endeavor.  

Risk assessments carried out by the nuclear community are generally good at 

determining situations that can cause mechanical or human failure and compromise the 

safety of those in and around the reactor. These assessments are designed to be precise 

and mathematical and to reduce the probabilities of failure; the assessments are not 

designed to assess political or economic events.  

3.2.4 Banking and Loans 

 The banking industry is in the businesses of lending and investing. While 

different banks manage their investments in differing ways, lending policies are more 

standard across different institutions. Banks can lend money to individuals or families for 

individual purposes, such as purchasing a house or automobile, or banks can lend money 

to individuals and businesses for business purposes, such as starting a business or making 

purchases to increase business capital.  

 For smaller banks, individuals and families make up the majority of their loans 

and for many larger banks these loans still make up a significant percentage of the total 

loan dollars given out. Loans to individuals are given out based on a risk assessment that 

seeks to determine the likelihood of the individual defaulting on the loan and the interest 

rate that such a borrower should receive for a particular loan. In most cases, this 

assessment uses a combination of factors, including the individual’s credit score, income 

and current debt obligations as well as large-scale economic data such as inflation and 

prime interest rate trends (Brumbaugh 2004).  
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Information about income is provided by the loan receiver, and credit score 

information, including debt obligations, is gathered by the loan grantor. Income 

comprises any income that the loan receiver wants to be counted for the purposes of 

qualifying for the loan, and the credit score is used as a predictor of the loan receiver’s 

chances of defaulting on the loan (Gutner 2005). Credit scores are individual and 

calculated based on an individual’s loan repayment history, length of the credit history, 

amount of new credit applied for, the types of credit used, and the individual’s total debt. 

The risk of defaulting on a loan is linked to an individual’s credit score and debt/income 

ratio (Gutner 2005). Interest rates reflect this risk along with the type of loan being 

considered. For example, home mortgage loans are lower-risk than many other loans, for 

both the borrower and lender, because real estate generally increases in value; however, 

other major purchases, such as boats or electronic toys, generally decrease in value once 

they are purchased. For this reason, banks often charge higher interest rates for boats than 

for homes.  

Loans given by banks and investment companies to businesses are structured 

differently than loans to individuals. Businesses, like individuals, are judged to be risky 

based on their credit-worthiness, which includes information about past, current and 

projected profits and/or losses, the current debt/income ratio and the short or long-term 

company business plan. Loans to businesses are often variable interest rate instead of 

fixed-rate, and can have requirements attached to that rate. For example, the lender can 

require that the borrower change business plans or maintain a certain revenue in order to 

keep the interest rate low (Ng 2006). Lenders have an interest in making sure the 

borrower doesn’t default on the loan and so are able to impose these restrictions on 

higher-risk borrowers. 

In summary, the risk assessments in the banking industry take the form of 

assigning risk based on statistics and monetary information. While these techniques are 
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good at assigning a risk level to a borrower, transparency is lacking for many of the 

analyses.  

3.2.5 Personal Insurance (Home, Automobile, etc.) 

Personal insurance, such as homeowners, renters, and automobile insurance, is 

issued by companies that are prepared to assume the risk of loss that corresponds to a 

particular person and asset. Since many people cannot rebuild a house or purchase a new 

automobile if a disaster should happen, insurance companies offer to assume the risk of 

the losses in exchange for money. Insurance companies complete a risk assessment 

before issuing an insurance policy and price. As the insurance company’s goal is to make 

money, it behooves the company to have an accurate risk assessment. The insurance 

industry is a government regulated industry with limits on what will be covered and how 

much can be charged for that coverage, and so any changes to insurance underwriting 

policies must be approved (“Northeast…” 2006).  

For automobile insurance, a company risk assessment takes into account where 

the recipient lives, the recipient’s age and gender, the make and model of the 

automobile(s) being insured and the number of miles driven per year (“Insure Your 

Auto” 2006) in order to put the recipient into a general risk pool. This risk pool depends 

heavily on the availability and use of statistics, and can have a significant impact on the 

price the recipient pays for automobile insurance. For example, teenage drivers have a 

much higher accident rate than middle aged drivers and so teen drivers pay higher car 

insurance rates (“Insuring Teen Drivers” 2006).  

After the insurer has assigned the general risk pool, he then wants more personal 

information about the recipient and car driver to determine a more personal risk rating 

and see if the recipient is more or less risky to insure than other, similar, insured persons 

in their risk pool. Certain groups of people have lower average insurance losses than 

others, and that lower risk can mean better insurance prices. One of the newer trends for 
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assessing risk in the automobile and homeowner insurance industry is to use an 

individual’s credit score as an assessment tool (“Surviving the 'hard market'…” 2004), 

since people with lower credit scores tend to average more losses.  

Homeowners insurance providers do similar types of risk assessments. Insurers 

must consider the location of the home and the potential for catastrophic loss in the area 

(Arnold et al 1997a), as shown in Figure 16 for earthquake potential losses.  

 

Figure 16: Earthquake Hazard Map (“Uniform…” 2006) 
 

Catastrophic losses account for approximately 85% of insurance payouts (Arnold 

et al 1997a), so understanding the potential for loss can have a significant impact on the 

insurance company’s profit. Predicting these losses involves sophisticated computer 

models that predict potential hazards, including earthquakes, tornados, hurricanes, floods, 

and fires (Arnold et al 1997b). For individual policies, the location and associated 

hazards along with the building construction determine the coverage offered and cost of 

said coverage to the consumer (Arnold et al 1997a). The computer models have proven 

inadequate in recent years, and insurance companies have paid out more in claims than 
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they have taken in in premiums (“Surviving…” 2004). Many insurers are now choosing 

to discontinue or limit coverage in high-hazard area of the country due to the historical 

underestimation of risk in these areas, or are substantially raising premiums 

(“Surviving…” 2004, Ramirez 2006). In many cases, this trend has forced the federal 

government to play a role in homeowners insurance: the government provides flood and 

earthquake insurance in high-risk areas (Prahl 2000).  

 The home and automobile insurance industries base their risk assessments on 

statistical data and computer models. Insurers are currently leaving high-risk markets due 

to catastrophic losses; this is example of what happens when the statistics and models are 

incorrectly predicting the future. 

 To summarize, insurers complete risk analyses based on statistical information 

about all clients. While these analyses are quite good at determining the level at which to 

set an insurance premium in order to remain competitive but still remain profitable, there 

is little transparency in how the underwriting is completed. Also, homeowners and 

automobile insurance is designed to prevent physical and monetary loss for the insurer 

and insured, but it does not take into account how macroeconomic conditions can affect 

these losses. 

3.2.6 Government Influence to Personal Safety  

 The United States government has an interest in a safe and healthy populace; 

therefore, various government agencies have been created to protect and serve the needs 

of the US population in risky situations. Government regulations cover everything from 

automobile emissions to the required reporting of certain contagious illnesses by doctors. 

For example, the Food and Drug Administration’s (FDA) stated mission is (“FDA...” 

2006): 

• To promote and protect the public health by helping safe and effective products 

reach the market in a timely way,  
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• To monitor products for continued safety after they are in use, and 

• To help the public get the accurate, science-based information needed to improve 

health  

The FDA regulates most food and legal pharmaceuticals consumed by people living in 

the US. It is the job of the FDA to test the safety of new food and drug products before 

they are marketed to the general public. To do this, new food and drug products are first 

laboratory tested and then tested on animals and finally tested on human volunteers 

before being evaluated for general public safety. If the new products meet the safety (for 

food) or safety and efficacy (for pharmaceuticals) standards, than these products are 

released (“FDA…” 2006) for public consumption. This process can take months or years, 

and is not perfect; sometimes products previously thought to be safe are discovered to 

have long-term side effects and are removed from the market. 

 Other government entities, such as the Environmental Protection Agency (EPA), 

and the Federal Aviation Administration (FAA) have similar mandates to protect public 

health and safety. These agencies, like the FDA, complete a risk vs. benefit analysis for 

new products or technologies before certifying them. The goal is for the product’s benefit 

to society to outweigh the public health risk associated with that product. As with new 

food and drug products, there is sometimes a long time period between when a product is 

first certified and when public health concerns are raised and products are removed from 

the market.  

 One of the problems associated with products whose side effects only show up in 

a long time-scale is that public trust in the certifying agencies is eroded (Slovic, 

Fischhoff, and Lichtenstein 1979). Some products, such as leaded gasoline, x-ray 

machines in shoe stores, and some pain medications, have been defined as dangerous 

after they have been on the market for many years; consumers feel difficulty in 

determining what products are actually safe and what will be declared dangerous at a 
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later time. This problem has led to more stringent regulations for certifying a new 

product, and increasing time and cost to get a new product certified.  

 Risk analyses completed by government agencies stress public safety. These 

agencies and analyses are necessary to regulate the consumption and/or use of dangerous 

products. The analyses are purposefully designed to not take into account any political 

risk, although some social risk is analyzed.  

3.2.7 Risk Analysis Needs 

 For the goal first identified in Chapter 1: to set up a risk analysis procedure that 

can be used by engineers during conceptual design to track and evaluate economic and 

socio-political risk for use in decision making, many of these risk analysis processes have 

some necessary pieces. There are seven aspects of a risk analysis that are useful:  

• Uses quantitative information 

• Uses qualitative information 

• Evaluates technical risk 

• Evaluates economic risk 

• Evaluates socio-political risk 

• Can be completed with little information 

• Is intuitive to human thinking and allows human to be final arbitrator 

Both quantitative and qualitative information are available during the early phases of 

design, so a risk analysis that can handle either qualitative information or a mapping 

process is necessary. Since risk comes in many forms, a good aerospace system risk 

analysis process should be able to evaluate technical, economic, and socio-political risk. 

Since there is little, uncertain information available during conceptual design, the 

analysis should be doable with the information available. The human needs to be the final 

decision maker in design, so a risk analysis should be intuitive to human thought.  
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Unfortunately, none of the procedures examined meets all the criteria of a risk 

analysis process that this author has determined are necessary for this problem. The 

technical risk analysis procedures, such as those used in the engineering world, are very 

good at evaluating technical risk and using quantitative information. Some also have the 

ability to evaluate certain types of economic risk and use some qualitative information. In 

the banking and insurance worlds, evaluation of economic and socio-political risk is 

normal, and both quantitative and qualitative information is used. In general, risk analysis 

procedures require as much information as possible, and procedures are not necessarily 

intuitive to human thinking. 

Since none of the industries benchmarked above fulfills all the wants for a risk 

analysis, a new procedure needs to be developed that takes some information and 

processes from the existing methods. This new method should be able to use quantitative 

and qualitative information, evaluate technical, economic, and policy risks, and provide 

decision support for the human decision maker so he can understand and trace how his 

decisions are made.  
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CHAPTER 4 

WORKING WITH FUTURE UNCERTAINTY 

In the previous chapter risk analysis techniques were benchmarked as per research 

question two. As risk arises from uncertainty, uncertainty is also present. Since the future 

is unknown, it is uncertain and that uncertainty needs to be modeled. In this chapter, 

research question three will be examined: 

How do we deal with uncertainty in the early phases of design when doing 

a risk-benefit analysis? 

Uncertainty is inherent in any prediction of future events. The question above asks how 

to handle that uncertainty. There are several ways of doing this. Uncertainty can be 

ignored, and all data can be treated as deterministic. This is not recommended, since it 

does not reflect the actual uncertainty in real life. Two other ways of dealing with 

uncertainty are probabilistic analysis and scenario based analysis. 

4.1 Probabilistic Analysis 

 One way to deal with uncertainty in large, long time-scale engineering projects is 

probabilistic analysis. Probabilistic analysis helps to bound uncertainty and analyze it. 

Probabilistic analysis is the first step toward analyzing uncertainty after a deterministic 

analysis is complete. In a traditional deterministic analysis, uncertainty about the future is 

ignored and a “best guess” is made about what value a parameter will have in the future. 

For example, if one is trying to analyze an airline’s total operating cost per seat-mile for a 

new aircraft, one of the parameters that is assumed is the cost of fuel. In a deterministic 

analysis, the cost of fuel would be set to a fixed number, which would represent the 

user’s best guess as to what the cost of fuel will be in the future. In a probabilistic 

analysis, that fuel price would be set as a range with high and low values. Setting the fuel 
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price as a range, instead of a value, also implies that the output, or total operating cost per 

seat-mile, will also be a range, instead of a fixed value.  

 To complete a probabilistic analysis, one must first identify the input parameters 

that are uncertain in the analysis. Once those variables are chosen, a range and probability 

density function are also chosen. Probability Density Functions (PDF) generally take a 

standard shape under a standard probability distribution, such as the uniform distribution 

in which only the upper and lower bounds are specified, a triangular distribution in which 

the upper and lower bounds as well as a most likely value are specified, or a normal 

distribution, in which a mean and a standard deviation are specified (Hayter 1996). 

Examples of uniform and triangular distributions are illustrated in Figure 17. Uniform 

and triangular distributions are widely used for continuous inputs, since they require little 

information and are easy to construct. Normal, Weibull, and other distributions can also 

be used, but they have the disadvantages of needing more information about the 

variable’s distribution in the future and have long tails such that a variable has a non-zero 

chance of being either very small or very large. If historical data is available and can be 

used for the creation of distributions, the distribution that best models the data should be 

used. 

 

Figure 17: Probabilistic Analysis Variable Distribution Plots 
 

Points for each variable are sampled randomly according to the distribution 

provided and used to analyze the design. The output of such an analysis is also a 

distribution, as indicated above. The probability density function of one such distribution 

is illustrated in Figure 18 below. Notice that this output is not a normal distribution. The 
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distribution of the output will depend on the distributions on the inputs and the analysis 

being performed. The PDF can then be translated into a Cumulative Density Function 

(CDF) to show what the probability is of falling above or below a certain threshold, 

which can be useful when trying to track the probability of meeting a target or a set of 

targets. 

 

 

Figure 18: Probabilistic Analysis Output 
 
 Determining the distribution or PDF for each input can be challenging. Since 

design is usually completed in teams, it is often a team consensus, but can also be the will 

of the person with the strongest personality or the most experience (Cetron 1972). Team 

consensus is this author’s preferred way to determine variable distributions, since a 

determination made by a team doesn’t reflect the values or prejudices of any one team 

member. The team will also be more knowledgeable as a whole than one team member 

will be; therefore, the potential for accuracy in variable distributions is greater. Whether 

the distributions are made by one designer or set up by an entire design team, they should 

be set up by a person or people knowledgeable about the industry (in this case the 

aerospace industry) and about current and potential events. The team should understand 

the drivers behind the uncertainty that characterizes different variables. For example, fuel 

cost is partially determined by domestic happenings, including the political and economic 

climate, and partially determined by international concerns, such as a war or other 

governmental instability in the Middle East. Those who determine the variable ranges 
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and uncertainties should understand what drives the cost of fuel and what those drivers 

are likely to do in the future. 

 In summary, probabilistic analysis is a tool that is relatively easy use. It can be 

quickly set up using any of several commercially available programs that interface with 

Microsoft® and other well-known products. However, the determination of variable 

ranges and distributions can be difficult to complete and even more difficult to trace.  

4.2 Scenario-Based Analysis 

One way to deal with future uncertainty is by using scenario based analysis. 

Scenario based analysis is a form of scenario based planning, which uses potential future 

scenarios to facilitate future planning. No one can predict the future accurately, so other 

techniques are used to help analyze the future and how it will impact decision made 

today. Scenario based decision making allows decision makers to bound future 

uncertainty through the use of a scenarios to prune a decision tree (Pomeral 2001). 

Scenario decision making involves the creation of plausible future scenarios and then the 

application of those future scenarios to the set of design decisions or decision tree (van 

der Werff 2000).  

 Scenario based decision making involves understanding the problem at hand and 

having potential solutions in mind. The decision maker must understand the uncertainties 

that prevent an optimal solution from being chosen without regard to the potential future. 

Once the decision maker understands the problem, future scenarios are generated. These 

scenarios can be as detailed as necessary, but should address the uncertainties that have 

been identified as important (Shoemaker 1995). The decision maker then maps his 

uncertainties to the future scenarios, thereby bounding the future uncertainty and 

allowing the decision maker the ability to justify future uncertainty predictions. With the 

future uncertainty bounded, the decision maker now has more information with which to 

make design choices and understand potential consequences of those choices. Unlike 
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probabilistic assessment, in which the assessor is limited in what form of future can be 

chosen, scenarios can be combined into almost any form, as illustrated in the plots below, 

Figure 19 and Figure 20. 
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Figure 19: Illustration of Future Scenarios 
 

 

Figure 20: Scenario Variable Distribution Plots 

4.2.1 Scenario Creation 

Scenario creation can be as simple or complex as necessary. Scenarios should 

reflect plausible futures, which is a concept always open to interpretation. When 

determining how to create a set of scenarios, it is important to understand the scope and 

time-scale of the scenarios that will be necessary.  

For near-future scenarios, data forecasting methods can be useful. If the scope of 

the scenario is limited and quantitative historical data exists for use, the scenario-creator 

may be able to use traditional data forecasting techniques. To use these techniques, one 

must first determine the time-scale of the scenario: if one is trying to predict the price of a 

commodity over the next 90 days, extrapolating from historical data may provide an 

accurate answer; however, if one were trying to predict the price of the same commodity 

over a 10 year time, that extrapolation will likely prove less accurate (Walonick 2006).  
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If there is a significant amount of historical data over a period of time and one is 

trying to extrapolate, there are several different techniques available for use; a few will be 

explained here. Many of these techniques are more widely used in the business world, 

rather than the engineering world, and so were developed for that purpose. One 

extrapolation technique is regression with time. The raw data can be regressed using 

whatever curve-fitting technique best fits the data. Common regression equations are 

linear, 2nd order polynomial, exponential, logarithmic (Arsham 2006). Since these 

equations fit the earlier trend, they may be useful in predicting the future. 

For situations where historical data shows a high degree of volatility but an 

overall trend, smoothing techniques can be used to assess the overall data trend and, 

potentially, produce a more accurate future prediction (Arsham 2006). Simple smoothing 

techniques include moving average techniques, where a number of data points are 

averaged and the averages are used to determine the data trend (Arsham 2006). 

Smoothing techniques can be combined with regression techniques. 

While data forecasting works well in situations where there is abundant data and 

the forecast time period is short, it could prove difficult to implement over a long time 

horizon, such as those present in aerospace systems. For short-term scenario creation, 

data regression analysis methods have the potential to be very useful.  

For the creation of longer-term scenarios, different forecasting techniques need to 

be employed. No matter what technique is employed, two questions should be addressed 

first: what is the scenario timeframe and what is the scenario scope (Shoemaker 1995). 

Once these questions are addressed, scenario creation becomes a more bounded problem. 

Many scenario creation methods follow some variation of the first six steps of Schwartz’s 

scenario creation checklist (Schwartz 1991). 

1. Identify focal issue or decision. Identify why the scenarios are being created and 

what question these scenarios will aid in answering 
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2. Key forces in the local environment. Identify the micro-environmental forces that 

influence the decision makers in a given industry for a given problem.  

3. Driving forces. Identify macro-environmental forces that will influence the 

decision. Determine how these interact with the micro-environmental forces.  

4. Rank by importance and uncertainty. Identify the most important and uncertain 

factors to examine. 

5. Selecting the scenario logics. Determine how the driving forces and local 

environmental forces will interact.  

6. Fleshing out the scenarios. Embellish the scenario logics to make a compelling 

storyline that makes sense and addresses the local- and macro-environmental 

forces. 

This checklist can be used to create scenarios of any scope or timeframe. The steps can 

be easily followed because the process is relatively intuitive: identify the problem, 

understand the industry, understand how the global environment affects the industry, 

determine the most important factors affecting the decision, and creating scenarios 

around those factors. While Schwartz’s method details the steps one should go through to 

create scenarios, it does not specify how to complete these steps.  

One class of methods/tools to aid in scenario-creation is morphological 

approaches. In this class of methods, scenarios are created around a set of questions or 

uncertainties. A set of uncertainties about the future is chosen to be examined, and 

assumptions are made about these uncertainties. The assumptions are then combined, 

using some logic, in different combinations to create a set of future scenarios (“Rural 

Futures Project” 2005). The assumptions and uncertainties can be quantitative, 

qualitative, or a mix, depending on the metrics being measured and the timeframe being 

examined, and are often set up in a matrix format. Expert judgment is one method of 

combining the assumptions into plausible futures. With this method, futures that the 

experts feel are extremely implausible are discarded (Ringland 1998). For example, if 
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two aspects of a scenario are wages and consumer spending, a situation in which wages 

decrease and consumer spending increases may be judged to be unlikely and discarded. If 

expert judgment needs to be formal and explicit, other types of analyses, such as cross-

impact analysis, can be employed to help combine the assumptions into appropriate 

scenarios. Cross-impact analysis is a technique that allows for dependencies between 

events to be modeled (Walonick 2006). For example, if two uncertainties that must be 

addressed in a future scenario are the cost of housing relative to historical norms and 

percentage of family income that is disposable, these two uncertainties are correlated. If 

housing costs are high relative to historical norms, it is likely, although not certain, that 

there will be a smaller percentage of disposable income. Cross-impact analysis helps to 

assign that likelihood. If a large enough number of scenarios is being created, a computer 

program with some internal logic regarding combining scenarios can also help with this 

process. Morphological methods work particularly well for making certain that all aspects 

of a future that one is interested in are addressed. Scenario matrices and other tools are 

often used early in the scenario creation process to help define the scenario scope.  

 A more inductive approach to scenario-creation, and one that is somewhat less 

formal, is a brainstorming approach to creating scenarios. In this approach, instead of 

creating a matrix of scenario possibilities, the scenario creators are asked to determine 

what could be significant events in the future and construct scenarios around these events 

(Fahey and Randall 1998). This technique has the advantage of being more open-ended 

and less structured than the matrix approaches; however, it is also significantly less 

structured.  

There are consensus building techniques that aid in the identification of key 

scenario drivers and the scenarios themselves. One of the most famous is the Delphi 

method, created by RAND Corporation  in the 1950s. The method polls expert opinion in 

the form of anonymous surveys and then has a moderator analyze the gathered data and 

collate it. The data is given back to the experts and the process is repeated until the 
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experts converge on a scenario or set of scenarios (Ringland 1998). The major advantage 

of this process is that the surveys are anonymous, so all participants have an equal voice 

in the process. The disadvantage is that the final result is a set of consensus scenarios, not 

a set of individual scenarios, and consensus scenarios have the risk of being similar.  

The European Commission’s Forward Studies Unit also has a methodology for 

scenario creation called Shaping Factors-Shaping Actors. Small groups of consultants are 

used for their expert opinions in this method. Initially, the shaping factors and shaping 

actors are identified. Shaping factors are the factors that have a significant influence on 

the future; factors can be economic, socio-political, or otherwise. Likewise, shaping 

actors are those people or groups that have the ability to shape the future. Linkages 

between the factors and actors must be identified, and then scenarios are created around 

those linkages (Ringland 1998). Like the Delphi method, the factors-actors method uses 

expert opinion to construct scenarios; however, it is less structured than the Delphi 

method and encourages disparate scenarios instead of consensus.  

There are other schools of though that also encourage non-consensus when 

creating scenarios. Chandler and Cockle encourage a subset of scenarios to be “wild 

cards;” that is, be unlikely to happen, but plausible nonetheless (Chandler and Cockle 

1982). Other scenario creation guidelines recommend examining the possibilities of 

disruptive events, as well as the creation of “best” and “worst” scenarios (Fahey and 

Randall 1998).  

There are also computer-based methods and tools to help with scenario 

generation. One such tool is the BASICS methodology and computer program created by 

Battelle Institute. The method involves determining the problem and factors surrounding 

the decision to be made, the factors are researched and likely trends are established, and 

then a cross-impact analysis is carried out to determine likely scenarios (Ringland 1998). 

This analysis also relies heavily on expert opinion.  
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In general, scenario-creation processes and tools rely heavily on the opinion of 

many different experts. These experts can be industry experts or experts from within a 

company. Some methods advocate consensus; some advocate the creation of disparate 

futures. There are a variety of tools available to aid in scenario creation that can be either 

created as needed or purchased.  
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CHAPTER 5 

PROPOSED SOLUTION PROCESS 

The previous four chapters have discussed the background and the need for a risk 

analysis process that takes into account political, social, and economic risks that are not 

well addressed by traditional engineering risk analysis processes. Chapters two through 

four discuss the literature review and benchmarking for: judgment and decision making, 

risk analysis processes, and uncertainty modeling for the three research questions, listed 

again below. 

1. Is it possible to harness the act of human judgment and use it as a 

conceptual design decision aid for an aerospace system design? 

2. Do any systems or methods currently exist that allow the user’s judgment to make 

decisions in the beginning stages of conceptual design? While using a risk-benefit 

type of approach? 

3. How do we deal with uncertainty in the early phases of design when doing a risk-

benefit analysis? 

Research question one attempted to understand how people make decisions and 

the effect judgment has on a decision making process, as well as how that judgment can 

be used in a design process to analyze risk and other decision making metrics. Research 

question two benchmarks current risk assessment methods used in the aerospace 

engineering field and elsewhere, while research question five outlines probabilistic and 

scenario-based decision making processes for dealing with uncertainty. 

5.1 Process Goal 

Observations about changing times and decision making procedures outlined in 

Chapter 1 led to the development of an overall research goal: create a process that allows 

for the examination, for the purpose of decision making, of technical and economic 
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objectives, as well as programmatic risk and risk control and mitigation strategies, for use 

by engineers at the conceptual design level. “Radical innovation is delivered by program 

managers who embrace risk rather than shunning uncertainty. Risk free development can 

only lead aerospace into becoming a sunset industry.” (Callopy 2003). Traditional risk 

analysis techniques in engineering explore technical risk and some economic risk, but do 

not explore the effects of other types of programmatic risk. Like the program managers 

Callopy mentions, engineers also need to embrace risk to support and aid the program 

managers who will lead the aerospace field in the 21st century. 

Many engineering risk analysis methods have similar steps, such as those 

illustrated in Figure 21. These steps are found, in some form, in the DoD Risk 

Management Guide (“Risk Management Guide for…” 2006), the NASA PRA Guide 

(Goldberg et al. 1994) and other IPT risk management process guides.  
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Figure 21: Sample Generic Risk Management Process (Skalamera 1998) 
 
The procedure contains five main steps, each with some further explanation for their 

usefulness. The risk identification step is the first step, and it involves understanding the 

problem well enough to identify what can go wrong. After risks have been identified, the 
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risk is analyzed to find out how significant it is. If necessary, risk mitigation planning and 

then implementation are carried out. The process then iterates back through a risk 

tracking process to continually update; as time goes on, more risks may be identified or 

new information becomes available for use in the risk analysis. 

 Many other risk analysis methods use a similar process. For engineering risk 

analyses, such as those benchmarked in Chapter 3, risk identification, analysis, and 

mitigation, with iteration between the steps, is common. While this type of risk analysis 

works very well for technological risk at the engineering level, particularly that of the 

cost, schedule and performance variety, it fares less well when it comes to identifying 

higher-level political, economic, and social risk. These analyses are not designed to 

identify risks that cannot be mitigated or controlled by engineering design, and were not 

designed to allow for the examination of different types of future scenarios. The risk 

analysis process laid out in Figure 21 asks lays out an easy to follow process; however, 

for this problem a different implementation is necessary to analyze a slightly different set 

of risks. 

While the previous paragraph discussed, briefly, what risk assessment 

methodologies exist today, what is wanted for this new methodology should also be 

discussed. As mentioned earlier, there is risk associated not only with meeting technical 

objectives, there is also risk associated with the political, social, economic, and 

employment operational environment. A new technique that allows for the examination 

of these risks would help to fill a gap that exists in current engineering risk analyses, and 

allow engineers to examine another set of risks that can affect engineering project 

outcomes. A risk analysis that takes into account all of these factors and allows for 

tradeoffs to be made between risk mitigation strategies and different economic conditions 

would be an asset to the decision making process by adding information and helping to 

create a system that is robust to changes in external operating environment.  
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The next step was to figure out how to reach this goal, so research questions one 

through five were used to benchmark existing processes and ideas for use. However, no 

existing method met all the qualifications for a process that this author needed: 

� Evaluating uncertainty from technical, economic and policy sources over a 

product’s life cycle 

� Using quantitative and qualitative information 

� Containing a risk mitigation model that allows for game-playing and tradeoffs 

� Providing information in a way that is intuitive to human thinking and 

understands the human as final arbitrator 

Many of the methods and processes outlined above met some of the qualifications, but all 

were deficient. Since this is the case, a new method must be developed to meet all the 

outlined goals.  

5.2 Hypotheses 

One overarching research statement and three hypotheses were created to attempt 

to address the overall research goals. These hypotheses were derived based upon the 

answers to research questions one through three. The purpose of these hypotheses is to 

determine what analyses or processes are necessary to create a rigorous risk analysis and 

mitigation process and to allow for structured testing and comparison of the developed 

process with existing processes or other options for different pieces of the process. 

The overarching research statement following the research goal is as follows: 

A systematic method can be developed to use human judgment to assess 

risks and benefits in the early design phases of a large-scale engineering 

project.  

This statement is derived from research questions one and six. It states that it is possible 

to create a systematic, repeatable, risk assessment and mitigation methodology that can 

be used during conceptual design. Even though many conceptual design parameters are 
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uncertain and the customer’s wants, needs, and constraints may still be fluid, it is still 

possible to create a repeatable process that conceptual design can support; the need for 

such a risk management technique has been identified, notably by Walkovitz (1999). 

Many conceptual design processes are systematic and repeatable. However, there are 

several implications of this statement. Since conceptual design differs from project to 

project—no two large-scale, complicated systems can have the exact same set of 

assumptions; there are too many differences to address—any process for use in 

conceptual design must be adaptable to different systems. The process should work for 

both military and civil systems and for aircraft, missile, ship, space, and other systems 

with few modifications. Along the same lines, the process must be flexible in how it can 

be used: for example, different modeling and simulation environments should work 

within the process framework.  

 The first hypothesis is based on research questions one and two. Feasibility and 

viability are necessary pieces of the business case analysis; however, decisions based 

purely on these factors ignore consequence and uncertainty. Future uncertainty and 

potential consequences must be understood when determining what a project’s future 

outcome will be. 

Hypothesis 1: A risk analysis coupled with the outcome analysis will 

allow consequences and uncertainty to permeate the business case and 

increase information available for decision making without overwhelming 

the decision maker. 

Thus, a risk analysis is a necessary part of conceptual design, as per research question 

two, and also stated by Callopy (2003) and Miller and Lessard (2001). As risk analysis is 

a necessary part of design, it should be completed in a manner that allows for comparison 

and testing between different types of risk analyses to determine which methods, or parts 

of each method, are applicable to the current problem. As with the research statement 

above, there are several ideas that are rolled up in this hypothesis. One such idea is that of 
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judgment: as stated in previously, decision making is inherently a human activity and 

therefore judgment based. Judgment-based decision making and not overwhelming the 

human decision maker links from research question two. Another such idea is that 

feasibility and viability are important parts of the decision making process. The roles of 

feasibility and viability are discussed in Chapter 1; both are important factors in the 

decision making process, and a risk analysis, with its uncertainty and decision 

consequence models, is also a necessary piece of the decision making process. 

