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Chapter �

Introduction

            

��� Why do agents specialize�

Individuals in nearly all multiagent societies specialize� ant colonies have workers�

soldiers and a queen
 corporations have machinists� managers and presidents� Why

does specialization occur� Are individuals born with skills and physical attributes

that suit them for a job or do they just learn to �ll a niche� It may be impossible

to answer this question for natural systems� especially human groups� but we can

investigate the issue in an arti�cial society� the robot team�

Multi�robot team design is challenging because performance depends signi�cantly

on issues that arise solely from interaction between agents� These interactions com�

plicate development since they aren	t obvious in the hardware or software design but

only emerge in an operating team� Cooperation� robot�robot interference and com�

munication� for instance� are not considerations for a single robot� but are crucial in



multi�robot systems� Fortunately� the additional e�ort involved in deploying several

robots is often rewarded by a more robust and e�cient solution� Furthermore� in�

dividuals on a team are potentially simpler and less expensive than a single robot

designed for the entire task� Still� automatic methods for matching multi�robot con�

�guration to task don	t yet exist
 in most cases multiagent design is ad hoc� This

research seeks to address that by applying a principled approach to the analysis and

design of learning behavior�based multi�robot teams�

When feedback regarding success in a task is available� reinforcement learning

can simplify robot systems design by shifting the task of behavioral con�guration

from the designer to the robots operating in their environment� For some simple

tasks� given a su�ciently long trial� agents are even able to develop optimal poli�

cies �KLM���� Rather than attempting to design an optimal system from the start�

the designer imbues his robots with adaptability� The robots strive continuously to

improve their performance
 �nding suitable behaviors automatically as they interact

with the environment� This approach has the added bene�t of allowing agents to

adapt to changing environmental conditions� This is important since for non�trivial

tasks� a �xed solution could never be optimal in all environments� For these reasons

reinforcement learning is becoming pervasive in mobile robotics research� The be�

havior that arises in multi�robot societies using reinforcement learning is the focus

of this research�

To date� reinforcement learning is most often applied in single robot systems
 but

recent work indicates multi�robot systems should bene�t as well �Bal��c� Mat����

As in other aspects of robot design however� when learning is extended from the

individual to a team� new interactions arise� One consideration� for instance� involves

the type of reinforcement used in training the agents� When an individual agent

succeeds� should it be rewarded alone or should all members of the team share the

reinforcement�

In multiagent teams there is also the question of similarity between the agents�

Most research in multi�robot teams has centered on homogeneous systems� with

work in heterogeneous systems focused primarily on mechanical and sensor di�er�

ences �e�g� Parker	s work �Par����� Recent investigations indicate that behaviorally

heterogeneous systems o�er advantages in some tasks �Bal��c� FM���� Teams of

mechanically identical robots are especially interesting because they may be homo�

geneous or heterogeneous depending only on their behavior� Behavior is an extremely

�



�exible dimension of robot heterogeneity since learning teams may choose between

homo� or heterogeneity� The idea that individuals on a learning team might converge

to di�erent behaviors raises fascinating questions like� How and when do robot castes

arise� Does the best policy for a robot depend on how many are on the team� When

is a heterogeneous team better� This research provides a framework in which these

types of questions may be answered�

��� Research question

Before the research question is presented� a few terms are brie�y introduced �these

are addressed in depth later in the dissertation�� First� what is behavioral di�erence

for robots� 
Identical� robots from the same assembly line will di�er in their per�

formance due to di�erences in their construction� even if they are driven by identical

control systems� This research� however� is concerned with the more signi�cant dif�

ferences that indicate a team	s societal structure� As an example� suppose a team

of robots are to learn a foraging task where red and blue objects must be collected�

Slight di�erences in how well individuals navigate towards an object are not nearly

as important as the di�erence between one agent that seeks red objects and another

that seeks blue ones�

In this work� we look at the robots	 control systems for factors which reveal

behavioral di�erence� Assume for now that the agents follow a �xed policy� Two

robots are de�ned as behaviorally equivalent if for every identical perception they

select identical actions� otherwise there is a behavioral di�erence between them��

Behavioral diversity is de�ned in terms of behavioral di�erences between a robot

team	s individuals� The team is behavioral homogeneous if all robots are behaviorally

equivalent to the others� and behaviorally heterogeneous otherwise� Diversity is a

sliding scale between the extreme where all robots are identical and the other where

all are di�erent�

Finally� the reinforcement function is the feedback for agents learning a policy

with reinforcement learning� Typically� the function is a measure of how well the

agent is performing the task� so the agent should maximize the value of the function

over time� In an equivalent but di�erent view� the reinforcement signal represents

�This work focuses on comparisons between non�stochastic policies� but it could be extended to
address probabilistic methods as well�

�



cost� and should thus be minimized�

Research Question

How can the relationships between task
 reinforcement func�

tion and behavioral diversity in learning multi�robot teams be

investigated in a principled manner�

Investigating the research question requires the exploration of a number of sub�

sidiary issues� The research focuses on three in particular�

Subsidiary Question �

How can behavioral diversity be measured in a learning behavior�

based multi�robot team�

Once a learning team has converged to a stable set of behaviors� how can the

structure of the resultant society be evaluated� The approach is to borrow the con�

cept of information entropy from information theory as a measure of social diversity�

More details on this topic are presented in Chapter ��

Subsidiary Question �

How can reinforcement learning be implemented in a motor

schema�based multi�robot team�

Although many aspects of this work are useful to the multi�robot research �eld

in general� the research focuses speci�cally on learning in motor schema�based multi�

robot systems �the motor schema approach is behavior�based
 see Chapter � for more

detail�� Several e�orts have succeeded in using learning to adjust parameters in a

motor schema systems �PAR��� SSR��� CAR���� For this work� learning takes place

at a higher level
 larger�grained behavioral choices are considered than those explored

previously� This research is more interested in whether an agent chooses to search

for red or blue objects than the gain value on one of the many activated schemas�

Several types of reinforcement learning are appropriate for this investigation �e�g�

�Sut��� Tes��� BSW��� WD����� While the utility of the various types of learning

in multiagent systems is an important topic� it is not the focus of this research� Q�

learning was selected arbitrarily for use here� but it has the advantages of a strong

mathematical basis and it is well established in the reinforcement learning literature�

�



Subsidiary Question �

How can reinforcement functions for learning multi�robot teams

be characterized�

Several types of reinforcement function have been proposed for individual robots

and for learning multiagent systems� As of yet� however� there is no work organiz�

ing the approaches taxonomically or showing how they impact learning multi�robot

teams� As an example of one dimension along which reinforcement functions vary�

consider global versus local reinforcement� Global reinforcement is the type where

a single reinforcement signal is simultaneously delivered to all agents� while in local

reinforcement each agent is rewarded individually� Identifying important dimensions

along which multiagent reinforcement functions vary will help establish an investi�

gation space for the experimental portion of the research� This issue is addressed by

a taxonomy of multiagent reinforcement functions�

��� Preview of contributions

Results of the research will be of interest to several communities including au�

tonomous robotics� machine learning� organizational science and ethology� Speci��

cally� this research provides�

� A methodology for building and evaluating learning behavior�based robot teams�

� A classi�cation of multi�robot tasks and a taxonomy of multi�robot reinforcement
functions�

� Quantitative measures of behavioral diversity in multi�robot teams�

� Evaluation procedures for multi�robot task performance�

� A signi�cant body of experimental results generated using the methodology in for�
aging� robot soccer and cooperative movement tasks�

The contributions are reviewed in detail in Chapter ��
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Chapter �

Background and Related Work

            

This research concerns reinforcement�learning in behavior�based multiagent robot

teams� Separately� each of these areas is backed by a signi�cant body of research�

Reinforcement�learning and behavior�based systems are especially well established�

but the intersection of these two with multiagent systems is an emerging �eld� This

chapter reviews the core research in robotic reinforcement learning� behavior�based

robotics and learning multiagent robotic systems� The goal is to establish a base

from which the research proceeds and to di�erentiate it from similar work�

��� Behavior�based robotics

In general� a robot is to satisfy a goal by selecting and executing a sequence of

actions to achieve it� The goal may be a location to reach or a state of the world to

be obtained �e�g� 
put the soda cans in the wastebasket��� Sensors guide the selection

of actions along the way� The 
classic AI� approach to this problem is for the robot



to process and store sensor readings with the aim of developing and maintaining an

internal model of the external world� Deliberative strategies reason over the model

and develop a plan �sequence of actions� for achieving the goal� Usually� intermediate

failures trigger a complete re�planning� A famous example of the classic approach is

Shakey the Robot �Nil����

In contrast� over the last decade a 
new wave� of robotics researchers have ad�

vanced a behavior�based view� Their central theme is to directly couple a robot	s

sensors and actuators so as to avoid the trouble of maintaining a model or deliber�

ating over it� Rodney Brooks	 subsumption architecture and Arkin	s motor schemas

are early examples �Bro��� Ark���� Brooks asserts that world models are useless


the best model is the world itself� Space precludes a detailed review of the many

behavior�based systems implemented since ����� but some important qualities they

all share include

Tight sensor to motor coupling� Sensor input is minimally processed before motor
actions are selected�

Minimal representation� Many behavior�based systems do not maintain any internal
state� or representation of the world at all� Some use just a few bits of memory�

Speed� Since the computational costs of reasoning over and maintaining a world model
are avoided� behavior�based systems usually interact with their environment more
quickly than �classic AI� systems�

Composition� The behavioral system is composed of several separate primitive behav�
iors� They may be arranged in layers �Bro��	� or run in parallel �Ark�
	�

Emergent properties� The overall behavior of the system emerges through the inter�
action of of the several primitive behaviors�

Robust performance in dynamic environments� Since behavior�based systems are
primarily sensor�oriented� they quickly respond to changes in the environment�

Two frequently raised concerns regarding behavior�based approaches are

Behaviors are hand�coded� Many existing behavior�based robotic systems are com�
prised of hand�coded behaviors� To address this� researchers are investigating auto�
matic approaches including genetic algorithms �PAR
�	 and reinforcement�learning
�MC
�	�

�The �y at the window�� A �y buzzing at a window is a classic example of a behavior�
based system caught in a local minimum� Behavior�based systems are often unable to
recognize failure and select alternative strategies� This is one reason some argue for
the integration of deliberative systems 
able to detect a failure� and reactive systems

able to act quickly in the dynamic environment�� Some approaches avoid the local
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minimum problem altogether �CG
�	� or use short term memory�based mechanisms
to move out of them �BA
�	�

��� Motor schema�based control

Figure ���� Motor schema example� The diagram on the left shows a vector �eld corre�
sponding to a move�to�goal schema� pulling the robot to a location on the right� The
center diagram shows an avoid�obstacles �eld� repelling the robot from two sensed ob�
stacles� On the right� the two schemas are summed� resulting in a complete behavior for
reaching the goal� It is important to note that the entire �eld is never computed� only the
vectors for the robot�s current location�

Motor schemas are an important example of behavior�based robot control� The

motor schema paradigm is the central method in use at the Georgia Tech Mobile

Robot Laboratory and is platform for this research�

Motor schemas are the reactive component of Arkin	s Autonomous Robot Archi�

tecture �AuRA� �AB���� AuRA	s design integrates deliberative planning at a top

level with behavior�based motor control at the bottom� The lower levels� concerned

with executing the reactive behaviors are incorporated in this research�

Individual motor schemas� or primitive behaviors� express separate goals or con�

straints for a task� As an example� important schemas for a navigational task would

include avoid obstacles and move to goal� Since schemas are independent� they

can run concurrently� providing parallelism and speed� Sensor input is processed

by perceptual schemas embedded in the motor behaviors� Perceptual processing is

minimal and provides just the information pertinent to the motor schema� For in�

stance� a �nd obstacles perceptual schema which provides a list of sensed obstacles

is embedded in the avoid obstacles motor schema�
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The concurrently running motor schemas are integrated as follows� First� each

produces a vector indicating the direction the robot should move to satisfy that

schema	s goal or constraint� The magnitude of the vector indicates the importance

of achieving it� It is not so critical� for instance� to avoid an obstacle if it is distant�

but crucial if close by� The magnitude of the avoid obstacle vector is correspond�

ingly small for distant obstacles and large for close ones� The importance of motor

schemas relative to each other is indicated by a gain value for each one� The gain

is usually set by a human designer� but may also be determined through automatic

means� including on�line learning �CAR���� case�based reasoning �RS��� or genetic

algorithms �PAR���� Each motor vector is multiplied by the associated gain value

and the results are summed and normalized� The resultant vector is sent to the robot

hardware for execution� An example of this process is illustrated in Figure ����

The approach bears a strong resemblance to potential �eld methods �CG���� but

with an important di�erence� the entire �eld is never computed� In the example

�gure an entire �eld is shown� but this is only for visualization purposes� The robot

only computes the vectors that apply to its present location and perceptual state�

����� Temporal sequencing of behavioral assemblages

Figure ���� The forage FSA�

As illustrated above for navigation� motor schemas may be grouped to form more

complex� emergent behaviors� Groups of behaviors are referred to as behavioral

assemblages � One way behavioral assemblages may be used in solving complex tasks

is to develop an assemblage for each sub�task and to execute the assemblages in an

appropriate sequence� The steps in the sequence are separate behavioral

states� Perceptual events that cause transitions from one behavioral state

to another are called perceptual triggers� A resulting task solving strategy can be
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represented as a Finite State Automaton �FSA�� This technique is referred to as

temporal sequencing �AM����

As an example task where temporal sequencing is useful� consider foraging� Robot

foraging behaviors have been examined in detail at Georgia Tech �see �BA��a� and

�ABN����� The forage task for a robot is to wander about the environment looking for

items of interest �attractors�� Upon encountering one of these attractors� the robot

moves towards it� �nally attaching itself� After attachment the robot navigates to

the homebase where it deposits the attractor�

In this approach to solving the forage task� a robot can be in one of three be�

havioral states� wander� acquire and deliver� The robot begins in the wander state�

If there are no attractors within the robot	s �eld of view� the robot remains in wan�

der until one is encountered� When an attractor is encountered� a transition to the

acquire state is triggered� While in the acquire state� the robot moves towards the

attractor and when it is su�ciently close� attaches to it� The last state� deliver� is

triggered when the robot attaches to the attractor� While in the deliver state the

robot carries the attractor back to home base� Upon reaching home base� the robot

deposits the attractor there and reverts back to the wander state� An FSA for the

forage task is illustrated in Figure ����

��� Learning in behavior�based systems

Most of the behavior�based approaches presented so far in this chapter focus on

static behavioral con�gurations� Even though behavior�based approaches are robust

for many tasks and environments� they are not necessarily adaptive� We now consider

some of the ways learning can be integrated into a behavior�based system�

����� Reinforcement�learning

Reinforcemen t learning o�ers a powerful set of tec  hniques that allow a robot to l earn a

task without requiring its de signer to fully specify how it should b e carried out� If the

task is feasible and feedba ck regarding how well the agent is doing is p rovided� several

reinforc ement learning techniques are guaranteed  to converge �within an arbitrary

�� to the optimal solution �WD��� TVR���� The guarantees are te  mpered by rath er

strong condition s for convergence
 Q�learning for example� require s all actions to be

repe atedly sampled in all states�
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Figure ���� Typical model of robotic reinforcement�learning 
adapted from Kaelbling��

A standard model of robotic reinforcement�learnin g is illustrat ed in Figure ���

�KLM���� At each step of  interaction� the robot receive s input from the environ  ment�

i� which may be �ltered by the r obot	s senso rs S� It also r eceives a re inforcement

signal r� which depend s on conditions in the environment and R� the reinforcement

function� r is an indication to the ro  bot of how w ell i t is performing� The agent	s

behavior B should choose ac tions that maximiz e the sum of reinfo rcement signals �

The robot	s action� a� e�ect s a chang e i  n the environment mo  deled by T � D epending

on the type of learning� the agent  may or m ay not be prov ided T and R�

If T and R are known� an optima l B may be found using dynamic programming

�Bel���� Once the optimal behavior has been determined� the reinforcement signal

r� is unnecessary and the behavior depends only on the current perceived state of

the environment i� A function that selects an action depending on i is referred to

as a policy and is denoted by ��i�� Optimal policies are labeled ���i�� Even though

these approaches may generate optimal policies it often takes too long for practical

applications �LDK����

For many robot tasks it is not reasonable to expect that perfect models of in�

teraction with the environment can be known a priori� When T and R are not

provided� the robot must learn the best action for each situation through trial and

error� Research in reinforcement learning centers on developing algorithms to com�

pute a policy that converges to optimal as quickly as possible� Example algorithms

include Dyna �Sut���� TD��� �Tes���� Adaptive Heuristic Critic �AHC� �BSW����
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Model�Based �AAMR��� and Q�learning �WD����

Although reinforcement�learning bears a resemblance to supervised learning� the

two are distinct� In supervised learning� the agent is presented with input!output

pairs� where the given output is presumably the best choice of action� The in�

put!output pairs correspond to s and a of the reinforcement�learning model� In the

case of reinforcement�learning� the agent is provided with the present state� a reward

and the next state �st� rt� st���� but the robot is not told which action would be in

its best interest� It can only discover this by testing actions and evaluating rewards�

Learning agents strive for optimal performance� but what is 
optimal�� It was

mentioned earlier that the robot should attempt to maximize r over time� The length

of time however� is important� If we know the length of an agent	s life for instance�

the best course is to maximize the sum of r over that entire period �this corresponds

to a �nite�horizon�� Reinforcement�learning methods di�er in their de�nitions of

optimality
 three views predominate�

� Finite�horizon where the the agent takes actions that maximize the sum of rewards
over a �nite number of steps�

� Average�reward where the the agent takes actions that maximize the average re�
ward over all steps in the future�

� In	nite�horizon discounted where the the agent takes actions that maximize the
reward over all future steps� but the future rewards are discounted geometrically�

Another important distinction between the various reinforcement�learning meth�

ods concerns their use of models� In model�based algorithms� the agent learns ap�

proximations to T and R� then utilizes the models to develop a policy� In model�free

methods the agent learns the policy directly without a model� In this research we

will focus on Watkins	 model�free Q�learning�

����� Q�learning

Q�learning is a type of reinforcement�learning in which the value of taking each pos�

sible action in each situation is represented as a utility function� Q�s� a�� Where

s the state or situation and a is a possible action� For the purposes of discussing

Q�learning� assume the robot	s sensors pass the world state on to the agent unmod�

i�ed �thus s is used instead of i to signify the state�� If the function is properly

computed� an agent can act optimally simply by looking up the best action for any

��



situation� The problem is to compute the Q�s� a� that provides an optimal policy�

Watkins �WD��� has developed an algorithm for determining Q�s� a� that converges

to optimal� Watkins	 prefers to represent Q�s� a� as a table� Q�s� a� and asserts in

�WD��� that the algorithm is not guaranteed to converge otherwise�

Q�learning agents seek to maximize the in�nite�horizon discounted sum of r�

Q�s� a� is the value of choosing action a in situation s� The policy for a robot using

Q�values is to chose the action that maximizes Q�s� a�� So

�
s� � argmaxaQ�s� a	� 
����

The problem then is to compute and update Q�values based on interaction with

the environment� In discussing Q�values� it is useful to consider the value of reaching

a particular state� For a state st the value of st is de�ned as�

V 
st� � R
st� at� � �R
st��� at��� � ��R
st��� at��� � ��R
st��� at��� � � �

R�st� at� is the reward for being in state st and executing action at
 st�� is the

succeeding state� � is the discount factor with � � �� V �st� therefore� is the sum

of all future rewards discounted at the rate �� V " V � if the states are reached

following an optimal policy� V �st� may also be written recursively as

V 
st� � R
st� at� � �V 
st���

If each Q�s� a� were set as follows� the policy of selecting actions based on them

would be optimal�

Q�st� at	 � R
st� at� � �V �
st���

where st�� is the state reached by applying action at in state st and subsequent actions

are selected optimally� Unfortunately Q�s� a� cannot be computed directly because

R�s� and V �s� aren	t known initially� Watkins �WD��� introduced the following
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scheme for updating Q�values as an agent interacts with the environment and receives

rewards�

Q�st� at	 � 
�� �� Q�st� at	� �z �
old value

�� 
R
st��� at��� � �max
u

Q�st��� u	�� �z �
improved estimate


����

This update is applied each time action at 
�res� in state st� The �rst term is the

old Q�value� while the second is an improved estimate based on an actual reward

and the estimated value of the subsequent state� � is a learning rate that indicates

how much 
trust� should be given the improved estimate� In the second term�

maxuQ�st��� u� is an approximation of V �st��� �if Q " Q� it is easy to show that

V ��s� " maxuQ�s� u��� Watkins proved this iteration converges to Q� under the

condition that the learning set includes an in�nite number of episodes for each state

and action� This is a strong condition� but under the stochastic conditions of his

theorem� no method could be guaranteed to �nd the optimal policy under weaker

conditions�

����� Dyna

Model�free systems like Q�learning are computationally simple� but require many

experience steps to converge� Model�based systems seek to reduce the cost of expe�

rience in the real�world �as in risk of damage to the robot� by using experience to

model interaction with the world� then developing a policy based on the model�

Dyna �Sut���� like Q�learning� represents the utility of executing a particular

action a in a particular state s as Q�s� a�� but it uses models of T and R to compute

Q� The models of T and R are referred to as #T and #R respectively� Carrying forward

the notation introduced earlier for Q�learning� we will consider Q� #T� and #R as tables�

At each step of interaction with the environment� Dyna records an experience�

tuple� �st� at� st��� rt�� Where action at applied in st results in a new state st��

and reward rt� Next #T and #R are updated based on the observation using a simple

statistical model� #T �st� at� st��� is the probability that state st�� results from applying

action at in state st� Similarly #R�st� at� is the estimated reward for executing at in

state st� Also� at each step� Q�st� at� is updated as follows�

Q�st� at	 � �R�st� at	 � �
X
st��

�T �st� at� st��	 maxuQ�st��� u	 
����
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Dyna also performs a �xed number of additional updates to random state�action

pairs� as follows�

Q�sk� ak	 � �R�sk � ak	 � �
X
st��

�T �sk� ak� st��	 maxuQ�st��� u	 
����

Finally� as in Q�learning� Dyna uses the Q�values to select actions�

Kaelbling evaluated Dyna and Q�learning in a simulated navigational task �KLM����

She found Dyna to require an order of magnitude fewer steps of experience than

Q�learning to converge to an optimal policy� but Dyna uses about six times more

compute cycles�

����� Learning component behaviors

Reinforcement�learning is one way for a robot to learn appropriate sequences of

action to attain a goal� Mahadevan and Connell �MC��� have applied Q�learning in

a slightly di�erent manner� to learn the component behaviors within a pre�de�ned

sequence� The particular task they investigate is for a robot to �nd� then push a

box across a room� They pre�de�ne three behavioral states F
 P and U for �nd�box�

push�box and unwedge�box respectively
 they also de�ne conditions under which the

robot transitions from one state to another� Separate reinforcement functions and

tables of Q�values apply for each state�

The state vector s is composed of local sonar occupancy information� infra�red

bump sensors and a 
stuck� sensor� The possible actions are� go forward� turn

left� turn hard left� turn right and turn hard right� Since the state space is rather

large� Mahadevan sought ways to reduce it� including weighted Hamming distance

and statistical clustering to group similar states� Using this approach� their robot�

OBELIX was able to learn to perform better than hand�coded behaviors for box�

pushing�

Mahdevan	s sequence of behaviors is similar to the temporal�sequencing approach

outlined earlier� An important di�erence is that learning takes place in the behavioral

states� The signi�cance of Mahadevan	s result is that Q�learning is useful in learning

sequences within sequences of behaviors
 it may be applied at several levels�
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����� Learning a hierarchy of behaviors

In research at Carnegie Mellon University �Lin���� Lin developed a method for Q�

learning to be applied hierarchically� so that complex tasks are learned at several

levels� He argues that by by decomposing the task into sub�tasks and learning at

the sub�task and task level� the overall rate of learning is increased compared to

monolithic learners� The approach follows these steps �from �Lin�����

�� Task decomposition� A complex task is decomposed into multiple elementary
tasks� The original complex task is thus reduced to the task of integrating the
solutions to the elementary tasks to form the solution to the original task� Task
decomposition involves designing a reward function for each elementary task�

�� Learning elementary skills� An elementary skill needs to be learned to solve each
elementary task� Here Q�learning can be used and each elementary skill corresponds
to a Q�function� Q
s� action��

�� Learning a high�level skill� A high�level skill for coordinating the elementary
skills needs to be learned in order to solve the original task� Learning a high�level
skill is conceptually similar to learning and elementary skill� Again� Q�learning can
be used and the high�level skill corresponds to a Q�function� Q
s� skill��

In Lin	s work� the job of task decomposition and assigning reward functions to

sub�tasks is carried out by humans� the rest is learned by the robot� Lin	s results

show signi�cantly faster convergence and better performance for agents that use this

technique� compared to those learning an entire task at once�

Similarities between Lin	s decomposition and temporal�sequencing for assem�

blages of motor schemas �Section ������ are readily apparent� Lin	s sub�tasks or

elementary skills correspond to behavioral assemblages� while a high�level skill is a

sequence of assemblages� Learning at the high�level is equivalent to learning the

state�transitions of an FSA �as in Figure ���� and learning the elementary skills

corresponds to tuning individual states or behavioral assemblages�

A di�culty with reinforcement learning in complex tasks is that performance

may converge slowly� or not at all� The problem is aggravated when only occasional

�delayed� reinforcement is provided
 after the task is completed for instance� Some

other learning speedups Lin examined to address this include experience replay and

teaching �Lin���� Experience replay involves presenting sequences of previous experi�

ences to the Q�learning algorithm� Presumably this serves to reduce the problems of

having to gather costly or rare experiences more than once� For teaching� a human
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leads the robot through a series of actions to achieve the goal and the sequence of

experiences thus gathered are used to train the system�

����� Distributed RL

The reinforcement learning approaches outlined so far use a centralized scheme

for learning when particular sub�behaviors should be activated� Maes and Brooks

�MB��� propose an alternative� distributed mechanism� In their scheme� each behav�

ior learns for itself when it ought to be applied� They pre�de�ne a set of behaviors

and a set of binary perceptual conditions� Each behavior learns when it should be


on� or 
o�� based on the perceptual conditions� Positive and negative feedback are

provided to guide the learning�

The behaviors learn� for each perceptual condition� relevance and reliability of

the behavior to the condition� A behavior is relevant in the presence of a particular

condition if it is positively correlated to positive feedback� i�e� positive feedback is

likely to be received if the behavior is activated in that condition� A behavior is

reliable if the probability of receiving the feedback is close to �� The behaviors learn

both negative relevance �when they should be turned o�� and positive relevance

for each condition� Conditions that are neither positively or negatively relevant are

eventually dropped from consideration�

Maes and Brooks tested their approach on a robotic hexapod� Negative feedback

is provided if either the front or rear of the robot touches the ground� Positive

feedback is based on the rotation of a trailing wheel that measures forward motion�

The robot was able to learn to walk� using a tripod gait in two to ten minutes� This is

a signi�cant success� but mathematical properties �rate of convergence for instance�

of the technique have not yet been established rigorously�

��� Multi�robot systems

����� Dudek�s taxonomy

The taxonomy of multiagent systems introduced by Dudek �DJW��� is becoming

an important reference in multiagent literature� It provides a useful set of axes for

discriminating between the many types of multiagent robot systems� The following

is a synopsis of his taxonomy by dimension�
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SIZE The number of robots in the environment� Types include ALONE� PAIR� LIM 
a
limited number of robots� and INF 
unlimited��

COM Communication range� NONE� NEAR� INF�

TOP Communication topology� BROAD 
broadcast�� ADD 
address�� TREE and GRAPH�

BAND Bandwidth of the communication� ZERO� LOW� HIGH and MOTION� BAND�
MOTION is a special case where the communication cost is equal to the cost of
moving the robot between two locations�

ARR The rate at which the collective can spatially re�organize itself� STATIC� COMM

the members coordinate rearrangement using communication� and DYN 
dynamic��

PROC The processing ability of individual units in the collective� SUM 
non�linear sum�
mation�� FSA 
�nite state automaton�� PDA 
push�down�automaton�� TME 
Turing
machine equivalent��

CMP Composition� HOM 
homogeneous�� HET 
heterogeneous��

The taxonomy provides an important context for this research� In particular� the

CMP �composition� axis will be explored in terms of agent behavior�

����� Learning in behavior�based multi�robot systems

To date� only a few researchers have investigated learning in multi�robot systems�

most notably Matari�c �Mat��� Mat��� and Parker �Par���� Parker developed the

ALLIANCE architecture �Par��� for controlling teams of physically heterogeneous

robots� The system is built on the behavior�based subsumption architecture �Bro����

In a manner similar to temporal sequencing �Section ������� tasks are broken into

sub�tasks� with groups of behaviors addressing each sub�task� At the highest level�

mutually inhibitory motivational behaviors direct the overall behavior of the robot�

activating in turn lower�level behaviors that combine to solve the sub�task�

Along with the typical sensor�based conditions that might trigger motivational

behaviors Parker adds impatience and acquiescence� Impatience increases if no other

robot is attempting to solve the sub�task associated with a motivational behavior�

while acquiescence inhibits a behavior if the robot is not meeting with success� The

combined result of the ordinary conditions� impatience and acquiescence in a group

is that the group cooperates in striving to solve the overall task�

ALLIANCE was extended to L�ALLIANCE which provides for learning� Agents

in L�ALLIANCE are able to learn the abilities of other robots to complete sub�task
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This information� coupled with a strategy whereby the robot most suited for each

task executes it� enables robot teams to signi�cantly improve performance over other

techniques�

Matari�c	s work is more closely related to this research because it involves the use

of reinforcement learning� Her work in multi�robot learning systems is examined in

Section ������

��� Tasks for multi�robot systems

This research investigates the relationships between reinforcement function� perfor�

mance and diversity in three multi�robot tasks� robotic foraging� soccer and forma�

tion maintenance� This section introduces each task and provides some background

on the related research in each domain�

����� Robotic foraging

The forage task involves the collection of objects of interest �attractors� scattered

about the environment� In a typical strategy� an agent begins by wandering about

the environment looking for attractors� Upon encountering an attractor� the robot

moves towards it and grasps it� After attachment� the robot returns the object to

a home base� In some foraging strategies attractors may be handed o� to another

agent for �nal delivery�

Foraging has a strong biological basis� Many ant species� for instance� perform

the forage task as they gather food� Foraging is also an important subject of re�

search in the mobile robotics community
 it relates to many real�world problems

�Ark��� ABN��� BA��a� GM��� FM���� Among other things� foraging robots may

�nd potential use in mining operations� explosive ordnance disposal and waste or

specimen collection in hazardous environments �e�g� the Mars Path�nder rover��

At Georgia Tech� Arkin and Balch have investigated several homogeneous strate�

gies for robot foraging� �Ark��� ABN��� BBC����� Their work speci�cally investi�

gates the impact of of communication on performance in foraging teams� A motor

schema approach with temporal sequencing is utilized �Figure ��� illustrates an exam�

ple sequence from this work�� The results show that foraging agents can cooperate

without communicating� The investigation also found that simple communication

provides an important performance advantage over no communication at all� but
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complex communication does not provide an additional improvement� The research

is extended in this dissertation to include a more complex foraging task� several new

strategies �including heterogeneous approaches� and learning�

In related research� Goldberg and Matari�c have proposed a framework for inves�

tigating the relative merits of heterogeneous and homogeneous behavior in foraging

tasks �GM���� Like the research reported in this paper� their work focuses on me�

chanically identical� but behaviorally di�erent agents� They propose interference as

a metric for evaluating a foraging robot team� Interference refers to the situation

where two robots attempt to occupy the same place at the same time
 it is measured

as the amount of time agents spend avoiding one another� Since interference may

reduce the e�ciency of a robot team� Goldberg suggests pack and caste arbitration as

mechanisms for generating e�cient behavior and reducing interference� In the pack

scheme� each agent is arbitrarily assigned a place in the 
pack hierarchy�� Agents

higher in the hierarchy are permitted to deliver attractors before the others� In the

caste approach� only one agent completes the �nal delivery
 the other robots leave

their attractors on the boundary of a designated 
home zone�� The researcher	s re�

sults indicate that interference per unit time is maximized in homogeneous foraging

and minimized in pack foraging� In spite of the fact that interference is minimized

in the heterogeneous pack systems� homogeneous systems perform best in terms of

the number of pucks collected�

In separate research� Fontan and Matari�c have investigated a territorial hetero�

geneous foraging strategy where the search area is equally divided between agents

�FM���� Robots hand o� collected attractors from area to area� with the last agent

completing delivery to the homebase� Their work indicates that performance de�

grades if the number of robots is increased beyond a certain maximum�

Drogoul investigates several homogeneous foraging strategies in simulation �DF����

His research investigates the utility of laying 
crumbs� as path markers for other

agents� The idea was inspired by the technique of laying chemical trails to food

sources utilized by many ant species �HW���� Interestingly� the issue of agent�agent

interference arises in Drogoul	s work as well� In the most e�cient 
crumb�laying�

foraging strategy� performance is reduced when the number of agents exceeds a par�

ticular mark� To address this� a 
docker� behavioral strategy is explored� The docker

robots are able to pass attractors from one to another while remaining in a �xed po�

sition� In robot simulations using this behavior� spontaneous chains of agents arise�
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Instead of carrying attractors back to the base individually� they hand them from

one to another in the chain� When resource�rich areas are discovered� performance

is maximized in the docker strategy� The key drawback to this approach is the

mechanical challenge of building agents able to accomplish such hand o�s�

����� Learning robotic foraging

Matari�c has investigated learning for multi�robot behavior�based teams in foraging

tasks� Her work has focused on developing heuristic reinforcement functions for social

learning �Mat���� In one approach� the overall reinforcement� R�t�� for each robot is

composed of separate components� D�O and V � D indicates progress towards the

agent	s present goal� O provides a reinforcement if the present action is a repetition

of another agent	s behavior� V is a measure of vicarious reinforcement
 it follows the

reinforcement provided to other agents� She tested this approach in a foraging task

with a group of three robots� Results indicate that performance is best when the

reinforcement function includes all three components� In fact the robots	 behavior

did not converge otherwise�

In another multi�agent learning investigation Matari�c compares Q�learning with

a heuristic learning strategy for foraging� The new strategy utilizes a 
shaped�

reinforcement function where agents are rewarded as they accomplish parts of the

task� The heuristic approach is shown to perform signi�cantly better than Q�learning

and Matari�c concludes that Q�learning is not appropriate for multiagent learning

tasks�

The results reported in this dissertation contradict Matari�c	s conclusion regard�

ing the suitability of Q�learning for multi�robot learning� In this research� multiagent

teams using Q�learning converge to behaviors that perform as well as or better than

human�coded approaches� This result holds in foraging� as well as soccer and co�

operative movement tasks� Also� shaped reinforcement is shown to provide little

or no advantage over the standard performance�based rewards used in most other

reinforcement learning studies�

����� Robotic soccer

Robotic soccer is one of several task domains this research investigates� Soccer

is a particularly good task for multiagent research because it includes cooperation
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between teammates� competition versus an opponent and unpredictable dynamic

play�

In early robot soccer research� Sahota developed a system called Dynamite �Sah����

The Dynamite test�bed utilized remotely driven cars controlled by an o��board com�

puter� The computer was able to monitor the game through an overhead camera�

He proposed reactive deliberation as a control scheme� In this architecture� a high

level module �the Deliberator� selectively activates 
action schemas� to be run at the

lower level� The system did not include learning� but it was demonstrated to play

soccer well� Reactive deliberation bears some resemblance to AuRA in that a higher

level deliberation module selects schemas for execution by the lower level� but AuRA

o�ers the possibility of activating and integrating multiple schemas simultaneously�

Recent interest has sparked more research in robot soccer� Kitano and Asada

promote the Robot World Cup as a vehicle for multiagent research �KAK����� They

have developed an internationally agreed upon set of rules for a game involving

mobile robots and a separate simulation system using the same rules� Asada has

additionally investigated learning individual skills �e�g� shooting� for robot soccer

players�

����� Learning robotic soccer

Stone and Veloso have developed a multi�layered learning system for soccer �SV����

In their approach� individual agents are taught lower�level skills �rst� using a neural�

net technique� Higher�level behaviors are developed using decision trees� Although

the mechanism is di�erent �decision trees� the approach to training is similar to Lin	s

in that the lower level skills are developed �rst with higher�levels trained afterwards

�Lin����

Salustowicz� et al have investigated reinforcement learning in a simulated soc�

cer task �SWS���� Their research is focused on a comparison of PIPE and TD�Q

learning� PIPE is genetic programming variant �Koz���� while TD�Q is based on the

neural network approach introduced by Lin �Lin��� �note� TD�Q is distinct from Q�

learning�� The results indicate PIPE generates teams with better performance than

those trained using TD�Q� The work is similar to the approach used in this research

for training soccer agents� but with several important distinctions� In Salustowicz	s

approach the agents are implicitly homogeneous� All agents share the same policy�
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so it is impossible for heterogeneity to emerge� In contrast� in this work� each agent

develops an individual policy that may or may not correspond to that of the other

agents� Also� this research evaluates the impact of several competing reinforcement

strategies �local and global� while Salustowicz	s work utilizes global performance�

based rewards for all training�

����� Robot formation

Formation behaviors in nature� like �ocking and schooling� bene�t the animals that

use them in various ways� Each animal in a herd� for instance� bene�ts by minimiz�

ing its encounters with predators �Veh���� By grouping� animals also combine their

sensors to maximize the chance of detecting predators or to more e�ciently forage

for food� Studies of �ocking and schooling show that these behaviors emerge as a

combination of a desire to stay in the group and yet simultaneously keep a separa�

tion distance from other members of the group �CSB���� Since groups of arti�cial

agents could similarly bene�t from formation tactics� robotics researchers and those

in the arti�cial life community have drawn from these biological studies to develop

formation behaviors for both simulated agents and robots�

Formation is important in mobile multiagent applications where sensor assets

are limited� Formations allow individual team members to concentrate their sen�

sors across a portion of the environment� while their partners cover the rest� Air

Force �ghter pilots for instance� direct their visual and radar search responsibilities

depending on their position in a formation �For���� Robotic scouts also bene�t by di�

recting their sensors in di�erent areas to ensure full coverage �CGH���� Formation is

potentially applicable in many other domains such as search and rescue� agricultural

coverage tasks� security patrols and so on�

In the behavior�based approach utilized in this research� formation maintenance is

accomplished in two steps� �rst� a perceptual process� detect�formation�position�

determines the robot	s proper position in formation based on current environmental

data
 second� the motor process maintain�formation� generates motor commands

to direct the robot toward the correct location� Each robot computes its proper

position in the formation based on the locations of the other robots� Several mo�

tor schemas� move�to�goal� avoid�static�obstacle� avoid�robot and maintain�

formation implement the overall behavior for a robot to move to a goal location
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while avoiding obstacles� collisions with other robots and remaining in formation� An

additional background schema� noise� serves as a form of reactive 
grease�� dealing

with some of the problems endemic to purely reactive navigational methods �Ark����

In the most closely related approach� Parker simulates robots in a line�abreast

formation navigating past waypoints to a �nal destination �Par���� The agents are

programmed using the layered subsumption architecture �Bro���� Parker evaluates

the bene�ts of varying degrees of global knowledge in terms of cumulative position

error and time to complete the task� The approach includes a provision for obstacle

avoidance� but performance in the presence of obstacles is not reported� Parker	s

results suggest that performance is improved when agents combine local control with

information about the leader	s path and the team	s goal�

This research extends this earlier work by providing agents with the ability to

learn formation behaviors� At this writing� the author knows of no other multi�robot

formation research involving learning agents�

��� Social entropy theory

A precise de�nition of diversity in robot societies is important for this research� social

entropy is proposed as an appropriate metric of diversity in robot systems� Details

of social entropy in robot groups are provided in Chapter � and in �Bal��c� Bal��b��

Interestingly� sociologists have developed a similar �and eponymous� social entropy

theory as a means of explaining and evaluating social structure in human groups

�Bai�����

Brie�y� both human and robotic social entropy are based on information entropy�

a measure of randomness in communication systems� Greater entropy indicates more

randomness and disorder� Entropy in communication depends on the number of dis�

tinct symbols to be transmitted and the frequency of each symbol in a typical mes�

sage� Similarly� social entropy depends on the number of distinct types of individuals

in a society and their frequency of occurrence in the society� Both robotic and human

measures of social entropy depend on a categorization of agents into groups based

on di�erences between them�

The selection of an appropriate set of features or attributes on which to com�

�Although entropy was introduced as a tool in sociology as early as ����� the application of
entropy for the evaluation of robot systems is new and was developed independently�
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pare individuals is a heatedly debated topic in the sociological entropy literature�

The most frequently cited framework is �Bai��� by Bailey� Bailey employs a �ve�

dimensional system of mutable variables that describe each person in a society� For

each person� each variable has a particular value� People with similar attributes may

be grouped together� Bailey	s mutable variables are

� I� information� education� religious beliefs� political ideology�

� L� level of living� quality of life� income�

� S� space� location of residence�

� T� technology� level of technological skill�

� O� organization� position in organizational hierarchy�

The variables are referred to as 
mutable� because an individual is able� and even

likely� to change them through their life� For instance S is changed when someone

relocates� L changes when a person get a raise and so on� People are also ascribed

immutable characteristics like gender� time of birth �age�� skin color� etc� Since in this

research� the focus is on behavioral diversity in robots� the features for categorization

are somewhat di�erent� Agents are categorized on the basis of di�erences in behavior


the idea is compare their learned policies and group them according to similarities

in their strategies�

As an example of how entropy might be employed for social analysis� consider

how the spatial �S� distribution of Americans has shifted from rural areas to the

cities over the last ������ years� When we were primarily a rural society� the value

of S was likely to be di�erent for nearly all citizens� As people moved to the cities�

however� there was a greater and greater likelihood for many people to share the same

or similar S� This shift has served to decrease the entropy of our country	s spatial

distribution� indicating that we have become more ordered� at least with respect to

geography�

The use of entropy for similar purposes in sociology supports its use in robotics�

It is important to note that sociologists hardly ever calculate a numerical value for

the entropy of� say� the United States� Rather the idea is a framework for analysis�

It provides a way for researchers to analyze social change and structure�
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��	 Discussion and summary

This chapter reviews the important existing work related to the dissertation� It also

provides the reader with a background on the algorithms and techniques drawn from

others and employed in this work� Key points�

� Motor schema�based control is employed as the robot behavioral programming
platform �Ark�
	� Motor schemas are grouped together to form behavioral assem�
blages� Assemblages are activated in an appropriate sequence to accomplish a task�

� Q�learning� a reinforcement learning technique� is used to train robots when to
activate particular behaviors to accomplish a task �WD
�	�

� Social entropy is utilized as a quantitative measure of diversity in robot teams�
The technique is also used in sociology for evaluating the structure of human society
�Bai
�	�

� Robotic tasks including foraging� soccer and formation maintenance are explored
in this research� The signi�cant work of other researchers in these tasks is cited and
reviewed�

The research in this dissertation di�ers from other work in several important

respects� First� while other researchers are investigating performance in homogeneous

and heterogeneous robot systems� here we are primarily concerned with the origins of

heterogeneous and homogeneous behavior� The work is further distinguished by the

fact that learning agents are the central investigative tool� No commitment is made

in advance to any particular societal structure or arbitration mechanism� Instead� the

robots develop their own societal solutions� This opens up the possibility that new

forms of arbitration and cooperation may be discovered by the robots themselves�

Finally� we are interested in measuring the diversity of the resulting society and

utilize the metric of social entropy for that purpose �Bal��b��
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Chapter �

Methodology

A key contribution of this work is the idea that diversity should be evaluated

as a result rather than an initial condition of multi�robot experiments� In earlier

investigations researchers con�gured homogeneous and heterogeneous teams a priori�

then evaluated their performance �FM��� GM��� Par���� The latter approach is

useful when investigating the impact of diversity on performance� but it does not

provide for the study of diversity as an emergent property of agents interacting with

their environment� De�ning heterogeneity as an independent rather than dependent

variable enables the examination of diversity from an ecological point of view� We

can now ask questions like 
how does the number of agents impact diversity�� or


how does reward impact diversity in learning teams�� These issues are the core of

this work�

Along with the opportunity for new kinds of research� the paradigm of diversity

as a measured outcome presents new challenges� First� a quantitative measure of



diversity is necessary� Second� a methodology for employing the metric in the ex�

perimental exploration of diversity in multi�robot systems must be developed� The

issue of a quantitative metric is dealt with in Chapter �� The purpose of this chapter

is to introduce a methodology for investigating diversity in multi�robot systems and

to explain how it was applied experimentally�

��� Overview

Principled research in any �eld requires adherence to a methodological framework�

Over the last decade the Mobile Robot Laboratory at Georgia Tech has evolved and

re�ned a successful approach to behavior�based robot design and implementation�

Key components of the method are the use of simulation for experimentation and

behavioral prototyping along with veri�cation of the results on mobile robots�

The framework was extended signi�cantly in this research� First� a formal view of

multi�robot task is adopted
 multi�robot tasks are classi�ed according to how perfor�

mance is measured in them� This enables a principled description and exploration of

the multi�robot task space� Second� a classi�cation of reward functions is employed�

This classi�cation de�nes an experimental space for investigating the impact of re�

ward on multi�robot systems� To support these experiments� motor schema control

and reinforcement learning are integrated using a new object�oriented system for

behavioral speci�cation� Finally� new evaluation metrics necessary for the measure�

ment of diversity in multi�robot teams were developed and employed in the analysis

of experimental data�

The design and implementation of multi�robot systems and their experimental

evaluation is carried out in the following steps�

�� Task and performance metric speci	cation� This step de�nes performance�
one of the dependent variables of experimentation�

�� Behavioral design� In this phase� a library of behaviors are developed for solving
the task� Both hand�coded and learning systems are built using the behavioral
components�

�� Reinforcement function speci	cation� A goal of the research is to explore how
di�erent reinforcement functions impact performance and diversity in learning sys�
tems� In each task domain� several reinforcement functions are employed� with pri�
mary focus on the comparison of local and global rewards�
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�� Simulation� The behaviors and learning systems are prototyped and tested in sim�
ulation�

�� Implementation on mobile robots� Performance of the simulated system is vali�
dated on mobile robots� If inconsistencies are discovered the simulation environment
is re�ned to more closely approximate mobile robot performance�

�� Data collection� Multiple runs 
thousands� usually� are conducted in simulation�
and when possible� on mobile robots� The experimental space is explored by varying
the independent variables 
e�g� number of robots and�or the reward function��

�� Analysis� The data are analyzed using the performance metric the measures of
diversity presented in Chapter ��

The remainder of this chapter describes the methodology in more detail and

provides a high�level synopsis of the thesis experiments�

��� Task and performance speci
cation

The research was conducted using the same methodology in each of three multi�robot

task domains� Within each domain� quantitative performance data were gathered

to determine the utility of various reinforcement functions and their impact on the

robots	 societal structure�

In systems using reinforcement learning the best possible reward function is the

performance metric itself� Following this philosophy� the task for a robot team is

to maximize the performance metric� The tasks investigated in this work and their

performance metrics include

� multi�foraging� earlier multi�robot research de�ned the foraging task for a robot as
��nd all attractor objects and deliver them to a location 
or homebase�� �BBC�
��
ABN
�� Mat
�	� In multi�foraging� however� the task is extended to include coded
attractors and bases� Individual attractors must be delivered to a base of the same
color� red attractors to red bases� blue attractors to blue bases and so on� Do
agents diversify by specializing in the collection of one type of attractor or the other�
Performance in this task is de�ned as the number of attractors collected and properly
delivered in a set time period�

� robotic soccer� the task is to propel a ball by bumping and kicking to a goal�
The problem is complicated by an opposing team trying to do the same thing in
the opposite direction� The game is interesting for multiagent robotics research
because it is familiar� reasonable for implementation on mobile robots� and o�ers
opportunities for specialization� Do learning robotic agents specialize as humans do
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Figure ���� The forage FSA�


goalie� forward� etc��� The task has been explored by several researchers �KAK�
��
NMH
�	 and has been the focus of international competitions in �

� and �

��
Performance in soccer is de�ned as the di�erence in score at the end of a game�

� cooperative movement� The task is for a robot team to negotiate cluttered terrain
using the most e�cient formation behavior 
or none at all�� Is there an advantage to
traveling in a group� Earlier research by the author and Ron Arkin has shown that
some types of formation have an advantage over the others �BA
�b	� The primary
performance metric in this task is time to navigate across a speci�ed distance�

The relationship between task and performance is covered in depth in Chapter ��

��� Behavioral design

A schema�based reactive control system is used for robot programming� In this ap�

proach the agent is provided several pre�programmed behavioral assemblages that

correspond to steps in achieving the task� As an example� for a foraging robot we

might develop wander� acquire and deliver behaviors for steps in the task �AM����

Binary perceptual features �also referred to as perceptual triggers� are used to se�

quence the robot through the behaviors to complete the task� Selection of the ap�

propriate behavior�s� given the situation may be hand�coded or discovered by the

robot through reinforcement learning� In this work� both hand�coded and learning

systems are developed and evaluated side�by�side�

To ensure a fair comparison between the various hand�coded and learning systems�

a �xed repertoire of behaviors are developed for each task domain� In each case�

the repertoire is suitable for building behaviorally homogeneous teams as well as

heterogeneous strategies� Hand�coded agents proceed deliberately from behavior to

behavior as they accomplish the task while the learning agents must discover which

behavior to activate when�
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����� Example	 foraging

To illustrate how behaviors are developed and coded� consider the programming of

a foraging robot� In this example� a robot can be in one of three behavioral states�

wander� acquire and deliver� The robot begins in the wander state� If there are no

attractors within the robot	s �eld of view� the robot remains in wander until one

is encountered� When an attractor is encountered� a transition to the acquire state

is triggered� While in the acquire state� the robot moves towards the attractor and

when it is su�ciently close� grasps it� The last state� deliver� is triggered when the

robot grasps the attractor� While in the deliver state the robot carries the attractor

back to home base� Upon reaching home base� the robot deposits the attractor and

reverts back to the wander state� An FSA summarizing this behavioral con�guration

is presented in Figure ���� The behavioral states are composed of more primitive

behaviors �motor schemas� as follows�

� wander� move randomly about the environment in search of attractors� Upon en�
countering an attractor� the pre�programmed agents automatically transition to an
appropriate acquire behavior� Learning systems� in contrast� discover an appropriate
follow�on behavior on their own� Motor schemas active in the wander assemblage
are


 noise� high gain� moderate persistence to cover a wide area of the environment�


 avoid obstacles� gain su�ciently high to avoid collisions�


 avoid robots� high gain to encourage the robots to distribute about the search
area�

� acquire� move towards the closest visible attractor� When close enough to grasp
the attractor� hand�coded agents close their gripper and transition to the deliver
behavior� Learning agents must learn which follow�on behavior to activate� Motor
schemas activated in this assemblage include


 noise� low gain� to deal with local minima endemic to potential �eld ap�
proaches�


 avoid obstacles� gain su�ciently high to avoid collisions�


 avoid robots� gain su�ciently high to avoid collisions�


 move to attractor� high gain to move the agent to the attractor�

� deliver� move towards the delivery area� When close enough to deposit the attractor
in the delivery area� hand�coded agents open their gripper and transition to the
wander assemblage�
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 noise� low gain� to deal with local minima endemic to potential �elds ap�
proaches�


 avoid obstacles� gain su�ciently high to avoid collisions�


 avoid robots� gain su�ciently high to avoid collisions�


 move to homebase� high gain to move the agent to the delivery area�

In this simpli�ed example the robots select from only three behavioral assem�

blages� in actual foraging experiments the robots are provided six �see Chapter ���

The next section shows how these behaviors can be implemented in Clay� the behav�

ioral coding used in this research�

����� Con
guring behavior with Clay

Robot behaviors are implemented using Clay� a library of primitive behaviors and

coordination mechanisms coded in Java �Bal��a�� Clay is a component of JavaBots�

a new system for simulation and control of multi�robot teams� Clay is the �rst be�

havioral con�guration tool that integrates motor schema�based control and reinforce�

ment learning� The name 
Clay� was chosen for its connotations of recon�gurability

and ease of use� Robots utilizing Clay bene�t from the real�time performance of

motor schemas in continuous and dynamic environments and adaptive reinforcement

learning� Clay coordinates assemblages �groups of motor schemas� using embedded

reinforcement learning modules� The coordination modules activate speci�c assem�

blages based on the presently perceived situation� Learning occurs as the robot

selects assemblages and samples a reinforcement signal over time�

Clay is similar to earlier approaches integrating reinforcement learning and behavior�

based control �MC��� Lin��� Mat���� but it di�ers in several important aspects� First�

behavioral expression in Clay is fully recursive� there is no limit to the number of

levels in a behavioral hierarchy� Second� Clay	s primitive� the motor schema� provides

a rich repertoire for behavioral design �AB���� Motor schemas take full advantage

of continuous sensor values and can generate an in�nite range of actuator output


most of the other approaches only select from a discrete list of actions �SSR���� Fi�

nally� while experiments with Clay have so far only explored learning at one level the

designer is free to introduce learning at any level in the behavioral hierarchy� In pre�

vious research Georgia Tech	s Mobile Robot Laboratory developed a system called

MissionLab to support the design and test of sequenced behaviors on robots and

��



in simulation �MCA���� MissionLab includes a set of tools for recursively express�

ing sequenced behaviors� Like Missionlab� Clay provides for recursive expression of

behavior� but it adds learning coordination operators and an object�oriented syntax�

The basic building block in Clay is a node� There are two important phases in a

node	s life� intialization and runtime� Nodes have only two methods� corresponding

to these phases� the constructor� used for initialization
 and Value��� called repeat�

edly at runtime� The object�oriented approach provides for a direct expression of

schema instantiation and the embedding of perceptual schemas in motor schemas�

The embedding is speci�ed at initialization time using the node	s constructor� Here

is an example of how one node is embedded in another�

PS�OBS � new Obstacles�abstract�robot��

MS�AVOID�OBSTACLES � new Avoid����� 	��� PS�OBS��

In this case� a perceptual schema for detecting obstacles �PS OBS� is embedded

in an Avoid node� The resulting motor process MS AVOID OBSTACLES� will draw the

robot away from the perceived obstacles� The PS and MS pre�xes are used to help

readers and programmers distinguish between perceptual and motor schemas in the

code�

Note that the embedding provides for code re�use� We could� for instance� avoid

robots instead of obstacles by embedding a PS ROBOTS versus PS OBS in the Avoid

node� It is also possible to re�use instantiated nodes by embedding them in several

other nodes� In this next example� PS OBS is imbedded in an MS AVOID OBSTACLE

node and a MS SWIRL OBSTACLE node�

PS�OBS � new Obstacles�abstract�robot��

MS�AVOID�OBSTACLES � new Avoid����� 	��� PS�OBS��

MS�SWIRL�OBSTACLES � new Swirl����� 	��� PS�OBS� heading��

Nodes are combined by embedding them in a blending node� StaticWeightedSum

is an example blending node class� This type node is used for the 
sum and normal�

ize� step of schema and assemblage combining� It takes an array of nodes and an

array of weights as input at con�guration time� At runtime� it multiplies the output

of each embedded node by the associated weight or gain� then sums them� The fol�

lowing statements generate a new node� AS AVOID N SWIRL� that is the average of its

two embedded nodes�
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AS�AVOID�N�SWIRL � new StaticWeightedSum���

AS�AVOID�N�SWIRL�embedded
�� � MS�AVOID�OBSTACLES�

AS�AVOID�N�SWIRL�weights
�� � ����

AS�AVOID�N�SWIRL�embedded
	� � MS�SWIRL�OBSTACLES�

AS�AVOID�N�SWIRL�weights
	� � ����

Figures ��� through ��� show how foraging behaviors may be coded in Clay�

In this example a sequential �non�learning� system is con�gured� First� perceptual

schemas and the motor schemas they are embedded within are declared �Figure �����

Next �Figure ���� the behaviors are grouped into assemblages using a weighted�sum

operator� Finally� a high�level behavioral sequence is de�ned by coding it as an

FSA �Figure ���
 also shown graphically in Figure ����� Transitions between the

behavioral states are triggered when appropriate perceptual features become true�

The code in Figures ��� through ��� speci�es a multi�level hierarchical behavioral

system� The hierarchy is presented graphically in Figure ���� The lowest level percep�

tual features are declared �rst �e�g� PS HOMEBASE�� then embedded in motor schemas

�e�g� MS MOVE TO HOMEBASE� that are in turn embedded in behavioral assemblages

�e�g� AS DELIVER�� At the assemblage level� behaviors are combined cooperatively

using a weighted sum operator� At the next level up� assemblages are selected in se�

quence using an FSA� The highest level behavior� FORAGE� is at the top of a four�layer

recursive tree� If a designer was interested in building a more complicated agent with

foraging as one of its several capabilities� FORAGE could be included as just another

assemblage for integration at the next level up�

Control systems coded in Clay follow a perception!action cycle where each cycle

is referred to as a timestep or movement cycle� For each cycle� computation begins at

the top �e�g� FORAGE� and continues recursively downward through the con�gured as�

semblages and schemas� A potential di�culty for hierarchically speci�ed behavioral

systems is that as a behavioral con�guration grows more complex� run time compu�

tational demands increase dramatically� Clay avoids the problem by only executing

activated assemblages and schemas� Computational demands are also reduced when

the designer re�uses schemas in a con�guration �as PS ATTRACTORS is re�used above��

A synchronization technique ensures a schema	s output is only computed once per

movement cycle�

Reinforcement learning can be incorporated into a behavioral con�guration using

an additional coordination operator� CoordinateLearner� CoordinateLearner is
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����� Perceptual schemas

�� type of object in gripper ��� if nothing�

PS�IN�GRIPPER � new InGripper�abstract�robot��

�� sonar readings

PS�OBS � new Obstacles�abstract�robot��

�� other robots

PS�ROBOTS � new Teammates�abstract�robot��

�� location of the homebase

PS�HOMEBASE � new GlobalToEgo�abstract�robot� PS�HOMEBASE�GLOBAL��

�� the list of visible attractors

PS�ATTRACTORS � new VisualObjects�	�abstract�robot��

�� the closest attractor

PS�CLOSEST�ATTRACTOR � new Closest�PS�ATTRACTORS��

����� Motor schemas

�� sphere of influence �
�m� safety radius 	
�m� objects to avoid

MS�AVOID�OBSTACLES � new Avoid��
�� RADIUS � 	
�� PS�OBS��

�� sphere of influence 

�m� safety radius 	
�m� objects to avoid

MS�AVOID�ROBOTS � new Avoid�

�� RADIUS � 	
�� PS�ROBOTS��

�� generate a new random direction every five seconds

MS�NOISE�VECTOR � new Noise���seed��

�� attraction decreases linearly inside 	
�m constant beyond that

MS�MOVE�TO�HOMEBASE � new LinearAttraction�	
�� 	
	� PS�HOMEBASE��

�� attraction decreases linearly inside 	
�m constant beyond that

MS�MOVE�TO�ATTRACTOR � new LinearAttraction�	
�� 	
	� PS�CLOSEST�ATTRACTOR��

Figure ���� Clay source code for the declaration of perceptual and motor schemas em�
ployed in the foraging task� For clarity� a PS pre�x is used in the declaration of a perceptual
schema� while MS is used for motor schemas� Note how the syntax supports the embed�
ding of perceptual schemas in motor schema declarations� For example� the PS HOMEBASE

perception is embedded in the MS MOVE TO HOMEBASE motor schema�
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����� Wander assemblage

AS�WANDER � new StaticWeightedSum���

AS�WANDER
weights�	� � �
	�

AS�WANDER
embedded�	� � MS�NOISE�VECTOR�

AS�WANDER
weights��� � 	
��

AS�WANDER
embedded��� � MS�AVOID�OBSTACLES�

AS�WANDER
weights�
� � 	
��

AS�WANDER
embedded�
� � MS�AVOID�ROBOTS�

����� Acquire assemblage

AS�ACQUIRE � new StaticWeightedSum���

AS�ACQUIRE
weights�	� � 	

�

AS�ACQUIRE
embedded�	� � MS�NOISE�VECTOR�

AS�ACQUIRE
weights��� � 	
��

AS�ACQUIRE
embedded��� � MS�AVOID�OBSTACLES�

AS�ACQUIRE
weights�
� � 	
��

AS�ACQUIRE
embedded�
� � MS�AVOID�ROBOTS�

AS�ACQUIRE
weights��� � �
	�

AS�ACQUIRE
embedded��� � MS�MOVE�TO�ATTRACTOR�

����� Deliver assemblage

AS�DELIVER � new StaticWeightedSum���

AS�DELIVER
weights�	� � 	

�

AS�DELIVER
embedded�	� � MS�NOISE�VECTOR�

AS�DELIVER
weights��� � 	
��

AS�DELIVER
embedded��� � MS�AVOID�OBSTACLES�

AS�DELIVER
weights�
� � 	
��

AS�DELIVER
embedded�
� � MS�AVOID�ROBOTS�

AS�DELIVER
weights��� � �
	�

AS�DELIVER
embedded��� � MS�MOVE�TO�HOMEBASE�

Figure ���� Source code for the declaration of behavioral assemblages used in foraging�
The AS pre�x indicates the declaration of a behavioral assemblage� Motor schemas are
cooperatively combined using the StaticWeightedSum operator� Note how the syntax
supports reuse of motor schemas 
e�g� MS AVOID OBSTACLES� in several assemblages�
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����� Perceptual Features

�� true if an attractor is visible

PF�ATTRACTOR�VISIBLE � new NonZero�PS�CLOSEST�ATTRACTOR��

�� true if an attractor has been grasped

PF�ATTRACTOR�IN�GRIPPER � new Equal�	� PS�IN�GRIPPER��

�� true if close enough to homebase to deposit the attractor

PF�CLOSE�TO�HOMEBASE � new Close�PS�HOMEBASE��

����� Behavioral state machine

STATE�MACHINE � new FSA��� �� declare the state machine

STATE�MACHINE
state � 	� �� set initial state to 	 �wander�

�� if an attractor is visible� transition to state � �acquire�

STATE�MACHINE
triggers�	��	� � PF�ATTRACTOR�VISIBLE�

STATE�MACHINE
follow�on�	��	�� ��

�� if an attractor in gripper� transition to state 
 �deliver�

STATE�MACHINE
triggers����	� � PF�ATTRACTOR�IN�GRIPPER�

STATE�MACHINE
follow�on����	�� 
�

�� if at homebase� go back to state 	 �wander�

STATE�MACHINE
triggers�
��	� � PF�CLOSE�TO�HOMEBASE�

STATE�MACHINE
follow�on�
��	�� 
�

����� Select assemblage based on behavioral state

FORAGE � new Select�STATE�MACHINE�� �� declare selector

�� activate appropriate behavior based on state

FORAGE
embedded�	� � AS�WANDER�

FORAGE
embedded��� � AS�ACQUIRE�

FORAGE
embedded�
� � AS�DELIVER�

Figure ���� A behavioral sequence is con�gured using the FSA operator in Clay� A PF

pre�x indicates the declared object is a perceptual feature� Transitions between behavioral
assemblages are triggered by perceptual features�
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FORAGE

MS_NOISE_VECTOR

AS_WANDER AS_DELIVER AS_ACQUIRE

MS_MOVE_TO_HOMEBASE MS_MOVE_TO_ATTRACTOR

MS_AVOID_ROBOTSMS_AVOID_OBSTACLES PF_ATTRACTOR_VISIBLE

PF_CLOSE_TO_HOMEBASE

PF_ATTRACTOR_IN_GRIPPER

STATE_MACHINE

PS_IN_GRIPPERPS_HOMEBASEPS_OBSTACLES PS_ROBOTS PS_ATTRACTORS

Figure ���� A graphical representation of the hierarchically con�gured FORAGE behavior�
Pre�xes are used to indicate perceptual schemas 
PS�� motor schemas 
MS�� behavioral
assemblages 
AS� and perceptual features 
PF��


plug compatible� with the FSA operator �see the bottom of Figure ��� for an example

use of FSA�� CoordinateLearner is able to learn to select appropriate assemblages

rather than following a �xed sequence� At con�guration time� an instantiation of

CoordinateLearner is provided an embedded reward schema that it uses for learning

over time� Any learning module that conforms to Clay	s Application Programmer	s

Interface �API� can be integrated into a behavioral con�guration� Q�learning was

used in this research�

��� Reinforcement function speci
cation

The next step in learning multi�robot team development is the speci�cation of ap�

propriate reinforcement �or reward� functions� One focus of this research is to �nd

out if and how the choice of reward function impacts performance and diversity in

di�erent tasks� In the experiments described in later chapters� performance is �rst

evaluated in learning teams using a global function� Global functions are those where

the entire team of robots is provided the same reward signal at once� Performance

with the global function serves as a baseline for comparison with teams using other

functions� In addition to the global function robot teams were also trained using

a local reward function� Learning agents using a local reinforcement function are

rewarded for their individual performance rather than the overall performance of the

team� Even though local rewards are targeted to the individual robot� they may� in

some cases require global information for implementation� For more information on

reward functions see the classi�cation of reinforcement functions in Chapter ��
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The reward functions used experimentally are listed below �they are also described

in corresponding chapters later in the dissertation�� Each reward function is de�ned

at timestep t based on events occurring at timestep t� � as follows�

� For multi�robot foraging three functions were explored� performance�based global�
performance�based local and heuristic functions�

Rglobal
t� �

�
� if any agent delivered an attractor at time t � �

�� otherwise

Rlocal
t� �

�
� if the agent delivered an attractor at time t� �

�� otherwise

Rshaped
t� � Revent
t� �Rintruder
t� � Rprogress
t�

The Revent� Rintruder and Rprogress components of Rshaped encapsulate separate heuris�

tic components of the overall reward� See Chapter � for more information on this

reward function�

� For robot soccer three performance�based functions were examined�

Rglobal
t� �

���
��

� if the team scored at t� ��
�� if the opponent score at t � ��
� otherwise�

Rlocal
t� �

�������
������

� if the agent was closest to the ball
when its team scores�

�� if the agent was closest to the ball
when the opposing team scores�

� otherwise�

Rtouch
t� �

���
��

�ttouch when the team scores�
��ttouch when the opponent scores�

� otherwise�

Even though implementation of Rlocal requires global information the reward is re�

ferred to as local because the reinforcement based on the individual�s performance�

In Rtouch the variable ttouch is time in milliseconds since the agent last touched the

ball� The parameter � is set to values between � and �� When � � � Rtouch is

equivalent to Rglobal� As � is reduced towards �� the reward becomes increasingly

agent�centered�

� For cooperative movement two reward functions were tested�

Rglobal � �elapsed time for all robots to cross the �eld

Rlocal � �elapsed time for the individual robot to cross the �eld
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These functions reward agents for moving across the �eld as quickly as possible� In

this task only a single reward is provided at the end of the run�

��� Simulation

Many autonomous robot designers use simulation as a tool to speed behavioral de�

velopment� Once behaviors work well in simulation they are moved to mobile robots

for further debugging and veri�cation� Simulation plays a valuable role in experi�

mentation� In the time it takes to complete a few runs on mobile robots� simulation

systems can complete thousands� perhaps millions of multiagent trials� Simulation

is also important for use in learning systems where many thousands of trials may be

required for an agent to learn a behavior or strategy� It would be impossible to con�

duct such learning on a mobile robot in a timely manner� Finally� simulation enables

the exploration of a larger experimental space than would otherwise be possible�

The JavaBots system is utilized for simulation and mobile robot experimentation

�Bal��� Bal�� Behaviors coded in JavaBots may be run in simulation� and without

modi�cation� on Nomadic Technologies	 Nomad ��� mobile robots �the ISR Pebbles

robot is also supported�� The bulk of statistical results in this work were gathered

by running robot behaviors in thousands of simulation trials�

In the foraging and cooperative movement investigations� each robot is a kinemat�

ically holonomic vehicle �a simulated Nomad ���� controlled by a behavioral system

coded in Clay� Simulated motor and sensor capabilities are based on performance

of the physical robots� The robots can detect hazards with sonar out to a range

of nine meters� Attractors can be detected visually out to three meters across a ��

degree �eld of view� In soccer experiments� dimensions and dynamics are based on

RoboCup F���� class robots� Speed and turning rates mimic the performance of

mobile robots built for RoboCup competition �Sto����

The external environment perceived by robot control systems in simulation is

described in a �le read by the simulation application at run time� Multiple robots

may be distributed about a 
playing �eld� along with obstacles� opponent robots

and attractor objects� Even though some control systems utilize a pseudo�random

number generator �e�g� NOISE�� determinism is supported with a seed statement in

the description �le syntax� Time is measured in simulated seconds� Since reactive

control systems are very fast� several thousand control cycles are completed each

��



second� Simulations proceed faster than real time with each control cycle �xed at

��� milliseconds �simulation time��

��� Implementation on mobile robots

Figure ��
� Nomad ��� robotic platform� Close�up view of the passive gripper 
right��

Simulated behavior should be validated with experiments on mobile robots� When

discrepancies are found between behavior in simulation and on real robots� the simu�

lator must be revised to re�ect real world performance �such discrepancies are most

often due to inaccurate sensor or actuator modeling�� The multi�robot foraging be�

haviors developed in this research were prototyped in simulation and veri�ed on

Nomadic Technologies	 Nomad ��� robots� Since the behaviors are implemented in

JavaBots� they can run in simulation and on hardware without revision�

Learning systems are developed and evaluated on mobile robots in the following

steps�

�� initialize control system on mobile robot
s� with a random policy�

�� evaluate performance of the initial policy�

�� transfer policy to simulation system�

�� train in simulation�

�� transfer policy back to mobile robot
s��

�� evaluate performance on mobile robot
s� after learning�

These steps are covered in more detail on the chapter concerning multi�robot

foraging �Chapter ���
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����� Hardware platform

The Nomad ��� is a three�wheeled commercially available kinematically holonomic

vehicle �Figure ���� left�� Nomad ���s are equipped with a separately steerable

turret� �� ultrasonic range sensors and a ring of rubber bump sensors� The robots

were modi�ed at Georgia Tech to add real�time vision and grippers�

Each robot	s vision system is able to segment video images into blobs according to

color �� times per second� The location of objects detected as blobs in the image are

determined in JavaBots using a lookup table that maps image coordinates to real�

world locations� The lookup table is computed before experimental runs by moving

a robot to known positions while it tracks a brightly painted object at the origin�

The robot	s �eld of view was expanded to approximately ��� degrees by mounting a

security door lens �peep�hole� to the robot	s video camera� Unfortunately� only the

central �� degrees are usable because objects at the periphery are quite small in the

image� The two types of attractor object used in foraging experiments are painted

di�erent colors ��uorescent red and green� to enable the robots to tell them apart�

Example images generated by the vision system are presented in Figure ����

The robots were equipped with hobby servo�actuated grippers that enable them

to grasp and lift attractors� The active grippers work well� but frequently require

time�consuming repair� For later experiments the active grippers were replaced with

passive devices �Figure ���� right�� The passive gripper is designed so that once a

robot has 
captured� an attractor object it will remain under the robot	s control as

long as the robot does not move backwards� Robots then drop attractors by moving

in reverse�

Figure ���� Mobile robot�s eye view of several attractor objects 
left�� After processing
to segment out red objects 
right��
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��	 Data collection and analysis

Within each task domain an experimental space was explored by varying one or

more independent variables and evaluating the resulting systems� Statistical signi��

cance was ensured by simulation in multiple 
worlds� initialized with distinct random

number seeds� Within each task the question of how the choice of reward impacts

multi�robot teams was explored by varying the reward function� Additionally� the

number of robots was varied from � to � for simulation experiments in robot forag�

ing� � and � agents were used mobile robot experiments� The dependent variables in

these experiments are

� performance� How well does the multiagent system perform in the task�

� learning rate� How quickly does the team converge to stable behavior�

� diversity� Once the system has converged to stable behavior� what is the degree of
diversity in the team�

Performance is de�ned separately for each task �e�g� score di�erence in soccer��

Since learning agents don	t always perform well initially� it is also important to con�

sider their learning rate� Some systems require a long time to converge to optimal

or near�optimal solutions while others converge to su�cient� but sub�optimal solu�

tions quickly� So� in addition to measuring against the performance metric� the time

required for a team to converge to stable behavior is recorded as well�

The experimental space is summarized below�

� in multi�robot foraging


 independent variables�

� strategy� � hand�coded strategies and � learning strategies�

� number of robots� � to � for each strategy�


 worlds� � worlds for each combination of independent variable�


 runs in each world� ��� in hand�coded systems� ��� in learning�


 total trials� ������ in simulation� �� on mobile robots�

� in robot soccer


 independent variables�

� reward function� �� including Rlocal� Rglobal and Rtouch�

� � for Rtouch was varied from ��� to ��� in steps of ����
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 worlds� �� worlds for each combination of independent variable con�guration�


 runs in each world� ��� for Rlocal and Rglobal� ��� for each value of � in
Rtouch runs�


 simulation trials� ������ in simulation�

� in cooperative movement


 independent variables�

� strategy� � hand�coded and � learning strategies�


 worlds� � worlds for each strategy independent variable con�guration�


 runs in each world� ����


 total trials� ����� in simulation�

��� Discussion and summary

An important contribution of this work is the idea that diversity should be measured

as an experimental outcome rather than speci�ed as an initial condition� The view

of diversity as a dependent variable enables us to investigate new questions about

multi�robot systems� including one focus of this work� the impact of reward structure

on diversity in learning multi�robot systems�

The investigation of these questions lead to the development of a new methodol�

ogy for multi�robot experimentation Steps in the methodology include

�� task and performance metric speci	cation�

�� reinforcement function speci	cation�

�� behavioral design�

�� simulation�

�� implementation on mobile robots�

�� data collection and

�� analysis�

Several components of this framework are new� First� a formal view of multi�

robot task is adopted
 this enables a principled description and exploration of the

multi�robot task space� Second� a classi�cation of reward functions is employed� This

classi�cation de�nes an experimental space for investigating the impact of reward on

multi�robot systems� Also� to support these experiments� motor schema control and
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reinforcement learning are integrated using a new object�oriented system for behav�

ioral speci�cation� Finally� new evaluation metrics necessary for the measurement

of diversity in multi�robot teams were developed and employed in the analysis of

experimental data�
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Chapter �

Task and Reward

An objective of this research is the development of a methodology supporting

investigation of the impact of reinforcement and task on robot team behavioral di�

versity and performance� This dissertation examines the relationships experimentally

by varying the the independent variables �reinforcement and task� and evaluating

their impact on the dependent variables �diversity� performance and learning rate��

Characterization of the task and reward structure is crucial for establishing the ex�

perimental space of this research�

Task characterization is important because it helps answer questions regarding

how the same type of reinforcement can lead to di�erent performance and and di�

versity levels in di�erent tasks� Without answering 
how are soccer and foraging

di�erent�� for instance� we can	t answer 
why is diversity good in soccer but bad in

foraging��

A taxonomy of reward structure is also important� Research presented in later



chapters shows that performance and diversity in a learning team depend on the form

of reinforcement used to train the robots� The results indicate that there are tradeo�s

to consider in the selection of a reward function
 for instance some functions provide

quicker learning but slightly poorer performance� Without a characterization of the

di�erences between reward functions� it would be impossible for a robot systems

designer to consider these tradeo�s intelligently�

At present no taxonomies of task or reinforcement exist� To address this crucial

gap a new system for characterizing multi�robot tasks and a taxonomy of reinforce�

ment functions for multi�robot teams are presented� As well as aiding this investi�

gation� these classi�cations are potentially useful for other researchers investigating

multiagent robotics�

��� Characterization of multi�robot tasks

The reinforcement learning literature considers the task and the performance metric

as one and the same� That view is adopted here
 a robot team	s mission is to

maximize performance over time� But there are other components of a task as well�

In addition to the performance metric� a task is further de�ned by the environment

and robotic platform� Since the investigation focuses on links between task and

diversity� we seek a classi�cation identifying aspects of a task that may be correlated

with a requirement for cooperation and!or diversity in a robot team�

The approach is to examine the task performance metric� task environment and

robotic platform for constraints and features that distinguish various tasks from one

another� The focus is on tasks involving the movement of robots or the movement of

objects by robots� In a manner similar to Dudek	s taxonomy of multi�robot systems

�DJW���� a set of descriptive tags that identify salient features of a task are proposed�

Although similar in style to Dudek	s formulation� this classi�cation focuses on task

rather than robot�

The descriptive tags are summarized in Table ��� and explained in detail in the

following subsections� Several example tasks are examined and classi�ed using the

descriptors at the end of this section�
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Table ���� Summary of terms characterizing Multi�robot tasks�

Descriptor Meaning

Time

TIME LIM �xed time task
TIME MIN minimum time task

TIME UNLIM unlimited time task
SYNC synchronization required

Subject of Action

OBJECT BASED movement�placement of objects is important
ROBOT BASED movement�placement of robots is important

Limited Resources

RESOURCE LIM limited external resources
ENERGY MIN minimum energy task
COMP INT team members compete with each other
COMP EXT team competes with external agencies

Movement

CONVERGENCE multiple robots converge to same position
COVERAGE multiple agents spread apart

MOVEMENT TO movement to a position
MOVEMENT WHILE movement while maintaining position

Platform

SINGLE AGENT a single agent can perform task
MULTI AGENT multiple agents are required
DISPERSED agents must be geographically dispersed

SENSOR COMPLETE can sense all relevant features
SENSOR LIM world is partially observable

COMM communication is required
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����� Time

Most task de�nitions include a time constraint� The AAAI��� 
Find Life on Mars�

task for instance� required robots to collect as many objects as possible in �� minutes�

For some tasks a robot	s performance is evaluated by how long it takes to complete

the task� This section considers various task time constraints�

Evaluations of robot systems are typically conducted in discrete experimental

trials� TIME LIM tasks are those where each trial runs over a �xed length of time�

while TIME MIN refers to tasks where performance is measured as the time required

to complete a task� An example TIME LIM task is 
collect as many attractors as

possible in �� minutes�� An example TIME MIN task would be 
collect �ve attractors

as quickly as possible��

Some tasks do not have a time constraint
 they are referred to as TIME UNLIM�

TIME UNLIM tasks are either carried out inde�nitely� or terminate on non�time�related

criteria� An example inde�nite time task might be 
patrol the building for burglars�

or 
balance the pole�� The soccer experiments explored later in this work �Chapter

�� are TIME UNLIM since they do not end on a time limit� but rather when a total of

number of goals are scored�

In addition to elapsed time constraints� some tasks include a synchronization

requirement� One example is the task of pushing two buttons simultaneously� These

are labeled SYNC tasks� Communication between agents is one way to accomplish

SYNC tasks� but other mechanisms �such as clock synchronization�� are also available�

����� The subject of action

Some tasks involve the placement or movement of an external object �e�g� the ball in

soccer� while others concern the positioning of the robotic agent itself �formation��

Tasks involving external objects are termed OBJECT BASED tasks while those involving

the agents themselves are ROBOT BASED tasks�

����� Limited resources and competition

Many tasks� like foraging� involve limited environmental resources
 as an agent per�

forms the task it consumes the resource thus making the task more di�cult� In mul�

tiagent systems� limited resources may force the agents on a team into competition
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between themselves or with external agencies� In addition to external environmental

resources the robot may also have to monitor internal resources� such as fuel�

Tasks that involve limited resources are termed RESOURCE LIM� Robotic foraging

is typically a RESOURCE LIM task because there are only a �xed number of objects

available for the robots to collect� When agents on a team compete with each other

for a limited resource� the task is referred to as COMP INT �internally competitive��

Foraging is internally competitive since one agent	s success in collecting an object�

reduces the opportunity for others� When the agents compete with external forces�

the task is COMP EXT� Soccer is a COMP EXT task because the agents on one team

compete with the �external� agents on the other team for the opportunity to score

goals�

RESOURCE LIM refers speci�cally to resources external to the agent �e�g� attrac�

tors� versus internal resources �e�g� fuel�� Tasks that call for fuel and!or energy

conservation are referred to as ENERGY MIN tasks� 
Dock the boat using minimum

fuel� is a TIME UNLIM ENERGY MIN task�

����� Movement

The coordinated movement of several robots is important in search� surveillance�

grazing and cleaning tasks� Ali has developed a taxonomy of robotic movement

tasks in his investigation of human control techniques for multi�robot teams �Ali����

His terms� COVERAGE� CONVERGENCE� MOVEMENT TO and MOVEMENT WHILE are adopted

here for the description of multiagent movement tasks�

Multi�robot movement tasks are broken into two primary classi�cations� COVERAGE

and CONVERGENCE� In coverage tasks the robots spread out as much as possible� Ex�

amples include search� grazing and cleaning tasks� In convergence tasks robots gather

together from dispersed locations� The description of movement tasks is further re�

�ned by whether the a robot should move to a position or move while maintaining

a position� In MOVEMENT TO tasks the robots move from their starting locations to a

particular con�guration� while in MOVEMENT WHILE tasks the robots are to maintain

a con�guration while moving�

��



����� Platform dependencies

The capabilities and limitations of the robotic platform can signi�cantly impact the

space of potential solutions� A large multi�armed tank robot for example� may be

able to individually accomplish many tasks that would otherwise require dozens of

smaller robots� Other issues of robot platform� like sensor ranges� can a�ect the

space of possible solutions as well�

Consider the task of transporting a cookie to a homebase� For humans� this is

a single�agent problem� pick up the cookie� carry it home� But for ants the task

assumes epic multiagent proportions� Tasks in which an individual agent is able to

generate positive performance are referred to as SINGLE AGENT� If it is unlikely that

a single agent can perform suitably � that several agents are required � the task is

MULTI AGENT�

Tasks that require agents in several widely separated places at once are DISPERSED�

Dispersion might be required because of size� reach� actuator or sensing limitations

of individual robots on the team� An example of this type of task is one in which

two buttons on opposite sides of a building must be pushed simultaneously �this is

also a SYNC task�� A task requiring continuous surveillance over areas larger than an

individual robot	s sensor range require dispersion as well� Soccer is a DISPERSED task

since the ball can move rapidly from one part of the �eld to another
 players must

be dispersed to ensure e�ective play� Many COVERAGE tasks� like coordinated search�

are DISPERSED because the agents must spread apart to ensure more complete sensor

coverage� Formation tasks are not DISPERSED because� in formation� agents must be

relatively close together with respect to the environment�

In some tasks for robots the agents are provided perfect� or nearly perfect sens�

ing� In other words the agent knows� with complete accuracy� every aspect of the

environment	s state germane to the task� Many tasks examined in the reinforcement

learning literature share this attribute �e�g� the acrobot �Boo����� These tasks are re�

ferred to as SENSOR COMPLETE� It is often impossible however for an individual agent

to sense all aspects of the environment relevant to the task� Even if the robot has a

comprehensive sensor suite� the sensors may be degraded in actual use by noise and

occlusion� Such tasks are referred to as sensor limited or SENSOR LIM tasks�

The decision problem for robots in a SENSOR LIM task is partially observable

�LCK���� This means that many distinct situations may be perceived as equivalent
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by the robot� For instance� as a foraging agent delivers an attractor� it might perceive

itself as being in the same state whether it is � meters or � meters from the delivery

area�

Finally� tasks that cannot be accomplished without communication are referred

to as COMM tasks� The requirement for communication may be a consequence of

sensor limitations� It can be argued for example� that with complete sensing� explicit

communication is never required� SENSOR LIM DISPERSED SYNC tasks however are

likely to require communication as a means of achieving synchronization�

����� Classi
cation of example tasks

The classi�cation system outlined above is used in later chapters to classify tasks

in the experimental investigation� The classi�cation of tasks and the evaluation of

diversity and performance of robot systems executing them will help identify which

kinds of task are best served by diverse teams� Consider the following two tasks as

examples of how classi�cation works�

A foraging task might be expressed as 
maximize the number of attractors deliv�

ered to homebase in �� minutes�� Or more explicitly as

delivered
Ai� t� �

�
� if object Ai is in the delivery zone at time t
� otherwise


����

P �
NX
i��

delivered
Ai� t� � ��min� 
����

where delivered�Ai� t� indicates whether object Ai is in the delivery area at time

t� N is the number of objects available for collection� P is performance� the number

of objects in the delivery area �� minutes after the start of the experiment �t���

The performance metric includes constraints on time �a �� minute limit� and on the

spatial arrangement of the collected objects �they must be in the delivery area�� For

this task there are no constraints on the location or number of robots� This foraging

task is

� TIME LIM because performance is measured over a �xed period�

� OBJECT BASED since performance is based on the location of objects� not agents��

� RESOURCE LIM because as agents collect objects� the the availability of attractors is
reduced��
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� COMP INT because robots on a team compete for access to attractors among them�
selves�

� SINGLE AGENT since an individual agent can perform positively� even though multiple
agents may provide improved performance�

Now consider a formation maintenance task� 
minimize total position error for

four robots in a diamond formation�� or mathematically�

error
Ri� t� � j positioni
t�� desired positioni
t� j 
����

P � �
t����minX
��t�

f
�X
i��

error
Ri� ��g 
����

where error�Ri� t� is the formation position error for robot i at time t and P is

the sum of errors of the four robots over �� minutes� This task is distinguished from

the foraging task above in that the positions of the agents themselves are important

rather than the positions of objects to be manipulated� This task is

� TIME LIM because the task is carried out over �� minutes�

� ROBOT BASED because performance depends on the location of agents� not objects�

� CONVERGENCE since the agents should maintain speci�c positions close to one another�

� MOVEMENT WHILE because convergence should be maintained while the robots move�

� MULTI AGENT since it implicitly requires four agents�

��� A taxonomy of reinforcement functions

The reinforcement function is usually closely coupled to the performance metric for a

task� In fact many reinforcement learning investigations consider performance� task

and reward as one and the same� Since learning agents strive to maximize the reward

signal provided them� performance is maximized when their reward closely parallels

performance� It is sometimes the case however� that agents cannot or should not be

rewarded strictly according to overall system performance� Some examples include�

� The robot�s sensors do not provide enough information for an accurate computation
of performance�

� The delay in receiving a reward is too great� learning a sequential task is too di�cult
and�or takes too long�
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� Performance depends on the actions of other agents over which the agent has limited
knowledge and�or control�

As a result� the performance metric �task� and reward function are often quite

di�erent and must be treated separately� The following sections enumerate the vari�

ous kinds of reward structure that have been developed �by the author and others� in

response to the issues listed above� The taxonomy is summarized in Table ���� Each

type has advantages and disadvantages
 the challenge for the designer is to select a

reinforcement function that most e�ectively balances these trade�o�s�

Table ���� Summary the Multi�robot reward taxonomy�

Descriptor Meaning

Source of reward

INTERNAL SOURCE reward is internal based on sensor values
EXTERNAL SOURCE reward is generated by external agent

COMB SOURCE combined internal and external reward

Relation to performance

PERFORMANCE reward is tied directly to performance
HEURISTIC reward based on intuition of state value

Time

IMMEDIATE immediate rewards are provided
DELAYED reward is delayed

Locality

LOCAL individual agents receive unique rewards
GLOBAL all agents receive identical reward signal

COMB LOCALITY combination of local and global

Continuity

DISCRETE several discrete reward values
CONTINUOUS reward drawn from continuous interval

����� Source of reward

A reinforcement function is classi�ed as INTERNAL SOURCE or EXTERNAL SOURCE de�

pending on whether the learner computes a reward internally based on its own sen�

sors� or the reward is computed externally by another agent� As an example of an
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externally generated reward� consider a dog being trained by his master to fetch

a ball� Reinforcement in this case is provided through verbal cajoling� e�g� 
no��


good dog�� etc� Notice that the pet	s reward is based on its sensing of the trainer	s

mood and not the location of the object to be fetched� Similarly we might train

a robot by equipping it with 
reward� and 
punish� buttons to be activated by a

trainer according to his evaluation of the desirability of the robot	s behavior� This

is the approach Yanco utilized in training a team of communicating robots �YS����

External rewards might be useful in commercial intelligent systems applications

where the manufacturer cannot anticipate how the consumer will use the product�

It would be unreasonable for example� to assume that the purchaser of an intelligent

water heater would be inclined �or able� to program a reward function for it� A more

realistic interface is the provision of a 
punish� button to be pressed when the heater

fails to turn on and the user receives a a cold shower�

A potential problem with external reward systems however� is the possibility of a

mis�match between the agent	s sensors and those of the trainer� Suppose the water

heater	s owner takes showers later in the day on weekends than on weekdays� Unless

the heater is equipped with a time of day and a day of week clock it will be impossible

for it to di�erentiate between weekends and weekdays� The result being that the

heater must remain on for the entire morning to avoid negative reinforcement�

In addition to the potential for sensor mis�match� external rewards complicate the

learning problem for planning systems� If the reward is not provided to the planner

as a function of sensor state and robot action� the robot must additionally learn a

model of the external rewarding agent� To avoid this problem� all of the experiments

in this research are conducted using internal reward functions�

There are some situations where it might be appropriate for an agent to take part

of its reward from an external source and derive part of it internally� As an example�

a dog may need to satisfy its hunger by eating �internal�� but also wish to please its

owner �external�� A third descriptor COMBINED SOURCE is used for reward structures

that combine internal and external rewards�

����� Relation to performance

A reward function is de�ned as PERFORMANCE if and only if maximum reward implies

optimal performance� As an example of a PERFORMANCE�based reinforcement function
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consider the task of docking a boat in minimum time� Performance for this task

is P " �elapsed time� The function R�t� " �� is an appropriate PERFORMANCE�

based reward for the task because reward is maximized if and only if performance

is maximized� If T is the number of steps required to complete the task�
PT

t���� is

maximized �least negative� when the task is completed quickly�

In many tasks a PERFORMANCE�based reward is delayed� it may take many steps

for an agent to reach a non�negative reward� In the forage task for instance� mea�

sured performance is negative or zero until an attractor is delivered� This delay

makes it more di�cult for an agent to assign credit or blame to actions taken in

the past than if immediate rewards are provided� Heuristic rewards can address this

problem by providing more immediate feedback� HEURISTIC rewards are based on

the programmer	s intuition of the value of an agent	s actions in particular states�

As an example of a heuristic reward consider reinforcement in a robot soccer task�

A PERFORMANCE�based function rewards or punishes the agents only when a goal is

scored� An alternative heuristic approach might reinforce the agents with a reward

from �� to � depending on whether the ball is close to their own team	s goal ����� the

center of the �eld ���� or the opponent	s goal ����

While heuristic reward functions usually provide for quicker learning� problems

include the possibility of local maxima and!or global maxima that do not correspond

with optimal performance� The learning agents may maximize their reward without

necessarily optimizing performance�

����� Time and continuity

As mentioned above� rewards are often DELAYED� This means it may require many

�perhaps hundreds� of movement steps before an agent receives a positive reward�

Reward functions that provide immediate feedback as to the utility of an action in

a particular state are called IMMEDIATE� HEURISTIC rewards often seek to improve

performance by by providing more immediate feedback than their PERFORMANCE�

based counterparts�

There are some tasks that provide IMMEDIATE PERFORMANCE�based rewards as

well� As an example� consider the task of maintaining a speci�c water level by

opening and closing a valve� The di�erence between the current water level and the

desired level �the error� can be utilized as an IMMEDIATE PERFORMANCE reward�
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The error signal in water level is a CONTINUOUS reward signal because it is drawn

from a continuous interval� Other reward functions provide DISCRETE values� As

an example of DISCRETE reinforcement consider the reward for a foraging robot� A

discrete function might provide a reward of �� at every step except $� when the

robot delivers an attractor�

����� Locality

An important consideration for learning multi�robot teams is whether each agent

should be rewarded individually or all agents should receive the same reinforcement�

GLOBAL reinforcement refers to the case where a single reinforcement signal is si�

multaneously delivered to all agents� while LOCAL reinforcement rewards each agent

individually� In the case of soccer� a global system would reward all team members

when any one of them scores a goal� With local reinforcement only the agent that

scored the goal would be rewarded� Global rewards correspond more closely with

overall system performance� but they may not be appropriate for all tasks�

In a SENSOR LIM task� it may not be feasible for each agent to monitor activities

of all the others in order to compute the global reward� In this case� implementation

of global reinforcement may require expensive communication hardware� Also� there

may be a weak correlation between an individual agent	s actions and the value of the

global signal
 an agent may receive a positive reward while executing the 
wrong�

action� This could occur in a globally�rewarded foraging task if two agents simulta�

neously deposit attractors � one in the correct spot but the other in the wrong spot�

Since all agents are simultaneously rewarded for the �rst agent	s successful delivery�

the second agent may incorrectly infer it behaved correctly�

Local reinforcement has the advantage of a stronger correlation between reward

and the individual	s actions� potentially providing for faster learning� But agents

using local rewards for training may not be able to optimize performance of the

overall system� Some investigators try to balance these goals by combining or

blending local and global rewards �Mat���� These reward systems are referred to

as COMBINED LOCALITY�

The impact of local and global reinforcement on robot team diversity is explored

in depth in the foraging� soccer and formation experiments described later in this

dissertation �Chapters � � and ���
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��� Discussion and summary

To facilitate the investigation of how task and reinforcement impact multi�robot

system diversity and performance� new classi�cations of task and reinforcement are

introduced�

Task classi�cation is based on features of the performance metric� environment

and robotic platform that di�erentiate one task from another� The characterization

focuses on robot and object movement tasks� and on features of these tasks that may

correlate with a need for cooperation or diversity� This classi�cation system helps us

identify why multi�robot performance and diversity might change for di�erent tasks�

even when the same type of reinforcement is utilized to train the agents�

The chapter also presents a new taxonomy of reinforcement function� Ideally�

learning robots are trained using a reward signal that parallels the performance met�

ric� It is not always feasible however to utilize performance�based rewards in a multi�

robot system� Research presented later in the dissertation shows that the choice of

reinforcement can impact learning rate� performance and diversity in di�erent ways�

A multi�agent reward structure is classi�ed as

� INTERNAL or EXTERNAL depending on whether the robot generates its own reward
signal or it is provided by an external agent�

� PERFORMANCE or HEURISTIC depending on whether the reward is closely tied to system
performance or based on the programmers intuition�

� IMMEDIATE or DELAYED depending on whether the rewards are provided at each step�
or only at the end of the task�

� DISCRETE or CONTINUOUS depending on whether the reward is drawn from a contin�
uous or discrete distribution� and

� LOCAL or GLOBAL according to whether each agent is rewarded individually or all
agents are trained with identical rewards�

This classi�cation helps de�ne the experimental space of the research� It will also

bene�t the �eld by helping designers more easily identify the tradeo�s they make in

the design of reward functions used in their systems�
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Chapter �

Behavioral Di�erence and

Diversity

As research expands in multiagent intelligent systems� investigators need new

tools for evaluating the arti�cial societies they study� It is impossible for example�

to correlate heterogeneity with performance in multiagent robotics without a quan�

titative metric of diversity� Currently diversity is evaluated on a bipolar scale with

systems classi�ed as either heterogeneous or homogeneous� depending on whether

agents di�er �FM��� GM��� Par���� Unfortunately� this labeling doesn	t tell us much

about the extent of diversity in heterogeneous teams� How can it be determined if

one system is more or less diverse than another� Heterogeneity is better viewed on a

sliding scale providing for quantitative comparisons� Such a metric would enable the

investigation of issues like the impact of diversity on performance� and conversely�

the impact of other task factors on diversity�

Diversity may not always be desirable� In fact� experimental results presented



later in this dissertation show that for some multi�robot tasks homogeneous robot

teams perform better than diverse teams� The aim of this work is to discover when

diversity is important and which conditions give rise to it in learning teams� An

objective quantitative metric is required for a principled investigation of these issues�

We focus speci�cally on diversity in teams of mechanically similar agents that

use reinforcement learning to develop behavioral policies� Evaluation of diversity

in teams of mechanically similar robots is challenging because when agents di�er�

they di�er only in their behavior� Behavior is an especially interesting dimension of

diversity in learning systems since as they learn� agents e�ectively choose between a

hetero� or homogeneous society� The metrics introduced here will help researchers

investigate the origin and bene�ts of diversity in these learning systems�

Measurement of diversity is really a three�pronged problem� measurement of

individual agent di�erence� agent classi�cation �clustering!clumping� based on inter�

agent di�erences� and overall societal diversity based on the classi�cation� Each of

these topics is covered in a separate section below�

Social entropy� inspired by Shannon	s information entropy �Sha���� is presented

as an appropriate measure of diversity in robot teams� It captures important com�

ponents of the meaning of diversity� including the number and size of groups in a

society� In order to evaluate the diversity of a team� however� a way to categorize or

di�erentiate the behavior of individuals is also required� To address this� a measure

of behavioral di�erence that provides for agent categorization is presented in later

sections� Di�erence refers to disparity between two speci�c agents� while diversity

is a measure of the entire society� Finally� the utility of the metrics is demonstrated

in several example applications� including a detailed evaluation of a foraging robot

team�

��� Diversity

We begin with an examination of the meaning of diversity and the challenges it

presents to measurement�

What does diverse mean� Webster �MW��� provides the following de�nition�

di�verse adj �� di�ering from one another� unlike �� composed of distinct or unlike

elements or qualities
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Clearly� di�erence plays a key role in the meaning diversity� In fact� an important

challenge in evaluating robot societal diversity is determining whether agents are

alike or unlike� Assume for now that any two agents are either alike �in the same

behavioral group� or not� It may be true that the degree of di�erence is important

but that issue is addressed later�

Consider what diverse means for societies composed of distinct groups� To make

the discussion more concrete� suppose the 
society� under examination is a collection

of toy blocks of four di�erent shapes� circles� squares� triangles and stars� Figures ���

and ��� illustrate several sets of blocks as examples of the di�erent ways groupings

can di�er� The goal is to develop a quantitative metric that captures the meaning

of diversity illustrated in these examples�

a b c d

Figure ���� Four collections of toy blocks� The number of subsets in each group grows
from one in a to four in d� Should measured diversity depend on the number of subsets�

First� how should the number of distinct groups in a society impact measured

diversity� In Figure ��� we have four sets of �� blocks� Each set has a di�erent

number of subsets of homogeneous shapes
 from one subset in Figure ���a �all circles�

to four subsets in Figure ���d� In each case the subsets are uniform� there are the

same number of blocks in each subset� This example suggests that the number of

subsets in a society is an important component of measured diversity�

Now consider Figure ���� Which group of blocks is more diverse� In both cases

there are exactly �� blocks and exactly two di�erent types of block� In Figure ���a

however� there is a much higher proportion of circles than in ���b where there is

an equal number of circles and squares� This example suggests that the relative

proportion of elements in each subset is important component of diversity�

The examples above highlight the fact that the distribution of agents into subsets

of homogeneous elements is at the core of the meaning of diversity for multiagent

societies� We make the following commitment� the measured diversity of a
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a b

Figure ���� In both of these groups there are the same number of blocks and the same
number of subsets� but the proportion of elements in each subset is di�erent�

multiagent society depends on the number of subsets it contains and the

proportion of agents in each subset�

����� Introducing social entropy

How should diversity be quanti�ed� Shannon faced a similar problem when he sought

to quantify the uncertainty� or randomness� of an information source �Sha���� The

uncertainty of an information source has important implications for communications

systems� particularly with regard to the minimum bandwidth required to transmit

error�free messages� Interestingly� the properties Shannon sought in a measure of

information uncertainty are also important for a metric of societal diversity�

Shannon	s solution� information entropy� is easily adapted to suit our needs in a

diversity metric� The remainder of this section presents the mathematical basis for

social entropy and explains why it is an appropriate measure of multiagent system

diversity�

It is useful at this point to introduce the following notation�

� R is a society of N agents with R � fr�� r�� r����rNg

� D
ri� rj� is the di�erence between agents ri and rj � Di�erence is used to classify
agents into homogeneous subsets�

� C is a grouping of R into M possibly overlapping subsets�

� ci is an individual subset of C with C � fc�� c�� c����cMg

� pi �
jcij
jCj is the proportion of agents in the ith subset�

P
pi � ��

Measured diversity is therefore a function of M and the pis� Assume that a

diversity function exists and call it H� The diversity of a society partitioned into M

subsets is written H�p�� p�� p�� ���� pM�� So� for instance� the diversity of the group of
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blocks depicted in Figure ���a is H� �
��
� ��
��

�� while the diversity for the group of blocks

in Figure ���b is H��
�
� �
�
�� The diversity of a particular robot society Ra can also be

expressed H�Ra��

Shannon prescribed three properties for a measure of information uncertainty�

With slight changes in notation� they are equally appropriate for a measure of societal

diversity�

Property � continuous� H should be continuous in the pi�

Property � monotonic� If all the pi are equal� pi �
�
M
� then H should be a monotonic

increasing function of M � In other words� if there are an equal number of agents in
each group� more groups implies greater diversity�

Property � recursive� If a multiagent society is de�ned as the combination of several
disjoint sub�societies� H for the new society should be the weighted sum of the
individual values ofH for the sub�groups� This property is important for the analysis
of recursively composed societies 
e�g� �MAC
�	��

The meaning of the requirement that H be recursive is illustrated in Figure ���� The
two groups on the left are combined into a new society on the right� The groups on
the left have diversities H
�� �

�
�� 
top� and H
�� �

�
�� 
bottom�� The diversity of the

new �� element society is H
 �
�	
� �
�	
� �
�	
� �
�	
�� Because the sub�groups contribute �

�
and

�
� of the agents to new society� the recursive criteria requires�

H

�

��
�
�

��
�
�

��
�
�

��
� � H


�

�
�
�

�
� �

�

�
H

�

�
�
�

�
� �

�

�
H

�

�
�
�

�
�

In general� for a society Rc composed of two societies� Ra and Rb� the recursive
criteria ensures that�

H
Rc� � H
�� ��� � �H
Ra� � �H
Rb�

where � is the proportion of agents in Ra� � is the proportion of agents in Rb and
�� � � ��

Shannon	s information entropy meets all these criteria� The information entropy�

H�X� of a symbol system X is used in coding theory as a lower�bound on the

average number of bits required per symbol to send multi�symbol messages� The

random variable X assumes discrete values in the set fx�� x�� x����xMg �the alphabet

to be encoded�� The information entropy of X is given in bits as�

H
X� � �
MX
i��

pi log�
pi� 
����

��



H(5/6, 1/6)

1/3

2/3

H(1/3,2/3)
+ 1/3 H(5/6,1/6)
+ 2/3 H(1/2,1/2)

H(1/2, 1/2)

Figure ���� A new society 
right� is generated by combining two others 
left�� The
diversity of the new society is a weighted sum of the individual values of H for the sub�
groups�

where pi represents the probability that fX " xig�
Equation ��� is adopted for the measurement of multiagent societal diversity�

H�Ra� is the simple social entropy of agent society Ra� Several example applications

of this metric are given below�

Example evaluations

Consider the social entropy of a heterogeneous group composed of one square and

three star shaped blocks� The society consists of four elements� R " fr�� r�� r�� r�g�
One element� r� �the square� is not equivalent to the others so there are two subsets�

C " fc�� c�g� with c� " fr�� r�� r�g �the star class� and c� " fr�g �the square class��

Then�

p� � ���

p� � ���

H
R� � �
�X
i��

pi log�
pi�

� �

p� log�
p��� � 
p� log�
p����

� �

��� log�
������ 
��� log�
������

� ����
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The social entropy of this system is �����

Next the social entropy of a homogeneous group is evaluated� The group consists

of elements R " fr�� r�� r�� r�g� Homogeneity implies there is only one class� so

