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SUMMARY

The ozonation of the lignin model compound, 1~(3,4-dimethoxyphenyl)-2-(2-
methoxy-4-methylphenoxy)propan-1-ol, in aqueous acetone at 25°C was investigated:
to determine the initial sites of attack. Mild conditions were employed to
minimize the occurrence of secondary reactions that might otherwise hinder the
identification of these initial sites of attack. The ozonation stoichiometry
(moles of ozone consﬁmed to moles of starting material consumed) was determined,

and an extensive product analysis was conducted.

e

Prior to analysis, the ozonation products were usually separated into neu-
tral-phenolic and acidic fractions and subsequently converted to the correspond-
ing silyl derivatives. The consumption of ozone was determined via titrimetric
methods while the amount of starting material consumed was determined via gas
chromatography. Quantitative product analysis was conducted via gas chromatog-
raphy and thermogravimetric analysis. Positive identification of the ozonation
products was accomplished via gas chromatography-mass spectrometry and nuclear
magnetic resonance spectrometry. The major products detected by gas chromatog-
raphy were identified, and they accounted for about one-fourth of the starting
material consumed. The product analysis indicated that there were at. least
four types of initial reactions occurring during the ozonation of the model-

compound. '

Two of these initial reactions involved the ozone-induced éiéavage of
the B-aryl ether linkage and accounted for at least 20% of the starting materi-
al consumed. The identification of 2-methoxy-4-methylphenol as an ozonation
product provided evidence for cleavage initiated on the aliphatic side of the
B-aryl ether linkage while identification of 1-(3,4-dimethoxyphenyl)propan-1,2-
diol provided evidence for cleavage initiated on the aryl side of the ether
linkage. This is the first study to demonstrate ozone-induced cleavage of

the B-aryl ether linkage.
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The other two initial reactions involved ozonolysis (oxidative opening) of
the two aromatic rings of the starting material. The identification of 4-carbo-
methoxymethylene-5,6-dihydroxy-2-heptenoic 1,5-lactone and 2,3-dihydroxybutyric
acid as ozonation products provided evidence for ozonolysis of the 3,4-dimethoxy-
phenyl ring, initiated between the adjacent ring carbons bearing the methoxyl
substituents. The identification of 1-(3,4~dimethoxyphenyl)-2-methyloxaloxypro-
pan—-1-ol provided evidence for ozonolysis of the.2—methoxy—4—methylphenoxy ring
initiated at a site other than between the adjacent ring carbons bearing the

alkoxyl substituents.

In addition to the major reaction products méntioned, many minor constitu-
ents, present in amounts too small to allow identification, were detected by.
gas chromatography. 1In all, the products detected by gas chromatography
accounted for ébout 40% of the starting material consumed. Thermogravimetric
analysis indicated the presence of nonvolatile reaction products equivalent to
an additional 30-60% of the starting material consumed. Although these nonvola-
tile products were not identified, they are thought to be comprised of the higher
molecular weight initial ozonation products and condensation products formed
from both initial and secondary ozonation products. This conclusion was sup-
ported by the ozonation stoichiometry and a comparison of the ultraviolet

spectra of ozonized and unozonized reaction solutions.
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INTRODUCTION

OzonéAﬁas first proposed asta bleaching agent for wood in 1871 (1). How-
ever, the possible benefifs of utilizing ozone in the pulp and paper industry
have just Begun to surface. Prompted by environmental factors, investigations
into the use §f ozone as a pulping and bleaching agent in the production of
wood pulps have intensified (2-6) and have now reached pilot-plant proportions
(7). In addition, recent reports indicate that ozone can be employed to improve
the strength of mechanical pulps (8-13). However, the undérlying chemistry

involved with the ozonation of wood pulps is not yet fully understood.

Inasmuch as the pulping and subsequent bleaching of wood entails removal
and/or modification of the wood lignin, the investiggtion of ozone—lignin
reactions could provide informatiqn useful in deducing the ;hgmistff”cénnected
with the ozone treatment of wood pulps. While the complex chemical composition
of lignin renders such an investigation rather difficuit, some insight into the
possible mechanisms a;sociatéd with the ozonation of lignin may be gained from
model compound studies. Thus this thesis was undertaken to investigate the
fundamental chemistry involved during the ozonation of a lignin-related model

compound containing a B-aryl ether linkage.
GENERAL CONSIDERATIONS

Ozone is a nonlinear triatomic molecule possessing two interoxygen bonds
of equal length (1.278 A) and an average bond angle of 116°49' (14,15). Ozone
can be depicted as a resonance hybrid of structures I-IV (Fig. 1). Structures
III and IV allow ozone to be classified as a 1,3-dipolar compound (15,16) and,
as a result, ozone is capable of following reaction routes characteristic of
1,3-dipolar compounds, a phenomenon that has been incorporated into proposed

ozonation mechanisms (17-21).
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Figure 1. Resonance Structures of Ozone (15,16)

Ozone is among the most powerful oxidizing agents known and is capable of
reacting with most organic compounds (16). Thus ozone will react with most of
the commonly used organic solvents (16,22). Greenwood (22) studied the reaction
between ozone and various common solvents and found ethyl chloride and acetic
acid to be the most resistant to ozone éttack, while methanol and ethanol demon-
strated the least resistance (Table I). Ozone can decompose in water via a
free radical mechanism thought to involve the formation of the hydroxyl radical
as an unstable intermediate (16). This aqueous decomposition can be fairly
raéid in alkaline solutions but is substantially slower under acidic conditions

(16), and is virtually nonexistent in distilled water (Table I).

TABLE I

THE REACTIVITY OF VARIOUS PURE SOLVENTS
TO OZONE (22)

% Unreacted Ozone

Solveﬁt Passing Through Solvent
CH2C1, 96
CHC1s 96
CCly 95
C2HsCl 100
n-CsHi2 71
* CH3COOH . 98
CH3CO0C,Hs 85
CH 30H ' 27
- C2HsO0H 38

H20 99
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OZONE REACTIONS WITH SIMPLE ORGANIC COMPOUNDS

OZONE REACTIONS WITH OLEFINS

Oxidative cleavage of carbon-carbon double bonds (ozonolysis) is an impor-
tant ozone reaction and may be of significance during the course of ozone-lignin
reactions (16-20). Some form of the syn-anti zwitterion méchanism (18,23) —
which is actually a modification of the Criegee mechanism (17) té.account for
the stereoselectivity displayed during ozonolysis — is the most widely accepfed

explanation for the ozonolysis of olefins (24).

According to this mechanism (Fig. 2), ozone reacts with a carbon-carbon
double bond via a 1,3-dipolar cycloaddition to. form the 1,2,3~trioxolane inter-
mediate, V. Next, decomposition of V via a 1,3-dipolar cycloreversion yields

the syn and anti isomers of zwitterion, VI, and a carbonyl compound, VII.

[Recent reports indicate that the syn and anti isomers of VI may be in equilib-

rium, ;hereby providing an additional factor influencing the stereochemistry
of olefin ozonolysis (24,25).] One of three routes may then be followed depend-
ing ﬁpon the reaction conditions:'
Route 1 — A "final" ozonidé, VIII, can be produced by another 1,3-dipolar
cycloaddition in which VI and VII recombine. Although this
step has previously'been assumed to be concerted, a recent
study suggests that under certain condit;ons formation of VIII
may be nonconcerted (26).
Route 2 — Zwitterion, VI, may react with a 'participating solvent" to
form a hydroperoxide intermediate, IX. This appears to be the

dominant route when employing protic solvents (16,27).
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Route 3 — Dimerization and polymerization of VI may occur to form diper-

oxides, X, and polymeric peroxides. This pathway is most prob-

able in nonprotic solvents when VII is a ketone.
Intermediates VIII-X may subsequently decompose to form more stable oxidation

products such as acids, esters, aldehydes, and ketones.

0
90\ 0" o 0 .2 ©,-°°| . o
~( e \ I i 1
C=CJ + 0 — >C-—Cc< — C= C + C
@O/ I\ /\ /\

syn anti
\) Vi Vil

Probable Mechanism for Olefin Ozonolysis (18,23,27)

Figure 2,

OZONE REACTIONS WITH SIMPLE AROMATIC SUBSTRATES

Ozone will also cleave the carbon-carbon bonds of aromatic rings but usu-
ally at a slower~f;te,than observed for olefinic substrates (20,28), and al-
though less is known ébout such reactions, the current consensus is that aromat-
ic ozonolysis proceeds via a 1,3-dipolar cycloaddition mechanism (Fig. 3)

similar to that proposed for olefinic ozonolysis (16,20,28).
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Figure 3. Probable Mechanism for Aromatic Ozonolysis (20,28)

Studies indicate that electron releasing substituents tend to promote
aromatic ozonolysis, while the converse is true for elec£ron — withdrawing groups
(16,28). Thus it is not surprising that phenolié substrates have been observed
to be significantly more susceptible to ozone attack tﬁan benzene or many other
aromatic comﬁounds (29,30), and this fact may be of importance in understaﬁding

lignin ozonation.

In addition to ozonolysis, ozone may attack aromatic nuclei via electro-
philic substitution, although the extent of such reactions is currently unknown
(16,28). Ring hydroxylation and quinone formation are likely results of this
mode of attack, and thus ozonation of benzene ﬁroduced a small amount of bhenol
(31) while phenol yielded catechol, XI, and o-quinone as intermediate products

upon ozonation (32,33). A possible mechanism is depicted in Fig. 4, based

upon the discussion of these findings by Eckert and Singh (16).
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Figure 4. Ozone Attack of Phenol Via Electrophilic
Substitution (16)

OZONE REACTIONS WITH SIMPLE ETHER LINKAGES

Ozone attack of ether linkages may provide a significant mode of degrada-
tion during ozonation of lignin since as many as 65% of the "intermonomer"
linkages in lignin are estimated to be of the 0- and B-aryl ether type (34).
The current consensus is that such reactions précéed via a méchanism involving
a hydrotrioxide intermediate, XIV (16,21,35,36). This intermediate could arise

as depicted.in Fig. 5.

Accordingly (Fig. 5, Route 4) ozone can attack a carbon-hydrogen bond
adjacent (i.e., a) to the ether‘oxygen via a 1,3-dipolar insertion to form
hydrotrioxide, XIV. The transition state, XII, predicts that insertion at a
given carbon-hydrogen bond becomes more favorable as the acidity of‘the hydro-
gen decreases. Thus, tertiary o hydrogens have been shown to be significantly
more reactive than secondary o hydrogens during.the ozonation of propyl iso-

propyl ether (21).
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Figure 5. Possible Mechanisms for Formation of the Hydrotrioxide
Intermediate During the Ozonation of Ethers (21,35,36)

5
Alternatively, Bailey and Lerdal (21) have recently proposed that the

hydrotrioxide intermediate may arise via an internal oxidation mechanism under
certain conditions (Fig. 5, Route 5). This mechanism involves initial ozone
aﬁtack on the ether oxygen followed by abstraction of an o proton and subsequent
rearrangement to yield hydrotrioxide, XIV. This pathway would be favored for
ozonation of ethers in which transition state XIIl would be more stable than
transition state XII and would favor attack (i.e., proton abstraction) at the o
carbon bearing the more acidic hydrogen. Thus, the ozonation of ether XV, which
involved preferential attack at the more acidic o methylene group, was proposed

to- proceed primarily via Route 5 (21). In this case, the carbonyl group of XV
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could help stabilize the developing negative charge (on the carbon adjacent
to the ether oxygen) in the transition state, XIII, thereby facilitating ozona-

tion via Route 5.

CH3C-CH2-0-CH2CH,CH3

0
XV

Once formed, the hydrotrioxide, XIV, apparently decomposes via both ionic
(Fig. 6, Routes 6 and 7) and free radical (Fig. 6, Routes 8 and 9) pathways to
yield oxidation products such as aldehydes, ketones, and esters. The importance

\

of each route varies with the reaction conditions and the nature of the ether

under investigation (21,35). -

OZONE REACTIONS WITH LIGNIN AND LIGNIN-RELATED MODEL COMPOUNDS
OZONE REACTIONS WITH LIGNIN-RELATED MODEL COMPOUNDS

9,41,42) have been conducted employing lignin-related

Several studies (37,
model compounds to elicit possible reaction routes of importance during ozonation
of lignin. Tanahashi, et al. (37) found ozone to preferentially cleave the
aliphatic double bond of a phenylcoumarone, XVI, during mild'ozonation (Fig. 7).
This suggests that the olefinic bonds of lignin would be more susceptible to
ozonolysis tﬂan the aromatic analogs, as would be expected based upon studies
of simple alkenes and aromatic compounds (16,28). These workers also observed °
that ease of ozonation of "monomer" model compounds followed the order: 2,6-
dimethoxyphenol > guaiacol > phenol, which-corroborates an earlier report that -

ozonolysis of phenols was enhanced by electron releasing substituents (38).
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R' R
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018L0—H
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-+*00H : cleavage
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R"'OZ. + R"'H ) R!". + R"'OZH
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Figure 6. Possible Mechanism for the Ozonation
of Simple Ether Linkages (21,35)
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(CHp)CHy
ChHa
0—C:
I 0 OCH3 COOH (CH,),CH3
0—C<¥—0
Ho/Pd-C 40
OCH3 ¢C OCH3
OCH3 OH CHy OH
OH

Figure 7. Ozonation of a Phenylcoumarone Under Mild Conditions (37)

Hatakeyama, et al. (39) ozonized vanillyl and veratryl alcohol, XVII and

XVIII, under acidic and basic conditions. The $-lactone, XIX, was identified

as the majbr reaction product from both substrates and indicates preferential

cleavage between the ring carbons bearing the hydroxyl and methoxyl substituents.

This preferential cleavage has also been observed during the ozonation of cate-

chol (40) and catechol ethers (20). In addition, the formation of XIX indicates

that the methyl group of XVII and XVIII was retained upon oxidative ring opening,

which is consistent with a 1,3-dipolar cycloaddition mechanism. Based upon

these findings, the mechanism shown in Fig. 8 was proposed to explain the reaction

products arising from the ozonation of XVII and XVIII (16,39).

CH,OH
O3
—_—
OCH5
OR
XVIl, R=H
XVHI, R=CHj
Figure 8.

CHOH CH,0H CHy
OCH ﬁf§ﬁ' Eﬁ§ﬁ
3™~ COOCHy —» O
0070 COOR  ° L COOCHs
- O-02 : )

()31 E:;//’ d

. X1X
COOH +'Hg—c00H
COOH  HC-COOH

Possible Mode of Attack on a Lignin-related
Monomer Unit (16,39)
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Hatakeyama, et al. (39) also identified minor products such as XX and XXI
arising from ozone attack of the aromatic ring substituents of XVII. and XVIII.
These products were more numerous under basic conditions and, as suggested by
Eckert and Singh (16), may be the result of ozone-induced electrophilic sub-

stitution and 1,3-dipolar insertion mechanisms (Fig. 9).

07H !
CH,0H 5-0-cloH HC=0 COOH
O3 @
——
OCH3 OCH3 OCH3 OCH3
OR OR
XVIIl, R=CH3
l 05 - CH,0H CHZ0H
T W
- L° OCHz HO OCH3
CHZOH CHZ0H |

[::] + CH30H + 02
(,OCH

Figure 9. Possible Minor Reaction Routes During the Ozonation
of XVII and XVIII (16)

On the other hand, Kratzl, et al. (4l) studied the ozonation of various
substituted veratrols and concluded that, although cleavage between the methoxyl
bearing ring carbons was important (Fig. 10, Route 10), aromgtic ring opening
may also be initiated at other sites on the ring (Fig. 10, Route 11), especially
when R is an electron-withdrawiné group. The occurrence of ring cleavage
via Route 10 was indicated by the identification of the muconic acid dimethyl

ester, XXII, as a reaction product while the prevalence of cleavage via Route
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11 was determined by the yield of dimethyl oxalate, XXIII, produced. Again,
retention of the methyl groups in these products suggests that the ozonolysis

of fhe veratrols proceeded via a 1,3-dipolar cycloaddition mechanism, and this
was further substantiated by the reported identification of ozonides as unstable

reaction products.