 Hypothesis two is based background information gathered in Chapter 1 and 

research question one. Quantitative and qualitative information with differing degrees of 

uncertainty will be available; however, many traditional decision making methods require 

quantitative information that has a high decree of certainty. Unfortunately, this 

information is not always available; often, both types of information are available with 

varying degrees of fidelity. In risk analysis problems, as much information as possible 

should be used to produce the most accurate result. 

Hypothesis 2: Both qualitative and quantitative information are available 

and can be used in decision making; the ability to use both types of 

information increases the number of applications for a risk-benefit 

analysis without overwhelming a human decision maker. 

This hypothesis states that different types of information are available for use in decision 

making during conceptual design. Human decision makers can use both quantitative and 

qualitative information for decision making (Arthur 1994, Larichev and Brown 2000), so 

all relevant information available should be used to the extent that its quality allows. The 

investigation following research question one, in Chapter 2, backs up this assertion. Also, 

as stated in Chapter 1, in the earlier stages of conceptual design, information about the 

design is often qualitative and information about customer requirements and preferences 

can be either qualitative or quantitative. Since both quantitative and qualitative 

information is available, any risk and cost analysis and risk mitigation process should use 
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both types of information. The ability to use both types of information will increase the 

applicability of the developed process, thus enticing more people to use it. As more 

people use it and understand how it works, more people will believe the results and feel 

more inclined to use it again. Also, the ability to use both quantitative and qualitative 

information means that the developed risk analysis and mitigation process can be 

completed with differing levels of fidelity. It can be completed early on in the conceptual 

design process and then more information can be added as it becomes available later in 

the design process.  

 There are also some assumptions intrinsic to this hypothesis. One such 

assumption is that the data provided is relevant, i.e. that it is actually useful to the 

decision maker. As some information is useful to a decision maker and some is not, not 

all data should be assumed to be useful. The distinction between useful and useless data 

can be difficult; however, it should be decided upon as quickly as possible. Some metrics 

for making that decision can include the customer requirements and industry metrics of 

interest. Another assumption is that the data available is correct. Doing an analysis with 

incorrect data has the potential to lead to incorrect results. 

 Hypothesis three is based on research question three. Uncertainty is a part of 

conceptual design. There are changing requirements, designs, and analyses that need to 

be understood from the design perspective, and there are existing tools that help keep 

track of design and analysis code changes. From a risk perspective, uncertainty takes the 

form of changing or evolving requirements and uncertainty in future predictions and 

calculations. Traditional probabilistic analysis is how uncertainty is dealt with today in 

engineering risk analyses; however, this type of analysis provides little traceability and it 

is difficult to assess its accuracy. A method that provides better traceability is necessary.  

Hypothesis 3: Too much uncertainty can render a risk analysis 

meaningless; the use of future scenarios can bound uncertainty and tie it to 

specific circumstances. 
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This hypothesis states that a risk analysis needs some sort of future uncertainty model. 

Research question five asks how to handle uncertainty during conceptual design. The 

current method to handle uncertainty is a probabilistic analysis. An emerging method, 

that this author intends to use, is scenario-based analysis. A detailed explanation of this 

method is given in Chapter 4. Too much uncertainty makes a risk analysis difficult to use 

for decision making. With very large uncertainties, it can be difficult or impossible to 

distinguish between different design options, so decision making becomes no more 

meaningful than throwing darts. Being able to distinguish between options, however, 

allows for meaningful comparisons for decision making purposes. While scenario based 

analysis does not guarantee to limit uncertainty such that otherwise indistinguishable 

design options become distinguishable, it will be helpful in tracking uncertainty and 

understanding where it comes from (Shoemaker 1995, Pomerol 2001). Scenarios add a 

level of traceability to uncertainty modeling that is missing in more traditional 

probabilistic analysis.  

This research statement and these three hypotheses are the backbone of the risk 

analysis method proposed in the next section. These hypotheses, along with the research 

questions from Chapters 2 through 4, have laid out the problem at hand and pointed 

toward a solution.  

5.3 Proposed Method 

 The method to be proposed looks, on the surface, like many other engineering risk 

analysis methods, but it is setup to fill in the gaps listed in Section 5.1 and evaluate the 

hypotheses listed in Section 5.2. The process not only needs to meet these requirements, 

it should also be useful to the decision maker. In order to be useful, a newly created 

decision making process for this problem should do the following things: 

1. Be a systematic, transparent process (Saaty 1982) 

2. Be simple to construct (Saaty 1982) 
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3. Take into account both risk and monetary and performance outcomes 

4. Allow for comparison of both risks and outcomes 

5. Show what risks have the largest impact 

6. Show risks and benefits across different scenarios 

7. Be completable at differing levels of fidelity 

8. Allow a human to determine level of acceptable risk 

9. Present information so human expert can make decision  

10. Be natural to our intuition and thinking (Saaty 1982) 

11. Encourage compromise and consensus building (Saaty 1982) 

The top two items on the above list are very important. Very few people will want to use 

a process they do not think they understand for decision making purposes. Also, since the 

process can be used during conceptual design and by both engineering and management 

personnel, it should be easy and quick to construct and use and quick to update. The next 

four bullets have been discussed previously; since this is a risk assessment and decision 

making process, it makes sense that risks and economic outcomes should be compared 

between design solutions and across different scenarios. For the next bullet, conceptual 

design involves ever-increasing levels of fidelity as a project progresses. The ability to 

update a risk assessment with new information is critical. The last four points have to do 

with decision making. As demonstrated earlier, humans make important design decisions, 

so presenting information in such a way that a human can make a decision is very 

important. Since decisions are often made in groups rather than by individuals, a process 

that is natural to our intuition and encourages consensus building rather than one that 

needs to be constantly explained and encourages arguments will probably work better. 

 The risk analysis and mitigation process created using the above research 

questions and hypotheses is outlined in Figure 22. The process itself is hypothesized to 

address the gaps in traditional risk analysis processes identified during the literature 

review. It has three focus areas containing a total of eight steps.  
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Problem Setup

Step 5: Alternative Solution Modeling

Step 6: Uncertainty Quantification

Step 7: Risk Assessment

Step 8: Risk Mitigation

Modeling and Simulation

Decision Support

Step 1: Establish the Need

Step 2: Scenario Development

Step 4: Uncertainty and Risk Identification

Step 3: Identify Solution Alternatives
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Step 6: Uncertainty Quantification
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Modeling and Simulation

Decision Support
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Step 4: Uncertainty and Risk Identification

Step 3: Identify Solution Alternatives

 

Figure 22: Risk Analysis and Mitigation Process 
 
Most risk analysis processes contain similar steps, and this one is no exception. Risk 

identification, analysis, and mitigation are present in the new process. The new process is 

designed to be familiar for people working in the risk analysis and systems engineering 

fields. Like a traditional IPPD process, the risk analysis process begins with establishing 

a need for a new system. Included in step 1 of the new process is also problem definition 

and the determination of metrics to be used for decision making. These metrics will 

include a measure of risk as well as systems performance and economic metrics specific 

to the problem being evaluated. The goal of this process is to aid in the creation of a 

robust design solution, so the important applications of this process will fall into robust 

design assessment in the traditional systems engineering process. 

 The gaps listed earlier are being addressed by this process. Risks are identified for 

technical, economic, political, and social uncertainties in step 3 and evaluated in steps 6 

and 7. Any type of information can be used throughout the design process. The decision 
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support framework contains a mitigation process that will allow for tradeoffs and the goal 

of decision support is to provide information for the human to make a final decision.   

The overall research statement is the process base: the developed method is 

systematic and explicitly uses human judgment as a decision making process. Hypothesis 

one states that both a risk and (monetary) outcome analysis are necessary pieces of the 

business case; both are modeled in this process in steps 5 and 7, respectively. Hypothesis 

two states that both qualitative and quantitative information should be used in decision 

making. This hypothesis is more difficult to link directly into the process; however, the 

modeling and simulation steps are tailored to receive both quantitative and qualitative 

input, and the risk analysis is set up to be completed qualitatively, as numerical 

probabilities will be difficult to determine at this stage of design. Hypothesis three can be 

explicitly linked to the process in step 4 and throughout the modeling and simulation 

steps.  

 The base for this process comes from the generic risk analysis process laid out 

earlier. Risk identification is the first step. In the developed process, because this analysis 

takes place early in the design process, steps 1 through 3 in the problem setup take place 

before risk identification. In more traditional systems engineering processes, steps 1 and 

3 can be referred to as the problem and solution concept identification steps (Dieter 

2000). As with systems engineering, these steps include understanding the customer 

requirements and developing solution concepts that map to those customer requirements.  

Step 2 in the process is unique in engineering risk analysis processes. Scenario 

development, in this case, means creating a set of plausible future scenarios to use for the 

examination of the assumptions determined in the previous step. Since these assumptions 

are good for a limited number of futures, they should be examined over a broad set of 

possible futures to determine the risk associated with not meeting them. The scenario 

development step was not found in the traditional engineering risk analyses examined. 
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The risk identification step seen in traditional risk analysis processes here is 

similar to step 4 of the process: uncertainty and risk identification. While risk 

identification usually involves only trying to identify potential risks, this step involves 

identifying the assumptions that engineers, managers, and board of directors have about 

this design, and then the uncertainties in those assumptions. While in traditional risk 

analysis the question is “What can go wrong?,” the question here is “What do we assume 

will happen? And what happens if those assumptions are incorrect?” The tracing of 

assumptions about future political, social, economic, and employment situations is not 

found in traditional risk analysis processes; however, analyzing these risks is similar to 

the creation of a functional hazard assessment for a safety and/or reliability analysis. In 

an FHA, the system is broken down into functions and a determination is made about 

what could go wrong with each function (“ARP 4761” 1996). A similar process is 

completed in step 4: assumptions about the system functions are identified and potential 

problems in the form of uncertainties associated with those assumptions are also 

identified.  

For the modeling and simulation focus area, these steps are generally correlated 

with the risk analysis and mitigation steps in other risk analysis and mitigation plans. The 

solution modeling step is most closely related to systems engineering concept modeling 

steps, but also part of risk analysis, since there can be no risk analysis without a concept 

model. The risk modeling and assessment steps are equivalent to the risk analysis step in 

the traditional plan. The risk modeling step, unlike traditional risk modeling steps, 

determines how each uncertainty will affect the variables being used to model the 

systems. The risk assessment step contains a risk calculation that is different from the 

traditional calculations: it is more intuitive to human thinking and weights high-

consequence outcomes more heavily than low-consequence outcomes. Using a more 

intuitive scale allows for more realistic tradeoffs and, is not found in engineering 

analyses. The risk mitigation step, step eight, is equivalent to the risk mitigation planning 
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step in the traditional process. The final step in the new risk analysis plan is the decision 

support setup. Decision support will take the form of an interactive interface that allows 

for risk mitigation tradeoffs to be made on-the-fly. An environment that supports risk 

mitigation and analysis tradeoffs and allows for examination of assumptions in real-time 

is unusual and is not present in other risk analyses. Another unique aspect of this risk 

analysis is that it is designed to be completed quickly and updated equally quickly for use 

during conceptual design as plans rapidly evolve. 

5.3.1 Problem Setup 

 The first focus area for the proposed risk analysis and mitigation process is the 

problem setup area, illustrated in Figure 23. This focus area involves four steps, from 

establishing the need for a new system through uncertainty and risk identification. These 

steps will be described in greater detail in the next four sub-sections; the purpose of this 

section is to understand how these steps are inter-related. These four steps are lumped 

into the area of problem setup due to the iteration between them and they are all related to 

setting up the problem for the modeling and simulation focus area, to be described in 

Section 5.3.2, below.  

Problem Setup
Step 1: Establish the Need

Step 2: Scenario Development

Step 4: Uncertainty and Risk Identification

Step 3: Identify Solution Alternatives

Problem Setup
Step 1: Establish the Need

Step 2: Scenario Development

Step 4: Uncertainty and Risk Identification

Step 3: Identify Solution Alternatives

 

Figure 23: Problem Setup Process 
 

The first step in the problem setup is establishing the need for a new system. This 

step is very important and often takes the longest time of all the steps, since it involves 

gathering and collating information from a variety of sources, A good understanding of 

the problem allows for potential design solutions to be easily generated and for those 
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solutions to fit into the context of the problem. There is a weak feedback loop between 

steps one, two, and three: as new information becomes available, new scenarios can be 

generated, new problem solutions can be created and old ones can be discarded as 

necessary. 

  After a market need and high level requirements for a new system have been 

established, future scenarios are developed, solution alternatives are identified and 

potential risks are identified. There is extensive feedback between these three steps, as 

the scenarios will drive the solution alternatives and risk identification, but the risk 

identification may identify some deficiencies in the scenarios.  

 As the first focus area for the risk analysis process, the outputs of the problem 

setup process become the inputs into focus area two, the modeling and simulation 

process. The outputs of the problem setup include the potential design solutions to be 

examined, a list of assumptions and risks for each design solution, and a set of scenarios 

to be modeled for completion of the risk analysis.  

5.3.1.1 Establish the Need 

 Establishing the need is the first step in the risk analysis and mitigation process, 

and also the first step in the problem setup focus area. While it is listed as the first step in 

most design processes, in reality, establishing the need, including defining and 

understanding the problem, weaves its way throughout the entire design process, from 

conceptual design to detailed design, and then continues throughout manufacturing and 

operations and support. Therefore, while it is not disingenuous have problem 

understanding as part of the first step of the design process, it is more correct to consider 

it as the first, middle, and last step of the design process.  

 Establishing the need for a new system includes learning everything possible 

about a problem. Generally, this process is begun with the identification of a problem, 

need for change, etc. Sometimes a customer identifies a problem or shortcoming with an 



 93 

existing system and requests a new or updated system to correct said problem. Other 

times, the problem or shortcoming is identified by an end-user and brought to the 

attention of the product manufacturer. Sometimes, the problem is identified by the 

manufacturer himself, and solved internally.  

 Problem identification can take many forms. For some systems, it is relatively 

straightforward with specific performance parameters. For example, an airframer and 

group of airlines determine that there is a market for a new commercial aircraft that fits 

into the current airport and air traffic control systems, will meet near-future 

(approximately 20 year time-span) noise and emissions standards, and is less costly to 

operate than existing aircraft, but carries a large number of people and can travel 10,000 

nmi nonstop. Such a system may be difficult to design and build; however, the 

performance envelope is well-defined.  For a military system, specific performance goals 

may be determined based on intelligence about foreign systems. For example, there may 

be a requirement for a new military system to travel faster or have a smaller turning 

radius than a foreign system which could be a potential threat. The performance goals for 

this system are defined, but the solution space is more open-ended than for the previous 

example of the commercial aircraft, since, although both systems must fit into existing 

infrastructure, there are fewer regulatory requirements to satisfy for military systems. 

 In some instances, problem identification does not come with specific 

performance goals attached to it. Sometimes the problem is as simple, and as 

complicated, as a customer wanting a better system. In this case, and very possibly in the 

cases cited in the previous paragraph, there will need to be some requirements elicitation 

and translation in order to gain a better understanding of the problem. There are tools that 

can aid in this process and will be very useful in the endeavor to translate fuzzy 

requirements like into performance and economic metrics.  

 While the system requirements, or needs, are defined, the system wants should be 

defined also. While the customer or end-user will have a list of requirements, there will 
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probably also be some desirements, or wants, also. These will be metrics or functions that 

the customer would like to see in the system, but would be willing to forego or trade off.

 It is very important to note that requirements and desirements will change as a 

project moves forward in time and along the design schedule. It is important to keep up 

with these changes and to continually update any tools or processes in use to reflect these 

changes. Changes to this stage of the risk analysis process also need to be moved 

downstream: if any changes are made here in step one, steps 2 through 8 should be 

carefully gone over to make sure that no changes need to be made there, also.  

 One way to anticipate changing requirements is to understand not only the 

problem itself, but also the background relating to the problem. Understanding the 

context in which the problem was first identified and the context in which the system will 

ultimately perform will help the system designer to better anticipate the requirements and 

desirements changes that are bound to occur. Understanding the context can involve a 

large amount of background research. It includes understanding what is currently 

happening in the industry that the system is to be developed for as well as what direction 

the industry is likely to go in the future. For complex, costly systems, it also includes 

understanding current and predicting future economic conditions of the customer, the 

industry, and any other major players or suppliers, as well as the general economic 

condition of major world powers.  

 Learning about an industry and the direction it’s going should be relatively easy 

for a designer who works in a specific industry. Reading industry-specific journals and/or 

professional society newsletters should inform the designer what different industry 

experts believe the future of the industry will be. Predictions about specific companies 

are also easy to come by for some industries, particularly those like the aerospace 

industry where there are only a few major companies. Learning about the general 

economic state of the world is more challenging. Popular newspapers and magazines, are 

a good source of general news about the state of the US economy and important national 
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and international developments. International news magazine and newspapers should also 

be read. For purely economic news and future predictions, publications such as The Wall 

Street Journal and The Economist can give global perspectives on economic news. 

Publications such as these also provide experts’ predictions of the state of different 

economies and industries for the future. 

 In general, the problem understanding step of the risk analysis process is 

analogous to the problem definition of most conceptual design processes, with a few 

additional requirements. It is a time-consuming process that needs to be initially 

completed before any design work is done and then continually updated as new 

information becomes available throughout the design process. 

5.3.1.2 Scenario Development 

The second step in the process is scenario development. While this is listed as the 

second step in this risk analysis process, there is significant iteration between steps two, 

three, and four, and these steps will not be completed serially. 

The scenario development step involves creating or generating different plausible 

future scenarios. A limited number of scenarios are generated: a minimum of three is 

probably required to effectively bound uncertainty, but two can be used if sufficiently 

different (Ringland 1998); more can be generated depending on the need. Since the future 

is unpredictable, the purpose of this step is to bound the future uncertainty, not to 

determine precisely what will happen in ten, fifteen, or twenty years. Scenarios can be as 

detailed as necessary, but should leave room for some interpretation. The scenarios can 

be as mundane or as exciting as necessary, but shouldn’t all predict future calamities or 

future prosperity for everyone. A good rule of thumb is to do a “best case”—prosperity 

for all, world peace, great scientific breakthroughs enable worldwide sustainable 

development, etc—along with a “worst case” and several more likely scenarios that fall 

somewhere in between (Ahmed 2003, Fahey and Randall 1998). These scenarios are not 
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intended to be fully specified; variable specification will take place in the second focus 

area of the process. 

 The question, of course, is how to determine what the future scenarios should be 

like. This is a complicated question without a unique right answer, and will be left up to 

the judgment of the decision maker. There are several ways to determine future scenarios, 

some of which were discussed in Section 4.2.1. One way to create scenarios, and the 

easiest way to defend the created scenarios, is to use expert opinions. Finding these 

opinions involves either talking to the experts or doing background research and 

understanding of how the opinions were generated. One would need to understand not 

only the politics, economics, and technology development native to his field, but also 

those at the local, national, and global scale. It can also take time to determine who the 

experts are in many different fields and to explain their work to those less 

knowledgeable. 

 Since the goal of this process is that one doesn’t need to be a finance or marketing 

manager to complete it, requiring months of research to rely entirely on expert opinion 

for scenario creation will be difficult to implement. Another way to create scenarios is to 

poll local experts, that is, creation by committee, either with each committee member 

creating his own scenario or with the entire committee creating a set of scenarios. The 

advantage of having a committee create scenarios over an individual is that in a 

committee, no one person’s opinions should dominate the scenario creation process.  

For traditional scenario creation with one best case, one worst case, and several 

more likely cases, decision makers should agree in substance on the best and worst case 

scenarios and should agree in spirit on what constitutes a plausible future; however, 

different people will create different scenarios. To gather information for plausible future 

scenarios, the creators should have a good knowledge of the recent history of the 

aerospace industry in particular and the economy in general. The creators should be 

keeping up with the current events and what other politicians and economists predict for 
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the future. The scenario(s) should reflect a variety of potential futures and be based on the 

current state of things and the recent past. Given that much design is completed by 

committee, scenarios will probably be generated by committee as well. In this case, the 

committee can agree on what aspects of the future each scenario should address, and then 

each member of the design committee can create his/her own plausible future scenario. 

When each committee member has created a scenario, the committee can then generate a 

best and a worst case scenario, and determine the scenario likelihoods of occurrence. In 

general, the best and worst case scenarios have a low likelihood of occurrence, while the 

scenarios generated by each committee member will have a higher likelihood.  

There are methods available to aid in scenario creation, some of which were 

explained in Chapter 5. The six-step process listed in Section 5.2.1 is a good outline to 

follow since many scenario creation processes are similar. Almost all scenario creation 

processes involve determining which aspects of the future one wants to examine. One 

way to determine the factors to examine is through a brainstorming session. After the 

brainstorming session, those factors can be put into a matrix and that matrix, with some 

external logic applied to it, can be used to specify scenarios. External logic can take the 

form of committee or expert opinions or an impact matrix that determines the interactions 

between the factors in the matrix. 

An example matrix of alternatives for scenario creation is illustrated in Figure 24. 

This matrix of alternatives takes into account the economy, employment, transportation, 

government, international relations, the environment, housing, education, and leisure. 

The matrix of alternatives can be created based on any factors that the decision makers 

think are important to specify for the future. The matrix of alternatives does not, by itself, 

specify future scenarios; however, it does allow the scenario creators to see whether their 

scenarios are different enough to take into account many plausible futures. As illustrated 

in Figure 24, the combinatorial space for future scenario creation is almost unlimited; this 

matrix has 7.3*1022 possibilities. 
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 Other scenario generation tools are available. A smaller matrix of alternatives can 

be created that examines only the major factors in a scenario, and then the scenarios are 

wound around a few overriding factors instead of trying to specify everything about a 

future. For example, major drivers that affect commercial aviation include the cost of 

fuel, the number of leisure and business travelers, and governmental and airport 

regulations, so future scenarios should specify these factors. This technique allows for the 

examination of a set of plausible futures and also makes certain that the major factors in 

each scenario are clearly delineated. Again, determination of the major factors for 

scenario creation can be completed by expert committee or by polling industry experts, if 

possible. 

 Another way to create scenarios is completely freeform. Each scenario generation 

committee member creates a scenario or set of scenarios without input from the 

committee, or with minimal committee input. Scenarios created in this manner will likely 

be more disparate than scenarios created in other manners, since different people will 

think different aspects of the future are important.     
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Interest Rates very low 1 low 1 average 1 high 1 very high 1
Stock Market Returns negative 1 zero 1 low 1 average 1 high 1
Unemployment Rate low 1 average 1 high 1 sector-specific 1

Wages decreasing 1 steady 1 increasing slightly 1 increasing quickly 1
Sectors Doing Well pharmaceuticals 1 aerospace 1 entertaintment 1 IT 1 energy 1

Sectors Doing Poorly energy 1 entertainment 1 aerospace 1 IT 1
Where Located urban 1 suburban 1 coasts 1 interior 1
Where Working central office 1 satellite office 1 home 1

Type of Fuel hydrocarbon 1 hybrid (HC and electric) 1 electricc 1 other 1
Cost of Fuel low 1 medium 1 high 1 very high 1

Other Travel Costs low 1 medium 1 high 1 very high 1
Traveling Not Advised Middle East 1 Southeast Asia 1 North Africa 1 Sub-Sahara 1 Latin America 1
Who Can Travel (regs) little international 1 need ID 1

Availibility of Public Transportation Little 1 good in  cities 1 cities and suburbs 1 everywhere 1
Energy Regulation little regulation 1 heavily regulated 1 same as today 1

Transportation Security very secure 1 some sectors secure 1 lax security 1 privately funded 1
Illegal Immigration major, intervention 1 major, no in tervention 1 minor, intervention 1 minor, no intervention 1

Deficit Spending very high 1 high 1 average 1 low 1 surplus 1
Revenues high 1 average 1 low 1
Tax Rates high 1 average 1 low 1

Tax Structure regressive 1 progressive 1 income 1 sales 1
Getting along with neighbors well 1 some problems 1 many problems 1 war 1

Borders open borders 1 no immigration problems 1 fortified borders 1
Global Warming big problem 1 worry 1 not a worry 1

Regulations very stringent 1 industry-specific 1 somewhat lax 1 very lax 1
Cost very high 1 high in pockets 1 affordable 1

Where Available coasts 1 interior 1 south 1 midwest 1
Who is Buying established professionals 1 young professionals 1 older people 1 everyone 1

Renting/Buying Cost lower than average 1 average 1 high 1
Mortgage Rates low 1 average 1 high 1
Utilities Costs low 1 average 1 high 1 area dependent 1 utility dependent 1

Cost of Primary Education government funded 1 privately funded 1 low 1 high 1
Where Primary Ed. Takes Place home 1 private school 1 local public school 1 large public school 1

Cost of Secondary Education low 1 medium 1 high 1
How Educated is Workforce mostly educated 1 mostly uneducated 1 only elite educated 1 only wealthy educated 1
How Much Money Available little 1 some 1 lot 1

How Much Time little 1 some 1 lot 1
Where Spent near home 1 travel in US 1 travel abroad 1 stay home 1

Disease epidemic 1 outbreak 1 outbreak threat 1 no threat 1
Terrorism not a worry 1 small worry 1 abroad worry 1 worry  at home 1

Economy

Housing

Jobs

Transportation

International 
Relations

Environment

Other

Government

Education

Leisure

 

Figure 24: Interactive Matrix of Alternatives for Scenario Creation 
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5.3.1.3 Alternative Solution Development 

 After the problem has been researched and defined as thoroughly as possible 

given time and personnel constraints, potential solution alternatives should be identified. 

There are various ways to identify potential solutions, but the most popular begins with 

brainstorming. A brainstorming session or sessions can be done in a group or 

individually. Individual brainstorming sessions often are completed more quickly than 

group brainstorming sessions; however, a group session may generate more ideas, 

resulting in a larger solution space. Having a group instead of an individual complete the 

brainstorming phase of solution development can also prevent one person’s thoughts 

from dominating the identified solution space, since as much of the solutions space as 

possible should be examined. 

 When brainstorming, it is important to understand the problem, as outlined in the 

previous section. While developing and understanding of the problem, it is also important 

to know whether this problem has been identified before, and, if so, what solutions were 

identified previously and why did those solutions fail. 

 During brainstorming, it is important that as many solutions as possible, no matter 

how unusual or outlandish, be identified. Practical brainstorming limits will depend on 

the time and number of participants available. After all ideas are generated, each idea 

should be discussed and evaluated qualitatively, or quantitatively, if time is available, for 

feasibility and viability purposes. If ideas were generated by a group or team, this process 

can take place in a group discussion. Project timescale and potential technology 

development should be taken into account when discussing the feasibility and viability of 

potential solutions. It is important that all members in the discussion group be offered 

time to air an opinion on the matter of feasibility and viability for each solution; the 

person who has the strongest will shouldn’t be allowed to dominate the conversation or 

have his opinion better represented than others. However, the person who knows the most 
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about the idea (most likely the person who generated it) should be given the chance to 

explain the solution idea and discuss any criticisms.  

Feasibility and viability determination is a judgment on the part of the group 

making the downselection decisions. In a qualitative sense, which is generally how this 

step will be completed, feasibility is determined by committee consensus. In general, 

evolutionary solutions will likely be feasible, while revolutionary solutions will require 

more thought to determine feasibility. Product feasibility includes the ability to design, 

build, and maintain the system in the timeframe available. This is a judgment on the part 

of the design committee, but this committee should contain engineering designers and 

manufacturing experts who are able to make this determination. Therefore, if a new 

solution alternative must be working in seven years, but the technology required to create 

that alternative is 10-12 years away, that is an infeasible alternative. If there is some 

question as to whether a solution will be feasible, it may be best to not discard that 

solution, but to save it for further examination. 

 Viability can be more difficult for an engineering design committee to determine. 

If possible, a business or marketing expert can help make this determination based on 

projections of the number of units sold, manufacturing and maintenance costs. If that is 

not possible, a best guess approach using a number of experts in the field can help to 

accurately determine viability.   

 After infeasible and non-viable solutions are rejected, the number of solutions left 

must be taken into account. If there are few enough solutions to examine given the time 

constraints for a particular project, no other downselection must be completed. If, 

however, there are more solutions than can be examined in the given time allotted, then 

another set of downselections must take place. Other methods of solution downselection 

are not as cut and dry as the use of feasibility and viability. These methods also involve 

judgment and such judgment can be more difficult to document than that involved in 

feasibility and viability determination.  
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 One method that can be used for downselection involves the elimination of out-

of-the-box design solutions. Since most people are risk averse (Slovic  2000), and more 

likely to use a solution based upon existing concepts, eliminating revolutionary solutions 

in favor of evolutionally ones is a valid downselection process. Unfortunately, no 

revolutionary solutions would ever emerge if everyone chose this method of 

downselection. Another method of downselection, is to determine feasibility and viability 

on a sliding scale and eliminate solutions until there are few enough to examine. This 

method can produce the same results as the previous method; however, it is easier to 

track assumptions through this method, and easier to resurrect potential solutions at a 

later date if necessary.  

 There is a feedback loop between this step, the previous one, and the following 

one. As alternative solutions are generated, it may be discovered that some parts of the 

scenarios need to be better specified; afterward, the solution space my need to be updated 

and more or different potential solutions may need to be examined. 

5.3.1.4 Risk Identification 

 Once it has been decided which solutions to examine in further detail, the next 

step is the risk identification step. This step entails explicitly listing the assumptions 

inherent in each solution and then listing any risks that are present if those assumptions 

are not met and any other risks that can be identified.  

 The purpose of this step in the analysis process is to identify assumptions about 

the future and uncertainties associated with meeting, or not meeting, those assumptions. 

These uncertainties, if there are consequences to not meeting the assumptions, lead to 

risk. Listing out assumptions about what the future will constitute is difficult, since many 

of these assumptions are taken for granted. Generally, when the solutions are first 

devised, a rosy future is assumed: everything will go according to plan. All necessary 

technologies will be available at the right time and will have the desired impact, any 
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necessary aid from a government source will be available at the right time with the 

necessary money, the projected market will be, if anything, an underestimate, etc.  

This step can be completed in several different ways. The assumptions can be 

listed in the order they are though of or, in some cases, talked about in the previous step. 

It is also possible to complete this step in a more methodical way: to list assumptions 

falling in categories, rather than completing a long list. There are many different sets of 

categories for examining risk, such as those provided by Haimes (2004) and Porter and 

Hewitson (2005). A set of five categories, listed below, is chosen based on 

recommendations by Schwartz (2004): “[C]orporate decision making has an economic 

component, a social component, and a personality component.” Based on his assertion, 

and the knowledge that technology development plays a significant role in the aerospace 

industry, the five categories were chosen to overlap these components. 

