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Abstract

Natural language interfaces (NLIs) have allowed users to explore and visualize

data without much overhead in learning how to operate the interface for visual analy-

sis. However, the state-of-the-art NLIs for visualization only support one-shot queries

with minimal capability for follow-up queries, so users are unable to build upon previ-

ous visualizations. We introduce the Conversational Interaction for Data Visualization

(CI4DV) toolkit for developers, a toolkit for natural language to data visualization that

takes in a natural language query and dataset as input and outputs a visualization speci-

fication. CI4DV offers the additional capability to follow-up on previous visualizations,

allowing developers to build NLIs on top of CI4DV that allow users the opportunity for

conversational interaction with the NLI. We also propose two applications that are built

upon CI4DV to demonstrate the toolkit’s capabilities and usage - an application that

features an editable mind map and a Jupyter notebook with nested cells.

1



Show the correlation between 
budget and IMDB Rating

Visualize with action and adventure 
movies now

Show the movies that have grossed 
over 100M

(a) Initial utterance (b)       Apply genre filter to previous
           visualization

(c)       Apply budget filter to previous
           visualization

Figure 1: An example of a conversation that a user can have with an interface that translates a natural
language query to a visualization. These queries are sequential, so each visualization builds upon
its predecessor. Starting with an initial utterance (a), the user then asks to show only movies that
have the genre of ”Action and Adventure” (b). Then the user applies another filter by asking to show
movies that have a worldwide gross over 100 million dollars (c). These changes are reflected in the
visualizations, as the scatter plots become less populated with each successive query.

1 Introduction

Currently, research in natural language interfaces (NLIs) for visualization has garnered

increasing attention due to the inherent accessibility associated with natural language (NL).

Users are not required to learn a new programming language, but rather, have a basic

understanding of English. An NLI for visualization receives an NL statement (e.g., “correlate

goals and salary”) as input, parses this statement to extract necessary information (e.g.,

“goals” and “salary” as attributes with ”correlate” as the analytic action), and recommends a

visualization (e.g., a scatter plot with goals on the X axis and salary on the Y axis).

There have been many attempts to create robust NLIs for visualization [11, 16, 13, 4, 3].

While many of these NLIs have custom architectures and taxonomies to parse natural lan-

guage queries and display visualizations,the Natural Language for Data Visualization toolkit

NL4DV [11] offers a general query processing engine that parses natural language queries

to produce analytic specification. This allows developers to create NLIs for visualization

without having to be familiar with standard natural language processing techniques. The

toolkit also supports Vega-Lite [12], the visualization grammar that is used in many industry

applications such as Voyager and Polestar. However, there is an issue in that current NLIs for
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visualization are narrow in scope due to how these systems currently only support one-off

queries. Users are unable to build upon their previous queries. Thus, a toolkit such as NL4DV

[11] only benefits those who already have an idea of what their dataset looks like. It does not

help those who want to do initial explorations of a dataset and follow up on potential leads

that they have found through their explorations. Natural language input has the potential

to support richer visualizations by allowing for users to build upon visualizations through

conversational interaction. Also, for most dialogue systems it is imperative that most of them

are able to hold the context of multiple queries at once, as initial explorations of the dataset

can have multiple one-off queries that are unrelated to each other. A user may want to follow

up on one of these queries in the future, so the system must retain the contexts for these

queries and generate visualizations based on the contexts.

Because of these limitations of rule and grammar-based systems, the purpose of this thesis

is to implement a toolkit that supports conversational interaction for users. We build upon

NL4DV’s architecture and present the Conversation Interaction for Data Visualization toolkit

(CI4DV), a toolkit that allows users to hold multiple conversations and build visualizations

through sequential queries. Furthermore, we propose a set of applications built upon CI4DV

that exhibit the follow-up system, namely an editable mind map and nested Jupyter notebook.

This, in turn, would show that the toolkit can be used to build conversational NLIs from

scratch or augment existing NLIs.

2 Literature Review

We explore existing literature in the visualization community to understand context-based

approaches to translate natural language to visualization.