C " fc�g� and c� " fr�� r�� r�� r�g� Then�

p� � �

H
R� � �
�X
i��

pi log�
pi�

� �
p� log�
p���

� �
� log�
���

� �

The entropy of a number of other example systems is given in Figure ����

0.00 0.41 0.82 1.00 1.59 2.00
Figure ���� A spectrum of diversity� In the diagram above� each of the six squares
encloses a multiagent system� from least diverse 
homogeneous� on the left� to most diverse

maximally heterogeneous� on the right� The social entropy� a qualitative measure of
diversity� is listed underneath each system�

����� Why entropy is a useful measure of diversity

In addition to Properties �� � and �� H has a number of additional properties that

further substantiate it as an appropriate measure of diversity� First� as we would

expect� H is minimized for homogeneous societies
 these groups are the least diverse�

Also� for heterogeneous groups H is maximized when there are an equal number of
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agents in each subset� More precisely�

Property �� H � � if and only if all the pi but one are zero� In other words H is
minimized when the system is homogeneous� Otherwise H is positive�

Property �� For a given M 
number of subsets�� H is maximized when all the pi are
equal� i�e� pi �

�
M
� This is the case when there are an equal number of agents in

each group�

Property 
� Any change toward equalization of the proportions p�� p�� � � � � pM increases
H � Thus if p� � p� and we increase p�� decreasing p� an equal amount so that they
are more nearly equal� H increases� An important implication is that there are no
locally isolated maxima�

Even if these properties are desirable in a diversity metric� why choose information

entropy over any other function possessing the same properties� Because� as it turns

out� information entropy �Equation ���� is the only function satisfying Properties ��

� and �� Shannon proved this result using the mathematically equivalent properties

he required of an information uncertainty metric �Sha����

The utility of these properties for the measurement of diversity has drawn re�

searchers in many other disciplines to adopt similar concepts of diversity� Several

examples from the literature are included below�

Sociobiology� Wilson� the entomologist and creator of the �eld of sociobiology� includes
this discussion in his book The Diversity of Life �Wil
�	�

Suppose that we encounter a fauna of butter�ies consisting of � mil�
lion individuals divided into ��� species� Say one of the species is ex�
tremely abundant� represented by 

����� individuals� and each of the
other species therefore comprises an average of about ��� individuals�
One hundred species are present but� as we walk along the forest paths
and across the �elds� we encounter the abundant butter�y most of the
time and each of the other species only rarely ��� In a nearby locality we
encounter a second butter�y fauna� comprising the same ��� species� but
this time all are equally abundant� represented by ������ individuals each�
This is a fauna of high equitability� in fact the highest possible� Intuitively
we feel that the high�equitability fauna is the more diverse of the

two� since each butter�y encountered in turn is less predictable

and therefore gives us more information on average�

This view embraces the idea that societies with members equally distributed among
sub�groups are the most diverse� It also suggests that diversity and information are
closely related concepts�
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Ecology� entropy is used by ecologists as a means of evaluating species diversity and for
comparing diversity in di�ering environments �LVW��� LW��� Mag��	� Consider this
passage from Magurran�s book Ecological Diversity and Its Measurement �Mag��	�

The most widely used measures of diversity are the information

theory indices� These indices are based on the rationale that the diver�
sity� or information� in a natural system can be measured in a similar way
to the information contained in a code or message� It is calculated from
the equation�

H � �
X

pi log
pi�

where the quantity pi is the proportion of individuals found in the ith
species�

Social Science� information theoretic models of societal evolution are developed in
�Bai
�� May
�	 and others� Of these� Bailey�s Social Entropy Theory �Bai
�	 is the
most widely known� In his model� individuals are classi�ed according to characters
such as race� income and religion and the diversity of the society is calculated using
information entropy�

Biological Classi	cation� information entropy is an important tool for taxonomists as
a mechanism for evaluating classi�cation methodologies �SS��� JS��	� Classi�cation
trees are organized to maximize their information content�

Mathematics and Statistics� information entropy is suggested as a measure of diversity
by a number of mathematicians and statisticians �Bev
�� PPM
�� MGL
�	�

Genetics and Evolution� Demetrius argues in The thermodynamics of evolution that
the evolutionary process of genetic mutation leads to greater population diversity
�Dem
�	� The diversity is modeled as an increase in system entropy�

����� Limitations and alternative measures

1.000.99
Figure ���� Two very di�erent systems have similar entropy�

A potential limitation of social entropy as a diversity metric is the loss of information

incurred when diversity is summarized in a single number� There are perhaps an
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in�nite number of societies matching any particular value of diversity� Figure ���

for example� illustrates two very di�erent societies whose entropy di�ers by less than

���� bits�

A single number does not tell us how many classes of agents there are or how

many agents in each class� This loss of information occurs whenever any charac�

teristic of a multi�dimensional system is described in a single value� However such

measurements are useful because they enable generalization and comparison� A ther�

mometer� for example� does not reveal the position and velocity of every molecule in

the environment but it does enable us to select our wardrobe for the day�

Another limitation of social entropy is that it lacks sensitivity to the degree of

di�erence between agents �later in this chapter an augmented form of social entropy

is introduced to address this weakness�� Suppose� for example� we are evaluating

the diversity of a number of agents distributed in a two�dimensional space �the di�

mensions may represent aspects of behavior or perhaps morphological axes�� Agents

that are close to one another are grouped in the same class� Figure ��� illustrates�

a b c

Figure ��
� One di�culty in the analysis of diversity� Dots representing agents are plotted
in a two�dimensional space� Lines enclose agents grouped in the same class� The entropy
metric cannot distinguish between the systems illustrated in b and c�

The �gure shows three systems� In each system� the four elements in the lower

left remain unchanged� but from ���a to ���c a �fth agent appears in several locations

progressively more distant from the others� In Figure ���a it is just close enough to

be grouped with the others� while in ���b it is just far enough away to be placed

in a separate category� The social entropy metric cannot di�erentiate between the

distribution of agents in ���b and ���c because there is no di�erence in the number

and size of the subsets� Also� the entropy measure �nds a greater di�erence between

the systems in ���a and ���b than between those in ���b and ���c�

One solution is to consider the maximum di�erence between agents as an addi�
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tional component of diversity
 e�g� the distance d in Figure ���� In the biological

taxonomy literature d is referred to as maximum taxonomic distance� Taxonomic

distance is useful� but as Figure ��� illustrates� it cannot serve as the only measure

of diversity� This example shows two societies� one society with most of the agents

grouped together� but one 
outlier� at distance d ����a�
 and another society with two

equally sized groups separated by the same distance ����b�� Both of these systems

have the same maximum di�erence but quite di�erent distributions of agents into

subgroups� Taxonomic di�erence captures the greatest di�erence between agents in

the society but ignores the distribution of agents in the space� Again� this issue is

addressed by an augmented version of social entropy presented later in the chapter�

b

d

a

d

Figure ���� Maximum taxonomic distance is a useful metric� but it does not account for
the distribution of elements in the space�

Meyer and McIntosh have developed an index of ethnic diversity used by US

News and USA Today in stories concerning diversity issues �MM���� Their index

measures the probability that two people chosen at random �with replacement� will

di�er along at least one ethnic dimension� The index value ranges from � to �� with

greater diversity indicated by a larger value� A value of zero applies to a population

in which everyone is the same� If every person is di�erent from every other person on

at least one dimension� the value is maximized� In practice the index can never reach

unity because an in�nite number of pi would be required� The metric has intuitive

appeal� and may be of interest as a measure of multiagent social diversity� Using the

notation introduced above� Meyer	s metric can be written�

Hm
X� � ��
MX
i��

p�i 
����
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Hm shares mathematical properties �� �� �� � and � with social diversity� but it

does not provide for recursively de�ned societies �Property ���

��� Classi
cation and hierarchic entropy

The discussion of diversity left open the question of how agents are classi�ed into

groups� It was assumed that any two agents are either alike �in the same group� or

unlike� In actuality� the robotic agents to be classi�ed are distributed in a multi�

dimensional space where the dimensions correspond to components of behavior and

di�erence corresponds to the distance between agents in the space� Di�erence be�

tween agents is likely to vary continuously instead of in the binary manner assumed

previously�

The limitations of social entropy discussed in Section ����� suggest that the diver�

sity calculation would be improved if consideration were given to the spatial structure

the system� Here 
spatial structure� refers to the distribution of elements in the clas�

si�cation space� In other words� the clumpiness of the system and the distribution

of the clumps in the space are important�

The challenge of �nding and characterizing clumps or clusters of elements dis�

tributed in a continuous multi�dimensional space is exactly the problem faced by

biologists in building and using taxonomic systems� In the case of biology the di�

mensions of the space represent aspects of morphology or behavior that distinguish

one organism from another� In this research the dimensions are the components of

agent behavior that distinguish one robot from another�

The aims of taxonomic classi�cation are distinct from other types of classi�cation

in that one goal is to arrange the elements in a hierarchy re�ecting their distribution

in the classi�cation space� Conversely� many classi�cation tasks only require a simple

partitioning of the space �e�g� categorizing e�mail into folders�� Taxonomic trees are

potentially more useful in the analysis of diversity than simple partitionings because

they provide more information about the society	s spatial structure�

Biology o�ers a rich literature addressing this problem� In fact� an entire �eld �

numerical taxonomy � is devoted to ordering organisms hierarchically using prin�

cipled numerical techniques �SS��� JS���� Many of the approaches in numerical

taxonomy are directly applicable to the problem of robot classi�cation� They in�

clude mechanisms for building and analyzing classi�cation structures �e�g� taxonomic
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trees� and for identifying organisms on the basis of these structures�

����� Tools from numerical taxonomy
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Figure ���� Example classi�cation using numerical techniques� The top row shows how
the system is clustered at several levels� parameterized by taxonomic level h 
h is distinct
from information entropy H�� The classi�cation is summarized in a taxonomic tree� or
dentogram 
bottom�� Strong similarities between elements are indicated by grouping near
the bottom of the dentogram� weaker similarities between groups are re�ected in converging
branches at higher levels�

Figure ��� provides an example of the numerical taxonomic approach� Six elements

�they could be organisms� species or robots� are distributed about a two�dimensional

space� The location of each element in the space is determined by the value of each

trait �e�g� tail length� weight� etc�� used in the classi�cation� Each trait corresponds

to a dimension in the classi�cation space� The goal is to build a taxonomic tree that

re�ects the spatial distribution of elements in the system� closely related elements

should be grouped together at the bottom
 similarities between groups are indicated

as the branches converge at higher levels� These relations are expressed graphically

in a dentogram �Figure ���� bottom��

Techniques from numerical taxonomy address the problem of how to group or�

ganisms� or groups of organisms� at various levels� At the lowest level in biological

classi�cation for instance� humans and gorillas are more likely to be grouped together
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than� say� humans and dogs� But at a higher level� primates are in fact grouped

together with canines in the class mammalia� Dentograms provide an orderly hier�

archical view of the these groupings� While dentograms per se are not necessary for

the evaluation of diversity� they are useful visualization tools and their construction

provides clues for the evaluation of overall societal diversity�

Dentograms are constructed using a clustering algorithm parameterized by h� the

maximum di�erence allowed between elements in the same group �more detail on

clustering algorithms is presented later�� In most applications the di�erence metric

is normalized so that taxonomic distance between any two elements varies between

� and �� When h " � all elements are grouped together in one cluster �see the

cluster at the top right in Figure ��� for example�� As h is reduced from � down to �

cluster boundaries change
 the number of groups increases as they split into smaller

clusters� The splits are re�ected as branches in the dentogram� Finally� when h " �

each element is a separate cluster
 a 
leaf� at the bottom of the dentogram 
tree��

Figure ���� The branching structure of the dentograms for these two societies is the same�
However� the more compact distribution of elements in the system on the upper right
is re�ected in the branches being compressed towards the bottom of the corresponding
dentogram 
lower right��

Dentograms can reveal subtle di�erences in societal structure� Figure ��� for

example� shows two societies with the same relative arrangement of elements� but

one grouping is compact while the other is spread out over a larger area� The

��



di�erence in scale is re�ected in a compressed dentogram for the spatially compact

society �Figure ��� right�� Can these di�erences be accounted for in the evaluation

of diversity�

Before addressing this� it is necessary to examine some of the details of clustering

algorithms used to build a taxonomic tree� After that� the discussion returns to how

these techniques can be used in the evaluation of diversity�

����� Clustering algorithms

Literally hundreds of clustering algorithms have been developed by researchers in a

wide range of �elds �Sneath and Sokal present a comprehensive taxonomy of clus�

tering methods in �SS����� One reason for the proliferation of techniques is the

lack of generally agreed upon optimality criteria for evaluating the various methods�

Jardine� for instance� suggests information�based metrics for biological clustering ap�

plications� but this may not be appropriate in all domains �JS���� Because we are

interested in the advantages of taxonomic representations of societal structure� the

�eld of numerical taxonomy is an appropriate source of techniques for this research�

Most clustering methods used in numerical taxonomy are hierarchic as de�ned

by Sneath and Sokal �SS����

In hierarchic classi�cations any member of a lower ranking taxon is also a mem�

ber of a higher ranked taxon� although not all its associates from the lower

ranking taxon will necessarily be included in the higher ranking taxon� Non�

hierarchic classi�cations do not exhibit ranks in which subsidiary taxa become

members of larger more inclusive taxa� For traditional biological taxonomy�

hierarchic classi�cations are required�

Another important distinction between clustering algorithms is whether or not

overlap is allowed between clusters� In a nonoverlapping method� taxa at any one

rank are mutually exclusive
 a member of one group cannot also be a member of

a second group at the same rank� Nonoverlapping classi�cations must sometimes

arbitrarily assign elements to one or another equally distant group� By relaxing this

constraint� overlapping methods allow membership in more than one taxa� The two

approaches are examined below�
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Nonoverlapping hierarchic clustering

Most clustering algorithms begin with a two�dimensional di�erence matrix� Each

location in the matrix records the di�erence between two agents in the system to be

classi�ed� For instance� cell ij contains the value of D�ri� rj�� the di�erence between

agents ri and rj �note� behavioral di�erence for robots is de�ned in the next section��

Figure ���� illustrates an example system
 the associated di�erence matrix is given

in Table ������
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� ����� ����
� ����� ����
� ����� �����
� ����� �����
� ���� ����

 ���� ����
� ���� ����

Figure ����� Example society of elements distributed in a two�dimensional space�

Table ���� Di�erence matrix for the example society� In this case� di�erences are calculated
as Euclidean distances in the two�dimensional space�

� � � � � 
 �

� ����� � � � � � �
� ����� ����� � � � � �
� ����� ����� ����� � � � �
� ����� ����� ����� ����� � � �
� ����� ����� ����� ����� ����� � �

 ����� ����� ����� ����� ����� ����� �
� ����� ����� ����� ����� ����� ����� �����

Figure ����� Example of hierarchic nonoverlapping clustering� Clusters are enclosed in
black lines�
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To compute the clusters at level h� nonoverlapping methods generally proceed in

the following steps�

�� While the smallest value in the di�erence table� h�� is less than h�


a� Group elements with di�erence h� together in a new cluster
s��


b� Remove elements in the new cluster
s� from the di�erence table�


c� Calculate the centroid of the new cluster
s��


d� Compute a new di�erence matrix including the new centroid
s��

The result is a hierarchy of nested clusters �Figure ������ Various algorithms

di�er in speci�c details� particularly in how they handle the situation where multiple

pairs of elements share the same minimum di�erence value�

a b c

Figure ����� A dilemma for nonoverlapping algorithms� With which other element should
the center element be grouped� Nonoverlapping algorithms must make an arbitrary choice
between clustering a or b� If overlapping is allowed however� a single unambiguous solution
emerges 
c��

A key problem with nonoverlapping methods is that they must sometimes group

elements arbitrarily� Figure ���� illustrates a case where two equally appropriate

clusterings are possible �cases a and b�� The nonoverlapping requirement forces

an arbitrary choice of one over the other� When overlapping clusters are allowed�

however� a single unambiguous solution is possible �case c��

Overlapping hierarchic clustering

In contrast to the nonoverlapping methods� overlapping clustering techniques allow

individual elements to join more than one cluster� Overlapping methods are typically

characterized by the degree of overlap allowed� Overlap can be quanti�ed as the

diameter of overlap or as the number of elements in the overlapping region�
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Figure ����� Example of hierarchic overlapping clustering� Clusters are enclosed in black
lines�

The Cu clustering method is used in this research �JS���� Cu or u�diametric

clustering methods permit the diameter of overlap between clusters at level h to be

at most uh �in this work u " ��� A cluster at level h is a maximally linked set such

that for all elements ri and rj in the cluster D�ri� rj� � h�

Reviewing the notation presented earlier� the society of N elements to be clustered

is R " fr�� r�� r�� � � � rNg� The society will be divided into M possibly overlapping

clusters C " fc�� c�� c�� � � � cMg� The Cu algorithm for clustering at level h proceeds

in the following sequence�

�� Initialize N clusters with ci � frig�

�� For each cluster ci�


a� For each rj 
except ri� in R�

i� If 
D
rj� rk� � h� for every rk already in ci� add element rj to cluster ci�

�� Discard redundant clusters�

An example society grouped using Cu clustering is presented in Figure ����� The

clusterings for several values of h are illustrated with h increasing from left to right�

Notice in the fourth diagram that the element in the middle of the space is claimed by

two clusters �contrast this with Figure ������ This clustering technique is hierarchic

because elements grouped at one level� or value of h� are also members of higher

level taxa� In addition� the taxa �clusters� become larger and more inclusive at

higher levels�

The AutoClass clustering program

In addition to the techniques outlined above� there are a number of other clustering

algorithms in current use� One of these� AutoClass� was evaluated for use in this

research �CS���� AutoClass is a Bayesian nonhierarchic nonoverlapping clustering

��



algorithm available in the public domain� According to Cheeseman� one of AutoClass	

developers� 
the goal of Bayesian unsupervised classi�cation is to �nd the most

probable set of class descriptions given the data and prior expectations��

AutoClass uC   Clustering

Figure ����� A comparison of clusterings generated by AutoClass 
left� and Cu clustering

right� for the example data� h � ���� for Cu clustering�

The AutoClass system was used to classify several datasets for comparison with

Cu clustering� The AutoClass classi�cation for the system given in Figure ���� is

provided in Figure ����� The result is compared with a Cu clustering of the same

system� In these examples h for Cu clustering is set to ����
 the clusterings indicate

element similarities at a particular scale� Note that h can be varied� however� to

examine the structure of the society at any scale�

AutoClass uC   Clustering

Figure ����� A set of clusterings for a more compact society� The locations of elements
in this example are scaled by �

� in comparison to the previous example� h � ���� for Cu

clustering�

In another evaluation� AutoClass was used to classify a more spatially compact

system �for this evaluation� the previous data values are multiplied by �
�
�� The

same axes were used in both evaluations� only the locations of the elements in the

space were changed� Results of the classi�cation are given in Figure ����� and for

comparison the same system is classi�ed using the Cu algorithm� The groups found
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by AutoClass are the same as in the previous example� In contrast� the Cu algorithm

groups all of the elements together in one cluster�

Two additional tests were conducted to evaluate AutoClass and Cu clustering at

extreme ends of the spectrum� In the �rst test the data values used in Figure ����

were multiplied by ������ and the resulting system was again classi�ed by AutoClass

and Cu clustering� As before� AutoClass groups the elements in the same way� Cu

clustering� with h " ���� places each element in a separate group� Finally� the data

values were multiplied by �
������

and grouped by AutoClass and Cu clustering� Again�

AutoClass �nds the same groups� In contrast Cu clustering places all elements in the

same group�

Discussion on clustering algorithms

Figure ���
� n example of two societies di�ering only in the degree of di�erence between
elements� Axes used in both systems are the same� The relative position of each element
is the same in each society� but in the system on the right they are much further apart� A
useful diversity metric should distinguish between these two societies�

It is impossible to distinguish between the systems illustrated in Figure ���� on the

basis of clusterings generated by AutoClass because AutoClass is not sensitive to

the degree of di�erence between elements� It would cluster both systems identically�

In fairness to AutoClass� it is likely that its designers sought to avoid sensitivity to

the spatial scope of the data under evaluation� This feature is desirable in classi�

�cation applications involving a single dataset� This work� however� is concerned

with comparing several datasets that may vary in spatial extent �e�g� the systems in

Figure ������

The spatial extent of elements in a taxonomic space is a re�ection of the degree of

di�erence between agents� It has already been pointed out �in Section ������ that such

di�erences are important in the evaluation of diversity� especially for distinguishing
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between societies with similar structure and numbers of elements but with di�ering

spatial size� Overall spatial size for instance� is the only di�erence between the

societies illustrated in Figure ����� Because di�erentiating between societies on the

basis of their extent is important in the evaluation of diversity� this work utilizes Cu

clustering in diversity calculation�

Note that sensitivity to the degree of di�erence between elements in hierarchic

clustering depends on h� Because h is a parameter of the clustering algorithm� it can

be varied to examine clusterings at any scale� Hierarchic algorithms are� in e�ect�

variable power clustering microscopes� For values of h near zero the tiniest di�erence

between elements will cause them to be grouped separately� while the clusterings

at large values of h reveal societal structure at a macroscopic level� This feature is

exploited in the development of a diversity measure sensitive to di�erences in the

spatial size of societies�

����� Hierarchic social entropy
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Figure ����� Entropy depends on h� Note that changes in entropy correspond to the
branch points in the dentogram� 
For easier reference� the dentogram is rotated 
� degrees��

Now consider how tools from numerical taxonomy can be applied to the measurement

of diversity� The discussion of hierarchic clustering algorithms above described how

the number and size of clusters depend on h� But how is social entropy impacted
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by changes in h� Since the partitioning of a society is based on h the entropy also

depends on it� An example of the relationship is illustrated in Figure ����� Entropy

changes in discrete steps as h increases� Note that points where change occurs

correspond to branch points in the dentogram�
en
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Figure ����� A comparison of entropy versus h for for two societies�

Compare the dentograms and entropy plots of the two societies in Figure �����

As in the earlier example� the two groups have the same relative structure� but the

society represented on the right is more compact� resulting in branching compressed

towards the bottom of the tree� The di�erence in scale is also readily apparent in the

plots of entropy� Entropy drops to zero much more quickly in the plot corresponding

to the compact society� Because the value of simple entropy depends signi�cantly on

h when hierarchic clustering is used� we augment the notation to account for this�

H
R� h� � H
R� for clustering at taxonomic level h 
����

H is a function of R and h because the classi�cation of agents into groups�

and therefore the entropy� depends on them both� This highlights the fact that

the entropy of a particular clustering is only a snapshot of the society�s

diversity� A comprehensive evaluation of diversity should account for clustering at

all taxonomic levels� This is easily accomplished using the area under the entropy plot
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as a measure of diversity� This augmented metric� called hierarchic social entropy� is

de�ned as�

S
R� �
Z �

�
H
R� h�dh 
����

where R is the robot society under evaluation� h is a parameter of the clustering

algorithm indicating the maximum di�erence between any two agents in the same

group and H�R� h� is the simple entropy of the society for the clustering at level h�

Note that as h�� a point is reached where all elements are clustered in the same

group �the maximum taxonomic distance�� H�R� h� drops to � at this point� In the

behavioral di�erence measure used in this work� the maximum possible di�erence

between elements is �xed at ���� so the upper limit of the integration is � rather than

� as in the general case�

To clarify how hierarchic entropy is computed� several examples are provided in

the next section�

����� Why hierarchic social entropy is a useful metric

Hierarchic social entropy is a continuous ratio measure
 it has an absolute zero �when

all elements are identical� and equal units �bits�� This enables a total ordering

of societies on the basis of diversity� It also provides for quantitative results of

the form 
Rb is twice as diverse as Ra�� This is a signi�cant advantage over the

categorization of systems as simply 
homogeneous� or 
heterogeneous�� Several

other useful properties of hierarchic entropy are examined below�

Hierarchic social entropy can distinguish di�erences between societies

regardless of scale� Societies with in�nitesimally small di�erences are compared as

easily and precisely as systems spanning millions of units� This property is demon�

strated with an example� Figure ���� illustrates two societies of three elements

arranged in triangles� In both cases the two elements on the left are spaced a dis�

tance x apart� A third element is placed either �x or �x from the other elements in

societies R�x and R�x respectively� Because hierarchic social entropy is scale invari�

ant� it is able to distinguish between these two systems for all values of x� This will

be demonstrated for x " �
�������

� for x " ������� and proven for all x�

��



2x
x

2x
x

4x

4x

x

h

4xx

h

2x

R R2x 4x

Figure ����� These two example systems are used to demonstrate how hierarchic social
entropy can distinguish di�erences between societies regardless of scale� Spacing between
the elements is parameterized by x 
top�� Because hierarchic entropy is scale invariant it
can distinguish between the two societies regardless of the value of x� Dentograms 
bottom�
illustrate the values of h where clusterings change�

First� observe that due to the spacing of the elements� there are three distinct Cu

clusterings for each system �depending on h��� For society R�x� the three elements

are placed in three separate clusters when � � h � x� Two clusters are present when

x � h � �x� Finally� all three elements are grouped together in one cluster when

�x � h� The groupings over all three ranges are illustrated in Figure ���� �groupings

x <= h < 2x 2x <= h0 <= h < x

Figure ����� Cu clusterings of R�x for di�erent values of h�

are similar for R�x except the �nal clustering does not occur until h � �x�� The

simple entropy for each clustering of R�x is

�Note� the AutoClass program groups all elements together in the same cluster for both societies
when x � �

�������
and when x � �						� A diversity metric based on AutoClass clusterings would

not distinguish between these two societies�
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Figure ����� Simple entropy of R�x as a function of h� There are three distinct regions
with di�erent values�

These values and the regions over which they apply are illustrated in Figure �����

Similarly� the simple entropy for each clustering of R�x is
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Now� suppose x " �
�������

� Can hierarchic entropy distinguish between these

two systems� First we calculate the hierarchic entropy of society R�x� Recall the

de�nition of hierarchic social entropy �Equation �����

S
R� �
Z �

�
H
R� h�dh
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As was pointed out above� H�R� h� takes on distinct values over three regions

depending on h� Therefore� the integral can be broken into parts corresponding to

these regions�

Z �

�
H
R�x� h�dh �

Z x

�
H
R�x� h�dh�

Z �x

x

H
R�x� h�dh�

Z �

�x
H
R�x� h�dh

Substituting �
�������

for x and the simple entropy values above for H�R�x� h�� we

have
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The hierarchic social entropy of R�x is ����� � ����� The calculation for R�x is

similar�
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For system R�x we have S�R�x� " ����� � ����� Therefore when x " �
�������

S�R�x� � S�R�x� and R�x is ���� times more diverse than R�x�

What if x " �������� For R�x the computation proceeds as follows�
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Similarly� the hierarchic entropy for system R�x is ����� � ���� So when x "

������� we again have S�R�x� � S�R�x�
 society R�x is again ���� times more

diverse than R�x

In fact� S�R�x� � S�R�x� holds for all values of x � ��
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In addition to scale invariance� hierarchic entropy bene�ts from several other

advantages� Hierarchic entropy addresses a key weakness of simple social

entropy by accounting for continuous di�erences between elements in the

society� Figure ���� illustrates the kind of di�erence in societal structure hierarchic

entropy can distinguish� In an earlier example� simple social entropy could not resolve

di�erences between these systems �Figure ������ However� when hierarchic social

entropy is employed� the measured diversity of the three systems increases linearly

as the one agent is positioned further and further away� As one would expect� the

di�erence in diversity between systems ����a and ����b is much smaller than that

between ����b and ����c� This is not necessarily the case when simple entropy is

used �as the earlier example illustrates�

Hierarchic entropy preserves the basic properties of simple social en�

tropy� Hierarchic entropy is a more general metric than simple entropy� subsuming

the properties of H at each taxonomic level h� In the case where di�erence between

agents is binary� �either alike or unlike�� Equation ��� degenerates to H�R� �simple

entropy� because the clustering does not depend on h� However� when continuous

di�erences are important� hierarchic entropy can resolve structural di�erence in so�
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Figure ����� Hierarchic social entropy 
bottom� is computed for three societies 
top��
The calculated value increases as the element on the upper right is positioned further away
from the group� Dentograms for the groups are also displayed 
middle row��
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Figure ����� Hierarchic social entropy retains the basic properties of simple entropy�
The computed value 
bottom� depends on the distribution of elements in the groups�
Dentograms for the two groups are also displayed 
middle row��
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cieties that simple social entropy cannot�

Figure ���� shows how the basic properties of social entropy are preserved with

hierarchic entropy� In this example two groups are located a �xed distance apart

in the classi�cation space� The two societies pictured di�er only in the distribution

of elements between the groups� Hierarchic entropy properly captures the increased

diversity of the system with agents distributed equally between the groups�

��� Behavioral di�erence

To summarize the chapter so far� hierarchic clustering is a means of dividing a so�

ciety into groups of behaviorally equivalent agents at a particular taxonomic level�

Diversity is evaluated at each taxonomic level based on the number of groups and

the number of robots in each group at that level� Integrating the diversity across all

taxonomic levels produces an overall measure of diversity for the system� Previous

sections have described the overall diversity metric and algorithms for clustering the

agents into groups� This section focuses on the di�erence metric used for clustering�

Evaluation Chamber

Behavioral Response 2

Behavioral Response 1

Behavioral Difference

Figure ����� �Evaluating behavioral di�erence using an idealized �evaluation chamber��
Robots are evaluated in the chamber 
left�� where their response to every situation is
recorded as a trace 
readout� right�� The behavioral di�erence between two agents is the
di�erence between their traces 
bottom�� A single quantitative value is given by integrating
the di�erence�

How should the behavior of two agents be compared� One possibility would be to
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evaluate their di�erence in an 
evaluation chamber� in which the robots are exposed

to all situations and their their responses recorded� Even though it is unlikely such a

chamber could be built� the analogy is useful� Figure ���� illustrates the procedure�

As the agents are exposed to various situations� responses are recorded as a trace�

After the experiment is concluded� the traces are compared to evaluate the di�erence

between agents� In the �gure� the horizontal axis of the traces represents all distinct

perceptual situations a robot might experience� while the vertical component encodes

the agent	s response�

Since a real evaluation chamber would be practically impossible to build� an al�

ternative method for evaluating behavioral di�erence is proposed� The technique

advocated here is to look for di�erences in the agents	 behavioral coding� In many

cases �e�g� �BBC���� Mat��� GM���� robot behavior is coded statically ahead of

time� thus individuals may be directly compared by evaluating their behavioral con�

�guration� Learning multi�robot systems �e�g� �Bal��c� Mat���� pose a challenge

because their behavior evolves over time� To avoid that problem in this research� the

policies of learning agents are evaluated after agents converge to stable behavior�

This approach depends on three key assumptions�

Assumption �� At the time of comparison� the robots� policies are �xed and determin�
istic�

Assumption �� The robots under evaluation are substantially mechanically similar�
di�erences in overt behavior are in�uenced more signi�cantly by di�erences in policy
than by di�erences in hardware�

Assumption �� Di�erences in policy are correlated with di�erences in overt behavior�

If these conditions are not met in a particular multi�robot system� the approach

may not be appropriate� But the assumptions are reasonable for the conditions of

this research� namely� experiments conducted on mechanically similar robots built

on the same assembly line� Additionally� the robots all run identical control system

software� The control systems running on the robots di�er only in the data specifying

each agent	s policy� The comparison of these policies is the crux of the approach�

����� Example	 multi�robot foraging

The objective is to show how behavioral di�erence can be evaluated by examining

di�erences in robots	 behavioral coding� Before proceeding� an example encoding is
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Figure ����� An example task for a multiagent robot team� The robots are to collect
red and blue objects and place them into colored bins� The task is similar to the �

�
AAAI Mobile Robot Contest�s �Find Life on Mars� event� The object in the foreground
is a �black rock� obstacle�

presented� Although this example describes a particular robot architecture� this is

only for illustration� the method is applicable to other architectures as well�

Consider how behaviors could be designed for a team of foraging robots �Figure

������ The task is to collect colored objects �red� and place them into colored bins

�red and blue�� For this example� one agent will be programmed to place the objects

in the red bin� while the other will deposit them in the blue bin��

In this approach to behavioral con�guration� the agent is provided several be�

havioral assemblages that correspond to steps in achieving the task �e�g� wander�

acquire� deliver� and so on�� Binary perceptual cues are used to sequence the robot

through the steps in achieving the task�

The agents are provided with the perceptual features enumerated in Table ����

At the behavior selection level� the robot	s perception can be represented by four

bits �one bit per perceptual feature�� Given the perceptual state� the robot selects

from one of the four behaviors listed in Table ���� Decomposing the task into a

state!action space enables a robot	s policy to be enumerated by pairing perceptual

states with actions� Some of the �� states are never actually encountered since it is

impossible for an agent to be simultaneously in the red and blue delivery zones�

�This task is a simpli�ed version of the task for robots in the AAAI��� contest� The simpli�cation
is necessary in order to allow a complete enumeration of the robots� policies�
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Table ���� Perceptual features available to the foraging robots� Each feature is equivalent
to one bit of information� the entire perceptual state is a four�bit value�

perceptual feature meaning

red visible a red attractor is visible�
red in gripper a red attractor is in the gripper�

close to red bin close enough to the red
delivery area to drop an attractor in it�

close to blue bin close enough to the blue
delivery area to drop an attractor in it�

Table ���� Behaviors the robots select from in accomplishing the foraging task�

behavior robot activity

wander Search the environment for attractors�
acquire red Proceed to the closest red

object and grasp it�
deliver blue Go the the blue delivery area�
deliver red Go to the red delivery area�

Using this approach� policies for the two robots are now described� One of the

robots collects red objects and places then in the red bin� while the other places them

in the blue bin� The policy for robot rred is to search for red attractors using the

wander behavior� When it sees an attractor� it activates the acquire red behavior�

Once it has grasped the object� it uses the deliver red behavior to go to the red bin�

Robot rblue is similar� except it delivers to the blue bin instead� Policies for the two

agents are enumerated in Table ���� The behaviors in the center of the table are

activated when the corresponding perceptual situations on the left are encountered��

The actions selected by the agents described above di�er in six of the states� In

the case where the robots have a red object in their gripper but aren	t close to a

bin� they choose di�erent actions �to either go to the red or blue bin�� When they

are close to the correct bin� they both drop the attractor and resume the wander

behavior� The next section explains how a numerical value can be assigned this

behavioral di�erence�

�Note that in the wander behavior� the robot�s gripper opens automatically� A transition to the
wander behavior causes the robot to drop the attractor and begin a new search�
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Table ���� The policies of two foraging robots� Robot rred collects red objects and places
them in the red bin� Robot rblue collects red objects and places then in the blue bin�
Di�erences between the actions are listed on the right� The state bits represent� from
left to right� red visible� red in gripper� close to red bin� and close to blue bin�
Impossible states are indicated with an asterisk 
���

robot rred robot rblue response
state action action di�erence

				 wander wander 	�	
			� wander wander 	�	
		�	 wander wander 	�	
		��� wander wander 	�	
	�		 deliver red deliver blue ��	
	�	� deliver red wander ��	
	��	 wander deliver blue ��	
	���� wander wander 	�	
�			 acquire red acquire red 	�	
�		� acquire red acquire red 	�	
�	�	 acquire red acquire red 	�	
�	��� acquire red acquire red 	�	
��		 deliver red deliver blue ��	
��	� deliver red wander ��	
���	 wander deliver blue ��	
����� wander wander 	�	