• Technology 

• Government 

• Employment 

• Economy 

• Culture 

These assumption categories are not exhaustive but serve as a representation of where the 

majority of assumptions will fall for each solution. 

Technological assumptions can affect both feasibility and viability. 

Representative technological assumptions would include those associated with 

performance, schedule and cost. Performance assumptions includes the assumption that 

the system will perform according to specifications laid out before the system is 

designed. There are assumptions associated with the project schedule, including deadlines 

and certification plan timelines, while cost assumptions include falling within budgetary 

guidelines and being able to deliver the promised performance for a promised cost. 
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Technological assumptions can be collated and assessed for each technology individually 

or collectively, but are analyzed only at a high level in this risk analysis process.  

Assumptions about government and politics, like technical assumptions, are 

associated with both feasibility and viability. Assumptions covering government and 

politics can refer to any of local, state, and federal governments along with national and 

international industry-governing bodies. Governmental assumptions include things such 

as health and safety regulations, which can manifest themselves at the local, state or 

national level and assumptions associated with creating, certifying and maintaining 

facilities, that manifest themselves predominantly at the local and state levels. Some of 

these assumptions will involve local and state community and political relations. State 

and local governments are often receptive to job creation and facilities building; however, 

there are still a myriad of regulations to consider, particularly if a company plans on 

using hazardous materials or running a plant for two or three shifts. These are generally 

viability concerns, but hazardous materials procurement and use may pose a feasibility 

concern also.  

On the federal and international level, there are certifications and regulations that 

need to be met before the aircraft can fly. Assumptions associated with both aircraft 

certifications and other regulations will include timeline and other requirements for 

certification and meeting regulations. Not meeting the requirements can be a feasibility 

problem, while the manifestations of not meeting the requirements or timelines are 

impacts to viability since the aircraft is not in service for the projected amount of time. 

These requirements and timelines are generally set very early in the design process, so 

small changes to them can have large impacts. Since certification requirements and 

timelines are usually known before the design is launched, a simple brainstorming 

session should be able to determine many of governmental and political assumptions. 

Assumptions about employment are more difficult to identify and analyze, and 

they generally impact viability. These assumptions can include the availability and cost 
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of labor, as well as the possibility of long-term work interruptions. Worker availability is 

often taken for granted; however, if specially skilled workers are needed and those 

workers are close to retirement age, finding new skilled employees can be a challenge, 

and a shortage of workers will drive up labor costs. Other factors that affect worker cost 

include overhead and benefits. Healthcare benefits have become more expensive in recent 

years, and a future spike in benefits could increase employee costs. Along with worker 

availability and cost, companies must worry about work interruptions created by 

employees. Long-term work disruptions cost a company a great deal of money, both in 

legal costs and lost opportunity costs. Long-term work interruptions instigated by 

employees are rare but are a risk nonetheless. These and other employment risks are 

difficult to identify and even more difficult to analyze. Brainstorming is an acceptable 

way to identify these assumptions, but it may not identify any event that hasn’t happened 

yet, so identifying all employment assumptions can be difficult.  

There are many assumptions about the economy in general that are built into each 

solution. Economic assumptions impact viability. Economic assumptions include meeting 

sales goals or having an anticipated borrowing power or sunk cost. Many economic 

factors are assumed and most of these factors are difficult to predict. While many 

assumptions, such as interest rates, are apparent to even lay economists, it is more 

difficult to accurately predict how these factors will change in the future. For example, 

aircraft manufacturers today complete 20 year market outlooks; predicting how each of 

these factors will change in the next 20 years is very difficult. Technological, 

governmental, and employment assumptions can often be predicted beforehand and their 

risks possibly mitigated, economic catastrophes, such as stock market crashes, can 

happen almost overnight and, due to the long recovery time for these events, have long-

term consequences on a company creating a product with a twenty year or longer 

lifespan. Because economic changes manifest themselves so quickly, it is very important 

to choose a solution that will be robust to changes in these factors. If such a solution is 
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not found, it is important to understand the conditions that will create a non-viable 

product so a company will be able to decrease its losses.  

The final source of assumptions from the list above are cultural assumptions, or, 

more generally, the assumptions associated with the fact that one must appeal to a group 

of people who are going to use product. Cultural assumptions include the things such as 

people continuing to travel and the rate of travel continuing to grow; however, there is 

potential for both involuntary and voluntary travel reductions in the future. Such travel 

interruptions are a concern for aerospace companies creating commercial aircraft since 

much of their revenue is derived, albeit indirectly, from the traveling public. Other 

concerns centering on the traveling public include the possibility of aircraft purchasing 

interruptions. Other cultural considerations include the assumptions associated with doing 

business in foreign countries. These companies will also need to understand the dynamics 

of negotiating with foreign governments and employing foreign workers in their home 

country.  

Once the assumptions are identified the risks associated with not meeting these 

assumptions should be identified. For technological assumptions, technology evaluation 

tools such as Technology Impact Forecasting (TIF) and Technology Identification, 

Evaluation and Selection (TIES) can be used to help identify technological risk if enough 

information is available for the technologies and programs (Kirby 2002). If too little 

information is available to use TIES or TIF, more qualitative methods must be used to 

identify any other areas of risk. For other assumptions, those related to governmental or 

political practices, cultural practices, employment, or the economy, those risks can be 

identified by examining the assumptions in each category.  

These risk areas are meant to represent different potential and possible risks that 

aerospace companies will encounter when designing for large-scale, long time-length 

projects. The use of these risk categories, and any others that are pertinent, should help to 

increase the decision maker’s understanding of many areas of programmatic risk and help 
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align decision makers with engineers, economists and marketing experts. Obviously, the 

future that is envisioned will have some bearing on what assumptions are buried in each 

solution. This problem is addressed by having a feedback loop. 

Steps two through four of the risk analysis and mitigation process require 

iteration. While creating future scenarios, a decision maker may discover new 

assumptions, risks, or potential feasibility and viability problems he didn’t realize before. 

This iteration allows the decision maker to work through these two steps until he is 

satisfied that the problem is captured to the extent that he is comfortable. In reality, this 

iteration will probably be more messy and convoluted than is illustrated, but it is an 

important part of the process. The iteration step helps to make this process dynamic and 

the product easily modified when new information arises. It also helps enable the process 

to be completed at differing levels of fidelity. 

5.3.2 Modeling and Simulation 

 The second focus area of this process is the modeling and simulation area. Like 

the problem setup focus area, it also contains four steps: solution modeling, risk 

modeling, risk assessment, and risk mitigation, shown in Figure 25. The modeling and 

simulation steps take information from the problem setup steps and deliver information 

that can be used in the decision support step of this process.  

Step 5: Alternative Solution Modeling

Step 6: Uncertainty Quantification

Step 7: Risk Assessment

Step 8: Risk Mitigation

Modeling and Simulation
Step 5: Alternative Solution Modeling

Step 6: Uncertainty Quantification

Step 7: Risk Assessment

Step 8: Risk Mitigation

Modeling and Simulation

 

Figure 25: Modeling and Simulation Focus Area 
 
 The information necessary from the previous step includes the potential solution 

options, the list of risks and assumptions, the specified scenarios, and the information 
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gathered about the problem. The first step in the modeling and simulation focus area is 

the alternative solution modeling step. In this step, each solution is modeled by the 

decision maker. Many modeling codes exist throughout the aerospace industry that allow 

aircraft to be modeled. 

 The solution modeling step requires information about the solution from step two. 

Since the same solution model will also be used for the risk modeling and risk assessment 

steps, the list of assumptions and their associated risks as well as the list of scenarios and 

their specifications are also necessary. The uncertainty quantification and risk assessment 

steps use the same solution models created in the solution modeling step; however, in this 

step more information is applied to model and then assess each risk over the developed 

scenarios.  

5.3.2.1 Alternative Solution Modeling 

The fifth step of the method is variable selection and scenario modeling. This is 

an involved and important step that can be easily divided into four parts: the first part is 

the determination of metrics of interest, the second part is the solution modeling 

procedure, the third part of this step is the variable selection process, while the fourth part 

is the scenario modeling process. Variable selection involves choosing the number and 

type of variables to model while solution modeling involves using analysis tool to model 

each solution and then building surrogate models of important parameters for each 

solution. 

 The first thing one needs to understand about the solution modeling process is that 

it will depend on the tools available. Understanding the design tools available can be a 

time-consuming task; fortunately, there are often experts available to help with this 

process. In order to determine the metrics of interest, the designer or decision maker 

needs to understand what the design tool has the ability to model. While the same set of 

metrics will not be used for every problem, it is likely that the necessary metrics will 
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include performance metrics, such as takeoff and landing field lengths, noise and 

emissions parameters, and fuel consumptions. Economic metrics can include a 

manufacturer and customer cashflow and/or net present value.  

The designer or decision maker needs to understand the fidelity of the modeling 

tools, particularly if different tools are required to model different solutions. The designer 

should understand which parts of the created solution model will be very trustworthy and 

which parts will still be very uncertain. The designer needs to understand which modules 

in the model are applicable to his problem and the fidelity of any extremely important 

modules that will be involved in solution comparison. The designer and decision maker 

must also understand differences between any modeling tools that will be used to model 

different solutions. If modeling tools have differing fidelity and/or different strengths and 

weaknesses, decision makers will need to be aware of the differences when comparing 

results between tools. Expert users of the design tool can provide significant insight into 

the best way to model each solution alternative. Each solution alternative model should 

be run deterministically and the results should be understood and then verified to the 

extent that is possible before completing the rest of this process.  

 While each solution model can be created deterministically, a probabilistic model 

is created to assess the solutions across scenarios. Variable selection is very important for 

not only solution modeling, but also later for risk modeling and assessment. Variable 

selection involves choosing which variables are needed in order accurately assess the 

system and still be able to calculate the risk for each scenario. Variable selection involves 

a mapping process between the scenarios as they are written and the risks as they are 

listed. Once the variables are identified, it can be completed in the form of a matrix, with 

the list of risks on one axis and the list of variables on the other, as illustrated in Figure 

26. 
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Figure 26: Risk and Variable Mapping Matrix 
 

It is important to determine what variables are available for use that are specified 

in each scenario and affect the risks listed. The answer to this question depends on a 

variety of factors, including the analysis tools available and what variables they contain. 

If the decision maker had the ability to model everything, the list of variables would be 

almost endless. As it is, the decision maker must understand the analysis tools available 

to him and what variables those tools can understand. In general, the decision maker will 

want analysis tools that can handle and understand both technical and economic variables 

and be able to model additional technologies and general economics. While the decision 

maker may not have tools available that can model everything he wants, he may be able 

to modify his tools or post-process his results in such a fashion that he can model the 

solutions and risks he is interested in.  

While there is no universal list of variables that will model every risk one can 

determine, there are some variables that can model different types of risk. For technical 

risk, technology variables can include weight reduction factors on materials or systems 

that can potentially be updated in the new design, or performance increase factors, such 

as drag reduction technology. The cost factors associated with using this new technology 

can also be included. Economic variables can include labor and materials costs, 
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production rates, and the number of aircraft sold, as well as more global economic 

variables including interest and inflation rates and the cost of fuel.  

Choosing variables for models created using different analysis tools presents a 

more complex set of problems. Ideally, all of the tools used would have the same set of 

variables to choose from for modeling purposes. Unfortunately, this is seldom the case. 

Sometimes different analysis tools present similar variable choices, so variables can be 

worked out between the tools so each solution model can be created from a similar set of 

variables. When this is not possible, or when analysis tools have differing levels of 

fidelity, variable selection may differ between solution options. This case is not ideal, 

since it means that direct comparison between solution options becomes much more 

difficult.  

 Scenario modeling, like variable selection, also requires knowledge of the 

analysis tool to be used. The first step in the scenario modeling process is to map each 

scenario to the variables being modeled. For example, Scenario 1 will have the same (or 

very similar) variables as Scenario 2, but those variables will have different ranges that 

reflect the differences between the two scenarios. Each scenario will have its own set of 

variable ranges and each problem solution will have its own model.  

When the variable ranges are determined for each scenario for each model, the 

scenarios can be combined into one range for each variable for each model. The 

minimum and maximum of each variable across all scenarios becomes the variable 

minimum and maximum for modeling purposes. In Table III, the range for variable 1 

would be 1.4 to 2.6 and the range for variable 2 would be 4 to 12.  

Table III: Variable Range Determination 
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Creating only one model for each solution instead of one model for each scenario 

for each solution will decrease modeling and simulation time and necessary computing 

power. If there are five potential solutions and four scenarios for each solution, it is much 

quicker to run five potential solutions rather than twenty solutions. Having all the 

scenarios rolled up into one set of variables also makes the risk analysis and mitigation 

process less time-consuming, and as time is valuable in conceptual design, there is 

potential for more solutions to be examined with this process.  

Modeling each solution over the set of variables can be done in several different 

ways. This author recommends a design of experiments (DoE) as a modeling tool, since it 

can be set up to use with surrogate models. DoEs come in many forms; one of the most 

often recommended forms is one set up for a linear, second order parametric regression 

equation, such as a face-centered central composite design. This type of DoE can be used 

for many applications. Most statistical software packages have some such DoEs built-in, 

and others can be created or purchased. When the DoE is created, a set of extra, possibly 

random, points should also be created in addition to the base points. These points will be 

used for verifying that the surrogate model is accurately representing the created model.  

Post processing will probably be necessary to gather the data into some useful 

form and create a sense of time-dependence in the model for each solution. Creating 

time-dependent models can be a problem as many analysis codes do not contain time-

dependent variables. One way to get around this problem is to specify variables at a 

specific point in time. For example, an analysis tool may be set up where the production 

schedule is an input and so a production schedule, per year, can be input into the tool to 

give the illusion of time-dependence. Or, potentially, post-processing may allow 

variables to be changed with time; as an example, a created cashflow may allow the user 

to have the ability to change inflation rate or increase or decrease wage rates over a 

period of time.  



 113 

Surrogate models for important metrics for each solution are built after the 

solution is modeled. Important metrics are those necessary for comparison between 

solutions and will include both performance and economic parameters. These models can 

be created using any surrogate modeling technique desired; however, there are some 

techniques that are more popular than others for parametric models. Appendix A explains 

two such techniques: response surface modeling and neural networks. These models 

should be validated against the random data added to the end of the DoE used for 

scenario modeling. The surrogate model will go across all scenarios and can potentially 

be used even if the solution is later updated.  

The output of the solution modeling step is the surrogate models of each solution 

over the set of scenarios. These models will be used in the following steps to model and 

assess the list of risks created in step three.  

This type of scenario modeling is not often undertaken. Scenario modeling in 

literature treats scenarios as discrete events, not stochastic events. The addition of 

variables to the scenario building and modeling steps is unusual. 

5.3.2.2 Uncertainty Quantification 

Step 6: Uncertainty Quantification, is the next step to complete after all of the 

solutions have been modeled. The goal of the uncertainty quantification step is to map 

each potential risk to the set of variables that are used to model each potential solution. 

After that, it is to determine the severity of the impact that each risk could have on the 

solution, and then use the created scenarios to determine the probability of occurrence of 

every potential risk. Thus, this step deals with both the probability of each occurrence of 

each potential risk and the consequence if such and outcome occurs.  

The first step in the uncertainty quantification process is to determine what to use 

as the baseline for every potential solution model. The baseline model is the model that 

meets all the initial assumptions that are identified, i.e. what the designers expect to 
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happen. For example, when designing a new commercial aircraft, Boeing has an 

assumption of how many of that aircraft will be sold and at what price they will be sold. 

If the number of aircraft to be sold and aircraft price are two of the variables, than the 

baseline for those variables would be the initial assumed number of aircraft sold and the 

price of the aircraft. If those variables are correlated, correlation logic should be built into 

the baseline numbers and the risk modeling and assessment steps; Some Monte Carlo 

analysis computer programs allow for variable correlation.  

Once the model baseline is determined, the second step is to map the 

consequences of each potential risk to the variables used to model the solution. Since the 

variables used to model the solution were decided upon with the list of assumptions and 

risk available, this process should be doable without adding new variables. That is, every 

risk should have consequences that map to at lest one variable. The easiest way to 

complete this process is to create a matrix mapping the assumptions and their 

uncertainties to the variables. The matrix can be filled in by hand or, potentially, 

automatically, although an automatic process proved too difficult for this author to 

implement.  

The matrix can be filled in either quantitatively or qualitatively. To fill in the 

matrix quantitatively, much information must be known about the risk and the variable. 

To use the example from the previous paragraph, to fill out the matrix quantitatively it 

must be known that a certain risk will decrease the average price of the aircraft by 

$10,000,000 and 120 fewer aircraft will be sold. Early in conceptual design this 

information is rarely known and is often still uncertain; therefore, the risk modeling 

matrix is generally better filled out qualitatively. The scale used to fill out the matrix can 

be whatever is deemed appropriate by the decision makers. Eventually, in step seven of 

this process, the scale will be mapped from qualitative or generic quantitative inputs to 

specific quantitative inputs. An example of such a risk matrix is illustrated in Figure 27.  
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Figure 27: Risk Modeling Spreadsheet Example 
 

While the qualitative scale can be anything the decision maker chooses, there are 

some common scales exist. There is a monotonic, linear scale, such as 1-3, 1-5, or 1-10. 

These scales are very common in many applications, and have the advantage of 

simplicity. They work well for applications where the decision maker knows little about 

the consequences associated with a risk. To use such a scale, the consequences of each 

potential risk would be mapped to each variable such that a small degradation from 

baseline performance would be mapped as a one while a large degradation from baseline 

performance would be mapped as the maximum on the scale. One of the problems with 

this type of scale is that human perception of consequences in a risk assessment is non-

linear, as explained in previously. One way to get around this problem is to assign a non-

linear scale, such as 1 to 3 to 9, in place of a linear scale of 1-3. The advantage of such a 

move is that it conforms better to human perception of consequence, and, therefore, can 

potentially achieve more accurate results. A problem with both of these scales is that they 

only allow for degradation in the variable performance. In real life, a potential risk may 

positively impact one or two variables but negatively impact several others, thus leading 

to a potential overall negative impact. Similarly, it also assumes that there is a definite 

direction of improvement or degradation in each variable, while some variables may have 
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a nominal value and movement to either side is a degradation in performance. Variables 

that impact schedule are examples of this type of variable: either a speed up or a slow 

down of schedule increases cost (Augustine 1997). A way to get around this problem, and 

the method that this author chose to use, is to use a scale that is both positive and 

negative such as -3 to 3. Using this type of scale allows for both increases and decreases 

in each variable from the baseline value. It also allows for better examination of 

variables, such as technology factors, that may improve performance but have additional 

cost.  

While different scenarios should be taken into account while completing the risk 

model mapping process, it is not always necessary to determine consequences over each 

scenario. Often, the same assumption and potential risk will have the same set of 

consequences across all scenarios, although the probability of occurrence will change 

between scenarios. If this is the case, and many times it will be, there is no need to create 

one risk model for each scenario; instead, one risk model can be created for each 

potential solution or the same risk model can be used for multiple potential solutions if 

the solutions are sufficiently similar.  

Inputs for the risk modeling step are the created scenarios, the list of assumptions 

and risks for each potential solution, and the variables that were used to create each 

solution model. Outputs from this step are the risk model matrix for each model or an 

overall risk matrix for the set of solutions. These outputs will be fed into the next step: 

risk assessment. 

5.3.2.3 Risk Assessment 

Since this process involves a scenario-based risk analysis, the use of scenarios 

should come into play when determining the likelihood of each potential risk actually 

happening. While the consequences of each potential risk actually coming to pass may be 

the same, or at least very similar, no matter what scenario or set of scenarios are used, the 
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probability of any particular thing going wrong will change depending on the scenario. 

Therefore, the probability of each potential risk associated with an assumption must be 

separately assessed over each scenario.  

Probability assessment can also be done qualitatively or quantitatively. Early in 

conceptual design, a qualitative assessment is often a better choice than a quantitative 

assessment. It is easier for the human decision maker to judge whether the probability of 

a specific event is unlikely or likely vs. whether that event has a 25% or a 35% chance of 

happening. At this point in conceptual design, there is so much uncertainty in how likely 

an event is to take place in the future that assigning it a numerical probability is too 

difficult for the decision maker and disingenuous to anyone who later peruses the risk 

assessment: the decision maker doesn’t have that much confidence in his probability to 

provide that precise a number.   

Qualitative probability assessment can assess probabilities either using language 

or on a scale. Assessment using language is familiar to people who speak almost any 

language. It requires a scale of event likeliness such as low probability, medium 

probability, or high probability. A risk analysis involves the analysis of both probabilities 

and consequences and then the combining of those two analyses into a full risk 

assessment. This process lays out separate assessments of probabilities and consequences 

and then combines them, instead of having just one assessment. This author chose to use 

a qualitative scale to assess probabilities of occurrence for each potential risk over each 

scenario because at this stage of design determining numerical probabilities is a very 

uncertain process. 

1. extremely unlikely 

2. very unlikely 

3. unlikely 

4. somewhat likely 

5. very likely 
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Many risk assessment methodologies, such as the probabilistic risk assessment technique 

used by NASA (“Probabilistic Risk Assessment…” 2004) and others throughout the 

aerospace industry rely on scales similar to the one given above. The scale itself can be 

modified to fit whatever problem the decision maker is trying to solve; however, the 

same scale should be used to assess all potential risks over all scenarios over all solutions. 

Also note, the scale above can easily map to a numerical 1-5 scale for risk calculation 

purposes.  

 Sometimes the probability of occurrence for each potential risk can be assessed 

once and be valid for all solutions, other times each solution must be assessed 

individually. If the solutions are sufficiently similar, it is possible to complete a 

probability assessment once for all potential solutions; there may also be times when two 

or more solutions can share a probability assessment while another probability 

assessment must be completed for other solutions. Completing this process by hand, as 

this author chose to do, is time-consuming; however, it is a difficult process to automate 

since it requires decision making capabilities.  

Once the probability of occurrence of each potential risk is assessed over each 

scenario, a cumulative probability can be assessed across all scenarios. This can be done 

by assigning a likelihood for each scenario and then summing the probability times the 

likelihood of each scenario for each potential risk. For example, if there are five 

scenarios, best case, worst case, and three more likely, the best and worse case scenarios 

are less likely to occur than the three middle ones, so they can be assigned a small 

probability of occurrence, such as 5%, while the more likely scenarios can be assigned a 

larger probability of occurrence, such as 30%. This procedure gives a weighted average 

probability of occurrence for each potential risk, as illustrated in Figure 28. A numerical 

scale was chosen for this project; the scale is one to five, with one meaning extremely 

unlikely to occur and five meaning likely to occur. A likelihood of occurrence for each 

assumption and uncertainty must be completed for every scenario. For example, in Figure 
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28, the probability of occurrence of Risk 1 in the first scenario is listed as a four, or 

somewhat likely.  

 

Figure 28: Cumulative Probability of Occurrence 
 
  The cumulative probability takes into account the probabilities for all scenarios, 

weighted by the probability of the scenario’s occurrence. In the Figure above, scenarios 

one and two have a probability of occurrence of 0.05 (the best and worst case scenarios) 

while scenarios three through five have a probability of occurrence of 0.3. Thus, each 

potential risk has a cumulative probability of occurrence associated with it, calculated 

using Equation 6. 
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 Once the probability of occurrence for each potential risk is calculated, the 

consequence associated with each potential risk can be calculated. In reality, these steps 

are interchangeable; either one can be completed first.  

 Assessing the consequences of each potential risk is a multi-step process. The first 

thing to be done is to completely map the risk model to the set of variables for each 

potential solution. Since the risk model used a qualitative -3 to 3 scale while the variables 

each have a quantitative range, the mapping process must translate between these two 
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pieces of information. Using the example from the previous section, if the variable is the 

number of aircraft produced, the baseline is 1000 aircraft, and the variable range is 600 to 

1200 aircraft, one potential map could be as listed in Table IV. 

This scale is linear, but any scale will work as long as it is consistently linear or 

non-linear across all the potential solutions. For the scale below, it is linear on the lower 

end and non-linear on the upper end, and it has different slopes for good and poor 

outcomes. This is because decision makers are likely to assume the future will go well 

(Lovallo and Kahneman 2003) and set a baseline accordingly; the actual value is more 

likely to fall below than above the baseline. Notice that it is not necessary to use the 

entire variable range for each solution model; if the range is accurate, the entire range 

will be utilities across all solution models. This process must be completed for all 

variables for each solution model. Some variables, such as the price of fuel, will have the 

same map for all solutions, while others, such as product cost, will be different across 

solutions. 

Table IV: Risk Model to Variable Mapping 
Risk Model Result Variable Result 

-3 700 
-2 800 
-1 900 
0 1000 
1 1050 
2 1100 
3 1200 

This scale is linear, but any scale will work as long as it is consistently linear or 

non across all the potential solutions. For the above scale, it is linear on the lower end and 

linear on the upper end, but it has different slopes for good and poor outcomes. This is 

because human decision makers are more likely to make the initial baseline a generous 

estimate; the actual value is more likely to fall below than above the baseline. Notice that 

it is not necessary to use the entire variable range for each solution model; if the range is 

accurate, the entire range will be utilities across all solution models. This process must be 
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completed for all variables for each solution model. Some variables, such as the price of 

fuel, will have the same map for all solutions, while others, such as product cost, will be 

different across solutions. 

 Once the mapping is completed, then each potential risk must be input into each 

surrogate model to see the consequences on the whole system if the event does occur. 

The goal is to see the effect of each potential risk on the technical and economic outputs 

modeled in step four. To determine the consequences of each potential risk, the technical 

and economic outputs must be examined and a determination must be made as to how 

severe is the consequence should the event occur.  

The consequences assessment, like the probability assessment, can also be 

completed qualitatively or quantitatively. For the same reasons as mentioned above in the 

probability assessment, this author has chosen to complete the consequence assessment 

qualitatively using the scale below. 

1. very small 

2. small 

3. medium 

4. high 

5. catastrophic 

The determination of exactly what delineates a very small consequence from a small 

consequence, etc, is left to the decision maker completing the risk analysis step. Some 

guidelines that this author chose to use were the difference in the amount of time to break 

even and the final profit between the baseline and the assessed event, the degradation in 

performance, especially if one of the performance goals was not met, and degradation in 

emissions between the baseline and the assessed event. Since this analysis is completed 

by a human decision maker, it is possible that two different decision makers would assign 

different consequence ratings for the same event. This is to be expected; however, the 

differences should be small and consistent across all solutions. One decision maker 
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should not have assigned a consequence of five to an event while another decision maker 

assigned a consequence of two to the same event. If many decision makers are working 

on different parts of the risk analysis portion of this procedure, they should lay out 

guidelines for consequence severity before assessing the different potential risks. It may 

be possible to determine a set of rules for consequence and automate this process, but this 

author did not choose that route, instead, this author completed this process by hand.  

 After the consequences are determined for each potential risk for each 

assumption, the actual risk is calculated in order to determine whether each potential risk 

has an actual risk associated with it. There are several formulas to calculate risk when 

given a set of probabilities and consequences. One of the traditional ways to calculate 

risk is to use the expected value formula given in Equation 5 in Section 3.3.3, repeated 

again here.  

 ( ) ∑=
i

ii xpXE         (5) 

This method has the advantage of simplicity, since a single multiplication is required and 

also has the advantage of a single, deterministic number for risk ranking purposes. 

However, it has the problem of not conforming particularly well to human perception of 

risk.  

 One of the ways to get around the problem of human risk perception not 

corresponding to the strict definition of risk calculation is to weight the consequences 

part of the risk equation more than the probability part of the risk equation. This 

weighting can take different forms; it can be a linear multiplier or an exponential 

function. This author chose an exponential function to use for the consequences side of 

the equation because this author believes it more closely corresponds to human risk 

perception than a linear or other multiplier. This author chose a base of two for the 

exponential function to approximate consequences while still achieving the desired 

effect; however, any base could be chosen. The base of two was chosen because it weighs 
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consequences highly when the consequence is large, but more closely approximates the 

traditional risk calculation when the consequence is small. The new risk analysis equation 

used by this author to compute risk with a given qualitative probability and consequence 

is as follows: 

( ) xC
xpxR 2*=         (7) 

R(x) is the risk associated with the uncertainty, px is the cumulative probability of not 

meeting the assumption, and C is the consequence of not meeting the assumption. 

This new equation allowed for the calculation of risk for each solution over all 

scenarios. This calculation can be completed automatically in tabular form, as listed in 

Table V. In that Table, the cumulative probability of each risk associated with each 

assumption is calculated. Then, consequences for each potential solution a re determined 

using the one to five scale explained above. The risk is calculated using Equation 7.  

Table V: Risk Table 

 

 
 The method outlined in this section was set up to meet this goal: create a process 

that allows for the examination, for the purpose of decision making, of technical and 

economic objectives, as well as programmatic risk and risk control and mitigation 

strategies. It was also designed to be used by engineers at the conceptual design level. 

After some background investigation on what makes people want to follow a process to 
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complete an assignment, a more comprehensive lest of requirements for the risk analysis 

process was created. This list is not intended to be all-inclusive; however, it should 

highlight some important aspects of creating a methodology that others will understand 

and choose to follow.  

 The risk assessment step in this process seeks to assess the severity of each 

potential risk and assign a severity ranking to each potential risk. The goal of this step is 

to see which of the list of the potential risks should be considered a serious risk and 

which members of the list need not be worried about. This step is important to take the 

time to complete correctly. It can be time-consuming to complete by hand and also time-

consuming to write a program to complete automatically. Unfortunately, it is important to 

identify the members of the list of potential risks that pose the greatest hazard to the 

program and each solution; therefore, this step must be completed as accurately as 

possible. 

 Once each potential risk has an actual calculated risk, a risk analysis and ranking 

can take place. Each risk can be ranked, either qualitatively or quantitatively. A 

quantitative ranking can be made based on the calculated risk; however, this ranking may 

not mean very much when calculated risks are very close in number. When one 

calculated risk has is 10.33 while another calculated risk is 10.5, there may be very little 

difference in the ranking and evaluation of such risks. A better way to rank such risks is 

to rank them qualitatively in groups. Risks can be ranked based on probability and 

consequences, with low probability and low consequences meaning low risk and high 

probability and high consequences meaning very high risk. There are many such ranking 

schemes, one of which is illustrated in Figure 29. Since this ranking scheme takes into 

account the increased weight of consequences over probability, particularly at high 

consequence outcomes, it was chosen by this author to illustrate a qualitative ranking and 

compartmentalization of risk.  
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After risk analysis takes place, the next step is to complete a risk mitigation 

process as outlined in the next section. The risk mitigation process takes information 

from this step, including the risk calculation and risk rankings, as well as the performance 

and cost characteristics of each potential solution. Inputs for the risk analysis step include 

the list of assumptions and potential risks, the risk model matrix, and the set of scenarios. 