Current approaches detect a NL query’s attributes and tasks and use these components to

craft a visualization [11, 2]. Attributes are dataset-specific while analytic tasks are dataset-

agnostic. Amar et al. [1] have defined a taxonomy of ten analytic tasks encountered by

users while working with a dataset. While earlier visualization systems used proprietary

tasks that made development somewhat confusing and unportable, more recent work (e.g.,

NL4DV[11] and QUDA[2]) are based on these low-level analytic tasks. FlowSense [16]

uses a rule and grammar-based architecture similar to NL4DV [11] to translate an NL

query to a visualization. One difference between the two systems is that Flowsense allows

for the manipulation and linkage of multiple visualizations but it does not work with one

visualization at a time.

Other examples of NLIs for visualization also serve as influences for CI4DV. DataTone is

another example of an NLI for visualization that parses NL queries and creates visualizations
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[3]. One issue with user-generated NL queries is that some input queries may have potential

ambiguities (e.g. the word rating can refer to either content rating or critics’ rating in a

movie dataset). DataTone proposes a solution to this problem by introducing GUI assets

called ambiguity widgets that seek to disambiguate certain words or phrases in an input

query. Evizeon is another NLI for visualization that introduces a taxonomy to support

conversational interaction with users [4]. Evizeon’s methodology for creating follow-up

visualizations modifies previous context objects based on its probabilistic grammar-based

approach. However, there are some limitations to Evizeon as it is tailored towards map-

based visualizations. Snowy is another interface that is aimed at supporting conversational

interaction [14]. This system generates and recommends natural language utterances based

on language pragmatics and data uniqueness. Thus, the system supports the generation of

NL queries rather than parsing user-supplied queries like NL4DV and CI4DV.

All of these NLIs mentioned use rule and grammar-based systems to convert NL queries

into visualizations. While these rule and grammar-based systems are effective for certain

grammars, an issue with such systems is that they are restricted by the count and coverage of

grammar rules that are in place. Furthermore, attributes of a dataset can have aliases (e.g.,

cost and price) and abbreviations (e.g., GDP stands for “Gross Domestic Product”). NL4DV

supports configuring these aliases but there will always be more undiscovered aliases. This

problem can potentially be solved with machine learning models given enough data, and

there is some research done on converting natural language into visualization using deep

learning or machine learning [2, 7]. These models currently do not support follow-up queries,

as the datasets for natural language to visualization systems [2, 8, 15] do not include enough

follow-up queries for deep learning training.

Natural language toolkits like NLTK [6] and Stanford CoreNLP [9] are general purpose

toolkits that can perform dependency parsing, entity recognition, and part of speech tagging.

Much like its predecessor NL4DV, CI4DV uses these toolkits to parse users’ NL queries

to detect attributes and tasks. As CI4DV handles all of the natural language processing in

the backend, developers who leverage CI4DV to create NLIs do not have to understand

the architecture of these natural language toolkits. Developers instead can focus on UI

design, and make high-level calls to the CI4DV functions to handle all natural language to

visualization tasks.
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3 Methodology

In this section, we detail CI4DV’s design and implementation. We will use and augment

NL4DV [11] as our main base for implementation.

Given a dataset (as a CSV, JSON, or TSV), and a single-line query, NL4DV infers at-

tributes, tasks and visualizations with a single function call to analyze_query(query, dialog) .

The parameter query represents the user-supplied NL utterance. The optional parameter

dialog is a boolean value that determines the type of query. If true, then the query is consid-

ered as a follow-up. Otherwise the query is treated as a standalone query distinct from any

other queries that the user may have inputted previously.