In the most recent model compound study, conducted by Kojima, et al. (42),
the effects of ozone upon several softwood lignin model compounds, including
some complex 'dimeric" model compounds, were investigated. As in previous
model compound studies (QQJQJ), ozonolysis of the aromatic ring was implicated
as a major mode of degradatioﬁ. Ozonolysis of the aromatic ring of various
4-substituted 2—metho%y phenols was found to be enhanced when this substituent
was electron-releasing and suppressed when it was electron-withdrawing, thereby
corroborating earlier reports that the nature of the ring subsﬁituent has an

effect upon the rate of aromatic ring ozonolysis (16,28).

R R
o N ClOOH + ClHo + HCOOCH
—2 [ loocHa —> COOM T CHo 3
OCH route |10 3
3 COOCH3
R | R CO0CH;
-03 _route Il Z~cooy + COOCH3
b OCH3 COOH XX 111
03 0CH3 '

Figure 10. Possible Ozonation Pathway of Substituted Veratrols Proposed by
Kratzl, et al. (41); R = COCHj3,C1,H,CH3,t-butyl,N(CH3)>
Ozonolysis of the dimeric model compounds demonstrated the following order
of reactivity: XXIV, XXV (two tetrasubstituted rings) > XXVI (one tetra- and

one trisubstituted ring) > XXVII (one tri- and one disubstituted ring).. Moreover,
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XXVIII and all of the other identified ozonation products of XXVI were found

to arise via ozonolysis of Ring B, the more substituted ring of XXVI; likewise,
XXIX and all of the other identified ozonation products of XXVII were found

to arise via ozonolysis of Ring A, the more substituted ring of XXVII (Fig. 11).
Based upon these findings, it was concluded that the reactivity of a lignin-
related model compound toward aromatic ring ozonolysis is not only dependent
upon the nature but also the number of ring substituents (i.ef, as the number

of ring substituents increases so does the rate of ozonolysis).

In addition to aromatic ring ozonolysis, Kojima, et al., obtained evidence
for the occurrence of other ozonation mechanisms. Specifically, along with
ozonolysis products, compounds XXXI and XXXII were identified as ozonation
products of XXX, as indicated in Fig. 12. The formation of XXXI provided
evidence for ozone-induced side-chain oxidation and thus corroborates the earlier
findings of Hatakeyama, gg_él, (39). The'formation of XXXII was proposed to
result from oxidative radical coupling involving the phenoxy radical and thus
for the first time provides evidence for the condensation of phenolic compounds

during the ozonation of lignin-related model compounds.
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OZONE REACTIONS WITH WOOD AND MODIFIED LIGNINS

In aadition to modei compounds, the ozonationlof modified lignins (43-47)
and even wood pulps (10,19) has been investigated to ascertain possible reaction
routes of importance during the ozonation of lignin. Hatakeyama, et al. (43)
reported that the ozonation of calcium lignosulfonate led to a significant

increase in carboxyl and carbonyl group content, and that 907 of the newly

formed carboxyl groups arose from oxidative cleavage of aromatic-nuclei.

Subsequently, Soteland (19) subjected extracted western hemlpck groundwood
to ozonation in acetone-water. In addition to an observed décrease in aromatic
character and an increase in the carbonyl and carboxyl,grdup content, analysis
of the isolated lignin after ozonation indicated the formation of methyl esters.
Also, evidence for the presence of active oxygen groups (i.e., peroxides and
ozonides), arising from the ozonation, was obtained. These results are con-
sistent with the model compqund studies previously discussed and led the author
to postulate that oxidative opening of the aromatic rings is an important mode
of degradation during the ozonation of lignin. It was further postulatéd that
this.degradation probably ‘proceeds via a 1,3-dipolar cycloaddition mechanism
similar to those proposed for ozonation of lignin-related model compounds (Fig.

8-11).

Tﬁe resulté of.Katuscak, et al. (44-47), obtained from the ozonation of
methanol lignin and HCl-lignin, corroborated the findings of Soteland (19).
Of particular interest in this study was the observation that carbon-14 was
incorporated into the lignin macromolecule when employing carbon-14 labelled
methanol as the ozonation solvent (47). This was interpreted as evidence that

a methoxyhydroperoxy derivative was formed during the ozonation of lignin in
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the protic solvent, methanol. Reaction (1) was proposed to explain this phenom-
enon and is consistent with the generally accepted mechanism for the ozonolysis

of olefins in protic solvents (Fig. 2, Route 2):

oCcl%H,

lw

Lig ~ ¢' - 007 + C!'“H;0H - Lig
' 00H

Katuscak, et al., also obtained evidence that free radical mechanisms may
be of importance during the ozonation of lignin. The presence of ozone-induced
free radicals was demonstrated by the fact that ozonized lignin initiated homo-
polymerization of styrene and graft copolymerization of styrene with lignin
(_ﬁjéz){ In addition, analysis via electron spin resonance spectrometry
indicated that ozonation increased the concentfation of paramagnetic centers
in both methanol lignin and HCl-lignin (46). The authors speculated that hydro-
peroxideé, as formed via Reaction (1), may serve as a source of such radicals

and that ozone may act as an initiator for the autoxidation of lignin [Reactions

(2)-(5)1]:

Lig-H + 03 ——3  Lig-0O* + <O0H o (2)
Lig-0* + Lig-H ~——>  Lig-OH + Lig® (3)
Lige + 0 —»  Lig-00° (&)
Lig-00* + Lig-H = ——>  Lig-OCH + Lig- (5)
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THESIS OBJECTIVE AND EXPERIMENTAL APPROACH.

OBJECTIVE

Previous studies of ozone-lignin reactions have focused upon attack and
subsequent degradation of the aromatic ring structure. Investigations into the
ozonation of lignin-related model compounds, isolatedtlignins, and wood pulps
have revealed a close correlation between ozonolysis of aromatic nuclei and
ozone-induced lignin degradation. However, the possible importance of other
modes of ozone attack during the ozonation of lignin has not been adequately
considered. For example, the R-aryl ether bond is thought to be the most common
intermonomer linkage in lignin (48,49), and inasmuch as ozone is known to read-
ily induce cleavage of alkyl ether linkages (21,35), it would seem logical that
ozone could likewise cleave the B-aryl ether linkages found in lignin. This
cleavage would result in a rapid decrease in the degree of polymerization of

the lignin and thus could be of importance in ozone delignification.

For this'reason, the primary objective of this thesis was to investigate
the effects of ozone upon a lignin—félated model compound containing a B-aryl
ether linkage. In this respect, the emphasis was directed toward identification
of the initial sites of 6zone attack, in an effort to ascertain the important

mechanisms involved during the ozonation of the model compound.
APPROACH
SUBSTRATE SELECTION

The model compound employed as the substrate in this study is depicted
in Fig. 13. Subsequent discussions will employ the numbering and lettering
systems shown in this figure when referring to the various sites on the model

compound. Model compound XXXIII was selected to serve as the substrate in this
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study because it possesses many of the basic structural features of a typical -
lignin moiety containing a f-aryl ether linkage (49). In addition, the methyl
group at position 4 of Ring B serves as an excellent label for distinguishing

between ozonation products arising from Rings A and B. Finally, the synthesis

of XXXIII can be accomplished via a proven synthetic route (50).

XXX

Figure 13. Structure of the Model Compound
Employed in This Study

GENERAL REACTION CONDITIONS

Studies indicate that the products arising from initial ozone attack of
lignin and related model compounds are quite-Susceptible to further degradation
via ozone (16,19,39,47). Therefore, to facilitate identification of the initial
sites of ozone attack upon XXXIII, it was necessary to limit the exposure of
the products to ozone. Essentially, this meant applying ozone in an amount

significantly less than that of the XXXIII employed for a given experiment.

Furthermore, as previously discussed, the nature of the solvent can influ-
ence the structure of the initial ozonation intermediates. During the ozonoly-

sis of olefinic and aromatic substrates, including lignin (47), hydroxylic
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solvents such as water tend to favor formation of hydroperoxide intermediates,
while aprotic solvents favor ozonide formation. Consequently, since in all
probability ozone processes in the paper industry would be conducted in the
presence of water, the ozonations in this study were performed in aqueous
media. Because XXXIII is insoluble in water, it was necessary to employ an
aqueous organic solvent as the reaction solvent to effect solution of the
substrate. Thus, aqueous acetone was employed as the reaction solvent in this
study, although some preliminary experiments were conducted in aqueous acetic
acid as well. Further discussion of the use of aqueous acetone as an ozonation

solvent is presented in Appendix I.
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RESULTS AND DISCUSSION
PREPARATION OF SUBSTRATE

As already discussed, the lignin model compound XXXIII was employed as the
. substrate in this study. The compound was prepared via the four step synthetic -
route of Lawrence (50) depicted in Fig. 14. Lawrence reported that, as a result
of the sodium borohydride reduction employed in Step 4 of this synthesis, a
mixture of the erythro (XXXIIIa) and threo (XXXIIIb) configurational isomers

of XXXIII was obtained. Subsequently, an acetylated sample of the XXXIII was
analyzed via nuclear magnetic resonance (NMR) spectrometry and, based upon the
relative size of the acetoxy proton signals of isomers XXXIVa and XXXIVb,
Lawrence determined that the mixture was comprised of 94% erythro and 6% threo
isomer. Similarly, the XXXIII pEepared for use in the current study was found

to be an isomeric mixture composed of 92% erythro and 87 threo XXXIII.

?HB OCH4 ?H3 OCH4
H—cl—0<<_(—5>cr|3 H—g—o-@-cu3
H-C-OAc AcO-C~H

OCH3 OCH3

OCH4 OCH3

XXX1Va ~ XXXIVb

EXTENT OF OZONATION

As previously alluded to, mild ozonation conditions were employed in this
study to minimize the occurrence of secondary reactions and thereby facilitate
the identification of the initial sites of ozone attack upon model compound

XXXIII. In a typical ozonation experiment, a known amount of XXXIII was

~
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Compound XXXIII

s CHs CHs
t
(He | (H2 CHBr
C=0 (CH3)2 SO4 c:o .. Bl’z é:O .
——
@ step | - step 2 -.
OH OCH3 OCHs
oA | OCHs =+ OCH3
step 3 . -
‘ Na OCH3
OCH3
H(‘:—O CH3
C=0
[::100H3
OCH3
step 4| NaBH4
?H3 ?H3 3
HE—O @ CHs HC—0 CHz
HCOH | HOCH ..
OCH3 ScHs
XXXl a XXXI11b
Figure 14. Synthetic Route for Preparation of

(30)
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dissolved in 807% aqueous acetone in the reaction vessel. An ozone-oxygen
stream was then bubbled through the reaction solution at a constant flow rate
for a given period of time. Subsequently, the solution was purged with nitrogen
to remove any unreacted ozone. Reaction solution samples were taken before and
after ozonation and analyzed via gas chromatography (GC)’to determine the amount

of starting material, XXXIII, that was consumed.

The amount of ozone offered to the reaction solution was determined via
the standard iodometric titration method (51), and the amount of ozone consumed
was d?termined via a new acid-base titration method devised for this study.

The new method for ozone analysis was required to circumvent analytical diffi-
culties associated with the standard iodometric titration method when employing
acetone as the ozonation solvent. Appendix II provides a detailed discussion

of the development and validity of this new analytical procedure.

The results of the starting material and ozone analyses are summarized in
Table II. These results indicate that about 30% of the starting material em-—
ployed for the ozonation was consumed while 997% of the ozone employed was con-
sumed. Inasmuch as the ozone was in contact with the starting material for
only a brief time, this finding indicates that the ozoné reacts quite rapidly
with XXXITII. Furthermore, the ozonation stoichiometry indicates that 1.33
moles of ozone was consumed for each mole of XXXIII consumed, implying that
about 25% of the ozone consumption during the ozonation was the result of
secondary reactions. This suggests that at least 757% of the XXXIII consumed
during an ozonation took the form of initial products which were not degraded
further by ozone; thus it appears that minimization of ozone-induced secondary

reactions was successful.
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TABLE II

INFORMATION CONCERNING THE EXTENT OF OZONATION
OF MODEL COMPOUND XXXIII IN AQUEOUS ACETONE

XXXIII XXXIII O3 03
Offered Consumed Offered Consumed

(mmoles) (mmoles)? (mmoles) (mmoles)? Stoichiometryb
8.9738 2.5844(28.8) 3.4640 3.4356(99.2) 1.33

2The value in parentheses indicates percent consumption.
Moles of ozone consumed/mole of XXXIII consumed.

OZONATION PRODUCTS IDENTIFIED s

Aliquots of the ozonized reaction solutions of XXXIII were subjected to
various work-up procedures and then analyzed qualitatively and quantitatively
via GC, usually after silylation of the samples, to determine the identities
and the‘respective amounts of the various products formed from the ozonation
of XXXIII. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spec-
trometry were also employed as major modes of qualitative product analysis.
Table III lists the compounds positively identified as ozonation products of
XXXIII, thg amount of each detected, and the modes of analysis employed for the
identification. The structures of these products are shown in Fig. 15. A de-
tailed discussion of the experimental evidence employed to identify these prod-

ucts is presented in a subsequent section of this thesis.

It might be suggested that producps XXXV and XXXVI could arise by means
other than ozonation of XXXIII (e.g., hydrolysis). To disprove this hypothesis,
an experiment was conducted to test the stability of XXXIII, in the absence of
ozone, to the usual reaction conditions and analytical procedures employed in
this study. Essentially, this involved treating an aqueous acefone solution of

XXXIII with an oxygen stream, rather than an ozone-oxygen stream, under otherwise
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typical reaction conditions. Aliquots of the treated solution were then prepared

and analyzed for starting material (XXXIII) consumption and the presence of deg-

radation products via the usual starting material and product analysis procedures.

TABLE III

SUMMARY OF IDENTIFIED OZONATION PRODUCTS OF XXXIII

% of XXXIII Mode of
Product Accounted For? Analysis
XXXV (creosol) 8.0 £ 1.0 1,2,4
XXXVIa (diol) 8.7 £ 1.2 1,2,4
XXXVIb (diol) 2.1 +0.3 2
XXXVIL 1.5 £ 0.1 3,5
XXXVIII 0.2 3,5
XXKIX 1.6 1,2

aExpressed as a percentage of the millimoles of
XXXIII consumed during the ozonation.

bThe modes of analysis were:

1. GC retention time comparison with an authentic
sample
2. Mass spectral comparison with an authentic
sample
3. Mass spectrum — no authentic sample available
4., NMR spectral comparison with an authentic
sample
5. NMR spectrum — no authentic sample available
CH30
1)
CHj GHs CHs  c:=0 CHg
HCOH HCOH HC-0-€ CHoH - (M3
!
CHy HCOH HOCH _ CHOHOA CHOH

1
E)\\ ?HOH
COOCH
OCHs4 OCH,4 OCH3 CooH

OH OCHg OCHg4 OCHs s

Figure 15.

Identified Ozonation Products of Model Compound XXXIII
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The results of this experiment (summarized in Table IV) indicate that about
95% of the starting material treated was recovered. Moreover, the GC chromato-
gram obtained by analyzing a large aliquot of the treated solution via the usual
product analysis procedures demonstrated virtually a complete absence of any
substances other than XXXIII, internal standard, and silylation artifacts.
Thué it is concluded that XXXIII is stable to the reaction conditions and
analytical procedures that were employed in this study and that the compounds
detected in the ozonized reéction solutions of XXXIII arose solely és a result

of ozone-induced degradation of XXXIII.