Outputs are a qualitative ranking and numerical representation of risk for each alternative 

over the set of future scenarios. This representation of risk will be used as an input for 

both the risk mitigation step and the decision support step that will follow.   
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Figure 29: Risk Analysis Chart (Modified from Haimes 2004) 
 

5.3.2.4 Risk Mitigation 

 The purpose of the risk mitigation step is to see the effect of partially or totally 

taking steps to mitigate the larger risks identified in the previous step. Risk mitigation is 

an important part of any risk analysis process; while finding out which parts of a system 

cause the most risk is important, it is equally important to know what steps can be taken 

to mitigate risk.  
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 Determining how to mitigate risk is difficult. For technical risks, it can mean 

having a backup plan for the use of new technologies if said technologies do not come to 

fruition and provide the necessary results in the necessary timeframe at the necessary 

cost. For economic risks, mitigation processes can include planning to spend more money 

earlier in the design phases in order to decrease the chances of an economic disaster later 

in the design process. While these ideas sound good in theory, in a real design project 

these decisions are difficult to make. It can be difficult to determine how to put in place a 

mitigation plan for a technical risk when future technology performance is uncertain: 

should the mitigation plan include using the technology even if its performance goals are 

not met, or should the mitigation plan include the use of older, established technologies 

even if they will provide sub-optimal performance? There are also cases in which a new 

technology or technology suite is necessary for system performance goals to be met and 

in these cases the technological risk mitigation plan cannot include any backoffs in 

technology and so must include decreases in performance capability.  

 Economic risk is also difficult to mitigate in real projects. There may not be any 

additional money to spend up front on decreasing economic risks, or, if there is money 

available, it is a limited amount. Tradeoffs must be made among which risks to mitigate 

and which risks or types of risk provide the biggest bang-for-the-buck, or lowest 

cost/benefit ratio. Since there is never an unlimited amount of money to spend, and there 

are always risks that cannot be mitigated, any risk mitigation process, technical or 

economic, is difficult to implement. Other concerns for both technical and economic risk 

mitigation include the timeframe in which these risks must be dealt with. For risks that 

are near-term, mitigation plans or processes may be seen as more urgent, even over 

potentially programmatically catastrophic risks. Since the human decision maker will 

perceive immediate risks as more important than long-term risks, this problem is a human 

nature problem, not a risk analysis problem and, as such, must be worked around as well 

as possible.  
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 While all of the above problems with completing a risk analysis process are 

present at all phases of design, they are magnified during conceptual design since all 

information is very uncertain and time scales are long. Risk mitigation processes during 

early conceptual design are generally focused on one or two areas of risk. For example, 

NASA’s risk planning and mitigation process focuses on technological risks in terms of 

cost, schedule, and performance. It does not deal with other types of economic risk such 

as those associated with changes in political administrations, cultural changes, or 

employment problems. A process that allows for the examination of potential mitigation 

of all types of risk is, as far as this author understands, unique.  

 The first step to completing the risk mitigation process is to determine, through 

use of the list of assumptions and risks, which risks can be mitigated and which cannot. 

Some risks will affect all potential solutions and cannot be mitigated through any action 

by the corporation creating the product or the user. These risks include such things as 

pandemics and changes in global political alliances. Other risks, such as those associated 

with demographic changes in population and employees (present and future) can, and 

should, be prepared for. In general, technical risks are more likely to be able to be 

mitigated than economic risks; however, one exception is the unforeseen invention of an 

industry-altering technology. While such an occurrence is rare, it should nonetheless be 

included in the risk analysis.  

 The next step in the risk mitigation process is to determine the performance and 

economic effects of mitigating each of the risks that can be mitigated. This is the 

complicated element of the risk mitigation process.  

For technical risks, the goal is to see the performance and economic impact of not 

having new technologies achieve the projected performance. Since the technologies that 

are being examined have already been modeled, it is easy to change the technology 

parameters and see the performance and economic impacts of changing technologies. 

Now that the impacts of changing technologies can be seen, it is necessary to choose 
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fallback positions for each technology or technology suite. These fallback positions 

should be chosen with the aid of the person or group of people developing the 

technology. For example, if a new technology will decrease the weight of the avionics 

system by 15%, there may be two fallback positions if the 15% is too far a reach: 10% 

and 0%, which is existing technology. The 10% fallback position will impact 

performance parameters and may have a slightly lower projected cost as the initial 

position, while using existing technology will generally have a lower cost, for the 

manufacturer, than using new technology. This type of analysis can be completed for 

each technology variable or set of parameters and can be easily coded into almost any 

program. Investigating mitigating the risk associated with new technologies means seeing 

and measuring the impacts associated with moving to technology fallback positions and 

measuring the economic risk associated with those new positions. So not only does the 

impact of changing technology impacts need to be calculated, but this impact also needs 

to be mapped to changes in the risk associated with the technology. This mapping is done 

by first performing the same risk assessment on the fallback position as was performed 

on the initial technology and then decreasing the risk linearly in proportion to the cost 

difference between the baseline technology value and the new technology fallback 

position, as illustrated in Equation 8: 

100*%
skBaselineRi

NewRiskskBaselineRi
skChangeinRi

−=     (8) 

This risk then decreases as one moves from the use of new technology to the use 

of existing technology. The cost associated with this move can be positive or negative, 

depending on whose costs are being measured. The costs for the end user will probably 

increase as one moves from using newer technology to using existing technology; 

however, the costs for the manufacturer will generally increase with the use of new 

technology.  
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While it is complicated to see the effects of mitigating technical risk, economic 

risk is even more difficult. The economic risk mitigation analysis involves planning to 

spend more money up front in order to have less risk later on in the design process.  

Mitigating economic risks involves seeing how variable changes impact the 

program’s cost and then mapping variable changes to risk reduction. In order to map 

variable changes to risk reduction, since each risk can be mapped to several variables, 

involves seeing how each change in a variable from the baseline to a new position (-3 to 

3, from above) impacts different aspects of project cost. While this is easy to do when 

variable impacts are monotonic and cross-terms between variables do not exist (or are 

very small), the complication increases greatly as variable impacts on economic 

responses are non-monotonic and cross-terms become larger. For the best case, when 

variable impacts on responses are monotonic and cross-terms are small, the decision 

maker can create a table of how each variable impacts each economic response of 

interest. For example, if the economic variables of interest are the ones that make up a 

cashflow, then the impact of each variable for each solution for each level, -3 to 3, as it 

differs from the baseline must be calculated. If first unit cost is one of the responses of 

interest and the cost of engineering labor was one of the variables, then the impact of 

increasing and decreasing engineering labor cost to a given rate is calculated, as per 

Table VI below.  

Table VI: Variable Change Map 
Variable Change Variable Value First Unit Cost 

3 120 138.0 
2 100 135.2 
1 80 132.5 
0 60 130.0 
-1 50 127.5 
-2 40 125.1 
-3 30 122.6 

 

As the first unit cost impacts the product’s cashflow, it can be seen that planning to spend 

more money on labor costs correlates to planning for an increased first unit cost and an 
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increased manufacturing cost as part of the cashflow. While this change means planning 

to spend more money than the original assumption called for, it also reduces economic 

risk since there will be a decreased chance of overrunning the new predicted set of costs. 

Whether it makes sense to plan to spend this money or to plan that the original 

assumption is true depends on the amount of money available and the risk tolerance of 

the decision making team.  

When functions are non-monotonic, this process can be completed the same way, 

but the results are more difficult to interpret. Non-monotonic functions are usually, but 

not always, schedule dependent: both speeding up and extending a schedule causes an 

increase in cost. Cost functions that are best at a nominal value can make it difficult to 

see whether it is beneficial to reduce risk, since the cost increases whether the variable is 

increased or decreased. In some of these cases, any deviation in the initial assumption 

increases risk, which can mean, if there is a high probability that the assumption will not 

be met, that the initial assumption should be changed before any risk mitigation is 

undertaken.  

When cross-terms impact the economic and performance metrics of interest, it 

becomes more difficult to determine the impacts of each variable change. Some logic 

must be created to accurately see the impact of changing a variable such that it no longer 

conforms with the initial assumption. This logic needs to be specific to each metric for 

each proposed solution and created as necessary. While this is a time-consuming step, 

many times the cross-terms are of small enough impact that it is unnecessary to complete, 

or, if it is necessary, there are only a few terms that are important.  

Seeing the effects of mitigating economic risk is similar to seeing the effects of 

technical risk. Equation 8, from above, is used to determine the impact of mitigation of 

economic risk also. As the risk is reduced per Equation 8, the impact of the reduction is 

seen on the economic parameters through the changes in variables. To continue to use the 

example from Table VI, if the uncertainty associated with an assumption has a labor rate 
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variable value of three, meaning that labor rates are likely to increase in the future, than 

the first unit cost is also likely to be higher than the initial assumption. Decreasing this 

risk means that the new assumed value for the labor rates approaches the potential value 

as outlined by the particular risk in question. Using Equation 8, the new value of the risk 

is changed to be lower than the initial value. As this value decreases, the potential 

economic consequences decrease linearly. However, the costs associated with this 

decrease in risk are added into the cashflow or other economic metric of interest: as the 

risk decreases, the first unit cost goes from a value of 130 to a value of 138, or 

approximately a 6% increase in first unit cost. 

Inputs to the risk mitigation step of this process include the list of assumptions 

and risks, the risk model, and the metrics of interest for each solution. The output for this 

step shows which risks can be mitigated and the potential impact, performance and 

economic, of mitigating different risks. The risk mitigation process to be laid out here is 

intended to illustrate the zero-order economic and performance effects of mitigating 

certain risks. It is not intended to determine whether such a risk mitigation procedure is 

possible; however, that would be a useful addition to this process.  

5.3.3 Decision Support 

The last focus area of this process is decision support. Now that all of the 

information generated in the previous eight steps is available, it must be presented in such 

a way that it is useful for a human decision maker. Human decision makers are only able 

to take in and process a limited amount of information at a time, so too much information 

and too many tradeoffs should be avoided. At the same time, enough information should 

be available to allow the decision maker to make good decisions and back up those 

decisions with available data.  

The data availability and visualization is an important part of decision support. As 

this is a risk mitigation process, much of the decision support interface will center around 
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risk analysis and mitigation visualization. A good decision support interface should 

provide all information necessary to make a decision and allow for tradeoffs within the 

environment, especially for a risk analysis and mitigation process.  

While such an interface will be different for every product, there are some must-

haves for this particular process. For this process, it is important to know what the 

assumptions and risks are, so those should be listed for examination. There also needs to 

be some way to differentiate between risks that can be mitigated and those that cannot. It 

would also be useful to have the ability to compare risk across the different solutions and 

have the ability to mitigate different risks across the different solutions while being able 

to see the overall impact of different types of risk. This part of the interface can be 

completed in a list form, such as the one illustrated in Figure 30 below. That interface is 

built in MS Excel and contains a list of assumptions, a list of uncertainties (potential 

risks) associated with the assumptions, and the initial baseline calculated risk for each of 

the uncertainties for each potential solution, a differentiation between risks that can be 

mitigated and those that cannot, and a set of slide bars for illustrating the effects of 

mitigating risks. While this is a long list of information, it is presented in a concise list 

and so it is easy to understand.  

 

Figure 30: Risk Mitigation Interactive Process 
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Other parts of the decision support interface include those associated with the 

airframer’s economic metrics of interest, as illustrated in Figure 31, those associated with 

the aircraft’s performance, in Figure 33, and those associated with the airline’s economic 

metrics of interest, in Figure 32. For the example given in Figure 31, the airframer’s 

economic metrics are a cashflow for each potential solution and a comparison of the 

aggregate risk for each potential solution. This information is gathered during the aircraft 

modeling step. As changes are made to the risks shown in Figure 30 (the slide bars are 

moved), differences between the baseline cashflow calculation and the new cashflow 

calculation can be observed for each potential solution. Other examples of economic 

metrics of interest, which are not chosen here, are an NPV calculation or just a maximum 

sunk cost or breakeven point. All of this information is contained in the cashflow 

diagram, but can be broken down further to ease comparison.  

 
Figure 31: Risk and Cashflow Comparison 

 
 



 134 

 
Figure 32: Airline Economic Metrics of Interest 

 

 
Figure 33: Performance Metrics of Interest 

 
Performance metrics will, obviously, differ from product to product. For a 

commercial transport, takeoff gross weight (TOGW), takeoff field length (TOFL), and 

Nitrogen Oxide emissions (NOX), fuelburn and noise are some of the important 

performance metrics. These three are listed below because they are of interest to both the 

airline and the manufacturer. Like the manufacturer, the airline also has economic metrics 

of interest; one of them is the required yield. It is important to be able to make tradeoffs 

between what is best for the manufacturer and what is best for the customer, which is 

why customer economic metrics and performance metrics of interest to the customer are 

also available for a risk comparison.  
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Having performance as well as economic characteristics for both the manufacturer 

and the customer available provides information that can be used for trade studies and 

comparison by a human decision maker. While this may seem like an overwhelming 

amount of information, much of the decision making will center around the 

manufacturer’s cashflow or other economic metrics and the list of assumptions. Other 

metrics become necessary to examine only in certain situations: the airline metrics should 

be examined if there is a significant change in any of them. The performance metrics will 

be examined when technical risk is mitigated, but generally the economic impacts on 

performance metrics are small.  

While having all of this data is very useful for trade studies, it can still be made 

more useful for decision making by implementing one of the MADM techniques 

explained earlier. TOPSIS was the chosen technique to implement here due to its 

simplicity and adaptability. An interactive TOPSIS, illustrated in Figure 34, was created 

to aid in the decision making process. All games that can be played on the decision 

support framework outlined above have results that can be seen here on this TOPSIS. The 

attributes used to rank different alternatives are listed down the left side of the diagram. 

Those attributes can be anything the decision maker is interested in examining. The 

relative importance of each of those attributes can be changed, as different decision 

makers may have differing rankings for those attributes. Changing the relative 

importance of each attribute can change the rankings of the potential solutions; however, 

the ability to play games and complete tradeoffs with the TOPSIS model outweighs the 

need for simplicity and a single solution. 
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Figure 34: TOPSIS for Decision Support 
 

Decision support plays an important role in the risk analysis and decision making 

processes. Decision support interfaces will be very different from project to project, but 

they should all have some of the same components: examination of assumptions, 

uncertainties in those assumptions, manufacturer’s economic metrics, performance 

metrics, and how risk mitigation will affect the economic and performance metrics. They 

may also include some decision-making techniques for comparing the different solutions; 

the technique used here was TOPSIS. These techniques do not substitute for a human 

decision maker in the loop; however, they may add information or at least provide more 

rationale behind decision making.  

5.4 Hypotheses Tests 

As stated above, the hypotheses laid out in Section 5.2 should be testable. The 

demonstration problem will include a section on hypothesis testing, in order to 

demonstrate that the hypotheses are valid. Valid hypotheses are necessary for a 

demonstration of the scientific methodology used to create the risk analysis and 
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mitigation process. Invalid hypotheses will be a sign that the process doesn’t work as 

intended, and should be amended at such time, while valid hypotheses are a good initial 

demonstration that the process does work as intended, and more tests should be done to 

continue to demonstrate whether that is true. It is hoped that the hypotheses generated 

here for the creation of this process will be valid. 

Hypothesis 1: A risk analysis along with the outcome analysis will allow 

consequences and uncertainty to permeate the business case and increase information 

available for decision making without overwhelming the decision maker. This hypothesis 

can be tested by skipping steps six through eight in the proposed process and determining 

whether there is still enough information to support decision making. Without the risk 

analysis, there is only a benefit, or outcome, comparison across scenarios and potential 

solutions. A (monetary) outcome-only comparison does not take into account risks in the 

form of future uncertainty and decision consequences, so the choice of configurations 

will be limited to the one with the highest payout. With the introduction of consequences, 

the decisions can be based on both outcomes and risk and better outcome decisions can 

trade off with lower risk decisions. Decisions can change when risk is taken into account 

along with outcomes. Steps six through eight will show the decision maker whether the 

addition of a risk analysis and risk mitigation process will change the decision and add 

information to the decision making process. 

Hypothesis 2: Both qualitative and quantitative information are available and can 

be used in decision making; the ability to use both types of information increases the 

number of applications for a risk-benefit analysis without overwhelming a human 

decision maker. This hypothesis can be tested by limiting the amount of information 

available to the decision maker. If the process is artificially limited to have quantitative 

inputs only, are any configurations unable to be analyzed? What information is lost in the 

analysis process? Is it more difficult to complete a risk analysis? Does the quality of the 

risk analysis suffer? Does the decision maker feel that less information enables him to 
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make better decisions? Is there too little information to complete the process and make a 

decision during the early phases of conceptual design? And on the other side of the 

spectrum, if the process is limited to qualitative inputs only, is its usefulness limited as 

more information becomes available? If either of these conditions limit the use of the risk 

analysis process, then increasing the types of input data will increase the applicability of 

this process. 

Hypothesis 3: Too much uncertainty can render a risk analysis meaningless; the 

use of future scenarios can bound uncertainty and tie it to specific circumstances. Testing 

hypothesis three can involve the creation of an “anti-scenario” just like all the other 

scenarios; however, this scenario has full uncertainty ranges just like a traditional 

probabilistic analysis. The probabilistic analysis can be run and data measured and 

collected just like the other scenarios. When the risk analysis and decision making time 

comes, the probabilistic analysis is analyzed exactly the same ways as the scenario based 

analysis. If the uncertainty in this analysis overwhelms decision making capabilities, then 

the use of scenarios is shown to be more effective at understanding and using future 

uncertainty. Even if the uncertainty in this analysis does not overwhelm the decision 

making capabilities by making solutions indistinguishable, the use of scenarios can still 

add a layer of traceability to the decision making process. To test whether this is true, 

explain how the variable distributions were derived for the scenario based analysis and 

then compare to the probabilistic analysis. If there is more information about how to 

create distributions from the scenario based analysis, then there is more traceability in 

that process.  
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CHAPTER 6 

DEMONSTRATION PROBLEM 

 While the last Chapter outlined a risk assessment method to be used in the earliest 

part of conceptual design, a demonstration problem is intended show that the method will 

work and can be completed as outlined. It is not the intention of this chapter to prove that 

this method is the only way to complete a risk assessment; there are many risk 

assessment methodologies. However, it is the intention of this chapter to demonstrate that 

the hypothesized risk assessment process has some superiority over currently existing 

conceptual design phase risk assessment processes in that is examines risks that are not 

well-examined by current engineering risk analysis processes. Much of this 

demonstration will take place at the end of this chapter, in Section 6.4 when the 

hypotheses listed in Chapter 5 are tested and it is determined whether these hypotheses 

are met. The hypotheses are met if the demonstration problem shows their plausibility.  

 Since this process prominently involves a human decision maker and a model of 

the future, it was difficult to determine whether to use a current or historical example for 

this demonstration problem. Using a current example would allow the problem to be 

completed from the perspective of not knowing the future; however, any validation of the 

problem results would take many years. Therefore, since a current or future 

demonstration problem could not be used, a past problem was chosen. While a past 

problem allows for comparison of predicted values and scenarios with real-life values and 

scenarios, it also has the disadvantage of the decision maker knowing what happened. It 

can be difficult to create scenarios, examine options, and create problem solutions 

accurate to the time period when the outcome is already known. Even with these 

difficulties, a past problem was chosen, as it was felt that hypothesis testing and 

comparison to the actual outcome of events was an important part of the demonstration 

problem  
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 Choosing a demonstration problem is difficult even though it is already known to 

be a historical example. The problem should be contained within the aerospace industry, 

and should be a design problem, since that is one of the initial assumptions for this 

process to work. The demonstration problem could be either commercial or military. 

Military problems have the advantage of generally having more and very different 

potential solutions for a given set of requirements; however, it can be very difficult to 

model any out-of-the-box solutions accurately and to acquire accurate, unclassified 

requirements data for comparison purposes. Commercial problems have the advantage of 

possessing generally straight-forward requirements and goals; however, commercial 

transports are all very similar so it could be difficult to distinguish between solutions 

enough to demonstrate that this process works.  

Timeframe is also another consideration. While the further back one goes in time 

the more future comparison information would be available, as one goes further back in 

time it is more difficult to find information regarding the decision makers’ thought 

processes and more difficult to determine the impacts of local, state, and world events. In 

light of these problems, this author prefers to use a relatively modern demonstration 

problem, such as one from the 1980s.  

6.1 Problem Setup 

 The problem chosen for this demonstration is the development of a commercial 

aircraft in the 1985 timeframe. The problem is inspired by Airbus Industrie’s 

development of the A330 and A340, but is not meant to exactly mimic that design 

problem.  

In this case, setting up the problem requires learning as much as possible about 

the time period in question. Major players in the industry, motives, competition 

strategies, and so on should be understood as well as possible. National and international 

concerns also need to be reviewed and understood, especially as related to the design and 
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manufacture of a new commercial aircraft. All of this information is gathered during step 

1 of the process. Once step 1 is completed as thoroughly as possible, steps 2 through 4 

are competed. These steps are easy to complete—after all, the decision maker knows 

what happened—but more difficult to justify. Therefore, it is very important to 

understand not only what was happening both within the aerospace industry and around 

the world, it is also important to be able to demonstrate that solutions generated are 

accurate to the time period in question.  

6.1.1 Step 1: Establish the Need 

 The first step toward looking for a solution to any problem is to identify the 

problem. In this case, the problem is that it is 1984 and a notional airframer would like to 

break into the long-range air transportation market. While at this time the airframer 

already has a medium-range widebody fleet and a short-range, narrowbody fleet, it 

currently does not have a wide-body, long range aircraft in production.  

6.1.1.1 Existing Wide-Body Aircraft  

 At this time, existing wide body aircraft include Lockheed’s L1011, Douglas’ 

DC-10, Airbus’ A300/A310, and Boeing’s 747 and 767. Of these aircraft, only the 

Boeing 767 and 747 and the Douglas DC-10 are true long-range aircraft, with ranges 

greater than 5000 nmi, and the Boeing aircraft are dominating this market. The DC-10 is 

an older trijet aircraft, launched in 1968, and is considered unreliable due to a number of 

accidents in the previous decade (“The McDonnell Douglas DC-10” 2003). There is 

potential for a DC-10 update or replacement toward the end of the decade, but that may 

not happen unless the company’s financial prognosis improves. The Boeing 767 is a 

medium to long range, twin-engine wide body aircraft that was first flown in 1981 as the 

767-200, with the 767-200ER, extended range, flown in 1984. It was developed in 

conjunction with the 757, with which it shares a common cockpit (“Boeing 767-200” 
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1998). A stretch version, the 767-300 and -300ER are scheduled to be flown in 1986 

(“Boeing 767-200” 1998). Boeing’s 747 is a long range, wide body four-engine aircraft. 

It was first launched in 1970, with an updated 747-300, with upper deck, first flown in 

1980 and another potential update projected for the latter part of this decade (“Boeing 

747-300” 1998).  

 The other existing wide body aircraft of the time, the Lockheed L1011 and the 

current Airbus A300/A310, are not considered competing aircraft for the 747, 767, and 

DC-10, since they do not have as long a range. As the airframer strives to design and 

build a new long range wide-body aircraft, the major competition will be Boeing’s 767 

and 747; the DC-10 and any additional updates to it are currently, and projected to be in 

the future, a minor player in the long-range market.  

6.1.1.2 National and International Events  

In the mid 1980s there were many changes taking place in the world. One of the 

big ongoing news pieces in the early 1980s was the changing of the USSR. Between 1980 

and 1985, there were four General Secretaries of the Communist Party. The first is 

Leonid Brezhnev, who is remembered for the war in Afghanistan and giving increased 

powers to the KGB. Yuri Andropov took over for Brezhnev in 1982. He tried to reduce 

corruption and increase productivity in the USSR and elsewhere in Eastern Europe. He 

tried to reach out to the leaders of Western Europe and the United States; however, he 

was largely unsuccessful. While he wanted to reform the USSR, he died before he was 

able to accomplish significant reforms. He was succeeded by Konstantin Chernenko, who 

only lasted 13 months. Mikhail Gorbachev, who succeeded Chernenko and was groomed 

by Andropov, proved to me a more open Soviet leader than those before him. He 

cultivated a policy of increasing freedom of speech and the press in the Soviet Union in 

the 1980s. He took control of the USSR in March 1985, and reached out to the West. 

When he took office in 1985, he tried to accelerate economic reforms, including 
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incentives for increased production. He continued talks with the United States and 

Western European countries for a reduction in medium-range nuclear weapons.  

With the changes taking place in the USSR, some other Eastern European 

countries are also becoming more open. The solidarity movement in Poland, an anti-

communist movement that began in 1980, was still going in 1985. Although the Polish 

government, with the backing of the Soviet Union, violently tried to put down the 

revolution, the movement slowly gained momentum as an attempt for the workers to have 

more say in their government. This movement is one example of the growing discontent 

among the working population in Eastern Europe. An increasing black market for 

western goods and ideas was one result of these nationalistic movements, as was an 

increasing demand for education and freer travel.  

While the previous two paragraphs describe the political situation in Eastern 

Europe, the economic situation should also be understood. From the mid 1970s through 

the early 1980s, the Soviet economy stagnated. Production, agricultural and otherwise, 

was flat, even as the population continued to grow. With this problem, shortages of food 

and other goods became widespread, leading to the populace’s discontent with their 

government. During this time, the government tried to keep the status quo and make few, 

if any, necessary reforms. When Gorbachev took over in 1985, he instituted labor reforms 

to try to increase productivity.  

Western Europe was also making changes during this time. In France and Britain 

there were representative governments, headed by François Mitterrand elected in 1981 

and Margaret Thatcher elected in 1979, respectively. Politically, these governments were 

very stable in the 1980s.  

Thatcher politically survived the Falklands war in 1982 and a coal miner’s strike 

in 1984. She was a proponent of a free-market, entrepreneurial economy and sold off 

pieces of state-owned businesses to workers. Thatcher, like Ronald Regan, supported 
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using deterrence against the Soviet Union and supported nuclear disarmament talks with 

Gorbachev.  

Mitterrand was the first socialist president of France, elected in 1981. He passed a 

wealth tax to try to prevent an economic crisis. While he was a socialist at a time when 

other world powers, including Thatcher and Regan, were conservative, he still supported 

close Western European collaboration between France and Germany, Spain, Portugal, 

and Great Britain. While he was less popular with the United States government than 

those in Western Europe, he still aligned his government with the United States and Great 

Britain against the Soviet Union.  

Economically, Western Europe was doing better than Eastern Europe in the early 

1980s; however, there were also economic problems in this area of the world. In Britain, 

the unemployment rate increased from 6.2% in 1980 to 11.9% in 1983 before leveling off 

at 11.3% in 1985. In France and other countries in continental Europe, the trend is similar 

but less dramatic, as illustrated in Figure 35. This rising unemployment rate was of 

concern to both the government of these countries and their population. High 

unemployment led to decreased job security, decreased economic growth, and stagnant 

wages, illustrated in Figure 36 for Germany. Western European leaders at this time were 

trying to combat the increase in unemployment and flat wages. While gross domestic 

product (GDP) growth was higher for Western Europe than Eastern Europe at this time, 

Western European GDP growth was still lower in the 1980s than in the 1950s and 60s. 

One reason for this was the recession in the United States in 1982-1983. 

Another problem facing Western Europe that also faced the United States was 

high inflation. As illustrated below in Figure 37, inflation increased an average of 7% per 

year in the United States, 9% per year in France, and 11% per year in Great Britain 

between 1980 and 1985. At the same time, in 1984, the FTSE 100, a British stock index 

similar to the S&P 500, decreased 15% (“FTSE (^FTSE) 100” 2006).  
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Figure 35: US, Britain, France Unemployment (“Historical Unemployment Rates” 2006, “ Taux de 
chômage.” 2005, Lindsay 2005) 
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Figure 36: German Wage Growth (Lange 2007) 
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Figure 37: US, Britain, France CPI (“Consumer Price Index” 2006, “Retail Price Index…” 2006, 

“Indice Mensuel…” 2005) 
 
 In the early 1980s, the United States was faring as well as Western Europe, both 

politically and economically. Ronald Reagan was elected president in 1980 and then re-

elected in 1984. Like Thatcher, he was a capitalist and proponent of the free market. He 

was able to drop the marginal tax rate for the highest tax brackets by almost 50% and also 

decreased the tax rate for businesses (“Ronald Reagan” 2006) in an effort to help boost 

the economy. He was unpopular during 1982-1983, when US unemployment topped 10% 

(see Figure 35) and the Dow Jones Industrial Average (DJIA) dropped below its 1981 

high, as depicted in Figure 38, before rebounding in 1983. Much of his economic policy, 

called Reaganomics, was focused on decreasing tax rates and creating jobs as a way of 

lifting the US out of the early 1980s recession. While the recession ended, tax revenue 

dropped and government spending continued, resulting in a large increase in the national 

debt.  
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Figure 38: DJIA (“Dow Jones…” 2006) 
 
 Reagan also negotiated with other countries abroad. He declared himself against 

communism, but opened talks with Gorbachev for the purposes of arms reduction and 

increased trade. He also increased trade with China and Japan during his two terms in 

office. He recognized that both the Republic of China, on Taiwan, and the People’s 

Republic of China, the mainland, were important trading and political partners, and 

sought to negotiate with both.  

 The People’s Republic of China (China) was in the midst of a cultural and 

political revolution in the 1980s. Under the leadership of Deng Xiaoping, a new 

constitution was adopted in 1982. This new constitution gave more rights to the general 

populace in terms of freedom of religion, speech, and press than were available before. It 

also disbanded the communes that had been prevalent in the farming areas of the country 

and gave the land to the workers. As more than half of China’s population lived in 

poverty in 1980 (“People’s Republic of China” 2006), these reforms were well-received.  

 During this time period, China was also seeking to increase productivity, worker 

output, and worker’s standards of living. The goal was to industrialize the country as 

quickly as possible. At that time, Chinese labor was very cheap so goods could be made 
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cheaply. While there were some criticisms directed at the Chinese government for how 

political and social dissents are handled, China has a rising GDP and a decreasing 

number of people living in poverty.  

 Also during this time period, other Asian cities like Taiwan, Hong Kong, and 

Singapore are also modernizing. Hong Kong, Singapore, and South Korea increased 

exports and productivity while raising the standard of living for their own population in 

the 1970s and early 1980s (“East Asian Tigers” 2006).  Increased trade with Europe, the 

United States, and Japan and a well-educated, hardworking populace were characteristics 

of these countries in the 1970s and 80s.  

 Japan, which industrialized itself just after World War II ended, was an important 

economic force in the mid 1980s. Its people had the highest standard of living in Asia at 

that time. The population was well-educated, unemployment was low (Alexander 1985), 

and a brisk trade business had developed between Japan and the United States, and, to a 

lesser extent, with Western Europe. Japan was known for cheaply creating and exporting 

technologically advanced goods such as automobiles and electronics that were of high 

quality. The economy was doing very well, as evidenced by the Nikkei 225, a stock index 

similar to the S&P 500, gaining 16% annually in 1985 and 1986, as illustrated in Figure 

39. Politically, Japan was a US ally with US military bases on its soil but reluctant to get 

too involved in international disputes, particularly with China.  