All of the user’s previous contexts are stored in a unique data structure very similar to

a tree. The context tree also allows for branching conversations, where users can provide

multiple unrelated follow-ups to the same query. It is implemented in CI4DV as a dictionary

of lists where conversation_id is the key for the dictionary and context_id is the

position of the context object in the list. This makes accessing context objects in a dictionary

and appending elements to the end of a list efficient, as both operations can be done in

O(1) time. The capability of branching conversations would be simple if the context tree

was implemented with nodes and pointers. However, a dictionary that cannot represent

branching conversations as well as trees backed by nodes and pointers. Thus, we created

an approach to maintain the branching capability. For users that want to follow up on

a context object that was in the middle of a conversation, they must supply a follow-up

query, conversation_id, and context_id to analyze_query . To represent this branch,

CI4DV would, in turn, create a new conversation for the branch with a conversation id of the

string ’{conversation_id}.{context_id}.{branch_number}’. This shows that the

conversation is a child of a previous context object. Moreover, it allows for multiple branches

to stem off of each context object, as each branch will have its own unique branch_number.

Figure 2 presents a visual representation of how conversations and follow-up queries are

stored in CI4DV.
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Conversation 0

Create a histogram showing distribution of IMDB Ratings (0, 0)

Add Rotten Tomatoes Rating to chart (0, 1)

Show running time as well (0.1.0, 0)

Replace Rotten Tomatoes Rating with Content Rating (0.1.0, 1)

Show as bar chart now (0, 2)

Figure 2: An example of how NL queries are stored in the context tree. The tuple in the tree is in
the format of (conversation_id, context_id). The conversation IDs are determined by which
follow-up query was uttered first.

The most immediate solution to implementing the context tree in CI4DV was to use

nodes and pointers. However, an issue with the usage of pointers is that accessing, adding,

and modifying the tree can take

Each query is assigned a conversation_id and context_id. Conversation_id is

the id given to a user when the user asks a standalone query instead of a follow-up.

If a user provides a standalone query, then the system returns a new conversation id

with conversation_id = 0. In order to receive a correct follow-up, a user must input

a conversation_id, and optionally a context_id. If no context_id is given, then the

system takes the last query inputted in a given conversation_id. Thus, the system has the

capability of managing multiple contexts at the same time, so the user can explore datasets

and their questions even further.

When parsing a query to generate a visualization, CI4DV tries to detect for tasks and

attributes. Attributes and tasks can be referenced explicitly (e.g. through direct reference

of attribute names) or implicitly (e.g. through references to an attributes’ values or through

synonyms of attribute names). As NL4DV is already effective at detecting tasks and attributes,

the pipeline for this detection remains largely intact in our development for CI4DV. In fact, the

methodology for task and attribute detection acts as our foundation for follow-up detection.

Most follow-up queries that a user will ask using this system can be broken down into

the following 3 operations - add, remove, and replace. Table 1 details how each follow-

up operation can affect the succeeding visualization. As Table 1 details, simply adding,
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removing, or replacing an attribute can change the tasks and visualization types for an

analytic specification, entirely revamping the visualization.

CI4DV uses rules to determine what attributes, tasks, or visualizations appear in the

follow-up query and which follow-up operation (add, remove, or replace) that the query

contains. We use ngram-distance to determine which attributes, tasks, or visualizations are

applied to the follow-up operation. Figure 3 shows the overall workflow for how the system

works to process follow-up queries. At a high level, given a NL follow-up query, CI4DV

treats this query as if it is a standalone query, and uses the NL4DV engine to detect new

attributes, tasks, and visualization types. CI4DV also has its own contextual query processor

that determines the follow-up operation type (e.g. add, remove, and replace) for each new

attribute, task, or visualization type detected. Then CI4DV extracts the context object of the

query that the user is following up on and updates this context object given the follow-up

operation for each new task, attribute, or visualization type detected, creating new lists for

each of them. Then using these lists, we reuse the NL4DV pipeline to generate visualization

recommendations and return them to the user.

Figure 3: An overview of CI4DV’s architecture. The arrows represent the flow of information between
the modules. Ultimately all of the information from the query and dataset is transformed into a
visualization recommendation.

When considering the three follow-up operations, users may be interested in following

up on a previous query’s tasks, attributes, and visualization types. Thus, we came up with
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Add

Remove

Replace

Table 1: Instances of how each follow-up operation can affect the succeeding visualizations of the
follow-up queries.
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potential follow-up queries that could generate new visualizations. After compiling and

creating multiple follow-up queries that differed in syntax and semantics, we were able

to generate a matrix that essentially assigned each query to a specific cell in the matrix.

