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SUMMARY 

Cell therapy for congestive heart failure has shown promising results in preclinical 

studies, but results of clinical trials suggest the need for this modality to be optimized. C-

kit+ cardiac progenitor cells (CPCs) are adult stem cells that have been shown to 

differentiate toward lineages of the heart and exert beneficial paracrine effects. Their 

injection in humans resulted in moderate but insufficient improvements in cardiac 

function after myocardial infarction.  In this project, we studied two strategies for 

enhancing CPC based-cell therapy using tunable maleimide-crosslinked poly(ethylene 

glycol) (PEG-MAL) hydrogels.  

 In the first strategy, CPCs were encapsulated in PEG-MAL hydrogels presenting 

vascular endothelial growth factor (VEGF). Although activation of ERK signaling was 

observed in CPCs encapsulated in VEGF presenting PEG gels, this strategy failed to 

induce endothelial differentiation or modulate paracrine effects of CPCs in vitro. Different 

growth factor doses, cell populations and biomaterial density and degradation rates were 

tested. In the second strategy, CPCs were encapsulated in integrin-specific hydrogels. 

α2β1-specific hydrogels induced cardiomyocyte differentiation of CPCs accompanied by 

a reduction in expression of secreted factors in vitro. Interestingly, following injection in 

rats undergoing ischemia-reperfusion, treatment with CPCs encapsulated in non-

adhesive hydrogels resulted in the greatest preservation of cardiac contractility and 

attenuation of post-infarct remodeling.  

 Overall, this work adds to our knowledge of CPC behavior in presence of stimuli 

relevant to pragmatic design of regenerative therapies, as well as broadens our 

understanding of design principles that may be used to augment effects of cell therapy 

for myocardial repair. 
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CHAPTER 1. LITERATURE REVIEW  

1.1 Myocardial infarction 

Myocardial infarction (MI) is defined as myocardial cell death due to prolonged ischemia 

according to the Third Global MI Task Force. It also involves elevation of blood levels of 

biomarkers including cardiac troponin [1]. 

1.1.1 Prevalence and impact 

Cardiovascular disease is the leading cause of death globally. Cardiovascular diseases 

are responsible for over 30 percent of all global deaths, with 80 percent of those deaths 

taking place in low- and middle-income countries [2]. About 610,000 Americans die from 

heart disease each year accounting for 1 in every 4 deaths. 35% of deaths because of 

cardiovascular diseases occur before the age of 75 years, which is younger than the 

current average life expectancy of 78.8 years. The economic impact of heart disease in 

the US is about $207 billion every year in cost of health care services, treatments, and 

lost productivity. Every year, an estimated approximately 660,000 Americans have a 

new coronary attack, approximately 305, 000 have a recurrent attack and an additional 

160,000 silent myocardial infarctions are estimated to take place. Someone has a heart 

attack every 42 seconds in the US. Coronary heart disease is the most common type of 

heart disease and was responsible for killing about 365,000 people in 2014. While the 

rates of death attributable to cardiovascular diseases have decreased in the United 

States in the past decade, the burden remains significant [3]. This warrants the need for 

better prevention, early detection, and management and treatment strategies.  

1.1.2 Pathophysiology 

Etiology: More than 75% of acute myocardial infarcts are the result of thrombotic 

occlusion of a coronary vessel caused by rupture of a vulnerable plaque [4]. MI is the 

first diagnostic presentation of coronary artery disease (CAD) in about 50% patients 

suffering from CAD [5]. Coronary artery disease involves the gradual development of an 
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atherosclerotic plaque in the coronary artery and depends on various risk factors 

including genetics, cigarette smoking, hypertension, obesity etc.  

 Aftermath: Myocardial ischemia results in large scale cardiomyocyte death by 

necrosis and apoptosis, which commences a cascade of compensatory remodeling 

mechanisms. The pathological remodeling following MI is a common cause for heart 

failure. After acute MI, severe loss of functioning myocytes occurs. The death of 

myocytes takes place through necrosis, apoptosis and autophagy mechanisms in the 

hypoxic environment. The loss of myocytes starts within minutes of the occlusion at the 

subendocardium and extends through the ventricular wall under an hour in small animals 

like rats and within a few hours in larger animals like humans. Gross morphological 

changes do not become apparent until a few hours but cellular biochemical and 

structural changes are noted in less than an hour. Signals released by dying myocytes, 

danger-associated molecular patterns (DAMPs), and their intracellular contents as well 

as signals from the damaging extracellular matrix incite an immunological response. 

Ischemia-mediated generation of reactive oxygen species (ROS) is also an important 

contributor to the activation of inflammatory signals at the infarct. Leukocytes 

(neutrophils and mononuclear cells) infiltrate the infarct site within few hours of the 

infarction. Pro-inflammatory subpopulations of macrophages are also present during the 

inflammatory phase. The acute inflammatory phase involves clearing up of the wound 

and lasts for hours to few days. Matrix metalloproteases (MMPs) released by the 

neutrophils and other proteases degrade intermyocyte fibrillar collagens resulting in wall 

thinning and loss of myocyte alignment and slippage, contributing to impaired heart 

function. Infarct expansion takes place within hours of myocyte injury. Within a certain 

window of time of about 12 hours, damage to myocytes at the infarct border can be 

reversed by reperfusion; reperfusion limits infarct expansion initiated by the MI but 

causes additional injury, known as ischemia-reperfusion injury. Simultaneously with 

myocyte death and infarct expansion, the left ventricular pump function deteriorates and 

there is reduced stroke volume and increased end diastolic pressure. Adaptive 

mechanisms are activated to preserve the stroke volume. Contractility in the remote non 
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infarcted myocardium increases triggered by neurohormonal signaling in response to 

altered Frank/Starling relations. Wall thinning increases stress which activates 

mechanoreceptors that together with the neurohormonal signaling and Renin-

Angiotensin system activation set off a signaling cascade leading to hypertrophy of 

surviving cardiomyocytes, showing an increase in cross-sectional area by up to 70%. 

However, unlike exercise or pregnancy induced physiological hypertrophy, pathological 

hypertrophy is associated with depressed cardiac function over time, termed as 

hypertrophy decompensation. Macrophage subpopulations secrete factors that recruit 

myofibroblasts and vascular cells to the infarct. Fibroblasts differentiate into 

myofibroblasts, migrate to the infarct, proliferate and secrete a matrix prominently 

composed on collagen. This fibrotic tissue is soft, vascularized and prone to rupture in 

the first week after MI. Over the next few weeks, the microvasculature recedes, majority 

of myofibroblasts undergo apoptosis and the scar crosslinks and matures. The collagen 

scar increases the tensile strength of the myocardium and diminishes wall stress along 

with hypertrophied myocytes initially. However, these compensatory mechanisms are 

maladaptive and are associated with heart failure. The scar is noncontractile and 

contributes to ventricular dysfunction and arrhythmia. The extent of fibrosis is a strong 

prognosis marker and has been found to correlate with morbidity and mortality due to 

arrhythmias and sudden cardiac death [6–8].  

1.1.3 Current treatments 

With existing treatments, patients are treated with the goal of preventing progression of 

CAD, left ventricular (LV) remodeling, sudden death, and reoccurrence of infarction. The 

management strategies include lifestyle management, pharmacological treatment (ACE 

inhibitors, Angiotensin receptor blockers, β-adrenergic blockers, calcium channel 

blockers etc.), electrophysiological devices (implantable cardioverter-defibrillators, 

cardiac resynchronization therapy), and revascularization strategies (coronary artery 

bypass graft, percutaneous coronary intervention) [9]. These treatment strategies aim at 

reducing preload, afterload, neurohumoral activation, and mineralocorticoid 
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dysregulation. They slow the progression of the syndrome but the underlying loss of 

cardiomyocytes and the fibrosis that follows MI are not reversed [10]. Endogenous 

regeneration of cardiomyocytes takes place at the rate of <1% annually in adults 

according to several studies although higher estimates have been reported as well [11]. 

These endogenous mechanisms are not sufficient to regenerate the injured heart and 

CAD progresses to heart failure. The only cure for heart failure is heart transplantation 

which is an unrealistic solution given the large discrepancy between the need and 

availability of organ donors.  

1.1.4 Preclinical models 

Animal models serve as important tools to study the disease etiology, test diagnostic and 

treatment strategies and understand their mechanisms of action. Small and large 

animals in which heart damage is induced by different modes such as chemical 

(isoproterenol administration), physical (overlapping burns, cryo-injuries), surgical 

(transient or permanent coronary artery ligation, aortic banding, balloon occlusion) are 

frequently used prior to advancing to clinical trials [12,13].  

1.2 Cardiac cell therapy 

Motivation: Cells as therapeutic agents are complex and are being studied for their 

potential to change the paradigm from chronic heart failure management to healing by 

regeneration. Stem cells can secrete a multitude of factors including cytokines, 

exosomes etc. and target different cells and receptors simultaneously; can transform 

themselves and dynamically react to their environment. Therefore, cells are considered 

to be suitable for developing a complex regenerative therapy approach. Supplying cells 

exogenously as building blocks for reconstruction of the damaged heart is a motivation 

as the intrinsic regeneration capabilities of the heart by cardiomyocyte proliferation and 

differentiation of endogenous stem cells are insufficient [14].   
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1.2.1 Mechanism of action 

Differentiated cardiomyocytes as well as stem and progenitor cells of various types have 

been used in preclinical and clinical studies. Cells are believed to elicit beneficial effects 

by (1) secreting paracrine factors and (2) integrating with the host tissue as functional 

cardiomyocytes.  

 Paracrine effects: Cells secrete paracrine factors of various forms including 

chemokines, cytokines and microRNAs, which drive many processes affecting 

remodeling such as activation of host progenitor cells (e.g. HGF, IGF-1), cardiac 

differentiation (e.g. FGFb, VEGF, IGF1, HGF), angiogenesis/arteriogenesis (e.g. PlGF, 

VEGF, bFGF, PDGF, Ang-1, Ang-2, HGF, IGF-1, IL-1β), cardioprotection by attenuation 

of apoptosis and necrosis (e.g. SFRP2, IGF, HGF, VEGF, TNFα), proliferation (VEGF, 

bFGF) stem cell homing (VEGF, SDF1α, HGF, G-CSF), immunomodulation (IL4, IL6, 

IL8, CXCL6, MCP1, TNFα) and further promotion of growth factor secretion by host and 

transplanted cells [15,16]. For example, cardiac resident stem cells and early committed 

cells expressing c-kit, Sca-1 and MDR1 secrete HGF and IGF-1 that promote stem cell 

migration, survival, cardiomyocyte differentiation and further stimulate growth factor 

expression[17,18]. Bone marrow derived mononuclear cells (BM-MNCs) express bFGF, 

VEGF, Ang-1, Ang-2, PDGF, IL-1β and TNF-α that are implicated in inducing 

angiogenesis and cytoprotection of various cell types. Injection of BM-MNCs also further 

stimulates production of bFGF and Angiogenin by host cardiac cells, and leads to an 

increase in physiological blood flow, infarct size reduction and cardiac function 

improvement [19,20]. Endothelial progenitor cells secrete VEGF, FGF-2, Ang-1, Ang-2, 

PlGF, HGF, IGF-1, PDGF, SDF-1 and their implantation in ischemic myocardium leads 

to higher capillary density, higher proliferation of myocardial cells, reduction in 

cardiomyocyte apoptosis, reduced infarct size and improved function [21,22]. 

Interestingly, following injection of EPCs in animal hearts, the paracrine factor 

expression by transplanted cells peaked at d1 after which it faded. However, a 

prolonged increase in expression of the paracrine factors sustained for up to 2 weeks 

was seen in the host cells [22]. These observations demonstrate that injected cells act 
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directly through their secreted paracrine factors, and also indirectly by stimulating 

sustained generation of paracrine factors by the host cells. The effectiveness of cell 

therapy in spite of very low retention in the heart is believed to be through their powerful 

paracrine effects. MSCs injected in hearts after MI do not differentiate into contracting 

cardiomyocytes but reduce the stiffness of the subsequent scar: Einfarcted tissue= 55 ± 15 

kPa, EMSC-hearts= 40 ± 10 kPa, ESham= 18 ± 2 kPa. Attenuation of post-MI cardiac 

remodeling and improvement in function without direct differentiation of the injected cells 

could be an outcome of the paracrine factors secreted by the cell as well [23].  

 Direct integration/differentiation: Although seen infrequently, transplanted cells 

also integrate in the host myocardium. Injected fetal cardiomyocytes juxtapose with host 

cardiomyocytes and connect with existing myocardium through Connexin43 without 

showing any arrhythmias [24,25]. However, the supply of a patient’s cardiomyocytes is 

low since they have very limited proliferation potential. Skeletal muscle satellite cells can 

be expanded in vitro to form skeletal myoblasts that possess force generating 

capabilities.  However, skeletal myoblasts unfortunately had rhythm disparity with host 

myocardium and failed to improve echocardiographic function in MAGIC phase I clinical 

trials possibly due to lack of formation of gap junctions [26]. Approaches involving 

stem/progenitor cells that differentiate in situ after transplantation because of 

environmental cues as well as those that are differentiated prior to transplantation using 

various regimens are ongoing in preclinical research and clinical trials. Exogenously 

delivered cells do not differentiate into fully mature cardiomyocytes even if they engraft. 

For example, an average of 14% of bone marrow derived mesenchymal stem cells that 

engrafted in the heart exhibited evidence of cardiomyocyte commitment by expression of 

early or late stage differentiation markers. Interestingly, they also showed coupling to 

host myocardium via connexin43 and were of similar size as other myocytes [27]   In 

another study, GFP+ CPCs were injected in infarcted hearts and later found to express 

cardiomyocyte marker α-sarcomeric actin (SA). However, these cells appeared 

immature and were smaller than other myocytes [28]. In a study comparing the 

engraftment and myocyte differentiation of different human cell types injected 
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intramyocardially in mice hearts, about 0.5-3% of HNA+ cells expressed α-SA, with the 

highest engraftment and differentiation seen in the cardiosphere derived cells group [29]. 

Implanting predifferentiated cardiomyocyte-like cells presents challenges of arrhythmia 

and questionable contribution by their force generation due to lack of maturity. A cardiac 

patch was made with iPSC derived cardiomyocytes and pericytes, and transplanted in 

rats after MI. Most transplanted and engrafted cardiomyocytes showed elongation and 

circumferential alignment but were very small in size, indicating their immaturity. They 

formed gap junctions among themselves but not much with the host cardiomyocytes 

[30]. Cell fusion of delivered stem cells with host cardiomyocytes has also been 

proposed as a potential mechanism by which transplanted cells integrate with the host. 

However, this theory is controversial as in Cre-recombinase based models, progenitor 

cells can cross the membrane of the recipient cell, mimicking cell fusion [31]. Along with 

cardiomyocyte differentiation, transplanted cells have also been reported to differentiate 

into vascular cells. Direct differentiation into endothelial or/and vascular smooth muscle 

cells in the in vivo environment has been reported following injection of MSCs [32], 

ADSCs [33], CD34+ cells [34] and cardiac stem cells (CSCs) [35,36].  

 Paracrine effects vs. direct integration: Increasing evidence is suggesting the 

paracrine mechanism to be the primary driver of effects of stem cell therapy and 

differentiation of the transplanted cells a minor contributor. The retention of injected stem 

cells is very low, yet they are able to induce improvement in host hearts. For example, 

only 12.7% of the injected CPCs were still present in the heart at 24 h, and only about 

1000 cells remained after 35 days. Significant numbers of injected CPCs were found in 

the lungs and kidneys, but only in the first 24 h, indicating recirculation of CSCs initially 

retained in other organs. However, in spite of the low retention and rapid disappearance 

of CPCs, LV function was significantly improved at 35 days [37]. In a study measuring 

the outcome of CPC injection after 1 year, a significant improvement in function was 

seen but only some of the transplanted cells or their progeny persisted (4-8% of all 

nuclei); most were still proliferative and few appeared to show a mature cardiomyocyte 

phenotype. CPC transplantation, however, triggered endogenous cells perhaps by 
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paracrine factors resulting in increased formation of endothelial cells, proliferation of 

endogenous CPCs and small cells that expressed cardiomyocyte proteins (α-sarcomeric 

actin) but not a mature cardiomyocyte phenotype [38]. Multipotent cells have been 

shown to integrate with the host vasculature as well. In studies comparing the effect of 

direct differentiation versus paracrine effects on injection of cells based on contribution 

of implanted cells in new vasculature or cardiomyocytes, 20-25% of observed effects 

were accounted for by direct differentiation in case of human CDC transplantation [39], 

9% following ADSC injection [40] and about 30% following CDC transplantation with a 

platelet gel biomaterial [41]. While it is largely believed that paracrine factors are the 

primary mechanism by which exogenous stem/progenitor cells act, there is no 

consensus on whether the conditioned media of cells would suffice as effective 

treatment. For example, some studies showed that MSC conditioned media alone is not 

sufficient to reduce infarct size and improve cardiac function comparable to stem cell 

treatments [40,42–44]. However, another study reported that a single injection of 

neonatal CPC-derived total conditioned medium is more effective than transplanted 

neonatal CPCs or their exosomes [45].  

1.2.2 Enhancing cell therapy effects 

Motivation: Clinical trials to test cell therapy for cardiac repair have shown modest 

benefits at best and the results have been mixed. The ischemic heart after IR is not a 

suitable environment for cell survival because of high inflammation, oxidative stress and 

damaged ECM. The barriers to successful clinical translation of cell therapy include (1) 

limited knowledge of mechanism of action and therefore decisions of optimal dose, cell 

fate and pharmacokinetics; (2) poor engraftment and survival of cells in the ischemic 

heart; and (3) risk of tumorigenicity, immunogenicity and arrythmogenicity [46]. Several 

preclinical and clinical studies are underway to refine the method in attempts to achieve 

better functional outcomes. These involve selection of the optimal cell type(s); dosage; 

timing, frequency and mode of administration; as well as various pretreatment and co-

treatment strategies with exosomes, growth factors, biomaterials etc. to enhance the 
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therapeutic effects of delivered cells. The Cardiovascular Cell Therapy Research 

Network (CCTRN) and other groups also provide recommendations on designing and 

conducting clinical trials in this burgeoning field to aid clinical translation of stem cell 

therapies [47,48].  

1.2.2.1 Cell type 

Different types of stem cells including totipotent cells, ESCs and iPSCs, which can 

differentiate into cells of all three- ectoderm, endoderm and mesoderm cell lineages, and 

multipoint/unipotent cells, such as CSC/CPCs, BM-MNCs, MSCs etc., which differentiate 

only into a few closely related cell types, are being studied.  

 c-kit+ cardiac progenitor cells: Discovery of stem cells in the heart over a decade 

ago was very exciting as it refuted the long held notion that the heart is a terminally 

differentiated organ without self-renewal potential [35]. Cardiac ckit(+) cells represent the 

most primitive population in the rodent heart [49]. These cells, expressing c-kit and 

lacking hematopoetic markers, are self-renewing, clonogenic and multipotent with the 

ability to differentiate into cardiomyocyte, endothelial and smooth muscle lineages in 

vitro and in vivo [35,50]. For these reasons, these cells were chosen as candidates for 

cardiac cell therapy. Preclinical studies showed improvement in cardiac function 

following delivery of these cells [51,52], even in hearts with mature scars treated 30-days 

after MI [51]. Like other stem cells, the benefits of CPC therapy appear to be driven by 

paracrine effects primarily. Following EGFP+ CPC injections in rat hearts, only an 

average of 2.6% EGFP+ cells were found engrafted in the host myocardium after 5 

weeks, which is not sufficient to explain the benefits in cardiac function improvement. 

While the presence of injected cells was low, implantation of CPCs led to activation of 

endogenous CPCs, perhaps via paracrine factors [51].  

 Following the encouraging results in preclinical studies, these cells were tested in 

phase 1 clinical trials. The phase 1 trial, SCIPIO, a randomized open label trial, involved 

isolation of c-kit+ cells from the right atrial appendage[53] of patients undergoing open 

heart surgery for coronary artery bypass grafting (CABG). The harvested CPCs were 
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expanded in vitro and then infused back into the patient heart via the coronary arterial 

circulation 3-5 months after CABG. The autologous treatment was found to be safe and 

feasible. While efficacy needs to be investigated by later clinical trial phases, preliminary 

results from the SCIPIO trial showed improvement in left ventricular function, reduction 

in infarct size and increase in viable tissue, consistent with preclinical studies [54]. While 

these cells were originally proposed to be used autologously, they are currently under 

investigation for potential use as allogeneic therapy. Delivery of allogeneic cells has 

been found to be safe in porcine models [55] and is being investigated in phase 1 clinical 

trials, CAREMI. Tolerogenic immune behavior is regulated by PD-L1-dependent 

allogeneic-driven immunomodulation and it may be possible to use PD-L1 expression as 

a marker to identify and select low-risk high-benefit allogeneic cardiac repair cells [56]. 