TABLE IV

EXTENT OF DEGRADATION OF XXXIII IN THE ABSENCE OF OZONE

XXXIII Offered % of XXXTIII Detected Degradation
(mmoles) Recovered Products of XXXIII
2.9518 94.6 None

MECHANISTIC IMPLICATIONS

INITIAL SITES OF ATTACK

Based upon the results listed in Table III, a reaction scheme indicating
the iﬁitial sites of attack during the ozonation of model compound XXXIII has
been devised and is depicted in Fig. 16. Accordingly, there are four general
pathways by which XXXIII is attacked and subsequently degraded by ozone. Path-
ways A and B provide two general routes whereby inifial ozone attack of XXXIII
leads directly to cleavage of the B-aryl ether linkage. Pathway C involves
ozonolysis of Ring B of XXXIII, initiated at a site other than between the
adjacent ring carbons bearing the alkoxyl substituents. And Pathway D involves

both ozoholysis of Ring A of XXXIII, initiated between the methoxyl-bearing
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ring carbons, and cleavage of the B-aryl ether linkage. A detailed discussion

of each of these pathways will now be presented.

Attack at the B-Aryl Ether Linkage (Pathways A and B)
As indicated by Pathways A and'B of Fig. 16, the formation of creosol (XXXV)
and the diol, XXXVI, provides strong evidence that the B-aryl ether linkage is

an initial site of attack during the ozonation of XXXIII.

Creosol could arise as a result of ozone-induced cleavage of the B—aryl'
ether linkage initiated at the alkyl end of the linkage (Fig. 17). Accordingly,
ozone would attack the carbon-hydrogen bond via a 1,3-dipolar insertion to form
the hydrotrioxide intermediate, XL. At 25°C, intermediate XL would then rapidly
decompose ionically to yield creosol and the ketol, XLI (Route 125, of via
a free radical process to yield XXXV: and the ketol (Route 13), XLII (Route 14),
and XLIII (Route 15). Compounds XLII and XLIII could then undergo ester

hydrolysis to form creosol, XLIV and acetic acid.

As discussed in a previous section, a similar mechanism (cf. Fig. 5 and
6) appears to provide the principal pathway during the ozonation of alkyl
ethers such as ethyl isopropyl ether (21). In the case of compound XXXIII,
attack of the carbon-hydrogen bond of the B carbon via 1,3-dipolar insertion
would involvé development of a positive charge on the B carbon in the transition
state, XLVI, leading to the formation of hydrotrioxide, XL. This developing
positive charge would be stabilized via electron.donation from both the ether
oxygen and the methyl group attached to the B carbon, and thus the B carbon
of XXXIII should provide an excellent site for ozone attack via a 1,3-dipolar

insertion mechanism (21).




~30-

TIIXXX JO UOTIBUOZ(O WOIJ AXXX IONPOid 3JO UOTIPWIO] 10J SoInoy uorloeay pasodorg /T 2and1g

. ALTIX AXXX I b AXXX 17X
HO0 HO - fH20 -0 £H20
€HOO, £H20 €490 £H00 £H00
| . .
-
HOHJ £HD 0%H HOHS ) HOJH
HOO0D | mxoLAHUY.o-w 0=9
e
. fuoo O HI
TR
Ak iy 17¢_ \M_ ajno.
¢
Ho 420 im0
. €490 HO0
AX IUO N m_ ajnou
HOOO*HD + “o%n OSH) oL, Hony  “hoo—- X
€HD w . €40 0-3-0-
0=3 | €MD e
€149 £HO0
AXXX 11X aX , XXX
H £H00 £HO0 £HO0
€HO0 £HO0 €HO0 £H00
+ 21 3jnou
€45 D HOH H = . HOHJ

HOQH i s - V. o
0-3 n:o©!o.\.”_u,®.o-o n:u©;o-¢m:uoe
H) 0

€ €
€EHo0 HO €£HO0 HO e




=31~

Alternatively, creosol could arise via ozone-induced cleavage of thé B-aryl
ether linkage of XXXIII initiated at the aryl end of the linkage. : As depicted
in Fig. 18, the initial step of this mechanism -(Route 16) involves electrophilic
attack by ozone upon Ring B of XXXIII. Subsequent loss of the proton on the
B carbon of the side chain yields creosol and the ketol, XLI. As already alluded
to, ozone has been shown to attack various aromatic substrates via electrophilic
substitution (16,28) and, in fact, the propoxyl-bearing carbon atom of Ring B
should provide a prime site for electrophilic attack due to the presence of
electron-releasing substituents located ortho and para to this position (52).
In addition, é similér mechanism has been proposed to explain the formation

of creosol and the ketbl, XLI, via peroxyacetic acid oxidation of XXXIIIL (gg}.

CHy OCH3 cHy  OCHs CH3
' HC 0—5 CH c-0
HC-0 CHs : 3 '

HCOH o HCOH 02 o HCOH CHs
3 o_o . . .
route 16 + @ + 02
OCH3 OCH3 OCH3
OCH3 OCH3 < OCH3 OH
XXX} : A XL| XXXV

Figure 18. Possible Méchanism for Formation of XXXV Initiated on the
Aryl End of the B-Aryl Ether Linkage of XXXIII
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However, ketol XLI was not identified as an ozonation product of XXXIII.
Moreover, since a competition reaction between substrate XXXIII and ketol XLI
indicated that XXXIII is three times as reactive toward ozone as is XLI, it
appears that the absence of XLI as an ozonation product was not due to subse-
quent degradation during the ozonation of XXXIII but rather reflects a lack of
formation of XLI, thereby strongly suggesting that formation of creosol via
Route 16 (Fig. 18) was not a principal pathway during the ozonation of XXXIII.
Consequently, it would appear that a significant portion of creosol was formed
via cleavage of the B-aryl ether linkage initiated at the alkyl end of the link-
age (e.g., Routes 12-15 of Fig. 17). Furthermore, the absence of significant
quantities of the ketol also suggests that Routes 12 and 13 (Fig. 17) were not
principal pathways, while the absence of XLIV minimizes the possible importance
of Route 14. Thus, Route 15 (Fig. 17) could be postulated to be the principal
pathway for the formation of creosol during the ozonation of XXXIII, with

possible minor contributions arising from Routes 12~14 and 16.

The diol, XXXVI, most likely arises as a result of ozone-induced cleavage
of the B-aryl ether linkage of XXXIII initiated on the aromatic end of the link-
age. The results from Table III indicate that the diol possesses an isomer
ratio of 81% erythro (XXXVIa) to 19% threo (XXXVIb), which is somewhat differ-

ent than the erythro to threo isomeric ratio of 92 to 8% observed for the XXXIII

employed as the substrate in this study. This difference in isomeric ratio

could be due to a difference in the reactivity to ozone of the erythro and threo

- isomers of XXXIII. An equally likely explanation, which merits further consid-
eration, is that the difference in isomeric ratioAarose because at least one
mechanism producing the diol during the ozonation of XXXIII involved inversion
of configuration. As suggested in Fig. 19, there are at least four routes by

which the diol could be formed during the ozonation of XXXIII, and although
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Routes 17, 19 and 20 would be expected to proceed with complete retention of

configuration, Route 18 provides a means by which partial inversion of config-

uration can be realized:

Route 17 —

Route 18 —

Initial electrophilic attack by ozone upon XXXIII occurs at the
propoxyl-bearing carbon atom of Ring B followed by an inter-
action between water and the newly formed carbonium ion. Sub-
sequently, the B-aryl ether linkage is cleaved to yield the
diol (XXXVI) and an ortho quinone, XLVII. As already discussed,
the propoxyl-bearing carbon atom of Ring B provides an excellent
site for electrophilic attack, and a preference for cleavage

via Route 17, to yield the diol, may be the reason why cleavage

via Route 16 (Fig. 18) does not appear to be a major pathway.

Quinone XLVII was not identified as an ozonation product; however,
it could have been degraded to acidic products by subsequent
ozonation or formed large nonvolatile condensation/polymerization
products (e.g;, via Diels—Alder reaction) not amenable to GC
analysis, thereby providing an explanation for this apparent
absence. A detailed discussion of the possible condensation/
polymerization reactions that could occur during the ozonation

of XXXIII is presented in Appendix III.

Initial electrophilic attack by ozone occurs at the methoxyl-
bearing carbon atom of Ring B. Cleavage of the B-aryl ether
linkage is then facilitated by neighboring-group assistance (53)
from the benzylic hydroxyi group of XXXIII to yield the proton-
ated epoxide, XLVIII, and quinone, XLVII. Hydrolysis of XLVIII
then proceeds with partial inversion of configuration to yield
the erythro and threo isomers of the diol. The stereochemistry

suggested for this last step is based upon the fact that the
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structurally similar epoxide, XLIX, demonstrates partial inver-
sion of configuration upon acid hydrolysis (54). ‘As a result,
this route provides a means whereby the diol can arise from

ozonation of XXXIII without complete retention of configuration..

0
/ \
H H

XLIX

Route 19 — Ring B of XXXIII is cleaved between the adjacent alkoxyl bearing
ring carbons via a typical 1,3-dipolar cycloaddition mechanism
(16) to yield a muconic acid ester, L, which subsequently under-
goes ester hydrolysis to yield tﬁe diol and a muconic acid deriv-
-ative, LI. Compounds L and LI were not identified.as ozonation
products, but failure to detect these comﬁounds may ;lso be
due to furthef degradation and/or formation of large nonvola-
tile condénsétion/polymerization products, as suggestéd for

XLVII.

Route 20 —iCompound XXXVII, which has been positively identified aé an
ozonation product of XXXIII, could undergo ester hydrolysi§
to yield thg diol and LII. However, failure to identify LII
in the reaction solution of XXXIII suggests that thislroute

may be only a minor pathway for the formation of XXXVI.

Since compounds XLVII, XLVIII, and L~LII were not identified as ozonation
products of XXXIII, the relative importance of Routes 17-20 in the formation of

the diol could not be accurately assessed, although the stereochemical evidence
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suggests that a mechanism such as Route 18 may be involved. It is quite possi-
ble that all four reaction routes are operating to some extent during the ozona-
tion of XXXIII. Under such circumstances, compounds XLVII, and L-LII would be
produced in small amounts which, along with the possibility of subsequent degra-
dation and/or formation of condensation/polymerization products, could hinder

attempts to detect these compounds.

In summary, the identification of creosol and diol (XXXVI) as ozonation
products provides conclusive evidence that ozone-induced cleavage of the B-aryl
ether linkage is a fundamental route of degradation during the ozonation of
XXXIII. The pathways proposed (i.e., Routes 12-20) provide feasible explana-
tions for the origins of creosol and the diol, although the data do not allow

an accurate assessment of their importance relative to one another.

Aromatic Ring Attack (Pathways C and D)

The formation of compounds XXXVII—XXXIX during the ozonation of XXXIII
indicates that both aromatic rings of XXXIII provide initial sites for ozone
attack. Product XXXVII could arise from extensive degradation of Ring B of
XXXIII, as depicted in Fig. 20 (Route 21). Accordingly, oxidative ring openiné
proceeds via a typical 1,3-dipolar cycloaddition mechanism in which the inter-
mediate would probably be a hydroperoxide such as LIII, rather than an ozonide,
because of the protic nature of the reaction solvent (16,47). The hydroperoxide,
LIII, then decomposes to yield the muconic acid derivative, LIV, which undergoes
further ozonolysis to yield product XXXVII. The structure of XXXVII indicates
that neither the B-aryl ether linkage nor the bond between the alkoxyl bearing
carbon atoms of Ring B were cleaved. Thus, identification of XXXVII as an
ozonation product provides conclusive evidence that an initial site of attack
during the ozonation of XXXIII is on Ring B at some point other than the bond

between the adjacent ring carbons bearing the alkoxyl substituents.
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Figure 20. Possible Reaction Route for Formation of Product XXXVII
from Ozonation of XXXIII

Conversely, the formation of product XXXVIII involves ozonolysis of Ring
A of XXXIII, initiated between positions 3 and 4, followed by lactonization of
the resultant muconic acid derivative to yield 6-lactone LV (Route 22 in Fig.
"21). A similar mechanism has been proposed as a major pathway during the ozona-
tions of XVIII (Fig. 8) and XXVII (Fig. 11), both of which yielded muconic acid
§-lactones as reaction products. Subsequent cleavage of the B-aryl ether
linkage of LV via ozone attack at the aryl end of the linkage (cf. Routes

17-20 of Fig. 19) yields product XXXVIII.

Product XXXIX then can arise via degradation of product XXXVIII (Route 23
in Fig. 21). Accordingly, ozonolysis of the two carbon-carbon double bonds of
XXXVIII yields LVI. Compound LVI then undergoes decarboxylation followed by

oxidation via a 1,3-dipolar ozone insertion mechanism (16) to yield product XXXIX.
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and XXXIX from Ozonation of XXXIII

Alternatively, cleavage of the B-aryl ether linkage of XXXIII could precede

ozonolysis of Ring A in the formation of products XXXVIII and XXXIX.

However,

in either case, the identification of XXXVIII and XXXIX as ozonation products

provides evidence for extensive degradation of Ring A (initiated via scission
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between the methoxyl bearing ring carbons) as well as additional evidence for
cleavage of the B-aryl ether linkage as fundamental modes of attack during the

ozonation of XXXIII.

The facﬁ that formation of XXXVIII suggésts ozone indﬁced aroﬁétic fing
scission between adjaceﬂt ring carbons Béaring alko#yl substituents while forma-
tion of XXXVII suggests the converse corroborates the'similar findings of
Kratzl, et al. (41) during the ozoﬁation of various substituted veratrols (Fig.
10). Thus, althouéh others have observed préferential cleavage bet&eenAédja—
cent riﬁé c;rbons bearing hyd;oxyl and mefhox&l substituents Auring the 6zonation
of various aromatic substrates (;gggg,ég); the aforementioﬁed findings provide

conclusive evidence that this cleavage is not exclusive.
QUANTITATIVE ANALYSIS RESULTS

The general work-up procedure employed for sample preparation prior to the
quantitative and qualitative product analysis via GC divided the ozonized reac-
tion solution samples into a 'chloroform~soluble (neutral and phenolic) products"
fraction and a 'water-soluble products" fraction. Another sample work-up
procedure was also employed in which a large sample of ozonized reaction solu-
tion was subjected to column chromatography, and the resultant fractions were
then analyzed via GC. An approximate accounting of the XXXIII consumed during
an ozonation is pfééented, on a weight bésié? in Table V. These data are based
upon the results of the quantitative GC analysis of the "neutral and phenolic
products' fraction obtained via the genéfal sample work-up procedure and the
fractions obtained Xig column chromatography (no measurable amount of material
was found via GC analysis of the "water~soluble products' fraction). A repre-
sentative GC chromatogram of the neutral and phenolic products fraction obtained

from the ozonation of XXXIII is shown in Fig. 22. The compounds corresponding
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to all of the major peaks in Zone B of this chromatogram have been positively
identified (the nature of products LiII aqd LXIII is discussed in a later

section) and, as indicated in Table V, represent about 11% (weight basis) of

the XXXIII consumed during an ozonation. Assuming that the remainder of the

peak area in Zone B of the chromatogram corresponds to numerous initial and
secondary ozonation products present in ampunts fbo small to allow identification,
an additional 267% of the XXXIII consumed c;; be attributed to detected, but un-
identified, ozonation products (assuming a resbbnse factor of 1.00). Still
another 3% of the XXXIII consumed corresponds to volatile material lost during

the sample work-up procedure prior to analysis.