Table 2 presents a snippet of the matrix below for movies-w-year.csv, a dataset that gives

information about movies.

Attributes Tasks Vis
Add Show production bud-

get as well
Show me the max
gross

Show as a barchart

Replace Replace budget with
gross

Show max gross in-
stead of min

Show a barchart in-
stead of a scatter plot

Remove Remove genre from
chart

Remove all filters Show original chart

Table 2: The follow-up matrix that classifies each potential follow-up query into one cell of the matrix.
One example for each type of follow-up query is provided in each cell.

CI4DV is able to fully support all types of the follow-up queries that are present in the

follow-up matrix. Furthermore, queries that follow up on attributes can be separated into two

forms - explicit and implicit. Explicit follow-up queries are queries that make direct reference

to one of the follow-up operations - add, replace, and remove (e.g. replace production budget

with gross). Implicit follow-up queries do not make direct reference to one of the follow-up

operations, but contain phrases or words that denote the follow-up operation. An example

of such a query would be Show only production budget. In this example, the user’s query

suggests to remove all other attributes from the previous query except for production budget,

and to visualize the distribution of production budget. The keyword in this query is only,

which tells the system that the follow-up operation should be remove.

When implementing the follow-up matrix, while the explicit and implicit types of queries

align very well when a user wants to modify attributes, this methodology does not work

as well with tasks. This is because a user will be unaware of the low-level analytic tasks

that NL4DV uses for its design [1] (e.g. a user would not say add find extrema task to

query). Naturally, a user would rather say Show me the max value, which would add the find

extremum task to the original query. Thus, almost all of the queries that follow-up on tasks

would be considered as implicit follow-up detection.

Furthermore, this CI4DV only follows up on a select few of the follow-up tasks imple-

mented in NL4DV, namely sort, find extremum, filter, and derived value. The other analytic

tasks do not lend well to a follow-up task, so they are not supported in this system. For

example, a user should not be able to add a correlation task to a follow-up query that does

not have two quantitative attributes (e.g. Production Budget and Running Time). Likewise, a

user cannot remove a distribution task if the original query only had one attribute. Thus, the

9



system only follows up on the tasks that users can provide natural utterances for all three

follow-up operations (add, replace, and remove).

In terms of following up on a visualization type with a natural language query, it is not

possible to add a visualization to a previous query in the same manner as adding an attribute

to a previous query. The only follow-up operation that can be used for following up on the

visualization type is to replace the previous visualization. However, we must also ensure

that the attributes and tasks of the previous query can be represented by the replacement

visualization. If not, CI4DV defaults to the recommendation provided by NL4DV.

4 Example Applications

Using CI4DV, developers can create NLIs that exhibit the conversational nature of the toolkit,

allowing for users to build visualizations and explore their datasets. We propose applications

that can represent the full capabilities of CI4DV.

4.1 Nested Jupyter Notebook

As CI4DV uses Vega-Lite specifications to render visualizations in Python environments

like Jupyter Notebook, this would enable Python developers to create visualizations with-

out learning other visualization libraries such as seaborn and matplotlib. Typically,

Jupyter Notebooks have cells that are executed linearly. Python programmers can call the

render_vis(query, dialog) function in CI4DV to output a visualization in the Jupyter

notebook. However, for a Python programmer working with CI4DV and executing multiple

follow-ups in multiple conversations, it can be hard to navigate which conversations are

mapped to certain visualizations. Furthermore, cells can be executed nonlinearly, which can

lead to CI4DV recommending incorrect visualizations. Thus, the Jupyter notebook must

be organized to provide clarity in the structure of the conversations and their follow-ups.

Conversations and all of their respective follow-ups must be grouped together. Figure 4

shows an instance of a Jupyter notebook running CI4DV. The notebook is organized by

conversation, and a conversation’s follow-ups are indented. If users want to follow up on the

last query in a conversation (e.g. Conversation 3), they can create another indented cell under

the Conversation 3 header and the application will use the last context object of Conversation

3.
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Figure 4: An instance of the nested Jupyter Notebook. Each respective cell has its auto-generated
nested header that displays the conversation id and context id. The headers are also collapsible, giving
users the option to focus on one conversation at a time.