Allogeneic cell therapy would be more cost-effective, provide faster access and better 

efficacy if a patient’s own cells have limited regenerative potential. These cells are also 

being studied as part of a stem cell combination therapy. The CONCERT-HF trial is an 

ongoing phase 2 trial to test the effects of CSCs, MSCs both alone and in combination 

delivered via transendocardial injection in patients with ischemic cardiomyopathy. This is 

based on promising results from preclinical studies in which it was found that MI size 

reduction was 2-fold greater in combination versus either cell therapy alone, along with 

significantly higher improvement in left ventricular ejection fraction (LVEF) and 7-fold 

greater engraftment of stem cells. MSC-enhanced proliferation and differentiation of 

CSCs could explain the synergistic effects of the MSC-CSC combination [57,58]. 

 Human CPCs are mostly isolated from right atrial appendage. The right atrial 

appendage is a rich source of these cells [53,59] and making small approved incisions is 

sufficient to isolate and expand cells to get enough yield for injection. Note that rat CPCs 

used in literature have been isolated from different parts of the heart or whole hearts. 

The number and functionality of these cells depends on donor characteristics. Higher 

numbers have been found to be present in women, and neonates have the highest 

number of CPCs among children. However, age was found to not be an influencing 

factor on number of CPCs in adulthood [53,59]. About 5.2% of cells isolated from right 
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atrial appendage of neonatal donors [59] and about 3.6% from those of adult donors  

[60] have been reported to be c-kit+. Their number increases during certain conditions 

such as pregnancy, following exercise, ischemia reperfusion and pediatric end-stage 

heart failure [61–63].  

 Effectiveness of CPCs depends on donor age and health state. For example, 

CPCs obtained from neonatal donors less than a week old were found to induce greater 

function improvement than those from older child donors in an animal model of pediatric 

right ventricular failure [64]. Neonatal CPCs show stronger in vitro proliferative capacity 

and are more effective than adult CPCs at recovering cardiac function post-MI. Neonatal 

CPCs showed greater levels of several cytokines and growth factors, and Heat Shock 

Factor-1 was found to be an important regulator of differences in secretome [45]. CPCs 

from diabetic donors are lower in number and demonstrate inferior proliferative capacity 

[65]. However, it may be possible to ameliorate these issues. For example, it was found 

that genetic modification of CPCs to overexpress Pim-1 kinase mitigates senescent 

characteristics and enhances youthful properties like proliferation in CPCs [66]. While 

reduced numbers and pluripotency of CPCs is observed in rats with chronic heart failure; 

their differentiation potential could be augmented by inhibiting TGF-β signaling [67].

 Cardiosphere derived cells: Cardiosphere derived cells are a natural mixture of 

stromal, mesenchymal, and progenitor cells and are obtained by culturing percutaneous 

endomyocardial biopsies, which yield spherical multicellular clusters called 

‘cardiospheres’. They are multipotent, clonogenic and immunopriveleged making them 

attractive candidates for clinical translation. Rats and pigs treated with allogeneic CDCs 

after MI showed restoration of heart function, scar reduction and increase of viable 

tissue [68,69]. CDCs were established to be safe in CADUCEUS and ALLSTAR phase 1 

clinical trials [70] and phase 2 ALLSTAR trial for testing allogeneic CDCs is underway 

[71]. In a direct comparison between CDCs and other stem cell types- BM-MSCs, BM-

MNCs, ADSCs and CPCs, CDCs showed the greatest potential for myogenic and 

angiogenic differentiation, resistance to oxidative stress and relatively high production of 

various angiogenic and antiapoptotic-secreted factors. Injection of CDCs into the 
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infarcted mouse hearts resulted in the greatest improvement in cardiac function, the 

highest cell engraftment, apoptosis reduction, myogenic differentiation rates, and LV wall 

thickness after 3 weeks [29]. Note that CPCs were obtained by selecting c-kit+ cells from 

CDCs, which is different from how CPCs are obtained in our lab and other primary CPC 

literature cited wherein c-kit+ cells are selected from digested atrial tissue. In addition to 

CPCs and CDCs, other populations of cardiac stem cells characterized by Sca-1, Isl-1 

expression, side population cells are also being investigated for cardiac cell therapy in 

preclinical studies [72].  

 Other cell types: Bone marrow mononuclear cells, a mixed population of single 

nucleus cells including monocytes, lymphocytes, hematopoetic stem cells, endothelial 

progenitor cells, mesenchymal stem cells, are the most studied cell source for cardiac 

cell therapy. Several preclinical and clinical studies are investigating the role of specific 

cell populations constituting BM-MNCs, such as CD34+ cells, endothelial progenitor 

cells, in order to determine the most efficacious treatment [31]. In spite of exciting results 

of preclinical and early clinical studies, BM-MNC administration failed to show significant 

improvement in cardiac function after MI irrespective of timing of administration (TIME, 

LateTIME and SWISS-AMI clinical trials. The results of BAMI phase 3 clinical trials to 

test the effect of intracoronary reinfusion of BM-MNC on all cause mortality in MI patients 

are awaited [73]. Mesenchymal stem cells from various tissue sources, including bone 

marrow and non-bone marrow tissues are being tested for cardiac cell therapy since 

they are multipotent, easy to obtain from patients and expand in vitro as well as 

immunopriveleged. After exciting results in animal models, the therapeutic effects of 

MSCs and ADSCs are now being tested in clinical trials (ATHENA). Skeletal myoblasts 

were thought to have the ability to act as surrogates for cardiomyocytes because of their 

force generating capabilities but they unfortunately caused arrhythmias and did not 

improve cardiac function in MAGIC phase I clinical trials. Embryonic stem cells and 

pluripotent stem cells have been used to obtain mature cardiomyocytes by differentiation 

and can also form blood vessels because of their multilineage potential. While injection 

of ESC derived cardiomyocytes improved cardiac function in non human primates, 
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arrhythmias were observed [74]. A single patient trial with ESC derived Isl-1+ SSEA+ 

cardiovascular progenitors, however, showed functional improvement and no arrhythmia 

complications in the 3 month follow-up [75]. The efficacy and safety of this treatment will 

need to be investigated in controlled randomized trials. Induced pluripotent stem cell- 

based treatments need to eliminate risk of arrhythmias and tumorigenicity before clinical 

translation [76] and attempts toward that are underway [77].   

1.2.2.2 Dosage, administration route, frequency and timing 

 Dosage: It is not known whether a low or high cell dosage yields the greatest 

benefit as conflicting results have been observed in both preclinical and clinical studies 

[78]. In clinical trials administering CD34+ bone marrow cells, the high doses of ≥10 

million cells showed the greatest benefit, and not the low dose of 5 million cells [79]. 

Whereas in another human trial with hMSCs, the lower dose of 20 million cells showed 

significantly greater cardiac function and infarct reduction than the 200 million cell group 

[80]. There is not a direct relation between cell dosage and clinical effect and therefore, 

the dosage needs to be optimized for the specific cell type and route of administration. In 

a dose-response study for CSCs delivered intracoronarily in an ischemia-reperfusion rat 

model, the lowest dose of 0.3 million cells had no effect, medium doses of 0.75 million, 

1.5 million and 3 million improved LV function to a similar extent, and the high dose of 6 

million cells was harmful as increased mortality was seen [81].   

 Route of delivery: Intracoronary and intramyocardial routes of cell delivery have 

been employed in cell therapy clinical trials. The difficulty of homing cells to the 

damaged heart when delivered through the intravenous route makes it unattractive in 

spite of the ease and low cost.  Following systemic intravenous delivery of BM-MSCs to 

rats after MI, the majority of cells are trapped in the lungs [82]. Intracoronary delivery 

method has been widely used in clinical trials and has been established to be safe. In 

this approach, cells are injected into a coronary artery through a balloon catheter placed 

in the coronary artery [83]. So it can be coupled with percutaneous coronary intervention 

(PCI) in which a catheter is placed in the coronary vasculature, and can also be tailored 



14 

 

to target a specific coronary region. The injected cells are required to transmigrate 

through the capillaries to reach the myocardium in the presence of strong coronary flow. 

Intramyocardial delivery can be done via minimally invasive thoracoscopic procedure or 

catheter-based needle injections. This route is the most direct and reliable for directly 

delivering cells to the myocardium. However, it requires more expensive equipment and 

specialized expertise; cell spillage can take place at the injection site and the delivery to 

only targeted areas could limit global function improvement [14]. A study comparing 

distribution of radiolabeled MSCs following intramyocardial, intracoronary, and interstitial 

retrograde coronary venous delivery in an ischemic swine model found significantly 

greater retention in the myocardium following intramyocardial injection (11+/-3%) versus 

intracoronary delivery route (2.6+/-0.3%) [84]. However, in another study performing 

direct comparison of intramyocardial and intracoronary approaches for CSC delivery 

showed similar improvement in global and regional LV echocardiographic parameters 

after MI. The intracoronary delivery led to greater uniformity of cell distribution, myocyte 

regeneration, and amount of viable tissue in the risk region [28].  

 Frequency: Few studies have measured the effect of multiple cell injections in 

comparison to a single injection, which has been the regimen in most clinical trials. 

Repeated injections were found to exert greater benefits than a single injection in case 

of CSCs injected in rats [85], BM-MNCs in humans [86,87] and skeletal myoblasts in 

pigs [88]. Another study delivering bone marrow cells to mice hearts after MI noted that 

the timing of cell delivery is more important and that repeat injections did improve 

ejection fraction but not infarct size reduction [89].  

 Timing: The timing of cell delivery after MI has been found to be a critical 

determinant of treatment efficacy, which is not surprising knowing that a sequence of 

distinct events follow infarction. The intracoronary injection of CPCs in pigs alleviated 

myocardial dysfunction whether they were treated the same day of MI or 7 days later. 

However, greater reduction of LV remodeling was seen in the day 7 treatment group 

[55]. Bone marrow cell treatment at 3 days after MI showed greater LVEF improvement 

than day 7 or day 14 injections [89]. TIME and Late-TIME trials compared the effect of 
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cell delivery timing as 3-7 days versus 2-3 weeks after AMI. Neither trial found the cell 

therapy treatment to elicit any benefit unfortunately [90]. Ascertaining the optimal timing 

of delivery is an aim of various phase 3 clinical trials [83]. In a rat model study, MSCs 

were injected at 1h, 1 week or 2 weeks after MI. The greatest function improvement and 

engraftment were observed in the 1 week group. This suggests that injection too early 

may lead to poor cell engraftment due to strong inflammatory response, and cells 

injected too late may suffer from lack of homing signals in the injured myocardium.[91]   

1.2.2.3 Treatments to enhance cell therapy  

Approaches utilizing biological, pharmacological agents and biomaterials, and their 

combinations have been investigated to enhance the effects of cell therapy. The 

mechanisms by which they act include improving the survival, engraftment of cells; 

pharmacokinetics of cell delivery, modulating cell differentiation state and/or paracrine 

factors.  

1.2.2.3.1 Biomaterials 

 Biomaterials can improve retention of cells, provide a protective environment to 

enhance cell survival, provide biophysical and biochemical cues that modulate the cell 

behavior (paracrine factors [92], differentiation) and modify wall stresses in an infarcted 

heart. Different types of biomaterials have been studied including natural derived and 

synthetic biomaterials and can be delivered as injectable materials or patches. Many 

variants of biomaterials in terms of size, mechanical properties, topography, porosity, 

degradation rate and chemistry have been investigated. Biochemical and biophysical 

properties of biomaterials greatly influence their mode of action.  

1.2.2.3.1.1 Types of biomaterials 

Examples of natural biomaterials include collagen, fibrin, Matrigel, hyaluronic acid, 

gelatin, tissue derived extracellular matrix etc. Natural-derived biomaterials have 

inherent bioactivity and integrin-binding proteins that promote cell attachment and 

signaling, can be degraded by endogenous proteins and release peptides or other 
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molecules. Their biochemical activity can be enhanced by coupling with additional 

signaling molecules [93]. Natural biomaterials generally are softer than native 

myocardium. Their mechanical properties can be adjusted within a range by certain 

methods such as increasing concentration, chemical crosslinking [94] and combining 

with a stiffer synthetic or natural material such as mixing softer collagen with stiffer 

gelatin [95]. While they are rich in biologic information, they have very limited tunability to 

achieve tight control of cellular behavior and tissue maturation. The very limited 

understanding at the molecular level of the in vivo response to materials incorporating 

native molecules is another limitation [96]. Synthetic biomaterial examples are 

poly(ethylene glycol), polylactide-caprolactone, peptide nanofiber scaffolds etc. Synthetic 

biomaterials can be modified to deliver bioactive agents via physical encapsulation or 

chemical immobilization. Synthetic biomaterials also provide greater possibilities of 

tuning mechanical and biochemical properties which in turn regulate cell morphology 

and behavior [97]. Along with acting as therapeutic agents and drug/cell delivery 

vehicles, synthetic material and their hybrids with natural molecules are important tools 

for understanding the mechanisms that affect cell and tissue behavior.  

 Biomaterials can be delivered to the heart via injection or as a patch. In the 

injectable approach, biomaterials are delivered in the liquid state as a direct injection in 

the ventricular wall (epicardial injection) or through a percutaneous catheter 

(transendocardial injection). Cell suspension can be mixed with the liquid form of the 

biomaterial before injection. The biomaterial immediately gels after transplantation to 

prevent cells from getting washed out. Design of such injectable biomaterials is often 

based on their sensitivity to gel at physiological conditions such as temperature and/or 

pH. Another injectable biomaterial strategy involves microspheres that can encapsulate 

cells or proteins. While the injectable biomaterials strategy circumvents the need for 

open-chest surgery and supports integration of the delivered materials with the 

myocardium, not all materials can be made injectable while maintaining their beneficial 

physical and biochemical properties necessary for repair and shear stress may be 

exerted on the cells. In the patch-based approach, a tissue-like structure is created in 
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vitro and then transplanted in vivo. The advantage of this approach is that the cells can 

be cultivated under precise culture conditions before in vivo delivery and then positioned 

precisely on the infarcted region. However, apart from the need for invasive surgical 

application, nutrient diffusion can limit the thickness of the constructs and the patch-

based approach supports limited integration of the graft with the host myocardium [14].  

 PEG hydrogels: Poly(ethylene glycol) is a hydrophilic polymer synthesized by the 

ring-opening polymerization of ethylene oxide. It is biocompatible and several PEG 

based formulations have been approved by the FDA. The biocompatibility, high water 

content, solute permeability, tissue like elasticity of PEG hydrogels make them an 

attractive candidate for delivery of cells and biomolecules [98]. PEG hydrogel can be 

made via different crosslinking mechanisms including photopolymerization, click 

chemistry, enzymatic crosslinking and supramolecular assembly [99].  

 PEG-4MAL hydrogels are based on 4-arm PEG macromers utilizing 

maleimide crosslinking click chemistry via Michael-type addition reaction. They 

maintain high viability of encapsulated cells, possess the ability to immobilize 

macromolecules/ligands and can be functionalized with cell-adhesive sites such as 

RGD and GFOGER, and crosslinked with protease sensitive peptides [100]. 

Therefore, PEG-4MAL hydrogels also have the capability to present the stem cells 

with a niche-like environment in terms of mechanical and biochemical cues. 

Mechanical properties of these gels can be tuned within a range by adjusting the 

PEG macromer size and density. In addition, these hydrogels are injectable, and 

possess low thrombogenicity and immunogenicity [101]. Therefore, they are 

synthetic hydrogels that have the advantage of greater control and consistency and 

can be functionalized with natural materials inspired bioactive molecules.  

1.2.2.3.1.2 Mechanism of action 

Codelivery of cells with biomaterials has shown improvements in their effects. 

Biomaterials impart the improvement through one or more of the following mechanisms: 
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improvement in retention; survival and engraftment; differentiation; proliferation; 

modulation of paracrine factors; and mechanical effects.   

 Retention: The retention of cells following injection to the LV is very low. Less 

than 10% cells are retained in 24 hours irrespective of injection method and cell type and 

more than 90% of the retained cells die within a week. Even though there is accruing 

evidence supporting the paracrine mechanism of action of stem cells, a correlation has 

been seen between stem cell engraftment, even though low, and functional effects [102]. 

Improvement in retention and engraftment of exogenous cells has been seen when 

delivered with many biomaterials. In a study comparing retention of MSCs delivered with 

saline injection (current clinical standard), 2 injectable hydrogels (alginate, chitosan/β-

glycerophosphate) and 2 epicardial patches (alginate, collagen), all 

four biomaterials retained 50-60% of cells after 24 hours compared to 10% for the saline 

control [103]. Cardiac stem cells encapsulated within low melt agarose supplemented 

with fibronectin and fibrinogen exhibited higher cell retention and engraftment in the 

infarcted myocardium as compared to cells only group (10 ± 1% vs. 4 ± 1% CSCs 

retained after 3 weeks, respectively; p ≤ 0.03) and greater improvement in cardiac 

function as well [104]. Retention of transplanted stem cells is closely related to the 

remaining biomaterial and depends on degradation rate of degradable materials, which 

can be modulated by several methods such as chemical crosslinking [105]. Longer 

retention of exogenous cells may enable more sustained release of their paracrine 

factors as well.  

 Cell survival and engraftment: The post-infarct microenvironment is hostile and 

limits cell survival and engraftment. Presence of significant oxidative stress and 

damaged myocardium lead to anoikis and death of transplanted cells. Biomaterials can 

provide a custom microenvironment for transplanted cells. For example, a previous 

study used nanofiber scaffolds to create an injectable pro-survival microenvironment for 

transplanted endothelial cells or cardiomyocytes in an infarcted myocardium. The 

greatest differentiation of implanted MSCs into TnI+ cells was seen in the RGDSP + 

nanofiber scaffold. The improved survival and differentiation with the RGD stimulation 
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was attributed to promotion of cell adhesion and prevention of anoikis, and stimulation of 

integrins relevant to early cardiac development α5β1 and αVβ3 [106]. In another study, 

culturing CDCs on platelet gels derived from venous blood led to higher viability of cells 

in vitro (CDCs on platelet gel: 1.8% EthD+ dead cells, CDCs on TCPS: 5.2% EthD+ 

cells) and promoted recruitment of endogenous stem cells in vivo. Hearts treated with 

CDC-seeded platelet gel showed the greatest improvement in LVEF, reduction of 

adverse left ventricular remodeling and the highest number of new vessels and 

cardiomyocytes in the infarct region as compared to hearts transplanted with platelet gel 

only or vehicle controls [41]. Physical properties such as Matrix architecture, topography, 

shear stress and stretch [107] also influence cell morphology and infiltration. For 

example, by introducing porosity between PCL electrospun fibers, cell infiltration and 

proliferation were improved. This enabled successful infiltration without compromising 

the mechanical stability by using materials such as PLGA that undergo faster hydrolytic 

degradation [108]. Biomaterial characteristics affect not just individual cells but higher 

level constructs as well. For example, degradable scaffolds also allow vascular invasion 

and integration of the graft with the host [109].  

 Cell differentiation: Biomaterials can induce differentiation of delivered cells 

through biochemical or physical cues initiated-signaling. For example, MSCs 

encapsulated in hydrogels made of N-isopropylacrylamide, N-acryloxysuccinimide, 

acrylic acid and poly(trimethylene carbonate)-hydroxyethyl methacrylate with 6% type 1 

collagen added to improve biocompatibility showed cardiomyocyte differentiation in vitro. 