While the world’s economic power is, or will soon be, concentrated in Europe, 

Eastern Asia, and the United States, other parts of the world are still important. For 

Central and South America, the early 1980s are marked politically by coups. The United 

States government is generally supportive of conservative and military governments 

while some European countries are more supportive of the country’s general population. 

While cocaine use was becoming a problem in the US by 1985, Central and South 

American countries were generally not world economic powers. 



 149 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

3-Jul-83 11-Oct-
83

19-Jan-
84

28-Apr-
84

6-Aug-
84

14-Nov-
84

22-Feb-
85

2-Jun-
85

10-Sep-
85

19-Dec-
85

29-Mar-
86

C
lo

se
 P

ric
e 

N
ik

ke
i 2

25
 (

ye
n)

Close

 

Figure 39: Nikkei 225 (“Nikkei 225 (^N225) 2006) 
 
 The continent of Africa also had some economic problems. The northeast and 

north central part of the continent experienced a severe drought in the 1980s; there was 

much suffering and malnutrition even with international aid. South Africa had internal 

problems, the most severe of which was apartheid, which would eventually fall in the 

1990s. Much of the continent was had problems of poverty and corruption, along with the 

newly identified AIDS virus, which appeared to quickly kill those who caught it. In 

Egypt, the war and tensions with Israel are over. 

 In the Middle East, the United States and, to a lesser extent, Western Europe, 

were supporting Israel over other countries. Since the end of the war with Egypt, the 

south of Israel had been militarily quiet. However, Lebanon was politically and militarily 

unstable at the time, so military power was being concentrated on the north border. With 

Lebanon’s instability was the fear that Jordan and Syria would also fall victim to 

revolutions, attempted coups, or militarists. As the western world had significant interest 

in a safe and secure Middle East, the United States tried to work with Middle Eastern 

governments to stabilize the region. At that time, Israel was a firm ally and Iran was a 

firm enemy, since the Islamic government had taken over the country in 1979. Saudi 

Arabia, Egypt, and Iraq were softer allies at that time, as was the rest of the Arabian 
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Peninsula to insure the continued flow of oil; this is especially important as the price per 

barrel of oil had been dropping since 1980, from $37.42/barrel to $26.92/barrel in 1985 

(“Historical Crude Oil Prices” 2004).  

 In Central Asia, there is little unrest, but the biggest countries were India and 

Pakistan, who are historically enemies. India developed nuclear capabilities in the 1970s, 

but, like China, spend much of the early 1980s beginning to modernize the country. 

Indira Gandhi was prime minister, and the government at that time was trying to decrease 

malnutrition and increase educational opportunities for rural children. While India was a 

democracy, Pakistan was a state ruled by the military. In Pakistan, the 1980s are 

characterized by a return to Islamic law and a military regime. While there is historical 

animosity between Pakistan and India, the border was peaceful during the early 1980s.  

6.1.1.3 The Aerospace Industry 

 The historical perspective shown in the previous section has an impact on the 

aerospace industry. While the aerospace industry is often linked to the defense industry, 

here it refers only to the commercial sector of the industry. At this time, the industry is 

composed of older, propeller transport aircraft that are being slowly phased out to make 

room for more of the newer jets, as well as narrow and wide body jet aircraft.  

 In 1985, major aircraft manufacturers in the market in the western world were 

Boeing Corporation, Lockheed Corporation, McDonnell Douglas Corporation, and 

Airbus Industrie. At this time an airframer looking to expand market share has decided 

that the long-range, wide body market will increase in the coming years (Lenorovitz 

1986). With the increase in globalization predicted in the coming decades, an increase in 

the long-range, wide body market makes sense. As cities such as Singapore, Seoul, Hong 

Kong, and Taiwan increase in size, industrial production strength, and monetary value, 

there will be more travel to and from these places. Also, as large, populous countries like 

China and India become more industrialized and wealthy, there will be a larger demand 
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for travel both to and from them and also within their borders. With the potential opening 

of the Soviet Union to more foreigners, there will also likely be more demand for travel 

to and from Moscow. All of these markets will be well-served by a high-capacity, long-

range, fuel-efficient commercial aircraft. There are also the issues of air traffic, runway, 

and ground traffic congestion. Busy airports are already increasing landing fees as a way 

of pushing more airlines into using larger aircraft, thus decreasing runway congestion 

(Lenorovitz1987). 

All of the considerations outlined above translate into a need for a new aircraft for 

the long-range, wide-body market. This new aircraft should include new technologies 

that are available or will be available over the next few years. It must have a low per-seat-

mile operating cost in order to be competitive and must also be compatible with existing 

airport, runway, and air traffic control infrastructure.  

Different companies have had different responses to these potential world 

changes. Lockheed, back in the late 1970s, created an updated version of the L-1011. 

While this updated version was supposed to be a competitor in the long-range market, it 

proved to be inferior to the 767, and production was halted in 1983 (“Lockheed L-1011 

TriStar 500” 2002). As a commercial airliner, the L-1011 has been so far generally 

unsuccessful; however, the Royal Air Force (RAF) purchased several and is planning to 

convert them to tankers. McDonnell Douglas, maker of another trijet, is researching 

updates for the DC-10. Such updates will include a stretch version of the DC-10 to 

accommodate more passengers, a newer, more electronic flight deck, and wing updates to 

decrease drag (“McDonnell Douglas MD-11” 2001). These changes will hopefully 

increase McDonnell Douglas’ market share in the long-range, wide body aircraft market.  

Boeing Corporation, which currently has the largest market share of long-range, 

wide body aircraft, is also looking to upgrade its fleet. Boeing is looking to upgrade and 

stretch the current 767 to create an aircraft between the 767 and the 747 in size. The new 

aircraft, as a 767 upgrade (currently dubbed the 767-X), will be a long-range twin. It will 
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be able to serve the current 767 markets and, hopefully, will someday serve even longer-

range oversea markets with the creation of a new Extended-range Twin-engine 

Operations (ETOPS) rating.  

From the perspective of a notional airframer, Boeing and the 767 and 747 are the 

main competition in this market. The goal is to create a more cost-effective competitor 

for the 767 fleet currently in existence. This new aircraft should be less expensive to 

operate than the current 767s and the projected 767 replacement. The new solution should 

have higher capacity and longer range than the current 767, and should have lower per 

seat mile operating costs, while still incorporating new technologies that will allow the 

aircraft to remain competitive longer (Lenorovitz 1986).  

There is also potential to try to gain a market advantage by using more American 

sub-contractors for aircraft parts (Lenorovitz 1988). Such changes, along with projected 

increases in the long-range, wide-body market could increase aircraft sales and also 

increase profit for the airframer.  

Since the goal of this design is to create a product that is superior not only to 

existing products but also to newly developing products, it is important to know what 

technological advances are to be expected over the next five years. Some expected 

technological advances include lighter avionics systems, newer lightweight aluminum 

alloys, and newer uses for carbon-fiber/epoxy materials (Lenorovitz 1987). New avionics 

developments include the ability to use a standard cockpit for the new aircraft under 

development, thus decreasing pilot training time as well as avionics system weight 

reductions. There is also potential for a newer, fly-by-wire system that is lighter than 

existing systems. Lighter-weight aluminum alloys have been developed over the past 15 

years, which have the potential to save a fraction of the aircraft’s weight. The carbon-

fiber/epoxy materials used to build the tail of current widebody aircraft should be 

extendable to a larger aircraft. Other technological advances include the use of winglets 

to reduce drag. 
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6.1.2 Step 2: Scenario Development 

 Scenario development is an important step in the risk analysis process. Several 

processes to create scenarios have been discussed. The scenarios used in this example 

have the disadvantage of being created by a single decision maker, instead of a 

committee or group of industry experts. However, the process used to create the scenarios 

was similar to one that would be used if the scenarios had been created by committee.  

 To begin scenario creation, the decision maker determined what aspects of the 

future to examine to bound the scope of the problem and current events, variables, or 

drivers could potentially have a significant impact on the future of commercial aviation. 

In this case, the aspects of the future that need to be specified are employment, culture, 

politics, economics, and technology as these factors will affect the commercial aerospace 

industry. These categories were chosen for continuity: the potential future risks will be 

identified in these categories, and it is the purpose of this process to address these risks.  

 Given the state of the industry and the world in 1985, there are some important 

variables for the scenarios to address. From a macro-environmental standpoint, the future 

of Eastern Europe and the Soviet Union will affect the global economy and, by extension, 

global air travel. Currently, Eastern European society is becoming more open; that trend 

could continue or change. Changing population demographics in Asia, particularly China, 

India, Japan, and South Korea will also affect the global economy. These populations 

could continue to become wealthier, or not. From a micro-environmental standpoint, 

variables that will have a significant effect on the industry include the price of fuel. Fuel 

is a significant part of an aircraft’s total operating costs, so fluctuations in fuel price can 

cause large changes in revenue for an airline. These three variables will have a great 

influence on the commercial aerospace industry for the near future.  

 Other variables will also influence the future. The potential for air travel 

disruptions should also be examined. Terrorist events had not significantly disrupted 

travel in the 1980s; however, there were three aircraft hijackings and two airport attacks 



 154 

attributed to terrorists in 1985, so the terrorist threat appeared to be increasing. Another 

threat that may be increasing is the threat of disease. Several new viruses were identified 

in the 1970s and early 1980s, and travel has the potential to increase the speed at which 

disease spreads. Terrorism and disease, while not necessarily driving forces for the 

commercial aerospace industry, have the potential to cause disruptive futures.  

 Now that three main variables and two disruptive forces have been identified, the 

scenarios should be created to mix and match the variables. Five scenarios were created: 

one particularly good picture for the future, one particularly bad picture for the future, 

and three very different middle of the road scenarios. One of the ways to help insure that 

the scenarios were different was to create a matrix of alternatives. The created matrix is 

illustrated in Figure 40. It consists of ten main categories each with two or more sub-

categories that have at least two options each. Having this many categories and options 

means that the user can specify the future in a myriad of different ways. The main 

categories consist of economy, jobs, transportation, government, international relations, 

environment, housing, education, leisure, and other. These categories were chosen 

because they are important pieces of society and important to specify for a particular 

future in order to address the variable and disruptive forces mentioned above. The 

scenarios, rather than being deterministic, the way engineers usually think about 

scenario-based analysis, are open-ended, so they can be used in a probabilistic analysis 

just like traditional variable distributions.  

 The IRMA tool was used to aid in the specification of scenarios for this problem. 

For the first scenario specified, the best-case scenario, the IRMA is illustrated in Figure 

41. In this IRMA, the green boxes were the chosen scenario attributes.  
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Figure 40: Scenario Creation IRMA 
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Figure 41: Best-case Scenario IRMA 
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 This scenario is the global prosperity scenario. It represents this author’s view of 

the best thing that could have happened globally between 1985 and 2004. In this scenario, 

interest and borrowing rates were low, higher education was achievable for all who want 

it, fuel costs are relatively low, and jobs are plentiful. The global characterization of this 

scenario is that the USSR becomes a democratic society through peaceful revolution, 

either in total or each member state. East/West relations improve, and Eastern Europe 

becomes economically comparable to Western Europe by 2004. On the whole, a united, 

wealthy Europe has emerged from the cold war.  

In Asia, China also becomes a democratic society and becomes an economically 

powerful force. China is on its way to becoming a first-world society, and its population 

has leveled off. Japan has been at the heart of many technical advances over the years in 

electronics and is keeping up the trend. The country is very wealthy, and has the highest 

standard of living in the world. Asia’s other large democracy, India, also has a growing 

middle class, and is solving its rural poor problem through government efforts to increase 

educational opportunities to poor children.  

In the Middle East, there has been a peaceful revolution in Iran. Iran and Iraq 

have signed a peace treaty and are leaving the area near their border clear of military 

forces. Since the oil industry is booming as world consumption increases, most of the 

Middle East is growing wealthy. Israel is stable and is having no problems with its 

neighbors. In Africa, AIDS has been controlled through anti-viral medication and a 

vaccine that has become commonplace in most of the world. There are still factions of 

disenfranchised people in the Middle East, Africa, and South America, but they are small 

and are causing few worries about terrorist incidents. 

 The second scenario, the worst-case scenario, is almost the opposite of the 

previous scenario. In this scenario, the United States and Western European economies 

never really recover from the recession of 1982-83 and the high oil prices of earlier this 

decade. Instead of recovering, the economies begin sagging again in the late 80s. This 
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time, the problems are global. In the United States, many companies bought out their 

older, more expensive workforce, so the number of workers compared to the number of 

retirees is small. In both the US and Western Europe, it is very difficult for the young 

workers to get ahead, since much of their paychecks are going to taxes to support an 

older generation. Socially, there is much opposition to new technologies since the nuclear 

accident in Alabama in 1987. While the accident was small-scale and there were few 

deaths (and few projected deaths), for the public it still underscored the need for careful 

examination of new technologies. 

Seeing the downward spiral of the Western European and American economies 

causes Eastern Europe to close its borders. The USSR isn’t threatening to the west, but 

they continue to be a closed economy, with little global interaction. With the decrease in 

request for Chinese goods in the late 1980s and 1990s, Chinese modernization comes to a 

screeching halt. China closes its doors to westerners, and more and more Chinese live in 

poverty. The Chinese government roughly puts down any hint of rebellion, but there is 

still low-level unrest, particularly among young people, who are chronically unemployed.  

The situation in the Middle East is similar to China, with repressive governments 

clamping down on free speech. Unfortunately, there is also some low-level, unorganized 

terrorism in the Middle East and Africa. With international aid drying up, poorer 

countries are having to grapple with disease and hunger problems, but there are no global 

pandemics. In general, there is some civil unrest, particularly among young people with 

poor job prospects; however, none reach the level of a serious movement. There are also 

some border skirmishes and more-or-less bloodless coups in various parts of the world, 

but again, no all-out war.  

 Scenarios number three, four, and five are different from the first two. These 

scenarios don’t portray either the best or worse future outcome. Instead, they portray 

outcomes that seem to be more plausible. None of these scenarios is meant to portray an 

accurate future, just a potential one. 
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 The third scenario highlights what could happen if the AIDS virus becomes a 

global pandemic. In this situation, much of the world’s governments’ resources are being 

taken up to fight this disease, either directly or by supporting AIDS research. In the 

United States, most people are healthy and taking precautions to prevent infection. The 

biomedical field is very large and heavily subsidized by the government. Travel is 

discouraged to and from countries with significant infections, but not banned. However, 

most people travel only in countries with low rates of infection. In Western Europe, the 

situation is similar to the United States. Countries are cooperating to try to find a cure or 

better treatment for AIDS. Eastern Europe and China have stopped the AIDS epidemic by 

closing their borders to foreigners and not allowing their citizens to travel. Japan has 

become a world leader in the biomedical research field, and its population is very 

wealthy. In the Middle East, cultural pressures have kept the AIDS virus to a minimum, 

and thus there is a renewed vow to follow Islamic law. There is much travel between 

countries that are working on AIDS research, but little to countries where there are many 

infections, including much of Southeast Asia, Sub-Saharan Africa, India, and Indonesia. 

The economies in these countries are struggling, since many of their young workers have 

been struck down by AIDS. There is a renewed call for traditional religious values all 

over the world, as it is seen as one way to help combat the spread of AIDS. 

 The fourth scenario centers on an on-going Middle East conflict, which started 

over the increased price of oil and has exploded into a world conflict. In 1987, the OPEC 

countries decide to cut production to increase the price of a barrel of oil. As some 

countries agree to cut production and some do not, the conflict in the Middle East starts 

internally. The countries that do not agree to cut production were invaded, and the rest of 

the world, which is relying on the oil-producing countries, steps in to help sort out the 

conflict.  

In the United States, the war in the Middle East changes much about society and 

is compared to Vietnam. Society has become economically polarized, with the wealthy 
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and well-educated having more educational and job opportunities for their children, while 

the less-advantaged children end up working in service jobs or for the military. Blue-

collar workers are losing purchasing power, especially with the rising fuel prices. The 

defense industry is booming, and there is much emphasis on alternative fuels. In Western 

Europe, life is similar to America. There is an economic gap in educational and 

employment opportunities, with the poor losing purchasing power. Lack of oil from the 

Middle East has forced America and Western Europe to find alternative fuel sources, one 

of which is the USSR. Newfound wealth in the USSR leads to a peaceful revolution, and 

society there is much more open. Oil is also being imported from South America, 

particularly Venezuela, where the US is helping a friendly government stay in power. In 

Asia, Japan is still the world leader in the micro-electronics field. The Chinese economy, 

however, is very depressed. It is dependent on foreign oil and exports to fund its 

modernization process, and when the exports decrease and oil prices increase, the 

economy dipped and has never recovered. India, on the other hand, is receiving 

significant support from North America and Europe. Due to its proximity to the conflict 

in the Middle East, European and North American troops are stationed there and are 

using parts of the country as a base of operations.  

In the Middle East, North American and European allies are the secular 

governments in Israel and Iraq. Small countries, including Lebanon and Kuwait, are 

caught in the middle and have been annexed by other powers. Syria, Iran, and Saudi 

Arabia are the main powers. Radical Islam has made a comeback in these countries due 

to the war.  

Travel to and from the Middle East is totally curtailed, except for military travel. 

Travel between North America and Europe and, to a lesser extent, Asia, is common. 

International travel security is very high, and security lines to enter and leave countries 

are long. 
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The final scenario describes a technology explosion during the 1990s. All over the 

globe, new electro-mechanical devices are being developed. In the United States, there is 

a definite distinction between the wealthy, the middle class, and the poor. There are many 

high-tech jobs for the wealthy and well-educated, and also many blue-collar jobs that pay 

well for the middle-class. For the poor, the service sector jobs are disappearing as 

technology takes over. Open college positions in the United States, particularly in 

technology driven areas, are filled with students from other countries. Western European 

countries have been taking advantage of the new technologies more than North American 

countries. Due to their increasingly urban populations, these countries need more and 

better mass transportation and work at home options, which new technologies are 

providing.  

Eastern Europe has been mostly left out of the technology explosion. These 

countries are mostly closed and are still operating as if it is 1985. Due to the nature of the 

governments in these countries, it is difficult for westerners to discover what is happening 

there. Asia has been a big part of the technology revolution. While the United States is 

still educating many of the world’s students, many new technologies are being developed 

in China and India, and Japan is a source of continuing innovation. The standard of living 

in India, China, and most of the rest of Southeast Asia is rising rapidly. These cultures 

still value hard work and education, but are also becoming consumer cultures like the 

United States. Even the Islamic world has not been immune to the technology explosion. 

Hand-held small electronics are common in the Middle East and North Africa. Oil-

producing countries are prosperous with more people joining the consumer revolution, 

even as advances into alternative energy increase.  

In this scenario, there is much demand for long-range and international travel. 

Vacations for the wealthy and business travel make up most of the international travel, 

and short-range domestic travel by air has declined as advances in rail transportation have 

made it more viable.  
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6.1.3 Step 3: Alternative Solution Development 

  Now that the problem and potential futures have been identified, potential 

solutions, or families of solutions, must also be identified. Since this is a large sunk cost, 

long timeframe project, it is assumed that each generated solution will eventually become 

a family of solutions. Therefore, it is assumed that, if the aircraft proves to be viable, not 

only will the original solution be designed and built, but there is also potential for stretch, 

extended range, and other versions of this aircraft.  

 There are several ways to determine what the potential solutions are and which 

ones should be investigated. Since most commercial aircraft, with the exception of the 

Concorde, look very similar, configuration options are rather limited. Since this aircraft 

must fit into existing airport infrastructure, traditional aircraft configurations will be 

weighted more heavily than out-of-the-box configuration options. Unless it proves to be 

an infeasible or non-viable configuration, the aircraft will have one fuselage, one wing, 

and one tail. Since it has never been commercially done before, the development and 

certification costs for a non-conventional aircraft will likely be much larger than those for 

a conventional aircraft and, because it would have such a different appearance, it may be 

difficult to sell. It could be difficult to find a willing population to fly on such an aircraft 

even if it could be sold to an airline. On the other hand, since most people are familiar 

with a conventional aircraft configuration, new technologies that do not change the 

appearance require no additional work to convince the flying public of their safety as 

long as there are no accidents. 

 Since the choice here is limited to a conventional configuration aircraft, there are 

a few physical and functional characteristics to be concerned about when choosing a 

baseline configuration for a family of aircraft. One possible way to downselect between 

the possible alternatives is with a very simplified matrix of alternatives, as illustrate in 

Figure 42. 
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This matrix of alternatives is small; at this point in decision making there is little 

information available for decision making, and, as long as the aircraft meets the physical 

boundary constraints imposed by existing airports and runways, the aircraft’s physical 

size can be determined at a later date. It is much the same for functional characteristics. 

The aircraft needs a lower per seat mile operating cost than existing aircraft and must 

meet plausible future noise and emissions requirements. Since it is a conventional 

configuration and must fit into conventional airports and flight patterns, more precise 

performance characteristics can be determined at a later date.  

 

Figure 42: Aircraft Configuration Matrix of Alterna tives 
 
 Three conventional configurations were chosen from the matrix of alternatives 

presented in Figure 42; if none of these prove feasible and viable, other configurations 

will be chosen at a later date. The configurations were chosen based on the airframer’s 

preferences: be able to add enough new technology to produce the lowest per-seat-mile 

costs in the market, as low a development cost as is reasonable, and to cover the entire 

widebody, medium and long range market. 

The first, illustrated in Figure 43, is a derivative of an existing aircraft. The 

derivative is a stretched version of an existing widebody, medium-range aircraft with two 

engines placed under the wings and a conventional tail. It would be able to carry more 

passengers than the current version of the aircraft: around 300 in a two-class layout. 

While this aircraft would be less costly to design and build, since a version already exists, 

it has the disadvantage of having a shorter range and not covering the entire market. The 

engines, wings, and fuel tanks were designed for a smaller aircraft, with a current range 

of 4100 nmi, and a stretch version would likely have an even smaller range. While in a 

performance-based world these deficiencies would disqualify it from consideration, a 
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derivative aircraft has some attraction since its development cost is so low. If it could be 

designed and updated with new technologies and the operating cost was comparable to 

other newly developed aircraft, it will still be a contender. If it has a common cockpit 

with existing aircraft, it would also save airline’s money on training costs and the parts’ 

suppliers money on replacement costs.  

 

Figure 43: New Derivative Aircraft (modified from “ Airbus A300-600” 1998) 
 

 Another aircraft configuration to be examined is a new twin-engine under-wing 

mounted aircraft with a conventional tail. A notional graphic of a new twin-engine 

aircraft is given in Figure 44. This aircraft will transport approximately 325-350 

passengers and likely have a max range of approximately 5500 nmi.  

While a new twin-engine aircraft will be more costly to develop than a derivative 

aircraft, developing an aircraft from scratch can lead to lower operating costs and, in this 

case, more flexibility later on to create derivatives. It could also be easier to integrate new 

technology into a new aircraft than to retrofit an existing aircraft with new technology. 
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Some of the disadvantages of creating a new twin-engine are the low max range and long 

takeoff field lengths as compared to a tri- or a quad- engine aircraft. A twin-engine 

aircraft also needs to be Extended-range Twin Operations (ETOPS) certified before it can 

fly over large bodies of water, while a tri- or quad-engine aircraft does not. Needing an 

ETOPS certification can add time and cost to aircraft development, and some passengers 

could become fearful on overseas flights on a twin-engine aircraft. A twin-engine aircraft 

also has a takeoff disadvantage at high altitude and on hot days, when takeoff is difficult. 

On the other hand, a twin-engine aircraft has the potential to have lower operating costs 

than one with more engines.  

 
Figure 44: New Twin Engine Aircraft (“Airbus A330-300” 1998) 

 
Since a twin-engine aircraft has some potential problems as a long-range, 

overseas aircraft, it also makes sense to examine a three or four engine aircraft. A three 

engine aircraft generally has two under-wing engines and one engine in the vertical 

stabilizer. Having the third engine below the tail and above the fuselage creates additional 
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structural requirements for the aft end of the fuselage, and a carbon-fiber/epoxy tail has 

never been tried with a trijet. For these reasons, the three-engine aircraft idea was 

discarded.  

A new four-engine aircraft has all the advantages over an existing aircraft 

derivative as a new twin-engine aircraft. It compares to a new twin-engine aircraft as 

explained above: can fly longer routes, doesn’t need an ETOPS certification, has better 

“hot-high” takeoff characteristics, and the flying public is potentially more comfortable in 

it. However, it can have a higher per seat mile operating cost than a twin-engine aircraft, 

depending on engine characteristics.  

The characteristics of the four-engine aircraft to be examined include four under-

wing engines, and a conventional tail. It should carry approximately 275-300 people for 

7000 or more nmi. A notional four-engine aircraft is depicted in Figure 45. This aircraft 

needs to be smaller than a 747, since it is supposed to compete with the 767-200ER.  

There are also some other aircraft options that include two or more of the above 

aircraft. One of these options is to create a new twin-engine aircraft and a new four-

engine aircraft. This family of aircraft would capture both the medium- and long-range 

segments of the market, and segmenting the market may prove to be more cost-effective 

than trying to create one aircraft to cover the entire medium- and long-range widebody 

market. One way this would be cost-effective is to create one fuselage and landing gear 

system with one basic wing and tail for two engines and one modified wing and tail for 

four engines. Both wings would need to have the same fuselage interface for this idea to 

work. Designing a new twin-engine aircraft and a derivative four-engine aircraft will be 

more expensive than just designing a new twin-engine aircraft; however, if the two 

aircraft can be created as one aircraft platform and one derivative, the cost will be 

significantly less than the design of two separate aircraft. While this type of aircraft 

development has not been done before, it is thought to be no more complicated than the 

creation of a new wing and tail system for a derivative aircraft. 
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Figure 45: New Four Engine Aircraft (“Airbus A330-300” 2002) 

 
  However, this option also requires the use and potential development or updating 

of two different classes of engines. While it can be expensive to create two new classes of 

engines instead of one, it may be possible to modify existing engines to fit the needs of 

this aircraft. Since long-range twin-engine aircraft already exist, the correct engine class 

for this aircraft also exists. Potential engine choices for a long-range twin-engine aircraft 

include the GE’s CF6 class and Pratt and Whitney’s PW4000 class of engines. Instead of 

the creation of an entirely new engine family, it may be possible to create a derivative 

engine family that reduces development time and cost, but still allows the use of new, 

more advanced engine technology.  

For a four-engine aircraft, engine development may be more complicated. The 

existing widebody four-engine aircraft, the 747, is significantly larger than the proposed 

four-engine aircraft solution. Engines needed for the proposed four-engine aircraft would 

need to be approximately half the thrust as those proposed for the twin-engine aircraft 
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since the aircraft will be so similar. This puts the proposed engine thrust in the 30,000 lb 

thrust class. There are existing engines in this thrust class, most notably the CFM-56, that 

could be used or modified for use with a new four-engine, long-range, widebody aircraft.  

The advantages of the creation of two new aircraft over a single new aircraft are 

that it could capture more of the long-range, widebody market. If the development costs 

can be kept low and the aircraft markets are sufficiently different that creating two 

aircraft allows for significantly increased sales, than two aircraft may be a more 

economically viable solution than a single aircraft of any configuration. The danger in 

creating two aircraft on the same platform is that the platform is a compromise solution 

and so is optimal for no one. If this case occurred, it could decrease aircraft sales, not 

increase them. However, both aircraft are appealing to the same market, so there is less 

danger of a non-optimal, too-compromised solution. These two aircraft should appeal to 

different segments of the long-range, widebody market, and so development should 

increase, not decrease sales.  

Another solution that calls for development of two different aircraft is the 

development of a new four-engine aircraft along with a larger, updated derivative 

discussed previously. The development costs of designing a derivative and designing a 

new four-engine aircraft are less than the creation of two totally new aircraft; however, 

these costs may be greater than the cost of parallel development of a new twin and new 

quad on the same platform. Updating and stretching a current aircraft can be a costly 

process. Many of the systems on that aircraft were initially developed more than ten years 

ago. These systems need updating to tomorrow’s standards, not just today’s standards. 

There is also the problem that growing an aircraft reduces its range; however, there may 

still be a market for a medium-range widebody that can carry 300+ passengers, 

particularly as countries like China increase their demand for air travel. 

Creating a new four-engine aircraft in addition to updating the an existing aircraft 

can increase the company’s market share. As a new four-engine aircraft would be longer-
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range than an updated derivative, it will compete in a different segment of the market. 

These two aircraft fill complimentary roles; however, they will probably be expensive to 

develop in parallel. Another advantage to stretching an existing aircraft is that, as a 

derivative, its development time is shorter than a new aircraft. It would be out in the 

market competing with the 767 before a totally new aircraft could be fully developed, 

which could be an economic advantage for the company. 

There are five options listed above as potential solutions for this problem: 

1. Updated, stretched derivative aircraft 

2. New twin-engine aircraft 

3. New four-engine aircraft 

4. New twin- and four-engine aircraft built on one platform 

5. New four-engine aircraft and updated, stretched derivative aircraft 

Each of these five solutions could have been under consideration in the mid 1980s for a 

767 competitor.  

6.1.4 Step 4: Uncertainty and Risk Identification 

 Now that five potential solutions have been identified, it is time to begin 

examining them. The first step to examining the solutions from a risk analysis perspective 

is to examine the assumptions made about each solution. The assumptions to be 

examined fall into five categories: employment, culture, general economy, politics and 

government, and technology. Since the ultimate goal of this process is to create a product 

that helps illuminate to engineers how managers make decisions, the categories are 

chosen to be facets of risk that manager decision makers care about.  

 The first category of assumptions to be examined is employment. These 

assumptions have to do with finding the correct workers to complete the job, being able 

to pay them competing wages, and being able to communicate with them. The list of 

employment assumptions and their corresponding uncertainties is depicted in Table VII. 
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Table VII: Employment Assumptions and Risks 

 

The first assumption about the workforce is that there will be enough workers to 

meet future demand. Risks in this assumption include the potential to not have enough 

engineers or manufacturers. Along with the assumption that there will be enough workers 

is the assumption that the employer can accurately anticipate the cost of those workers. 

Risks there include whether the turnover rate is larger than anticipated, whether worker 

costs, either wages or benefits, increase, and whether the company can afford to keep 

workers occupied if the work becomes cyclic. All of these risks have the potential to 

increase the cost of workers.  