4.2 Editable Mind Map

A mind map allows users to organize information and present a hierarchical relationship

between nodes of the mind map. Because of its hierarchical nature and capability of display-

ing different branches of conversations, the mind map can be used to represent the context

tree. Thus, we present an editable mind map that provides users a graphical representation of

the context tree. Users’ input queries and their respective visualizations are displayed in the

application. Each conversation has its own mind map in this application. Furthermore, users

can extend the mind map further by adding an input query as a node to the end of a path or

create a new branch at any point of the conversation. Figure 5 shows an instance of the mind

map, displaying a conversation’s branches, follow-up queries, and the queries’ respective

visualizations.

The graphical user interface behaves similar to other mind map creation tools like

coggle.it. The server-side code involves activating an instance of CI4DV and making a

call to analyze_query(query, dialog) . If the user adds a new query to the mind map

and is part of an existing conversation, then dialog=True The application also takes the

context_id and conversation_id from the previous node and extracts the context object
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from the context tree using these values to create the new visualization. The visualization is

rendered and displayed in the mind map.

Figure 5: An editable mind map that allows users to append queries to the end of conversations’
branches or create new branches in a conversation. New conversations can be added by creating a
conversation node.

5 Limitations and Future Work

While CI4DV is an initial effort to introduce dialogue to natural language interface for

visualization, there is still future work to be considered for this problem. The immediate

next step is to remove the need for the dialog parameter. This parameter tells the user if

the query is a follow-up or not, but for most applications that a developer creates using

CI4DV, they must include a text box for the query as well as a checkbox for the dialog

parameter. This can end up being incredibly cumbersome for the user of such applications,

because they must remember to flag the checkbox. If they do not, then this can lead to

incorrect visualizations. We want to reduce overhead for the user as much as possible. Thus,

a solution to removing the dialog parameter is to implement additional query processing

to determine if a query is a follow-up or not. Of course, this processing needs to be very

accurate, or else the recommendations will be untrustworthy. However, if the follow-up

processing is not as robust, CI4DV can provide two recommendations - one recommendation
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assuming that the query is a follow-up, and one recommendation assuming that the query is

new. Both recommendations can be assigned a score that reflects the confidence level of the

visualization recommendation.

Also, there is no existing corpus that contains a large amount of natural language queries

and follow-ups with visualizations. A user study can be conducted to generate this corpus, so

that there is a benchmark for natural language interfaces for visualization. Similarly, we can

also conduct a user study to assess the utility and usability of CI4DV for users.

Furthermore, while we support context and conversation management through the id

numbers (e.g. conversation_id and context_id), there should also be a way for users to

switch conversations through natural language. Further research must be done about the ways

humans switch conversations naturally so that we can analyze the syntax of these utterances.

This would make CI4DV even more accessible to users, as users may be unfamiliar with how

to work with conversation ids and context ids in code.

In terms of the visualization aspects of the follow-up system, the follow-up system does

not take the original query’s visualization in as context. Therefore, the original query’s visual-

ization has no bearing on the follow-up query’s visualization, so if the original visualization

was a bar chart, the follow-up query’s visualization can be another type of visualization, such

as a scatterplot. We may want to have the original visualization factored into the follow-up’s

visualization and use it as an anchor point. There is already existing literature and systems in

place for anchoring visualizations such as Dziban [5] and Draco [10]. As these systems are

open-source, the main challenge would be to integrate these systems within CI4DV and the

follow-up system at large to create more sensible visualizations for the user.

6 Conclusion

Through CI4DV, we present a natural language toolkit where users can hold multiple conver-

sations with the interface to generate visualizations that they want to explore. CI4DV has two

essential components - the taxonomy for follow-up operations (add, remove, and replace)

as well as the capability for a user to hold multiple conversations with the system. With the

two applications that exhibit CI4DV’s features, we hope to show developers can create other

interfaces that allow for conversational interaction, thus increasing the accessibility for users

to build visualizations.
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