����� De
nition of behavioral di�erence

To facilitate the discussion� the following additional symbols and terms are de�ned�

� ij is rj�s perceptual state�

� aj is the action 
behavioral assemblage� selected by rj �s control system based on the
input ij �

� �j is rj �s policy� aj � �
ij��

� pij is the number of times rj has encountered perceptual state i divided by the total

number of times all states have been encountered� Experimentally� pij is computed
post facto�

The approach is to evaluate behavioral di�erence by comparing the robots	 poli�

cies� The two foraging robots introduced earlier� for example� exhibit behavioral

di�erences that are re�ected in and caused by their di�ering policies� In the ter�

minology introduced above� i represents the perceptual features an agent uses to

selectively activate behaviors� In the case of the foraging robots� assign a bit to each

perceptual feature� so� for example� i " ���� indicates that only the last perception
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�close to blue bin� is activated� For the foraging robots a is the activated behavior

�e�g� wander� deliver��

De	nition �� ra and rb� are absolutely behaviorally equivalent i� they select the
same behavior in every perceptual state�

In complex systems with perhaps thousands of states and hundreds of actions it

may also be useful provide a scale of equivalence� This would allow substantially

similar agents to be grouped in the same cluster even though they di�er by a small

amount� The approach is to compare two robots� ra and rb� by integrating the

di�erences between their responses� j �a�i�� �b�i� j over all perceptual states i� If the

action is a single�dimension scalar� as in a motor current for instance� the di�erence

can be taken directly� However� complex actions like wander and acquire are treated

as nominal values with response di�erence de�ned as � when �a�i� " �b�i� and �

otherwise� This approach is often used in classi�cation applications to quantify

di�erence between nominal variables �e�g� eye color� presence or absence of a tail�

etc��� Using this notation� a simple behavioral di�erence metric can be de�ned as�

D�
ra� rb� �
�

n

Z
j �a
i�� �b
i� j di 
����

or for discrete state!action spaces�

D�
ra� rb� �
�

n

X
i

j �a
i�� �b
i� j 
����

where �
n

is a normalization factor to ensure the di�erence ranges from � to �� In

the case of the discrete sum� n corresponds to the number of possible states� If ra and

rb select identical outputs �a� in all perceptual states �i�� then D��ra� rb� " �� When

ra and rb select di�erent outputs in all cases D��ra� rb� " �� In the numerical tax�

onomy literature� this di�erence is called the mean character di�erence �SS���� The

calculation parallels the idealized evaluation chamber procedure introduced earlier

�Figure ������

Equations ��� and ��� weigh di�erences equally across all perceptual states�

This may be problematic for agents that spend large portions of their time in a small

portion of the states� Consider two foraging robots that di�er only in their reaction
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to blue attractors� If� in their environment� no blue attractors are present the agents

would appear to an observer to have identical policies�

There may be other important reasons certain states are never visited� In learning

a policy� for instance� the robots might discover in early trials that certain portions

of the state space should be avoided due to large negative rewards� Because these

portions of the space are avoided� the agents will not re�ne their policies there� but

avoid them entirely� It is entirely possible for the agents to di�er signi�cantly in these

portions of the space even though they may appear externally to behave identically�

To address this� the response di�erences in states most frequently visited should

be emphasized while those that are infrequently experienced should be de�emphasized�

This is accomplished by multiplying the response di�erence in each situation by the

proportion of times that state was visited by each agent �pia $ pib�� Formally� behav�

ioral di�erence between two robots ra and rb is de�ned as�

D
ra� rb� �
Z

pia � pib�

�
j �a
i�� �b
i� j di 
����

or in discrete spaces

D
ra� rb� �
X
i


pia � pib�

�
j �a
i�� �b
i� j 
����

When ra and rb select di�ering outputs in a given situation� the di�erence is

normalized by the joint proportion of times they have experienced that situation�

As an example of how behavioral di�erence is calculated� suppose the robots

introduced earlier are evaluated in an experimental run�� During the experiment�

the number of times each agent visits each state is recorded� This log� along with

the response di�erences listed in Table ��� can be used to compute the behavioral

di�erence between the two agents� The calculation is illustrated in Table ���� The

number of times each agent visited each state is enumerated� then used to compute

pi for each robot for each state� The normalized behavioral di�erence at each state

is listed in the right column� and summed at the lower right� The value in the lower

right�hand corner� ����� is the behavioral di�erence between robots rred and rblue�

The measure of behavioral di�erence provides for the following de�nitions�

�This example experiment is for illustrative purposes only�
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Table ���� Sample evaluation of the behavioral di�erence between the two agents whose
policies are listed in Table ���� The number of times each state was visited by each agent
is listed and used to compute pi for each state for each robot� In turn� the proportion of
visits to each state is used to normalize the response di�erence between the agents� Note�
these values were not gathered from experiment� they are presented for example only�

times rred times rblue normalized
state visited pired visited piblue di�erence di�erence

				 �		 	�� �		 	�� 	�	 	�		
			� � � �		 	�� 	�	 	�		
		�	 �		 	�� � � 	�	 	�		
		�� � � � � 	�	 	�		
	�		 �		 	�� �		 	�� ��	 	��	
	�	� � � �		 	�� ��	 	��	
	��	 �		 	�� � � ��	 	��	
	��� � � � � 	�	 	�		
�			 �		 	�� �		 	�� 	�	 	�		
�		� � � �		 	�� 	�	 	�		
�	�	 �		 	�� � � 	�	 	�		
�	�� � � � � 	�	 	�		
��		 �		 	�� �		 	�� ��	 	��	
��	� � � �		 	�� ��	 	�	�
���	 �		 	�� � � ��	 	�		
���� � � � � 	�	 	�		
totals �			 ��	 �			 ��	 ��	 	���
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De	nition �� ra and rb� are ��equivalent i� D
ra� rb� � ��

De	nition �� �� indicates ��equivalence� ra �� rb means ra and rb are ��equivalent�

De	nition �� A robot society� R� is ��homogeneous i� for all ra� rb � R� ra �� rb

� in these de�nitions is closely tied to the parameter h used in Cu clustering� A

classi�cation at taxonomic level h will consist of h�homogeneous clusters�

����� Limitations of the approach

An important limitation of this approach to evaluating behavioral di�erence is the

requirement for an agent	s policy to be represented as a deterministic function� e�g�

a " ��i�� This is reasonable for the analysis of policies developed using reinforcement

learning techniques since once learning is complete� the policies are �xed� But the

approach does not address robots utilizing FSAs for behavioral sequencing� An FSA

might generate a di�erent output �action� in the same perceptual state� depending

on the sequence of inputs up to that point� To address the problem a quantitative

technique for comparing FSAs is required� One avenue of approach would be a

comparative analysis of the 
languages� �actually sequences of perceptual state�

accepted by two agents under evaluation� This is beyond the scope of the present

investigation however�

Another potential problem is the implicit assumption that two robots being com�

pared sequence through the state space at the same rate� As an example� two robots

might have the same policy but because one of them is equipped with a very slow

computer it changes state much less frequently� An analysis of behavioral di�erence

based solely on policy di�erence could not di�erentiate between these two agents�

The problem could be addressed by augmenting the di�erence metric with an addi�

tional 
computational resource� factor� The issue was not a problem in this research

because each robot is provided with identical computing resources�

��� Discussion and summary

Researchers in multiagent systems need new tools for measuring agent di�erence and

diversity in the arti�cial societies they study� Without such metrics it is impossible

to evaluate the quantitative impact of task on diversity or to correlate diversity with

performance� To address these issues� this chapter introduces
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� a mathematical expression for the behavioral di�erence between two robots�

� rigorous de�nitions of behavioral homogeneity and heterogeneity in multi�robot
teams� and

� social entropy� a new measure of robot team behavioral diversity�

Behavioral di�erence is evaluated by comparing the policies of robots and nor�

malizing the di�erences with respect to the proportion of times the two agents expe�

rience each perceptual state� The behavioral di�erence measure can be used in turn

by clustering algorithms to divide the society into groups of similar agents�

The �eld of numerical taxonomy provides is a rich source of methods for this

work because biologists face many of the same challenges� The hierarchic cluster�

ing methods used in taxonomy are advantageous because the generated hierarchies

provide more information about the structure of the society than a simple cluster�

ing� Cu clustering� a hierarchic overlapping clustering algorithm was adopted for this

research�

The diversity of a robot society is computed using the classi�cation of agents

into groups� The social entropy �diversity� of a society is computed based on the

number of groups and the size of each group� Use of the metric is illustrated in

several example evaluations�

The value of social entropy as a diversity metric may be limited when di�erence

between agents is continuous� Simple entropy does not account for the degree of

di�erence between agents� or the structure of the society in the classi�cation space�

To address this� a more comprehensive measure� hierarchic social entropy is intro�

duced� In short� hierarchic social entropy is the average entropy of a society across

all taxonomic levels �� � h � ���

Both simple and hierarchic social entropy are used in the experiments reported

in later chapters of this work� Simple entropy is employed when obvious distinc�

tions between agents can be made or when the behavioral di�erence metric does not

apply �as in the case of agents sequenced using FSAs�� However� when continuous

di�erences can be computed� the hierarchic social entropy measure is utilized�
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Chapter �

Diversity in Robot Foraging

This chapter addresses several important issues concerning performance and di�

versity in foraging robot teams� In particular� the following questions are investi�

gated�

� Is behavioral diversity correlated with performance in foraging�

� Is it possible for agents using reinforcement learning to master foraging tasks�

� Assuming agents can learn to forage� will they converge to the same or diverse
behavioral solutions�

� How does the choice of reinforcement function impact performance and diversity of
learning teams�

To address these questions empirically� the methodology introduced in Chapter �

is followed in the examination of human�designed and learning foraging strategies�

Several well�known human�designed foraging strategies are implemented and evalu�

ated in simulation� Learning teams utilizing three types of reinforcement function are



Robots

Red Bin Blue Bin

Attractors

Obstacles

Figure 
��� Simulation of the multi�forage task� Robots are represented as black circles�
arcs indicate the visual sensing range� Obstacles are drawn as gray circles� The small discs
are attractors� The robots deliver the attractors to the color�coded squares representing
delivery areas�

trained and evaluated in simulation and compared with the hand�coded strategies�

Finally� the behaviors are validated through implementation on mobile robots�

The remaining sections of this chapter describe the research in steps according

to the methodology presented in Chapter ��

��� Task and performance metric

The �rst step in the methodology is task speci�cation� The forage task for a robot is

to wander about the environment looking for items of interest �attractors�� Upon en�

countering an attractor� the robot moves towards it and grasps it� After attachment�

the robot returns the object to a speci�ed home base� Foraging has a strong biologi�

cal basis� Many ant species� for instance� perform the forage task as they gather food�

Foraging is also an important subject of research in the mobile robotics community
 it

relates to many real�world problems �Ark��� ABN��� BA��a� GM��� FM��� Bal��a��

Among other things� foraging robots may �nd potential use in mining operations�

explosive ordnance disposal� and waste or specimen collection in hazardous environ�

ments �e�g� the Mars Path�nder rover��

Most robotic foraging tasks investigated to date involve the collection of attrac�

tors of a single type and their delivery to a single destination� This basic task is
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referred to as simple foraging� Simple foraging is an important robotic capability�

but many practical industrial and military tasks call for more functionality� Con�

sider� for example� a janitorial robot responsible for collecting and sorting recyclable

trash objects into glass� aluminum and paper bins� Similarly� many assembly and

construction tasks involve collecting parts or materials and placing them in a spe�

ci�c location� These more complex tasks are referred to as multi�foraging tasks� In

general� the multi�foraging task calls for several types of objects to be col�

lected and placed in speci�c locations according to type� Here multi refers

to the multiple types of object to deliver� not the number of robots engaged in the

task� An example simulation of robots executing a multi�foraging task is presented

in Figure ����

����� Example foraging robot systems

Several multi�robot foraging systems have been designed and implemented at Geor�

gia Tech� The systems have been utilized in the study of communication in multia�

gent systems� cooperation in simple foraging and cooperation in multi�foraging tasks

�BBC���� BA��a�� Two of the resulting systems were entered in recent American

Association for Arti�cial Intelligence �AAAI� Mobile Robot Competitions�

Ganymede� Io and Callisto� Georgia Tech	s multi�robot entry in the AAAI���

competition� were the �rst multi�agent system to compete and win a AAAI event�

The robots are simple foragers
 they collect trash objects and deliver them to a

wastebasket �Figure ���� left�� The custom�built robots recognize trash objects�

wastebaskets and each other using color vision� Once they �nd an attractor� they

move towards it and grasp it� then proceed to a wastebasket for delivery� Since the

grippers cannot be raised� the robots leave the trash objects near the wastebasket�

In spite of scoring penalties incurred because the trash was not deposited in the

wastebaskets� the robots placed �rst in the contest�

A two robot team� Lewis and Clark� were entered in the 
Find Life on Mars��

event at AAAI���� In this multiagent task robots search an obstacle�strewn envi�

ronment for colored attractors� The robots are to grasp the attractors and deliver

them to appropriately colored bins� In the competition� points were awarded when

the robots deposited attractors in the correct bin� Figure ��� right� illustrates one of

the robots competing in the AAAI��� contest �the second robot is obscured by the
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Figure 
��� Two foraging robot teams developed at Georgia Tech participated in recent
AAAI Mobile Robot Competitions� Georgia Tech entered and won both competitions with
multi�robot teams� Left� in �

�� the �Clean Up the O�ce� task required robots to collect
trash and deliver it to wastebaskets� Right� in �

� the robots gather di�erently colored
attractors and deposit them in color�coded bins� The author led the design� construction
and programming of both multi�robot systems�

bin�� Two of the behavior�based strategies evaluated later in this chapter were used

in the contest� The robots placed �rst in three of four events� including both the

multiagent challenge and �nal rounds� The AAAI��� task� with slight variations� is

adopted as the multi�foraging task for this research�

����� Performance metric and task classi
cation

Performance in the multi�foraging task is measured as the number of

attractors collected and properly delivered by the robots in a �	 minute

trial� In terms of the taxonomy introduced in Chapter �� this task has the following

characteristics�

� TIME LIM because performance is measured over a �xed period�

� RESOURCE LIM because as agents collect objects� the the availability of attractors is
reduced��

� OBJECT BASED since performance is based on the location of objects� not agents�

� COMP INT because robots on the team compete for access to attractors among them�
selves�

� SINGLE AGENT since an individual agent can perform positively� even though multiple
agents may provide improved performance� and

� SENSOR LIM since agents only have a limited view of the environment�
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Several environmental parameters a�ect the rate at which the agents collect and

deliver the attractors�

� Number of attractors� Since performance is measured as the number of attractors
collected� more attractors available for collection may tend to provide for increased
performance� In simulation runs there are �� attractors� �� of each type 
red and
blue�� No team 
hand�coded or learning� was able to reach the upper bound of ��
objects collected in �� minutes�

� Obstacle coverage� Higher obstacle density can lead to degraded performance
because the robots must slow down and�or take a longer route around hazards to
deliver attractors� In simulation runs� each playing �eld includes �ve � m� obstacles

� coverage�� The AAAI Competition �eld included approximately �� rock piles
varying from about ��� m� to � m�� In most laboratory runs� no obstacles other than
another robot and the arena boundaries were present�

� Playing 	eld size� Larger search areas may lead to a decrease in performance�
In simulation� the �eld measures �� by �� meters� At the AAAI Competition� the
�eld was a hexagon measuring approximately � by � meters� Runs in Georgia Tech�s
Mobile Robot Lab were conducted in a � by �� meter area�

� Number of robots� In most cases� increasing the number of robots on a team
improves performance� There is some concern however� that as the number of robots
increases� interference between the agents will degrade performance �GM
�	� In sim�
ulation experiments the number of agents is varied from one to eight� In laboratory
runs one and two agents were used� At the AAAI Competition two robots were
employed�

The next section explains the development of multi�robot behaviors for the multi�

foraging task�

��� Behavioral design of hand�coded strategies

A schema�based reactive control system is used for robot programming� In this

approach� the agent is provided several pre�programmed behavioral assemblages that

correspond to steps in achieving the task �e�g� wander� acquire� deliver� and so on

�AM����� Binary perceptual features �also referred to as perceptual triggers� are

used to sequence the robot through steps in achieving the task� Selection of the

appropriate behavior� given the situation� may be hand�coded or discovered by the

robot through reinforcement learning�
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Table 
��� Behaviors the robots select from in accomplishing the foraging task� Hand�
coded agents sequence from one behavior to another according to a �xed strategy� Learning
agents must discover a satisfactory strategy autonomously�

behavior robot activity

wander Search the environment for attractors�
stay near home Search the home zone for attractors�

acquire blue Proceed to the closest blue
object and grasp it�

acquire red Proceed to the closest red
object and grasp it�

deliver blue Go the the blue delivery area�
deliver red Go to the red delivery area�

While the focus of the dissertation is diversity in learning robot systems� hand�

coded non�learning teams play an important role as well� The performance of human�

designed teams establishes a baseline for comparison with results from learning sys�

tems� Also� hand�coded strategies provide additional data points regarding the rela�

tionship between diversity and performance in foraging� Three hand�coded strategies

for foraging are implemented and evaluated for performance and diversity�

� Behaviorally homogeneous� all the robots collect all the di�erent types of attrac�
tor and deliver them to corresponding color�coded delivery areas�

� Territorial� In this scheme one robot� referred to as the sorting agent� is responsible
for collecting attractors within a three meter circle centered on the homebase� The
other agents search at a distance from the homebase� When these robots �nd an
attractor� they hand it o� at the boundary of the �home zone�� Final delivery is
then completed by the sorting agent� This is a behaviorally heterogeneous approach�

� Specialization by color� half the robots specialize in collecting one type of attrac�
tor while the rest specialize in collecting the second type� Specialization by color is
a heterogeneous strategy as well�

����� Behavioral repertoire

To ensure a fair comparison between the various hand�coded and learning systems�

a �xed repertoire of behaviors is utilized across all implementations� A range of

behaviors was developed to support several foraging strategies and to avoid bias

towards any particular approach� The repertoire is suitable for building behaviorally

homogeneous foraging teams as well as territorial and other heterogeneous strategies�
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Agents utilizing distinct strategies di�er in the order they activate behaviors� Hand�

coded agents proceed deliberately from behavior to behavior as they accomplish the

task while the learning agents must discover which behavior to activate when� The

behaviors developed for foraging teams are summarized in Table ���� and described

in detail below�

� wander� move randomly about the environment in search of attractors� Upon en�
countering an attractor� hand�coded agents automatically transition to an appropri�
ate acquire behavior� Learning systems� in contrast� discover an appropriate follow�on
behavior on their own� Motor schemas active in the wander assemblage are


 noise� high gain� moderate persistence to cover a wide area of the environment�


 avoid static obstacles� gain su�ciently high to avoid collisions�


 avoid robots� gain su�ciently high to avoid collisions�


 avoid home zone� moderate gain to move the agent away from the home
zone� This is important for the roaming territorial foragers since it keeps them
from interfering with the sorting agent�

� stay near home� similar to the wander assemblage� but with an additional attractive
force to keep the agent close to the homebase� This assemblage is utilized in the
territorial strategy by a sorting agent� Active schemas include


 noise� high gain� moderate persistence to cover the home zone�


 avoid static obstacles� gain su�ciently high to avoid collisions�


 avoid robots� gain su�ciently high to avoid collisions�


 stay near homebase� moderate gain to keep the agent close to homebase�


 avoid delivered attractors� repulsion centered on the delivery area with a
small radius of in�uence and moderate gain to keep the agent from pushing
over delivered objects�

� acquire red� move towards the closest visible red attractor� When close enough to
grasp the attractor� hand�coded agents close their gripper and transition to a deliver
assemblage� Learning agents must learn which follow�on behavior to activate� Motor
schemas activated in this assemblage include


 noise� low gain� to deal with local minima endemic to potential �eld ap�
proaches�


 avoid static obstacles� gain su�ciently high to avoid collisions�


 avoid robots� gain su�ciently high to avoid collisions�


 move to red attractor� high gain to move the agent to the attractor�
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 avoid delivered attractors� repulsion centered on the delivery area with a
small radius of in�uence and moderate gain to keep the agent from pushing
over delivered objects�

� acquire blue� move towards the closest visible blue attractor� The same schemas are
activated as in the acquire red assemblage� except that move to blue attractor

replaces move to red attractor�

� deliver red� move towards the red delivery area� When close enough to deposit the
attractor in the delivery area� hand�coded agents open their gripper and transition to
one of the wander assemblages� Territorial agents are programmed to drop attractors
on the boundary of the home zone� Motor schemas activated in this assemblage
include


 noise� low gain� to deal with local minima endemic to potential �elds ap�
proaches�


 avoid static obstacles� gain su�ciently high to avoid collisions�


 avoid robots� gain su�ciently high to avoid collisions�


 move to red bin� high gain to move the agent to the delivery area�


 avoid delivered attractors� repulsion centered on the delivery area with a
small radius of in�uence and moderate gain to keep the agent from pushing
over delivered objects�

� deliver blue� move towards the blue delivery area� The same schemas are activated
as in the deliver red assemblage� except the move to blue bin schema is activated
instead of move to red bin�

The next section describes perceptual features used to sequence the behaviors for

foraging�

����� Perceptual features

A perceptual feature is a single� abstracted bit of environmental or sensor state

germane to the robot	s task �e�g� whether or not the robot is holding an attractor

in its gripper�� Agents must decide on the basis of these environmental cues which

behavior to activate at each point in time� The hand�coded teams are programmed as

Finite State Automatons �FSAs� that sequence from one state to another� Each state

of the FSA determines which behavior is to be activated� with transitions between

behavioral states triggered when particular perceptual features are activated� This

approach is called perceptual sequencing �AM����
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Table 
��� Perceptual features available to the foraging robots� Each feature is one bit of
environmental state� the entire perceptual state is a nine�bit value�

perceptual feature meaning

red visible a red attractor is visible�
blue visible a blue attractor is visible�

red visible outside homezone a red attractor is visible outside the
three meter radius home zone�

blue visible outside homezone a blue attractor is visible outside
the home zone�

red in gripper a red attractor is in the gripper�
blue in gripper a blue attractor is in the gripper�

close to homezone the agent is within
� meters of the homebase�

close to red bin close enough to the red
delivery area to drop an attractor in it�

close to blue bin close enough to the blue
delivery area to drop an attractor in it�

A �xed set of perceptual features are utilized across all implementations to ensure

a fair comparison between the various foraging systems� The perceptual features for

foraging are cataloged in Table ���� In addition to the features advising the robot

whether an attractor is visible� there are also features indicating whether attractors

are visible outside the home zone� The visibility cues are used to allow territorial

agents to search for attractors inside or outside the zone while ignoring the others�

The close to homezone feature is used by territorial robots as a signal to drop an

attractor on the boundary of the zone so that a sorting robot can complete the �nal

delivery�

Learning agents are provided the features as a ��bit integer� This conglomeration

of features is referred to as the agent	s perceptual state� Altogether there are ���

potential perceptual states� As a practical matter however� some states never occur�

It is impossible� for instance� for a robot to be both in the red delivery area and

outside the home zone simultaneously�

Note that because the perceptual state is an ambiguous representation of the

agent	s situation� the decision problem for the robot is partially observable �LCK����

This means that many distinct situations are perceived as equivalent by the robot�

For instance� as an agent delivers an attractor� it might perceive itself as being in

the same state whether it is � meters or � meters from the delivery area�
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����� Hand�coded sequencing strategies

As mentioned earlier� hand�coded teams are programmed using FSA descriptions for

sequenced behavior� The various strategies were all built from the same repertoire of

behaviors� The di�erent strategies� homogeneous� specialize by color and territorial�

either utilize a di�erent subset of the behaviors or activate the behaviors in a di�erent

sequence�

Homogeneous Foraging

acquire_blue

acquire_red deliver_red

deliver_blue

wander

red_in_gripper

blue_in_gripper

close_to_red_bin

close_to_blue_bin

red_visible

not red_visible

blue_visible

not blue_visible

Homogeneous Agent

Figure 
��� An FSA representing the homogeneous foraging strategy� This kind of agent
can collect all types of attractor�

An obvious approach to the design of a multi�robot multi�foraging team is to pro�

gram each agent to complete the entire task on its own� This strategy is referred

to as homogeneous because all the agents are programmed with the same behavior�

This approach was used by Georgia Tech	s robots in the AAAI��� competition and

in research concerning multiagent communication �BBC���� BA��a�� The homoge�

neous approach provides fault�tolerance because when one or more agents fail� the

remaining robots can still accomplish the task��

�In fact� at the AAAI��� contest� one of Georgia Tech�s three robots failed during the �nal
round� Fortunately� the two remaining robots were able to �nish the task�
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An FSA representing the homogeneous strategy is shown in Figure ���� Each

agent begins with the wander behavior activated� roaming about the environment in

search of attractors� When a robot encounters an attractor� either the red visible

or blue visible perceptual feature is triggered� causing the agent to transition to

the corresponding acquire red or acquire blue behavior� Upon capturing an attrac�

tor� a robot returns back to homebase using one of the deliver behaviors� Finally�

upon reaching the corresponding delivery area� the agent drops the attractor and

transitions back to wander�

Specialization by Color

Figure 
��� Inter�robot interference� In this simulation three robots are attempting to
deliver attractors to the left 
red� delivery area simultaneously� Interference reduces the
rate at which agents can deliver attractors�

When several robots simultaneously attempt to deliver attractors to the same de�

livery area� they may interfere with one another and degrade performance� Figure

��� shows an example simulation where robots impede each other	s progress as they

attempt to deliver attractors to the left �red� delivery area� One way to reduce

interference and potentially improve performance is to partition the task so that re�

sponsibility for collecting red and blue attractors is divided among the robots� Half

of the agents are responsible for collecting the red objects and the other half for blue�

This way� the chance of a 
tra�c jam� at either delivery area is reduced�

FSAs for these specialized agents are illustrated in Figure ���� All agents start

with the wander behavior activated� They begin to search the environment for at�
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acquire_red

deliver_red

red_visible

red_in_gripper

close_to_red_bin

not red_visible

wander

Red Specialist

acquire_blue

deliver_blue

blue_visible

blue_in_gripper

close_to_blue_bin

not blue_visible

wander

Blue Specialist

Figure 
��� FSAs representing specialized behaviors for foraging� The FSA on the left
shows the sequence behaviors are activated in for an agent specializing in collecting red
attractors� The FSA on the right shows the sequence for blue specialists�

tractors� What follows depends on whether the agent is a red specialist or a blue

specialist� Red specialists ignore blue attractors� but when they encounter a red

attractor while in the wander phase� they immediately transition to the acquire red

behavior� Similarly� blue specialists ignore red attractors� After acquiring an attrac�

tor� the agents deliver it to the appropriate delivery area using one of the deliver

behaviors� then they switch back to wander to search for new items� An additional

transition is provided for situations where an agent loses sight of the attractor� In

that event it transitions back to wander�

Territorial Specialization

Goldberg� Fontan and Matari�c have investigated several heterogeneous foraging strate�

gies as a way to minimize inter�agent interference �GM��� FM���� In Fontan	s ap�

proach the search area is divided equally between the agents �FM���� They hand

o� collected attractors from area to area� with the last robot completing delivery

to the homebase� Alternately� Goldberg proposes caste and pack foraging strategies

�GM���� In the pack scheme� each agent is arbitrarily assigned a place in the 
pack

hierarchy�� Agents higher in the hierarchy are permitted to deliver attractors before

the others� In the caste approach� only one agent completes the �nal delivery
 the

other robots leave their attractors on the boundary of a designated 
home zone��

Goldberg	s results indicate that interference per unit time is maximized in homoge�

neous foraging and minimized in pack foraging� In spite of the fact that interference is

maximized in the homogeneous system� the researchers report homogeneous foraging
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deliver_blue
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Sorting Specialist

acquire_blue

acquire_red deliver_red

deliver_blue
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red_in_gripper
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Roaming Specialist

red_visible_outside_hz

blue_visible_outside_hz

not blue_visible_outside_hz

not red_visible_outside_hz

Figure 
�
� The Territorial behavioral sequences for foraging� FSA on the left shows
the sequence of behaviors for an agent that remains close to the homebase� completing the
delivery of the attractors� Agents using the strategy on the right search for attractors away
from the home zone and deliver them to the home zone boundary� Di�erences from the
homogeneous strategy are highlighted�

teams perform best�

A territorial!caste strategy is adopted for this investigation� In this scheme� one

robot remains close to the homebase in the 
home zone�� delivering attractors that

other agents deposit on the zone	s boundary� Figure ��� shows the FSAs for robots in

this system� The sequencing strategies for the agents are similar to the approach for

homogeneous foragers �Figure ����� One signi�cant di�erence is that the sorting agent

utilizes a stay near home behavior rather than wander while searching for attractors�

This results in the agent staying close to the delivery areas for sorting� The other

agents are also similar to the homogeneous strategy� except they are triggered to

drop attractors at the boundary of the home zone instead of depositing them in the

delivery areas�

��� Performance of hand�coded strategies in sim�

ulation

Now the performance of the hand�coded systems are examined experimentally� The

JavaBots system was utilized for simulation and mobile robot experimentation �Bal���

Bal�� Behaviors coded in JavaBots may be run in simulation� and without modi��

cation� on Nomadic Technologies	 Nomad ��� mobile robots� Statistical results are
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gathered by running the robot behaviors in thousands of simulation trials�

In simulation� each robot is a kinematically holonomic vehicle �a simulated Nomad

���� which is controlled by one of the behavioral systems described above� Simulated

motor and sensor capabilities are based on performance of the physical robots� The

robots can detect hazards with sonar out to a range of nine meters� Attractors can

be detected visually out to three meters across a �� degree �eld of view�

Each type of control system under investigation was evaluated using one to eight

simulated robots in �ve di�erent randomly generated environments� The environ�

ments di�er in the arrangement of hazards and attractors� The arena is �� by ��

meters and includes �ve randomly placed � m� obstacles for �% obstacle coverage�

There are �� each of red and blue attractors distributed about the environment for

collection� For hand�coded systems ��� trials were run in each environment� or �����

runs for each control strategy� and ������ total�

Time is measured in seconds� Since reactive control systems are very fast� sev�

eral thousand control cycles are completed each second� The simulation is allowed

to proceed faster than real time with each control cycle �xed at ��� milliseconds

�simulation time�� Each trial runs for �� simulated minutes or ������ control cycles�

����� Task performance
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Figure 
��� Performance of the hand�coded teams versus size of the team� Higher numbers
are better� error bars indicate 
� con�dence intervals� The homogeneous teams perform
best in all cases�
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Average performance for each of the three systems is plotted versus the number of

robots per team in Figure ���� Performance is measured as the total number of

attractors properly delivered by the team in �� minutes
 larger numbers are better�

with �� being the best possible� The plotted values are determined by comput�

ing the average performance of the teams in each of the �ve randomly generated

environments over ��� trials�

In all cases� performance increases monotonically with the number of agents� The

data also show that regardless of team size� the homogeneous strategy performs best�

followed by the territorial method and �nally the specialize�by�color approach� Of

the hand�coded systems evaluated homogeneous systems perform best in this

foraging task� These results con�rm those of other researchers in simple foraging

�FM��� GM����

����� Factors impacting performance

Uncollected Blue Attractors

Uncollected Red Attractors

Blue BinRed Bin

Figure 
��� Simulations highlighting some of the factors that impact performance in
hand�coded teams� From left to right� interference in a homogeneous team� an over�worked
sorting robot� attractors left uncollected by agents specializing in one color of attractor�

As previously mentioned� inter�robot interference is a concern for homogeneous sys�

tems� while the heterogeneous strategies were speci�cally designed to reduce inter�

ference� Interference does occur during the delivery phase in both homogeneous

and specialize�by�color strategies �Figure ���� left�� This study does not include a

quantitative measure of interference� but qualitative observations are consistent with

results reported in �GM���
 namely that there is more frequent interference between
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agents in the homogeneous strategy than in other systems� Still� performance is best

in homogeneous systems�

In the case of territorial foraging� robot�robot interference occurs much less fre�

quently� but another factor limits performance� In most trials� the roaming agents

quickly deliver a large number of the attractors to the boundary of the home zone�

but the single sorting robot cannot always keep up� In simulations with seven and

eight agents it is not uncommon for undelivered attractors to remain in a ring around

the home zone at the end of the trial �Figure ���� center�� Even though the number

of sorters is constant �one�� the territorial foraging experiments illustrate how the

ratio of sorters to roamers impacts performance� The ratio varies from ��� to ��� as

the number of agents goes from � to �� In the ��� case� the sorting agent 
starves�

because it quickly �nds all the nearby attractors� Conversely� in the ��� case� the

sorter is overworked
 there are many more attractors for it to deliver than it is able

to�

A di�erent sort of problem crops up for the specialize�by�color teams� Towards

the end of trials for these agents there are often uncollected red attractors on the

right side of the �eld and uncollected blue attractors on the left �Figure ���� right��

This occurs because the agents inadvertently segregate themselves geographically to

the left or right depending on whether they collect red or blue attractors� After

delivering a blue attractor� for instance� a blue�collecting agent is more likely to

remain on the same �right� side of the �eld as the blue bin� Because of this there are

no red�collecting agents on the right side of the �eld and vice�versa� In large robot

teams the robot�robot repulsion employed as part of the wander behavior serves as

an additional force preventing the agents from di�using from one side to the other� In

addition to segregation� the specialize�by�color agents occasionally interfere with one

another when delivering attractors to the same delivery area simultaneously� These

factors combine to drive performance down in the specialize�by�color teams�

����� Diversity

The diversity of the three systems is plotted versus the size of the team in Figure

���� Diversity is measured using social entropy as described in Chapter �� Recall

that the entropy of a system is determined by grouping the agents according to

behavior� then evaluated for diversity based on the number and size of the groups�
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Figure 
��� Diversity� as measured by social entropy� versus size of the team for hand�
coded teams� Larger numbers indicate greater diversity�

A higher entropy indicates greater diversity� The homogeneous teams always exhibit

zero diversity� while the heterogeneous teams vary in entropy from ���� to ����

The territorial system always contains one unique robot �the sorting agent that

stays near homebase�� while the rest are identical� In this system� entropy is ��� for

two agents� then gradually declines as the number of agents increases� The value

drops to ���� for eight robots�

For even numbers of robots the specialize�by�color team consists of half red�

collecting robots and half blue�collecting robots
 this equates to an entropy of ����

For odd numbers of robots the entropy is slightly less than ���� The value oscillates

about and gradually converges to ���� This is borne out in the graph �Figure �����

One goal of this research is to determine the relationship between diversity and

performance in multiagent tasks
 is the relative diversity of two multiagent teams a

predictor of their relative performance� This question is addressed using Spearman�s

Rank�Order Correlation Test �PTVF���� Spearman	s test measures correlation be�

tween pairs of data points� where each pair re�ects the ranking of each item according

to separate metrics� In this case� we compare ranking in performance with ranking in

diversity� The correlation value� r ranges from �� �negatively correlated�� to � �un�

correlated� to � �positively correlated�� Statistical signi�cance of the correlation is

indicated by the probability that the same correlation could have occured by chance�

The equations used in Spearman	s test are described in Appendix B�

Consider the plots of robot system performance and diversity in Figures ��� and
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���� For each robot team size �� �� the systems can be ranked by diversity and

performance�� Spearman	s test indicates that diversity and performance are

strongly negatively correlated in this foraging task� with r " ������ Greater

diversity is associated with lower performance� The probability of the null hypothesis�

that the rankings occur by chance� is ���������

��� Design of learning strategies

This section describes the implementation of learning foraging strategies and inves�

tigates how the choice of reinforcement function impacts performance and diversity

in a learning team� The general approach for training a team is to provide each

agent a reward function that generates feedback at each movement step regarding

the agent	s progress� Q�learning is utilized as the means of associating actions with

state �WD���� The learning agents are initialized with random Q�tables� thus ran�

dom� poorly performing policies� Since each agent begins with a di�erent policy

the teams are initially maximally diverse� They improve their policies using the

reinforcement functions described in the following subsection�

The learner seeks to maximize its reward� discounted over time� by selecting

appropriate actions according to its situation� At each step the learner activates one

of its six behaviors according to a ��bit perceptual state summarizing its situation�

By utilizing this approach� agents can learn the task automatically� They can also

adapt to changes in the environment and failures of the other agents� More details

on Q�learning are provided in Chapter ��

Learning teams are given the same suite of behaviors and perceptual features as

the hand�coded teams� In this way di�erences in performance can be attributed to

the strategy or policy in use rather than the behaviors or state information available

to the agent�

����� Reinforcement functions for foraging

To evaluate the impact of reinforcement on diversity and performance in learning

teams� three reward functions are evaluated�

�Since diversity has no meaning for a single agent system� only teams of two or more agents
are considered� Ties are declared in cases where values are exactly the same or when con�dence
intervals overlap�
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� Local performance�based reinforcement� each agent is rewarded individually
when it delivers an attractor�

� Global performance�based reinforcement� all agents are rewarded when any
agent delivers an attractor�

� Local shaped reinforcement� each agent is rewarded progressively as it accom�
plishes portions of the task �Mat
�	�

Robot teams using these reward systems are evaluated in terms of performance�

learning rate and diversity� Diversity and performance of the learning teams are also

compared against the corresponding values for the hand�coded systems�

In both types of performance�based reinforcement the reward is tied directly to

the performance metric
 in this case� attractor delivery� A performance�based reward

structure is advantageous for the designer because it allows her to succinctly express

the task for an agent� There is no need to enumerate how the task should be carried

out �as was necessary in the hand�coded teams�� Instead� the agents learn behavior

sequences autonomously� In contrast� heuristic or shaped reinforcement functions

provide rewards to the agent as it achieves parts of the task
 for instance� when

grasping an attractor� when heading for the delivery area� and when depositing it in

the delivery area�

Assuming the task proceeds in discrete steps� the local performance�based rein�

forcement function for foraging at timestep t is�

Rlocal
t� �

�
� if the agent delivered an attractor at time t � �

�� otherwise

����

The global performance�based function is de�ned as�

Rglobal
t� �

�
� if any agent delivered an attractor at time t � �

�� otherwise

����

The global function will reward all team members when an attractor is delivered�

The global function is implemented using an inter�robot communication scheme that

allows the agents to communicate their individual rewards� In terms of the rein�

forcement function taxonomy developed in Chapter �� Rglobal and Rlocal are similar

in that they are both INTERNAL SOURCE� PERFORMANCE� DELAYED and DISCRETE re�

ward functions� Of course they di�er in locality
 one is LOCAL while the other is

GLOBAL
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A potential problem with these reward functions is that the reinforcement is

delayed� The agent must successfully complete a sequence of steps before receiving

a reward� This makes credit assignment in the intervening steps more di�cult� To

address this issue� Matari�c proposes an alternate reward scheme where the agent is

provided intermediate rewards as it carries out the task �Mat���� The agent is not

only rewarded for delivering an attractor� but also for picking one up� for moving

towards a delivery area when it is holding an attractor� and so on� This heuristic

strategy is referred to as shaped reinforcement� The reward function is de�ned as a

sum of three sub�functions� as follows�

Rshaped
t� � Revent
t� �Rintruder
t� � Rprogress
t� 
����

Revent�t� encapsulates the reward for events like delivering an attractor or dropping it

in the wrong place� Rintruder�t� is used to punish the agent for prolonged interference

with other agents� Finally� Rprogress�t� is activated when the agent is holding an

attractor� and rewards the agent for moving towards the delivery point� Revent�t� is

de�ned more formally as�

Revent
t� �

�����
����

� if delivered attractor at time t � �
� if picked up attractor at time t � �

�� if dropped attractor outside bin at time t� �
�� otherwise


����

Matari�c sets Revent to � in the default case� instead of �� as above� The choice was

made to use �� here since Q�learning converges more quickly with negative rewards

before task completion� Rprogress�t� is de�ned as�

Rprogress
t� �

���
��

��� if holding attractor and moving towards bin at time t� �
���� if holding attractor and moving away from bin at time t � �
� otherwise


����

Since the individual behaviors used in this work already include a provision for

agent avoidance� Rintruder�t� is not used� Rshaped is an INTERNAL SOURCE� HEURISTIC�

IMMEDIATE� DISCRETE and LOCAL reward function�

For performance�based rewards� Q�learning is not sensitive to the speci�c value

of reinforcement� For instance� �$�� ��� will work as well as �$��� ������ An impor�

tant constraint� however� is that performance is maximized if and only if reward is

maximized �this is the de�nition of performance�based reward�� Heuristic rewards

�like shaped reinforcement� do not usually meet this criteria�
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��� Performance of learning strategies in simula�

tion

Statistical results were gathered by running the robot behaviors in thousands of

simulation trials� The same simulation system� parameters and other experimental

conditions used for evaluation of the hand�coded systems were also employed in the

evaluation of the learning systems� Each type of learning system under investigation

was evaluated using one to eight simulated robots in �ve randomly generated envi�

ronments� As in the evaluation of hand�coded systems� performance is the number

of attractors collected in �� minutes� ��� trials were run in each environment� ������

runs for each control strategy and ������ overall�
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Figure 
���� Performance for learning systems versus the number of robots on a team�

����� Task performance

Agents are able to learn the task using all three types of reinforcement� In fact for

local and shaped reinforcement� the teams perform as well as hand�coded teams� In

most cases the agents converge to stable performance after about ��� trials�

A plot of the average performance for each learning system versus the number

of agents on the team is presented in Figure ����� The local performance�based and

heuristic reinforcement systems perform best� Performance in the globally reinforced

system is worse than the other learning teams� Note that the performance plots for

teams using local and shaped rewards are nearly identical and that one	s con�dence
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interval overlaps the other	s mean value� For this task there is no statistically signif�

icant di�erence in performance between the two approaches�
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Figure 
���� Performance of the best learning and non�learning systems combined in one
graph�

When the performance of learning and non�learning systems are viewed together

�Figure ������ one can see that there is no statistically signi�cant di�erence between

the homogeneous hand�coded systems and the best learning systems� Local and

shaped reinforcement systems perform as well as the best hand�coded

systems�

����� Learning rate

The rate at which agents converge to stable policies is evaluated by tracking the

number of times an agent	s policy changes during each trial� A policy change is

a revision of the agent	s Q�table such that it will select a di�erent action in some

perceptual state� The average number of policy changes per trial is graphed for each

system in Figure ����� The �gure shows plots for systems with eight agents� All

three reinforcement strategies show good convergence properties�

Agents using shaped reinforcement converge at a rate about equal to the glob�

ally reinforced agents� With shaped reinforcement� however� the average number of

changes converges to and remains at zero after ��� trials� The globally reinforced

systems converge to zero after ��� trials� The locally reinforced teams do not fully

converge� but settle to around �ve changes!trial� Overall� shaped reinforcement
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Figure 
���� Convergence for learning systems� measured as policy changes per trial�
lower numbers indicate convergence to a stable policy� Shaped reinforcement shows the
best convergence properties 
reaching zero after ��� trials��

converges most quickly�

Learning rate can also be evaluated by observing how the performance of a system

changes over time� Plots of performance versus trial number are shown in Figure

����� All three systems increase their performance at a rapid rate over the �rst ��

trials� Performance with global reinforcement levels o� at around �� after �� trials�

The locally rewarded teams level o� after approximately ��� trials at between ��

and �� attractors� The shaped reinforcement systems reach the same level� but they

stabilize more quickly� These �ndings roughly correspond with the convergence data�

����� Diversity

As in the hand�coded teams� diversity is measured using social entropy� Unlike the

hand�coded teams however� agents are not as easily categorized into di�erent behav�

ioral groups� To facilitate categorization� the behavioral di�erence metric introduced

in Chapter � is used� with similar agents being grouped together as a caste�

An example of how the robots are grouped according to their behavioral di�er�

ence is provided in Figure ���� and Figure ����� In the example agent similarity

matrix �Figure ����� each entry represents the behavioral di�erence between two

robots� Di�erence can vary from ��� �no di�erence� to ��� �maximum di�erence��

For instance� in the second column and �rst row� one can see that agent � and agent

� di�er by ������ Agents are considered ��equivalent if their behavioral di�erence is

���



0

5

10

15

20

25

30

35

40

50 100 150 200 250 300

at
tr

ac
to

rs
 c

ol
le

ct
ed

trial

locally reinforced (8 agents)
globally reinforced (8 agents)
globally reinforced (8 agents)

Figure 
���� Performance versus trial number for learning systems with eight robots�
These plots indicate how performance improves as the agents learn over time� Local
and shaped�reinforcement teams stabilize at about the same level� with globally�reinforced
teams performing worst�
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���� Hierarchic social entropy versus size of the team for learning teams� larger
numbers indicate greater diversity� error bars indicate 
� con�dence intervals� Shaped�
reinforcement generates the least diverse teams� while globally�reinforced teams are the
most diverse� For some robot team sizes di�erences between the globally and locally
reinforced teams is not signi�cant�
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less than or equal to �� If we let � " ���� agents � and � are grouped in the same

caste� Continuing with the comparisons� two castes emerge� The �rst caste contains

agents �� � and �� while the other contains agents � and �� These relationships are

illustrated in Figure ����� Social entropy� a measure of the randomness in the sys�

tem� is computed using the size and number of castes� All other things being equal�

a system with more castes will have a greater entropy� For this example the entropy

is �����

To avoid a bias in measurement that might be caused by selecting a particular ��

the entropy of a robot system is computed using hierarchic social entropy �covered

in detail in Chapter ��� Essentially� entropy is computed for the system at each

taxonomic level �value of �� then averaged across all of them� The result is the

hierarchic social entropy of the system�

agent � agent � agent � agent �

agent � ����� ���
� ����� �����
agent � ���
� ����� ����� �����
agent � ����� ����� ����� ���


agent � ����� ����� ���

 �����

Figure 
���� Agent similarity matrix� Each entry in the table indicates the behavioral
di�erence between two corresponding agents� This four robot team was trained using
shaped reinforcement� With � � ��� the entropy of this system is ��
��

R0 R1 R2 R3

Figure 
��
� Division of the example team into castes based on behavioral di�erence� In
this case � � ����

Using the approach outlined above� diversity is determined for robot groups us�

ing each type of reinforcement� in each of the �ve random environments for � to

� robots� The hierarchic entropy of the three types of learning systems is plotted

versus the size of robot teams in Figure ����� In all cases with two or more agents�

the globally reinforced teams are most diverse� In all but one case the teams using

shaped reinforcement are the least diverse and locally reinforced teams lie between

the two extremes�
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As in the hand�coded teams� diversity and performance are negatively

correlated in learning teams� For each robot team size �� �� the systems are

ranked by diversity and performance�� The rankings are evaluated using Spearman	s

Rank�Order Correlation Test �see Appendix B for details�� Spearman	s test indicates

the rankings are strongly negatively correlated� with r " ������ The probability of

the null hypothesis being true �that the rankings occur by chance� is ���������

��� Implementation on mobile robots

To verify the simulation results� the hand�coded and learning systems were ported to

Nomad ��� mobile robots� Because the control systems are implemented in JavaBots�

they can run in simulation and on hardware
 the same behaviors and features can be

utilized on mobile robots as in simulation �the hardware platform is covered in more

detail in Chapter ��� Four of the con�gurations evaluated in simulation were run on

mobile robots�

�� One robot using the homogeneous foraging strategy�

�� Two robots using the homogeneous foraging strategy�

�� One robot using a policy learned with local reinforcement�

�� Two robots using a policy learned with local reinforcement�

Additionally� homogeneous and heterogeneous systems were evaluated in the

AAAI��� Mobile Robot Competition task� The AAAI��� experiments are covered in

Section ������

The same behaviors prototyped and evaluated in simulation were utilized in these

trials on mobile robots� Snapshots of one of the robots executing wander� acquire and

deliver behaviors in the laboratory are presented in Figure ����� The robots utilize

a passive gripper to collect attractors� The gripper is designed so that a captured

object remains under the robot	s control until the robot drops it by backing up�

The Mobile Robot Laboratory provides an arena measuring approximately � me�

ters by �� meters for the robot experiments� A total of �� attractor objects� �� of

�Di�erences in performance between teams using local and shaped rewards are not statistically
signi�cant because one�s con�dence interval overlaps the other�s average value 
Figure ���	�� Like�
wise� in several cases the con�dence intervals for diversity overlap� For ranking purposes in cases
where overlap occurs� the overlapping strategies are ranked as ties�
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each type �red and green�� were distributed randomly about the lab for each trial�

Both the size of the arena and the number of attractors available for collection are

halved in comparison with the environment used in simulation experiments�
            

Figure 
���� Nomad ��� robot equipped with passive gripper demonstrates three foraging
behaviors� From left to right� wander� acquire blue and deliver blue�

In the �rst set of experiments� robots were programmed to execute the homo�

geneous strategy introduced earlier in the chapter �con�gurations � and ��� Five

trials of �� minutes were run for each number of robots� At the end of each trial�

performance was evaluated as the total number of attractors properly delivered� Per�

formance is summarized in Table ����

In laboratory evaluations qualitative behavior was essentially identical to that

of homogeneous teams in simulation� As in simulation� the agents occasionally in�

terfered with one another when they deliver attractors to the same bin� In these

experiments with �� attractors� each robot routinely collected and delivered � ob�

jects� As expected� two robots perform better than a single robot� Performance

is slightly worse than the same strategy in simulation experiments� The decrease

is most likely due to the reduced number of attractors available for collection ���

versus ����

Learning systems were evaluated in a second set of experiments �con�gurations �

and ��� Performance was evaluated before and after learning using local performance�

based rewards on one and two robots� In each case� the robots were initialized with

a random policy �the behavior for each situation is set randomly�� then evaluated

in a �� minute trial� The policies were transferred to the simulation system and

trained over ��� trials� After training� the policies were transferred back to the

robots for another evaluation� The process was repeated �ve times for each number

of robots� Performance of the robots running learned policies is summarized in

Table ���� Snapshots of one of the learned policy trials are presented in Figure �����
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Table 
��� Summary of performance in hand�coded foraging robot trials�

con�guration�trial attractors collected

� robot� homogeneous strategy trial � �	�	
trial � ��	
trial � ���	
trial � ���	
trial � ��	

average ���

� robots� homogeneous strategy trial � ���	
trial � ���	
trial � ���	
trial � ���	
trial � ���	

average ���	

As in simulation the robots perform much better after the learning phase� How�

ever� they do not collect as many attractors as comparable simulated systems� Again�

this is likely due to the reduced number of attractors available for collection� As in

simulated systems
 learning systems perform nearly as well as hand�coded

robots�

����� Experiments in the AAAI �Find Life on Mars
 task

The AAAI competition task is slightly di�erent from the task evaluated in the pre�

vious section� Results in the AAAI task are valuable because they serve to further

establish the usefulness of behaviors prototyped in simulation and they highlight a

situation where heterogeneous strategies are important� The results also illustrate

how JavaBots facilitates recon�guration of robot behavior�

Task di�erences

Rather than a delivery area for each type of attractor as in the task described earlier�

in the AAAI task robots must deposit attractors in bins with doors� The doors of

the bins are painted an identifying color to help the agents �nd them� The robots

had to be equipped with active grippers to enable them to lift the objects and drop

them in the bins� Also� some of the attractors move� The battery�powered squiggle

balls roll around at about twice the maximum speed of the robot platforms� The

robots were to sort the attractors according to whether they were 
alive� �rolling�
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Table 
��� Summary of performance in learning foraging robot trials�

con�guration�trial performance
before training after

� robot� Q
learning� local reward trial � ��	 ��	
trial � 	�	 �	�	
trial � 	�	 ��	
trial � 	�	 ��	
trial � 	�	 ��	

average 	�� ���

� robots� Q
learning� local reward trial � 	�	 ���	
trial � ��	 ���	
trial � 	�	 ���	
trial � ��	 ���	
trial � 	�	 ���	

average 	�� ����

or 
dead��

In the �rst phase of the competition� the Challenge Round� the attractors and

doors were matched in color� but in the Final Round there were six di�erent colors

for the attractors �three colors per bin�� This presented a problem since the robots

can only track three colors at a time� The solution� detailed below� was to utilize

a heterogeneous strategy where one robot collects three types of attractor and the

other collects the others�

Behavioral design for the AAAI task

We now proceed with a description of the behavioral strategies employed on the

robots
 details of performance are covered in the next section� For the Challenge

Round robots were programmed using the homogeneous multi�foraging strategy out�

lined in Section ������ Several problems were discovered when the strategy was �rst

tested on the robots� First� because an agent	s turret heading was coupled to the

heading of its wheels� the gripper would not always be properly aligned with the

bin door at the time of �nal delivery� Second� the robots sometimes approached the

delivery bins from an oblique angle� This is a problem because docking is controlled

by visual tracking and the doors could not always be detected from an oblique angle�

Third� the black rock hazards were low enough to the ground that the robots could

see over them� This led to situations where a robot could be drawn to an attractor
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Figure 
���� Two robots demonstrate learned foraging polices in the Mobile Robot Lab�
A total of �� attractors were collected in this �� minute trial� Sequence is from top left to
bottom right�

beyond a hazard and become stuck�

The problem with gripper alignment was solved by de�coupling the heading of the

turret from the heading of the robot	s wheels� The delivery behaviors were revised

to have the turret always pointing towards the delivery door� It was also found

that de�coupling is advantageous for acquire behaviors as well� especially when the

attractor is near a hazard� In this case� the robot approaches the attractor slowly

with occasional side to side motions� Unless the turret and base are de�coupled the

gripper swings back and forth with the changes in heading� Also� in order for a robot

to intercept a rolling attractor� it would have to be facing the attractor at all times�

These revisions were folded back into the behaviors for the simulation

results reported earlier�

The last two problems were addressed by adding additional behaviors and per�

ceptual features to the behavioral repertoire� To ensure the robots approach bin

doors head�on� two additional behaviors� predock red and predock blue were devel�

oped� Each of these behaviors draw the robot to a position one meter in front of the

corresponding door� From the pre�dock position to �nal docking� the door is easily

tracked visually� The schemas active in these behaviors are identical to those used in
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the deliver behaviors� except the destination is di�erent� Upon reaching the pre�dock

location� the agents are allowed to transition to the delivery behavior�

To address the problem of robots getting stuck while attempting to acquire an

attractor on the other side of a hazard� a progress timer was added to the list

of perceptual features� The idea is that if a robot does not acquire an attractor

within a reasonable time ��� seconds was used�� it must be stuck� When the timer�

no progress� is activated the agent transitions to a reset to home behavior� This

draws it back towards the homebase� where it resets for another foraging run� The

schemas active in the reset to home behavior are identical to those used in deliver�

except the destination is di�erent� The agent is held in the reset to home behavior

for �� seconds� at which point it transitions back to the wander behavior�

A complete FSA describing the homogeneous foraging con�guration used at the

competition is shown in Figure ����� As in the hand�coded homogeneous strategy

introduced earlier� the agents begin using the wander behavior then transition be�

tween the behaviors as described above� Photographs of one of the robots sequencing

through a delivery cycle are shown in Figure �����

acquire_blue

acquire_red predock_red

wander

red_in_gripper

blue_in_gripper

red_visible

not red_visible

blue_visible

not blue_visible
predock_blue

at_predock_red

deliver_blue

deliver_red

reset_to_home

no_progress

no_progress

reset_timeout

close_to_blue_bin

close_to_red_bin

at_predock_blue

Figure 
���� FSA representing the behavioral con�guration used by Lewis and Clark
at the AAAI�
� Mobile Robot Competition� Some additional behaviors and perceptual
features 
highlighted in gray shading� were added to address speci�c di�erences between
the contest task and the general multi�foraging task�

Changes in the task for the Final Round presented additional challenges� The

robots had to collect and deliver objects of six di�erent colors instead of two as

in the Challenge Round� This was a problem because the vision systems can only
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Figure 
���� Robot with an active gripper demonstrates a delivery sequence in the Mo�
bile Robot Laboratory� From top left to bottom right� wander� acquire red� predock red
behavior� deliver red�

track three colors� and at least one of those tracking channels has to be dedicated to

detection of the delivery door� The issue was addressed by exploiting a heterogeneous

foraging strategy� Each robot was programmed to specialize in the collection of three

of the six types of attractor�

Performance in the AAAI task

Lewis and Clark were evaluated in the Mobile Robot Laboratory and in the com�

petition at AAAI���� In laboratory evaluations �Figures ���� and ����� subjective

behavior is essentially identical to that of homogeneous teams in simulation� As

in simulation� the agents occasionally interfere with one another when they deliver

attractors to the same bin� In experiments with �� attractors distributed about the

laboratory� the robots routinely collected eight of them in a �� minute trial�

The robots participated in the �rst round of the contest� referred to as the Chal�

lenge round� using the homogeneous foraging strategy� In the �rst round the robots

had di�culty detecting the rock hazards visually� The sonar sensors were not e�ec�

tive at detecting the hazards because they are mounted too high on the robot to

detect the shorter rocks� The robots encountered the hazards on several occasions�
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Figure 
���� Diagram of laboratory arrangement for mobile robot experiments in the
�Find Life on Mars� task�

In one case� one of the robot	s grippers was ripped o� the vehicle �fortunately this

occurred towards the end of the trial�� Despite this setback� the agents were able to

deliver a signi�cant number of attractors and win the Challenge Round� One of the

robots even captured a squiggle ball � this was a rare event at the competition�

Between the Challenge and Final rounds the Georgia Tech team developed a

solution to the di�culty of hazard detection� the ultrasonic sensors were repositioned

to aim downward at a �� degree angle� The hazards could now be reliably detected�

The robots were re�programmed for heterogeneous foraging in the Final Round

to enable collection of all six types of attractor� Performance in the Final round was

much improved over earlier trials� The robots picked up �� attractors and placed

� of them in the correct delivery bin� The success of a behaviorally heterogeneous

team in this situation illustrates how computational limits of individual agents can

necessitate diversity in a multi�robot solution� Each robot is potentially capable of

detecting all six types of attractor� but computational limits of the embedded vision

computers allow only three at one time � one robot cannot complete the entire task

alone� In terms of the taxonomy presented in Chapter � this instance of the multi�

foraging task is MULTI AGENT instead of SINGLE AGENT� Perhaps MULTI AGENT tasks

are more likely to require heterogeneous solutions�
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��	 Discussion and summary

This chapter reports several important new �ndings in multi�robot foraging research�

� A link between diversity and performance in foraging teams is reported for the �rst
time� in both learning and hand�coded systems� diversity is negatively correlated
with performance� homogeneous teams perform best�

� Teams trained using Q�learning perform as well as the best human�designed systems�
This is the �rst direct comparison between learning and hand�coded foraging systems�

� This work is the �rst to uncover a relationship between choice of reinforcement func�
tion used to train robots and diversity in the resulting team� In these experiments�


 Locally reinforced teams tend to converge to homogeneity�


 Globally reinforced teams tend to converge to heterogeneity�


 Heuristic or shaped reinforcement leads to homogeneity�

� This work is the �rst to investigate how the choice of reinforcement function impacts
performance in foraging teams� In these experiments�


 Teams trained with local heuristic 
shaped� and local performance�based rein�
forcement perform best� on par with hand�coded systems�


 Globally reinforced teams perform worst�

� Experiments show that in this task� heuristic or shaped reinforcement does not pro�
vide an advantage over more simply expressed performance�based reinforcement�

The conclusions outlined above are based on statistical analysis of thousands

of simulation trials� The behaviors� perceptual features and behavioral sequences

used in simulation were also veri�ed on mobile robots� Hand�coded and learning

systems were evaluated on one and two robots� Qualitatively� mobile robot behavior

matches that predicted in simulation� including inter�agent interference and overall

performance�

Among the hand�coded foraging systems examined� homogeneous teams perform

best� It was noted that homogeneous foragers tend to interfere with one another as

they deliver attractors to the delivery areas �interference in homogeneous foraging

was also noted by Goldberg in �GM����� To address this potential problem� territorial

and specialize�by�color strategies were designed with the goal of reducing inter�agent

interference� Even though interference is reduced in these heterogeneous teams�

performance is worse� In fact� diversity is negatively correlated with performance in

the hand�coded teams� �Spearman	s r " ����� and prob " ����������
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In experiments with three separate reward strategies� reinforcement learning was

demonstrated as a capable tool for training multi�robot foraging teams� Experi�

mental results show that the choice of reinforcement function signi�cantly impacts

diversity and performance in learning robot foragers� Agents using local reinforce�

ment strategies converge to more homogeneous societies and perform better than

robots using a global reward structure� This is probably because local reinforce�

ment rewards individuals for their actions� thus making reinforcement of the same

state!action pair more likely in di�erent agents� A link between local reinforcement

and homogeneity is also present in learning soccer agents �Chapter ��� Agents us�

ing global reinforcement converge to more diverse and poorly performing societies

in the foraging task� The advantages of homogeneous behavior in hand�coded sys�

tems are echoed in results with learning systems� In learning systems� diversity and

performance are negatively correlated with r " ����� and prob " ���������

In addition to the local and global performance�based reward structures� a

local heuristic� or shaped reinforcement method was also evaluated� Agents trained

using shaped reinforcement perform as well as the best human�designed team� In

terms of performance and learning rate however� there is no advantage to shaped

reinforcement over standard performance�based rewards�
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Chapter �

Diversity in Robot Soccer

            

This chapter describes research investigating specialization in learning robot soc�

cer teams� Each agent is provided a common set of skills �motor schema�based

behavioral assemblages� from which it builds a task�achieving strategy using rein�

forcement learning� The agents learn individually to activate particular behavioral

assemblages given their current situation and a reward signal� This work was con�

ducted following the methodology introduced in Chapter ��

The experiments in JavaBots robot soccer simulations evaluate the agents in

terms of performance� policy convergence� and behavioral diversity� As in foraging

experiments �Chapter �� the results show that in some cases robots will diversify

by choosing heterogeneous behaviors� An interesting contrast with foraging results

however is that diverse soccer teams perform better than homogeneous teams� The

degree of diversi�cation and the performance of the team depend on the reward struc�

ture� When the entire team is jointly rewarded or penalized �global reinforcement��



teams tend towards heterogeneous behavior� When agents are provided feedback

individually �local reinforcement�� they converge to identical policies�

	�� Task and performance metric

Robot soccer is an increasingly popular focus of robotics research �KAK����� It it

is an attractive domain for multiagent investigations because a robot team	s success

against a strong opponent often requires some form of cooperation� Also� it is famil�

iar to many audiences and it provides opportunities for diversity among the team

members�

Figure ���� Simulated and real robot soccer� a match at the �

� Robot World Cup in
Paris 
left� and a JavaBots simulation 
right�� Photograph courtesy Hiroaki Kitano�

The task is patterned after the o�cial RoboCup rules for small�size league play

�Com���� Each team is composed of �ve robot players� Once play begins the teams

attempt to push and!or kick the ball �an orange golf ball� into the opponent	s goal�

The game is played on a green �eld the size of a table tennis table� Boundaries are

��cm tall walls � the golf ball bounces back instead of going out�of�bounds� Goals

are ��cm wide� When a goal is scored the ball is reset to the middle of the �eld

and the players are re�positioned� O�cial RoboCup matches include two �� minute

halves� A photograph of a RoboCup soccer game is presented in Figure ��� �left��

In the Java�based soccer simulation used in this research �Figure ���� right� a

robot	s control system interacts with a well�de�ned sensor�actuator interface� The

simulation proceeds in discrete steps� In each step the robots process their sensor

data� then issue appropriate actuator commands� The simulation models physical

interactions �robot� ball and wall collisions�� sensors and motor�driven actuators�
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When the ball is bumped by a robot it immediately accelerates and rolls away� The

direction the ball rolls after being bumped varies randomly from ��� to $�� degrees

o� center� Rolling friction is modeled with constant deceleration after the bump�

Dynamics are based on actual RoboCup robot performance �Sto���� Each agent is

provided the following sensors�

� velocity sensor� provides present heading and speed of the robot�

� bump sensor� returns a force vector in the direction of any bump�

� ball position sensor� provides an egocentric vector to the soccer ball�

� defended goal sensor� provides an egocentric vector back to the robot�s own goal�

� opponent goal sensor� provides an egocentric vector the opponent�s goal�

� team sensor� returns an array of egocentric vectors pointing to the robot�s team
members�

� opponent sensor� an array of egocentric vectors pointing to the robot�s opponents�

� score sensor� indicates whether the team has just scored or was scored against�

� robot ID� a unique integer from � to the size of the team�

Robots are able to sense all information germane to the task� This approximates

the sensor system available to many of the real robot teams competing at RoboCup


information is gathered by a video camera mounted above the playing �eld� Future

revisions of the simulator may address challenges faced by autonomous robots with�

out accurate global sensors� e�g� sensor noise� occlusion and �eld�of�view constraints�

The following actuator interface is provided to the control system�

� set drive speed� a real value from �� to � is sent to the robot�s drive motor�
indicating how fast the robot should go�

� set heading� a real value from � to �� is sent to the robot�s steering actuator
indicating the desired heading for the robot�

� kick� if the ball is near the robot�s kick actuator it is immediately accelerated in the
direction of the robot�s heading�

Now consider the performance metric for soccer� How can we objectively evaluate

a robot soccer team� In a human game the object is to have scored the most points

when time runs out� It is only necessary to score one more point than the other team�

Here� we take the stance that greater score di�erentials indicate better performance�

Hence� the performance metric for robot teams is

P " Sus � Sthem �����
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where Sus and Sthem are the scores of each team at the end of the game�

In terms of the taxonomy introduced in Chapter � this task and performance

metric have the following characteristics�

� TIME LIM because performance is measured over a �xed period 
except for simpli�ed
soccer��

� OBJECT BASED since performance is based on the location of an object� the ball�

� COMP EXT because robots on the team compete for positive performance 
goals�
against an 
external� opposing team�

� COMP INT because robots on the team compete for goals amongst themselves�

� MULTI AGENT since a single agent is unlikely to net a positive score di�erential against
a multiagent opponent�

� SENSOR COMPLETE since agents can sense all aspects of the environment germane to
the task perfectly�

The �rst set of experiments in the investigation were conducted in slightly sim�

pli�ed soccer domain� The domain is simpli�ed as follows� Teams are composed of

four players instead of �ve� The goal spans the width of the �eld	s boundary instead

of a ��cm wide zone� Play is continuous
 after a scoring event� the ball is immedi�

ately replaced to the center of the �eld without repositioning the agents� Another

important di�erence in the simpli�ed task is that there is no time limit imposed


play continues until a total of �� points are scored �the simpli�ed is not TIME LIM��

To distinguish between the two tasks the simpli�ed version is referred to as simpli�ed

soccer� while the more complex task is RoboCup soccer�

	�� Behavioral design

Behavior�based approaches are well suited for robot soccer since they excel in dy�

namic and uncertain environments� The robot behaviors described here are imple�

mented in Clay �Chapter ��� an object�oriented recursive system for con�guring robot

behavior� Clay integrates primitive behaviors �motor schemas� using cooperative and

competitive coordination operators� Both static and learning operators are available�

Experiments in soccer are conducted by engaging an experimental team against

a �xed opponent control team in soccer contests� We begin by describing the control

team	s behavioral con�guration�
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Since the experimental team	s performance is signi�cantly impacted by the skill

of its opponent� it is important to avoid variability in the control team	s strategy to

ensure consistent results� The control team will always follow a �xed policy against

the teams under evaluation� The control team	s design is based on the following

observations� First� points are scored by bumping the ball across the opponent	s

goal� Second� robots must avoid bumping the ball in the wrong direction� lest they

score against their own team� A reasonable approach then� is for the robot to �rst

ensure it is behind the ball� then move towards it to bump it towards the opponent	s

goal� Alternately� a defensive robot may opt to remain in the back�eld to block an

opponent	s scoring attempt�

Table ���� The control team�s policy summarized as look�up tables� The � in each row
indicates the behavioral assemblage selected by the robot for the perceived situation indi�
cated on the left� The abbreviations for the assemblages are introduced in the text�

Control Team Forward

perceptual assemblage

feature mtb gbb mtb f

not behind ball � � �
behind ball � � �

Control Team Goalie

perceptual assemblage

feature mtb gbb mtb f

not behind ball � � �
behind ball � � �

Each robot selects from a set of behavioral assemblages to complete the task�

The behaviors are sequenced to form a complete strategy� This style of behavior�

based robot design� referred to as temporal sequencing� views an agent	s strategy as

a Finite State Automaton� Temporal sequencing is discussed in Chapter �� The

strategies may be equivalently viewed as lookup tables �Table ����� Here we focus

on the lookup table view since it is also useful for discussing learned policies� The

behavioral assemblages developed for these experiments� and the motor schemas

activated are�

� move to ball �mtb�� The robot moves directly to the ball� A collision with the ball will
propel it away from the robot� Individual motor schemas active in this assemblage
include�
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 move to kickspot� high gain to draw the robot to a point one�half of a robot
radius behind the ball� If the robot bumps the ball from that location� the ball
is propelled in the direction of the opponent�s goal�


 avoid teammates� gain su�ciently high to keep the robots on the team spread
apart This schema was not activated in the simpli�ed soccer experiments� but
was found to be useful in later work�

� get behind ball �gbb�� The robot moves to a position between the ball and the de�
fended goal while dodging the ball to avoid bouncing it in the wrong direction�
Activated motor schemas are


 move to halfway point� high gain to draw the robot to a point halfway
between the ball and the defended goal�


 swirl ball� a ball dodging vector with gain su�ciently high to keep the robots
from colliding with the ball�


 avoid teammates� gain su�ciently high to keep the robots from colliding�

� move to back �eld �mtbf�� The robot moves to the back third of the �eld while being
simultaneously attracted to the ball� The robot will kick�bump the ball if it is comes
within range� Active schemas include


 move to defended goal� high gain to draw the robot to the defended goal�
A �dead zone� centered on the goal area permits the robot to roam freely if it
is near the goal�


 move to kickspot� gain su�ciently high to draw the robot to the ball if it is
near the goal� but not high enough to pull the robot away from the goal�

The overall system is completed by sequencing the assemblages with a selector

that activates an appropriate skill depending on the robot	s situation� This is ac�

complished by combining a boolean perceptual feature� behind ball with a selection

operator� The selector picks one of the three assemblages for activation� depending

on the current value of behind ball�

The control team includes three 
forwards� and one 
goalie�� The forwards and

goalie are distinguished by the assemblage they activate when they �nd themselves

behind the ball� the forwards move to the ball while the goalie remains in the back�

�eld� Both types of player will try to get behind the ball when they �nd themselves

in front of it�
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	�� Design of learning strategies

To isolate the impact of learning on performance� the learning teams were developed

using the same behavioral assemblages and perceptual features as the control team�

This approach ensures that the performance of a learning team versus the

control team is due only to di�erences in policy�

Clay includes both �xed �non�learning� and learning coordination operators� The

control team	s con�guration uses a �xed selector for coordination� Learning is in�

troduced by replacing the �xed mechanism with a learning selector� A Q�learning

module is embedded in the learning selector �WD����

The Q�learner automatically tracks previous perceptions and rewards to re�ne

its policy� At each step� the learning module is provided the current reward and

perceptual state� It learns over time to select the best assemblage given the situation�

����� Reinforcement functions for soccer

The policy an agent learns is likely to depend on the reward function used to train

it� One objective of this research is to discover how local versus global reinforcement

impacts the diversity and performance of learning teams� Global reinforcement refers

to the case where a single reinforcement signal is simultaneously delivered to all

agents� while with local reinforcement each agent is rewarded individually� To that

end� we consider two reinforcement functions for learning soccer robots� Assuming

the game proceeds in discrete steps� the global reinforcement function at timestep t

is�

Rglobal
t� �

���
��

� if the team scored at t� ��
�� if the opponent scored at t� ��
� otherwise�

This function will reward all team members when any one of them scores� Thus

a goalie will be rewarded when a forward scores� and the forward will be punished

when the goalie misses a block� Observe that the global reinforcement function and

the performance metric �Equation ���� are related�

P �
t�NX
t��

Rglobal
t�
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where N is the number of steps in the game� Rglobal is a performance�based re�

ward� A close correlation between reward function and performance metric is helpful�

since reinforcement learning mechanisms seek to maximize their reward� In terms of

the taxonomy presented in Chapter � Rglobal is an INTERNAL SOURCE� PERFORMANCE�

DELAYED� DISCRETE and GLOBAL reward function� Now� consider a local function

where each agent is rewarded individually�

Rlocal
t� �

�������
������

� if the agent was closest to the ball
when its team scored at t� ��

�� if the agent was closest to the ball
when the opposing team scored at t� ��

� otherwise�

Even though global information is required to implement this reward function� in

this context LOCAL refers to the fact that the reward is based on the individual	s

performance� not the entire teams	� This function will reward the agent that scores

and punish an agent that allows an opponent to score� There may not be much

bene�t� in terms of reward� for a robot to serve a defensive role in this model since it

would receive frequent negative but no positive rewards� In terms of the reward tax�

onomy� Rlocal is classi�ed the same as Rglobal� except its locality is LOCAL rather than

GLOBAL� The Rlocal reward is INTERNAL SOURCE� PERFORMANCE� DELAYED� DISCRETE

and LOCAL�

A potential problem with the Rlocal function is the implicit assumption that the

agent closest to the ball is the one responsible for a scoring event� It may be that

the closest robot just happened to be near the goal while another agent kicked the

ball for a score from a distance� To address this� a separate reward function� based

on time since the ball was touched was investigated�

Rtouch
t� �

���
��

�ttouch if the team score at t � ��
��ttouch if the opponent scores at t � ��

� otherwise�

ttouch is time in milliseconds since the agent last touched the ball� � is a parameter

set to values between � and � that indicates how quickly a potential reward should

decay after the ball is touched� Note that Rtouch can be written in terms of Rglobal

Rtouch
t� � Rglobal
t��
ttouch
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If � " �� Rtouch " Rglobal� As � is reduced towards � the reward becomes pro�

gressively more agent�centered or local� The Rtouch reward is INTERNAL SOURCE�

PERFORMANCE� DELAYED� CONTINUOUS and COMB LOCALITY�

	�� Performance with local and global rewards

The �rst set of experiments were conducted in the simpli�ed soccer task using the

Rlocal and Rglobal reward functions� Experimental data were gathered by simulating

thousands of soccer games and monitoring robot performance� The learning robots

are evaluated on three criteria� task performance �score�� policy convergence� and

diversity of behavior�

For each trial� the learning robots were initialized with all Q�values set to zero�

A series of ��� ���point games were played� Information on policy convergence and

score was recorded after each game� The robots retain their learning set between

games� An experiment is composed of �� runs� or a total of ���� ���point games�

Each run uses the same initial parameters but di�erent pseudo�random number seeds�

����� Task performance

Performance is measured as the di�erence between the learning team	s score and the

opponent	s score �Equation ����� A negative value indicates the team lost the game�

while positive values indicate the team won the game� When rewarded using the

global reinforcement signal Rglobal� the learning teams out�score the control team by

an average of six points to four� yielding a performance of ���� The average includes

the initial phase of training� When trained using the local reward Rlocal� the learning

teams lose by an average of four points to six� or a performance of ����� In these

soccer experiments� teams trained using global reinforcement perform best�

����� Learning rate

Learning rate is evaluated by checking for policy convergence� Convergence is tracked

by monitoring how frequently an agent	s policy changes� Consider a robot that may

have been following a policy of moving to the ball when behind it� but due to a

recent reinforcement it switches to the get behind ball assemblage instead� Switches

like this are tracked as policy changes�
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Figure ���� Policy convergence measured as average number of policy changes per trial
for teams using local and global rewards�

The data� plotted in Figure ���� shows good convergence for robots using local

rewards� The average number of changes per game drops to ���� after ��� games� An

individual simulation to ���� games using the local reward resulted in convergence

to zero� The number of policy changes for robots using Rglobal initially decreases� but

does not converge in the �rst ��� games� The average number of policy changes is ����

per game after ��� games� In these experiments teams using local rewards show

better policy convergence properties than teams using global rewards�

Table ���� The nine soccer robot policies possible for the learning agents discussed in the
text� Each policy is composed of one row for each of the two possible perceptual states

not behind ball or behind ball�� The position of the � in a row indicates which assemblage
is activated for that policy in that situation� The policies of the goalie and forward robots
introduced earlier 
Figure �� are in bold�

mtb gbb mtbf mtb gbb mtbf mtb gbb mtbf

not bb 	 	 � 	 	 � 	 	 �
bb 	 	 � 	 � 	 � 	 	

not bb 	 � 	 	 � 	 	 � 	
bb 	 	 � 	 � 	 � 	 	

not bb � 	 	 � 	 	 � 	 	
bb 	 	 � 	 � 	 � 	 	

����� Diversity

After the training phase� robots are evaluated for behavioral diversity by examining

their policies� The teams are classi�ed as hetero� or homogeneous depending on

whether the robot	s policies are the same� Altogether there are � possible policies
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Figure ���� Examples of homo� and heterogeneous learning soccer teams� In both cases
the learning team 
dark� defends the goal on the right� The agents try to propel the ball
across the opponent�s goal by bumping it� A homogeneous team 
left image� has converged
to four identical behaviors which in this case causes them to group together as they move
towards the ball� A heterogeneous team 
right� has settled on diverse policies which spread
them apart into the forward and middle of the �eld�

for the learning agents since for each of the two perceptual states� they may select

one of three assemblages� Table ��� summarizes the possible policies� Based on these

nine policies� there are a total of ���� possible � robot teams�

Two example teams� one homogeneous� the other heterogeneous� are illustrated

in Figure ���� All members of the team on the left have converged to identical

policies� In fact� all robots in the �� locally�reinforced teams converged to the same


forward� policy used by the control team �Table ����� All �� teams converged to

fully homogeneous behavior�

In contrast� all of the �� globally�reinforced teams diversify to heterogeneous

behavior� In all cases� the agents settle on one of three particular policies� All

the teams include one robot that converges to the same 
forward� policy used by

the control team
 they also include at least one agent that follows the same policy

as the control team	s 
goalie�� The other robots learn a policy of always selecting

the get behind ball assemblage� no matter the situation �for convenience this policy

is referred to as a 
mid�back��� In cases where the team had not fully converged�

investigation reveals that the changes are due to one agent alternating between the


goalie� and 
mid�back� policies� In summary� the globally�reinforced teams always

converged to one 
forward�� one or two 
mid�backs� and one or two 
goalies��

To quantify the varying degree of diversity in these teams� social entropy �pre�

sented in Chapter �� is used as a measure of behavioral heterogeneity� Social entropy�
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inspired by Shannon	s Information Entropy �Sha���� evaluates the diversity of a robot

society based on the number of behavioral castes it includes and the relative size of

each� H�R�� the social entropy of the robot society R� ranges from a minimum of

zero� when all agents are identical� to a maximum when each robot forms a di�erent

caste� The maximum entropy for a team of four soccer robots is ���� H�R� " � for

the homogeneous teams trained using local reinforcement and H�R� " ��� for the

heterogeneous teams�

	�� Performance using Rtouch

Another set of experiments were conducted in the RoboCup soccer task using the

Rtouch reward function for learning� As in the previous experiments� data were gath�

ered by simulating thousands of soccer games and monitoring task performance �score

di�erence�� policy convergence� and diversity of behavior� To investigate how the

value of � in Rtouch impacts performance and diversity� simulations were run as �

was swept from ��� and ��� in steps of ���� For each value of �� �� runs of ��� trials

were conducted� For each run the simulator was initialized with a di�erent random

number seed� Each trial is two simulated minute game� The shorter time was used so

that policy changes and performace could be evaluated with a �ner resolution than

a ten minute trial would permit�

At the beginning of each run the learning robots were initialized with a random

policy
 Q�values were set to random values between �� and �� Next a series of ���

two minute trials are conducted with information on policy convergence and score

recorded after each trial� The robots retain their learning set between trials� Each

run uses the same initial parameters but di�erent random number seeds�

����� Task performance

Performance is the di�erence between the learning team	s score and the �xed oppo�

nent	s score at the end of each trial �Equation ����� For each value of � between ���

and ���� average performance is computed from the results of �� experimental runs�

These results are plotted in Figure ���� In all cases� the teams trained using

Rtouch out perform the pre�programmed control team� From the graph it is

apparent that performance improves as � increases
 to a maximum when

� " ���� When � " ��� the learning teams out�score the control team by an average
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Figure ���� Score di�erentials for teams using the Rtouch reward function as � is swept
from ��� to ���� Error bars show 
� con�dence intervals� Positive numbers indicate the
experimental team is winning on average�

of ���� points per two minute trial� This result supports the earlier experiments

involving Rlocal and Rglobal that indicated performance was best with global rewards

�recall that when � " ���� Rtouch " Rglobal��

����� Learning rate
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Figure ���� Policy changes versus trial number for teams using the Rtouch reward function

� � �����

As in the �rst set of experiments� learning rate is measured as policy convergence

and is tracked by monitoring how frequently an agent	s policy changes� The average

number of policy changes per trial for �� runs is plotted in Figure ���� This graph

is for teams trained using Rtouch with � " �� Convergence rates are similar for other

values of � as well�
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Figure ��
� Score versus trial number for teams trained using Rtouch 
� � �����

Learning rate can also be evaluated by monitoring performance over time� Aver�

age performance for teams trained using Rtouch with � " � is plotted versus trial num�

ber in Figure ���� In early trials� performance is negative� but it improves throughout

the run� leveling o� near ����

Agents trained using Rtouch show good convergence properties�

����� Diversity
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Figure ���� Hierarchic social entropy for soccer teams trained using Rtouch as � varies
from ��� to ���� Error bars show 
� con�dence intervals�

Diversity in is measured after the learning phase is complete using hierarchic social

entropy �Chapter ��� For teams of �ve robots� entropy can range from a minimum

of ��� �all agents are identical� to ���� �all agents are di�erent�� The graph in

Figure ��� plots diversity for learning soccer teams as � is swept from ��� to ����

Measured diversity is approximately ��� for all values of �� The data indicate that
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diversity is not impacted by � in robot teams trained using Rtouch�

Recall that when � " ���� Rtouch returns a reward equivalent to Rglobal� Note

that even when � is set to a small value Rtouch will always return some positive or

negative reward to all agents whenever a scoring event occurs� In this regard� Rtouch

is a global reward function� regardless of �� This may be why diversity is apparent in

the soccer teams across all values of �� It is also interesting to note that the level of

diversity in these learning teams ����� is the same as that found in the experiments

in the simpli�ed soccer domain with fewer robots�

	�� Performance versus human�designed teams

The results reported up to this point show that a simulated robot team can learn a

winning soccer strategy against a �xed control team� The learning teams are provided

the same behavioral assemblages as the �xed opponent so that any di�erence in

performance is due to the sequencing strategies the agents learn� not the behavioral

assemblages themselves� This experimental approach leaves open the possibility that

�� the strategy utilized by the �xed opponent team may be poor� and �nding a way to
beat it is easy� or

�� the behavioral assemblages may be too simple and could never be utilized in a really
successful robot soccer strategy�

Either of these possibilities would reduce the signi�cance of the results�
            

Figure ���� Example team trained using Rtouch in trials against DTeam� The dark
colored learning agents defend the goal on the right� Three agents have converged to a
defensive role while two play o�ensive positions�
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To address this� learning soccer teams were tested in experiments against teams

developed by others� Students in classes� taught in the College of Computing at

Georgia Tech were assigned the task of developing a multiagent robot soccer team

using the JavaBots system� The students were provided the same �xed opponent

team used in the earlier experiments as a 
straw�man� for testing their own teams�

Since students	 grades were linked to how well their teams performed� it can be

assumed they did their best to develop e�ective strategies� Approximately �� teams

were developed by students in these classes� The best three were chosen for evaluation

here� All three of these teams used �xed strategies� they do not learn�

� BriSpec designed by Brian McNamara� The members of this team play three dif�
ferent positions� One player always remains at the back of the �eld� it aligns itself
between the ball and the goal� Three players play mid��eld positions� they stay
behind the ball and attempt to spread out from one another� The remaining agent
stays in front of the ball� in expectation of a pass�

� DTeam by David H� Johnson� The players on this team diversify to �ll four spe�
cialized roles� Two of the players exploit weaknesses in the simulator dyanmics and
soccer rules as follows� One player always moves to block the opponent�s goalie� The
simulated dynamics are such that one player cannot push another� so the blocking is
usually e�ective� Another player always waits near the center of the �eld for the ball
to appear� This behavior exploits the simulation�s deadlock prevention scheme� the
ball is repositioned to the center of the �eld when �� simulated seconds elapse with
no score� This player often is the �rst to get the ball when it is repositioned� The
remaining three players serve as a goalie and two forwards� DTeam was programmed
using Clay�

� Kechze by Kent Lyons� Christopher Jurney and Zellyn Hunter� Kechze is similar to
DTeam in that it exploits the ball re�positioning rule of the simulation� This team is
rule�based however 
instead of using motor schemas as DTeam does�� Like the other
teams� Kechze players �ll specialized roles� But Kechze has an important re�nement
that enables it to improve its performance� the agent assigned to wait in the middle
of the �eld for the ball does not do so until a certain time elapses� This delay is in
recognition of the simulator�s timed ball relocation scheme� The Kechze team gains
full use of that player for more time� In contrast� the player that �lls this role on
DTeam always moves directly to the center position and does not contribute to play
until the ball is re�located�

The Rtouch reward function with � " ��� was used to train agents in learning

trials against these teams� For each of the three experiments� the learning agents

were initialized with a random policy �Q�values were set to random values between

�CS ��		 taught in Fall ���� by Irfan Essa and CS ���� taught in Spring ���� by Chris Atkeson�
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�� and ��� Next� a series of ��� two minute trials were played between the learning

teams and each opponent team�

Overall performance is evaluated as the average score di�erence in the last ��

trials of each experimental run� Plots of performance versus learning trial for each

of the three opponent teams are provided in Figures ��� and ����� In each case�

the learning teams converge to a winning strategy with a positive �winning� score

di�erential� An example team trained versus DTeam is illustrated in Figure ���� In

these experiments learning soccer teams using the behaviors developed in

this work out perform the best human�designed strategies�

Table ��� summarizes these results� as well as the other experiments examined

in this chapter� The only losing learning teams were those programmed to use

the R local reward� All other teams converged to winning and relatively diverse

strategies�
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Figure ���� Performance versus trial number for games against the BriSpec team� Each
point is the average performance of the learning team over �� trials�

	�	 Discussion and summary

The relative bene�ts of three di�erent reinforcement functions for robot soccer teams

have been evaluated in terms of team performance� learning rate� and social entropy

in the resulting team� The three reward functions� Rlocal� Rglobal and Rtouch were

evaluated on learning teams as they engaged a �xed opponent team and three other

human�designed teams in thousands of trials� The primary results are

� individual learning robots will� in many cases� automatically diversify to �ll di�erent
roles on a team�
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Figure ����� Performance versus trial number for games against two human�designed
teams� DTeam 
left� andKechze 
right�� Each point on each curve represents the average
performance of a learning team over �� trials�

Table ���� Performance and diversity results from robot soccer experiments� Except in
the case of agents trained using Rlocal all teams converge to winning strategies�

reward function opponent domain performance social entropy

Rlocal �xed simpli�ed ���� ���
Rglobal �xed simpli�ed ��� ���

Rtouch� � � ��� �xed RoboCup ��� ���
Rtouch� � � ��� �xed RoboCup ��� ���
Rtouch� � � ��� BriSpec RoboCup ��� ���
Rtouch� � � ��� DTeam RoboCup ��� ��

Rtouch� � � ��� Kechze RoboCup ��� ���
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� after a training period� teams of learning robots out perform the best human�designed
teams�

� global reinforcement leads to better performance and greater diversity� but slow
policy convergence for robot teams�

� local reinforcement leads to poorer performance and more homogeneous behavior�
but faster policy convergence�

The performance of teams using Rlocal and Rglobal for learning in a simpli�ed soc�

cer domain show that local rewards provide quicker learning� while global reinforce�

ment leads to better performance and greater diversity� Also� the globally�reinforced

teams perform signi�cantly better than the pre�programmed control team� The

locally�reinforced teams converge to 
greedy� behaviors that maximize their individ�

ual reward� but lead to poor team performance� This may suggest that defensive

play is important in soccer but there is no incentive for a robot to �ll a defensive

role� With the local reward strategy a goalie would be 
punished� every time the

opponent scores and never receive a positive reinforcement� Quick convergence in

the locally�reinforced teams is due to the close relationship between an individual

agent	s actions and the rewards it receives with local reinforcement strategies�

Additional experiments were conducted in the RoboCup task using the Rtouch

reward function� This function provides a reward based on time since the robot last

touched the ball� If a goal is scored and the agent touched the ball recently� its reward

is greater than than if it touched the ball further in the past� A parameter of the

reward function� � sets the rate at which the reward decays� Rewards using Rtouch

reward function with � " ��� are identical to those generated by the Rglobal function�

Experiments conducted by sweeping � from ��� to ���� show that performance is best

with � " ���� Diversity is not impacted by the value of �
 all teams using Rtouch

converged behavioral diversities of approximately ��� �the same as teams using global

reinforcement�� This result is probably due to the fact that� no matter what value �

is set to� all robots receive some non�zero reward at every scoring event � hence the

reward always has a global nature�

In all of these experiments a �xed opponent team was con�gured from the same

behaviors available to the learning teams� This approach was utilized to ensure that

di�erences in performance were due to a team	s policy or learning strategy and not

the behaviors from which it selects� This leaves open the possibility however� that

the �xed opponent is easy to beat� thus the learning systems are not adequately chal�
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lenged� Experiments against three human�developed soccer teams were conducted

to address this� In all three cases learning teams out�performed the human�

developed soccer teams�
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Chapter �

Diversity in Cooperative

Movement

            

This chapter describes experiments involving teams of simulated robots learn�

ing a cooperative navigation task� The agents select from one of several formation

strategies �including no formation at all� as they move across obstacle�strewn terrain�

At issue is whether the agents bene�t from formation behavior� and if so� whether

teams perform best when all agents choose the same behavior� Teams using �xed

homogeneous strategies are also evaluated for comparison�

Each robot is provided a common set of cooperative movement skills �motor

schema�based behavioral assemblages� from which it learns to select using reinforce�

ment learning� The agents learn individually to activate a particular behavioral

assemblage given a reward signal� In contrast to the domains examined in earlier

chapters� it is not necessary for the agents to learn a sequence of behaviors to succeed

in this task� The agents learn which one of four cooperative movement behaviors to



Figure ���� A team of four robotic scout vehicles manufactured for DARPA�s Demo II
project� These robots were the target platform for earlier research in robot formations�
Photograph courtesy of Lockheed�Martin�

activate
 the same behavior is active for the entire trial�

The experiments in navigation simulations evaluate the agents in terms of per�

formance� policy convergence� and behavioral diversity� As in foraging and soccer ex�

periments �Chapters � and �� the results show that robots will diversify by choosing

heterogeneous behaviors� An interesting result is that teams using diverse movement

behaviors perform better than homogeneous teams� In contrast to the results in other

tasks� however� the degree of diversi�cation does not depend on the reward structure�

Navigating teams learn to perform equally well using local or global rewards�

The chapter proceeds with a discussion of the task� behaviors for accomplishing it

and a description of the experimental results� Experiments follow the methodology

introduced in Chapter ��

��� Background and related work

The development of this task domain and the behaviors designed for it are extensions

of previous research conducted in the Mobile Robot Laboratory at Georgia Tech

�BA��b� BA���� The earlier work was focused on developing behaviors for a team of

robotic vehicles to be �elded as a scout unit by the U�S� Army �Figure ����� Formation

is important in this and other military applications where sensor assets are limited�

Formations allow individual team members to concentrate their sensors across a
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portion of the environment� while their partners cover the rest� Air Force �ghter

pilots for instance� direct their visual and radar search responsibilities depending

on their position in a formation �For���� Robotic scouts also bene�t by directing

their sensors in di�erent areas to ensure full coverage �CGH���� The approach is

potentially applicable in many other domains such as search and rescue� agricultural

coverage tasks and security patrols�

Figure ���� Four robots in leader�referenced diamond� wedge� line and column formations�
These formation behaviors� developed in earlier research� are targeted for heterogeneous
teams where each robot is assigned a speci�c position in formation�

Several formation strategies for scout robots were developed to enable the team

to move cooperatively in military scenarios� In the scout domain the multi�robot

team is heterogeneous because each agent is assigned a position in the formation

according to an identi�cation number� This is important in applications where one

or more of the agents are dissimilar� In Army scout platoons for instance� the leader

is not usually at the front of the formation� but in the middle� or to one side�

Important contributions of this earlier work include behaviors for four�robot di�

amond� line� column� and wedge formation types and a performance analysis of each

formation type in turns and across obstacle�strewn terrain� Results from the ear�

lier work are compared with the performance of the new behaviors presented in this

chapter� The four formation types developed previously are illustrated in Figure ����

The earlier strategy works well� but it is limited to formations with a speci�c

number of robots� The location of each robot in each formation is prede�ned and

formations are not easily scalable to larger numbers of agents� The expectation

is that in large�scale homogeneous teams agents should automatically move to the

closest appropriate location� To provide this capability� a new� scalable formation

technique is introduced here� An example large�scale robot formation using the new

technique is given in Figure ����
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Figure ���� Large scale formation� �� robots 
black circles� moving from left to right
in formation encounter an obstacle 
grey object�� These robots utilize the new scalable
strategies introduced here� Sequence is from left to right�

The next section describes the task and experimental environment in detail� Fol�

lowing that� the new formation behaviors are introduced�

��� Task and performance metric

The task examined in these experiments is for a team of robots to move across a

�eld as quickly as possible while avoiding collisions with obstacles and other robots�

Performance is de�ned as

P � �t 
����

where t is the time in milliseconds for the entire team of robots to move across

the �eld� This is equivalent to the performance of the last agent to cross the �eld�

Several other performance measures were considered� including the average time for

all agents to complete the task and the time of the �rst robot to move across� The

time for the last agent to complete the task was chosen because it indicates� to some

degree� the extent of cooperation between the robots� Other measures might show

improved performance when individual agents 
abandon� their partners in an e�ort

to cross the �nish line more rapidly� Note however� that even though it may be

advantageous for the robots to move in a group� this is not explicitly part of the

performance measure�

In terms of the taxonomy introduced in Chapter � this task and performance

metric have the following characteristics�

� TIME MIN because the task must be completed in minimum time�
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� ROBOT BASED since performance is based on the location of the robots�

� MOVEMENT TO because the robots must move to a location�

� MULTI AGENT because the task implicitly requires all robots to complete the task�

� SENSOR LIM since agents only have a short�range view of the environment 
e�g� ob�
stacles��

Figure ��� illustrates the JavaBots simulation environment used in the exper�

iments� The �eld measures ��m by ��m� �� obstacles� each �m� in area� are dis�

tributed randomly about a �� by �� meter zone in the middle of the �eld ��% obstacle

coverage�� The robots are initialized on the left side of the �eld� They then navigate

to the right side� through the obstacles to the �nish line on the right� Timing stops

when the last robot crosses the line�

Starting Area Finish Line
Obstacles

Figure ���� The simulation environment used in the experiments� Robots are initialized
on the left� They navigate from left to right through the obstacles�

An example experimental run is illustrated in Figure ���� The agents are initial�

ized line abreast on the left side of the �eld� This initial con�guration was chosen

because it ensures all robots are equidistant from the �nish line� The �rst ��m of

the �eld are clear of obstacles to enable the robots to settle into formation posi�

tions before encountering the obstacle �eld� After crossing the obstacle�free section

the robots encounter a ��m long zone cluttered with hazards� As the �gure shows�

interaction with obstacles sometimes results in a rearrangement of the formation

�the reason for this will become apparent as the behaviors are described in the next

section��
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Figure ���� Sequence of images from an experimental run with four robots programmed to
use the diamond behavior� The top image illustrates how agents are initialized line abreast
on the left side of the �eld� The agents settle into formation as they cross the obstacle�free
area 
second image�� The robots regroup in a di�erent arrangement after encountering an
obstacle 
third image�� Finally 
bottom� the team crosses the �nish line�
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Two aspects of the experimental setup should be considered when reviewing per�

formance results� First� the arrangement of agents at the beginning of each run may

bias the shape of the formation towards line abreast� Second� the measured time to

complete the task includes the time taken for the agents to cross the initial� obstacle�

free area� Thus overall performance is a combination of performance in obstacle�free

and cluttered terrain�

Now consider how behaviors can be designed for this task�

��� Behavioral design

Formation maintenance is accomplished in two steps� �rst� a perceptual process�

detect formation�position� determines the robot	s proper position in formation

based on current sensor data
 second� the motor process maintain formation� gen�

erates motor commands to direct the robot toward the correct location� The motor

schema paradigm enables the formation behavior to be simultaneously active in com�

bination with other navigation behaviors�

The overall navigational strategy is similar to the approach developed in earlier

research �BA��b�� several motor schemas� move to goal� avoid static obstacles�

avoid robots and maintain formation implement the overall behavior for a robot

to move to a goal location while avoiding obstacles� collisions with other robots and

remaining in formation �a mathematical description of these motor schemas and the

gains used in these experiments are provided in Appendix A�� An additional back�

ground schema� noise� serves as a form of reactive 
grease�� dealing with some of

the problems endemic to purely reactive navigational methods such as local max�

ima� minima and cyclic behavior �Ark���� The key extension that distinguishes the

new formation behaviors from previous work is the perceptual technique used to

determine the proper formation position for each robot�

Instead of having each agent assigned to a particular position as in the previous

approach� it may be advantageous to develop a more general technique� Design goals

for the new formation strategy include

� scalability� the approach should easily scale to any number of agents�

� locality� the behaviors should depend only on the local sensors of each agent�

� �exibility� the behaviors should be �exible so as to support many formation shapes�
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Figure ��
� Attachment site geometries for di�erent formations� From left to right�
column� line and diamond� Robots are represented as �ve�sided polygons while attachment
sites are shown with small circles�

This new strategy is based loosely on the way molecules form crystals� From

the point of view of each robot in the group� every other robot has several local


attachment sites� other robots may be attracted to� Di�erent formation shapes

are created when di�erent attachment site geometries are employed� Figure ���

illustrates the three attachment site geometries examined in this work� To determine

a formation position each robot builds a list of potential attachment sites for all of

the robots within sensor range based on the formation type it is using� An attractive

vector is generated towards the closest site�

In addition to the motor schemas mentioned earlier� a low�gain attractive force�

move to unit center� is added to draw all of the robots together� As the team

converges� the robots 
snap� into position� and a regular geometric structure emerges�

Example formations resulting from the integration of these behaviors are illustrated

in Figure ����

Note that for each attachment site geometry there are many potential robot

team arrangements� It is also possible for interaction with obstacles to 
unsnap�

the formation into smaller sub�formations� In many cases however� the formations

re�group after splitting around obstacles�

Performance of these behaviors are now examined in homogeneous teams of nav�

igating robots�

��� Fixed formation strategies

As a baseline for comparison with learning teams� four �xed strategies were devel�

oped and evaluated� In each case� all the robots utilize the same attachment geom�
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Figure ���� Example four�robot formations resulting from the use of di�erent attachment
site geometries� From left to right� column� line and diamond� In each of these short
demonstration runs the robots were initialized in proper formation positions� experimental
runs are over a longer course�

etry� Experiments were run with one to eight robots using diamond� line� column

and no formation geometries� The no formation assemblage utilizes the same naviga�

tional behaviors and gains as in the other assemblages� except maintain formation

is not activated� The group of robots are still attracted to one another because the

move to unit center motor schema is activated�

Performance was evaluated by running each simulated robot team through �ve

di�erent randomly generated worlds �� times� A total of ��� simulations were run for

each number of robots for each formation geometry� or a total of ���� trials overall�

The average time for robots to complete the traverse is plotted for each strategy in

Figure ����

The relative performance of teams using diamond� line and column geometries

mirrors similar results reported earlier �BA��b�� The earlier experiments in naviga�

tion across an obstacle �eld showed that column formation provides the best per�

formance �in terms of path length�� Even though performance is measured in these

experiments using time instead of path length� the results are similar� The column

geometry provides the best performance for navigation across the obstacle �eld� This

is because the formation as a whole presents a smaller cross section to the obstacles

as it moves across the �eld� For similar reasons� the line formation performs worst


it presents the broadest cross section�

In contrast to the performance of other strategies� the performance of teams

using no formation improves consistently as the number of robots increases� This
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Figure ���� Average performance for �xed homogeneous teams�

is probably because in all strategies except no formation� when a robot gets stuck�

other robots are likely to remain near it and get stuck also� In the no formation

strategy� the low�gain move to unit center behavior slows progress of the other

agents� but it will not stop them� In addition the move to unit center behavior

provides the side�e�ect of pulling 
stragglers� out of the areas they may be stuck in�

��� Learning cooperative movement strategies

Learning teams were developed using the same behavioral assemblages used in the

�xed systems� This ensures that the performance of learning teams in comparison

to the �xed teams is due only to di�erences in policy�

In contrast to the experiments in soccer and foraging� this task does not require

a sequence of behaviors� Each agent selects a single behavior to follow for an entire

trial� at which point it receives a reward� For the purposes of incorporating Q�

learning� however� the problem can be viewed as a sequential task with one step�

The Q�learner automatically tracks previous rewards to re�ne its choice of action for

each trial�

����� Reinforcement functions for cooperative movement

The policy an agent learns will depend on the reward function used to train it� One

objective of this research is to discover how local versus global reinforcement impacts
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the diversity and performance of learning teams� Global reinforcement refers to

the case where the reinforcement signal is simultaneously delivered to all agents�

while with local reinforcement each agent is rewarded individually� To that end� we

consider two reinforcement functions for the learning robots� The local reinforcement

function is�

Rlocal � �t 
����

where t is the elapsed time in milliseconds from the start of the trial until the robot

crosses the �nish line� This e�ectively rewards minimum�time completion because

shorter times result in a less negative reward� In terms of the reward taxonomy

Rlocal is classi�ed as an INTERNAL SOURCE� PERFORMANCE� IMMEDIATE� CONTINUOUS

and LOCAL reward�

The global reinforcement function is�

Rglobal � �tteam 
����

where tteam is the time when the last agent on the team crosses the line� In terms of

the taxonomy presented in Chapter � Rglobal is an INTERNAL SOURCE� PERFORMANCE�

IMMEDIATE� CONTINUOUS and GLOBAL reward function�

Experimental data were gathered by running thousands of trials and monitoring

robot performance� The learning robots are evaluated on three criteria� task perfor�

mance ��t�� policy convergence� and diversity of behavior� For each type of reward

and each number of robots �� to ��� experiments were conducted in � randomly gen�

erated environments� In each environment the learning robots were initialized with

Q�values set to random values between �� and �� The agents were then trained over

��� trials� Information on policy convergence and performance was recorded after

each trial� The robots retain their learning set between trials� Overall� a total of

������ trials were run for the learning systems�

����� Task performance

Performance was evaluated for each number of robots for each reward type by aver�

aging the results of the �nal �� trials in each of the �ve experimental environments�

Each data point therefore represents average performance in ��� trials� Performance

for locally and globally rewarded teams is plotted in Figure ����
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The di�erence in performance between teams trained with local versus global

rewards is not statistically signi�cant� But both types of team out�perform the best

homogeneous �xed strategy� This is interesting because it means the agents have

discovered a better strategy than the homogeneous column formation for naviga�

tion across cluttered terrain� The column formation was shown in previous work

��BA��b�� and again in this research �Figure ���� to provide the most e�cient �ho�

mogeneous� team navigation across cluttered terrain� Reasons for this result are

examined in Section ����
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Figure ���� Performance for learning navigating teams�

����� Learning rate
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Figure ����� Policy convergence measured as average number of policy changes per trial
for teams using local and rewards� Left to right� one agent� two agents� eight agents� Plots
for teams using global rewards are similar�

Learning rate is evaluated by checking for policy convergence� Convergence is tracked

by monitoring how frequently an agent	s policy changes� At the end of a trial� after
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receiving its reward� an agent may switch from one behavior� say diamond� to another�

perhaps column� Switches like this are tracked as policy changes� Because each trial

is only a single step� a robot can only switch policies zero or one times per trial�

The data� depicted in Figure ���� shows convergence properties for one� two and

eight robots using local rewards �plots for global rewards are similar�� For two and

eight robots� convergence is good� with policy changes dropping o� to zero in both

cases� In the case of one agent� however� convergence is poor� This is because� in the

absence of any other robots to move in formation with� all navigational strategies

are equally bene�cial� None of the four strategies provides any advantage over the

others� so the agents oscillate from one strategy to the other�

����� Diversity
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Figure ����� Hierarchic social entropy of learning navigational teams� Error bars indicate

� con�dence intervals�

After the training phase� robots are evaluated for behavioral diversity by examin�

ing their policies� Diversity is measured after the learning phase is complete using

hierarchic social entropy �Chapter ��� For teams of �ve robots� entropy can range

from a minimum of ��� �all agents are identical� to ���� �all agents are di�erent��

The graph in Figure ���� plots diversity for the learning navigational teams as the

number of robots varies from one to eight� The data indicate no signi�cant di�erence

in diversity between the teams trained using local rewards and those trained using

global rewards�
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��� Discussion

The results of experiments in this task raise several challenging questions� First�

why doesn	t the selection of local versus global rewards impact diversity as it does

in other tasks�

In contrast to the other tasks examined in this dissertation� this one is not inter�

nally competitive �COMP INT�� In soccer� for instance� a greedy forward might deny

other agents opportunities to score� In this task however� a 
sel�sh� agent seeking

to maximize its own reward will not penalize other other agents on the team� It is

likely that agents striving to maximize a local reward in this task would behave in

the same way as agents striving to maximize a global reward� This is why we see

little or no di�erence in performance and diversity between teams using local and

global rewards�

It is also surprising that teams using a diverse set of formation behaviors can

perform better than those using the best homogeneous strategy� How can this be� It

would seem that formation can only work if the agents agree on the same formation

geometry� The answer is that the agents learn to exploit each other	s behavior to

speed themselves across the terrain� Figure ���� illustrates�

In this example the agent at the bottom of the �gure attempts to maintain a line

formation with respect to the other robot� At the same time the robot at the top

tries to maintain a diamond formation with respect to the bottom robot� The top

robot can never reach its formation position because as it attempts to move there

it pulls the other agent along with it� The resulting interaction is very much like a


carrot on a stick� for both robots� The maintain formation behavior contributes

a forward vector to the motion of both agents� thus speeding them up�

Note that the agents only bene�t from this e�ect when they select di�ering forma�

tion behaviors� Otherwise they would quickly settle into equilibrium and be driven

forward only by other forces �e�g� move to goal�� The agents diversify in re�

sponse to one another�s behavior�

Another strategy observed in the learning teams is for a 
leader� robot to select

the no formation assemblage while a follower utilizes the column or diamond be�

havior� The leading robot moves more quickly than if it used a formation behavior

because it is repelled slightly from the trailing agent �due to the avoid�robot motor

schema� and not pulled back by a formation force� The trailing robot in turn is
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pulled� forward by its maintain formation motor schema�

The resulting team behaviors do not provide the regular geometric arrangements

one would expect in robot 
formations�� In most systems� the group breaks into pairs

of agents that move across the �eld in an irregular formation like that in Figure �����

Note that regular geometry is not a performance criteria� nor is it part of either of the

reward functions� There is really no reason to expect it in the resulting multi�robot

teams�

Figure ����� Agents exploit each other�s formation behavior to move more quickly�

Finally� it must be pointed out that the experimental approach used may have

contributed to the extent of diversity in the systems� Although each team was

trained in a di�erent random environment� the environments were not re�randomized

between trials� It is likely that the robots adapted to the speci�c environment they

were trained in� This bias could be removed by rearranging the obstacles at the start

of each trial�

��	 Summary

Both �xed and learning teams were evaluated in their ability to navigate quickly

across an obstacle �eld� The experiments utilize a new scalable and �exible strategy

for multi�robot formation and cooperative movement� Behaviors for four types of

formation geometries were developed and evaluated� diamond� line� column and

no formation�

The results for teams following �xed homogeneous policies agreed with results

from earlier work �BA��b�� In particular� column formations are best for navigation

across cluttered terrain� Line formations perform worst�
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In separate experiments� robots were trained to navigate using local and global

reward strategies� In contrast to the other task domains examined in this work� the

performance and diversity of teams was not signi�cantly impacted by the choice of

reward� The key results for this task are�

� team performance is about the same for local and global rewards�

� both types of rewards lead to diversi�cation in the robot teams�

� the learning robots �nd ways to exploit each others� behavior in order to move more
quickly across the terrain�

Di�erent types of rewards do not impact diversity or performance because the

task is not internally competitive �COMP INT�� Agents striving to maximize individ�

ual performance do not penalize each other� and will also tend to maximize team

performance�
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Chapter 	

Conclusion

This work is based on the idea that behavioral diversity should be evaluated

as a result rather than an initial condition of multi�robot experiments� Previously�

researchers con�gured robot teams as homogeneous or heterogeneous a priori� then

compared performance of the resulting teams �FM��� GM��� Par���� That approach

does not support the study of behavioral diversity as an emergent property in multi�

robot teams�

De�ning behavioral diversity as an independent rather than dependent variable

enables the examination of heterogeneity from an ecological point of view� How and

when does diversity arise in robot teams interacting with each other and their envi�

ronment� This work provides the methodology and quantitative measures necessary

for this new type of investigation�



The speci�c contributions of this work are

� a methodology for building and evaluating learning behavior�based robot teams

Chapter ���

� a taxonomy of multi�robot reinforcement functions 
Chapter ���

� a classi	cation of multi�robot tasks 
Chapter ���

� a quantitative measure of behavioral diversity in multi�robot teams 
Chap�
ter ���

� a quantitative measure of behavioral di�erence between individual robots

Chapter ���

� evaluation procedures for multi�robot task performance 
Chapter ��� and

� a signi	cant body of experimental results illustrating the use of these tools in
three multi�robot task domains 
Chapters �� � and ���

This chapter reviews the key contributions of the research� provides an analysis

of the experimental data and concludes with a discussion of promising directions for

future work�


�� Methodology

Principled research in any �eld requires adherence to a methodological framework�

Over the last decade the Mobile Robot Laboratory at Georgia Tech has evolved and

re�ned a successful approach to behavior�based robot design and implementation�

Key components of the method are the use of simulation for experimentation and

behavioral prototyping along with veri�cation of the results on mobile robots�

The framework was extended signi�cantly in this research� First� a formal view of

multi�robot task is adopted
 multi�robot tasks are classi�ed according to how perfor�

mance is measured in them� This enables a principled description and exploration of

the multi�robot task space� Second� a classi�cation of reward functions is employed�

This classi�cation de�nes an experimental space for investigating the impact of re�

ward on multi�robot systems� To support these experiments� motor schema control

and reinforcement learning are integrated using a new object�oriented system for

behavioral speci�cation� Finally� new evaluation metrics necessary for the measure�

ment of diversity in multi�robot teams are developed and employed in the analysis

of experimental data�

The design and implementation of multi�robot systems and their experimental

evaluation is carried out in the following steps�
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�� Task and performance metric speci	cation� This step de�nes performance�
one of the dependent variables of experimentation�

�� Behavioral design� In this phase� a library of behaviors are developed for solving
the task� Both hand�coded and learning systems are built using the behavioral
components�

�� Reinforcement function speci	cation� A goal of the research is to explore how
di�erent reinforcement functions impact performance and diversity in learning sys�
tems� In each task domain� several reinforcement functions are employed� with pri�
mary focus on the comparison of local and global rewards�

�� Simulation� The behaviors and learning systems are prototyped and tested in sim�
ulation�

�� Implementation on mobile robots� Performance of the simulated system is vali�
dated on mobile robots� If inconsistencies are discovered the simulation environment
is re�ned to more closely approximate mobile robot performance�

�� Data collection� Multiple runs 
thousands� usually� are conducted in simulation�
and when possible� on mobile robots� The experimental space is explored by varying
the independent variables 
e�g� number of robots and�or the reward function��

�� Analysis� The data are analyzed using the performance metric the measures of
diversity presented in Chapter ��

Each step in the methodology is covered in detail in Chapter �� The remaining

contributions of the research each play an important role in the application of this

methodology� quantitative measures of diversity and behavioral di�erence are used

to evaluate the multiagent systems developed using the methodology
 classi�cations

of task and reward establish a frame of reference for analyzing the experimental

results�


�� Classi
cations of task and reward

Task characterization helps answer questions regarding how the same type of re�

inforcement can lead to di�erent performance and and diversity levels in di�erent

tasks� Without answering 
how are soccer and foraging di�erent�� for instance� we

can	t answer 
why is diversity good in soccer but bad in foraging��

A taxonomy of reward structure is also important� Experimental results �Chap�

ters � and �� show that performance and diversity in a learning team depend on the

form of reinforcement used to train the robots� The results indicate that there are
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tradeo�s to consider in the selection of a reward function
 for instance some functions

provide quicker learning but slightly poorer performance� Without a characteriza�

tion of the di�erences between reward functions� it would be impossible for a robot

systems designer to consider these tradeo�s intelligently�

Prior to this research no taxonomies of task or reinforcement existed� To address

this crucial gap a new system for characterizing multi�robot tasks and a taxonomy

of reinforcement functions for multi�robot teams are introduced in Chapter �� As

well as aiding this investigation� these classi�cations are potentially useful for other

researchers investigating multiagent robotic systems�

One focus of the experiments in this work is to determine whether it is better

for each agent to be rewarded individually or if all agents should receive the same

reinforcement� GLOBAL reinforcement refers to the case where a single reinforcement

signal is simultaneously delivered to all agents� while LOCAL reinforcement rewards

each agent individually� In the case of soccer� a global system would reward all

team members when any one of them scores a goal� With local reinforcement only

the agent that scored the goal would be rewarded� Global rewards correspond more

closely with overall system performance� but they may not be appropriate for all

tasks� The relative advantages of these two types of reward examined in each of the

three experimental task domains�

Classi�cations of task and reward provide a description of the independent vari�

ables in this work� We now consider the evaluation of the key dependent variable�

diversity�


�� New quantitative metrics

It is impossible to correlate heterogeneity with performance in multiagent robotic sys�

tems without a quantitative metric of diversity� Previously� diversity in multi�robot

teams was evaluated on a bipolar scale with systems classi�ed as either heterogeneous

or homogeneous� depending on whether any of the agents di�er �FM��� GM��� Par����

Unfortunately� this labeling doesn	t tell us much about the extent of diversity in het�

erogeneous teams� Heterogeneity is better viewed on a sliding scale providing for

quantitative comparisons� Such a metric enables the investigation of issues like the

impact of diversity on performance� and conversely� the impact of other task factors

on diversity�
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Social entropy� inspired by Shannon	s information entropy �Sha���� is introduced

as a measure of diversity in robot teams �Chapter ��� It captures important com�

ponents of the meaning of diversity� including the number and size of groups in a

society� In order to evaluate the diversity of a team� however� a way to categorize or

di�erentiate the behavior of individuals is also required� To address this� a measure

of behavioral di�erence that provides for agent categorization is also developed� Dif�

ference refers to disparity between two speci�c agents� while diversity is a measure

of the entire society�

Diversity may not always be desirable� In fact� experimental results presented in

Chapter � show that for at least one multi�robot task �multi�foraging� homogeneous

robot teams perform better than diverse teams� The aim of this work is to discover

when diversity is important and which conditions give rise to it in learning teams�

Social entropy provides the objective quantitative metric required for a principled

investigation of these issues�

This research is focused speci�cally on diversity in teams of mechanically similar

agents that use reinforcement learning to develop behavioral policies� Evaluation

of diversity in teams of mechanically similar robots is challenging because when

agents di�er� they di�er only in their behavior� Behavior is an especially interesting

dimension of diversity in learning systems since as they learn� agents e�ectively

choose between a hetero� or homogeneous society� The metrics developed in this

work will help researchers investigate the origin and bene�ts of diversity in these

learning systems�

The next section describes how the new metrics are applied in the evaluation of

learning multi�robot teams�


�� Experiments

The relationships between task� reward� performance and diversity are explored

through experiments in three task domains� multi�foraging� soccer and cooperative

movement� The motivation for experiments in a variety of domains is to investigate

how di�erences in task impact the utility of diversity� and to see whether the useful�

ness of a particular reward structure depends on the task� Results are reviewed at a

high level here� Details for each domain are reported in Chapters �� � and ��

Following the methodology introduced in Chapter �� non�learning� or �xed� team
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strategies are developed for each task� A schema�based reactive control system is

used for robot programming in each domain� In this approach� the agent is provided

several pre�programmed behavioral assemblages that correspond to steps in achieving

the task� Binary perceptual features �also referred to as perceptual triggers� are

used to sequence the robot through steps in achieving the task� Selection of the

appropriate behavior� given the situation� may be hand�coded or discovered by the

robot through reinforcement learning�

While the focus of the dissertation is diversity in learning robot systems� human�

coded non�learning teams play an important role as well� The performance of human�

designed teams establishes a baseline for comparison with results from learning sys�

tems� Also� human�coded strategies provide additional data points regarding the

relationship between diversity and performance in each task� Learning teams are

provided the same behavioral assemblages from which to build a task�achieving strat�

egy� but they must discover appropriate sequences of behavior through interaction

with the environment�

The space of tasks and reward strategies explored experimentally is summarized in

Table ���� Local and global reward strategies were evaluated in each task� Additional

learning strategies were tested in the multi�foraging and RoboCup soccer tasks� In

all three tasks� at least one of the learning strategies led to teams that perform as

well as� and in some cases better than the best human�coded strategies�

The extent to which diversity is bene�cial depends on the task� Table ��� sum�

marizes these results� A link between diversity and performance is found in all three

tasks� In the soccer and cooperative movement experiments the best performing

systems are also the most diverse� In multi�foraging� however� diversity is strongly

negatively correlated with performance� the best teams are homogeneous�

The utility of global versus local rewards also depends on the task� In soccer

experiments global rewards are found to work best� Just the opposite is true in

foraging
 local rewards lead to the best�performing multi�robot teams� Finally� in the

cooperative movement task local and global rewards generate systems that perform

equally well� These results are also summarized in Table ����
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Table ���� Summary of the task and reward space explored in robot team experiments�
Experiments for all three tasks were run in simulation� Foraging experiments were also
conducted on mobile robots� The reward strategies are classi�ed according to the tax�
onomy introduced in Chapter �� In addition to the features listed� all rewards are also
INTERNAL SOURCE�

Task Fixed Strategies Learning Strategies

multi
foraging homogeneous Rlocal

territorial LOCAL PERFORMANCE DELAYED DISCRETE

specialize�by�color Rglobal

GLOBAL PERFORMANCE DELAYED DISCRETE

Rshaped

LOCAL HEURISTIC IMMEDIATE CONTINUOUS

soccer
simpli�ed control team Rlocal

LOCAL PERFORMANCE DELAYED DISCRETE

Rglobal

GLOBAL PERFORMANCE DELAYED DISCRETE

RoboCup control team Rtouch

BriSpec by McNamara COMB LOCALITY PERFORMANCE DELAYED CONTINUOUS

DTeam by Johnson Rglobal 
Rtouch with � � ��
Kechze by Lyons et al GLOBAL PERFORMANCE DELAYED CONTINUOUS

cooperative homogeneous diamond Rlocal

movement homogeneous line LOCAL PERFORMANCE IMMEDIATE CONTINUOUS

homogeneous column Rglobal

GLOBAL PERFORMANCE IMMEDIATE CONTINUOUS

Table ���� Description of each task according to the classi�cation introduced in Chapter �
and a summary of the key results in each task�

Simpli�ed RoboCup Coop�
Multi
foraging Soccer Soccer Movement

Classi�cation TIME LIM TIME UNLIM TIME LIM TIME MIN

RESOURCE LIM

OBJECT BASED OBJECT BASED OBJECT BASED ROBOT BASED

COMP EXT COMP EXT

COMP INT COMP INT COMP INT

SINGLE AGENT MULTI AGENT MULTI AGENT MULTI AGENT

SENSOR LIM SENSOR COMPLETE SENSOR COMPLETE SENSOR LIM

diversity�perf� yes� negatively yes� positively yes� positively yes� positively
correlated

best reward�s� Rlocal Rglobal Rglobal Rglobal

Rshaped Rlocal
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�� Discussion of results

The long�range goal for the research begun here is a general model explaining the

relationships between task� reward� agent diversity and performance in multi�robot

teams� From a practical perspective this model will help robot system designers

select appropriate learning strategies for robot teams according to the task for which

they are designed� From a more philosophical point of view� the model might help

explain how and why diversity arises in natural and arti�cial societies�

This dissertation provides the framework for the model by identifying and de�n�

ing the independent �task and reward� and dependent �performance and diversity�

variables� Mathematical relations between the variables will be derived as results

are gathered from more points in the experimental space� At this point we can only

hypothesize on the basis of results gathered thus far�

First� in all three domains examined here global rewards generate the most diverse

societies� In soccer and foraging the globally rewarded teams are signi�cantly more

diverse than other systems� In the cooperative movement task global and local

rewards generate about the same degree of diversity in robot teams� It makes sense

that global rewards lead to greater diversity because it is more likely agents will

be rewarded for di�erent behavior under global reinforcement� We can hypothesize

that� in general� global rewards lead to greater diversity and that global rewards are

the better choice in domains where behavioral diversity is important�

Similarly� local rewards encourage uniformity in agent behavior� There are several

advantages to the use of local rewards� First� they usually require only local sensing

� the extra cost of communication is not incurred� Also� in some tasks �e�g� soccer

and foraging� local rewards provide more rapid learning �policy convergence�� In the

foraging task� where homogeneous teams provide the best behavior� we also �nd that

local rewards generate the best performing teams� It is likely that local rewards are

the best choice in tasks where homogeneous behavior is preferred�

These observations beg the question 
when is diverse behavior preferred�� The

results of this work show that diverse teams perform best in soccer and cooperative

movement tasks� Foraging� however� seems to be a decidedly homogeneous task�

The task classi�cations provide a clue� soccer and cooperative movement are both

classi�ed as MULTI AGENT� while foraging is a SINGLE AGENT task �this distinction is

based on whether an individual agent could reasonably perform the task alone�� We
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can speculate that homogeneous teams excel in SINGLE AGENT tasks�


�� Future directions

Important future work includes the application of these tools in new and di�er�

ent multi�robot task domains� The author hopes other researchers will adopt the

measures of behavioral di�erence and robot team diversity introduced here in the

evaluation of new multi�robot systems� This will provide additional data points in

the multiagent task!reward space and help us derive the relations between task�

reward� diversity and performance more precisely�

Another important direction for future research is the extension of these tools to

a broader range of robotic systems� The behavioral di�erence metric� for instance�

is limited to the comparison of deterministic policies� Can we compare the behavior

of agents coded in FSAs or more complex representations� It may also prove useful

to extend and re�ne the classi�cations of task and reward� Perhaps a broader range

of tasks can be described or more subtle distinctions can be drawn between them�

Finally� can the results of this research be applied in other �elds� Researchers in

behavior�based robotics often draw inspiration from biology and psychology
 perhaps

roboticists can provide tools for the sociobiologist� It is tempting� for instance� to

draw parallels between robotic tasks and rewards and their counterparts in human

and animal societies� Local and global reinforcement for robots� for example� bears

a strong resemblance to the capitalist and socialist economies of human society�

It would be presumptuous to suppose such comparisons are valid now� but as the

research and theory mature we may gain insights into the origins and bene�ts of

diversity in natural as well as arti�cial social systems�
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Appendix A

Motor Schema Formulations and

Gain Values

A motor schema�based approach to robot behavioral design is used in this work

�Ark���� Individual motor schemas� or primitive behaviors� express separate goals

or constraints for a task� As an example� important schemas for a navigational task

would include avoid static obstacles and move to goal� Since schemas are inde�

pendent� they can run concurrently� providing parallelism and speed� Sensor input is

processed by perceptual schemas embedded in the motor behaviors� Perceptual pro�

cessing is minimal and provides just the information pertinent to the motor schema�

For instance� a �nd obstacles perceptual schema which provides a list of sensed

obstacles is embedded in the avoid static obstacles motor schema�

The concurrently running motor schemas are integrated as follows� First� each

produces a vector indicating the direction the robot should move to satisfy that

schema	s goal or constraint� The magnitude of the vector indicates the importance

of achieving it� It is not so critical� for instance� to avoid an obstacle if it is distant�

but crucial if close by� The magnitude of the avoid static obstacles vector is

correspondingly small for distant obstacles and large for close ones� The importance

of motor schemas relative to each other is indicated by a gain value for each one�

This appendix reports the methods by which each of the individual primitive

motor schemas used in this research compute their component vectors� The gain

values and parameters for schemas used in each behavioral assemblage are also listed�



A�� Foraging behaviors

Details regarding the high�level sequencing of behavioral assemblages for foraging are

covered in Chapter �� The motor schemas used to build the behavioral assemblages

for foraging are described below� For each behavioral assemblage� several schemas

are instantiated at once with appropriate parameter and gain values� The parameter

and gain values used experimentally are listed in Table A���

� noise

description� generates movement in a pseudo�random direction�

parameter� P � persistence� the time in seconds between each change in direction�

mathematical formulation� the vector is computed as follows�

Vdirection � pseudo�random direction

between � and ��

Vmagnitude � �

MS

r

Robot

No Repulsion

Sphere of Influence

Safety Margin

Figure A��� Parameters used in the calculation of avoid motor schema vectors� The
object to be avoided is represented as a black circle at the center of the illustration�

� avoid static obstacles

description� repulsion from detected obstacles� The magnitude of repulsion varies
with distance from each obstacle 
Figure A���� When beyond the sphere of in�
�uence 
S�� no repulsion is generated� Within the sphere of in�uence� repulsion
increases linearly until the robot reaches the safety margin� When the robot is
within the safety margin� the magnitude of repulsion is ��

parameters� S� the sphere of in�uence beyond which detected obstacles have no
e�ect� M � safety margin�
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mathematical formulation� a separate vector is computed for each detected
obstacle as follows� where r is the distance from the center of the robot to
closest point on the obstacle�

Vdirection � along a line from the center of the

obstacle to the robot� moving away from obstacle

Vmagnitude �

���
��

� for r 	 S
S�r
S�M for M � r � S

� for r �M

The overall avoid static obstacles vector is computed by summing the indi�
vidual vectors calculated for each obstacle�

DC

r

Robot

Dead Zone

Ballistic Zone

Controlled Zone

Figure A��� Parameters used in the calculation of move to motor schema vectors�

� stay near homebase

move to red attractor

move to blue attractor

move to red bin

move to blue bin

description� attraction to a detected object or goal location� The magnitude
of attraction varies with distance from the goal� Figure A�� illustrates three
zones� de�ned by distance from the goal� used for magnitude computation�
The radii of these zones are parameters of the schema� Outside the controlled
zone attraction is set at a �xed maximum 
����� Within the controlled zone
attraction decreases linearly from ��� to ��� at the boundary of the dead zone�
Inside the dead zone the magnitude is ����

parameters� C� radius of the controlled zone� D� radius of the dead zone�
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mathematical formulation� the vector is computed as follows� where r is the
distance from the center of the robot to the goal location�

Vdirection � along a line from the robot

to the goal� moving to the goal

Vmagnitude �

���
��

� for r 	 C
r�D
C�D for D � r � C

� for r � D

� avoid robots

description� repulsion from detected robots� The magnitude of repulsion varies
with distance from each robot� When beyond the sphere of in�uence 
S��
no repulsion is generated� Within the sphere of in�uence� repulsion increases
linearly until the robot reaches the safety margin� When the robot is within
the safety margin� the magnitude of repulsion is ��

parameters� S� the sphere of in�uence beyond which detected robots have no
e�ect� M � safety margin�

mathematical formulation� same as described for avoid static obstacles� A
separate vector is computed for each detected robot and the vectors are summed
to provide the overall value�

� avoid home zone

description� repulsion from the delivery area� Used to move agents away from this
area during the search phase� The magnitude of repulsion varies with distance
from the homebase� When far from the homebase� no repulsion is generated�
As the robot approaches the area� repulsion increases linearly until the robot
reaches the center of the zone�

parameters� S� the sphere of in�uence beyond which repulsion is zero�

mathematical formulation� the repulsion is computed as follows� where r is the
distance from the center of the robot to the center of the homebase�

Vdirection � along a line from the homebase

to the robot� moving away from the base

Vmagnitude �

�
� for r 	 S

S�r
S

for r � S

� avoid delivered attractors

description� a localized repulsion centered on the delivery area with a small sphere
of in�uence� Used to keep robots from pushing over previously delivered at�
tractors�
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parameters� S� the sphere of in�uence beyond which repulsion is zero�

mathematical formulation� the repulsion is computed as in the same manner
as avoid home zone�

A�� Soccer behaviors

Details regarding the high�level sequencing of behavioral assemblages for soccer are

covered in Chapter �� The motor schemas used to build the behavioral assemblages

for soccer are described below� For each behavioral assemblage� several schemas are

instantiated at once with appropriate parameter and gain values� Experiments were

conducted in two slightly di�erent domains �simpli�ed and RoboCup soccer�� Be�

haviors used in both domains are identical except the avoid teammates schema

was not used in the simpli�ed domain� The parameter and gain values used experi�

mentally are listed in Table A���

� move to kickspot

description� attractive force to draw the robot to a point one�half of a robot
radius behind the ball� If the robot bumps the ball from that location� the ball
is propelled in the direction of the opponent�s goal� Parameters used in this
motor schema are illustrated in Figure A���

parameters� C� radius of the controlled zone� D� radius of the dead zone�

mathematical formulation� the vector is computed as described for themove to

schemas used in foraging�

� move to halfway point

description� attractive force to draw the robot to a point halfway between the ball
and the defended goal� Parameters used in this motor schema are illustrated
in Figure A���

parameters� C� radius of the controlled zone� D� radius of the dead zone�

mathematical formulation� the vector is computed as described for themove to

schemas used in foraging�

� move to defended goal

description� attraction to the defended goal� A large dead zone centered on the
goal area permits the robot to roam freely if it is near the goal� Parameters
used in this motor schema are illustrated in Figure A���

parameters� C� radius of the controlled zone� D� radius of the dead zone�
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Table A��� Motor schema parameter values and gains used in the behavioral assemblages
for foraging�

behavioral assemblage motor schemas gain values

wander noise ��	
search the environment for attractors P � ��	sec

avoid static obstacles ��	
S � ���m M � 	��m

avoid robots ��	
S � ���m M � 	��m

avoid home zone ��	
S � ��	m

stay near home stay near homebase ��	
search the home zone for attractors C � ��	m� D � ��	m

avoid static obstacles ��	
S � ���m M � 	��m

avoid robots ��	
S � ���m M � 	��m

noise ��	
P � ��	sec

avoid delivered attractors ��	
S � ��	m

acquire blue move to fredjblueg attractor ��	
acquire red C � 	��m� D � 	�	m
acquire the closest red or blue attractor avoid static obstacles ��	

S � ���m M � 	��m
avoid robots ��	

S � ���m M � 	��m
noise 	��

P � ��	sec
avoid delivered attractors ��	

S � ��	m
deliver red move to fredjblueg bin ��	
deliver blue C � 	��m� D � 	�	m
go to the red or blue bin avoid static obstacles ��	

S � ���m M � 	��m
avoid robots ��	

S � ���m M � 	��m
noise 	��

P � ��	sec
avoid delivered attractors ��	

S � ��	m
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mathematical formulation� the vector is computed as described for themove to

schemas used in foraging�

� avoid teammates

description� repulsion from robots on the same soccer team� The magnitude
of repulsion varies with distance from each robot� When beyond the sphere
of in�uence 
S�� no repulsion is generated� Within the sphere of in�uence�
repulsion increases linearly until the robot reaches the safety margin� When
the robot is within the safety margin� the magnitude of repulsion is ��

parameters� S� the sphere of in�uence beyond which detected robots have no
e�ect� M � safety margin�

mathematical formulation� same as described for avoid static obstacles in
the foraging section� A separate vector is computed for each detected robot
and the vectors are summed to provide the overall value�

S

Robot

Goal location

Ball

Vector Direction

Rotate +90

Rotate -90
+90

Figure A��� Parameters used in the calculation of the swirl ball motor schema vector�

� swirl ball

description� a dodging behavior used to keep robots from colliding with the ball
as they attempt to move behind it� The direction of the vector is perpendicular
to a line drawn from the robot through the ball� The magnitude of the vector
depends on distance to the ball� When beyond the sphere of in�uence 
S�� the
magnitude is zero� Within the sphere of in�uence� magnitude increases linearly
until the robot reaches the ball� If the robot is past the ball� the magnitude is
zero�

parameter� S� the sphere of in�uence beyond which vector magnitude is zero�

mathematical formulation� the vector is computed as follows� where r is the
distance from the center of the robot to the center of the ball�

Vdirection � a line from the robot to the ball
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rotated either �
� or �
�

degrees such that the rotation

sweeps through the goal

Vmagnitude �

�
� for r 	 S or robot is past the ball

S�r
S

for r � S

Table A��� The avoid teammates schema was not used in the simpli�ed soccer domain
experiments�

behavioral assemblage motor schemas gain values

move to ball move to kickspot ��	
C � 	�	m D � 	�	

avoid teammates 	�� 
RoboCup�
S � ��	m M � 	��m 	�	 
simpli�ed�

get behind ball move to halfway point ��	
search the home zone for attractors C � 	�	m D � 	�	

swirl ball ���
S � 	��m

avoid teammates 	�� 
RoboCup�
S � ��	m M � 	��m 	�	 
simpli�ed�

move to back�eld move to defended goal ���
C � 	��m� D � 	��m

move to kickspot ���
S � 	�	m M � 	�	m

A�� Formation behaviors

The overall navigational strategy is similar to the approach developed in earlier

research �BA��b�� several motor schemas� move to goal� avoid static obstacles�

avoid robots and maintain formation implement the overall behavior for a robot

to move to a goal location while avoiding obstacles� collisions with other robots and

remaining in formation� An additional low�gain attractive force�move to unit center�

draws all of the robots together�

Formation maintenance is accomplished in two steps� �rst� a perceptual process�

detect formation position� determines the robot	s proper position in formation

based on current sensor data
 second� the motor process maintain formation� gen�

erates motor commands to direct the robot toward the correct location� The percep�

tual process used by robots for determining their position in a formation is discussed

in Chapter ��
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The motor schemas used to build the navigational behavioral assemblages for

cooperative movement are described below� The diamond� line and column assem�

blages are identical except for the perceptual process used to determine the robot	s

desired position in formation� The parameter and gain values used experimentally

are listed in Table A���

� move to goal

description� attractive force to draw the robot to a goal location� The goal is
positioned ���� meters beyond the �nish line� The robots never actually reach
the goal in experimental trials because each trial terminates when the robots
cross the �nish line� Parameters used in this motor schema are illustrated in
Figure A���

parameters� C� radius of the controlled zone� D� radius of the dead zone�

mathematical formulation� the vector is computed as described for themove to

schemas used in foraging�

� maintain formation

description� attractive force to draw the robot into the proper formation position�
Parameters used in this motor schema are illustrated in Figure A���

parameters� C� radius of the controlled zone� D� radius of the dead zone�

mathematical formulation� the vector is computed as described for themove to

schemas used in foraging�

� move to unit center

description� a low�gain attractive force� added to draw all of the robots together�
Parameters used in this motor schema are illustrated in Figure A���

parameters� C� radius of the controlled zone� D� radius of the dead zone�

mathematical formulation� the vector is computed as described for themove to

schemas used in foraging�

� avoid static obstacles same as described for foraging�

� avoid robots same as described for foraging�

� noise same as described for foraging�
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Table A���

behavioral assemblage motor schemas gain values

diamond avoid static obstacles ���
line S � ��	mM � 	��
column avoid robots ���

S � ��	mM � 	��m
move to goal 	��

C � 	�	m� D � 	�	m
maintain formation ���

C � ��	m D � 	�	m
move to unit center 	��

C � ��	m� D � ��	m
noise 	��

P � ��	sec
no formation avoid static obstacles ���

S � ��	mM � 	��
avoid robots ���

S � ��	mM � 	��m
move to goal 	��

C � 	�	m� D � 	�	m
move to unit center 	��

C � ��	m� D � ��	m
noise 	��

P � ��	sec
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Appendix B

Spearman
s Rank�Order

Correlation Test

Spearman	s rank�order correlation test enables us to determine whether rank�ordered

data is correlated� The key concept of non�parametric �rank�ordered� correlation is

this� if we replace the value of each xi by the value of its rank among all the other

xi	s in the sample� that is �� �� �� ���� N � then the resulting list of numbers will be

drawn from a perfectly known uniform distribution� Of course we do the same for

the yis� replacing each value by its rank among the others in the sample� Let Ri

be the rank of xi among the other xs� Si be the rank of yi among the other ys� ties

being assigned a mid�rank� The rank�order correlation is de�ned to be the linear

correlation coe�cient of the ranks�

rs "

P
i�Ri � &R��Si � &S�qP

i�Ri � &R��
qP

i�Si � &S��
�B���

A value of rs " � indicates complete positive correlation� rs " �� indicates

complete negative correlation and rs " � indicates no correlation of the data�

The statistical signi�cance of rs is tested by computing the probability that x and

y are uncorrelated and the the ranking occurred by chance �the null hypothesis��

p " erfc

� jrsjpNp
�

	
�B���

where erfc�x� is the complementary error function �PTVF���� Values of p less than

���� indicate the correlation is statistically signi�cant�

The Numerical Recipes in C software package was used to compute the values of

Spearman	s coe�cient reported in this dissertation �PTVF����
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