TABLE V

ACCOUNTING FOR XXXIII CONSUMED DURING AN OZONATION (WELGHT BASIS)

% of XXXIII
Item Accounted For
Identified ozonation products 10.5-11.5
Detected unidentified ozonation.productsb 25.3-27.8
Volatile products® 3.2
TOTAL VOLATILE AND DETECTED PRODUCTS 39.0-42.5
Undetected ozonation products 57.5—61.0d

aExpressed as a weight percent of the theoretical yield of reac-
tion products produced from the ozonation of XXXIII, employing
bthe data of Table II.
The material corresponding to the peak area of Zone B of the GC
chromatogram in Fig. 22 less the area arising from the internal
standard and identified ozonation products.
The material lost due to volatility prior to GC analysis.
This value was arrived at by subtracting the total percentage

of volatile and detected products from 100.
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Since the peak area in Zome A of the GC chromatogram (Fig. 22) corresponds
primarily to silylating reagents and solvents and the peak area in Zone C corre-
sponds to the unreacted XXXIII and other material of comparable GC retention
time, Zone B represents almost all of the GC peak area due to the ozonation
products with GC retention times shorter than XXXIII and consequently provides
a reasonably accurate quantitative measure of these products. In other words,
the GC product analysis results indicate, with reasonable certainty, that about
40% of the XXXIII consumed during the ozonation was present as reaction products
possessing GC retention times shorter than XXXIII. The remaining 60% of the '
ozonation products must therefore have been present as compounds posseésing

GC retention times equal to or greater than that of XXXIII.

This proposed presence of a significant amount (60%) of ozonation products
possessing GC retention times equal to or greater than that of XXXIII (and
therefore possessing volatilities less than or equal to that of XXXIII) was
further substantiated by thermogravimetric analysis (TGA). In TGA, a sample
is heated at a given rate on a balance, and the consequent change in weight
is measured as a function of temperature (55). Accordingly, when a sample of
an ozonized solution of XXXIII is subjected to TGA, any weight remaining after
complete vaporization of XXXIII should represent the amount of material formed
during the ozonation of XXXIII which is less volatile than XXXIII. In other
words, TGA provides a method of measuring the amount of ozonation products
of XXXIII which are less volatile than XXXIII (and therefore could not be de-

tected via the GC analysis employed in this study).

TGA was conducted upon silylated samples of an unozonized and an ozonized
solution containing similar concentrations of XXXIII, employing operating

conditions which approximate those employed for the usual GC product analysis.
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The results of these analyses were recorded as plots of weight (expressed as

a percentage of the original sample weight) vs. temperature and are depicted

by the three curves in Fig. 23. The curve obtained for the unozonized sample
indicates that XXXIII (silylated) is completely vaporized at about 250°C, which
is consistent with the detection of unreacted XXXIII (silylated) at about 240°C
via the GC product analysis. Conversely, the curves (representing dupiicate
runs) obtained from the ozonized sample indicate (points A and B) that between
10 and 20% of the total sample weight is still present at the temperature at
which XXXIII (silylated) should be completely vaporized. Subsequently, as the
temperature continues to rise, the material slowly dissipates but is not com-

pletely vaporized until a temperature of about 400°C is attained.

These results strongly suggest that between 10 and 20% of the total ozon-
ized sample consists of material of less volatility than XXXIII (silylated).
Moreover, since the ozonation of XXXIII was only taken to about 30X compietion,
this 10 to 20% of the total sample weight actually represents about 31 to 66%
of the total ozonation products formed from the ozonation of XXXIII. Thus,
comparison of the TGA curves of an ozonized and an unozonizeé solution of XXXIIIL
(silylated) provides conclusive evidence that 31 to 667 of the XXXIII consumed
during the ozonation assumed the form of products possessing volatilities lower
than XXXIII (silylated). Consequently, if the additional 31 to 66% of the reac-—
tion products detected via TGA is combined with the 40% detected via GC analysis
(Table V), between 71 and 106% of the XXXIII consumed during the ozonation is

accounted for in terms of detected material.

To determine more about the nature of these nonvolatile ozonation products
an approximate accounting of the XXXIII consumed during an ozonation is pre-

sented on a molar basis in Table VI, based upon the reaction stoichiometry (i.e.,
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moles of ozone consumed/mole of XXXIII consumed) and the quantitative results
listed in Table III. As discussed in a previous section, the reaction stoichi-
ometry implies that at least 757% of the initial ozonafion products of XXXIII

were not degra&ed further by ozone under the mild reaction conditions empléyed

in this study. Moreover, the identification of the secondary reaction products,
XXXVII-XXXIX, which require from one to four additional moles of ozone for a
given mole of XXXIII to be produced, indicates that in fact at least 79% of the
initial ozonation products were not sﬁbject to further ozonation. Thus it
appears that at least 797 of the XXXIII consumed during the ozonation is present
in the form of initial ozonation products while no; more than 21% is present

in the form of secondary products arising from ozonation of the initial products.
Furthermore, the quantitative results listed in Table III indiéate that 19% of
the ozonized XXXIII can be accounted for by identified initial ozonation products
(i.e., products XXXV and XXXVI) and 3% by identified secondary products (i.e.,
products XXXVII-XXXIX); thus, as indicated in Table VI, 60% of the XXXIII consumed
could be present as unidentified initial ozonation products, while 187 is present

as unidentified secondary ozonation products.

Inasmuch as the information in Table VI suggests that over 75% of the un-
identified ozonation products of XXXIII are initial reaction products, it there-
fore follows that a significant portion of the "undetected" products referrea
to in Table V (and detected via TGA) is comprised of these unidentified initial
ozonation products. Reasonable structures for such initial ozonation products

would include compounds LVII-LX:




~b6-

CH OCHy OCH3 ?HB OCH3 CHs OCHy
H?-O—@cus ﬂcm HC-0 @ CH3 Hé-O—©CH3

CHOH CHOH CH COOH CHOH — ¢=0

S O HO
(\coocu3 @

COOCH3 OCH3 OCH3 "OCH

OCH3 OCH3 . OCH3

LVII Lvin LiX LX

TABLE VI

ACCOUNTING FOR XXXIII CONSUMED DURING AN OZONATION (MOLAR BASIS)

%z of XXXIII
Item Accounted For
1. Total initial ozonation products 79b
a. 1identified initial ozonation products 19
b. unidentified initial ozonation products 60
2. Total secondary ozonation products 21b
a. identified secondary ozonation products 3
b. unidentified secondary ozonation products 18
3. Total unidentified ozonation products 78

Expressed as a percentage of the millimoles of XXXIII consumed

during the ozonation.

Taken from Table III.

This value represents the difference between the total and

identified initial (or secondary) ozonation products

As discussed in a previous section, ozonolysis can be initiated between

any two adjacent carbon atoms of the aromatic rings of XXXIII. Thus compounds
LVII and LVIII represent only two of a possible fourteen initial ozonation
products arising from ozonolysis of the aromatic rings of XXXIII. On the other
hand, compounds such as LIX and LX could arise via electrophilic attack upon
the aromatic rings and the 3-carbon side chain of XXXIII. Lawrence (50) ob-
tained evidence for ring hydroxylation and identified LX as a reaction product

during peroxyacetic acid oxidation of XXXIII, and as discussed in a previous

section, electrophilic attack has led to ring hydroxylation and oxidation of
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benzyl groups during the ozonation of various simple aromatic substrates (16,31-
33,39) suggesting that similar reactions could occur during the ozonation of

XXXTIII.

Based upon chemical structure, compounds such as LVII-LX would be expected
to have GC retention times greater than that of XXXIII. As a result, such prod-
ucts would probably not be detectable via the GC methods employed due to low
volatility. Therefore, it is proposed that much o& the nonvolatile "undetected"
ozonation products listed in Table V is comprised of initial onnation products
such as compounds LVII-LX. The remainder of the undetected material, then, is
most likely composed of high molecular weight compounds arising from the con-
densation/polymerization of initial and secondary ozonationrproducts of XXXIII.
As discussed in -Appendix III, these condensation/polymerization reactions could
proceed via a number of pathways and thus provide a means by which almost every

conceivable ozonation product of XXXIII could have combined to form larger non-~

volatile compounds not amenable to GC analysis as employed in this study.

This proposal was further substantiated by ultraviolet (UV) spectrometry.
Pew (56) found that ﬁhe UV spectra of most simple lignin model compounds display
an absorption maximum at 280 nm followed by a sharp decrease to zero by 300 nm,
and an absorption minimum at 250 nm followed by a significant increase in
absorption at shorter wavelengths forming a large '"trough' between 230 and 280
nm. On the other hand, a significant decrease in the size of this trough along
with an increase in absorption in the 300-320 nm region were characteristics
observed in the UV spectra of ligﬁin and biphenyl condensatidn products such

as XXV (p. 15).

In comparison, the UV spectrum of an unozonized sample of XXXIII (Fig. 24),

with maxima at 230 and 280 nm and a minimum at 250 nm, was consistent with




%

ABSORPTION,

30

80

70

50}

40}

20

~48—

oy

|
200

Figure 24.

| _J
280 320 360
WAVELENGTH, nm

UV Spectrum of XXXTII in Absolute Ethanol

|
240




_49_

Pew's spectra of simple lignin model compounds, while the spectrum of an ozonized
sample of XXXIII displayed increases in absorption in bofh the trough region
(245-275 nm) and the 300-320 nm region, as illustratéd by the 'difference
spectrum" of Fig. 25. Based upon Pew's findings (56), these results could
indicate the occurrence of biphenyl condensation of the reaction products

during the ozonation of XXXIII.

Alternatively, the increased absorption in the trough region of the ozon-
ized sample could result from the presence of unsaturated carbonyl and carboxyl-
containing compounds (57) such as would be expected to arise as the result of
ozonolysis of the aromatic rings of XXXIII. In fact, the decrease in absorption
at 230 and 280 nm shown in the '"difference spectrum' suggests destruction of
the aromatic structure of XXXIII, thereby providing corroborative evidence for
such a hypothesis. Thus the UV data could be explained in terms of relatively
high molecular weight nonvolatile unsaturated compounds such as the proposed
initial ozonation products, LVII and LVIII, and/or condensation/polymerization
products. The latter products could be formed from the original ozonolysis
products via such processes as coupling of hydroperoxide radicals, intermolec- -
ular esterification, or perhaps the Diels-Alder reaction, as discussed in

Appendix III.

Thus, comparison of the UV spectra of an unozonized and an ozonized solu-
tion of XXXIII provides additional experimental evidence which is consistent
with the hypothesis that the "undetected" products arising from the ozonation
of XXXIII are large nonvolatile initial ozonaﬁion products and condensation/

polymerization products.




CHANGE IN ABSORPTION

=50-

-4}
-6} k/
| | | i 1 i I B | | ] | ] ]
200 220 240 260 280 300 320 340
WAVELENGTH, nm
Figure 25. "Difference Spectrum'" (i.e., UV Spectrum of an Ozonized

Sample of XXXIII Minus the UV Spectrum of an Unozonized
Sample of XXXIII)




~51-
QUALITATIVE ANALYSIS OF OZONATION PRODUCTS

To facilitate the identification of the various ozonation products of
XXXIII, a large aliquot comprising about 847 of the ozonized reaction solution
of XXXIII was subjected to initial fractionation via column chromatography to
provide a crude separation of the various reaction solution components. The
resultant fractions were subjected to silylation and then analyzed via GC,
preparative GC, NMR, and GC-MS. The results of the qualitative product analy-
sis, as already discussed, are summarized in Table III (p. 26), and the
structures of the positively identified ozonation products are shown in Fig.
15. For the most part, products were identified in the form of trimethylsilyl
(TMS) derivatives. The following is a detailed presentation and discussion
of the experimental evidence employed to identify the ozonation products of

XXXIII detected in this study.

The identification of XXXV as an ozonation product was confirmed by com-
parison of the relative GC retention times, mass spectra, and NMR spectra of
the silylated ozonation product and an authentic sample of the TMS ether of
XXXV (XXXVS). As indicated by Fig. 26 and 27, there is excellent agreement
between the spectra of the ozonation product and the authentic sample. In
addition, a small amount of ozonation material thought to be unsilylated XXXV
was also detected, and as shown in Fig. 28, this material yielded a mass

spectrum identical to that of an authentic sample of unsilylated XXXV.

Likewise, XXXVI was confirmed as an ozonation product in the same manner
as employed for XXXV. Figures 29 and 30 demonstrate the excellent agreement
between the mass and NMR spectra of an ozonation product and an authentic
sample of the erythro isomer of the bis-TMS ether of XXXVI (XXXVIaS). In

addition, a small amount of an ozonation product with a slightly longer GC
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Chemical Shift (ppm)°

Product

0.23

2.29
3.79,3.87

6.60-6.90

a0 o

Type of Type of Number of
Known Proton Peak J(Hz) Protons
0.28 (a) Sing. | -— 4
2.29 (b) Sing. -— 3
3.80,3.86% (&)  Pr. sing.®  -— 3
6.60-6.90 (d) Mult. -— 3

Relative to chloroform at 7.26 ppm.
The chemical shift observed for an authentic sample of XXXV, TMS ether (50).
Low value possibly due to degradation of the TMS group.
The chemical shifts for authentic samples of unsilylated and silylated XXXV,

erespectively (50).
Two methoxyl peaks are obtained as a result of partial hydrolysis of the TMS

group.

CH3 (b)

H H(d)
(d)

H OCH3(c)

O-Si-(CH5)5 (a)
XXXVg

Figure 27. NMR Spectra of the Silylated Ozonation
Product and an Authentic Sample of XXXV,
TMS Ether
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Chemical Shift (pnga

Product

3.
4,

6.74-6.90

.14

.01

.17

.69

85

27

Knownb

-0.14

0.01

1.17

3.66

3.86

4.22

6.70-6.86

Type of
Proton

(a)
(b)
(c)
(d)
(e)
()
(8)

2Relative to chloroform at 7.24 ppm.
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Type of
Peak

Sing.
Sing.
Doub.
Mult.
Sing.
Doub.

Mult.

Number of
Protons

7

8

The chemical shift observed for authentic sample of XXXVI, bis-TMS
ether.

Figure 30.

?Hs (c)

(d) H-C-0-Si-(CH3); (a)
(f) H-C-0-Si-(CHz) (b)

~Hiqg)

0(”*3(8)

XXXVlag

OCH3

NMR Spectra of the Silylated Ozonation
Product and an Authentic Sample of
XXXVI, bis-TMS Ether
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retention time than XXXVIaS was detected and shown to yield a mass spectrum
identical to that of an authentic sample of the bis-TMS ether of XXXVI (Fig. 31).
It was therefore concluded that this ozonation product was the threo isomer of
the bis-TMS ether of XXXVI (XXXVIbS). Further evidence for the formation of
XXXVI during the ozonation of XXXIII was obtained from the detection of small
amounts of ozonation products thought to be LXII and LXIII. Compound LXII

most likely arises as a result of the pyrolytic dehydration of unsilylated
XXXVI during the GC analysis (58) and, as shown in Fig. 32 and 33, the mass

and NMR spectra of the ozonation product and an authentic sample of LXII are in
excellent agreement. Likewise, compound LXIII, the mono-TMS ether of XXXVI,
would arise from incomplete derivatization of XXXVI. As indicated in Fig. 34,
the ozonation product in question yielded a mass spectrum which is consistent
with the structure of LXIII. Accordingly, the apparent molecular ion (M) at
m/e 284 corresponds to the molecular weight of LXIII, while peaks at m/e 269
(M-15) and m/e 73 are characteristic of TMS derivatives (59). Furthermore,
similarly to the bis-TMS ether of XXXVI, the major fragmentation is due to
cleavage between the o and B carbon atoms of the propyl side chain to yield the

base peak at m/e 239 and a lesser peak at m/e 45.