Scaffolds with varying moduli (16, 45, 65 kPa) were prepared and differentiation extent 

was found to depend on mechanical properties. MSCs in the hydrogel with the 65 kPa 

modulus had the highest cardiomyocyte differentiation efficiency (76% after 14 days) 

and they even expressed Connexin43 [110]. Myoblasts fuse into myotubes 

independently of substrate stiffness but further maturation involving myosin/actin 

striations emerge later only on gels with stiffness typical of normal muscle (passive 

Young's modulus, E ∼12 kPa). [111]. Biomaterial degradation also influences cell 

differentiation via affecting cell spreading and traction. hMSCs encapsulated within HA 
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hydrogels that permit cell-mediated degradation exhibited high degrees of cell spreading 

and high tractions, and favored osteogenesis. Adipogenesis was favored in MSCs 

cultured in HA matrices of equivalent mechanics but restrictive of cell mediated 

degradation and therefore limiting cell spreading and traction. Interestingly, switching the 

permissive hydrogel to a restrictive state through delayed secondary crosslinking led to 

reduction of further hydrogel degradation, suppressed traction, and caused a switch from 

osteogenesis to adipogenesis. Pharmacological modulation of tension induced signaling 

had the same effect on cell fate determination [112]. Numerous studies have found that 

several biochemical and biophysical stimuli act synergistically to drive maturation of 

stem cells. Using a PEG-based hydrogel allowing control of biochemical and biophysical 

cues presented to encapsulated pluripotent P19 EC cells, the authors found that initial 

cardiac muscle commitment was enhanced by the matrix elasticity, but integrin 

stimulation and degradability was necessary along with matrix elasticity for further 

maturation. Soft matrices (E~322 Pa) mimicking the elasticity of embryonic cardiac 

tissue increased the fraction of cells expressing the early cardiac transcription factor 

Nkx2.5 compared to embryoid bodies (EB) in suspension. In contrast, stiffer matrices 

(E~4036 Pa) decreased the number of Nkx2.5-positive cells significantly. Further 

indicators of cardiac maturation were achieved by stimulation of integrins relevant in 

early cardiac development (α5β1, αvβ3) using RGDSP ligand in combination with the 

MMP-sensitivity of the soft matrix compared to EB in suspension. Stiffer matrices 

promoted skeletal muscle differentiation of the EBs [113].  

 Paracrine effects modulation: Biomaterials can also modulate the paracrine 

effects of cells through biochemical or physical cues they provide to cells. For example, 

in comparison with ADSCs cultured in monolayers, cells cultivated in alginate show 

higher mRNA expression of HGF and bFGF mRNA expression, which could enhance 

local angiogenesis and cell survival. Conditioned media from ADSC-alginate system also 

inhibit lymphocyte proliferation more than monolayer ADSCs [114]. In another study, 

conditioned media from MSCs adherent to polyacrylamide hydrogel functionalized with 

fibronectin, collagen I, or laminin was applied to 3D matrigel cultures containing human 
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microvascular endothelial cells. It was found that the extent of tubulogenesis, which 

depended on paracrine factors, was a function of the material composition and stiffness 

and gene expression of several cytokines depended on material stiffness. Through an 

experiment wherein the cell spreading was controlled by the area of fibronectin matrix 

layer underneath the cells, the authors found the secretion of cytokines to be a function 

of cell spreading on stiff substrates but not on soft substrates [115].  

 Mechanical effects: Biomaterials can provide a mechanical environment that 

supports maturation and functioning of the delivered cells in a beneficial manner and 

also provide mechanical support to the weakened LV wall post-MI.  

 Following myocardial infarction, beating cardiomyocytes are replaced by a fibrotic 

scar which is much stiffer (E~35-70 kPa vs E~10 kPa in healthy tissue) [23]. Cellular 

differentiation is dependent on the microenvironment mechanical properties [97]. In 

response to the post-infarct mechanical cues from the scar, MSCs transplanted in the 

post infarction environment start differentiating as demonstrated by troponin T 

expression but stop short of full differentiation into beating cardiomyocytes [23] and even 

run the risk of calcification [116]. Matrices that mimic the elasticity of the developing 

myocardial microenvironment are optimal for stem cell differentiation and maturation 

[111,117]. Chicken embryonic pre-cardiac cells were cultured on hydrogels stiffening 

over time to mimic developmental changes in the ECM. The dynamic collagen-coated 

HA hydrogels showed a 3-fold increase in mature cardiac specific markers and formed 

up to 60% more maturing muscle fibers than they do when grown on compliant but static 

polyacrylamide hydrogels over 2 weeks [118].  

 After myocardial infarction, the border zone expands chronically, causing 

ventricular dilatation. In an ovine model, following an MI, the LV wall decreased by 11% 

and endocardial curvature decreased by 55%. By Laplace's law, wall stress is inversely 

proportional to the product K.h (curvature.radius) so the geometric changes cause 

increased dynamic wall stress, which likely contributes to border zone expansion and 

remodeling [119]. It is believed that biomaterials also provide mechanical support and 

increase wall thickness, thereby reducing the wall stresses. Simulations support this 
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theory [120]. In a previous study, injectable HA hydrogels formulations possessing 

similar degradation and tissue distribution upon injection but differential moduli (G’=~8 

versus ~43 kPa) were injected into the infarcted heart of an ovine model. The modulus of 

the tissue/hydrogel composite was greater than explanted cardiac tissue alone for the 

MeHA High group but not for the MeHA Low group. Treatment with both hydrogels 

significantly increased the wall thickness compared with the control infarct. However, 

only the higher-modulus (MeHA High) treatment group had statistically smaller systolic 

and diastolic end volumes, and infarct area compared with the control infarct group. The 

high modulus group also tended to show the greatest function preservation [121]. This 

suggests the role of mechanical properties of biomaterial in mitigating LV remodeling. In 

another study, by measuring the effects of an inert PEG hydrogel (G’=500 Pa) injected in 

the LV, the authors decoupled the effects of mechanical support and bioactivity of 

biomaterials.  The PEG hydrogel injection increased wall thickness but the passive 

structural intramyocardial support by itself does not prevent negative LV remodeling or 

maintain cardiac function. No cell infiltration was seen in the PEG hydrogel. This  and 

another study with similar results suggests the importance of other mechanisms such as 

bioactivity and/or cell infiltration in the inhibition of LV remodeling and cardiac function 

improvement [122,123].  

1.2.2.3.2 Physical/Pharmacological/biological factor pretreatment or co-stimulation 

Methods to activate important survival or functional activity using physical, biological or 

pharmacological agents have been used as well, sometimes even in combination with 

each other or biomaterials. For example, exposing cells to hypoxic environment 

activates HIF-1α signaling which turns on survival pathways including increase in Akt 

phosphorylation and p38MAPK activity [124]. Consequently, improved survival in the 

infarcted microenvironment in vivo is seen after hypoxic preconditioning of MSCs [125]. 

Heat shock treatment at 42οC before implantation improves survival in cardiac stem cells 

[126] and skeletal muscle cells [127] in vivo. Small molecules such as Necrostatin-1 

reduce necrosis in cardiac stem cells [128]. Pretreatment with vasodilator prostacyclin 
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increases retention of ADSCs, perhaps by better extravasation of stem cells from 

vasculature into myocardium [129]. Codelivery or priming cells with biological factors 

such as VEGF, IGF-1 initiate pro-survival signaling pathways [130,131]. ADSCs 

pretreated with Exendin-4 demonstrate better survival and adhesion under oxidative 

stress in vitro and greater cardiac function preservation along with transplanted cell 

survival, angiogenesis and matrix remodeling after MI [132].     

1.2.2.3.3 Genetic manipulation 

Many studies have performed genetic manipulation of cells to enhance their functional 

properties or survivability in the hostile myocardium after MI. For example, in one study,  

rat MSCs transfected with hVEGF165 using adenovirus mediated gene transfer were 

delivered to rat hearts after MI. Reduction in infarct size, and improvement in left 

ventricular dimensions, ejection fraction and capillary density of the infarcted region was 

more enhanced than non-transfected MSCs or vehicle control [133]. The overexpression 

of VEGF in CPCs increases telomerase expression of VEGF, which suggests the 

importance of regulated expression of the factor [134]. The overexpression of Pim-1 in 

CPCs increases telomerase expression and activity, which enables telomere elongation 

in the cells. This in turn leads to enhanced regenerative potential of the CPCs via 

enhanced proliferation, metabolic activity and differentiation in vitro [135] and infarct 

reduction in vivo [66]. Treatment of MSCs with miR-210 improves their survival under 

anoxic and hypoxic conditions in vitro, and cardiac function preservation and infarct size 

control after MI in vivo [136,137]. Overexpressing integrin lined kinase (ILK) in MSCs 

[138,139] or Sca1+ [140] cardiac progenitor cells before transplantation enables them to 

better preserve cardiac function, reduce fibrosis and  increase angiogenesis in the host 

after MI [140].   

1.2.2.3.4 3D aggregates 

Three dimensional aggregates of stem cells enable greater cell-cell contact which can 

promote their functional effects. 3D cell aggregates are commonly generated by 
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culturing cells on non-adhesive surfaces or on highly porous biodegradable polymers 

among other methods. 3D aggregation of CPCs shows enhanced cardiac differentiation 

and resistance to oxidative stress [141]. Delivery of 3D aggregates of CPCs showed 

superior survival of implanted cells in vivo in comparison to cell suspension in an 

ischemia-reperfusion model [142]. MSCs in spheroids show enhanced expression of 

immunomodulatory factors and growth factors including TNFα and HGF [92].  

1.2.3 Other regenerative therapies 

Other regenerative therapies are being studied as well including acellular biomaterial 

based-, protein based- and gene based-therapies, or their combinations.  

 Biomaterials are being tested for their ability to improve cardiac function after MI 

not just as a cell carrier but acellular biomaterials, sometimes carrying a drug, as well. 

They offer the advantage of being simpler to translate than cell therapies. Both natural 

and synthetic materials have been tested including alginates, fibrin, hyaluronic acid, 

decellularized tissues, PEG hydrogels, nanofiber scaffolds etc. Their physical and 

chemical properties enable them to have beneficial effects and they have been able to 

reduce infarct expansion, leading to reduction in ventricular wall stress and attenuated 

ventricular remodeling. For example, acellular porcine decellularized matrix-based patch 

induces significant cardiac function improvement following MI. The graft recruited host 

progenitor, myocyte cells and vasculature. The recruited progenitor cells expressed both 

early and late cardiomyocyte differentiation markers and recruited cardiomyocyte-

like cells showed a partially striated and immature muscle fiber arrangement and 

expressed connexin43. Presence of the patch also induced an increased M2/M1 

macrophage subtype ratio in comparison with animals that did not receive any treatment 

[143]. Notch activating Jagged-1 functionalized nanofiber scaffolds improved cardiac 

function, decreased fibrosis, showed greater angiogenesis and cell proliferation [144]. In 

a study done with a relatively inert material PEG of rheological properties commonly 

used in animal studies for cardiac repair, to ascertain if the mechanical properties of 

biomaterials would be sufficient, cardiac function of infarcted rats did not improve. This 
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suggests that bioactive properties of biomaterials may be important for their ability to 

enhance cardiac repair [122].  

 Protein and gene therapy, by themselves or in combination with biomaterials are 

also being explored in the search for simple but potent regenerative strategies. Protein 

therapies are also expected to be less challenging to translate to the clinic given 

established expertise of the industry and regulatory bodies with recombinant proteins; 

and simpler storage, transport, maintenance requirements and greater ease of 

standardization than cells; and get an off the shelf therapy not possessing the risk of 

immunorejection. However, protein therapies may not be as dynamic and responsive to 

the microenvironment, and as rich as cells. A conclusion on whether cell therapies or 

protein-based therapies show superior results has not been made. Biomaterials are 

often used as delivery platforms to achieve controlled, sustained delivery of proteins 

possessing short half lives and/or deleterious effects in high doses, such as VEGF [145]. 

Delivery of VEGF and HGF via protease degradable PEG hydrogels improved chronic 

cardiac function in rats and limited remodeling [146]. With the knowledge that different 

proteins may serve different functions and act synergistically, and that cells exert their 

benefits primarily through a multitude of paracrine factors in cell therapy, cocktails of 

growth factors have also been tested. A direct comparison study reported that a single 

injection of neonatal CPC-derived total conditioned medium is more effective than 

transplanted neonatal CPCs or their exosomes [45]. Exosomes that carry microRNAs 

and proteins have been showing exciting results as well. Exosomes derived from CPCs 

improved cardiac function in infarcted rats and attenuated post-MI remodeling [147,148]. 
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CHAPTER 2. INTRODUCTION 

2.1 Motivation 

Cardiovascular disease is the leading global cause of death. In the United States 

cardiovascular diseases are responsible for 1 in every 4 deaths and pose an economic 

burden of over $200 billion every year. The significant morbidity, mortality and economic 

burden associated with coronary artery disease and heart failure motivate development 

of better prevention and therapeutic strategies. Coronary artery disease (CAD) involves 

the gradual development of an atherosclerotic plaque in the coronary artery and 

depends on various risk factors including genetics, cigarette smoking, hypertension, 

obesity etc. CAD often manifests as myocardial infarction. More than 75% of acute 

myocardial infarcts are the result of thrombotic occlusion of a coronary vessel caused by 

rupture of a vulnerable plaque [4]. Myocardial ischemia results in large scale 

cardiomyocyte death by necrosis and apoptosis, which commences a cascade of 

compensatory remodeling mechanisms. The pathological remodeling following MI is a 

common cause for heart failure. Briefly, after acute MI, loss of functioning myocytes 

occurs, followed by myocardial fibrosis and ventricular dilatation. Neurohormonal 

signaling and LV remodeling lead to progressive deterioration of the remaining viable 

myocardium, eventually leading to development of heart failure [6,149]. The existing 

treatment strategies aim at reducing preload, afterload, neurohumoral activation, and 

mineralocorticoid dysregulation. However, the underlying loss of cardiomyocytes and the 

remodeling that follows are not reversed [10]. The extent of fibrosis is a strong 

prognostic marker and correlates with morbidity and mortality due to arrhythmias and 

sudden cardiac death [150]. 

 Cell therapy for congestive heart failure has shown promising results in 

preclinical studies but results in clinical trials have been mixed and generally below 

expectations. This suggests the need for the modality of cell therapy to be optimized in 

order to enhance the regenerative potential of stem cells. C-kit+ cardiac progenitor cells 
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(CPCs) are adult stem cells that have been shown to differentiate into cardiomyocytes, 

endothelial cells and vascular smooth muscle cells [35,151], and exert beneficial 

paracrine effects[45]. They are safe for delivery as determined in phase I clinical trials, 

do not pose ethical issues, are easily isolated and expanded, and can be delivered 

autologously or allogeneically to patients [54,55]. These attributes make CPCs an 

attractive choice for cell therapy for heart failure and other cardiovascular diseases. 

Despite the positive outlook, injection of CPCs in humans in phase I trials resulted in 

moderate but insufficient improvements in cardiac function after myocardial infarction.  

 The poor outcome of cell therapy is attributed to the rapid wash out of injected 

cells as well as the hostility of the environment in the infarcted myocardium. Extensive 

damage in the myocardial extracellular matrix architecture and biochemical changes in 

addition to high oxidative stressors induce death of transplanted cells and provide 

insufficient regenerative cues to them. Delivering cells with well-designed biomaterials is 

a promising approach with the potential to overcome the hurdles listed above. 

Biomaterials can improve the retention of CPCs allowing controlled and sustained 

release of cells. In addition, various molecules of interest can be physically or chemically 

linked to biomaterials. Delivering cells embedded in biomaterials creates an opportunity 

to provide them with a custom microenvironment that protects them from the hostile 

chemical, mechanical and topographical signals in the infracted myocardium, and 

provide beneficial cues that enhance the regenerative potential of the transplanted 

cells[152].  

 Maleimide-crosslinked poly(ethylene glycol) (PEG-MAL) hydrogels are synthetic 

hydrogels that maintain high cell viability, are injectable and highly tunable in terms of 

their mechanical properties, degradation rate and ability to present sites for linkage of 

bioactive ligands for cell adhesion and stimulation [100]. Synthetic biomaterials-based 

strategies provide increased control over biochemical and physical properties as 

compared to natural ones; therefore, synthetic biomaterials can complement studies 

using natural biomaterials with cells and act as useful research tools to learn about the 

complex mode of cell therapy that has produced mixed results in clinical trials. In 
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addition, synthetic biomaterials can be used to develop therapeutic strategies with 

greater quality control and localized specific effects. 

2.2 Specific aims 

The central hypothesis of this dissertation is that customized bioactive synthetic 

scaffolds can be used to present microenvironmental cues to progenitor cells that 

modulate their behavior to enhance their therapeutic effects. The goal of this dissertation 

is to design and test PEG-MAL hydrogels of specific densities and functionalized with 

specific biochemical ligands that were hypothesized to promote the beneficial effects of 

CPC-based cell therapy. 4-arm PEG-MAL (PEG-4MAL) hydrogels are customizable 

allowing some orthogonal control of parameters like viscoelasticity and ligand density. 

CPCs are interesting candidates for cell therapy as they have shown encouraging, albeit 

insufficient, improvement in phase 1 trials. Therefore, developing PEG-4MAL scaffold 

designs to enhance the effects of CPCs has the potential to develop important therapies 

for humans.  

  
Aim 1: VEGF functionalized scaffolds for enhancing CPC angiogenic behavior. 

The hypothesis of this study is that degradable hydrogels functionalized with VEGF 

enhances angiogenic behavior of encapsulating CPCs. Endothelial differentiation of 

CPCs, tube formation characteristics in hydrogel and modulation of paracrine factors in 

the presence of VEGF were measured. Different growth factor doses, cell populations 

and biomaterial density and degradation rates were tested. 

  
Aim 2: Integrin specific hydrogels for activation of regenerative signaling in CPCs. 

The hypothesis of this study is that encapsulating CPCs in integrin-specific hydrogels 

improves adhesion and activates signaling involved in reparative processes. Basal 

integrin expression on CPCs and rheological properties of hydrogels were characterized. 

Expression of lineage markers to assess differentiation of CPCs and secreted factors in 

vitro following encapsulation in integrin-specific or non-adhesive control gels were 

measured. In vivo measurement of effects of these constructs on cardiac function in an 
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ischemia-reperfusion model and ex vivo analyses of cardiac fibrosis, angiogenesis, 

hypertrophy and engraftment of exogenous cells were performed.  
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CHAPTER 3. VEGF FUNCTIONALIZED SCAFFOLDS FOR 

ENHANCING ANGIOGENIC BEHAVIOR OF CARDIAC 

PROGENITOR CELLS 

The objective of this study is to determine how VEGF presenting hydrogels modulate 

behavior of encapsulated CPCs in vitro in terms of endothelial differentiation, tube 

formation tendency, and secretion of paracrine factors. Different growth factor doses, 

cell populations, and biomaterial density and degradation rates were tested. 

3.1 Motivation 

Therapeutic angiogenesis following MI: Myocardial infarction (MI) is characterized by 

myocyte death, scar formation, ventricular remodeling, and potential progression to heart 

failure. Various treatment options currently in use aim to re-establish blood flow to the 

ischemic tissue. Early stage disease is managed by lifestyle changes and 

pharmacological agents that reduce the heart rate to decrease the amount of oxygen it 

requires and/or increase blood flow by vascular smooth muscle dilation. As the disease 

progresses, patients require coronary revascularization by percutaneous coronary 

intervention (angioplasty) or bypass surgery. A significant number of patients are 

ineligible for these surgical procedures as they continue to suffer from associated 

comorbidities and symptoms of MI after treatment because of widespread blockages 

as in diffuse coronary artery disease [153]. Stimulating angiogenesis at the ischemic 

site using proangiogenic molecules and/or cells has the potential to aid such patients 

who do not benefit from existing therapies [154]. An estimated 30-60% of patients 

suffer from microvascular dysfunction or “no reflow”, preventing proper perfusion of 

the entire myocardium. Angiogenesis can restore the dysfunctional microcirculation 

and prevent the progression to heart failure [155]. Additionally, tissue engineered 

vascular grafts are expected to be superior to autografts and synthetic grafts 

because they have the potential to satisfy the need for non-morbid, easily available 
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and non-thrombogenic grafts. Therefore, inducing therapeutic angiogenesis after an 

MI is believed to greatly improve patient outcomes. A large body of preclinical 

evidence has shown improvement in perfusion and myocardial function after 

inducing angiogenesis in animal models of myocardial infarction and hind limb 

ischemia. Neoangiogenesis in the infracted heart results in beneficial hypertrophy of 

myocytes [156], reduced apoptosis of hypertrophied myocytes, improved survival of 

viable myocytes and reduction in collagen deposition [157], thereby contributing to 

improved myocardial function.  

 Cell therapy for therapeutic angiogenesis: Different populations of resident 

stem cells have been found in the heart but they are either insufficient in numbers, 

have inadequate differentiation potential or receive improper cues to drive sufficient 

regeneration after MI. Cells that secrete angiogenic factors or are precursors to 

vasculogenesis have been studied for implantation for therapeutic angiogenesis. Cell 

therapy has been shown to result in altered LVEF ranging from -7% to +25%, 

depending on cell type, number of cells, site of infarct etc., in large animals [158]. 

Insufficient cardiac improvement after cell therapies in clinical trials is attributed 

primarily to low retention and survival of cells and insufficient pro-regenerative cues 

in the ischemic region [159]. In the event of an MI, the architecture of extracellular 

matrix is also damaged along with cells, which further limits engraftment of 

transplanted cells [160]. Biomaterials provide the opportunity to present cells with a 

regenerative microenvironment in terms of physical and biochemical signals. 