Another potentially problematic assumption stems from the knowledge that these 

workers are likely to be working in different countries and there are likely to be a 

significant number of foreign workers for some jobs. The initial assumption is that having 

workers in foreign countries and foreign workers in the home country will not cause any 

cultural conflicts or loss of workforce stability. Risks in these assumptions include 

potential problems with language barriers, whether it is possible to pay workers 

differently in different countries, whether or not workers from different countries actually 

get along, and that there are no unanticipated costs from doing business in other 
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countries. A more global airframer can also make the assumption that the company can 

move its workers around if necessary; however, if the employees do not wish to do this, it 

can be challenging to create a mobile workforce. 

The second category of assumptions to be examined is cultural and social 

assumptions. These assumptions have to do with culture, where people travel, and the 

potential for future service disruptions. The list of cultural/social assumptions is depicted 

in Table VIII. 

Table VIII: Cultural/Social Assumptions and Risks 

 

 
The first assumption is that consumers will be comfortable flying over water on a 

twin-engine aircraft. The risk associated with that assumption is that, due to some 

incident on a flight, passengers show a preference for three or four-engine aircraft. Other 

assumptions related to that include that there are no major wars or epidemics that cause a 

decrease in travel, and that travel to China will increase in the future. Risks in these 

assumptions include the possibility of wars and epidemics and the potential for a closed 

China. Other cultural assumptions deal with issues surrounding aircraft preferences. The 

assumption is that there will be no inherent bias for American aircraft and that there is no 

overwhelming preference for a four-engine aircraft over a two-engine one. Risks in these 
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assumptions include the potential for preference for American aircraft and a preference, 

particularly in Asia, for four-engine aircraft for overseas flights.  

There are also a number of general economic assumptions that need to be 

examined. These assumptions are assumptions about general economic conditions in the 

future and include such things as interest rates, stock market returns, and borrowing 

power. The assumptions for this problem are listed in Table IX.  

Table IX: Economic Assumptions and Risks 

 
 
 The first assumption, and the most important assumption, is that good global 

economic conditions will prevail over the next 20 years or so. This means that there will 

be no recessions in major aircraft markets such as North America, Western Europe, or 

Asia. It also means that travel will continue to increase throughout these regions, and 

implies that there will be continued money available for leisure spending of the general 

population. This increased travel is also seen in the assumption that travel will continue 

to increase at the rate of 4% annually; however, economic conditions that cause a 

decrease in business or leisure travel can prevail, making this assumption less than 

accurate.  

The assumption that the American economy remains strong has uncertainty that 

the country may still be in recovery from the last recession in 1981. On a similar note, the 
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assumption that there will not be widespread unemployment and the problems that go 

with it is also made. The risk in this assumption is whether or not unemployment can 

remain stable and relatively low in the world’s aircraft markets. With the potential 

opening of Eastern Europe, there is some fear of poorly educated Eastern Europeans 

flooding into wealthier Western Europe and increasing unemployment, as well as causing 

a host of other economic problems. There are other assumptions that also impact the 

flying public’s purchasing of tickets. Some of these assumptions include the continued 

prevention of terrorist attacks and stable fuel prices. Both of these conditions have much 

uncertainty, particularly since there is nothing an aircraft manufacturer can do about 

either of them: Airbus is incapable of lowering fuel prices or stopping terrorist attacks.  

The assumption of continued economic support in the form of subsidies and low-

interest loans form European governments is also uncertain. The final economic 

assumption involves the eventual creation of derivatives. It is assumed that the 

derivatives will be viable at the time of creation and that it will make sense to keep 

designing aircraft in this family. As it is uncertain whether this will be true, it is difficult 

to determine the accuracy of this assumption at this time.  

The next set of assumptions are those involving government or politics. This 

includes the local, national, and international levels of government. It includes 

assumptions about international relationships and their uncertainties, as well as local 

problems with building, purchasing, or maintaining facilities. It also involves 

assumptions about certification times and difficulties, both with certification in Europe 

and North America and with international certifications such as ETOPS. These 

assumptions are listed in Table X.  

The first assumption listed above is that American and European governing 

bodies will have common emissions and noise regulations. It is likely that this 

assumption is valid; however, there is still uncertainty since the European is higher than 

American and, in the future, European airports may have more stringent noise 
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regulations. The next two assumptions involve the assumption of political stability in 

Southeast Asia and the Middle East, along with a similar mention of South America 

further down the list. The risk here is whether this will be the case in the future. 

Table X: Political Assumptions and Risks 

 
 
  The next three assumptions involve continuing good relations between different 

countries: the United States and China, India and Britain, and the continued warming of 

relations between Eastern and Western Europe. There is uncertainty in whether these 

themes will continue over the next several years. Only recently have Chinese/American 

relations become better and Eastern/Western European relations are only just starting to 

warm after many years of Cold War. There is still the potential for these relationships to 

go back to the way they were ten years ago. Along with increased international 

friendliness is the assumption that the world’s nuclear powers will continue to abide by 

their treaties and that there will be no nuclear threat. While this assumption has proven 

valid for the last 40 years and will probably continue to be valid for the next 20, it is still 

an assumption with some risk about whether it can be met.  
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The next assumption deals with whether the United States government will allow 

American carriers to purchase European-made aircraft with little interference. There are 

several risks in this assumption about the American government. Since the American 

government is unhappy with the idea of European subsidies for aircraft development and 

manufacturing, one risk is whether or not these subsidies will become a major problem, 

or just a complaint. Another risk is whether or not the American government will allow 

US-based companies to be major subcontractors or, potentially, development partners on 

this aircraft.  

Another, very important, assumption is that the airframer will be able to finance 

the development of this aircraft, either through low-interest government loans or 

government subsidies. The risks in this assumption include uncertainties in the amount of 

money available in the form of government loans and the amount of money to be pledged 

in the form of subsidies from, particularly, the British and French governments but also 

from the German and Spanish governments. There is uncertainty both in the amount of 

money available for development and whether or not it will be enough to develop a new 

aircraft family. The last assumption on the list goes along with this assumption: that the 

manufacturer will be able to create a facility to build this aircraft. There is uncertainty as 

to whether it will be possible to build a new factory large enough to put together this 

aircraft. 

The final assumption on the list is that everything about the aircraft will be 

certified on the schedule laid out early in design. While this shouldn’t be a problem for 

most certification plans, two of the solution options call for designing two aircraft at the 

same time, and certification for two aircraft will be more time-consuming than 

certification for one. So one of the uncertainties is the time and cost necessary to certify 

two aircraft at the same time. The other uncertainty in the certification process is the time 

and cost necessary to get an ETOPS certification as soon as possible for a twin-engine 

aircraft.  
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The last set of assumptions to be listed are the technological assumptions. These 

assumptions are associated with the use of new technologies or the extension of existing 

technologies to this aircraft. These assumptions are listed in Table XI. 

Table XI: Technological Assumptions and Risks 

 
 
 The first two assumptions have to do with the use of more composite materials on 

this aircraft. The assumptions are that a new, larger composite tail can be created and that 

more composite materials will be able to be used for other parts of the aircraft. The risks 

in these assumptions include the increased time and cost to design and test a larger 

composite tail and whether composite materials are developed for use in other aircraft 

parts. Since a composite tail has been used on previous aircraft, it is likely that it can be 

extended to a larger aircraft. Along with the assumption that there will be more 

composite materials used in this aircraft is another materials assumption: there will be 

lighter-weight aluminum alloys used in this aircraft than in previous aircraft. The 

uncertainty in this assumption is whether or not these newer, lighter-weight alloys can be 

used in place of older alloys.  

 Other assumptions deal with design and part integration. These assumptions 

include the assumption that the aircraft will be designed well enough that parts from 
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different manufacturers are easily integrated into the finished product. There is 

uncertainty in how much communication will take place between different suppliers, so 

integration may not go as smoothly as planned. There are also some design assumptions 

that have uncertainty about them. The first is that this aircraft can be designed using 

either the same or a similar cross-section to existing widebody aircraft. Since these 

aircraft will be larger and more modern there is uncertainty as to whether the exisiting 

cross-section is the correct platform to use. It is also assumed that the newly designed 

aircraft will meet the 6000nmi range that the 767 possesses in order to compete with it. 

However, it is uncertain whether a new twin-engine aircraft can meet this range. This 

aircraft is also supposed to be designed for easy-load cargo, in order to increase cargo 

capacity and decrease turn-around time on the ground. However, the ability to easily load 

cargo depends on the design of the cargo trucks and the aircraft configuration, both of 

which are uncertain. The main design assumption for this new aircraft for some potential 

solutions is that a twin- and four-engine aircraft can be created on the same platform. 

Since this has never been done before, it is not certain whether it is possible to do or not.  

 The other technological assumptions involving this aircraft take into account the 

entire industry. These assumptions are that the competitor’s aircraft will not have a 

significant advantage over this aircraft family, the airframer can create an aircraft with 

the lowest per-seat-mile cost in the industry, no industry-altering technologies will be 

discovered, and that derivatives can be created on the same platform as the original. For 

the assumption that the competitor’s aircraft will not have a significant advantage over 

the new aircraft, there is uncertainty about what the competitor’s aircraft will be, so there 

is no way to tell for sure whether it will be better or worse. The same reasoning applies to 

the assumption that this new aircraft will have the lowest per-seat-mile cost in the 

industry. The assumption that an industry altering technology will not be created is 

probably a valid assumption; however, there is always a small chance that such a 

technology will happen in the near future.  
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 This section lists and explains some of the assumptions that could have been 

made in 1985 before the decision for an airframer to launch a new aircraft. The list is not 

all-inclusive. However, listing the assumptions and risks associated with those 

assumptions is one step in helping engineers create a product that is robust to risks in the 

external environment.  

6.2 Modeling and Simulation 

 The second focus area of this process is the modeling and simulation area. In this 

focus area, the solution model is created and then a DoE is run using variables that will 

enable the risks to also be modeled. Then the risks are assessed and the risk mitigation 

model is created. The risk analysis and mitigation models, as well as the outputs from the 

solution models all come together to create the decision support environment. 

6.2.1 Step 5: Alternative Solution Modeling 

 In Step 5, models for each of the potential problem solutions are created, then 

variables are chosen to model the set of assumptions and their uncertainties, then these 

variables are put into a DoE and the DoE is run. Finally, the data for metrics of interest 

are gathered for each DoE case and the metrics are regressed using the chosen variables.  

 For this problem, the creation of a new widebody, long range aircraft, potential 

solution options have been chosen. These options include a stretch version of an existing 

aircraft, a new twin-engine aircraft, a new four-engine aircraft, and some combinations of 

those three. Therefore, for this exercise, three baseline aircraft will need to be created: a 

new twin-engine, a new four-engine, and a derivative of an existing twin-engine aircraft. 

With these new aircraft, new engines must also be modeled, since new engines will be 

more fuel-efficient than existing ones.  

 The modeling environment chosen for this project was NASA’s Flight 

Optimization Software (FLOPS) (McCullers 2001) and Aircraft Life Cycle Cost Analysis 
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(ALCCA) (Garcia et al. 2001). Both of these pieces of software existed in the 1980s, so it 

is not a stretch to declare that FLOPS/ALCCA, or something similar to it, could have 

been used by Airbus engineers to model these aircraft. FLOPS is a semi-empirical 

modeling tool that can be used to size commercial and military aircraft. Given 

information about the aircraft, including the number of passengers, the distance it should 

fly, what it is made out of, and any technological updates, and it will provide sizing and 

performance characteristics about the aircraft for a specified set of missions. It will 

provide takeoff, climb, cruise, descent, and landing performance, as well as weights and 

physical sizes for the aircraft. ALCCA is an empirical cost-estimating tool for both 

commercial and military aircraft. It takes in information about the cost and complexity of 

the aircraft’s materials, the cost of manpower, the cost and complexity of subsystems, and 

any technology that can help reduce cost or manpower and builds a manufacturer’s 

cashflow. It also takes in information about the cost of fuel, manpower, and the number 

of flights and load factor for the aircraft and will also output an airline’s cashflow. 

 Understanding the inputs and outputs allows the designer to determine the 

variables and metrics of interest. The metrics of interest are often easier to determine than 

the variables. These metrics include aircraft cost and performance metrics, as well as 

airline costs metrics. Airframer’s cost data can be in the form of a cashflow, so metrics 

that make up a cashflow should be recorded. For this case, the cashflow can be divided 

into cost and revenue metrics. Cost metrics include the first unit cost, the number of 

aircraft manufactured to date, the sustaining costs, and the research, development, testing, 

and evaluation (RDT&E) costs, so all of these metrics should be included. While the cost 

metrics were easy to determine, the revenue metrics are more difficult, since they are 

market driven and cannot be set. Revenue metrics include the pay schedule for the 

aircraft and the aircraft price.  

 Aside from cashflow metrics of interest, there are also performance metrics of 

interest to record. The takeoff gross weight (TOGW), takeoff field length (TOFL), 
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landing field length (LdgFL), and the approach speed (Vapp), are all metrics to record, as 

are the NOx emissions and any other weights that are deemed necessary, such as the 

operating empty weight. (OEW).  

 Airline metrics are the airline’s cashflow metrics, which are not used in this 

example, and the airline’s operating costs. In ALCCA, one of the outputs is the airline’s 

total operating cost (TOC), per aircraft-seat-mile (ASM). This is also an important metric 

for the aircraft manufacturer, since it is a metric that compares well across manufacturers 

as long as the route length is the same and the number of seats is comparable.  

 So now that the metrics of interest are known and can be recorded, it is time to 

determine the variables and create the models. Determining the variables can be very 

difficult; it is more an art than a science. The list of assumptions and their uncertainties 

are given in Section 6.1.4, and those uncertainties are what this author needs to model. 

There are several common themes throughout the list of assumptions. Many of the 

assumptions involve decreasing the number of aircraft sold, increasing the labor rates, 

decreasing production rates, increasing materials cost, and increasing RDT&E time. 

Other variables needed are those associated with the technology, including the composite 

tail, the avionics equipment, and the decreased weight of aluminum. The final list of 

variables is as follows: 

1. Number of years of RDT&E 

2. Production number (number of aircraft sold) 

3. Inflation 

4. K-factor on the cost of Aluminum (materials cost) 

5. Engineering labor rate 

6. Manufacturing labor rate 

7. Airline’s borrowing interest rate 

8. First year production rate (per month) 

9. Second year production rate (per month) 
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10. Fourth year production rate (per month) 

11. Fifth year production rate (per month) 

12. Ninth year production rate (per month) 

13. K-factor on the weight of Aluminum 

14. Cost of jet fuel 

15. Percent of tail made out of composite materials 

16. Avionics system weight 

Variables eight through twelve need more explanation. FLOPS is a static computer code; 

there is no way to complete a time-dependent analysis without specifying many different 

variables. These variables are meant to model increases and decreases in production 

through time. These sixteen variables are used to model all of the assumptions that are 

listed in the previous section.  

 Now that the variables have been specified, it is time to create the aircraft models. 

Three baseline models need to be created, but slightly different outputs are required for 

each model. The three models are created in FLOPS using a 300pax model that was 

available for a baseline. The 300pax model was then updated with the new information 

for the new aircraft. 

 The first aircraft created was the new twin-engine aircraft. It was created using 

information gathered about the A330 from the Airbus website (“A330-300 

Specifications” 2006) and the Airliners.net website (“Airbus A330-300” 1998). All 

information that could be found about the aircraft and an engine, in this case a notional 

CF6-80, replaced the initial baseline information. The goal was to create a model of an 

aircraft that was close to an A330. The aircraft was created using A330 dimensions 

including tail height, tail areas, geometric characteristics such as sweep and taper, tail 

airfoil characteristics, wing area, geometric characteristics, and airfoil characteristics, and 

fuselage characteristics. Other data, including wing, tail and fuselage materials as well as 
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engine characteristics such as weights, dimensions, and an engine deck, were also 

needed. The engine deck was generated using NPSS and WATE and resembles a CF6-80.  

A330 dimensions and weights were used as initial guesses; FLOPS sized the 

aircraft to the required range, in this case 5600 nmi. Sizing the aircraft to the range was 

difficult. Initially, the aircraft was sized for a 6000 nmi range; however, this range 

required more fuel and a heavier structure than could be reasonably put on the aircraft 

without decreasing payload volume. So the range was decreased to 5600 nmi in order to 

more accurately represent the aircraft’s performance as it was built. This exercise was a 

good sanity check; the actual aircraft doesn’t have a range of 6000 nmi, so the model 

shouldn’t either.  

The four-engine aircraft was built in a similar fashion to the two-engine aircraft. 

Information was gathered about the A340 from the Airbus and Airliners.net websites 

(“A340-300 Specifications” 2006) and (“Airbus A340-300” 1998). Like the previous 

aircraft, this aircraft was created using A340 dimensions including tail height, tail areas, 

geometric characteristics such as sweep and taper, tail airfoil characteristics, wing area, 

geometric characteristics, and airfoil characteristics, and fuselage characteristics. Other 

data, including wing, tail and fuselage materials as well as engine characteristics such as 

weights, dimensions, and an engine deck, were also needed. The engine model in this 

case was a notional CFM56-5C, also created in NPSS and WATE. The initial aircraft 

FLOPS model was the same for both aircraft: still a notional 300pax model.  

Again, all dimensions were kept the same but the aircraft was sized for the max 

range by FLOPS. In this case, the max range was set to 7500 nmi, which would make it 

part of the very long-range market. In 1985, that market had only Boeing aircraft, so 

creating a long-range aircraft would add an element of competition to the market that a 

European airframer may be able to capitalize on.  

Making a derivative aircraft was more difficult than creating notional aircraft for 

the new twin- and four-engine configurations. An A300-600 created with non-propriety 
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data was used as part of the baseline; the 300pax aircraft was also used to help create this 

aircraft’s baseline. After that, the aircraft was stretched—the fuselage length and number 

of passengers increased. A300 dimensions were used, including tail height, tail areas, 

geometric characteristics such as sweep and taper, tail airfoil characteristics, wing area, 

geometric characteristics, and airfoil characteristics, and fuselage characteristics. The 

materials were changed to reflect the increased technology developed in the last ten 

years. The engine used was also a CF6-80 model.  

This aircraft model initially had some modeling problems in FLOPS. The wing 

size needed to be increased for takeoff field length to be less than 9000 ft. Once the wing 

size was increased (aspect ratio remained the same) then the aircraft was sized for a 4000 

nmi mission. While this range is approximately the range of the A300-600, and the 

aircraft has been stretched, with the larger wing the model was able to carry enough fuel 

to make 4000 nmi.  

Now that the aircraft have been modeled and the variables selected, it is time to 

set up the variable ranges for the DoE. There are sixteen variables listed, and all need to 

have ranges attached to them. These ranges will be the same across all the model aircraft, 

since the variables are technological or monetary. The ranges are as follows, with all 

dollars in 1985 dollars: 

1. Number of years of RDT&E [6, 9] Six years to nine years falls into the normal 

range of what one would expect for aircraft development time, from conceptual 

design to the first delivery. 

2. Production number (number of aircraft sold) [600, 1200] The prediction for the 

number of aircraft sold will depend on the aircraft configuration, so this range is 

very wide. It also represents the number of aircraft sold over a 20-year timeframe. 

3. Inflation [2.5%, 8%] This range accounts for average inflation over a 20-year 

timeframe. Even if inflation during individual years is higher, it is likely that over 

a 20-year span the inflation will average between 2.5% and 8%. 
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4. Scale-factor on the cost of Aluminum (materials cost) [0.9, 1.1] This variable is 

an exponential factor on the cost of Aluminum, which makes up most of the 

structural materials on the aircraft. Increasing or decreasing it 10% allows for 

changes in the cost of materials. 

5. Engineering labor rate [$60, $120] This labor rate is the cost of engineers per 

man-hour. The labor rate times 1.25 is the cost of engineering management per 

hour. It also covers the cost of benefits.  

6. Manufacturing labor rate [$30, $60] The manufacturing labor rate is the cost of 

manufacturing labor per man-hour. Like the engineering labor rate, the 

manufacturing floor foreman’s rate is 1.25 times the normal rate; this number 

includes benefits.  

7. Airline’s borrowing interest rate [2%, 12%] This is the rate that the airline’s use 

to borrow money to finance aircraft. While it is a wide range, this range covers 

the differences in creditworthiness between different airlines, as well as the 

different potential futures with different inflation and borrowing rates.  

8. First year production rate per month [0.05, 1.5] During the first year, the 

production will be lower than later in the process. Depending on whether the 

aircraft production gets off to a fast or slow start, the production rate could be at 

either end of the spectrum. Also, if there are any problems with the manufacture 

in the beginning, the production rate will be low. 

9. Second year production rate per month [0.1, 2.5] The second year of production is 

similar to the first. The production rate should be increasing over the first year; 

however, there is still the potential for problems in manufacturing which will 

decrease the production rate.  

10. Fourth year production rate per month [0.5, 6] The fourth year production rate is 

meant to symbolize a mid-timeframe production rate. The maximum production 

rate for the existing facilities is approximately five per month. If new technologies 
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are put in place, the rate may increase to six aircraft per month. The low end of 

the production rate would be reached if there were any production interruptions or 

a decrease in aircraft orders. 

11. Fifth year production rate per month [0.5, 6] The fifth year production rate is 

similar to the fourth year production rate 

12. Ninth year production rate per month [0.5, 6] The ninth year production rate is 

also similar to the earlier production rates, except that the ninth year is meant to 

represent a year toward the end of the manufacturing cycle. 

13. K-factor on the weight of Aluminum [.95, 1] Advancements in technology have 

led to the creation of lighter-weight aluminum alloys. The baseline value of the 

weight of aluminum is 1, with a 5% decrease as the maximum potential k-factor. 

A 5% decrease in aluminum density seems small; however, this is still a 

significant weight reduction. 

14. Cost of jet fuel [$0.40, $2.00] The average cost of fuel is widely variable. Having 

boundaries as wide as possible, from $0.40/gal to $2.00/gal, seems to be the best 

way to cover the entire range of possibilities. 

15. Percent of tail made out of composite materials [0%, 100%] One of the 

technological goals in the creation of a new aircraft is that the composite tail that 

is currently used on the A300 can be extended to a larger aircraft. If the 

technology can be extended, the percentage will be near 100%; however, there is 

also the possibility that the technology cannot be extended to a larger aircraft, or 

cannot be extended completely, so the percentage of the tail made up of 

composites would be lower. 

16. Avionics system weight scalar [0.9, 1.25] Advances in technology have led to the 

potential decrease in avionics system weight. In this case, the new aircraft 

baseline avionics weight multiplier is set to 1, so further decreases in the weight 
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cause the avionics weight decrease the multiplier, while inability to use the new 

technologies as planned increases the avionics weight multiplier. 

Now that the variable ranges have been set and the modeling and simulation 

environment has been decided upon, it is time to set up the DoE to run the cases. With 

sixteen variables, a 290 case central composite DoE was chosen. This DoE was then 

augmented with 200 additional points, randomly distributed. The first 100 of these points 

will be used in the model fitting to help fit the models in between the central composite 

points, while the last 100 points will be used to check the model fit. All of the cases were 

run in a modeling and simulation environment. 

The outputs from the modeling environment are the same for the first three 

potential solutions, new twin-engine, new quad-engine, and A300 stretch. In these cases, 

the outputs from FLOPS/ALCCA that are tracked are the performance metrics of TOGW, 

TOFL, Vapp, OEW, NOx, and LdgFL. These outputs are common to all aircraft, and they 

do not change depending on whether one aircraft or two will be designed. Cost outputs 

from FLOPS/ALCCA that are common to all aircraft are the first unit cost, acquisition 

price (Acq), the total RDT&E cost, the RDT&E cost from year one to year ten, the 

annual delivery rate from year six to year twenty, and the sustaining cost from year six to 

year twenty. For the solutions that require more than one aircraft, some of these outputs 

change.  

For the creation of both a new twin- and a new four-engine aircraft, the new twin-

engine aircraft was used as a baseline. The RDT&E costs was gathered for a new wing 

for the four-engine aircraft for each DoE case and then added to the twin-engine RDT&E 

cost per year. For the new derivative and four-engine aircraft, it is assumed that a stretch 

version of an aircraft with a new wing while updating much of the technology will have 

an RDT&E cost of approximately 50% of the creation of a new aircraft. This assumption 

is based on the FLOPS outputs: creating a new wing and adding newer, larger engines 

accounts for approximately 30% of the aircraft RDT&E cost; the additional technology 
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and certification requirements were assumed to account for the last 20%. First unit cost 

was also discounted accordingly. Since sustaining cost is based on the number of aircraft 

produced, it was not necessary to gather more information about sustaining costs for each 

aircraft. 

The next step is to build a cashflow for each solution option, and then create 

surrogate models of all necessary outputs with the inputs. Building a cashflow with the 

available outputs is relatively simple. On the cost side, there is the RDT&E cost and the 

sustaining cost, which are directly available as outputs, and the manufacturing cost, 

which is calculated using a learning curve and the first unit cost. The manufacturing cost 

was calculated using a learning curve of 85% off the first unit cost, the first unit cost, and 

the number of units that are manufactured. The revenue side is simpler to calculate but 

more complicated to put in place. On the revenue side, it is assumed that there is an 

average aircraft price that the aircraft can be sold for, and that this price is paid over 

several years. For simplicity’s sake, there is one calculation for revenue for all aircraft; 

different airlines are not treated differently. This revenue calculation is modified from 

ALCCA’s revenue calculation, which assumes a 3% down payment on order, 20% 

payment a year before delivery, and 77% on delivery (Garcia et al. 2001). The 

modification was made to increase simplicity and avoid a dramatic increase in revenue at 

the end of the examined 20 year time period. The aircraft is assumed to be ordered five 

years before delivery. When the aircraft is ordered, the airline pays 10% of the price. For 

the next two years, they pay 5% of the price per year, then the year before the aircraft is 

delivered the airline pays 10% of the price and the final 70% of the aircraft price is due 

on delivery. This cashflow is created for each year for each option, from year one through 

year twenty, or from 1985 through 2004. 

 Now surrogate models need to be generated for each piece of the cashflow as well 

as all of the performance and other monetary metrics of interest for each aircraft. Initially, 

all surrogate models were 2nd order linear regression models for each metric. The 
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equations used to create a 2nd order linear regression model are described in Appendix A. 

After the surrogate models had been created, it was discovered that some of the metrics, 

particularly the ones necessary to build a cashflow, were not modeled well by RSEs. At 

this time, all metrics that weren’t well modeled by RSEs were then modeled by neural 

nets, in the process described in Appendix A.  

 The types of surrogate models were used to create the final models of each metric 

of interest are listed in Table XII. The metrics modeled by 2nd order RSEs were modeled 

either with straight 2nd order RSEs or were modeled after a logarithmic transformation. 

The neural network models used a traditional neural network with the last 20% of the 

cases used for validation. Surrogate model fits are summarizing in Table XII. The 

performance metrics were modeled with 2nd order RSEs, as is the RDT&E cost, while the 

annual delivery schedule and the sustaining costs were modeled using neural networks.  

Table XII: Regression Summary 

Mean
Standard 
Deviation Minimum Maximum Mean

Standard 
Deviation Minimum Maximum

TOGW (lb) RSE 1.12E-06 0.000767 -0.0036 0.003 -4.23E-05 0.001038 -0.0038 0.0033
TOFL (ft) RSE 1.11E-06 0.001992 -0.008 0.0076 -0.000234 0.00254 -0.008 0.0084
LTO NOx (lb) RSE 1.07E-06 0.029135 -0.1099 0.081 -0.005572 0.033415 -0.1099 0.081
TOC Max Range ($/ASM) RSE 3.74E-05 0.29533 -1.4158 1.1429 -0.020966 0.37969 -1.4158 1.1429
First Unit Cost ($) RSE 3.95E-05 0.083126 -0.3894 0.36820.009737 0.10497 -0.3894 0.4615
RDT&E Year 1 ($) RSE -1.46E-05 0.29518 -1.1575 1.1801 0.07375 0.39288 -1.1575 1.7573
Sustaining Cost Year 20 ($) NN 4.35E-03 0.93206 -2.75035.8578 0.46559 2.3135 -4.0824 11.6225
Annual Delivery Year 20 NN 0.016749 1.8353 -7.4888 8.4118 -0.010907 3.7955 -18.6168 16.0252
TOGW (lb) RSE 1.12E-06 0.000765 -0.0025 0.0022 -3.97E-05 0.000858 -0.0025 0.0025
TOFL (ft) RSE 1.12E-06 0.002447 -0.0053 0.0089 0.000374 0.002975 -0.0061 0.0101
LTO NOx (lb) RSE 1.12E-06 0.027364 -0.0521 0.064 0.0006950.028761 -0.0756 0.0665
TOC Max Range ($/ASM) RSE 1.82E-05 0.29447 -1.4044 1.1798 -0.020949 0.37885 -1.4044 1.2034
First Unit Cost ($) RSE 4.86E-05 0.093203 -0.4042 0.39320.010301 0.11749 -0.4042 0.4603
RDT&E Year 1 ($) RSE 2.56E-05 0.29634 -1.1433 1.2092 0.074319 0.39438 -1.1433 1.7515
Sustaining Cost Year 20 ($) NN 4.37E-03 0.93407 -2.75345.8612 0.46637 2.3159 -4.0889 11.6381
Annual Delivery Year 20 NN 0.016749 1.8353 -7.4888 8.4118 -0.010907 3.7955 -16.1745 16.0252
TOGW (lb) RSE 1.12E-06 0.001169 -0.0038 0.0041 5.85E-05 0.00137 -0.0046 0.0041
TOFL (ft) RSE 1.12E-06 0.002833 -0.0064 0.0093 8.70E-05 0.003042 -0.0083 0.0102
LTO NOx (lb) RSE 1.11E-06 0.016362 -0.0539 0.0599 0.002729 0.021927 -0.066 0.0701
TOC Max Range ($/ASM) RSE 4.73E-05 0.31513 -1.4771 1.1754 -0.024836 0.40503 -1.4771 1.2568
First Unit Cost ($M) RSE 4.88E-05 0.09324 -0.4596 0.40410.010507 0.1169 -0.4596 0.498
RDT&E Year 1 ($M) RSE -2.57E+00 0.29455 -1.1456 1.202 0.074027 0.39294 -1.1456 1.7424
Sustaining Cost Year 20 ($M) NN 4.32E-03 0.92769 -2.8273 5.7974 0.46491 2.3154 -4.0308 9.5845
Annual Delivery Year 20 NN 0.016749 1.8423 -7.325 8.4188 -0.010921 3.5622 15.5747 -16.1752
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 In general, the surrogate model fits had small errors for both model fit error and 

model representation error. The sustaining cost and annual delivery rate had the worst 

surrogate model fits; these were the only responses with maximum model representation 
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errors greater than 10%. The performance metrics had excellent model fits with error 

standard deviations significantly less than one and maximum errors less than 0.2%. The 

TOC at maximum range, first unit cost, and RDT&E costs model fits were also very good 

with model representation error standard deviations of less than 0.5 and maximum model 

representation errors less than 2%.  

6.2.2 Step 6: Uncertainty Quantification  

The uncertainty quantification step in this process involves creating a baseline 

aircraft that meets all assumptions and then mapping between the different assumptions 

with their uncertainties, and the variables that are used to model the metrics of interest 

and the cashflow.  