The ozonation product identified as XXXVII yielded mass and NMR spectra
consistent with the structure of the TMS ether of XXXYII (XXXVIIS). The appar-
ent molecular ion at m/e 370 in the mass spectrum of the\ozonation product
(Fig. 35) corresponds to the molecular weight of XXXVIIS. Once again the base
peak, m/e 239, arises via cleavage between the o and B carbon atoms of the
propyl side chain, as was observed for the bis-TMS ether of XXXVI and deriv-
ative LXIII, while the major peak at m/e 73 is indicative of a TMS derivative.

In addition, the peaks at m/e 59, m/e 267, and m/e 161 provided diagnostic.

information helpful in establishing the dicarboxylic ester structure of XXXVIIS.
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Chemical Shift (PPm)a

b Type of Type of
Product Known Proton Peak
2.15 2.11 (a) Sing.
3.63 3.60 (b) Sing.
3.87 3.80 (c) Sing.
6.69~-6.80 6.75 (d) Mult.

®Relative to chloroform at 7.26 ppm.

The chemical shift observed for an authentic sample of

9H3(0)
¢-0
CH,, (b)
H H(d)
(d)
H OCHg
0CH3(C)
L X

LXII.

Number of
Protons

3

2

Figure 33. NMR Spectra of the Ozonation Product
and an Authentic Sample of LXII




~61-

IIIX] SB POTJITIUSPI IONPOIg UOTIBUOZQ) 9yl JO uniloadg ssel

‘%€ @an3tg

o /uw
cze 082 Cc¥e 91672 591 aet og 4 o
L1 ' i I S T i L1 I S | i i ! : ik 1 1 i s
w kil T n K B LKL L T T T
N N N J _ : w _
2 B v X b — - .
£H20 = @ ~ & ) T
€400 @ Loy ©@ O
J +
w2
£(*HO)ISOJH R
HOJH . ng
N me -3
& ~ Loo!
X :
. ¢l 9a/w
IG1 3/w g9l 3/w 6ge /W b8e /W - £(€Ho)S,
1
HO €420 €420 i HJ0 \1
€00 £HO0 €HOO €H20
692 /u
< < - | oo _— Gi-N
% w SW10:=J-H (*HO)!SO-J-H
+ HO-J-H .
o o Gy a/w
+ + h. ﬁ . m¢*w /I///Jr. h
- HO=J-H

€HD



—-62-

s
IIAXXX Se PoIJTIUSpP] 10Npoig UOTIRUOZ() 9yl JO wnijdadg ssel

*G¢ 2and1y
a/w
00¥ 05¢ 00¢ 082 002 0S1 001 05 D
TSNS TS WA S N TR FUN WU SN NS SR U NSO SO S N U S SN SO S B | N B T S N TR S S | S T R B R | 0
0 1 T T TT T v 0T T ] 1 T 1 [
2 N ﬂﬁ #._.. o
= @ & -0 — D
.ar J @
” = 5 o
-0v S 3
2
-09 g
-
- 03
>
o Lgo§
192 3/w
€Ho0
¢
Ha0 6G a/w
€€ +0=3
1ISO-)- |
(FHO)IS0-J-H €Ho0
m+@-z .
HI SHAXXX /
G9l 8/w 6£2 3/w 4/ 0.¢ 3/W
€HO0 €HOO i €HO0 T €HD0 ISt e/ EHOO
€400 € €490 €450 HJ0
@ H30 N‘m:u:m
¢ +
2 SWL0=D-H rm:o:mw-w,m Nzw.- \vo/u,: 0= o\_ouz
PAY RtV b |
.0 \ | 0922 ( :ov_m/ﬁ\w-: 023 ~-H
L - " ]
+ 7 €430 0 05,15 £H30 €HD

€€HD)-1S,




—-63-

The peaklat m/e 59 is characteristic of methyl esters (57,59), while the peak
at m/e 267 represents fragmeﬁtation that has been observed for esters in which
the alcohol moiety is the predominant portion of the molecule'(ég}. -The peak
at m/e 161 results. from loss of a methyl radical with subsequent epoxide forma-
tion involving transfer of the dimethylsilyl group to the departing ester ion;
major peaks are obtained from.a similar fragmentétion in the mass spectra of
structurally related compounds such as B-phenoxyethyl TMS ether.and the TMS‘

derivatives of various diols. (59).

The NMR spectrum of the silylated ozonation product identified as XXXVII
(Fig. 36) corroborates the mass spectral findinés. The peaks at 3;85-3.8% $
confirm the presence of three methoxyl groups most likely of aromatic or ester
nature (57). Two of the methoxyl peaks, along with the peaks at 6.76-6.92 §,
can be employed to establish the dimethoxyphenyl type structure, while the third
peak could be attributed to the ester methoxyl of XXXVIIS. As compared with
the NMR spectrum of the bis-TMS ether of XXXVI (Fig. 30), the singlet at 0.06 ¢
is indicative of a benzylic TMS ether group, while the signals at 1.23, 4.73,
and 5.10 § are consistent with the expected signals for the protons of the
propyl side chain of XXXVIIS. Iﬁ particular, the large downfield shift ob-
served for the proton on tﬂé.B-caibbn of?this,side chain, relative to its
counterpart in the bis-TMS éther.of XXX?I, was quite useful in confirming the
presence of the ester group of XXXVIIS [since reﬁlacement of a TMS ether.group

with an ester group should result in additional deshielding of the methine

proton in question (57)].

The ozonation product identified as XXXVIII was also analyzed as the TMS
‘derivative via mass and NMR spectrometry. With an apparent molecular ion at

m/e 284, the mass spectrum of the ozonation product appears to be consistent
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Cﬁemical shift? ' Type of - ' - Number of
(ppm) Peak J(Hz) ' Protons

0.06 (a) . Sing. — 8
1.23 (b) Doub . 6 3
3.85 (c) |
'3.87, 3.86° (d) Trio Sing. —-— ; 9
4,73 (e) - Dbubl 6 , ' 1
5.10 (f) Mult. — f 1
6.76-6.92 (g) Mult. — o 3

3Relative to chloroform at 7.24 ppm.

(b)
CH3 0 0

(f) H- c 0-C~C-0CH, (¢)
(e) H-C-0- Si-(CH3z)3 (a)

H H(qg)
(g)
H OCH3
~ OCHg(d)
XXXVlig

Figure 36. NMR Spectrum of the Ozonation Product
Identified as XXXVI1I, TMS Ether
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with the structure of the TMS ether of XXXVIII (Fig. 37). Based upon previous
observations, the base peak at m/e 117 is predictable, and the majbr peaks at
m/e 73 and 269 (M~15) are charactéristic of TMS derivatives. Likewise, loss
of a carboxylate group to yield the’peak at m/e 225 ;ould be expected, based
upon the-fragmentation pattern of thé structurally relateq.compouﬁd, ethyl .
sorbate (éz). In addition, the peak at m/é 240 could arise via loss of ca;bon
dioxide with subsequent‘reérréngement to the stable ion; LfIV (60), while

the peak at m/e 59 is indicative of a methyl ester.

Likewise, the NMR spectrum of the silylated ozonation product-ig consis-
tent with the structure of the TMS ether of XXXVIII (Fig. 38). TheJSinglet
at 0.03 8 confirms the presence of a TMS ether group similar to thosé found
in the bis-TMS ether of XXXVI (Fig. 30), while the doublet at 1.24 § and the
multiplet at 3.70 § are reminiscent of the signals obtained for the Y-methyl
and B-methine protons on the propyl side cha}n of the bis-TMS ether of XXXVI.
' On the other hénd, the singlet at 3.?6 § is slightly upfield from the signals
observed for the aromatic methoxyl groups of products XXXVS, XXXVIS, and
XXXVII%, suggesting that this peak might best be explained in terms of a non-
aromatic methoxyl group. At the same time,‘the signal at 4.56 § reflects the
slight downfield shift expected for proton (e) of XXXVIIIS (Fig..3é), relative
to the Eeﬁzyl methine proton of the bis-TMS ether of XXXVI (Fig. 30), due to
.the replacement of a TMS ether group by a lactone; mofeover, this signal at
4.56 § comes at the same place as the corresponﬁing methine proton signal in
" the NMR spectrum of the structurally related compound, Y-valerolactone (§2).
Finally, the signals at 5.84, 6.08, and 8.23 § are consistent with the chemical
shifts that would be predicted (57) for thevthree olefinic protons of XXXVIIIS

[i.e., protons (f), (g), and (h)]; furthermore, the coupling pattern for these
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Sing. i . 9
- Doub. .b
Mult. —
: c+d=4
Sing. -
Doub. 1
D of D ‘ 1&2 1
D of D 1042 , 1
D of D' 10&1 : 1

hloroform at 7.24 ppm.

Could not be determined due to impurity 1nterference

CH3 (b)

(c) H-('I-O-Si-(CH3)3 (a)

——————C-H (e)

(hVH A \H ()

o |
(9 1N COOCHs (d)
3
XXXVilig

Figure 38. NMR Spectrum of the Ozonation Product

Identified as XXXVIII,

TMS Ether
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three protons, including apparent long-range coupling between protons (f) and
(g), and (f) and (h), is consistent with that observed in the NMR spectrum of

the structurally related compound, 2-pyrone (61).

The identification of ozonation product XXXIX was confirmed via GC and
mass spectral data. A silylated sample of the ozonation product displayed
the same GC retention time as an authentic sample of silylated XXXIX. Moreover,
there is excellent agreement between the mass spectra of the silylated ozona-
tion product and an authentic sample of the TMS derivative of XXXIX (Fig. 39).
Based upon these results it was concluded that the ozonation product was indeed

compound XXXIX.




~69-

(ZT WN¥LIDE4S)
®XIXXX 70 °Tdmes oTausyIny ue pue (T{ KAULOAAS) I9MPOIJ UOTIRUOZQ PoILTATIS © 30 e130ads ssel ‘gg 9anStg

ZT WOYIDHAS

| 3w o
00y gse gog 052 “ 902 gsr 001 - 4d5 0
. L S S C : - .._ Ly . SR S S NS B | 3
ey (1. TP 1T
o 2 @3 = o J Q
. 5w 1a¥] S 3 —
mz.—.oon_v L. o : 0% w o
- SWLOHD béx o~ 2T
ms_po:u Jog B = A
Sydee ~ _
= - - 35
>
Lot
1T WN¥10EdS
N - /W
00y gse a0¢ 052 C 902 081 701 g5 0
L1 1 r NS S - i ! - - L ! i m ,. A.__ . . . H. : _L 1 R — »q _HF S G I u
| é B P17 77 _a 1T |
. N . N - .
8 | - i (0 o ®
- IR N o o865
- S . u Co0v 5 4
S 09 S
—+ @
«C
et - 09
RS . . .
> - .
~3 © L0 1




-70-
EXPERIMENTAL
PREPARATION OF COMPOUNDS
COMMERCIAL AND DONATED CHEMICALS

Creosol (XXXV) was obtained from Eastman Organic Chemicals. The compound
3',4'—dihydroxyprdpiophenone was purchased from K & K Laﬁorétories, Inc. Tri-
Sil concentrate and E}thig;trimethylsilylfrifluoroaéetamide (BSTFA) were |
purchased from Pierce Chemical Co. The compound 1-(3,4-dimethoxyphenyl)-propan-
2-one was obtained from the collection of Dr. D. C. Johnson, and 1-(3,4-dimeth-

oxyphenyl)ethanol (50) and 2,3-dihydroxybutyric acid (62) were obtained from

previous studies.
SYNTHESIS OF COMPOUNDS

The compounds 3',4'-dimethoxypropiophenone (50) and 1-(3,4-dimethoxyphenyl)-
2-bromopropan-1l-one (63) were prepared as previously deécribed in the literature.
The physical constants of these compdunds were in good agreement with the values
reported in the literature, and their infrared spectra were identical to the
spectra of autﬁentic sampleé obtained from the collection of Lawrence (50).

Preparation of 4'-Benzyloxy-3'-methoxypropio-
- phenone (BMP)

This compound was prepared from propiovanillone and benzyl bromide via
the method of Lawrence (50). Recrystallization from isopropanol gave 18.6 g
(82.5% yield) of white crystalline ﬁaterial: m.p. 94.5-95.5°C; literature:
94.5-96°C (50). ‘H-NMR (100 MHz, CDCls): & 1.20 (t, CHs, 3H, J = 7.2 Hz),
2.92 (q, CHp, 2H, J = 7.2 Hz), 3.92 (s, OCHs, 3H), 5.20 (s, OCHz, 2H)¥ 6.90-7.55

(m, arom., 8H).




-71-

Preparation of 1-(3,4-Dimethoxyphenyl)-2-
hydroxypropan-l-one (DHP)

According to an:adaptation of tﬁe method of Hibbert, §£_§;¥ (éﬁ), 1—(3,4—7
dimethoxyphenyl)-2-bromopropan-1l-one (19.3 g) was mixed with 5% aqueous potassium
acetate (500 mL) in a round-bottom flask. The mixture was heated to a tempera-
ture; just below the boiling point and stirred continuously for 10.5 hours. The
reéultant two—phase mixture was cooled to room temperature and extracted with
chlbroform (6.x 1100, mL), and the combined extracts were dried over anhydrous
sodium sulfate. The chloroform phase contains the DHP.

Preparatlon of 1-(3, 4 Dlmethoxyphegy;)grggan-
1,2-diol: (XXXVI) ' 4

¢ The.chloroform phase containing the DHP was concentrated to an oil in
vacuo .and then dissolved. inabsolute .ethanol (200.mL):. Sodium borohydride (5.4
g) was added to the solution, and the mixture was stirred continuously for-4.5.-
hours. The mixture was nextlextracted with chloroform (10 x 60 mL), and the’
combined extracts were dried over anhydrous sodium sulfate and evaporated to
dryness in vacuo. The resultant solid was recrystalliéed from ethyl acetate
several times to yield 2.2 g (l4.6i-yie1d) of auwhite crystalline material:
m.p. 122-123.5°C; literature: 123°C (50). »H-NMR (100 MHz, CBCls): & 1.11
(4, Y-CHs, 3H, J = 6.0 Hz), 1.82 (d, B-OH, 1§, J = 6.0 Hz), 2.30 (d, o-OH, 1w,

= 3.0 Hz), 3. 86 (pr s, OCHs, 6H), 3.96 (m, 8 CH 1H), 4.56 (d of d, a-CH,
1H, J =3 and 5 Hz), 6 80 7. 00 (m, arom., 3H)

Preparation of 1-(3,4-Dimethoxyphenyl)-2-(2-methoxy-
4-methylphenoxy)propanol (XXXIII)

This compound was: prepared via the method of Lawrence (50). Crystalliza-
tion from dlethyl ether y1e1ded a crystalllne materlal (80 2% yleld) m;p.
85-86°C; llterature 85-86°C (50) (Found C, 68.44, H, 7.22. Clgquos re~

quires C, 68.67: H, 7.23%). 1H-MMR (100 MHz, CDCls): & 1.18 (d, Y-CHs, 3H,
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= 6.6 Hz), 2.35 (s, ¢-CH3, 3H), 3.5 (s, OH, 1H), 3.85 (s, OCH3z, 9H), 4.32 (m,

B-CH, 1H), 4.87 (d, a-CH, 1H, J = 3.0 Hz), 6.70-7.10 (m, arom., 6H).