Delivering cells to an infarcted heart via biomaterials has previously been shown to 

result in retention and survival of 50-60% cells after 24 h compared to 10% with 

saline [103]. Some recent studies have used a combination of growth factors, cells 

and scaffold. Cord blood derived vasculogenic progenitor therapy was found to result 

in greater vessel density when codelivered with VEGF, HGF and Ang-1 [161]. 

Similar improvement was seen on delivering VEGF with EPCs via PCL scaffold 
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[162]. Co-delivery of FGF-10 with iPSCs via a nanofiber scaffold resulted in greater 

number of differentiated cardiomyocytes suggesting the role of codelivered growth 

factor in differentiating the encapsulated cells [163].  

 CPCs for therapeutic angiogenesis: CPCs are adult stem cells isolated from 

the heart, first discovered in 2003 [35]. These cells have been shown to have the 

potential to differentiate into vascular lineages (endothelial, vascular smooth muscle 

cells) as well as into myocardial cells [36,151]. Therefore, they are an attractive 

population to study for regeneration of vasculature as well as vascularized 

myocardium. Flk1+ CPCs have a greater tendency to form endothelial and vascular 

smooth muscle cells and Flk1- CPCs to form cardiomyocytes [36]. Injection of CPCs 

in the SCIPIO trial resulted in unprecedented LV improvement and decreased 

fibrosis [164]. CPCs are isolated from the heart by selecting c-kit+ cells from the 

atrial appendage, which is removed as part of the routine procedure for coronary 

artery bypass graft and can be cloned and expanded in culture [54] and the 

autologous cells delivered to the patients in about six weeks. Clinically relevant 

number of functional CPCs can be isolated from patients with advanced heart failure 

as well [165]. These cells have been found to be necessary and sufficient for cardiac 

regeneration [166]. Injection of CPCs in clinical trials has established their safety 

[164]. Genetic mapping studies suggest that the majority of these cells may be 

vascular progenitors and differentiate into endothelial cells in vivo [167]. For these 

reasons, CPCs are an exciting alternative population that is worth exploring for 

vascular tissue engineering.  

 PEG-MAL hydrogels for stimulating CPCs and supporting angiogenesis: 

PEG-4MAL hydrogels are synthetic biomaterials that maintain high viability of 

encapsulated cells, are able to immobilize macromolecules possessing free thiols, 

can be functionalized with cell-adhesive RGD sites and crosslinked with protease 

cleavable peptides [100]. Because of these properties, PEG-4MAL hydrogels have 
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the capability to present stem cells with a niche-like environment in terms of 

mechanical and biochemical cues. Mechanical properties of these gels can be tuned 

by adjusting the PEG macromer size and density. In addition, these hydrogels are 

injectable and show low thrombogenicity and immunogenicity [101]. Therefore, PEG-

4MAL hydrogels are synthetic hydrogels that have the advantage of greater control 

and consistency, together with the ability to be functionalized with natural material-

inspired bioactive molecules such as RGD and VEGF. RGD supports angiogenesis 

because it is a ligand for αVβ3 integrins that are highly expressed in endothelial cells 

undergoing angiogenesis [168]. Because of the protease cleavable sites, these 

hydrogels allow for sprouting and branching of blood vessels. These hydrogels have 

been shown to release immobilized VEGF in a cell-demanded manner [146].   

 VEGF: VEGF is one of the most studied proangiogenic growth factors, 

perhaps due to its role in vascular development and tumor vascularization. VEGF-A 

promotes endothelial cell survival, proliferation and migration and drives 

vasculogenesis and angiogenesis primarily through VEGFR2/Flk-1 [169]. 

Administration of VEGF leads to neoangiogenesis and improved blood flow in a 

rodent model [170] as well as improved cardiac function in a porcine model of MI 

[171]. VEGF induces endothelial differentiation of numerous stem cells including 

ESCs [172], PSCs [173], MSCs [174] and amniotic fluid-derived stem cells [175]. 

Several isoforms of hVEGF exist including soluble VEGF-121, that diffuses freely 

and heparin binding VEGF-165, which is mostly present as bound to the extracellular 

matrix and cell surface. The mitogenic activity of VEGF-121 is lower than that of 

VEGF-165 [169].   

 Effects of VEGF on CPCs: VEGF promotes migration of CPCs [146,176,177] 

via activation of PI3K/Akt. It also improves adhesion of CPCs to extracellular matrix and 

endothelial cell-mediated adhesion systems in vitro and engraftment in vivo via VEGFR-

PKCα-VCAM-1 pathway stimulation. Inhibitors of both VEGFR1 and VEGFR2 attenuate 

CSC migration. Interestingly, additional mechanisms are involved as inhibitors for both 
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VEGFR1 and VEGFR2 did not completely block the VEGF induced CSC migration. Both 

VEGFR1 and VEGFR2 inhibitors blocked the VEGF induced CSC adhesion as well. 

CSC adhesion to endothelial cells was increased in a dose dependent manner with 

VEGF121, VEGF165, or VEGF189 treatment. Further, delivery of VEGF treated CPCs to 

infarcted hearts led to improved cardiac function, perhaps because of enhanced 

engraftment and homing [178].  

3.2 Rationale and hypothesis 

CPCs have been shown to differentiate into endothelial cells in vitro and in vivo 

[36,151]. Co-delivering CPCs with VEGF will provide them a proangiogenic 

environment. It has been seen with other cell types (EPCs [162], cord blood derived 

vasculogenic progenitor cells [161]) that a combination of VEGF with these 

progenitor cells was superior to cells only in neovasculature density. VEGF induces 

endothelial differentiation of many stem cells and is expected to drive VEGFR2 

expressing CPCs down the endothelial lineage as well. VEGF is also expected to 

improve survival of these cells in the hypoxic environment post MI [179]. Like 

endothelial cells, CPCs are known to migrate in response to a VEGF concentration 

gradient [177], which is essential to angiogenesis.  

3.3 Approach 

CPCs were encapsulated in PEG-MAL hydrogels with or without VEGF. A schematic of 

the synthesis process is shown in Figure 1. Cell viability of CPCs in PEG hydrogels was 

ascertained. mRNA and protein expression of endothelial differentiation markers, tube 

formation characteristics in hydrogel and modulation of secreted paracrine factors in the 

presence of VEGF were measured. Effect of VEGF supplementation with different 

growth factor doses (100, 250, 5000 ng/mL), cell populations (rCPCs- rat CPCs, 

nhCPCs- neonatal human CPCs, chCPCs- child human CPCs), biomaterial density (4%, 

5% w/v) and degradation rates (fast degrading ‘VPM’, slow degrading ‘GPQ’) were 

tested. For testing the effect of VEGF supplementation in these various combinations, 
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mRNA expression of endothelial differentiation markers was used as the main surrogate; 

paracrine factors also were assayed for gels of different degradation rates. The 

constructs were made with 5% w/v PEG, 2 mM RGD, 10 million CPCs/mL, 0 or 5 ug/mL 

VEGF unless otherwise specified.  

 

 

Figure 1. Schematic detailing synthesis of VEGF functionalized PEG 
hydrogels. 4- arm PEG macromers were incubated with RGD and VEGF (or no 
VEGF in control samples), then mixed with cell suspension and finally crosslinked 
using VPM. Substitutions of RGD or VPM were made in some experiments and are 
described where that was the case. 

3.4 Results 

3.4.1 Viability of encapsulated rCPCs 

PEG-4MAL hydrogels have been found to support high viability of other cell types, but 

we tested viability of encapsulated CPCs to confirm its fit as a cell carrier for CPCs. We 

used Calcein AM/EthD-1 based live/dead assay on hydrogel constructs 3 days after 

encapsulation. Live cells uptake hydrophilic, cell permeating, fluorescent Calcein which 
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is generated following hydrolysis of non-fluorescent Calcein AM by intracellular 

esterases. EthD-1 cannot pass through the intact membrane of live cells but passes 

through the compromised membranes of dead cells and its fluorescence amplifies upon 

binding to nucleic acids. We tested hydrogels of different densities (4%, 5%, 6% w/v) 

and found approximately 80% viability in all hydrogel densities. The cells that were 

stained by Calcein AM only were counted. Specifically, 84.07±2.11% cells were Calcein 

AM+EthD- in 4% hydrogels, 83.99±6.86% in 5% hydrogels and 85.13±2.92% in 6% 

hydrogels (n=3).  

3.4.2 Activation of signaling in rCPCs in VEGF-immobilized hydrogels 

We measured ERK phosphorylation as a surrogate for determining successful activation 

of VEGF-stimulated signaling because VEGF binding to VEGFR2 activates the 

ERK/MAPK pathway. Measurements were made using cell lysates obtained 1 h post-

encapsulation (10 min gelation + 10 min + 40 min Collagenase I treatment to release 

cells) as ERK phosphorylation is seen within minutes of cell stimulation in 2D. 18 h cell 

lysates were also tested to assess if ERK activation is sustained longer in immobilized 

VEGF-stimulated cells. ERK phosphorylation was determined by immunoblotting for 

phospho-ERK and total ERK and densitometry of obtained bands. Ratio of pERK/ERK 

signals was normalized by dividing by time-matched control (0 ng/mL VEGF) pERK/ERK 

signals ratio. As shown in Figure 2, ERK phosphorylation was 2.59±0.77 times higher 

than the control (p<0.05) in 250 ng/mL VEGF carrying hydrogels 1 hour after 

encapsulation but not 18 hours later. A lower dose of 100 ng/mL VEGF not lead to 

increased ERK phosphorylation at either time point. 
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Figure 2. Cell viability in hydrogels. Three days after encapsulating cells in 
hydrogels of different densities, they were incubated with Calcein AM and EthD-1 
dyes which stain live and dead cells respectively. (A) Number of Calcein AM (green) 
and EthD-1 (red) stained cells were counted and percentage of cells stained by 
Calcein AM only were computed. Values are mean ± SEM; n=3. (B) Representative 
micrograph of cells in PEG-MAL hydrogel stained with Calcein-AM and EthD-1 
show green, red and colocalized red and green colors; scale bar equals 200 μm. 
 

 



38 

 

Figure 3: ERK phosphorylation. rCPCs were encapsulated in hydrogels 
immobilized with 0 (control), 100 and 250 ng/mL VEGF-165. The hydrogels were 
degraded using Collagenase treatment and cells lysed 1 h or 18 h after 
encapsulation. ERK phosphorylation was determined by immunoblotting for 
phospho-ERK and total ERK and densitometry of obtained bands. Ratio of 
pERK/ERK signals was normalized by dividing by time-matched control (0 ng/mL 
VEGF) pERK/ERK signals ratio. Values are mean ± SEM; statistical significance of 
difference between means was measured using ANOVA and Dunnett’s post-hoc 
test comparison to control, *:p<0.05; n=4-10. Representative blot at 1 h is also 
shown. 

 

 

3.4.3 Expression of lineage markers in rCPCs 

Differentiation of VEGF-PEG gel encapsulated CPCs into endothelial cells was 

assessed by measuring mRNA and protein expression of endothelial markers (flk1, tie2, 

cdh5 and vwf) 7 days after encapsulation, using real-time PCR and flow cytometry, 

respectively. Various doses were tested, 100 ng/mL, 250 ng/mL, 5 ug VEGF/mL 

hydrogel, for real-time PCR and for flow cytometry, all doses except the highest dose of 

5 ug/mL were tested. We had noted heterogeneity in Flk-1 expression in CPC 

populations among different clones ranging from approximately 3-80% (data not shown). 

Only the clones showing Flk expression by 70% or more cells were used following 

preliminary studies appearing to suggest a correlation of Flk expression in cell 

populations and increase mRNA expression of endothelial markers response to VEGF 

(data not shown), as well a report from literature showing Flk1+c-kit+ cells to be vascular 

progenitors and Flk1-ckit+cells to be myogenic progenitors[36]. As shown in Figure 4(A), 

neither dose of VEGF led to statistically significant increase in mRNA expression of 

either endothelial marker (n=2-10). As shown in Figure 5, protein expression levels of 

endothelial markers Flk1, Pecam1, VE-cadherin and vWF were also not different in 

VEGF gel treated rCPCs than those from control gels (n=3). Flk-1 was expressed in 

23.69±3.79% cells obtained from control gels and in 24.29±3.81% and 45.47±10.40% 

cells harvested from 100 ng/ mL and 250 ng/mL VEGF functionalized hydrogels 

respectively. No differences in means were seen between control group and either 
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treatment dose in percentage of cells expressing endothelial markers VE-cadherin, 

Pecam-1 and vWF. About 98% cells expressed VE-cadherin and vWF and about 75% 

cells expressed Pecam-1. Statistical significance of difference between means was 

evaluated by one-way ANOVA followed by Tukey’s post test with significance level set at 

α=0.05.  

 

Figure 4: mRNA expression of endothelial markers in rCPCs. mRNA expression 
of endothelial lineage markers (encoding protein) flk1 (VEGF Receptor 2), tie2 (TEK 
Receptor Tyrosine Kinase), cdh5 (VE-Cadherin), vwf (von Willebrand Factor) was 
measured 7 days after encapsulating hCPCs in PEG-MAL gels immobilizing 2 mM 
RGD and 0, 100, 250 or 5000 ng/mL VEGF using real-time PCR. Data are 
expressed as fold change over 0 ng/mL VEGF control. Values are mean ± SEM; 
n≥8 for 100 and 250 ng/mL groups and n=2 for 5 ug/mL group.  
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Figure 5: Protein expression of endothelial markers. (A) Protein expression of 
endothelial lineage markers Flk1 (VEGF Receptor 2), VE-Cadherin, Pecam-1 and 
vWF (von Willebrand Factor) was measured 7 days after encapsulating hCPCs in 
PEG-MAL gels immobilizing 2 mM RGD and 0, 100 or 250 ng/mL VEGF using flow 
cytometry. Values are mean percentage of cells expressing the specific protein ± 
SEM; n=6.  

3.4.4 Tube formation characteristics in rCPCs 

Hydrogels of different densities (4, 5, 6% w/v) were tested for their suitability for 

formation of vascular structures with and without VEGF conjunction. The Young’s 

modulus of each of these hydrogels lies in the range of 450-800 Pa, that has been 

reported to enable tube formation by endothelial cells[180]. Since the most suitable 

hydrogel stiffness for stem cell differentiation and tube formation is dependent on the 

specific cell type and adhesivity of the gel[181],[182], we tested gels of different 

stiffness for our application. Only a limited range of biomechanical environments are 

suitable for tube formation. Less stiffer gels are likely to support greater branching 

and sprouting [181][176] but too compliant matrices result in formation of unstable 

lumens[184]. Number of branching points presented by CPCs was measured in 

hydrogels with and without 100 ng/mL VEGF 7 days after encapsulation. Figure 6(A) 

demonstrates that lower density gels show a trend of greater branch points per frame. 

The effect of hydrogel density was statistically significant (n=2-5, p=0.0012) by two-way 
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ANOVA analysis. Number of branch points per frame was not influenced by VEGF 

supplementation in hydrogels of either density. Figure 6(B) shows examples of branch 

points counted by pointing with white arrows.   

 

 

Figure 6: Tube formation characteristics by CPCs in hydrogel. (A) Number of 
branching points presented by CPCs was measured in hydrogels with or without 
100 ng/mL VEGF 7 days after encapsulation. Values are mean ± SEM; statistical 
significance of differences was assessed using ANOVA; *:p<0.05. (B) White arrows 
point to examples of branch points in this image.  

3.4.5 Expression of lineage markers in hCPCs 

We had been using different clones of rat CPCs in the experiments so far. The results 

from rat cells showed a lot of heterogeneity making it difficult to make conclusions 

reliably. We switched to more relevant human CPCs and used a pool of cells obtained 

from 3 different patients to address these issues. These were obtained from patients of 

age 1 week or less and are will be referred to as neonatal hCPCs (nhCPCs). Following 

observation of endothelial cells by majority of rCPCs obtained from control gels lacking 

VEGF (Figure 5) and cells not receiving any kind of treatment (data not shown), basal 

expression of endothelial markers in untreated nhCPCs was tested as well. Figure 7 

shows representative histograms of populations stained with antibodies for endothelial 

markers Flk1, Pecam1, VE-cadherin and vWF. More than 95% of cells express mature 

endothelial markers Pecam-1, VE-cadherin and vWF. Based on these observations, we 
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measured mRNA expression in subsequent experiments to determine increase in 

endothelial lineage commitment.  

 

Figure 7: Basal expression of endothelial markers on nhCPCs. Basal 
expression of stem marker c-Kit and endothelial markers Pecam-1, vWF, Flk-1 and 
VE-Cadherin in unstimulated nhCPCs was measured using flow cytometry. 
Histograms showing count of cells on Y-axis and fluorescence intensity on X-axis 
are shown for the analytes and secondary antibody only negative control; n=1. 

 

RGD has been shown to support angiogenesis therefore we included scrambled rDg 

with and without VEGF groups in order to determine the role of RGD in inducing 

endothelial differentiation of CPCs. mRNA expression of endothelial markers at d2 and 

d5 were measured. Figure 8 panels (A) and (B) show mRNA expression of endothelial 

lineage markers flt1, vwf, cdh5 and pecam1 at d2 and d5 respectively. There was no 

statistical difference between means of any group suggesting that presence of neither 

RGD (compared to rDg) nor VEGF (compared to respective control groups without 

VEGF) affects mRNA expression of endothelial markers.  
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Figure 8: mRNA expression of endothelial markers in neonatal hCPCs 
(nhCPCs). mRNA expression of endothelial lineage markers (encoding protein) flt1 
(VEGF Receptor 1), vwf (von Willebrand Factor), cdh5 (VE-Cadherin) and pecam1 
(Pecam-1) was measured (A) 2 days and (B) 5 days after encapsulating neonatal 
hCPCs in 5% w/v PEG-MAL gels immobilizing 2 mM rDg, 2 mM rDg + 5 μg/mL 
VEGF, 2 mM RGD or 2 mM rDg + 5 μg/mL VEGF using real-time PCR. A standard 
curve was prepared using human LV atrial tissue total mRNA to measure mRNA 
copy numbers. Values are mean mRNA copies per million copies of GAPDH ± 
SEM; n=4. 

 

 Lower density hydrogels are more likely to be conducive for tube formation 

because of lower stiffness which supports endothelial differentiation and higher porosity 

that allows cells to migrate and form tube networks. Our results from studies with rat 

cells (Figure 6) and preliminary studies with human cells (Figure 9(A)) showed greater 

elongation of CPCs, sprouting and formation of tip-like cells in lower density gels. 

Therefore, we tested mRNA expression of endothelial markers following VEGF 

supplementation in lower density 4% w/v gels. As shown in Figure 9(B), there was no 

significant difference between means of mRNA expression of endothelial markers 

between rDg, rDg+VEGF, RGD and RGD+VEGF groups in 4% w/v gels in any marker of 

endothelial or vascular smooth muscle lineage tested- flt1, cdh5, pecam1, vwf, tagln, 

acta2.  
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Figure 9: mRNA expression in neonatal hCPCs in low density gels. (A) 
Micrographs showing morphology of neonatal hCPCs encapsulated in low density 
3.5% or high density 5% w/v gels. (B) mRNA expression of endothelial lineage 
markers (encoding protein) flt1 (VEGF Receptor 1), cdh5 (VE-Cadherin), pecam1 
(Pecam-1), vwf (von Willebrand Factor), tagln (Transgelin), acta2 (Aortic smooth 
muscle actin) was measured 2 days after encapsulating neonatal hCPCs in 4% w/v 
PEG-MAL gels immobilizing 2 mM rDg, 2 mM rDg + 5 μg/mL VEGF, 2 mM RGD or 
2 mM RGD + 5 μg/mL VEGF using real-time PCR. Values are mean mRNA copies 
per million copies of GAPDH ± SEM; n=2. 
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Figure 10: mRNA expression in hCPCs from older child patients. mRNA 
expression of endothelial lineage markers (encoding protein) flt1 (VEGF Receptor 
1), cdh5 (VE-Cadherin), pecam1 (Pecam-1), vwf (von Willebrand Factor), tagln 
(Transgelin), acta2 (Aortic smooth muscle actin) was measured 2 days after 
encapsulating neonatal hCPCs in 4% w/v PEG-MAL gels immobilizing 2 mM rDg, 2 
mM rDg + 5 μg/mL VEGF, 2 mM RGD or 2 mM RGD + 5 μg/mL VEGF using real-
time PCR. Values are mean mRNA copies per million copies of GAPDH ± SEM; 
n=6. 
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Through a previous study from our lab and others in literature, CPCs from neonatal 

patients (nhCPCs) have been found to show possess greater regenerative potential than 

cells from older infant/child patients. For this reason, we tested the effect of VEGF 

supplementation on CPCs from older children patients 1 year or older in age (chCPCs), 

to determine if VEGF stimulation would impart more benefit to the less regenerative 

population. As shown in Figure 10, no significant differences were found between means 

of mRNA expression of endothelial markers between the treatment groups in 5% w/v 

gels using child CPCs in any marker of endothelial or vascular smooth muscle lineage 

tested.  