The creation of a set of baseline aircraft is not difficult. It involves determining 

the settings of each variable such that the initial assumptions are met, i.e., what is 

supposed to happen. The baseline variable settings are listed in Table XIII. The tail 

composite composition is the fraction of the tail that is made out of composite materials, 

while the aluminum k-factor is the weight of the aluminum scale-factor, with one being 

the traditional FLOPS baseline. Some of the variables are the same for all aircraft, 

including the RDT&E time, inflation, labor and materials costs, production rates, airline 

fuel costs and interest rates, and technology factors. These variables are the same since all 

aircraft are being designed in the same timeframe by the same company. The variables 

that are different are the production number and the acquisition price of the aircraft; both 

of these variables are dependent on the market. Market-dependent variables will change 

with the different aircraft sizes and the different types of aircraft. For acquisition price for 

a two-aircraft combination, it is assumed that there will be 50% twin-engines and 50% 

four-engine aircraft produced. For production number, it is assumed that a new aircraft 

will have more orders than a derivative aircraft. 
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Table XIII: Baseline Variable Settings 

 

Mapping the assumption’s uncertainties to the variables is done by hand, one 

uncertainty at a time. This mapping procedure is done using a scale of -3 to 3, with a -3 

corresponding to a large decrease in that variable value, -2 corresponding to a medium 

decrease, -1 corresponding to a small decrease, 1 corresponding to a small increase, 2 

corresponding to a medium increase, and 3 corresponding to a large increase. 

It is a time-consuming process; the results of the mapping are illustrated in Table 

XIV through Table XVIII. The mapping procedure involves looking at each assumption’s 

risk and determining the effects on each variable if that risk were to become true. For 

example, the first risk under the first assumption in the employment category questions 

whether there will be enough design engineers. If there are not enough design engineers, 

the variables will be affected as follows: the RDT&E time will moderately increase since 

there aren’t enough engineers to complete the process in the assumed timeframe. The 

production number will moderately decrease since the design won’t be as good as it could 

have been and will be late getting to production. The engineering labor cost will greatly 

increase as the economics of scarcity take over. The early years (years one and two) 

production rate will slightly decrease as the delays and changes decrease the number of 

orders. The weight of aluminum and the avionics systems will increase over the assumed 
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weight since new technologies won’t be developed or utilized without a knowledge base. 

The percentage of the tail that is made up of composites will decrease for the same 

reason. 

This process is then completed for each assumption over all five categories. While 

it is sometimes necessary to also complete a different one for each potential solution 

family, in this case that was judged to be unnecessary, since each concept alternative was 

an evolutionary alternative and all alternatives were relatively similar. This is not the case 

for all potential solution families. Once this risk modeling procedure has been completed, 

the next step is to complete the risk assessment, which uses the risk model created here.  
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Table XIV: Employment Risk Mapping 

 

 
Table XV: Cultural/Social Risk Mapping 
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Table XVI: Economic Risk Mapping 

 
 

Table XVII: Government/Political Risk Mapping 
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Table XVIII: Technological Risk Mapping 
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6.2.3 Step 7: Risk Assessment  

 Now that the assumptions and their uncertainties have been modeled, it is time to 

determine the severity of not meeting these assumptions: determine the risk of each 

uncertainty. This process is completed in several steps, the first of which is to collate the 

scenarios and determine the variable distributions for each variable over all the scenarios 

in order to complete a Monte Carlo analysis.  

This is done by taking each variable, and then determining a variable distribution 

over each scenario. For example, the best-case scenario may have an RDT&E time 

distribution of: a triangular distribution, minimum of six years, maximum of seven years, 

with a peak at 6.5 years. The worse-case scenario may be: triangular distribution, 

minimum of 7.5 years, maximum of nine years, peak at 8.5 years. The scenario 

distributions are then multiplied by the likelihood of occurrence of each scenario and 

added together, as depicted in Figure 46. 

 

Figure 46: Building Distributions Using Scenarios 
 
This analysis is completed for all variables.  
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 The distributions for variables that are the same for all potential solutions are 

illustrated in Figure 47. These distributions were created using Crystal Ball, an add-in for 

MS Excel®. 

 

Figure 47: Variable Distributions 
 

The distributions look different than traditional Monte Carlo analysis distributions 

because they were created using probabilistic scenarios instead of a traditional 

probabilistic analysis. The use of scenarios adds some traceability to this analysis and 

provides uncertainty bounds: now instead of challenging an entire distribution, a devil’s 

advocate can challenge the distribution over a particular scenario. The distributions over 

each scenario are narrower than the entire distribution, and the distribution over all 

scenarios is potentially narrower than a traditional probabilistic analysis distribution 

would be, and certainly shaped differently. For example, for all five years of production 

rate used as variables, it is much more likely that nothing will go wrong and the 

production rate will be higher than it is that the production rate will be low. This is 



 197 

reflected in the distributions of all five variables; however, it would be difficult to capture 

in a traditional probabilistic analysis due to the limitations on choosing distributions.  

Other variables change with the potential solution being examined. In this case, 

two variables change with the solution being examined, the airline’s acquisition price and 

the manufacturer’s production number. These variables’ distributions are illustrated in 

Figure 48. The most likely acquisition price increases as one moves toward a larger 

aircraft or one with more engines. It should also be noted that the most likely production 

number increases as one moves away from derivatives and toward new aircraft. It also 

increases again with the number of aircraft being created.  

 

Figure 48: Variable Distributions over Different Potential Solutions 
 

While many of these distributions appear to be triangular, more or less, in nature, 

it would still be very difficult to capture them without a scenario-based analysis. For 

these distributions, one is more likely to be nearer to the most likely variable setting than 

in a traditional triangular distribution. So a triangular distribution would underestimate 

the probability of being near the more likely variable settings and overestimate the 
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probability of being very close to the edge of the variable range. Such a change will 

likely also cause changes in the solutions, which may change the final decision of which 

solution to explore more thoroughly.  

 Now that the variables are modeled over each scenario, a Monte Carlo analysis is 

run over all scenarios using the constructed distributions. This Monte Carlo analysis will 

help determine the severity of the consequences of not meeting the assumptions. This 

Monte Carlo analysis produces results for all the metrics of interest: performance, 

cashflow, and airline. The results of the Monte Carlo are saved for future use, except in 

the case of the cashflow analysis, where the 1% and 99% cashflow solutions and the 

baseline cashflow are plotted for each potential solution, for comparison purposes. Any 

performance metrics that have constraint values, like TOFL, are also noted, and the 

TOFL is flagged if the metric value violates the constraint.  

 Now that the Monte Carlo is completed and the results plotted on the cashflow 

diagrams, it is time to determine the probabilities and consequences associated with the 

uncertainties for each assumption. 

 Determining consequences can be time-consuming. First, the variable values from 

the risk mapping matrix corresponding to -3, -2, -1, 1, 2, and 3 need to be determined so 

that the consequences can be assessed accurately. For the variables whose ranges and 

distributions do not change with potential solutions, the risk setup matrix is given below 

in Table XIX. Some of the variables have linear changes with increasing or decreasing 

consequences, some do not. Whether the scale is linear or not depends on the baseline 

value, the variable range, and whether or not the variable has a linear or non-linear effect 

on any of the metrics of interest. 
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Table XIX: Risk Setup Matrix 

 

 Another risk setup matrix is also determined for the variables of production 

number and acquisition price, which change with the potential solution. The risk matrix 

for these variables is illustrated below in Table XX. It contains production numbers and 

acquisition prices for all five potential solutions. Notice that for production number, not 

all of the variable range is used for each solution. This effect could have been achieved 

by creating five different variables, one for each solution. However, it was less time-

consuming for both human and computer to have only a single variable over a wide 

range, rather than five variables over narrower ranges. 

Table XX: Risk Setup Matrix for Production Number and Acq$ 

 
 
 Now consequences are calculated for each uncertainty for each potential solution. 

This is done by taking the risk matrix, and, for each risk, using the corresponding risk 
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setup matrix to change the variable values and then looking at the performance, airline, 

and cashflow results. To determine the severity of the consequences, guidelines can be 

used, but ultimately, the choice is left up to a human decision maker. Some of the 

guidelines that were used include the total amount of profit relative to the baseline profit, 

when was the breakeven point (or whether there was a breakeven point), and whether any 

constraints were violated or a metric was getting close to a constraint. The consequences 

are the same no matter what the scenario is, so this only needs to be completed once for 

each potential solution. For uncertainties whose consequences met all performance 

constraints, some rules of thumb were employed to determine the severity of the 

consequences, including the amount of degradation in performance and the increase or 

decrease in cost. A scale of 1 to 5 was employed with one being minimal consequences 

and five being catastrophic consequences. In general, if the breakeven point was within 

one year of the baseline and the final profit was within one billion dollars, the 

consequence was a one. If the aircraft had not reached breakeven point by 2004, the 

consequence was a four, and it appeared that the aircraft would never breakeven, the 

consequence was a five. For performance constraints, violating the TOFL constraint was 

an automatic five for consequences, since technical feasibility must be reached before 

economic viability is considered.  

Probabilities are determined for each risk for each scenario per potential solution.  

This is a time-consuming process to carry out by hand, but probably cannot be automated 

as it is necessary to have the human judge whether there is a low, medium, or high 

probability of occurrence for a particular situation. As there are five scenarios, and the 

scenarios have different probabilities of occurrence, a weighted average of the scenario’s 

probabilities for each uncertainty is calculated. The probabilities are also on a 1 to 5 

scale, with one meaning extremely unlikely and 5 meaning likely. Given a scenario, each 

risk has a probability of occurring in that scenario. Another scenario may produce a 

higher or lower probability of occurrence for a particular risk. The cumulative probability 
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of occurrence is calculated with scenarios one and two at a 5% weighting each and 

scenarios three through five at a 30% weighting each.  

 The probabilities and consequences associated with each risk are listed in Table 

XVI through Table XXV. These probabilities and consequences calculated for each 

uncertainty lead to risk, since risk implies both probability and consequences. 

Table XXI: Employment Probabilities and Consequences 

 

Table XXII: Cultural/Social Probabilities and Consequences 

 
 

Table XXIII: Economic Probabilities and Consequences 
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Table XXIV: Government/Political Probabilities and Consequences 

 
 

Table XXV: Technological Probabilities and Consequences 

 
 
 These probabilities and consequences are used to calculate the actual risk 

associated with each uncertainty. Some of the risks are larger than others. The larger risks 

may be able to be mitigated, as will be shown in the next step. The final risk calculation 

is illustrated in the following five figures. The calculation is carried out using Equation 6, 

from above: 

 ( ) xC
xpxR 2*=         (6) 

These risk calculations show which uncertainties have the largest risk associated with 

them, and, consequently, what risks are the best candidates for mitigation. While not all 

risks can be mitigated by better engineering design, it will be easy to see the monetary 

consequences of those that can be mitigated. 
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Table XXVI: Employment Risk Analysis 

 

 
Table XXVII: Cultural/Social Risk Analysis 

 

 
Table XXVIII: Economic Risk Analysis 
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Table XXIX: Government/Political Risk Analysis 

 
 

Table XXX: Technological Risk Analysis 

 
 
 Now that the risk has been calculated for each assumption over the five 

categories, it can be compared between potential solutions. A risk comparison between 

potential solutions is illustrated in Figure 49. The y-axis contains a measure of risk. In the 

comparison, the derivative stretch aircraft version has the lowest overall risk. This is 

expected, since the stretch aircraft would be a derivative, while the other aircraft would 

be new. The derivative aircraft also has the lowest governmental risk, since it is likely to 

be easier to acquire safety and other certifications. Of the three new aircraft, the new 

four-engine aircraft has the largest absolute technology risk. As there are no other newer 

four-engine aircraft in this class, it makes sense that the technology risk would be greater 

for an aircraft that is first in its class to be developed than for an aircraft making inroads 

into an existing class of aircraft. The same reasoning applies to the economic risk: the 
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economic risk is higher for the twin-engine aircraft because it has to compete in a market 

where there are other aircraft, while the four-engine aircraft is not competing in such a 

market. The aircraft combination option with the most risk is the derivative stretch 

aircraft and the new four-engine aircraft. The increased risk may be due to the long time 

before breakeven point for the baseline aircraft and the high potential for a non-viable 

aircraft combination.  
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Figure 49: Total Risk Comparison Between Potential Solutions 

 
 Risk can be compared not only between different potential solutions, but also 

between scenarios for a particular solution. In Figure 50, there is a comparison of risk 

between the five scenarios for a twin-engine aircraft and four-engine aircraft. For both 

solutions options, scenario two has the largest risk. This is unsurprising, since that 

scenario is designed to be the worst-case scenario. Interestingly, the governmental risk 

for that scenario is significantly larger for the four-engine aircraft option than for the twin 

aircraft only. The larger sunk cost and additional reliance on government funding should 

account for this discrepancy. In both cases, scenario five is the lowest risk scenario, since 

it involves so much new technology development. As scenario one was designed to be 

the lowest risk scenario, this is an unexpected finding, but again is probably due to the 

technology boom that aids the aerospace industry. It should also be noted that scenarios 
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one and five have the smallest economic risk. This is also expected since for a best-case 

or very technology dependent economy an aircraft manufacturer should do well. On a 

final note, the employment risk is largest for scenario one, the best-case scenario, since 

employees will be difficult to hire and will demand more money when economic 

conditions are generally good.  
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Figure 50: Comparison of Risk Across Scenarios 

 
 These risk analyses take into account the risk associated with the five different 

categories. It is easy to compare the risk between the different solutions; however, it can 

be difficult to compare only the risk and determine the best solution for a given situation. 

Other factors, including manufacturer and airline economic and performance factors, 

must also be compared and compared with the program’s risk. This comparison is 

completed using a TOPSIS model in the decision support phase of this process and will 

be explained in Section 6.3. 

Now that all the uncertainties have been analyzed and their risk calculated, a risk 

mitigation procedure can be put in place. The risk analysis process carried out here 

allows the decision maker to see what risks are large and what ones are small. The large 

risks need to be mitigated, if possible, or tracked to determine whether they are getting 

larger or smaller with time. While this procedure is designed to be completed early in the 

concept design phase, other risk analysis processes are designed to be completed later in 

design. Some of these procedures can be used to track risk and determine whether it is 
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increasing or decreasing with time, and, if it is increasing, what mitigation processes can 

be put into place to decrease the risk at a later date.  

6.2.4 Step 8: Risk Mitigation 

 Now that the risk analysis process is completed and the user knows which 

uncertainties pose the largest risk, it is time to see about mitigating some of the risk. Risk 

mitigation is traditionally a process in which a specific type of risk is analyzed and then a 

person (or group) determines what steps are necessary to take to decrease that risk. In this 

case, that process is slightly different. The risk mitigation model here only helps the user 

determine the effects of mitigating risk, not the process one should go through to 

complete a risk mitigation procedure. 

 In order to complete this risk mitigation, the first thing to be done is to determine 

which risks can be mitigated and which cannot. It is important to determine what risks 

can be mitigated by engineering design, because if risks cannot be mitigated they need to 

be carefully tracked. For those risks that can be mitigated, it is important to know the cost 

in both dollars and performance to mitigate risk. Determining which risks can be 

mitigated is relatively straightforward. Anything that the design engineers, 

manufacturers, or the company in general can change is a risk that can be mitigated. For 

example, employment risk is on the left side of Figure 51. There are many risks that the 

aircraft manufacturer can mitigate. The manufacturer has the ability to hire more workers 

now to decrease the risk of not having enough workers later, and can also offset the 

increased cost of hiring workers when they become more expensive. The manufacturer 

can also set up a corporate culture where cooperation between countries and cultures is 

the norm, which will decrease the potential for problems with immigrant labor or 

potential communication problems between workers of different cultures or nationalities. 

Some risks cannot be mitigated. Work force interruptions due to extenuating 

circumstances, such as terrorist events, or high workforce turnover rates due to cultural 
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shifts, not low pay, cannot be changed by management. Figure 51 through Figure 53 

show which risks can be mitigated with a check box. Those that cannot be mitigated are 

still to be tracked. 

 

Figure 51: Employment (left) and Technology (right) Risks That Can be Mitigated 

 
Figure 52: Economic (left) and Cultural (right) Risks That Can be Mitigated 

 
Figure 53: Governmental Risks That Can be Mitigated 
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  The mitigation procedure itself is carried out as detailed in Chapter 5. The first 

mitigation step completed was the technological mitigation step. It involved defining 

technology positions. The assumed new technology impact was labeled point zero. 

Fallback point one was between the new and existing technology, fallback point two was 

also between new and existing technology and fallback point three was defined as 

existing technology. The three technology variables that cover the technology space 

examined here are the tail composition, the scale factor on the weight of aluminum, and 

the scale factor on the avionics weight. Point zero has a tail composition of 0.9, an 

aluminum weight scale factor of 0.95, and an avionics weight scale factor of 1. Point one, 

the first fallback position, has a tail composition of 0.75, an aluminum weight scale factor 

of 0.96, and an avionics weight scale factor of 1.05. The second fallback position has a 

tail composition of 0.5, an aluminum weight scale factor of 0.98, and an avionics weight 

scale factor of 1.15. The third and final fallback position has a tail composition of 0.0 (as 

in, all aluminum), an aluminum weight scale factor of 1.00, and an avionics weight scale 

factor of 1.25. Moving to a fallback position for the technology factors allows the 

decision maker to see the impact on performance and economic metrics of interest if the 

technology does not do what it is intended to do.  

 Seeing the economic impact of mitigating risk is a more complicated process, but 

is completed as outlined in Chapter 5. The five aircraft options are examined to determine 

whether changes in variables lead to linear (or almost linear) changes in metric value. It 

was found that most metrics are either generally linearly increasing or decreasing with 

changes in variables or the variable has little effect on the metric. It is also noted that 

changes in variables tend to affect a set of metrics similarly; for example, increasing the 

manufacturing labor rate increases the sustaining costs for all years at approximately the 

same rate. In these cases, one risk mitigation matrix can be completed for each aircraft or 

aircraft pair using only a limited number of metrics: first unit cost, RDT&E cost, and 
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sustaining cost. Relative changes in the cost of these metrics are put into a set of mapping 

tables for each aircraft. Part of one of these tables is below in Table XXXI. As can be 

seen in the Figure, not every variable has an impact on every metric that makes up the 

cashflow.  

Table XXXI: Mitigation Impact Matrix 

 

This process is set up to show the effects of mitigating risk by planning up front to 

spend the money that would be spent if that risk came to pass. For example, if one of the 

risks is not having enough design engineers, then the cost of fully mitigating that risk 

would be the cost of hiring those engineers. When one of the risks is checked for 

mitigation, the matrix is used to detail how much of an increase (or decrease) in cost it 

would be for that risk to be mitigated. For example, if the one of the risks chosen for 

mitigation has an impact on the first unit cost of 0.1, or 10%, the first unit cost would 

increase 10% over the current value if the risk was fully mitigated. Risks can be mitigated 

partially or fully, to whatever extent the decision maker is willing to pay for the decrease 

in risk.  

Now that a risk mitigation module has been put in place with the risk analysis 

module, it is time to figure out how to use this data and information in such a fashion that 

it is useful for decision support. If the data cannot be visualized and trade studies cannot 

be completed with it, the process is not useful in engineering conceptual design.  
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6.3 Decision Support 

 Unlike the two previous focus areas, which were very defined, the decision 

support focus area is more nebulous. The goal of decision support is to create an 

environment or interface that allows for tradeoffs and game-playing with different 

choices for problem solutions, scenarios, and risk mitigation practices. The ability to see 

the effects of changing technology, increasing fuel costs, or decreasing production 

numbers, as well as risk mitigation tactics, is very important to making good decisions. In 

order to do all of these things, and to see the effects of all those changes on various 

metrics of interest, an MS Excel® interface was created. This interface has many parts, 

but all work together to allow for trade studies and game-playing types of analyses. 

 The first part of the interface to see and interact with is the risk mitigation check 

boxes. The interface contains the list of assumptions and the risks associated with not 

meeting those assumptions. The risks that have the potential to be mitigated, that is, those 

that can be mitigated through either engineering design or other engineering or 

management decisions have check-boxes next to them. To see the economic and 

performance effects of mitigating these risks, the boxes need to be checked. Checking the 

risk mitigation boxes only allows the user to choose which risks he wants to examine the 

effects of mitigating; it does not show the effect of mitigating the risk by itself. A sample 

of the risk mitigation check boxes is illustrated in Figure 54. This Figure shows two 

snapshots of part of the risk mitigation interface. In the top snapshot, no risks are selected 

for mitigation, while in the bottom snapshot two risks are selected for potential 

mitigation. Now that these risks are selected, it is possible to see the effects of mitigating 

them for any of the potential solutions.  
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Figure 54: Check Boxes for Risk Mitigation 
 
 Now that the risk mitigation check boxes have been explained, once the 

mitigation boxes have been checked, those risks can be reduced. Each uncertainty has a 

baseline risk that was calculated in the risk analysis step of this process. Those baseline 

risk values are displayed, along with a slide bar allowing for decreases in risk to be input 

by the user. Figure 55 illustrates the baseline risk associated with each uncertainty, as 

well as the ability to change and decrease that risk for some uncertainties. Decreasing the 

risk has the potential to change the performance and economic characteristics of the 

problem. While the problem framed with all initial assumptions may point to a particular 

potential solution, the problem as it was originally posed may have too much risk for the 

decision makers to be comfortable choosing a design solution. By decreasing the risk, the 

best solution to the problem may change. It is also easy to see on the graphic in Figure 55 

which uncertainties have high risk associated with them that cannot be mitigated. These 

risks must be tracked throughout the design process. 

Mitigating the risks as demonstrated above will change the performance and 

economic metric values, but so will changing some of the aircraft variables. Games can 

be played and trade studies can be completed with some of these variables, too. This part 

of the interface also contains the technology position, from point zero to point three. This 

part of the interface gives the user the ability to see the effects of changes in production 

number, aircraft sale price, and fuel cost on performance and economic metrics. Since 

these are market variables and not directly under the control of the manufacturer, it is 
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important to see their effects even outside of the normal risk mitigation process. Once 

again, these variables are on slide bars to facilitate trade studies or deterministic scenario 

game-playing.  

 
Figure 55: Scrollbars for Game-Playing and Trade Studies 

 

 
Figure 56: Variable Scrollbars for Game-Playing and Trade Studies 

 
Having the ability to change all of these variables, risk levels, etc creates a very 

powerful interface for the user. He can see the effects of many different types of game-

playing: he can complete trade studies where he determines the largest benefit/cost ratio 

for risk reduction, or he can see what happens if the aircraft price decreases due to a 

future not envisioned by either the scenarios or the design engineers in their assumption 

gathering procedure. 

Being able to see the effects of these changes is very important. Performance 

metrics must be available for comparison between the initial baseline aircraft and any 

changes due to technology point changes or potential risk mitigation strategies. In Figure 
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57, the TOFL and fuelburn/ASM for the design range are illustrated. On the left is the 

baseline aircraft at technology point zero, while on the right is technology point three.  
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Figure 57: Changes in Performance Metrics from Effects of Changing Technology Points 

 
As expected, as one goes from technology point zero, or all new technology, to 

technology point three, existing technology, there is an increase TOFL and 

fuelburn/ASM. Since the purpose of the new technologies was to decrease aircraft weight 

and, by extension, decrease fuelburn, this is the expected result. Other performance 

metrics, including TOGW and landing field lengths, are also available for comparison. 

Any metric of choice can be added to the interface as necessary.  

Along with having performance metrics for each aircraft, an airframer’s cashflow 

is displayed for each potential solution concept. One such cashflow, the one for both the 

new twin-engine and the new four-engine aircraft, is illustrated in Figure 58. This 

cashflow contains the baseline solution as well as the 1% and 99% solutions gathered 

from the scenario-based Monte Carlo analysis and a new cashflow based on any changes 

from the baseline. The 1% and 99% solutions are there for comparison purposes, so the 

user knows that if he is close to or over those lines that a particular outcome is unlikely. 
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The changes from the baseline are important, since that curve illustrates the cost of 

mitigating a risk (or set of risks) or not meeting a market assumption. The cashflow is a 

powerful tool since, if an aircraft meets all of its performance requirements, decisions 

will be primarily based on the potential of earning money for the manufacturer. 

Therefore, it is an important piece of information to have available. 
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Figure 58: Changes in Cashflow from Effects of Changing Variables and Mitigating Risk 
 
 Along with the aircraft manufacturer’s cashflow as an economic metric of interest 

is the airline’s economic metrics of interest as measured, in this case, by the total 

operating cost per aircraft seat-mile. This measure is more standard across airlines and 

scenarios than the measure of revenue-passenger mile, which, like aircraft sale price or 

fuel cost, is very market dependent. The TOC for a notional airline at four different 

ranges is illustrated below in Figure 59. The Figure shows that, as anticipated, increasing 

fuel prices increases airline operating costs. It also shows that the operating costs increase 

as the range decreases, also expected.  
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Figure 59: Increasing Operating Cost with Variable Changes and Risk Mitigation 

 
Interestingly, the cheapest aircraft to operate changes as the cost of fuel increases: with 

low fuel costs, the twin-engine aircraft was more cost effective to operate, while with 

higher fuel costs the four-engine aircraft was cheaper to operate. This was an unexpected 

finding, and may be due to the nature of the engine models used to generate the aircraft’s 

fuel flow. The engine models for the twin-engine aircraft were scaled from a slightly 

smaller aircraft, so the scaled fuel flow may be slightly larger than the actual fuel flow 

that would be used, and could, therefore, make fuel a larger part of the airline’s operating 

costs. Airline’s economic considerations are important to the manufacturer, since a new 

aircraft will need lower operating costs than existing aircraft in order to break into the 

aircraft market.  

 The final piece of the decision support interface is a TOPSIS analysis that takes 

into account all the pieces of the interface and determines the best solution family for a 

given problem with a given set of conditions. The TOPSIS, illustrated in Figure 60, takes 

into account risk, performance metrics, and airline and airframer economic metrics. 

Weighting values can be assigned to each of the metrics, and changed as necessary. As 
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risk mitigation takes place and the production, aircraft price, and fuel cost is changed, the 

TOPSIS is updated automatically.  

 
Figure 60: TOPSIS Using Decision Support Data 

 
The TOPSIS can contain any metrics that are desired, and can be coded to the desired 

precision. While its use in determining whether any particular solution family is the best 

in all circumstances is limited, it is useful in determining which solution families are 

more likely to be better in most circumstances. In the Figure, solutions containing a 

derivative stretch version fare much worse than solutions featuring all new aircraft. In 

this case, it may be better to concentrate available time and effort into learning more 

about the new aircraft, and to make the decision later as to which aircraft family to 

continue designing. However, since this is only one set of metric weightings, it would be 

beneficial to illustrate the effects of changing the importance weightings on some of the 

metrics.  
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 Changing the weightings of the metrics in the cashflow can change the best 

outcome; however, the best outcome is always one of the middle three choices: new twin-

engine, new four-engine or both. In Figure 60, there is heavy weighting on the total risk 

and the final profit for the manufacturer and less weighting on the airline’s operating 

costs and performance parameters. This weighting yields the result that a new two aircraft 

family is best. If more emphasis is put on the airframer’s economic metrics, increasing 

the weightings of the manufacturer’s cashflow and decreasing the weighting of risk and 

airline economic metrics, the best result changes. The new best aircraft, according to the 

TOPSIS results, is a new twin-engine aircraft. The twin-engine aircraft has a lower 

development cost than the two aircraft option, and almost as much potential for 

profitability. The TOPSIS weightings for this condition are illustrated in Figure 61. As in 

the previous example, the new aircraft options are significantly better than the design 

options using a derivative aircraft. 

 

Figure 61: TOPSIS with Airframer Economic Emphasis 
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 Other changes can also be made to affect the TOPSIS outcome. Figure 62 shows 

the TOPSIS outcome if there is an emphasis on airline economics and short range flights. 

In this case, the new twin-engine aircraft is again the best option; it is followed closely by 

the dual aircraft combination. Some airlines may be interested in using these aircraft for 

shorter-range missions, such as those within a country. Due to the presence of these 

airlines, the manufacturer may be interested in exploring the potential to market either the 

initially developed aircraft or a derivative aircraft in the same family for short-range 

missions. All the current aircraft design options are sized and designed for longer-range 

missions; however, there is no guarantee that some purchased aircraft wouldn’t be used 

primarily on a 500-1500 nmi range set of missions.  

 
Figure 62: TOPSIS with Short Range Airline Economic Emphasis 
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 Another game that can be played includes changing the characteristics of the 

aircraft market. In the event of an increase in fuel price to an average of $0.80 and a 10% 

decrease in market size for a twin-engine aircraft, the new four-engine aircraft becomes 

the best choice. Increasing the cost of fuel should drive the solution toward the four-

engine aircraft, and decreasing the market for that aircraft should drive the solution to the 

twin-engine aircraft, potentially making a compromise solution the best. However, in this 

case, the preferred solution was a four-engine aircraft, as illustrated in Figure 63. As in 

the previous cases, the three new aircraft options were rated significantly higher than 

those with a derivative aircraft.  

The decision support interface and all of its components bring together a large 

amount of information. The interface allows for more comparison of alternatives than is 

usually available at this stage of design. It is important to have information available and 

be able to examine different design alternatives over a wide set of futures, which this 

interface allows.  

 
Figure 63: Increased Fuel Price and Twin-engine Aircraft Market 10% Smaller than Predicted 
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6.4 Hypotheses Test 

This section goes through the hypothesis test outlined in Section 5.4. Testing 

hypotheses is a necessary step in the demonstration of the scientific method. If the 

hypotheses are invalid, they can be changed and retested, or declared to be incorrect. 

Testing the hypotheses allows for the use of the scientific method in the creating of a 

design process. As design processes used to be created ad-hoc, this step toward testability 

is a recent improvement.  

6.4.1 Hypothesis One Test 

A risk analysis along with the outcome analysis will allow consequences 

and uncertainty to permeate the business case and increase information 

available for decision making without overwhelming the decision maker.  

This hypothesis is tested by the skipping of steps six through eight in the proposed 

process and determining whether there is still enough information to support decision 

making. Now that the decision support interface is limited to only a manufacturer’s 

cashflow, performance metrics, airline economic metrics, and the ability to change 

variables, the outcome can change. For comparison purposes, a TOPSIS that leaves out 

all the risk analysis data was created. This TOPSIS can be compared with the TOPSIS 

that contains the risk analysis data to determine whether additional information can 

change the outcome of the decision while not providing the decision maker with an 

overwhelming amount of data. A comparison of the two TOPSIS cases is shown below in 

Figure 64. 
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Figure 64: TOPSIS Comparison Baseline Case 
 

The no risk case shows that the new four-engine aircraft is the best option to 

design. For the TOPSIS with risk, the two-aircraft option with twin-engine and four-

engine aircraft is the best option to design. The TOPSIS with risk adds more information 

that drives the solution toward the two-aircraft outcome. This implies that the two-aircraft 

outcome has a lower overall risk than the single-aircraft outcome, which makes sense: 

two aircraft, while slightly more costly to produce, can cover more of the solution space 

than a single aircraft. However, both TOPSIS have three aircraft whose rankings are very 

close, so changes in a few of the weightings could flip the rankings, and, since the 

calculated values between the new twin-engine, four-engine and the two aircraft option 

are so similar, all three of those aircraft should be carried along for later design decisions.  