Acetylation of XXXIII

"To check the isomeric purity of XXXIII, the acetyl derivative, XXXIV, was:
prepared as follows. Compound XXXIII (16 mg) was sﬁaken~overnight with acetic
anhydride. (1.5 mL) and dry pyridine (6 mL) in 'a 10-mL Erlenmeyer flask. Thin-"
layer chromatography indicated that the acetylation was complete at this point.
Subsequently, the solution was poured into chloroform (30 mL)  and extracted:
with 1N hydrochloric acid (3 x 50 mL) and then distllled water (3 x 50 mL)

The chloroform phase was next dried over anhydrous sodlum Sulfate and then
evaporated to near dryness in vacuo at 25-30°C. The resultant residue was then
transferred to an NMR 'tube using small amounts of deuterated chloroform and
subsequently subjected to NMR analysis. The acetoxy protons of ‘the threo isomer
of XXXIII gave a eignal~at 2.00 § while the erythro isomer.gave an acetoxy

proton sigral-at 2.10 §.
ANALYTICAL PROCEDURES

MELTING POINTS AND ‘pH MEASUREMENTS ‘

PN

Melting points were taken on a Thomas-Hoover capillary melting point
apparatus. The pH measurements were made with a Beckman Zeromatic pH Meter

employing Corning pH and reference (calomel) electrodes.
INFRARED SPECTROPHOTOMETRY

All infrared analyses were conducted on either a Perkin-Elmer Model 700

recording spectrophotometer or a Perkin-Elmer Model 621 grating infrared spectro-

photometer.
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NUCLEAR MAGNETIC RESONANCE SPECTROMETRY

NMR analysis was performed on a Jeol JNM-FX100 FT NMR specfrométer (100
MHz spectra). The solvents employed were deuterated éhlo;oform contéining*l%
™S (Stohlér Isotope Chemicals). and 99.8% deuterated chloroform (Aldriéh Chemi-
cal Company, Inc.). The internal standards employed were,the tetramethylsilane

proton signal at 0.00 § or the chloroform proton signal at 7.24 §.
ULTRAVIOLET SPECTROPHOTOMETRY

UV analysis was. performed with a Perkin-Elmer Model 576 ST spectrophotom-—

eter.
THERMOGRAVIMETRIC ANALYSIS

The TGA experiments were performed by Dr. bonald Churchill of Appleton -
Papers, Inc. The operating coﬁditions employed included:
Atmosphere: prepurified nitrogen at 75 mL/min
Initial temperature program:  ambient to 83°C at 1°/min

Second temperature program: 83°C to 400°C (or higher) at 5°/min
THIN~-LAYER CHROMATOGRAPHY

Thin-layer chromatography (fLC) was performed using microscope slides
coated with silica éel GF (Brinkmén Instruments Co.). The slides were ob-
-served under a UV lamp, and the spots were then visualized by plaéing the
slides in a closed glass jar containing iodine crystals. In addition, some
slides were visualized by spraying with 2,4-dinitrophenylhydrazine to determine

the presence of carbonyl compounds.
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GAS CHROMATOGRAPHY : Lo ' _ .

Quantitative and qualitative gas chromatogréphy was performed on a Varian
Aerograph 1200 gas chromatograph with a hydrogen flame ionization detector.
The chromatograms were recorded via a Honeywell Electronic 16 recorder equipped
with a MOD 227 Disc chart integrator. Prepurified nitrogen (Matheson Gas
Products) was employed as the carrier gas. The other operating conditions
employed for the various analyses included:

1. Starting Material Analysis |

Internal standard: 4&4'-benzyloxy-3'-methoxypropiophenone (BMP)
Column: 4' x 1/8" stainless steel column packed with 5% SE-30 on
60/80 mesh Chromosorb W (AW-DMCS)
Oven temperature: 205°C isothermal
Injector temperature: 235°C
Detector temperature: 295°C
Flow rate: 30 mL/min -
2. Analysis of the Neutral and Phenolic Ozonation Products
Internal standard; 1-(3,4-dimethoxyphenyl)ethanol (DPE)
Column: 13' x 1/8" nickel columm packed with 3% 0V-17 on Supelcoport
(80/100 mesh)
Oven temperature: 60°C for 6 min, then increased at 2°/min to 240°C
Injector temperature: 230°C
Detector temperature: 300°C
Flow rate: 30 mL/min
3. Analysis of Acidic Ozonation Products

Internal standard: hexanedioic acid
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Oven temperaturé: 50°C for 12 min (or 60°C for 6 min), then increased
at 2°/min to 240°C (or increased at 2°/min for 18 min and then .
4°/min to 240°C)

All'other operating conditions were the same.as for the neutral and

phenolic ozonation products.

4. Starting Material Analysis for the Competition Reaction

Internal standard: BMP |

Columm: 5" x 1/8" stainless steel column packed with 5% SE-30 on
60/70 mesh Anakrom ABS |

Oven femperature: 170°C for 9 min, then increased at 10°/min to 205°C

All other operating conditions were the same as for the neutral and

phenolic ozonation products analysis.
PREPARATIVE GAS CHROMATOGRAPHY

Preparative gas chromatography was performed on a Varian Aerograpﬁ_712-gas
chromatograph equipped with a stream splitter and a hydrogen flame ionization
detector. The chromatograms were recorded via a Perkin-Elmer Model 56 recorder.
The operating conditions employed included:

Column: 20' nickel (1/4" o.d.) packed with 3% OV-17 on Supelcoport (80/

100 mesh)

Oven temperature: 50-60°C for 6 min, then increase at 1°/min te .250°C

and hold

Injector/detector temperatures: 265°C

Carrier gas: prepurified nitrogen at 80-85 mL/min
The fractions were collected in épecial Pyrex vessels described elsewhere (50).
The collection vessels were then sealed with Parafilm M between injections and

stored over Drierite until NMR analysis could be conducted (usually within 24
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hours). The-samples were then rinsed from the collection vessels into NMR

tubes using 99.8% deuterated chloroform just prior to the NMR analysis.
GAS CHROMATOGRAPHY-MASS SPECTROMETRY

The mass spectral analyses were accomplished via a Du Pont Model 21-491
mass spectrometer‘interfaced (via a- jet separator) with a Varian Aerograph 1400
gas chromatograph equipped with a hydrogen flame ‘ionization detector and a
Hewlett-Packard 7128A recorder. The mass spectra were recorded via a Century

GPO 460 oscillographic recorder. Perfluorokerosene (lo-mass) was employed as

a mass standard to facilitate assignment of mass-to-charge values to the
sample spectra. .Other operating conditions included:
GC column: 15' x 1/8" stainless steel column packed with 3% OV-17 on
Supelcoport (80/100 mesh)
GC injector temperature: 235°C
GC carrier gas: ~heligm (UHP grade, Matheson Gas Products) at .30 mL/min
- GC block temperature: 300°C
GC to MS inlet tube temperature: . 300°C
Source temperature: 195-210°C : - .
Sensitivity: 4.0-8.0
Filament: GC
Pressure: less than 3 x 10 7 torr
Scan rate: 100 sec/decade or 40 sec/decade

Chart speed: 4 inches/sec
OZONE PRODUCTION

, » 'Ozone for the experiments was generated by passing oxygen (ED grade, -

Matheson Gas Products) -through a Welsbach Model T-816 laboratory ozonator while
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maintaining a constant oxygen pressure of 8 psig and a wattage of 70 w. The
resultaﬁt ozone-oxygen stream (1-3% ozone by weight) was then split between two
outlets (i.e., the ozone outlet and the ozone sample outlet), and the flow

rate f?om eaéh was monitored and controlled separateiy. Eéuation (6) represents
the relationship between the flow rate and ozone content of these two exiting
streams, where f0 and fs are the flow rates from the ozone and ozone sample
outlets, rgspectively, and <, and cg are the amounts of ozone offered (over a

given period of time) from the ozone and ozone sample outlets, fespectively.
£ /£, = c /e, - (6)
The validity of Equation (6) is demonstrated in Appendix IV.

OZONATION OF COMPOUND XXXIII

REACTION CONDITIONS

Compound XXXIII (i or 3 g) was dissolved in 160 mL of A.C.S. grade acetone
(Aldrich Chemical Company, Inc.) in the 250-mL P&rex wash bottle which was
the reactor for this stuﬂyv(Fig. 40). Triply distillednﬁater (40 mL) was
then added, and the solution was thoroughly mixed via a magnetic stirrer. Dupli-
cate samples (0.7-2 mL) were taken from the resultant solution and weighed into
tared- 8-mL vials. The reactor was then sealed and allowed to attain a tempera-
ture of 25°C in a constant temperature water bath. In some cases the substrate
was dissolved in 200 mL of 60% aqueous acetic acid (v/v) rather than aqueous
acetone. Extra-dry oxygen was fed through the ozonator to establish the proper
oxygen pressure and outlet flow rates, and the exit gas from the ozonator was
diverted to large potassium iodide (KI) traps via the bypass line (Fig. 40).
The reactor was then connected to ;helrest of the reaction system by placing

the reactor top in position (as shown in Fig. 40) and securing it with a clamp.
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Figure 40. Reaction System Employed for the Ozonation
of Compound XXXIII
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The KI traps 1 and 2 (500 mL graduated cylinders) were each filled with 400 ﬁL

of 5% aqueous potassium iodide solutionm.

The ozonator was set for the following conditions:

Oxygen pressure: 8 psig

Ozone outlet flow rate: 1.0 liter/min

Ozone sample outlet flow rate: 0.2 liter/min-
Once these conditions were established, the ozonator circuit breaker switéh
was turned on, and the wattage was set at 70 watts. The ozone-oxygen streamsfv
from the ozonator were passed through the bypass line for 5 minutes (to allow
attainment of a constant level of ozone production). After 5 minutes, the ozone-
' oxygen streams were diverted to Ehe reactor anq KI trap 1 for 5 or'15 minutes;
At the en& of this time, the streéms were diverted back to the bypass line and
the ozonator was then switched off. 1In the meantime, prepurified nitrogen was
bubbled through the reactor and KI traps 1 and 2 for 15 minutes. The reactor
top was then removed, and duplicate reaction solution samples were weighed into
tared 8-mL vials for uée in the starting material analysis. The KI traps were
sealed with Parafilm and stored in the dark until the ozone analysis could be
performed (ﬁsually within 2 hours). The reactor was se;led with .a ground-glass -
stopper and Parafilm and stored in a refrigerator pending further analysis of

the reaction solution.
STARTING MATERIAL ANALYSIS

Aqueous Acetone Solutions

Into each of the four vials, containing the duplicate reaction solution
samples taken before and after the ozonation, was weighed 2 mL of an internal

standard, a standard solution of BMP (3.19 mg of BMP/g of solution, in absolute
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ethanol). The resultant solutions were concentrated to "dryness" in vacuo at

30°C, redissolved in acetone (0.5-2.0 mL), and analyzed in triplicate via GC.

In addition, standards containing 2.0, 2.5, or 3.0 mL, respectively, of
a standard solution of XXXIII (6.16 mg XXXIII/g of solution, in 80% (v/v)
aqueous acetone) and 2 mL of standard BMP solution were prepared by weighing
the aliquots of each compoﬁent solution into tared 8-mL vials. The resultant
mixtures were subjected to the sample work-up procedure already described for
the starting material analysis and analyzed in.triplicate via GC. The data
obtained from this analysis were then used to determine the GC response factor

value for XXXIII via Equation (7):

? = (A /AW /W), | '.(7)
where F = response factor value
A£”= GC peak area of the internal standard
AS = GC peak area of the substrate
Wr = weight of the internal standard .
WS = weight of the substrate

The average response factor value obtained in this manner was 1.19 (£1.1%). This
value was then‘emplOyed with Equation (7) to calculate the amount of starting

material present in a given sample.

Aqueous Acetic Acid Solutions

Into each of the four vials, containing the duplicate reaction solution
samples taken before and after the ozonationm, was.Wéighed Z;QL of standard BMP
solutiop (3.02 mg of BMP/g of solution, in absolute ethanol). Each sample was
then transferred (using 25 mL of diethyl ether) to a 60 -mL separatory funnel,

and the resultant mixture was extracted with 5% aqueous sodium hydroxide solution
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(3 x 25 mL). The ether phase was dried over anhydrous sodium sulfate, concen-
trated ito a sirup in vacuo, and dissélved in acetone (0.5-2.0 mL). The: samples

were analyzed in triplicate via GC.

As wés done.for ozonations in aqueous acetone, a response factor‘value
was est;blished for XXXIII. 1In this casé, 2.6;I2.5, or 3.0—ﬁL aliquots of;a
standard solution of XXXIII in 607% aquéoué acefic acid (4.76 mg kXXIII/g of
solution) and 2.0 mL of standard BMP solution were weighed into tared 8-mL
vials and subsequently subjected tq‘thé sample work-up procedure employed for ..

the starting material analysis. The resultant standards were analyzed via GC, -

and ‘a response factor of 1.15 (*0.9%) was obtained via Equation (7).

OZONE ANALYSIS

As in previous ozonation studies (19,41,44-47), the amount of ozone offered.
t0;the~reactor.was determined-via iodometric titration. Accordingly; an'.ali~ ...
quot (20~50 mL) of the ozonized potassium iodide solution in KI trap 1 (Fig. 40)
was acidified with 2N sulfuric acid (10 mL) in an Erlenmeyer'flask. The resul-
tant. reddish-brown solution was then.titrated with a standard solutioﬁld} séai;ﬁ‘
thiosulfate to a colorless end point. The amount of ozone offered to KI trap -

1 during the ozonation [i.e., <, of - Equation (6)] was calculated via the

equation: ‘ . .
c, = 1/2(W/Ep),
where N = normality of the sodium thiosulfate solution
V = volume of sodium thiosulfate solution required for the titration
fFT = fraction of the ozonized potassium iodide solution that was

titrated
The amount of ozone offered to the reactor [i.e.;“cs of Equation (6))] was then

o

calculated from EQuatioﬁ (6).
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For ozonations conducted in aqueous acefic acid, the amount of ozone con-
sumed during an ozonation was likewise determined via iodometric titration.
Accordingly, the entire 400 mL of ozonized solution in KI trap 2 (Fig. 40) was
acidified and then titrated with 0.1N sodium thiosulfate to establish the amount
of ozone which reached KI trap-Z during the ozonation (i.e., the amount of ozone

offered to the reactor that was not consumed during the ozonation).

For ozonations conducted in aqueous acetone, the amount of ozone consumed
during the ozonation was determined as follows. The contents of KI trap 2 were
transferred to a:1000~mL Erlenmeyer flask. A l-mL aliquot of standardized
sulfuric acid solution was then added. ‘Subsequently, phenolphthalein solution
(3 drops) was added, and the solution was titrated to a faint pink end point
with standardized sédium hydroxide solution. The amount of ozone not consumed
during the ‘ozonation was then'calculated via Equation (20) in .Appendix II. The
amount of ozone consumed during the ozonation was then given by the difference

of'cS'PEquation (6)] and 03 [Equation (20)].
PRODUCT ANALYSIS

General Procedure

An aliquot (25-90 mL) of the ozonized reaction solution was ﬁlaced in a -
tared 100-mL pear-shaped flask to which had been added known amounts (about 10
ﬁg each) of the internal standards, DPE and hexanedioic acid. The sample was
then concentrated in vacuo at 30-35°C until all of the acetone was removed. The
aqueous mixture was.extracted with chlofoform (8 x 25 mL), and the chloro~
form fractions-were combined, dried over aﬁhydrous sodium sulfate, concen£fated
to a sirup ig_&gggg at 30-35°C, redissolved in 1,2-dichloroethane or absolute
ethanol (20 ml), and again concentrated to a sirup in vacuo (to remove any

residual water). The resultant yellowish brown sirup was then dissolved in
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anhydrous chloroform (0.3 mL), transferred to a 4-mL vial equipped with a
septum-fitted 1id, and silylated by addition of Tri-Sil concentrate (0;7.mL);
followed by continuous shaking for several hours. The resultant’silylgted )
sample (containing the neutral and phenolic products) was ready for analy-

sis via GC, GC-NMR, and GC-mass spectrometry.