 

We hypothesized that the hydrogels may be degrading too fast to allow immobilized 

VEGF to interact with CPCs and stimulate them for enough duration to induce 

endothelial differentiation or modulate their paracrine factors. So we tested effect of 

VEGF supplementation in slow degrading ‘GPQ’ gels. GPQ is a protease sensitive 

crosslinker with a lower rate constant of the protease mediated cleavage reaction [185]. 

However, as shown in Figure 11, mRNA expression of the cardiac lineage commitment 

(nkx2.5, gata4), endothelial (flt1, cdh5, pecam1, vwf) and vascular smooth muscle (tagln, 

acta2) markers was similar between VEGF supplemented samples and their respective 

controls with matched crosslinkers but no immobilized VEGF. Therefore, VEGF 

supplementation did not affect mRNA expression of these genes in slow degrading GPQ 

gels as well. There were differences in cdh5 (encoding VE-cadherin) gene expression 

between VPM and GPQ gels in the absence or presence of VEGF. 
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Figure 11: mRNA expression in in slow degrading PEG gels. mRNA expression 
of lineage markers (encoding protein) flt1 (VEGF Receptor 1), cdh5 (VE-Cadherin), 
pecam1 (Pecam-1), vwf (von Willebrand Factor), tagln (Transgelin), acta2 (Aortic 
smooth muscle actin), nkx2-5 (NK2 Homeobox 5), gata4 (GATA Binding Protein 4) 
was measured 2 days after encapsulating neonatal hCPCs in 5% w/v PEG gels 
crosslinked with fast degrading crosslinker VPM or slow degrading GPQ. Data are 
reported as fold change over VPM-RGD control; statistical significance of difference 
between means was measured using ANOVA and Tukey’s post-hoc test, *: p<0.05; 
n=5. 

3.4.6 Paracrine factors 

VEGF can also modulate the secretome of stimulated cells. We measured the effect of 

VEGF supplementation on paracrine factors in both fast degrading VPM and slow 

degrading GPQ gels using ELISA. Concentration of Vascular Endothelial Growth Factor 

(VEGF), Hepatocyte Growth Factor (HGF), Angiogenin, Basic Fibroblast Growth Factor 

(FGFb), Placental Growth Factor (PlGF), Heparin Binding-EGF like Growth Factor (HB-

EGF) and Epidermal Growth Factor (EGF) in d3 conditioned media obtained from 

neonatal hCPC encapsulating 5% PEG gels crosslinked with fast degrading VPM/slow 

degrading GPQ and with/without immobilized 5 ug/mL VEGF were measured using an 

ELISA array. As shown in Figure 12, VEGF supplementation did not have an effect on 

levels of secreted paracrine factors Angiogenin, HGF, bFGF, PlGF, EGF and HB-EGF. 

VEGF concentration in d3 conditioned media obtained from VEGF-PEG gels appears to 

be higher than gels without VEGF in case of both GPQ and VPM gels; the elevation in 

conditioned media VEGF on immobilization of VEGF to PEG gels appears to be higher 

in GPQ gels than VPM gels (RGD-VPM: 3806±430.5, RGD+VEGF-VPM: 7413±619.2, 

RGD-GPQ: 175±8.112, RGD+VEGF-GPQ: 8448±543.6 pg/mL). However, this 

experiment only consisted of 2 data points so statistical significance cannot be 

established. 
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Figure 12: Secreted factors in conditioned media. Concentration of Vascular 
Endothelial Growth Factor (VEGF), Hepatocyte Growth Factor (HGF), Angiogenin, 
Basic Fibroblast Growth Factor (FGFb), Placental Growth Factor (PlGF), Heparin 
Binding-EGF like Growth Factor (HB-EGF) and Epidermal Growth Factor (EGF) in 
conditioned media of neonatal hCPC encapsulating 5% PEG gels crosslinked with 
fast degrading VPM/slow degrading GPQ and with/without immobilized 5 ug/mL 
VEGF at d3 were measured using an ELISA array. Values are mean; n=2. 
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3.5 Discussion 

The angiogenic, mitogenic and survival-enhancing effects of VEGF are well known. We 

therefore proposed and tested VEGF conjugated PEG hydrogels (made with 5% w/v 

PEG, 2 mM RGD, 10 million CPCs/mL, 0 or 5 ug/mL VEGF unless otherwise specified) 

for delivery of CPCs as a strategy to enhance CPC-based cell therapy. It has previously 

been shown that VEGF-165 conjugated to PEG-MAL gels retains its biological activity, 

and VEGF conjugated PEG gels enhance network formation in HUVECs [186]. We used 

ERK phosphorylation as a surrogate for assessing activation of VEGF-induced signaling 

because of its known participation in growth factor stimulation signaling pathways [187] 

and found that CPCs encapsulated in VEGF conjugated gels indeed show increased 

ERK phosphorylation. 

 Despite increased ERK activity, expected downstream outcomes (RNA and 

protein expression) as well as functional outcomes (tube formation) were not significantly 

altered. We tested commonly seen VEGF-stimulation effects including mRNA and 

protein expression of endothelial markers, and tube formation characteristics in the 

hydrogel. The PEG hydrogel was degradable and functionalized with RGD, which made 

it a suitable platform to test tube formation characteristics of CPCs in presence or 

absence of VEGF. We tested these features separately in rat (rCPCs) and human CPCs 

(hCPCs). Human CPCs comprised of a pool of cells obtained from 3 different neonatal 

(nhCPCs) or child (chCPCs) patients. Neonatal and child hCPCs were tested because of 

known dependence of age in regenerative potential of CPCs. We hypothesized that less 

regenerative child CPCs will benefit more from VEGF supplementation, as opposed to 

neonatal CPCs which are naturally more regenerative as has been seen in various injury 

models[64,188]. Despite the increased ERK phosphorylation (tested in rCPCs only), 

VEGF conjugated PEG gels did not show increased mRNA or protein expression of 

endothelial markers in either cell population. Additionally, VEGF conjugated PEG gels 

failed to show higher tube formation metrics than those without VEGF in rat or human 

neonatal CPCs. It is worth noting that we tested both low (100, 250 ng/mL) and high (5 
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g/mL) doses of VEGF, and both doses had similar outcomes ruling out the possibility 

that the lack of response is due to low VEGF dose.  

 Even though neonatal and older child CPCs are known to exhibit different 

regenerative potentials, we did not observe any difference in their expression of 

endothelial mRNA and protein expression levels under VEGF stimulation. Computational 

analyses have previously shown the activity of angiogenic pathways in both neonate and 

children cells are similar[64]. It could be that the regenerative potentials of neonatal and 

child CPCs are differentiated by other mechanisms while their angiogenic capacities are 

similar. This could why we did not see any differences between the two cell populations 

in this context. 

 The gels we used in our study were functionalized with RGD, which has been 

shown to support angiogenesis. To isolate the effects of RGD and VEGF in inducing 

endothelial differentiation of CPCs, we tested RGD and scrambled rDg with and without 

VEGF in a 2x2 design. Neither VEGF nor RGD in isolation or in combination had an 

effect on mRNA expression of endothelial markers.  

 We observed that hydrogel density did have an effect on tube formation with 

lower density gels showing greater tube length when tested with 4, 5, 6% w/v gels. 

Moreover, both rat cells (Figure 6) as well as human cells (Figure 8(A)) showed greater 

elongation of CPCs, sprouting and formation of tip-like cells in lower density gels. The 

low density gels are more likely to be conducive for tube formation because of lower 

stiffness which supports endothelial differentiation [97] and higher porosity that allows 

cells to migrate and form tube networks[189]. Based on the observed favorability of low 

density gels for tube formation, we tested mRNA expression of endothelial markers 

following VEGF supplementation in lower density (4% w/v) gels. However, we failed to 

see an increase in mRNA expression of endothelial markers on VEGF supplementation 

in nhCPCs in the low density gels as well.  

 Concerned that the hydrogels may be degrading too fast to allow immobilized 

VEGF to interact with CPCs and stimulate them for enough duration to induce 

endothelial differentiation or modulate their paracrine factors, we tested effect of VEGF 
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supplementation in slow degrading ‘GPQ’ gels. However, VEGF supplementation did not 

have an effect on mRNA expression of endothelial markers, nor secreted paracrine 

factors including angiogenin, HGF, bFGF, PlGF, EGF and HB-EGF. 

 We saw that GPQ gels showed a trend towards higher mRNA expression than 

VPM gels with or without VEGF at day 2. GPQ gels also showed a trend for lower 

expression of growth factors VEGF, angiogenin, HGF, bFGF and PlGF. These 

observations could be due to the different mechanical properties of the GPQ and VPM 

gels and differing degradation rates. Matrix mechanics are known to affect the fate and 

modulate secretory profile of cells [115]. 

 Collectively these experiments show that the presence of VEGF increased ERK 

activation in CPCs and the biomaterial construct may also have increased VEGF 

availability post-implantation, but despite these changes the CPCs failed to exhibit a 

categorical transition toward the endothelial lineage. To further explore this seemingly 

paradoxical behavior, we assessed the baseline expression of endothelial markers in our 

rat and human CPC populations by flow cytometry. The results showed that a large 

fraction (~90%) of the CPCs were basally positive for endothelial markers; however, this 

experiment is qualitative in nature and does not clearly establish whether the CPCs, 

although expressing endothelial markers in varying strengths, were sufficiently 

committed to the endothelial lineage. At the same time, this result does raise the 

possibility that our CPCs may not be amenable to further differentiation by VEGF 

treatment. High expression of endothelial markers by CPC populations has been 

reported by other groups as well [190–192]. Some recent genetic mapping studies have 

suggested that majority or all of the CPCs are cardiac vascular progenitors, and one 

study even suggests that these are mature endothelial cells [167,193]. A previous study 

reported an increase in endothelial gene expression in culturing CPCs in comparison 

with directly isolated cells [190], raising the possibility that our cultured cells may have 

differentiated to endothelial cells. It is also possible that VEGF secretion by CPCs in 

PEG gels (with rDg or RGD) is high enough to saturate signaling such that recombinant 

VEGF supplementation does not induce any additional effects.  
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 Although ERK phosphorylation was significantly higher in VEGF-functionalized 

gels, it is a nonspecific downstream kinase whose activity is influenced by many stimuli 

and could have been activated by alternative pathways, such as a possible change in 

mechanical properties of PEG gels on VEGF immobilization [194]. It is also possible that 

the little or no expression of αvβ3 integrin on CPCs may be acting as a weak link in the 

VEGF signaling pathway. The cross-activation of VEGFR2 and β3 are important for 

mediating the mitogenic effects of VEGF [195]. Delivery of other growth factors like HGF 

and IGF with CPCs has shown to enhance their regenerative behavior in vitro and in 

vivo but we did not see an effect with VEGF. VEGF conjugated PEG-MAL gels have also 

shown regenerative effects in the context of MSCs and endothelial cells for bone repair 

[186] and cell free gels for cardiac repair [146]. In addition to some of the possible 

reasons inherently related to CPCs mentioned above, there may have been some study 

design flaws because of which we did not see interesting behaviors in our constructs. 

For example, potentially insufficient VEGF stimulation duration by an appropriate dose of 

VEGF, non-optimal cell density for VEGFR stimulation, neglecting to measure other 

possible outcomes such as proliferation etc. Further discussion of potential limitations 

and future directions can be found in Section 5.1.2.  

 There is great interest in cardiac stem cells for cardiac repair given their 

encouraging results in phase 1 clinical trials and ongoing phase 2 studies. However, our 

understanding of their mechanism of action and ways in which the benefits of CPCs can 

be enhanced is limited. In this project, behavior of CPCs encapsulated in VEGF 

functionalized hydrogels was studied with several combinations of cell populations, 

scaffold properties and growth factor dosage. Findings from this project add to our 

knowledge of behavior of CPCs in response to stimuli relevant to practical design of 

regenerative therapies and emphatically highlight both the pitfalls and potential avenues 

of further exploration for technologies and methods reliant on growth factor encapsulated 

CPCs for cardiac regeneration. 
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CHAPTER 4. INTEGRIN SPECIFIC HYDROGELS FOR 

ACTIVATION OF REGENERATIVE SIGNALING IN CARDIAC 

PROGENITOR CELLS 

The objective of this study is to determine modulatory effects of integrin-specific 

hydrogels on encapsulated hCPCs in vitro, to study the effects of injecting these 

constructs on cardiac function in vivo, and to investigate the mechanism driving the 

observed effects.   

4.1 Motivation 

Integrins: Integrins are an important family of cell-surface-adhesion receptors that are 

involved in mediating cell adhesion with extracellular matrix proteins and other cells. 

They are heterodimers of non-covalently associated α and β subunits, each of which is a 

transmembrane glycoprotein and has a short cytoplasmic tail linked to intracellular 

cytoskeleton. 18 α subunits and 8 β subunits have been discovered and they can form 

24 different heterodimeric structures. One ligand may interact with different integrin 

receptors and one integrin may recognize multiple types of ligands. The ligand-binding 

site forms in a region at the intersection of the integrin α-chain β-propeller and the βI 

domain, with the α chain being central in determining ligand specificity. Integrins with an 

αI domain bind ligands via the αI domain; however, since this ligand-binding leads to 

conformational changes in the I domain, it affects the conformation of the β subunit in 

turn as well [196]. Along with their critical role in adhesion, integrins also act as 

transducers of cellular environmental conditions as integrin engagement triggers 

intracellular signaling in cells, known as outside-in signaling. Ligation of integrins by 

ECM results in integrin clustering, followed by focal adhesion protein complex formation, 

actin polymerization and then actin-myosin stress fiber formation, ultimately providing 

rigidity to the cell and a mechanosensitive link between the extra- and intra-cellular 

environments. Adhesion strength, focal adhesion characteristics and type of integrins 

engaged are determinants of cell signaling which enable integrins to inform cells about 
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both the chemical and mechanical properties of the environment and modulate cell 

responses. Integrin adhesion triggered cellular responses are self-renewal, migration, 

survival, differentiation, and response to other inputs such as through growth-factor [186] 

or G-protein-coupled receptors. Integrins also participate in inside-out signaling in which 

conformation of their extracellular domains changes in response to intracellular signaling 

to regulate their affinity for extracellular ligands. Because of these regulatory abilities, 

integrins play a critical role in development, tissue maintenance and repair [197]. 

 Integrin ligation mediated differentiation induction: 2D or 3D interaction with 

extracellular matrix can lead to induction of differentiation of stem or progenitor cells via 

integrin-mediated signaling in a substrate chemical composition, mechanical properties 

and topography dependent manner. Integrin expression also changes during cell 

differentiation and maturation. Embryonic stem cells cultured on combinatorial matrix 

composed of fibronectin and laminin differentiated into cardiomyocytes, with the greatest 

differentiation efficiency of ~75% achieved at 70:30 composition. The gene expression of 

β4 and β5 integrin subunits increased in cells differentiated by fibronectin + laminin or 

gelatin treatment and differentiation was inhibited by blocking either or both β4 and β5 

integrin subunits [198]. Encapsulating ESC embryoid bodies in decellularized porcine 

ECM and collagen I combination hydrogels in hypoxic conditions promoted 

differentiation into contracting cardiomyocytes with striations. Extent of differentiation 

achieved using 75:25 ECM and Col I gels was comparable to that achieved with Col I 

supplemented with VEGF and DKK-1 (Dickopf related protein 1) [199]. Cardiomyoblast 

cells differentiated into cardiomyocytes on fibroblast-derived matrix (FDM) consisting of 

fibronectin, collagen and laminin. Differentiation efficiency was increased on stiffer 

crosslinked form of the matrix (Y= 8 kPa, 10X higher than uncrosslinked matrix) and was 

associated with a decrease in vinculin area and α5 mRNA expression [200]. Collagen-β1 

interaction is necessary for cardiac differentiation of miPSC-derived embryoid bodies 

[201]. Fibronectin has been shown to promote mesodermal differentiation via β1 integrin 

by activating the Wnt/β-catenin pathway [202]. Differentiation of myoblasts on fibronectin 

was inhibited when α5-RGD interaction was blocked. Percentage of differentiated cells 
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and proliferation were a function of substrate conformation as well; fibronectin adsorbed 

on bacterial polystyrene, tissue culture polystyrene, and collagen demonstrated 

differences in fibronectin conformation [203].  

 Integrins in cell therapy: Integrin mediated signaling induced cell responses such 

as differentiation, growth, proliferation and survival have been implicated in cell therapy. 

Circulating angiogenic cells co-delivered with collagen matrix improved engraftment of 

delivered cells and led to enhanced myocardial function, perfusion and infarct reduction 

as compared to collagen or cells alone groups. These in vivo effects were blocked when 

cells with blocked α2 integrins were used in animal studies and cell adhesion, 

proliferation, and paracrine factors were found to decrease in in vitro studies. α5 was 

found to be necessary for the angiogenic potential of circulating angiogenic cells on 

collagen [204]. Sca-1+/Lin− hematopoietic progenitor cells isolated from β2-integrin–

deficient mice were found to have lowered homing ability to sites of ischemia and of 

improving neovascularization when injected in mice with hind limb ischemia. Pre-

activating β2-integrins expressed on endothelial progenitor cells by activating antibodies 

prior to transplantation in animals led to enhanced homing and neovascularization in 

vivo [205]. Blockade of β2-integrins in exogenously delivered EPCs significantly reduced 

their engraftment, homing to ischemic myocardium and ability to preserve cardiac 

function following myocardial infarction [206]. High-mobility group box 1 (HMGB1) 

released extracellularly on cell necrosis and tissue damage stimulates migration of EPCs 

on fibronectin and fibrinogen. Blocking β1 and β2 integrins on EPCs reduces this 

migration and pre-stimulating EPCs with HMGB1 improves their homing and adhesion 

by increasing integrin affinity and polarization [137]. Overexpressing integrin lined kinase 

(ILK) in MSCs [138,139] or Sca1+ [140] cardiac progenitor cells before transplantation 

enables them to better preserve cardiac function, reduce fibrosis and  increase 

angiogenesis in the host after MI. ILK overexpressing cells exhibited better viability, 

migration, proliferation, survival, adhesion to myocardium in vitro and greater retention in 

the peri-infarct area 3 days later, but not 4 weeks after MI in vivo.  
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 RGD: The tripeptide Arg-Gly-Asp (RGD) was first identified as a cell adhesion 

motif within fibronectin. Since then the RGD motif has been found in many other proteins 

including fibrinogen, vitronectin, osteopontin etc. and supports cell adhesion in many, but 

not all proteins such as collagen and laminin because of inaccessibility or unsuitable 

conformation. A subset of the integrins recognize the RGD motif including all five αV 

integrins, three β1 integrins (α5, α8, α3), and αIIbβ3 with varying affinities [96,207]. RGD 

binds at an interface between the α and β subunits- the R residue fits into a cleft in a β-

propeller module in the α subunit, and the D coordinates a cation bound in a von 

Willebrand factor A-domain in the β subunit [208].  RGD has been found to be effective 

at promoting the attachment of numerous cell types with many diverse materials in vitro. 

Synthetic RGD peptides have been used to support cell adhesion on natural-derived 

[93,209] and synthetic biomaterials including PEG-MAL hydrogels [100,210,211]. RGD 

concentrations ranging from 25 μM to 3.5 mM have been used with PEG hydrogels 

[100]. Ligation of RGD to β1 integrin on pancreatic islet cells enhanced cell survival via 

Akt phosphorylation although this effect was not RGD specific and was induced with 

anti-β1 antibodies as well [212,213]. Spacing of RGD ligands influences cell spreading, 

migration, efficiency of integrin activation, proliferation and stem cell differentiation 

[214,215]. RGD-integrin ligation triggered signaling acts synergistically with other 

signaling processes such as stem cell differentiation in the presence of differentiation 

cues [216,217]. RGD conjugated PEG-MAL hydrogels have been used to deliver HGF 

and VEGF to infarcted hearts [146]. Their simplicity, low cost, ability to maintain 

functionality after manufacturing and be coupled to biomaterials in a controlled manner 

make RGD peptides attractive for clinical translation [96]. In vivo, RGD conjugated 

biomaterials have produced mixed results with some resulting in lending improvement 

[218–220] and some showing no additive benefit [146,194,221–224] in various tissue 

engineering applications including cardiac tissue engineering.    