The relative importances of each metric can be changed. The addition of the risk 

analysis adds three more metrics for importance weightings. These metrics are weighted 

highly, since there would be no reason to complete a risk analysis if the outcome was of 

little importance. The other very important metrics are the profit (20 Year Cumulative 
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Cost) and the fuelburn metrics. Fuelburn is important since fuel is a commodity whose 

price is not very stable.   

Since the importance weightings can be changed, it is important to understand 

how these weightings affect the aircraft’s rankings. The sensitivities of the aircraft’s 

rankings to each weighting change between the no risk option and the option that 

includes risk. Table XXXII lists the sensitivities of each aircraft’s TOPSIS result with the 

TOPSIS weights for the case that includes risk, while Table XXXIII does the same 

without risk. This partial derivative was taken with all other weightings held constant at 

five, or halfway between the minimum and maximum. The equation used to calculate the 

sensitivities is illustrated below in Equation 9. 

htingTOPSISWeig

ISrcraftTOPSChangeInAi
nsitivityAircraftSe

∆
∆=     (9) 

The two tables below show the aircraft’s TOPSIS sensitivity results to changing 

the metric weighting scheme. When risk is present, the derivative is most sensitive to 

changes in changes in the weightings of Max Sunk Cost, TOGW, and Year 5 Cumulative 

Cost. Without risk, that aircraft is most sensitive to changes in the weightings of TOGW 

and Year 5 Cumulative cost. Since the maximum sunk cost doesn’t exist without the risk 

calculation, it cannot be a factor there. The Twin-engine aircraft is most sensitive to 

changes in the noise weighting in both conditions, while the four-engine aircraft is most 

sensitive to changes in the weighting for TOGW and NOx under both conditions. For the 

aircraft, increasing some metric weightings increases the aircraft’s ranking, while others 

will decrease it. This is expected, since the aircraft are compared relative to each other, 

not on an absolute scale. There are some changes in the aircraft’s sensitivities to the 

different weightings depending on whether risk is present or not, but those changes are 

generally small. This means that, while the risk analysis adds information, the trends 

between the two TOPSIS results will be similar, but not identical.   
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Table XXXII: Weighting Sensitivities with Risk 

Derivative Twin Quad Twin & Quad Derivative & Quad

Year 5 Cumulative Cost ($) 7.81E-03 -9.73E-04 1.70E-04-1.51E-03 -3.23E-03
Year 15 Cumulative Cost ($) 6.43E-03 2.84E-03 3.90E-03 2.89E-03 -3.23E-03
Year 20 Cumulative Cost ($) 2.83E-03 2.14E-04 3.09E-03 3.18E-03 -3.23E-03
Max Sunk Cost ($) 7.81E-03 1.45E-03 9.08E-04 -8.26E-04 -3.23E-03
Chance of Profit/Max Cost >1 -2.72E-03 3.70E-04 -1.53E-04 3.18E-03 -3.23E-03
Total Risk 7.81E-03 -6.48E-05 -3.47E-03 1.90E-03 -3.23E-03
TOC Max Range ($/ASM) -5.40E-03 9.64E-04 3.90E-03 2.03E-03 4.69E-03
TOC 3000 nmi ($/ASM) -5.40E-03 2.88E-03 -3.37E-03 2.74E-04 3.34E-04
TOC 1500 nmi ($/ASM) -5.40E-03 2.88E-03 -1.94E-03 8.46E-04 1.19E-03
TOC 500 nmi ($/ASM) -5.40E-03 1.91E-03 3.90E-03 2.60E-03 4.69E-03
Fuelburn/ASM (lb/ASM) 7.44E-04 2.68E-03 -8.71E-03 -2.21E-03 -1.09E-03
LTO Nox (lb) -5.40E-03 6.94E-04 3.89E-03 1.85E-03 4.70E-03
Noise (dB) -5.40E-03 -6.26E-03 3.90E-03 -2.30E-03 4.69E-03
TOFL (ft) -5.40E-03 -5.14E-03 3.90E-03 -4.84E-03 -3.23E-03
TOGW (lb) 7.81E-03 -4.65E-03 -9.31E-03 -7.19E-03 3.37E-03

Sensitivity to Changes in Weightings

Manufacturer's 
Cashflow

Airline's Operating 
Cost per ASM

Emissions

Performance
 

Table XXXIII: Weighting Sensitivities without Risk 

Derivative Twin Quad Twin & Quad Derivative & Quad

Year 5 Cumulative Cost ($) 1.11E-02 -1.03E-03 -7.12E-05 -1.44E-03 -5.04E-03
Year 15 Cumulative Cost ($) 9.37E-03 3.73E-03 4.58E-03 4.05E-03 -5.04E-03
Year 20 Cumulative Cost ($) 4.87E-03 4.49E-04 3.58E-03 4.41E-03 -5.04E-03
TOC Max Range ($/ASM) -5.40E-03 1.39E-03 4.58E-03 2.98E-03 4.85E-03
TOC 3000 nmi ($/ASM) -5.40E-03 3.78E-03 -4.49E-03 7.85E-04 -5.91E-04
TOC 1500 nmi ($/ASM) -5.40E-03 3.78E-03 -2.71E-03 1.50E-03 4.79E-04
TOC 500 nmi ($/ASM) -5.40E-03 2.57E-03 4.58E-03 3.69E-03 4.85E-03
Fuelburn/ASM (lb/ASM) 1.47E-03 3.68E-03 -1.20E-02 -2.14E-03 -3.24E-03
LTO Nox (lb) -5.40E-03 1.05E-03 4.58E-03 2.77E-03 4.85E-03
Noise (dB) -5.40E-03 -7.63E-03 4.58E-03 -2.43E-03 4.85E-03
TOFL (ft) -5.40E-03 -6.23E-03 4.58E-03 -5.60E-03 -5.04E-03
TOGW (lb) 1.11E-02 -5.63E-03 -1.19E-02 -8.53E-03 3.20E-03

Emissions

Performance

Sensitivity to Changes in Weightings

Manufacturer's 
Cashflow

Airline's Operating 
Cost per ASM

 

 If the situation changes, the results change. For example, if the price of fuel 

increased from an average of $0.45/gal to $0.80/gal, the results will change for both of 

the TOPSIS modules, as illustrated in Figure 65. In both TOPSIS models, the increasing 

fuel cost drove the solution toward a four-engine aircraft, which has a lower long-range 

operating cost per seat mile. For the no risk TOPSIS, the fuel cost is a driver on four of 

the eleven metrics examined, while for the TOPSIS with risk it is a driver for the same 

four of fourteen metrics. In both cases, the same three design options are still better than 

the other two, although in the TOPSIS without risk that delineation is more difficult to 

make, so it appears that changing the metric rankings or variable inputs doesn’t affect the 

solution enough to make a derivative aircraft a good design option. 
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Figure 65: TOPSIS Comparison Increasing Fuel Cost 
 
 If one adds some risk mitigation to the TOPSIS process, the results change even 

further. In the event of mitigating the risks checked in Figure 55 and moving to 

technology point two, the TOPSIS with risk still declares the best decision is a two-

aircraft family with a new twin-engine and a new four-engine aircraft; however, the 

difference between the best decision and the 2nd best decision is larger. The best decision 

is now more than 10% better than the next one, which indicates that mitigating risk has a 

profound effect on the aircraft development choice. In this case, a decision maker may 

determine that the two-aircraft family is overwhelmingly the best decision; therefore, it is 

unnecessary to continue to carry the other two aircraft families further into the design 

process. Without the addition of risk and risk mitigation, a decision maker is more likely 

to determine that three aircraft family designs should be carried forward in the design 

process. Carrying all three designs means increasing cost and time to analyze more 

potential aircraft families. These TOPSIS models are illustrated in Figure 66. In this 

Figure, the TOPSIS with risk declares that a two-aircraft family will be the best use of 
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design time and money, while the no risk TOPSIS is still declaring that developing only a 

four-engine aircraft is the best option.  

 

Figure 66: TOPSIS Comparison with Risk Mitigation 
 

The changes in the TOPSIS ranking and values illustrate that the addition of a risk 

analysis and mitigation process has the potential to change the outcome of the problem. 

During the early stages of conceptual design, performance and economic metrics are 

tracked; however, there is often little examination of the assumed future. The addition of 

a risk analysis of the sort used here allows a decision maker to examine his assumptions 

about the future and provides insight into the consequences if the future is different than 

assumed. The initial hypothesis may have been too strong a statement to be proven given 

the amount of information available. A revised hypothesis that can be demonstrated with 

the available information can be:  

The addition of an operating environment risk analysis to the performance 

and economic analysis completed during conceptual design will allow for 

the examination of assumptions and the consequences of not meeting 
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those assumptions. This new information can be used for decision making 

without overwhelming the decision maker.  

This statement has been demonstrated using the tests described above. New information 

has been provided to a decision maker, who is able to examine assumptions about the 

future operating environment of the system, as well as the consequences of not meeting 

those assumptions. Also, the addition of three new metrics for a decision making model is 

unlikely to overwhelm a decision maker. 

6.4.2 Hypothesis Two Test 

Both qualitative and quantitative information are available and can be used 

in decision making; the ability to use both types of information increases 

the number of applications for a risk-benefit analysis without 

overwhelming a human decision maker.  

This hypothesis is tested by limiting the amount of information available to the 

decision maker. Several questions were asked of this hypothesis in Section 5.4, and they 

will be answered here. In this case, it would not be necessary to limit the number of 

potential solutions if one were limited to quantitative information only, since all solutions 

are similar to existing aircraft and require only evolutionary technology changes. In this 

case, limiting the information available to only quantitative information would eliminate 

the risk analysis portion of this process, since the probabilities were determined 

qualitatively. Eliminating the risk analysis changes the solution to the problem, as 

evidenced earlier in this section. By extension, the addition of a risk analysis, which is the 

addition of qualitative information, increases the amount of information available for 

decision making. 

For the second point in this hypothesis, that allowing both quantitative and 

qualitative information to be used increases the number of applications for a risk analysis, 

this is also true. In this case, if qualitative information was not available for decision 
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making purposes, then there would be no risk analysis. In other cases, it may be possible 

to conduct a risk analysis utilizing actual quantitative probabilities; however, these 

scenarios were not set up for that purpose. If numerical probabilities could have been 

assigned to each uncertainty and a measure of consequences could also have been 

assigned to each uncertainty (decrease in profit? breakeven time?) then a quantitative risk 

analysis could have been completed for this problem. Allowing for the use of qualitative 

information allowed the risk analysis process here to be used for this example problem, 

while if the process were only limited to quantitative information it would not have been 

usable for this problem. 

6.4.3 Hypothesis Three Test 

Too much uncertainty, handled improperly, can render a risk analysis 

meaningless; the use of future scenarios can assist in bounding uncertainty 

and allowing decision makers to better manage it.  

Testing hypothesis three involves comparing the scenario-based analysis to a 

traditional probabilistic analysis in a Monte Carlo analysis. The first comparison takes 

place in Figure 68, and is comparing metric values for both of these conditions. In this 

Figure, the traditional probabilistic analysis is represented by the red points for a new 

twin-engine aircraft, the pink points for a new four-engine aircraft, the light green points 

for the derivative aircraft, the black points for the derivative and new four-engine aircraft, 

and the dark blue points for the new twin-engine and new four-engine aircraft. The 

scenario-based probabilistic analysis is represented by the light red points for a new twin-

engine aircraft, light purple points for a new four-engine aircraft, light green points for 

the derivative aircraft, gray points for the derivative and new four-engine aircraft, and 

light blue points for the new twin-engine and new four-engine aircraft. Outputs for the 

design of two aircraft are only seen in the 1989, 1999, and 2004 cumulative cashflow. 

Each of the points on this Figure represents a single design point with a single set of 
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variable settings. The variable settings of two design points, one from the scenario-based 

analysis and one from the traditional probabilistic analysis, are illustrated in Figure 67. 

These points have different settings and are located in slightly different points in the 

design space; however, they were both evaluated using the same set of surrogate models. 

Acq 80.91 83.92
Airline Int Rt 9.49 5.16
Al k-Factor 0.9528 0.9751
Al Cost 0.9712 0.9493
Avionics Wt 0.9414 1.224
Eng Labor 70.75 75.77
Fuel Cost 0.7126 1.244
Inflation 0.0405 0.446
Man Labor 46.26 36.62
Prod Number 1087 1150
Tail Comp 0.92 0.53
Year 1 Prod 1.05 1.00
Year 2 Prod 1.75 0.47
Year 4 Prod 4.07 5.64
Year 5 Prod 5.32 4.43
Year 9 Prod 3.13 5.57
Years RDT&E 7.39 6.25
Nox 801.4 805.4
TOC 500 nmi 0.1273 0.1392
TOC 5600 0.0708 0.0799
TOFL 8225 8366
1989 -3076.73 -3473.79
1999 6709.53 19002.61
2004 21200.44 35811.87  

Figure 67: Variable Settings for Two Points 
 
 Some of the differences between a traditional probabilistic analysis and a 

scenario-based analysis are illustrated in Figure 68. If the fuelburn/ASM metric is 

examined, it can be seen that there are only small differences between the scenario-based 

analysis and the traditional probabilistic analysis, even though the input variable 

distributions and bounds were different between the two analyses. The fuelburn range 

across the traditional probabilistic analysis is slightly greater for all three aircraft than 

that range for the scenario-based analysis. Since the scenario-based analysis is designed 

to bound (Schwartz 1991) and decrease uncertainty, this finding is unsurprising. TOFL, 
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the other performance metric illustrated, shows a similar trend: three distinct aircraft 

bands with a slightly greater band width for the traditional probabilistic analysis.  

 

Figure 68: Comparison Between Traditional Probabilistic and Scenario-based Analysis 
 
The shrinking of variability is more clearly illustrated in the airframer’s cashflow metrics. 

For all five aircraft design options, there is a smaller degree of variability of the 

cumulative cashflow for the scenario-based analysis than for the traditional probabilistic 

analysis. This decrease in variability can make decision making easier, since 

distinguishing characteristics of design options become more evident (Black 2001). In the 

traditional probabilistic analysis, it is difficult to determine which aircraft or combination 

will have the largest chance of being profitable with the smallest chance for loss. 

However, for the scenario-based analysis, it can be noted that the derivative and new 

four-engine aircraft has a smaller chance of producing a profitable aircraft than the other 
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options. Both the probabilistic analysis and the scenario-based analysis predict the 

smallest degree of variability in economic metrics for the derivative aircraft; the small 

variability was expected as some costs are likely to be more certain for a derivative than 

for a new aircraft.  

 Examining the aircraft modeling inputs to determine whether there are differences 

between the scenario-based and traditional probabilistic analyses should be done. For the 

new twin-engine aircraft option, a comparison of some of the variable inputs between a 

new traditional probabilistic analysis and a scenario-based analysis are illustrated in 

Figure 69. In this Figure, the traditional probabilistic analysis points are in red, the best-

case scenario is green, the worst-case scenario is in black, scenario three, the AIDS 

epidemic scenario is in gray, scenario four, the Middle Eastern conflict scenario, is in 

orange, and scenario five, the technology explosion scenario, is in blue. It is even clearer 

in this Figure than in the previous one that scenarios can be used to help bound 

uncertainty. Each scenario has a significantly smaller variability than the traditional 

probabilistic analysis. In general, the variability of the best and worst scenarios is smaller 

than that for the middle, more likely, scenarios. This is because the best and worst 

scenarios are “wild card” scenarios whose probabilities are extremely unlikely. These 

scenarios, instead of having wide distributions, are closer to deterministic in nature than 

the more likely scenarios (Chandler and Cockle 1982). 
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Figure 69: Comparison of Inputs Between Traditional Probabilistic and Scenario-based Analyses 
 

For the results, a similar trend to the inputs is seen in Figure 70. There is 

significantly more variability in the responses of the traditional probabilistic analysis than 

for any of the scenario analyses.  
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Figure 70: Metric Comparison Between Traditional Probabilistic and Scenario-based Analyses 

 
Like the inputs, the best scenario and worst scenarios have slightly smaller 

variability than the middle three scenarios. The scenario with the most variability, 

particularly with the airline economic metrics, is the Middle East conflict scenario. Since 

fuel cost is significant driver for the airline’s operating cost, it was expected that the 

operating costs would be high for that scenario. Overall, the scenarios show decreased 

variability for the manufacturer’s economic metrics as compared to the traditional 

probabilistic analysis. While there is more change in the maximum loss between the 

scenarios and the traditional analysis, the variability shrinks on both the profit and loss 

ends.  
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The use of scenarios gives different results than the use of a traditional 

probabilistic analysis. Since both the scenario-based and traditional probabilistic analysis 

are being used to predict the future, it is impossible to say which one is absolutely 

correct. One advantage the scenario-based analysis has over the traditional probabilistic 

analysis is in the ability for each scenario to shrink the variability in the responses of 

interest, thereby potentially enabling a better comparison between alternatives (Black 

2001). The use of scenarios also forces the creator to examine his assumptions about the 

future (Schwartz 1991), while a traditional probabilistic analysis only requires that one 

set variable bounds.  

There are situations where, even when uncertainty is handled properly, a decision 

maker will still be unable to distinguish between options. In these cases, a decision 

cannot be made based on the metrics present for the decision maker’s use. Scenarios can 

aid in handling uncertainty properly by helping to correctly bound it. Correctly bounding 

and distributing uncertainty can help enable a decision maker to make a decision when 

possible and know when he cannot make a decision based on the information provided.   

6.5 Comparison to Actual Events 

 One of the purposes of using a historical example was to be able to compare the 

example to what actually took place in the last 20 years. The purpose of this comparison 

is to see how well the scenarios line up against what actually happened and to see how 

the initial assumptions resemble the actual series of events. 

 The first comparison is which aircraft was designed. In the analysis, choosing to 

develop two aircraft instead of only a single aircraft showed the highest development cost 

and also the largest overall profit. In actuality, two aircraft were developed, the A330 and 

the A340. These aircraft have proven to be viable, as predicted. Since it is impossible to 

determine whether or not a single aircraft configuration would have been equally viable, 

that cannot be compared. It can be speculated that a single aircraft configuration would 
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also have proven to be viable, particularly a twin-engine aircraft since there have been so 

many A330 orders.  

The initial assumption for the number of aircraft ordered was 1000 aircraft 

between the two configurations including derivatives. The actual number of aircraft 

ordered was 1173 through December 2004 (“Historical Orders and Deliveries” 2006) 

between the two configurations including all derivatives: A330-200, A330-300, A340-

200, A340-300, A340-500, and A340-600. The prediction was also that the A330 would 

have 60% of the orders; in actuality there were 604 A330s and 469 A340s ordered, so 

that assumption was also very accurate (“Historical Orders and Deliveries” 2006). The 

prediction was that there would be 880 deliveries by 2004; in actuality there would by 

329 deliveries of each aircraft for a total of 658 deliveries (“Historical Orders and 

Deliveries” 2006). The delivery schedule initially assumed was too aggressive for Airbus 

to actually complete.  

For many of the other variables, the initial assumptions were also very accurate. 

The RDT&E time was assumed to be seven years; this was a relatively accurate 

assumption. The A330/A340 was announced in February 1986; the first delivery was in 

late 1993 (“Airbus A330” 2002), giving an RDT&E time of a little more than seven 

years. Inflation was assumed to be 3.5%; it was actually 2.77% (“The Inflation 

Calculator” 2005). The new avionics system, composite tail, and lighter weight aluminum 

alloys were able to be used as anticipated. There wasn’t a labor shortage for either 

engineering or manufacturing labor, and there were no production interruptions. While 

French government aid was given in the form of low-interest loans instead of pledges, the 

money is being paid back. Fuel prices have been higher than predicted: prediction was an 

average of $0.45, while the actual price was $0.63 (“Daily Spot Prices…” 2006).  

As for the scenarios, none of the scenarios came true, but there were some aspects 

of each that were accurate. For much of the early 1990s and late 2001 to 2003, the worst-

case scenario looked promising: there was a recession and terrorist attacks to contend 
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with that decreased airline profits and travel. The late 1990s were good years for the 

American economy and travel increased as incomes increased. Oil prices were low, and 

airlines were profitable. In the early 1990s, the USSR collapsed into 15 different 

countries, with Russia as the largest. While not all countries became western-style 

democracies, all hold some free elections. The economies of India and China have taken 

off, and there is significant outsourcing from the United States to those countries. AIDS 

has not become the epidemic that was feared, except in sub-Saharan Africa. There has 

been some instability in the Middle East, most notably in 1990-1991 and later in 2002-

2004. The actual future was different from all scenarios but incorporated pieces of all the 

different scenarios.   
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CHAPTER 7 

CONSLUSIONS 

7.1 Project Goal 

Times have changed since the dawn of commercial jet aviation. Today, large 

aerospace engineering projects have longer design cycles than in years past. With these 

longer design cycles comes increased RDT&E costs and, thus, more borrowed money. As 

engineers receive design requirements and continue to design aircraft, they have been 

unable to analyze programmatic life cycle risk. This analysis was previously carried out 

by marketing and finance teams before the design requirements were set. The initial 

product design and launch decisions were made based on potential technical merit, 

potential project cost, and potential project risk, but engineers were only analyzing 

technical merit and cost, with just a cursory examination of risk.  

Since decisions are made based on cost and risk, as well as technical merit, all 

three of these objectives should be examined. Processes already exist to examine 

technical merit and cost, as well as some aspects of risk. Other aspects of risk, including 

risk associated with government and culture, are poorly served by existing engineering 

processes. The goal was to create a process that allows for the examination, for the 

purpose of decision making, of technical and economic objectives, as well as 

programmatic risk and risk control and mitigation strategies. 

The initial decision makers, often not engineers, formulate a number of 

assumptions about the future before they make design decisions. These assumptions have 

some risk of not being met. Understanding these assumptions and their associated risks is 

essential to understanding how decision makers make concept-level decisions and how 

these decisions can be made in a better fashion. A diagram of the process designed to 

bring these assumptions and decision making processes down into engineering design is 
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illustrated in Figure 71. The process allows the engineer to see the information that is 

available to the management decision making team and to gain insight into how design 

decisions are made on the basis of risk and reward.  
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Figure 71: Risk Analysis and Decision Support Process 
 
This process has several important features that differ from existing risk analysis 

processes. These features address the gaps discussed in Section 5.1 and will be 

highlighted again in Section 6.2 below. The first important feature of this process is that 

it emphasizes traceability. This process allows for the examination of a set of 

assumptions about the design problem and the future. The risks associated with these 
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assumptions are examined; it is easy to demonstrate where the risk originated and how 

the probabilities and consequences were determined.  

The other important feature of this process is the problem insight. Traditional risk 

analysis processes are designed to provide traceability and problem insight; however, 

these processes are not set up to work early in conceptual design with limited 

information. The new process is designed to work in early conceptual design and with 

little, uncertain information. The results provide traceable information about a set of 

assumptions and risks that was previously unavailable. This allows for the potential to 

eliminate feasible and viable, but too risky, design options early in the design process 

before spending a significant amount of money to examine them. Along with the ability 

for engineers to eliminate risky design options is the ability to demonstrate why these 

options were eliminated. Since design options that are too risky can be eliminated, 

potential product designs can be chosen with the express purpose of being robust to 

changes in the assumed future. Being able to choose designs that are robust over a variety 

of potential future scenarios can increase the probability of the company making a profit. 

As profit is the primary driver for most companies, this is a powerful tool. Finally, this 

process allows the engineer to have a better understanding of how management decision 

makers view the design problem: not in terms of performance metrics, but also in terms 

of life cycle cost and risk. 

7.2 Follow-on Work 

 There are many pieces of follow-on work, a few of which will be highlighted 

here. One potential piece of future work is to create an algorithm or process to determine 

which risks should be mitigated. Since the real-world contains budgetary constraints as 

well as performance constraints, mitigating risk while keeping within these constraints is 

an important piece of follow-on work to be completed. Knowing which risks to mitigate 

and the budget necessary to mitigate those risks will add more information that is useful 
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for a team of decision makers. Knowing which risks can and should be mitigated within a 

set budgetary constraint will further enable the decision makers to make design and 

configuration decisions that best fit their company’s long-term goals.  

 Another piece of follow-on work that also concerns the mitigation process is to 

compile a more rigorous risk mitigation analysis, using the same modeling and 

simulation environment used for the solution modeling process. The current risk 

mitigation process assumes that risk mitigation is continuous, i.e. that risk can be partially 

mitigated. While this is true of many types of risk, it may not be true of all types. It also 

assumes that mitigating one risk has no effect on other risks or on the design variables. 

Again, this assumption is not true in all cases. A risk mitigation procedure that addresses 

these concerns would also be useful in determining which risks to mitigate and some of 

the 2nd-order effects of mitigating those risks.  

 A third piece of follow-on work is to determine a process for updating and 

tracking changes in risk through time. If possible, it would be advantageous to know 

whether certain risks are increasing or decreasing with time, and it would also be good to 

be able to update the risk process quickly as new information became available. As new 

information became available, more modeling and simulation would need to take place 

and the new information would need to be transmitted to the risk analysis process and 

collated into a useful form. However, if risk is tracked over time, it may be possible to 

reallocate mitigation funds where they are most needed at a particular time, instead of 

just waiting to see what will happen in the future. Also, if risk is tracked with time, 

hazardous events may be easier to predict as the risk of a particular outcome increases.  

 These three potential pieces of additional work are not the only options for 

potential future work. They are, however, some of the options that this author feels would 

be the most useful for the overall process and the project goals. This author thinks that an 

algorithm for choosing which risks to mitigate is the most important piece of future work, 
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since it would better enable the engineers to take this product up to the decision makers 

and understand the design decisions. 
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APPENDIX A 

SURROGATE MODELING TECHNIQUES 

 Many engineering designs are created with the help of computer modeling codes. 

In the aerospace industry, designs for large systems are extremely complicated—too 

complicated for a human to do by hand. So these computer codes model the new design 

or system and help the human understand the behavior of the system. For well defined 

systems, this approach works very well and the human decision maker has all the data 

necessary to make design decisions and test theories. However, during conceptual design, 

design problems can be poorly defined and the design solutions themselves are also 

poorly defined. Therefore, instead of running a computer code one time to see how a 

systems behaves under one set of conditions, computer codes will be run multiple times 

to see how different systems behave under a variety of conditions. The amount of 

computer time necessary to run computer codes at all possible designs and conditions is 

staggering for even small designs and modern computers. For this reason, surrogate 

modeling techniques are used. Surrogate modeling techniques, also called metamodeling 

techniques, involve the creating of “models of models.” The computer codes are models 

of the real system, and the metamodels are models of the computer codes. There are 

many surrogate modeling techniques available, a sampling of which will be highlighted 

below.  

A.1 Response Surface Methodology 

 Response surface technqies have been used by many people in differnet 

scienctific industries for many years. Response surfaces involve creating empirical 

models to approximate system behavior (Breyfogle 1999). Since the models are 

empirical, they have no meaning by themseleves and can only explain a limited amount 
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of system behavior. Response surface models can be created in any mathematical fashion 

that their creator chooses, but as a practical matter they are often linear, second order 

polynomial equations based on a Taylor series approximation with a least squares fit 

(Box and Draper 1987), such as the one illustrated below in Equation 10. 
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In the above equation, R is the response, b0 is the response intercept, bi are the coefficient 

for the first order terms, bii are the coefficient for the second order terms, bij are the 

coefficient for the cross terms, and xi and xj are the independent variables and ε is the 

error term. The coefficients bi, bj, and bij are generally calcualted using a least squares fit. 

The response, R, can now be estimated for any combination of variables xi that are in the 

model. These second order response models are often created using three level DoEs, but 

they can be created using four or more level DoEs (Breyfogle 1999). These DoEs can be 

created in a variety of ways and have a variety of designs including central composite 

design, D-optimal design and others. These DoE have variable ranges within which the 

response surface equation is valid and outside which it is not.  

 Response surface equations (RSEs) have positive and negative attributes. They 

are easy to understand and use—anyone who has taken algebra knows what a quadratic 

equation is—and can be easily generated. However, they cannot predict the response 

bahavior outside of the variables ranges used to create the response surface. Response 

surface equations also cannot model non-linear system behavior, which is common in 

aerospace systems. Using Equation 10, these models also can only model systems with 

continuous variables while many engineering systems have non-continuous variables. 

A.2 Neural Networks 

Neural Networks are a surrogate modeling technique inspired by biological brain 

function. A neural network, like a brain, takes in input, translates that input into a form it 
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understands, and then gives an output (Fraser 1998). These processes take place in what 

are called layers. The first layer is the input layer and it contains the model inputs, the last 

layer is the output layer and it contains the response models and the layers in between are 

called the hidden layers. These layers have the function of developing the model, and 

there can be several of them. This process is illustrated in Figure 72, for one hidden layer, 

which is the simplest and most common form of neural nets. The mathematics of neural 

networks can become very complicated in the hidden nodes. Almost any functional form 

can be used in the hidden nodes to map the analysis inputs to the regression outputs, but 

most neural nets use a logistic function (Johnson and Schutte 2006). One common type of 

single hidden layer neural network uses the logistic sigmoid function given in Equation 

11. 
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In Equation 11, aj is the intercept term for the jth hidden node, bij is the coefficient for the 

i th design variable, Xi is the value of the ith design variable, N is the number of input 

variables, ek is the intercept term for the kth response, fjk is the coefficient for the jth 

hidden node and kth response, and NH is the number of hidden nodes (Johnson and 

Schutte 2006). Often, a least squares error type of regression is used to fit the data; 

however, other types of regressions can be used. Neural Networks need two sets of data, 

a training set and a validation set. The training set of data is used to generate Equation 11 

(i.e. it is used to “train” the network), while the validation set of data is used to check the 

response equations for accuracy.  

Neural Networks have some advantages and disadvantages over response 

surfaces. Neural Networks are non-linear and so can accurately handle non-linear 

responses; however, they do require continuous and differentiable hidden node equations. 

They accurately model non-linear, multimodal spaces, which makes them well-suited for 
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problems that response surfaces have trouble modeling. The equations for neural nets are 

complicated, and it is not usually clear which variables are driving the response. 

However, a person with knowledge of calculus can understand the mathematics behind 

neural networks even though the process is very opaque. Neural networks are more 

complicated than response surfaces and can take time to generate responses and train the 

networks. Neural networks can be used in situations where response surfaces are not 

giving the desired results.  
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