Tﬁe aduedus phase was taken to "dryness" in vacuo at 35;38°C,‘dissolved‘inl
1,2-dichloroethane (20 mL),; taken to dryness again, dissolved in silylation |
grade dimethylformamide (0.3 mL), transferred to a 4-mL vial equipped with a
septum-fitted 1lid, and silylated by addition of BSTFA (0.3 mL) followed By
continuous shaking for several hours. The resultant silylated sample (contain-

ing thelwater—sqluble products) was then ready for analysis via GC.

Alternative Method for "Acidic" Product Analysis

Ap adaptation of the methylation procedure of Mérriman, gg_glggkgé) was
employed. Accordingly,van aliqupt (180 mL) of ozonized rea;tion solutioﬁ wééi?'
placed in a beaker containing the internal standards, DPE (21.4 mg) and he#a&é%w
dioic acid (11.6 mg). The mixture was then neutrélized by ad&ition of satﬁrétéé
sodium Bicééboﬁaté solution and subsequently concentrated ig yé§gg at 36—3360
until all of the acetone was removed. Chibroform.was added £6 éﬁéléﬁﬁeods
mixture and the resultant emulsion was dispersed by addition of a few milli-
liters of 2M sulfuric acid. Saturated sodium bicarbonate solution was added
next to reach a pH of eight, and the chloroform phase was . then extracted two
more times with sodium bicarbonate solution (adjusted to pH 8.5). The combined
aqueous phases were extracted with chloroform (5 x 30 mL), and the combined

chloroform phases were stored over anhydrous sodium sulfate in the dark.

' The aqueous layer (bH 8.3) was taken tb dryness in vacuo at 30-38°C. The

resultant dried salts were then refluxed with 50 mL of anhydrous methanol
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(containing 157% by weight of hydrochloric acid) for 3 hours, subsequently neutral-
ized with saturated sodium bicarbonate solution, and extracted with methylene
chloride (3 x 25 mL). The combined methylene chloride phases were filtered
through anhydrous sodium sulfate, dried over aphydrous magesium sulfate, concen-
trated to a volume of about 1.5 mL in vacuo at 31-33°C, and finally transferred

to a 4-mL vial equipped with a septum—fitted 1id. The sample was then ready

for GC and GC-mass spectrometry analysis.

Column Chromatography Method

An aiiquot (155 mL) of the ozonized reaction solutioﬁ was concentrated to
a sirup in vacuo at 34-38°C, using absolute ethanol to azeotropically remove
any residual water. The sirup was weighed and then passed thrOugh a Pyrex
column (25 x 1000 mm) that had been "slurry packed" with chromatographic grade
silica gel (60-200 mesh). The elueﬁts that were used for the column chromatog~
. raphy were: hexane:diisopropyl ether (1:1, v/v); hexane:diisopropyl ether
‘(1:3{‘y/v); diisopropyl ether;‘diisopropyl ether:diethyl ether (1:1, v/v);
diethyl ether; diethyl ether:ethyl acetate (1:1{ v/v); ethyl acetate; ethyl
'~ acetate:acetone (l:l, v/v); acetone; acetone:ethanol (1l:1, v/v); gthanol;

ethanol:diétilled water (1:1, v/v); and distilled water.

Fractions (20 mL) were collected, and all fractions which appeared to be

"com-

similar via TLC were combined, concentrated, and stored in 4-mL vials as
posite" fractions. Each composite fraction was theﬁ transferred to a 4-mlL

vial containing a known amount of internal standard (DPE), taken to dryness in:
vacuo, redissolved in 0.1-0.3 mL of silylation grade chloroform or dimethylform-
amide, and silylated by addition of either Tri-Sil concentrate or BSTFA

(0.3-0.5 mL). The resultant samples were then analyzed via GC, GC~-NMR, and

GC-mass spectrometry.




-85~

Ultraviolet Spectrometric Analysis

The samples used to provide the data illustrated iquig. 24”and ésiﬁeré»u
prepared forlanalysis as follows. Aliquots of unozonized and ozonized reaction
solution — possessing equal volumes of solution and'initial (i.é., prior to
ozonation) concentrations of compound XXXIII — were each placed in 100-mL pear-
shaped flasks.. Each sample was then concentra;ed'ig_ggggg to remove the éce;ong

3

and subsequently dissolved in absolute ethanol (40 mL); Aliquots (1 mL) of the
resultant solutions were placed in 10-mL Erlenmeyer flasks and diluted further
with. absolute ‘ethanel (9 mL/flask) to yield 10-umlL samples with a concentration

of about 0.1 mg of solute per milliliter of solution. UV spectra of the resul-

tant samples were then obtained scanning from 200 to 320 nm.

Thermogravimetric Analysis

fhelsamples used to 6btain§the TGA data shown in Fig. 23 wefe prepared
for énal&sis és folloﬁs. Thé silylated sample from the ozoniéed reaction $61u—
tion was prépared aé described in the general procedure for pfodﬁct ahalysisJ 7'
'The unozonized sample was prepared by placing 0.2910 g of XXXIII (the amount”
required fo prdﬁide a solution possessing the same concentration of XXXIIi‘éS

B

the ozoﬁizedAééﬁple) into a 4-mL vial equipped with a séptum—fitfed‘lid. The
XXXIII was then dissolved in anhydrous chloroform (0.3 mL). Next, Tri-Sil con-
centrate (0.7 mL) was added and the mixture was shaken continuously for

several hours to yield the silylated unozonized sample of XXXIII.

' The prepared samples were subjected to TGA (with duplicate runs per-
formed on the ozonized sample). Accordingly, an initial temperature program
was employed to remove the silylating agents and solvent. The resultant reac-
tion "solids" were then subjected .to a second program in which the temperature
was raised at a much faster rate (5°/min). In thié second program the tempera-

ture was allowed to rise until no further weight loss was observed.
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Volatile Products Determination

An aliquot:(85 mL) of ozonized reaction solution was placed in a tared 100-
mL pear-shaped flask to which a known amount (11.0 mg) of internal standard
(DPE) had beén added. The sample was then concentrated to a heavy sirup in
vacuo at 30-37°C, after which the flask was weighed. The concentration of the
sirup was. continued ig_gggggvﬁntil no further weight loss was observed,
and the final weight of the sirup was recorded. This weight was subtracted
from the maximum theoretical weight (defiﬁedxas the milligrams of XXXIII employed
for théAozonation'piué;thé'milligfams of ozonée consumed’ during the ozonation).to

yield a maximum value for the amount of volatile material lost.
.

Procedure for Ozonations Conducted in
Aqueous Acetic Acid

An aliquot (25-100 mL) of the ozonized reaction solution was placed in a
400-mL beaker,<an§ 2 mL of a standard solution of DPE (1.028 mg DPE/mL of solu-

tion,.in gbgolutg ethanol) and 2 mL of a standard solution of hexanedioic acid

X (1.036 mg_hqxanedioic acid/mL of solution, in absolute ethanol) were added

as internal;standards, The solution was then neutralized to about pH 7 with

saturated sodium bicarbonate solution and extracted with chloroform (5 x 50 mL).

The  chloroform phase was dried over anhydrous sodium sulfate, concentrated
in vacuo at 30-40°C to a sirup, ‘dissolved in anhydrous chloroform (0.3 mL); and
transferred to a 4-mL vial equipped with a septum-fitted 1id. Tri-Sil concen-
trate (0.5 mL) was then'added, and theAmixturelwas shakep continuously for

several hours prior to analysis by GC and GC-mass spectrometry.

The équeoué'pﬁése was.- acidified to about pH 1 with concentrated -hydrochloric
acid, evaporated to near dryness in vacuo at 30-42°C, redissolved in distilled

water, and evaporated to dryness in vacuo twice more and, finally, continuously -
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extrécted with diethyl ether for over 36 hours. 'Ihe resultant ether phasel,
was evaporated to near dryness in vacuo at 30-40°C, and the residue was dis-
solved in silylation grade dimethylformamide (0.4‘mL); transferred to a 4-mL
viél (equipped with a septum-fitted 1lid), treated with BSTFA (0.4 mL) and

shaken continuously for several hours prior to analysis by GC.
COMPETITION REACTION (SUBSTRATE XXXIII VS. KETOL XLI)

Reaction Conditions

Compounds XXXIII (100 mg) and XLI (100 mg) were dissolved in A.C.S. reagenE—
grade acetone (32 mL) in a 50-mL graduated cylinder whichxserved as the feacfbr;
and triply distilled water Was-édded. Duplicate samples (2 mlL) were taken
from the resultant solution and wéighed into tared 4-mL vials equipped witﬁ
septum-fitted lids. The ozone samﬁle outlet line (Fig. 40) was connectéd“
to a gas dispersion tube which had a sintered glass disk at the bottom. The
gas dispersion tube was'then placed in the reactor. The ozone outlet line was
connected to KI trap 1 (Fig. 40) which was filled with 400 mL of 5% aqueous

potassium iodide solution.

The ozonator was set for the following conditions:

Oxygen pressure: 8 psig

Ozone outlet flow rate: 1.0 liter/min

Ozone sample flow rate: 0.2 liter/min
Once these conditions were established, the ozonator circuit breaker was turned
on, and the wattage was set at 70 w. The ozone-oxygen streams from the ozonator
were passed through the bypass line (Fig. 40) for.5 minutes and then diverted
to the reactor and KI trap 1 for 1.75 minutes. At the end of this time, the
streams were diverted back to the bypass line, and the ozonator was then switched

off. 1In the meantime, prepurified nitrogen was bubbled through the reactor and
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KI trap 1 for 15 minutes. Duplicate ozonized reaction solution samples‘(B mL)
were weighed into tared 4-mL vials for use in the starting material analysis.’
The KI ﬁrap was sealed with Parafilm and stored in the dark until the ozone

analysis could be berformed.

Starting Material Anaglysis

Into each of the four vials, containing the duplicate reaction solution
samples taken before and after the ozonation, was weighed 1 mL of an internal
st;ndard, a standard solution of BMP (6.51 mg BMP/g of solution, in absolute
ethénol). The resultant solutiéné were concentrated to near dryness in
vacuo at 34-39°C, redissolved in anhydrous chlorofo;m (0.3 mL) , reacted with
Tri-Sil concentrate (0.5 mL) with coqtinuous shaking overnight, and analyzed in

triplicate via GC.

-In addition, standards were prepared by weighing aliquots of a standard
solution of XXXIII and XLI (7.12 mg XXXIII and 6.02 mg XLI/g of solution, in 80%
(v/v) aqueous acetone) and the standard BMP solution into tared 4-mL vials
equipped with septum-fitted lids. These samples were then subjected to-the
sample work—-up procedure already described in this subsection for the starting
material and subsequently analyzed in triplicate via GC. Thg_da&a obtained
from this analysis were used to determine the GC response factor values for

XXXIII and XLI. These values were 0.90 (+0.8%) and 0.85 (*+1.9%), respectively.

Ozone Analysis

" The amount of ozone offered to the reactor was determined in the usual
manner via iodometric titration employing a 150-mL aliquot of the ozonized

potassium iodide solution in KI trap 1.
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CONCLUSIONS

The results of this study indicate that attack by ozone upon a lignin-
related model compound containing a Pf-aryl ether linkage was initiated at

several :sites and probably proceeded via a number of mechanisms.

Ozone—-induced cleavégé of the B-aryl ether linkége was an important initial
mode of degradation and aécéunted fof at least 207% of ;he starﬁing matérialA
consumed during the ozonation of the model compound. This clea&agevﬁas'initi—
ated at sites on both sides of the B-aryl ether linkage and probably proceeded
via at least three different reaction mechanisms:. 1,3-dipolar insertion of
ozone, ozonolysis of an aromatic ring (with subsequent hydrolysis of the resul-

tant ester linkage), and electrophilic attack by ozone upon an aromatic ring.

Oxidative opening (ozonolysis) of the aromatic rings, without consequent
cleavage of the B-aryl ether linkage, provided another initial mode of degrada-
"tion during the ozonation of the model compound. This mode of attack was ob-
served‘to occﬁr on both aromatic rings of the modél cémpound and was not initi-
ated éxclusi&ely befween adjacent ring carbons bearing-alkoxyl substitﬁénts.

This finding corroborates the conclusions of Kratzl, et al. (41).

Finally, it appears likely that the initial and secondary ozonation prod—
ucts, formed via the above reactions, underwent condensation té yield higher
molecular weight substances not amenable to analysis via gas chromatography.
The formation of these substances and some relatively high molecular weight
initial ozonolysis products provides a plausible explanation for the low yield

of ozonation products detected via gas chromatography.
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APPENDIX I
AQUEOUS ACETONE AS AN OZONATION SOLVENT

‘As already discussed, aqueous acetone was employed as the reaction solvent
in this study because of its ability to dissolve the substrate, XXXIII, while
at the same time providing an aqueous environment in which to conduct the ozon-
ations. "As reportéd in Table I, distilled water is essentially inert to ozone,
and acetone (Being a ketone) would not be expected to be particularly reactive
to ozone either. However, inasmuch as the reactivity of acetone toward ozone
apparently has not been previously reported, an experiment was conducted in
this study to determine whether aqueous acetone reacted significantly with ozone
in the abseqce,of XXXIII. Accordingly{ 80% aqueous acetone was treated with
ozone undef feaction conditions identical to fhose utilized in # typical ozona-
tion experiment in.which XXXIII was employed as the substrate. The amount of
ozone offered golfhe reactor was determined in the usual manner ziiiiodometric
titration whilé the ;mount of ozone consumed during tﬁe e%feriment”;éAuired
use‘of the 'double titration' method (see Appendix II). Tﬁe reé&iés of this

analysis are summarized in Table VII.

TABLE VII

EXTENT OF OZONE-SOLVENT REACTION

EY
1

Amount of O3 Amount of Oj;
Offered ‘ Consumed
1.288 mmoles 0.637 mmoles (492)

These results show that, in the absence of XXXIII, 49% of the ozone offered

to the reactor was consumed by the aqueous acetone. It is believed, however,
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that in the presence of XXXIII, the extent of the reaction between ozone and

the solvent waé negligible. This is based on the following observations:

1.

If a significant amount of ozone reacted with the acetone, a notice-
able decrease in the consumption of XXXIII would be expected for an
ozonation conducted in aqueous acetone relative to one conducted in
a solvent proven to be inert to ozone. However, based upon the re-
sults 'in Table VIII, it appears that there was no appreciable differ-
ence in the consumption of XXXIII between ozonations conducted in
aqueous acetone and those conducted in aqueous acetic acid, under

otherwise identical reaction conditions.