 GFOGER: GFOGER is a triple helical collagen-mimetic peptide containing the 

hexa-peptide sequence GFOGER and the full sequence of synthetic peptide used is 

GGYGGGPC(GPP)5GFOGER(GPP)5GPC [225]. GFOGER sequence is present in 
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fibrillar collagens and is recognized by α1β1, α2β1 and α10β1 integrins [226]. Three 

loops on the upper surface of the I domain that coordinate a metal ion also engage the 

collagen, with a collagen glutamate completing the coordination sphere of the metal. The 

change in metal coordination leads to a reorganization of the upper surface and together 

they create a complementary surface for binding collagen. Conformational changes 

affect the opposite pole of the domain as well [227]. Recognition of this sequence by 

integrins found to be dependent on the triple helical structure by amino acid substitution 

experiments [228] and the synthetic peptide has been shown to maintain that structure 

at physiological temperatures by circular dichroism studies [229]. It also remains active 

following reaction with PEG-MAL [186,230]. GFOGER has shown notable effects in 

orthopedic tissue engineering applications. GFOGER stimulation induces osteoblastic 

differentiation of immature osteoblast-like MC3T3-E1 cells like collagen I in vitro [231] 

and accelerates bone formation in non-healing critical size bone defects [186,225,230]. 

GFOGER presenting degradable PEG hydrogels exhibited greater proliferation, and 

chondrogenic differentiation of MSCs in presence of chondrogenic media than RGD 

presenting unmodified PEG gels [232].  

4.2 Hypothesis 

Implanting numerous cell types with collagen [199,204,233,234] or collagen alone 

[235,236] results in improved cardiac function after MI. Similarly, cell delivery with fibrin 

enhances their reparative effects. The improvement in cardiac function noted on 

delivering collagen-chondroitin sulfate matrix plus circulating angiogenic cells (CACs) to 

infarcted mice hearts was negated (LVEF: ~61% vs ~45%) when α2β1 integrin was 

blocked on the cells. Reduction in cell proliferation and paracrine factors secretion was 

found in vitro following the integrin blocking. These observations point toward the role of 

α2β1 integrin in matrix-CAC interaction and synergistic effects. Blocking α5 integrin 

reduced the angiogenic potential, proliferation and angiogenic potential of CACs [204]. 

ESCs differentiate into cardiomyocytes on ascorbic acid treatment through a required 

step of collagen synthesis [237]. CPCs cultured on collagen show increased expression 
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of connexin43 suggesting they may be driven to cardiomyocyte lineage [238]. Culturing 

CPCs on fibronectin induces their proliferation and protection via β₁-integrin-focal 

adhesion kinase-signal transducer [238,239]. GFOGER-α2β1 and RGD-α5β1 ligation 

are prominent cell interaction mechanisms with collagen and fibronectin, fibrin etc. We 

hypothesized that α2β1 integrin stimulation of CPCs by encapsulating CPCs in 

GFOGER presenting PEG gels will drive their differentiation and enhance their cardiac 

repair potential; α5β1 integrin stimulation of CPCs by encapsulating CPCs in RGD 

presenting PEG gels will enhance their proliferation and angiogenic potential, and 

thereby enhance their cardiac repair potential. In addition to testing the proposed 

therapeutic strategy, this study would provide a controlled experimental setup to 

investigate the effects of specific integrin stimulation on CPCs in vitro and integrin 

specific hydrogels as delivery vehicles in vivo.   

4.3 Approach 

PEG hydrogels functionalized with α2β1-specific GFOGER, α5β1- and αvβ3-specific 

RGD or non-adhesive rDg ligands, and encapsulating hCPCs were synthesized. Figure 

13 shows a schematic detailing the synthesis procedure. Basal integrin mRNA and 

surface protein expression on CPCs and rheological properties of hydrogels were 

characterized. mRNA and protein expression of lineage markers to assess differentiation 

of CPCs and concentration of secreted factors in vitro following encapsulation in integrin-

specific or non-adhesive control gels were measured. In vivo measurement of effects of 

these constructs on cardiac function in an ischemia-reperfusion model and ex vivo 

analyses cardiac fibrosis, angiogenesis and hypertrophy were performed. Neonatal 

human CPCs were used, ‘rDg/RGD/GFOGER gels’ stand for 5% PEG gels presenting 

the specified ligand and 10 m CPCs/mL hydrogel unless otherwise specified.   
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Figure 13: Synthesis of integrin-specific or non-adhesive PEG hydrogels. A 
solution of VPM crosslinker, cell suspension and integrin specific (RGD, GFOGER) 
or non-adhesive (rDg) ligands was prepared. The gels were crosslinked by mixing 
with 4-arm PEG-MAL macromer solution.  
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4.4 Results 

4.4.1 Integrins expressed by human CPCs  

In order to assess the availability of integrin receptors as first point of contact with 

integrin specific hydrogels, mRNA expression of relevant integrins and protein 

expression on surface of hCPCs were measured. GFOGER is known to interact with 

α1β1, α2β1, α10β1 (found primarily in cartilage) and α11β1. RGD is a ligand for αvβ1, 

αvβ3, αvβ6, αvβ5, α5β1, α8β1, α11β3, α3β1 integrins. α2β1 and αvβ3/α5β1 are the 

most relevant integrins for GFOGER and RGD stimulated signaling, respectively. A pool 

of hCPCs from three neonatal patients at passages ranging from P3-10 was tested. 

mRNA expression of α1, α2, α3, α5, α8, α10, α11, αV, β1, β3 and β5 subunits was 

measured using real-time PCR. A standard curve was prepared using human LV atrial 

tissue total mRNA to measure mRNA copy numbers. Values shown in Figure 14(A) are 

mean mRNA copies per million copies of GAPDH ± SEM;n=4-7. Protein expression of 

α1, α2, α3, α4, α5, αV, β1, β2, β3, β4, β6, αVβ5 and α5β1 subunits/integrins was 

measured using an ELISA array based on colorimetric detection and the results are 

shown in Figure 14(B). Values are mean OD550nm ± SEM after subtracting negative 

control (non-antibody lined plate wells) values; n=4. Absolute values of integrins 

expressed on surface could not be measured because of lack of a standard curve. CPCs 

show prominent expression of β1 at both mRNA (2.9±1.3 X105 copies /million copies of 

GAPDH) and surface protein level. They also express α2, αV and α5, integrins relevant 

to RGD and GFOGER ligands. The expression level of β3, an important ligand for RGD 

binding was below detection level in assay of both mRNA and surface protein.  
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Figure 14. mRNA and protein expression of integrins in unstimulated hCPCs. 
(A) mRNA and (B) protein expression in hCPCs of integrin subunits involved in 
adhesion to RGD and GFOGER molecules were measured. A pool of hCPCs from 
three neonatal patients at passages ranging from P3-10 was tested. (A) mRNA 
expression of α1, α2, α3, α5, α8, α10, α11, αV, β1, β3 and β5 subunits was 
measured using real-time PCR. A standard curve was prepared using human LV 
atrial tissue total mRNA to measure mRNA copy numbers. Values are mean mRNA 
copies per million copies of GAPDH ± SEM; n=4-7. (B)  Protein expression of α1, 
α2, α3, α4, α5, αV, β1, β2, β3, β4, β6, αVβ5 and α5β1 subunits/integrins was 
measured using an ELISA array based on colorimetric detection. Values are mean 
OD550nm ± SEM after subtracting negative control (non-antibody lined plate wells) 
values; n=4. 

4.4.2 Mechanical characterization of PEG-MAL hydrogels 
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Mechanical properties of biomaterials are known to influence stem cell differentiation 

and therefore the mechanical properties of these hydrogels would impact the fate of 

transplanted cells as well as host progenitor cells that migrate to these hydrogels in vivo. 

In addition, biomaterials are thought to dissipate wall stresses in infarcted hearts for 

which their mechanical properties are relevant as well. Rheological characterization of 

hydrogels was performed to measure their mechanical properties because of their 

viscoelastic nature. Storage modulus (G′) measures the deformation energy stored 

during imparted stress on the hydrogel, representative of the stiffness of the material 

and loss modulus (G″) is representative of the energy dissipated during shear, i.e. the 

flow or liquid-like response of the material [240]. PEG-MAL hydrogels of 4% or 5% w/v 

densities, and immobilizing 1 mM rDg, RGD or GFOGER ligands were prepared and 

allowed to swell overnight in PBS. The linear viscoelastic region was determined by 

performing amplitude sweeps. Oscillatory frequency sweeps were performed in the 

linear viscoelastic region and obtained storage (G’) (Figure 15(A)) and loss moduli (G’’) 

(Figure 15(B)) values were averaged. Comparing density matched groups with different 

ligands, the storage moduli of rDg and RGD gels were similar (4%rDg: 48±8.72, 

4%RGD: 55.7±7.54, 5%rDg:86.34±7.7, 5%RGD: 83.73±5.27 Pa; differences non-

significant between density matched rDg and RGD gels) but these were significantly 

different (p<0.05, n=6-8) than GFOGER gels (4%GFOGER: 87.81±7.6, 5%GFOGER: 

119.7±3.352 Pa). Except for RGD, differences between means of 4% and 5% w/v gels 

for matched ligands were also significant (p<0.05). G’’ was found to be comparable 

between all groups with the differences between means to be non-statistically significant. 

G’’ values were approximately 4 Pa.    
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Figure 15: Rheological characterization. (A) Storage moduli (G’) and (B) loss 
moduli (G’’) of PEG-MAL hydrogels of 4% or 5% w/v densities, and immobilizing 1 
mM rDg, RGD or GFOGER ligands were measured using rheology. Hydrogels were 
prepared and allowed to swell overnight before performing rheology. The linear 
viscoelastic region was determined by performing amplitude sweeps and values 
obtained in the linear viscoelastic region during frequency sweep were averaged. 
Values are mean ± SEM; statistical significance of difference between means was 
measured using ANOVA and Tukey’s post-hoc test, *: p<0.05; n=6-8.  
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4.4.3 Expression of lineage markers in encapsulated CPCs 

In order to assess the integrin-specific gels to induce differentiation of CPCs via integrin 

signaling activation, a screen of mRNA expression of several lineage markers for 

cardiomyocyte, endothelial and vascular smooth muscle was performed (Figure 16). 

Protein expression of cardiomyocyte markers and cardiac transcription factor were also 

measured following findings of cardiomyocyte differentiation at mRNA level (Figure 17). 

 Cellular hydrogels were homogenized in Trizol to isolate RNA. mRNA expression 

of genes of various lineages 2 days post-encapsulation were measured using real-time 

PCR using primers for flt1 (VEGF Receptor 1), cdh5 (VE-Cadherin), pecam1 (Pecam-1), 

vwf (von Willebrand Factor), tagln (Transgelin), acta2 (Aortic smooth muscle actin), 

gata4 (GATA binding protein 4), nkx2-5 (NK2 Homeobox 5), mef2c (Myocyte enhancer 

factor 2C), myl2 (Myosin light chain 2), tnni3 (Cardiac type Troponin I3), myh6 (Myosin 

heavy chain 6), tnnt2 (Cardiac type Troponin 2), myh7 (Myosin heavy chain 7) were 

measured. mRNA expression of cardiac transcription factors nkx2_5 and mef2c, 

cardiomyocyte specific structural proteins myh6, myh7, myl2, tnnt2, ctnni3 and vascular 

smooth muscle and cardiomyocyte marker suggested to be involved in calcium 

interactions and contractile properties of the cell [241], tagln was upregulated in 

GFOGER gels 2 days after encapsulation. No significant differences between groups 

were found in other markers tested (data not shown), suggesting induction toward 

cardiomyocyte lineage in GFOGER gels.  
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Figure 16: mRNA expression in encapsulated hCPCs. mRNA expression of 
cardiomyocyte lineage marker genes (encoding protein) nkx2-5 (NK2 Homeobox 5), 
mef2c (Myocyte enhancer factor 2C), myl2 (Myosin light chain 2), tnni3 (Cardiac 



69 

 

type Troponin I3), myh6 (Myosin heavy chain 6), tnnt2 (Cardiac type Troponin 2), 
myh7 (Myosin heavy chain 7), tagln (Transgelin/Smooth muscle protein 22-alpha) 
was measured 2 days after encapsulating hCPCs in PEG-MAL gels immobilizing 
1mM rDg, RGD or GFOGER ligands using real-time PCR. Data are expressed as 
fold change over rDg control. Values are mean ± SEM; statistical significance of 
difference between means was measured using ANOVA and Tukey’s post-hoc test, 
*:p<0.05, **:p<0.001; n=3-4. 
 

 For protein expression, hydrogels were degraded by incubation with Collagenase 

I to release the cells which were then lysed using NP-40. The solublized membrane and 

cytoplasmic fractions of cell lysate were run separately on SDS-PAGE gels. Protein 

expression of cardiac type troponin I and myosin heavy chain (MHC) was assessed 5 

days after encapsulating hCPCs in PEG-MAL gels immobilizing 1mM rDg, RGD or 

GFOGER ligands by Western blotting. Proliferating cell nuclear antigen (PCNA) and 

Beta-actin (β-Actin) were used as loading controls for membrane fraction and 

cytoplasmic fraction respectively. n=4. Western blotting results show CPCs obtained 

from GFOGER gels 5 days after encapsulation expressed cardiomyocyte specific 

Troponin I and Myosin Heavy Chain, whereas those from rDg and RGD gels did not. 

Early cardiac transcription factor Nkx2.5 expression levels were similar between different 

groups (data not shown).  



70 

 

                                                                                                                                                                                                                          

 

 

Figure 17: Protein expression in encapsulated hCPCs. Protein expression of (A) 
Cardiac type Troponin I and (B) Myosin heavy chain (MHC) was assessed 5 days 
after encapsulating hCPCs in PEG-MAL gels immobilizing 1mM rDg, RGD or 
GFOGER ligands by Western blotting. The solublized membrane and cytoplasmic 
fractions of cell lysate were run separately on SDS-PAGE gels. Proliferating cell 
nuclear antigen (PCNA) and Beta-actin (β-Actin) were used as loading controls for 
membrane fraction and cytoplasmic fraction respectively. n=4.  
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4.4.4 Paracrine factors  

Paracrine factors have been shown repeatedly to be a very important mode by which 

stem cells including CPCs exert their effects [45]. The modulation of paracrine factors by 

integrin-specific specific hydrogels was tested by measuring concentrations of several 

analytes in conditioned media obtained at d2 and d5. Concentration of Vascular 

Endothelial Growth Factor (VEGF), Hepatocyte Growth Factor (HGF), Basic Fibroblast 

Growth Factor (FGFb), Matrix Metalloproteinase 9 (MMP9), Matrix metalloproteinase 2 

(MMP2), Interleukin 10 (IL10), platelet derived growth factor-BB (PDGF-BB), Stromal 

cell-derived factor 1 (SDF1) in conditioned media at d2 and d5 were measured using a 

Luminex bead-based multiplex assay. Obtained individual protein concentrations were 

normalized for sample loading by dividing by total protein in conditioned media. 

Normalization by total protein concentration of cells secreting these molecules was also 

computed (not shown) and similar trends were observed. As shown in Figure 18, the 

levels of paracrine factors VEGF, HGF and FGFb were significantly lower in cellular 

GFOGER gels’ conditioned media as compared to that from rDg and RGD at both d2 

and d5. rDg and RGD had similar levels of these factors. IGF-1, MMP2, MMP9, IL10, 

PDGF-BB and SDF1 concentrations were outside the range of detection. Mean±SEM 

values are as follows: d2-rDg-VEGF:1325±98, d2-RGD-VEGF: 1562±109, d2-GFOGER-

VEGF: 27±2, d5-rDg-VEGF:2381±168, d5-RGD-VEGF: 2692±205, d5-GFOGER-VEGF: 

75±22 pg/mg; d2-rDg-HGF:405±42, d2-RGD-HGF: 337±50, d2-GFOGER-HGF: n.d., d5-

rDg-HGF:792±68, d5-RGD-HGF: 628±106 pg/mg, d5-GFOGER-HGF: n.d.; d2-rDg-

FGFb:1439±287, d2-RGD-FGFb: 751±286, d2-GFOGER- FGFb:834±82, d5-rDg-FGFb: 

1979±250, d5-RGD-FGFb: 2238±412, d5-GFOGER- FGFb: 569±132 pg/mg.   
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Figure 18: Secreted factors in conditioned media. Concentration of Vascular 
Endothelial Growth Factor (VEGF), Hepatocyte Growth Factor (HGF) and Basic 
Fibroblast Growth Factor (FGFb) in conditioned media at d2 and d5 were measured 
using a Luminex bead-based multiplex assay. Obtained individual protein 
concentrations were normalized for sample loading by dividing by total protein in 
conditioned media. Values are mean ± SEM; statistical significance of difference 
between means was measured using ANOVA and Tukey’s post-hoc test, *: p<0.05, 
**: p<0.001; n=4-8. 
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4.4.5 Cardiac function  

Studies in in vivo models are critical expected performance of a cell therapy strategy in 

patients. We used nude rats in order to perform studies with human cells. 6-8 week old 

athymic rats (Crl:NIH-Foxn1rnu) underwent ligation of left anterior descending coronary 

artery for 30 minutes followed by reperfusion. Treatments were injected immediately 

after reperfusion. Echocardiography was performed at d7 and d28 after surgery and the 

results are presented in Figure 19. 7 days after surgeries, animals treated with cellular 

GFOGER gels showed a significant reduction in EF (58.15±2.39%) and FS (31.81±1.64) 

in comparison to sham animals (EF: 73.12±2.06, FS: 43.49±1.75%) (p<0.05). Cellular 

rDg (EF: 66.67±1.66, FS: 37.96±1.36%) and RGD (EF: 66.02±2.30, FS: 37.57±1.84%) 

groups show a trend of slightly better function than IR (ischemia-reperfusion) only group 

(EF: 62.88±1.88, FS: 35.25±1.27%) that did not receive any treatment, although the 

difference between means are not statistically significant. But EF and FS values in rDg 

and RGD groups at d7 are not significantly inferior to the sham group either. At d28, 

cellular rDg group EF (72.21±2.26%) and FS (43.03±2.10%) values were significantly 

higher than IR group (EF: 63.30±2.84, FS: 34.38±2.40%) (p<0.05). RGD (EF: 

50.65±7.76, FS: 27.10±4.85%) and GFOGER (EF: 49.91±4.82, FS: 27.91±3.88%) 

groups showed inferior function and their EF and FS values were significantly lower than 

those of sham animals (EF: 77.92±1.9, FS: 48.19±1.86%). Controls acellular rDg (d7-

EF: 55.40±4.53, d7-FS: 30.14±3.05%, d28-EF: 46.72±6.83, d28-FS: 24.98±4.55%), cells 

only groups (d7-EF: 59.06±3.61, d7-FS: 31.88±3.50%, d28-EF: 61.02±4.12, d28-FS: 

35.39±3.29%) and 4% GFOGER (d28-EF: 61.02±4.12, d28-FS: 35.39±3.29%) showed 

lower means than sham group at both time points.   
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Figure 19: Cardiac function following treatment with integrin-specific 
hydrogels. Ejection fraction and fractional shortening were obtained using M-mode 
echocardiograms of rat hearts (A) 7 days and (B) 28 days following treatment. 
Values are mean ± SEM; statistical significance of difference between means was 
measured using ANOVA and Dunnet’s post-hoc test comparisons with Sham and IR 
groups, *: p<0.05; n≥3 for 4% GFOGER, Acell-rDg, IR (d7) and n≥5 for other 
groups. 
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4.4.6 Histological evaluation 

To understand the mechanism behind observed cardiac performance following various 

treatments, histological evaluation of fibrosis, angiogenesis, hypertrophy and 

engraftment of transplanted cells were done. Formalin fixed paraffin embedded hearts 

from rats sacrificed 28 days following treatment were stained with different stains- 

picosiruius red for fibrotic area measurement; fluorescence labeled-isolectin for 

angiogenesis; fluorescence labeled-wheat germ agglutinin for cross-sectional area to 

determine hypertrophy and human-specific anti-mitochondria (MTCO2) antibody for 

measuring engraftment of transplanted human cells.  

    For measurement of fibrotic area, picosiruius red staining which stains collagen 

red was performed. Percentage of scar tissue stained dark red was measured. As 

shown in Figure 20, the percentage of scar tissue in cellular rDg gel group (9.45±0.92%) 

was significantly lower than IR only group (28.14±2.32%) (p<0.05). The means of fibrotic 

area in other treatments did not were not significantly different from IR only group. 

%Scar area in other groups: RGD: 32.51±6.65%, GFOGER: 34.96±2.02%, Sham: 

4.48±0.88%. Representative picosiruius red stained heart sections for all groups are 

shown in Figure 20(B).   
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Figure 20: Fibrosis in rat hearts following treatment with integrin-specific 
hydrogels. Formalin fixed paraffin embedded hearts from rats sacrificed 28 days 
following treatment were stained with picosiruius red. (A) Percentage of scar tissue 
stained dark red was measured using Aperio ImageScope software. Values are 
mean ± SEM; statistical significance of difference between means was measured 
using ANOVA and Tukey’s post-hoc test, *: p<0.05; n ≥ 3 for GFOGER, Acell-rDg, 
Cells only and n≥5 for other groups. (B) Representative picosiruius red stained 
heart sections for all groups. 

 

 Angiogenesis was measured by staining sections with isolectin that stains rodent 

endothelial cells and other cells expressing terminal α-galactosyl residues. Three images 

per section in the infarct border region were captured and number of isolectin-positive 

vessels per field was counted. Both rDg (30.75±3.09/field) and RGD (30.21±2.834/field) 

groups showed higher number of isolectin-positive vessels than IR only group 

(17.94±1.89/field) at d28 (p<0.05), but mean of GFOGER group (30.21±2.83/field) was 

not significantly different from IR group. Average number of isolectin+ve vessels/field 

±SEM for other groups were Sham: 29.50±4.0, acell-rDg: 25.86±3.74, cells only: 

25.49±2.016 vessels/field. A representative isolectin-IB4 stained infarct border region 

micrograph highlighting some examples of isolectin-positive vessels marked by arrows is 

presented in Figure 21(B).   
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Figure 21: Angiogenesis following treatment with integrin-specific hydrogels. 
Formalin fixed paraffin embedded hearts from rats sacrificed 28 days following 
treatment were stained with fluorescent molecules tagged isolectin-IB4. (A) Three 
images per section in the infarct border region were captured and number of 
isolectin-positive vessels per field was counted. Values are mean ± SEM; statistical 
significance of difference between means was measured using ANOVA and 
Tukey’s post-hoc test, *:p<0.05, **:p<0.001; n≥3 for GFOGER, Acell-rDg, Cells only 
and n≥5 for other groups. (B) Representative isolectin-IB4 stained infarct border 
region micrograph shows some isolectin-positive vessels, I: Infarct, B: Border; scale 
bar: 50 μm.  

  

 To determine hypertrophy of cardiomyocytes, cross-sectional areas were 

measured by tracing cell membranes stained by fluorescently-tagged wheat germ 

agglutinin. One image per section in the infarct border region was captured and the 

cross-sectional area of 7-10 randomly selected myocytes in the infarct border zone were 

recorded as shown in Figure 22(B). Figure 22(A) demonstrates that the cross-sectional 

area of myocytes in rDg treated animals (557±27.55 sq. micron) were significantly lower 

than those of animals that did not receive any treatment (IR) (759.5±38.11 sq. micron). 

Mean of RGD treated animals (637.9±26.30 sq. micron) group did not differ significantly 

from IR only animals. Cross-sectional areas were significantly GFOGER (907.3±53.85 

sq. micron) treated animals were significantly higher than the IR only group too. Average 

area ±SEM in sham group was 378.90±25.20 sq. micron. 
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Figure 22: Hypertrophy following treatment with integrin-specific hydrogels. 
Formalin fixed paraffin embedded hearts from rats sacrificed 28 days following 
treatment were stained with fluorescent molecules tagged wheat-germ agglutinin 
(WGA). (A) One image per section in the infarct border region was captured and the 
cross-sectional area of 7-10 randomly selected myocytes in the infarct border zone 
as determined by marking of cell membranes by WGA staining. Values are mean ± 
SEM; statistical significance of difference between means was measured using 
ANOVA and Tukey’s post-hoc test, *:p<0.05, **:p<0.001; n=4, 7-10 cells per animal. 
(B) Representative WGA stained infarct border zone showing measurement method 
of cell cross-section outlines; scale bar: 50 μm. 
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 Engraftment of transplanted cells at d28 was measured by counting cells stained 

with human specific anti-mitochondria antibody. As shown in Figure 23(B), Whole slide 

scans at 40X magnification were taken and manually inspected for hMTCO2+ cells. Only 

the cells in left ventricular wall were included in the analysis. 1-2 sections were used per 

animal. Figure 23(A) shows that significantly higher number of human CPCs was found 

in sections from rDg treated animal hearts (15.25±1.031) as compared to RDG 

(5.62±0.82) and GFOGER (4.17±0.73) gel treated hearts(p<0.0001). Biological and 

experimental negative controls did not show any positive staining.   
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Figure 23: Engraftment of hCPCs in rat hearts following treatment. Formalin 
fixed paraffin embedded hearts from rats sacrificed 28 days following treatment 
were stained with human specific anti-mitochondria antibody (pink) and methyl 
green nuclear counterstain. (A) Whole slide scans at 40X magnification were taken 
and manually inspected for hMTCO2+ cells. Only the cells in left ventricular wall 
were included in the analysis. 1-2 sections were used per animal. Biological and 
experimental negative controls did not show any positive staining. Values are mean 
± SEM; statistical significance of difference between means was measured using 
ANOVA and Tukey’s post-hoc test, *:p<0.05, **:p<0.0001; n=4. (B) Representative 
figure showing a part of a whole slide scan in the LV at ~33X magnification. Pins are 
placed at cells included in the analysis. 
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4.5 Discussion 

 Cell therapy is undergoing clinical trials and numerous preclinical and clinical 

studies are being pursued to understand the mechanisms of action and test strategies to 

enhance benefits of cell therapy for treating heart failure. Biomaterials-based strategies 

have shown potential to improve outcomes of cell therapy because of the ability of 

biomaterials to enhance retention of cells, act as reserves of growth factors that can be 

presented to the cells and create a custom microenvironment that promotes 

regeneration instead of the hostile environment in the heart post-MI. Natural biomaterials 

have been demonstrated to enhance cell therapy effects; however, their mechanism of 

action are unclear. Synthetic biomaterials-based strategies provide much greater control 

of biochemical and mechanical properties. Therefore, they can be instrumental in testing 

hypotheses and answering specific questions to help learn about the complex mode of 

cell therapy that has produced mixed results in clinical trials. In addition, synthetic 

biomaterials modified with biomimetic peptides can be used to develop therapeutic 

strategies with greater quality control and localized specific effects.  

 In this work, we studied encapsulated human neonate derived c-kit+ cardiac 

progenitor cells in integrin specific PEG hydrogels presenting fibronectin mimetic α5β1 

and αvβ3 ligating RGD, collagen mimetic α2β1 ligating GFOGER or scrambled rDg 

peptide. We characterized the integrins expressed by human cardiac progenitor cells 

and performed rheology of the hydrogels. The effects of integrin specific hydrogels on 

modulation of encapsulated hCPCs were determined by measuring mRNA and protein 

expression of lineage markers and secreted factors. These hydrogel-cell constructs were 

transplanted in an animal model of ischemia-reperfusion and consequent cardiac 

function indicative measurements were recorded. To understand underlying 

mechanisms, ex vivo histological analyses were performed on rat hearts to measure 

fibrosis, angiogenesis, hypertrophy and engraftment of transplanted cells. 
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 We found that the CPCs express α5β1 and α2β1 but show little expression of 

αvβ3. GFOGER gels were found to have greater storage modulus than rDg and RGD 

hydrogels of the same PEG backbone density. GFOGER gels induced cardiomyocyte 

differentiation of CPCs as seen by mRNA and protein expression of cardiomyocyte 

structural markers. Cell differentiation in GFOGER gels correlated with decrease in 

secreted paracrine factors by those cells in comparison with rDg and RGD gels. RGD 

gels maintained comparable lineage marker gene and protein expression and paracrine 

factor levels in conditioned media as rDg gels. Following injection in rat hearts that 

underwent ischemia-reperfusion, CPC-carrying rDg and RGD gels showed a trend of 

improving cardiac function at day 7. At day 28, cardiac contractility preservation was 

maintained by rDg gels only. Ex vivo histological evaluation of rat hearts sacrificed at 

day 28 showed significant reduction in fibrosis only in cellular rDg gels group, increase in 

isolectin-positive vessels in both rDg and RGD groups, decrease in hypertrophy only in 

cellular rDg group in comparison with animals receiving ischemia-reperfusion only. The 

number of delivered CPCs engrafted at d28 was significantly higher in rDG group than 

GFOGER and RGD groups.       

 Expression of integrins relevant to RGD and GFOGER ligands adhesion were 

measured at the mRNA level by real-time PCR and at protein level using ELISA. RGD is 

known to bind to all five αv integrins, three β1 integrins (α3, α5, α8), and αIIbβ3. 

GFOGER, on the other hand, binds to α1β1, α2β1 and α10β1 integrins. α5β1 and α2β1, 

which are important participants of cell adhesion with RGD and GFOGER, respectively, 

were present on the CPCs. β1 was found to be the most abundant subunit through both 

real-time PCR and ELISA measurements, although the exact concentration of protein 

could not be measured in the absence of a standard curve. β1 integrins are important 

participants in reparative mechanisms associated with cell therapy. For instance, the β1 

subunit has been shown to be responsible for mediating fibronectin-induced proliferation 

and protection of CPCs in vivo and in vitro, which happens via β1 integrin-FAK-Stat3-

Pim1 pathway independent of Akt [239]. β1 integrins have been found to be necessary 

for differentiation, adhesion and migration of other stem cells. For example, in ESCs, 
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lack of β1 was compensated for at early stages but not later stages of cardiac 

differentiation and led to impaired ventricular cardiomyocytes [242,243]. Blocking β1 

inhibits embryoid body formation and cardiomyogenic iPSC differentiation [201], 

extracellular matrix-mediated maturation in PSC monolayers [244] and inhibits 

proliferation and adhesion on Matrigel [245]. Differentiation of ASCs in carbon nanotube-

collagen substrates was reduced on blocking β1 integrins. β1 is also required for CDC-

contact mediated cardiomyocyte proliferation [246]. β1 is also involved in vascular 

smooth muscle differentiation of Sca1+ progenitor cells [247]. MSCs use β1 integrins to 

adhere to HUVECs in vitro [248]. β1 is involved in the migration and adhesion of BM-

MSCs in the infarcted myocardium [249,250] and of HSCs in an in vitro model of 

myocardium [251]. However, cardiomyogenic differentiation of EPCs stimulated by 

contact with cardiomyocytes was not inhibited by blocking β1[252], suggesting the 

involvement of β1 may be cell and stage specific. These observations from previous 

studies illustrate that the β1 subunit has an important role in multiple aspects of stem cell 

function; the presence of this subunit in our CPCs suggests that they are good 

candidates for cardiac repair cell therapy. 

 β3, an important integrin involved in RGD ligation was found not to be expressed 

on our cells. Another study in which c-kit+ cardiac stem cells were isolated by a slightly 

different explant method made similar observations about β3 expression. To isolate the 

cells used in that study, the authors minced atrial appendages of patients with 

undisclosed characteristics, cultured in serum and mercaptoethanol containing bFGF 

lacking media for 7 days, and then sorted the cells into c-kit+/CD90-, c-kit-/CD90+ and c-

kit-/CD90- groups. The c-kit+/CD90- cells showed no expression of β3 subunit at mRNA 

or protein level [104]. Ligands of β3 include fibronectin, fibrinogen, von Willebrand factor, 

thrombospondin, vitronectin, osteopontin, collagens and tenascin. β3 integrins are 

important participants in the blood clotting mechanism and knockout mice show impaired 

platelet aggregation and clot formation [253]. αvβ3 is involved in collagen V induced 

cardiomyogenic differentiation of MSCs [254]. In the absence of αVβ3, α5β1 integrins 

may be upregulated as a compensatory mechanism for adhesion to fibronectin substrate 
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although they serve different roles in adhesion and downstream signaling [242,255]. It is 

possible that the abundant expression of α5β1 may be a part of a compensatory 

mechanism to make up for attenuated β3 expression in hCPCs. 

 To understand mechanical properties of the hydrogels constructs, rheological 

characterization of 4% and 5% w/v hydrogels conjugated to rDg, RGD or GFOGER was 

performed. The loss modulus was determined to be negligible and of much smaller 

magnitude than the storage modulus so these gels are elastic. The storage moduli of 

denser 5% gels were higher than 4% gels. GFOGER gels exhibited statistically 

significantly greater storage modulus than rDg and RGD gels of the same PEG density. 

These observations conflict with those reported by Garcia et al. wherein GFOGER gels 

were found to have comparable G’ values as rDg and RGD gels [186]. Given the larger 

size of GFOGER peptide than RGD and rDg peptides that could interfere with hydrogel 

crosslinking, this is a surprising finding. Possibly under our reaction conditions, 

conformational changes occur and more than one cysteine per triple-helical GFOGER 

participates in crosslinking to some extent along with VPM. This can cause the storage 

modulus to increase beyond what would be expected with only one cysteine bound to 

PEG like a pendant, as in the case of rDg and RGD peptides. Another possibility is that 

batch-to-batch differences and insufficient precision of the peptide concentration 

measurements to capture these differences may have introduced additional variability.  

 Irrespective of the above differences, all our hydrogel constructs are softer than 

heart (G’ ~ 0.1 kPa). Solvent swollen murine heart is reported to have a storage modulus 

of ~5 kPa and loss modulus of ~1 kPa [256]; the elastic modulus of neonatal rat heart is 

4-11.4 kPa, that of adult rat heart is 11.9-70 kPa, and adult human’s is 0.02-0.5 MPa 

[257]. Native tissue like stiffness of biomaterials is most conducive to differentiation 

[111,258]. However, softer hydrogels are commonly used in studies perhaps because 

they are more likely to permit diffusion of nutrients and viability of encapsulated cells 

[259]. Also, optimal mechanical properties vary with stage of differentiation [113] and do 

not influence stem cell fate independently, since biochemical and other physical 

properties such as topography properties play a significant role as well. We observed 
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induction of cardiomyocyte differentiation of CPCs and reduction in secreted paracrine 

factors in GFOGER gels. Along with biochemical factors, mechanical stimulation plays a 

significant role in inducing cardiomyocyte differentiation as well as modulation of 

paracrine factors. Dependence of lineage induction on scaffold mechanical properties 

has been reported for CPCs as well as other stem cell types. A previous study found that 

CPCs cultured in 1% w/v (E=500 Pa) self-assembling peptide hydrogels differentiated 

toward endothelial and smooth muscle lineages and those in 2% w/v (E=1800 Pa) 

scaffolds differentiated toward the cardiomyocyte lineage. These behaviors were 

reported to correlate with increased notch activation in the higher density stiffer gels and 

were attributed to mechanotransduction–based notch activation. Hydrogel mechanical 

properties also influenced CPC proliferation and released paracrine factors; greater 

PDGF release was seen in 1% jagged (ligand to notch) presenting gels and greater SCF 

secretion and CPC proliferation were seen in 2% jagged presenting hydrogels [144]. In a 

study performing a systematic evaluation of substrate stiffness on CPC differentiation, 

neonatal or adult CPCs encapsulated in fibrin and ECM-fibrin scaffolds with E= 2, 8, 14 

and 32 kPa did not show an upregulation in troponin mRNA at 21 days. They did, 

however, find upregulation in expression of endothelial and vascular smooth muscle cell 

markers on 32 kPa gels in adult and neonatal CPCs respectively. Since the authors 

were unable to see cardiomyocyte differentiation of CPCs at either condition, they intend 

testing stiffer matrices in the future. [260]. Another study reporting substrate induced 

CPC differentiation did 2D culture of CPCs on an electrospun polymer mesh with a 

tensile modulus of ~9 MPa [261]. Note that E~3G for most hydrogels [262]. In contrast to 

these reports where much stiffer gels were required to elicit differentiation of CPCs, we 

found that soft GFOGER gels with G’ value of ~120 Pa were sufficient to induce mRNA 

and protein expression of troponins and other cardiomyocyte structural proteins. Since 

the stiffness of our gels is too low to solely drive this behavior, our observations suggest 

that the biological signal initiated by α2β1 integrin stimulation may be playing an 

important role. Extent of integrin-mediated signaling activation is a function of the 

substrate’s mechanical properties and is an important contributing factor to the influence 
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of matrix stiffness on stem cell behavior. Substrate rigidity affects cell behavior through 

regulation of integrin-mediated focal adhesion complexes and downstream intracellular 

signaling [263]. Our observation of in vitro cardiomyocyte differentiation induction in 

GFOGER gels and not rDg or RGD gels, and differences in paracrine factor levels is 

likely a function of both mechanical and biochemical properties of the 21 specific 

GFOGER gels. 

 For the duration before degradation of the hydrogels, their mechanical properties 

affect behavior of not just the delivered cells but also host cells including infiltrating stem 

and progenitor cells. For example, it was reported that injection of alginate gels 

functionalized with adhesive peptides RGD, YIGSR or non-adhesive RGE surprisingly 

led to worse cardiac function and extent of scar than unmodified alginate gels [194]. 

There were no significant differences between blood vessel density, myofibroblast or 

macrophage infiltration or cell proliferation between the experimental groups. A 

suggested explanation for these observations was based on the different mechanical 

properties of modified and unmodified scaffolds. Layering this observation on top of our 

previous arguments, there is a distinct possibility that our in vitro and in vivo 

observations are a complex function of hydrogen stiffness, properties of active biological 

agents embedded in the gel, and the modulatory effect of gel stiffness on delivered cells 

as well as host cells.  

 CPCs encapsulated in GFOGER exhibited cardiomyocyte differentiation in the 

absence of any supplemental growth factors or differentiation media. mRNA expression 

of cardiac transcription factors nkx2_5 and mef2c, cardiomyocyte specific structural 

proteins myh6, myh7, myl2, tnnt2, ctnni3, and vascular smooth muscle and 

cardiomyocyte marker suggested to be involved in calcium interactions and contractile 

properties of the cell [241], tagln was upregulated in GFOGER gels 2 days after 

encapsulation. CPCs obtained from GFOGER gels 5 days after encapsulation 

expressed cardiomyocyte specific troponin I and myosin heavy chain. It would be 

interesting to see if the GFOGER presenting gels can push the cells to express more 
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mature markers like connexin43 and calcium channel proteins at this or a later time 

point.  

 While cardiomyogenic differentiation of CPCs by other stimuli including 

substrates has been seen before, α2β1 stimulation as a factor driving cardiomyocyte 

differentiation of CPCs is a novel finding. Other biochemical and physical cues have 

been shown to induce cardiomyogenic differentiation of CPCs. For example, CPCs 

cultured on poly(ester-urethane urea) aligned electrospun scaffolds showed 

cardiomyocyte differentiation after 31 days [261], although earlier time point 

measurements were not shown and it is not clear what the relative contributions of the 

aligned topography and chemical composition of the scaffold were. miR-708 

overexpression induced cardiomyocyte differentiation of CPCs showing 8-fold mRNA 

expression of early marker nkx2.5 and 4-fold expression of mature marker tnnt2 after 

one week of treatment [264]. Epigenetic modification of CPCs using class I histone 

deacetylase (HDAC1) inhibition interestingly showed significant cardiac differentiation 

with 75-fold higher mRNA expression of Troponin T and ~23% cells expressing Troponin 

T following 7 day treatment [67]. HDAC4 inhibition also led to cardiomyocyte 

differentiation of CPCs [265] and cardiac function improvement was seen following 

injection of modified CPCs in both cases.  Treating with 5-Azacytidine, by itself or in 

combination with TGF-β leads to cardiomyocyte differentiation of CPCs [60,266,267]. 

However, the untargeted nature of 5-Aza, which is a general demethylating agent that 

leads to unmasking of genes that are not expressed due to promoter hypermethylation 

raise safety issues. Dexamethasone treatment induces cardiovascular lineage 

commitment [36] and its differentiation inducing effect (along with proliferation) is further 

enhanced in Pim-1 kinase overexpressing [268] and Pin-1 overexpressing CPCs [269]. 

HGF and IGF-1 and their combination have been shown to induce cardiomyocyte 

differentiation as well; ~26% cells express cardiac troponin I after 7 days. Coculture with 

cardiomyocytes drives CPCs to differentiate into beating cells [18]. Mechanical stretch is 

another stimulus that has been shown to influence cardiomyocyte differentiation of CPCs 

[238,270]. As these examples illustrate, while CPC differentiation induced by substrates 
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has been reported before, the nature of biochemical cues driving the differentiation is not 

absolutely clear. In that context, our finding that stimulation of α2β1 integrins may be 

involved in CPC differentiation is novel. 