TABLE VIII

REACTIVITY OF XXXIII IN AQUEOUS ACETONE VS. AQUEOUS ACETIC ACID

‘Mmoles of XXXIII' Percent of XXXIII

Reaction Solvent Offered Consumed
Aqueous Acetic Acid 2.970 * 0.0172 30.3 £ 2.2°%
Aqueous Acetone 2.965 0.017b 30.2 ¢ 1.9b

8The average value obtained from three ozonations.
The average value obtained from four ozonations.
Furthermore, if ozonation of acetone was producing reactive inter-

mediates apt to attack the starting material, significant differences
in the reaction p;oducts could be expected for an ozonation conducted
in aqueous acetone re%ative to one conducted in an inert solvent. How-
ever, the GC chromatogram obtained from the product analysis for the
ozonation in aqueoﬁs acetic acid was quite similar to those obtained
in aqueous acetone. In both solvents, compounds XXXV and XXXVI were by
far the predominant products, suggesting that the major reaction mechanisms

were the same in both systems.
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Comparison of the data in Tables I (p. 4) and VII (p. 95) suggests that
bure methanol is more reactive toward ozone than is aqueous acetone; how-
‘ever, when employed as the solvent during the ozonation of an aromatic

substrate, methanol was not observed to react appreciably with ozone (20,66).
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APPENDIX II

THEORY FOR OZONE ANALYSIS VIA THE ACID-BASE TITRATION
AND THE. DOUBLE TITRATION METHODS

As previously diécussed, acetone carry-over from the reactor into the po-
tassium iodide (KI) trap during the ozonation of XXXIII caused interference
with the standard iodometric titration method normally employed for ozone:
analysis. Thus an acid-base titration method was devised to circumvent this
problem, based upon the reactions which can occur upon addition of ozone and
acetone to an aqueous KI solution. When ozone and acetone are introduced into
an aqueous KI solution, Reactions (8) through (15) of the following list of

reactions must be considered:

03 + 2T + Hp0 ————— 3% I, + 20H + O (8)
I» + 1/3(CHs) 200 ————> 1/3CHsCOCI3 + I  + H' 9)
1/3CH3COCI3 + 1/30H ————> 1/3CH3C00 + 1/3HCI; (10) .
H + O ———— H,0 (11)
03 + I + 1/3(CH3),C0 ———> 1/3CH3C00 + 1/3HCI; +
2/30H™ + 02 (12).
‘ I, + 206 ———>» 1/3103 + 5/31 + H20 (13)
i 03 + 1/31 —————> 1/3105" + 0, (14)
1/3105 + 5/31" + 2H" ————> 1, + H,0 C@s)
2/30T + 2/30H —————> 2/3H,0 (16)
03 + 2T + 2H ————— S5 1, + H0 + 0, (17)
O3 + I~ + 1/3(CH3)2C0 + 2/3H ——— % 1/3CH,C00™ + 1/3HCIs +
2/3H20 + 02 (18)
25205 + Iymm———o> 5,06 + 21 (19)

Any ozone not consumed in the reactor during an ozonation will enter a KI

trap and subsequently liberate iodine [Reaction (8)]. Part or all of this
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iodine may then react either with acetone [Reactions (9) and (10)] or with hy-
droxide ion [Reaction (13)] (51). However, during the ozonation of XXXIII there.
was an excess of acetone present in the trap relative to the amount of iodine
liberated (since almost all of the ozone offered was consumed in the reactor),
and under these circumstances iodate formation [Reaction (13)] was evidently

not important, as additioen of excess acid to the ozonized KI solution did not
liberate iodine. [Reaction (15) predicts that the iodate ion should be converted
to iodine under acidic conditions]. Thus Reaction (12) [the sum of Reactions

(8) through (11)] should represent the overall reaction that occurred in the KI

trap during the ozonation of XXXIII.

According to Reaction (12), 0.66 equivalent of hydroxide ion are produced
for each equivalent (mole) of ozone consumed in the KI solution, and so if ex-
cess acid was added, each equivalent of acid consumed by the hydroxide ion
[Reaction (16)] would -correspond to 1.5 equivalents of the- ozone that was con-
sumed. The acid not consumed 'via Reaction.(16) could then be titrated with
base, and the ozone consumed in the KI solution could subsequently be calcu-

lated via Equation (20).

- VpN)/F, (3/2), s (20)

C 03 = (v,N,
where VA = volume of standardized acid added to the ozonized KI solution
VB = volume of standardized'base required to titrate the acidified
solution
NA = normality of the acid
NB = normality of the base
FT = fraction of the ozonized KI solution that was titrated

O3 = mmoles of ozone consumed in the KI solution (i.e., the amount of
ozone offered to the reactor that was not consumed during the
ozonation)
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On the other hand, during the solvent stability experiment much morevozone
reached the KI trap than during the ozonation of XXXIII (see Table VII of
Appendix I) and, as a result, the amount of iodine liberated via Reaction (8)
exceeded the amount of acetone carry-over into the trap. Consequently, Reaction
(13) provided a significant contribution to the overall réaction scheme, as
evidenced by the liBeration of iodine upon addition of acid to the ozonized KI
solution. In this case, Reactions (8), (12), and (14) [the sum of Reactions

(8) and (13)] should represent the overall reactions that occurred in the KI trap.

Slnce Reactlons (8).and (12) produced hydrox1de ion, and Reactlon (14) pro-
duced iodate ion, excess acid could be added, and as a result of the subsequent
reactions [(15) and (16)], the overall reactions in the acidified ozonized KI
solution ‘would be Reactions (17) and (18). The iodine liberated by Reaction (17)
céuld then be-titrated with sodium thiosulfate [Reaction (19)], and:Since 1 mole
of ozone produées 1 mole of iodine in Reaction (17), the amount of ozone con- -°

sumed via Reaction (17) would then be calculated via Equation (21).

[03]17 = l/Z(NV/FT), (21)
where Vo= volume of standard sodium thiosulfate solution required for the
. titration
N = normality of the sodium thiosulfate solution
FT = fraction of the ozonizediKI splution that was titrated

[03]17 = mmoles of ozone consumed via Reaction (17)

The acid not consumed via Reactions (17) and (18) could then be titrated
with base, and the total amount of acid consumed by these reactions could sub-

sequently bg calculated via Equation (22).

AT = VANA - VBNB = A1y + Aye, . (22)
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where A, = total amount of acid consumed via Reactions (17) and (18).
A19 = acid consumed via Reaction (17)

A1s = acid consumed via Reaction (18)

VA =.volume of standardized acid added to the ozonized KI solution

VB = volume of standardized base required to'titrate the acidified
solution

NA = normality of the acid

NB = normality of the base

Since a 2:1 stoichiometry exists between the acid consumed and the ozone
consumed via Reaction (17) (i.e., Ayj7 = 2[03]17), the amount of acid consumed:
via Reaction (18) could be calculated from Equation (23); And since there is a
3/2:1 stoichiometry between the ozone consumed and the acid consumed via Reac-
tion (18), the amount of ozone consumed via Reaction (18) could likewise be cal-

culated from Equation (23).
Are = Ap - 2[03]17 = 2/3[03]16, (23)
where [03}15 = mmoles of ozone consumed via Reaction (18)

Thus the total amount of ozone not consumed during the solvent stability
experiment ([OalT) would be given by Equation (24), where the values for [03]17

and [03]1s Were determined via the ''double titration" method.
[03]T = [03]17 + [03];s (24)

The validity of this '"double titration' method was then proven experiment-
ally as follows. An aqueous KI solution was ozonized. Duplicate samples of
this ozonized KI solution were taken. The first of these samples was analyzed
for ozone via the usual iodometric titration method. Alternétively, acetone

was added to the second sample, and the resultant solution was analyzed for
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ozone via the "double titration'" method. The results of these two analyses -are
summarized in Table IX and demonstrate excellent agreement between the standard
iodometric titration method and the '"double titration' method. Thus it can be

concluded that the "double titration' method provides a valid means of determin-

ing ozone consumption when employing acetone as the ozonation solvent.

TABLE IX

RESULTS OF OZONE ANALYSIS COMPARISON:
TODOMETRIC TITRATION VS. DOUBLE TITRATION

Mmoles of
.Analytical Procedure Ozone Detected
. Todometric Titration - 0.820
Double Titration © "0.851
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APPENDIX III
POSSIBLE MECHANISMS FOR CONDENSATION OF OZONATION PRODUCTS
PERSPECTIVE

The data in Tabie V (p. 40) indicate that only 40% of the XXXIII cénsuméd
during an ozonation could be accounted for in terms of the material detec;e& via
GC. This suggests that 607 of the reaction products formed during the ozonation
of XXXTII may be present as nonvolatiie material not readily analyzable via GC —
a notion that is further substantiated by the TGA results reported in Fig. 23.
Ihis nonvolatile material couid arise as the result of condensétion or polymer-
ization of the original ozonation products} and there are several different

routes by which this might occur.
DIELS-ALDER REACTION

The Diels—Alder reaction involves the combination of aﬁ o,B-unsaturated
carbonyl compound (dienophile) with a conjugated diene to form a six-membered
ring (52). Thus quinones, muconic acids, and other conjugated carboxyl and
carbonyl containing compounds arising from the ozonation of XXXIII could recom-
bine to form higher molecular weight compounds (Fig. 41). Indeed, studies (67~
(69) have already established that o-quinones and quinols readily undergo such
a reéction, especially in aqueous media. The reaction will also proceed in
various organic solvents, including acetone (67). Therefore, it would seem
reasonable to expect siﬁilar reactions to occur in the ozonized reaction solu-
tions of XXXIII. The occurrence of this type of reaction chld explain the
failure to detect via GC significant. amounts of the unsaturated dicarboxylic
and ‘dicarbonyl compounds expected.from the ozonolysis of the aromatic rings of

XXXTII.
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RADICAL COUPLING OF OZONOLYSIS INTERMEDIATES

As discussed in an earlier section, the aqueous solvent employed in this.
~ study would tend to favor formation of a hydroxy hydroperoxide, such as LXV
(rather than an ozonide or dimer intermediate), during the ozonolysis of an
aromatic ring (Reaction (25) of Fig. 42). Intermediate LXV could subéequently
be attacked by ozone to yield the radiéai species LXV* [Reaction (26) of Fig. 42].
Formation of a higher molecular weighf compound ébuld then.result from coupling
of two such radicals [Reaction (28a) of Fig..42].' Recentlyl Kurz and Pryor (70)
have proposed such a pathway for the ozonation of.Egggfbutyl hydropefoxide (in |
halogenated solvents at -60 to -4°C), and so it is possible that such a mechanism
may be functioning to some extent during the ozonation of XXXIII as well.

OXIDATIVE COUPLING OF PHENOLIC PRODﬁCTS

(DEHYDROGENATIVE POLYMERIZATION)

Creosol (XXXV) and perhaps other phenolic compounds are produced during the
ozonation of XXXIII. Such compounds are a potential source of phenoxy radicals
capable of undergoing coupling reactions to form higher molecular weight com-
pounds (71-73). Hindered phenols have been reported (72) to react with the
peroxy radical to yieid phenoxy radicals [Reactions (31)-(33) of Fig. 43]. Con-
sequently, since the peroxy radical could be generated during the ozonation of
XXXIII (Fig. 42), generatioh of the phenoxy radical should be possible as well.
Moreover, hydrogen peroxide.could be produced during the ozonation of XXXIII
[Reaction (34) of Fig. 45] and subsequently degraded via the Haber—Weisé mechan-
ism (74) [Reactions (35)-(39) of Fig. 43] to provide an additional source of

peroxy radicals which could be used in the generation of phenoxy radicals.

Once generated, the phenoxy radical can couple'with peroxy radicals [Reac-

tion (33) of Fig. 43). In addition, the phenoxy radical is capable of coupling
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0 RII '
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 CHz0-C-OH
0-0-
LXV-
HO+ + R'OOH — H20 + R'0;°
LXV *
o , R'OOR' + 02
2R'0,* (R'O4R') ——> (R'0-02+0R")_ 2
~L, 2r'0- + 0,
R'0* + R'OOH ———) R'OH + R'0"
 .OCH3 | R |
CH3 . X
R" = H-g—o CHj - R' = | - COOCH3z
CHOH CH30-C-OH

Figure 42, Possible Mechanism .for Radical Coupling of Ozonolysis
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termediates

(25)

(26)

(27)

(28)

(29)

(30)
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RO* + R'-H ———— R'* + ROH
R's + ROH —— R'-H + RO;*

R's + ROp* -——— RO2R'

0
.RI=
RIl R"
oo A H,0
I-é %goHCHs . I Cocoo:HCH3 + H2 2
CH3°’ 1 3
0-0~-0-H '
OCH
CHs 3
I
R"= HC-0 CHs
]
CHOH

M + B0, ———— ML 4+ oM + OH™

vy 4,0, ———— M + HOpe + HT

M® + oo —— T 4 on”
o w0 ——— M ¥ 0, + 1T

HO* + H02 —— H30 + HO2-

Figure 43. Possible Ways to Generate Phenoxy Radicals
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Figure 45. Various Modes of Phenolic Coupling
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molecule with an unsaturated carbon on a second molecule [in much the same man-
ner that an olefinic carboxylic acid undergoes lactonization to yield y- and

6-lactones (53,76)1]:

. CHj
H
N
2 | —> CHz - 0—C COQH ————>» POLYMER
COOH H N\ S
HOOC ' H :
COOH

As discussed in a previous section, a significant number of muconic acid-
related compounds, such as LVII and LVIII, may be produced during the ozonation
of compound XXXIII. As depicted in Fig. 46, these products:could undergo inter-

molecular esterification to form high molecular weight compounds not amenable

to GC analysis. Consequently, intermolecular esterification provides yet another

plausible explanation for the low yield of unsaturated dicarboxylic products

detected via GC.
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APPENDIX IV

EVIDENCE SUPPORTING A RELATIONSHIP BETWEEN FLOW RATE
AND OZONE CONTENT DURING OZONE PRODUCTION

fo/fs = co/cs,. : _ (6)

]

where - fo ozone-oxygen flow rate, liter/min, from the ozone outlet
¢ = amount of ozone offered, mmoles, from the ozone outlet

f = ozone-oxygen flow rate from the ozone sample outlet

¢ = amount of ozone offered from the ozone sample outlet

An exﬁeriment was cénducted in which ozone-oxygen stfeamsuwerq_fed from the
“ozone and ozone sample outlets directly into KI traés for 5 minuﬁeé at giyeh
flgw‘rates (i.e., f;‘and fS wére_known); The resultant ozonized kI solutions
'wére then titrated via the iodoﬁetric‘methoq to determine the amount of ozoné ‘
fea to the traps. This experimgnt; then, provided experimentallyjdetermined
values for co/cS at given fo/fS values. To test the validity of Equation (6),
these experimentally determined values for co/cS were compared with the cc',/cS
values caiculated from Equation (6) emﬁloying the "appropriate fé/fS values.
This comparison is given in Table X and indicates that there is exce}lenf’agreeé
ment between the calculated and experimentally determined cé?cs values. Thus

it can be concluded that Equation (6) is valid.
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TABLE X

CALCULATED VS. EXPERIMENTAL VALUES FOR co/cS

Calculated Valuea Experimental Valueb
100 1.00
1;50 . 1.50
2.50 2.0
5.00 | B 4.8

The co/cs ratio calculated via Equation (6).
The co/cs ratio determined experimentally via

iodometric titration.
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APPENDIX V
RESPONSE FACTOR DETERMINATION FOR PRODUCT ANALYSIS

Four different samples, eéch containing known amounts of compounds XXXIIIL,
xxxv; XXXVI, and internal standard (DPE), were dissolved in 80% aqueous acetohé
in tared pear-shaped flaské. The resultant solutions were subjected to the éen—
eral procedure for product ahalysis described in the Experimental section, each
sample being analyzed in triplicate. Response factor.values relative to the
internél standard, DPE, were then calculated for compoundSIXXXIIi, XXXV, and

XXXVI via Equation (45).

Fy = (A[/AQ) (Wy/UD), )
where FX = response factor for compound X relative to thevinternal standafd
AI = GC peak area of intermal standard
Ay = GC peak area of compound X
WI = weight of internal standard
Wx = weight of compound X

The response factor values obtained in this manner are summafized in Table
XI, ana the average response factor values listed were employed in Equation (45)
when calculating the amounts of XXXV and XXXVI detected via GC in a given ozon~
ized reaction solution. A response factor value of one was assumed for cal-

culating the amounts of all other products detected via GC.
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"TABLE XI

RESPONSE FACTOR VALUES DETERMINED
FOR COMPOUNDS XXXIII, XXXV, AND XXXVI

Compound;‘ Average Response Factor®
XXXIII 1.68 (t6.0%).
XXXV 0.72 (£15.1%)
| XXXVI l.Ol‘ (£12.0%)
All Others 1.00 (Assumed)

a - . e s
The average value obtained from triplicate
injections of four samples.