 We found significantly lowered expression of the paracrine factors HGF, VEGF 

and FGFb by cells in GFOGER gels as early as day 2 and day 5. rDg and RGD had 

similar levels of these proteins. These factors play pivotal roles in cardiac regeneration. 

HGF, VEGF and FGFb show cardio-protective, mitogenic effects [271] and direct stem 

cell homing to ischemic myocardium [272–274]; VEGF and FGFb are angiogenic factors 

[275]. In our study, differentiation of CPCs correlated with an accompanying decline in 

release of beneficial paracrine factors. Such an observation has been made with c-kit+ 

BM-MSCs wherein 5-Aza treatment increased their cardiomyocyte differentiation as 

marked by increased expression of Nkx2.5, Gata4, cTnT and Cnx43 but led to reduction 

in VEGF (400 vs. 180 μg/pg) and bFGF (2100 vs. 600 μg/pg) expression by the cells 

[276]. Another study comparing levels of secreted factors from rat BM-MSCs and 

cardiomyocytes noted lower levels of VEGF, bFGF, SDF and IGF (VEGF: 8 vs 3, bFGF: 

30 vs 5, SDF: 0.15 vs 0.02, IGF: 80 vs 10pg/μg protein) in conditioned media of 

cardiomyocytes [277]. On the other hand, differentiating ESCs in EBs showed coincident 

increased expression of the growth factors IGF, VEGF, BMP-4, FGF and PDGF, 

perhaps reflecting the secretome in that stage of embryogenesis [278]. These reports 

collectively suggest that the relation of paracrine factors and differentiation state may be 

cell or stage dependent. It is also possible that these processes may be independent 

and occurring simultaneously without one having any mechanistic bearing on the other.  

  On transplantation of integrin-specific hydrogel-cell constructs, we found rDg gel 

+ CPCs combination to drive the greatest cardiac function improvement at 28 days after 

ischemia-reperfusion. Integrin specific RGD and GFOGER gels carrying CPCs failed to 

improve cardiac function which was unexpected as these ligands were expected to 

stimulate regenerative signaling in cardiac progenitor cells based on literature and our in 

vitro data. Acellular rDg gels did not increase cardiac function and neither did cells 

delivered without a hydrogel carrier (cells only group), suggesting the important role of 
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both the rDg hydrogel carrier and cells in driving the improvement in EF and FS. 

Delivering CPCs with the rDg hydrogel must have improved their retention, also allowing 

sustained delivery of their paracrine factors. 4% GFOGER gels were also tested but they 

failed to improve cardiac function at day 28 even though the 4% GFOGER hydrogels 

had comparable mechanical properties as 5% rDg gels. These data point to the role of 

CPCs, PEG hydrogels and the non-adhesive ligand rDg presented by the hydrogels in 

synergistically leading to cardiac function improvement of infarcted rat hearts.  

 These results were unexpected. Given the cardiomyogenic differentiation of 

CPCs in GFOGER gels in vitro, we were expecting CPC + GFOGER gels to improve 

cardiac function more than the other combinations. This assessment was based on 

some prior studies using CPCs that have shown differentiation inducing strategies to 

support greater cardiac function improvement. In a previous study from our lab, culturing 

rat CPCs in jagged-1 presenting hydrogels induced cardiomyocyte differentiation of the 

cells in vitro and in vivo implantation of this construct led to improvement in cardiac 

function post-MI. Interestingly, conditioned media of the differentiating cells showed 

higher SCF, CPC migration and proliferation and cardiomyocyte proliferation. So the 

same group had superior paracrine factor levels and more differentiated phenotype and 

led to improved cardiac function in vivo [144]. Inhibition of histone deacetylase 4 

(HDAC4) induced cardiomyocyte differentiation of CPCs in vitro and injection of HDAC4 

siRNA-treated CPCs showed greater improvement in cardiac function than control 

CPCs. Quantification of paracrine factor secretions in vitro were not done [265]. On the 

other hand, some other studies based on other cell types have shown the less 

differentiated cells to demonstrate greater improvement in cardiac function. 5-Aza 

treatment of BM-MSCs increased their cardiomyocyte differentiation in vitro but led to 

reduction in VEGF, bFGF expression by the cells. Following in vivo implantation of cells, 

it was observed that the less differentiated untreated c-kit+ BM-MSCs showed greater 

improvement in cardiac function after MI than 5-Aza differentiated cells. The 

undifferentiated group showed higher secretion of growth factors in vitro and greater 

angiogenesis, recruitment of endogenous cardiac stem cells and proliferation of 
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cardiomyocytes in vivo. The 5-Aza pretreated cells showed greater cardiomyocyte 

differentiation of transplanted cells in vivo as well, but did not improve function [276]. In 

another study, less lineage committed skeletal muscle-derived stem cells (MDSCs) 

showed greater and more persistent engraftment, induced more neoangiogenesis 

through graft expression of VEGF, showed greater resistance to oxidative stress, 

prevented cardiac remodeling, and elicited significant improvements in cardiac function 

in comparison with more differentiated myoblasts [279]. iPSCs differentiated to an 

optimal extent toward the cardiac phenotype showed the greatest engraftment in 

infarcted hearts in comparison with less and more differentiated cells [280]. We saw that 

GFOGER gels induced cardiomyogenic differentiation of CPCs and a reduction in 

paracrine factor levels in vitro. In vivo, GFOGER gels encapsulating CPCs could not 

preserve cardiac function and had low angiogenesis, and high fibrosis and hypertrophy 4 

weeks after treatment. The inability of GFOGER + CPC group to rescue cardiac function 

despite showing the greatest differentiation potential of all combinations studied points to 

the  role of lowered paracrine effects observed in this group as the potential cause. Our 

results and those discussed above reinforce the suggestion of paracrine factors to be 

the main mechanism of action of cell therapy induced benefits.  

 The in vitro paracrine factor profile and differentiation state of CPCs, and 

dynamic modulus measured by rheology were comparable between RGD and rDg PEG 

gel groups, so they cannot explain the differences between the two groups in vivo. At 

relatively early time point of day 7, both rDg and RGD gels codelivered with CPCs 

showed a trend of better cardiac function than rats that did not receive any treatment, 

although these differences were not statistically significant. However, distributions of EF 

and FS in cellular rDg and RGD gel receiving rats were not statistically significantly 

dissimilar than sham group either at d7. Adding biological replicates may help make a 

reliable conclusion. At day 28, only rDg gels encapsulating CPCs showed significant 

function improvement than untreated control group. At the 28 day time point, both rDg 

and RGD gels encapsulating CPCs showed significantly improved angiogenesis than 

ischemia-reperfusion only group, but significantly lower fibrosis was seen only in the 
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cellular rDg group and not the RGD group. Note that isolectin-positive cells were marked 

as surrogates for angiogenesis, which labels not just mature perfused large and 

microvessels but endothelial cells of immature vessels as well [281]. Lower hypertrophy 

in comparison with IR only group was also seen only in rDg treated rats. Hypertrophy 

was even higher than IR only group in GFOGER gel treated rats. We also measured 

engraftment of transplanted CPCs in rat hearts at day 28 and found rDg group to have 

higher retention of transplanted CPCs than RGD and GFOGER groups. While the 

number of human cells found in the rat heart at that time point were very low in all 

groups (~5 for RGD and GFOGER groups and ~15 for rDg groups), there were 

statistically significant differences between means of integrin-specific RGD, GFOGER 

functionalized gels and non-adhesive rDg gels groups.   

 One possible reason for these observations is that the ligands RGD and 

GFOGER may be blocking the integrins on hCPCs, even after cleavage of the VPM 

peptides, and preventing them from adhering to the infarcted myocardium. This in turn 

may be limiting the engraftment of exogenous cells and their benefits to treat infarcted 

hearts as has been observed before. For example, EPCs adhere to the infarcted 

myocardium via CD18-ICAM interaction. Blocking CD18 on EPCs using antibodies prior 

to injection in infarcted animal hearts significantly reduced their presence in the heart 

and abolished EPC induced cardiac wall thickening, prevention of remodeling and 

neovascularization 2 weeks after injection [206]. Similarly, blocking β1 integrin on BM-

MSCs using anti-CD29 mAb reduced the accumulation of the injected cells in the 

infarcted heart by about 40% 72 hours later [249]. The resulting impact on function was 

not measured in this particular study. But these data suggest that blocking molecules 

that mediate adhesion between the implanted cells and myocardium negatively affect 

their retention in the infarcted heart and possibly, cell-mediated functional improvements. 

This hypothesis could be tested in vitro by measuring adhesion of cells released from 

rDg, RGD and GFOGER gels to a matrix such as reconstituted porcine ECM. Note that 

this model will not reflect the post-IR environment known to modify expression of 

adhesion molecules on transplanted cells and myocardium. For instance, in the post-IR 
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environment increased ROS levels downregulate integrin-related adhesion molecules 

and inhibit cellular adhesion of MSCs [282]. Another way of testing the hypothesis would 

be measuring engraftment ex vivo at an early time point such as 1 week after 

transplantation. A control group with anti-β1 antibody treated CPCs delivered through 

non-adhesive rDg gels could be used to help confirm this explanation. According to our 

observations, the number of retained transplanted cells at day 28 is very low which is in 

agreement with other studies done using CPCs and other cell types. Even though the 

number of retained transplanted cells was low, nonetheless, a correlation was found 

between the number of retained cells and improvement in cardiac function following cell 

delivery. Such a correlation between engraftment, even though low, and functional 

benefit has been observed with other cell types before [27,206,283,284]. Another 

possibility is that RGD and GFOGER gels may be anchoring the delivered cells and 

preventing them from migrating through the infarct. In vitro studies have shown that cells 

migrate along RGD gradient [285]; this haptotactic behavior is cell and ligand 

concentration specific [286]. This hypothesis can also be tested by tracking implanted 

cells about at an earlier time point such as d7 after transplantation. RGD and fibronectin 

have been reported to induce pathological hypertrophy of cardiomyocytes similar to 

pressure-overload leading to increased cross sectional area and ANP, NFAT expression 

by cardiomyocytes [287–289]. So we also examined that as a possible mechanism of 

dysfunction in RGD treated hearts. However, since the rat heart myocytes had 

maladaptive hypertrophy following MI, it was hard to determine if RGD stimulation 

caused additional hypertrophy. rDg PEG gels are likely to show sufficient adhesion of 

cells in vivo through proteins adsorbed on the gels. Acellular rDg-PEG gels are reported 

to show comparable protein adsorption as acellular RGD-PEG gels in vitro and in vivo. 

However, acellular RGD gels invite greater macrophage adhesion and are surrounded 

by a thinner fibrous capsule [290]. However, this difference is unlikely to explain the in 

vivo functional improvement by cellular rDG gels and not RGD gels.  

 Overall, non-adhesive rDg gels lead to the significant improvement in cardiac 

function of infarcted rats which is sustained for at least 4 weeks. rDg gels also show 
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significant attenuation of fibrosis and hypertrophy, and increased angiogenesis than 

animals receiving no treatment following IR. CPCs delivered with rDg gels show higher 

engraftment in host tissue at day 28 than those delivered with GFOGER and RGD gels. 

These findings suggest that too much interaction with the carrier biomaterial may 

interfere the cells’ incorporation into the host tissue in addition to negatively affecting 

their paracrine effects.  

 Nude animals were used in our study in order to avoid immune rejection for study 

of hCPCs which leads to destruction of the xenograft. Immune cells are closely linked to 

the repair and regeneration processes in the heart. Different rates of repair and 

mechanisms due to lack of T cells are seen on implanting grafts in athymic animals in 

comparison to syngeneic or allogeneic animals. Some examples of these varied 

responses between immunodeficient and immunocompetent animals, as well as cardiac 

repair processes involving T cells are provided in the section 5.2.2. In order to 

understand the detailed mechanisms of cell therapy in cardiac regeneration, utilizing 

both immunodeficient animal models (with human cells) and immunocompetent animal 

models (with animal cells) to understand the effect of species difference as well as 

immunological response is justifiable.   

 Overall, this study reveals novel insights about the behavior of CPCs in integrin-

specific or non-adhesive scaffolds and response to these constructs in an animal model 

of ischemia-reperfusion. These findings add to our understanding of factors that 

influence the outcome of cell therapy and will help in future design of strategies for 

enhancing cell therapy for cardiac repair.  
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 

As novel therapeutic approaches based on cell therapy to prevent and treat heart failure 

are evolving, it is imperative that we advance our understanding of the processes 

underlying cell therapy to enable rational design of the most optimal therapeutic 

approaches. Such efforts should include characterizing specific designs of the cell 

therapeutic modality to distinguish what types of designs are more likely to be successful 

and what are the potential pitfalls. At a deeper level, it is also critical that we develop a 

mechanistic understanding of why certain approaches are more successful than others. 

This dissertation focuses on biomaterial-based strategies for enhancing the regenerative 

effects of CPCs, and on understanding how the complex interactions between the 

biomaterial, transplanted cells and the host system determine outcome.  

 Cardiovascular diseases are the leading global cause of death. They are 

responsible for 1 in every 4 deaths in the United States and an economic burden of over 

$200 billion every year. The significant morbidity, mortality and economic burden 

associated with heart failure motivate development of better prevention and therapeutic 

strategies. Cell therapy for congestive heart failure has shown promising results in 

preclinical studies but results in clinical trials have been mixed and lower than 

expectations. This suggests the need for this modality to be optimized in order to 

enhance the regenerative potential of stem cells. In this dissertation, biomaterials-based 

strategies for enhancing effects of CPCs were designed and tested.  

5.1 Aim 1: VEGF functionalized scaffolds for enhancing CPC angiogenic 

behavior 

5.1.1 Summary 

The hypothesis of this study was that degradable hydrogels functionalized with VEGF 

will enhance angiogenic behavior of encapsulated CPCs. CPCs encapsulated in VEGF 

conjugated gels showed increased ERK phosphorylation. VEGF conjugated PEG gels 

did not show higher tube formation metrics than those without VEGF in experiments 
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using both rat and neonatal human cells. The hydrogel density did have an effect with 

lower density gels showing greater tube length among the 4, 5, 6% w/v gels. VEGF gels 

also failed to show any significant increase in mRNA or protein expression of endothelial 

markers in rat cells or human cells from neonate or older children donors. We tested 

both low (100, 250 ng/mL) and high (5 ug/mL) doses of VEGF and found neither to result 

in increased endothelial marker expression. Neither VEGF nor RGD had an effect on 

mRNA expression of endothelial markers as determined by using rDg conjugated gels 

with or without VEGF. Endothelial mRNA expression in CPCs with VEGF 

supplementation also did not increase in lower density (4% w/v) gels, which we saw to 

support cell elongation and sprouting, and tube formation. Even with slow degrading 

GPQ gels, VEGF supplementation did not have an effect on mRNA expression of 

endothelial markers, nor secreted paracrine factors angiogenin, HGF, FGFb, PlGF, EGF, 

HB-EGF. VEGF concentration was higher in conditioned media from VEGF conjugated 

gels using both VPM and GPQ crosslinkers, although it cannot be said whether this 

higher concentration is due to only the exogenously delivered 5ug/mL VEGF conjugated 

to the gel or increased secretion from the CPCs stimulated by autocrine signaling. The 

expression of endothelial markers was found to be quite high (>90%) in rat and human 

CPC populations as assessed by our flow cytometry experiments. 

5.1.2 Limitations and future directions 

Most experiments, including all experiments using human cells, were done using 5 ug 

VEGF/mL hydrogel however activation of VEGF signaling was not tested at that dose. 

ERK phosphorylation was used as the surrogate for measuring activation of VEGF 

induced signaling in CPCs. However, ERK is a nonspecific, downstream kinase whose 

activity is influenced by many stimuli and could have been activated by alternative 

pathways, such as a possible change in mechanical properties of PEG gels on VEGF 

immobilization [194]. Instead, VEGFR1 and VEGFR2 phosphorylation would have been 

better markers as they are more specific to activation by VEGF ligand. VEGFR2 

phosphorylation occurs in the presence of stimuli other than VEGF also, including shear 
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stress [291], but that would not be a concern in our controlled experimental setup. Also, 

it would have feasible to measure in our setup as VEGFR2 phosphorylation may not 

have subsided one hour after encapsulation when we lysed the cells after digesting the 

hydrogels.  

 Due to release of VEGF in the media due to protease mediated hydrogel 

degradation and alternate day media changes, CPCs may not have received sufficient 

concentration of VEGF for the required duration for successful stimulation. We tested 

slower degrading GPQ gels with the rationale that they would enable slower crosslinker 

degradation-mediated release of VEGF and longer stimulation of encapsulated CPCs 

with immobilized VEGF. However, GPQ gels did not show enhanced endothelial gene 

expression or paracrine factor release in VEGF immobilized groups, except for a 

possible autocrine regulated increase in VEGF release. Whether this increase in VEGF 

release was truly due to paracrine effects can be clarified by measuring mRNA 

expression of VEGF by the cells. While VEGF immobilized on PEG-MAL gels has been 

shown to maintain activity when immobilized or released [146,186], we did not confirm 

that in our hands. VEGF-VEGFR2 mediated signaling is sensitive to cell density and it 

could be that the cell density and ligand concentration used in our experiments was not 

supportive for signaling activation [292].   

 We only measured some surrogates including endothelial differentiation, 

modulation of some paracrine factors and tube formation characteristics. However, we 

did not measure other possible outcomes of VEGF stimulation such as proliferation, 

survival under hypoxic stress etc. We did see increase in VEGF in conditioned media of 

VEGF conjugated PEG gels encapsulating CPCs. This higher concentration of VEGF 

released to the environment may result in enhanced regenerative behavior in vivo by 

exerting chemotactic and angiogenic effects on host progenitor cells and maybe 

enhance engraftment of exogenously delivered CPCs. However, we did not test the 

outcome of in vivo transplantation of CPC encapsulating VEGF-PEG gels. 

 The expression of endothelial markers was found to be quite high (>90% cells 

were positive at baseline) in rat and human CPC populations as assessed by our flow 
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cytometry experiments. High prevalence of endothelial marker positive cells in CPC 

populations has been reported by other groups as well. Sandstedt et al. found ~65% 

CPCs to express Pecam-1 (CD31) directly after isolation and mRNA expression of CD31 

increased further after monolayer culture [191]. They also found ~81% cells to express 

mature endothelial marker vWF [190]. Matuszczak et al. found ~84% cells to express 

CD31 [192]; although they used different culture conditions of 20% FBS and culturing on 

fibronectin. Note that there are some variations in surface markers expression in heart 

derived c-kit+ cardiac progenitor/stem cells studied in different groups and could be 

because of differences in donor, anatomic source [293], isolation and culture conditions 

[60,151,190,192,260,268,294–298]. Some recent studies have performed genetic 

mapping to understand the origin and fate of endogenous CPCs.  It has been suggested 

that the majority of c-kit+ cells in the heart are vasculogenic cardiac progenitor cells 

[167,299]. One study has also suggested that the majority of cKit+ cells in the heart are 

mature endothelial cells [193], although observations of two other studies disagree with 

this; this discrepancy between observations could be due to differences in detection 

sensitivities of reporter alleles used in the studies [167,299,300]. While these studies 

looked at in vivo mapping of c-kit+ cells, one study has reported an increase in mRNA 

expression of pecam-1 after in vitro culture of cells in comparison to directly isolated 

CPCs [191]. This could mean that our in vitro expanded CPCs may not be amenable to 

further differentiation by VEGF treatment. Our cell culture growth media includes FGFb, 

a factor that has been reported to induce endothelial differentiation of CPCs [297]; even 

after removal of FGFb in treatment media, there might be a memory effect causing cells 

to maintain their differentiated state like memory of mechanical stimuli has been shown 

[301]. Along with high expression of endothelial markers, our cells also readily form 

tubes on Matrigel (not shown), although that behavior has been seen with non-

endothelial cells like fibroblasts as well [302]. 

 It is also possible that VEGF secretion by CPCs in PEG gels (with rDg or RGD) 

may be high enough to saturate signaling such that recombinant VEGF supplementation 

does not induce an additional effect. Studies have shown VEGF treatment to change 
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CPC behavior such as induce migration or increase adhesivity [146,176,177]. However, 

these studies involved VEGF treatment of CPCs in 2D, and those findings may not apply 

to our 3D culture which is known to modify cells’ secretion profile [92]. CPCs may 

perhaps benefit from supplementation with a factor they are deficient in, e.g., HGF and 

IGF have been shown to enhance their regenerative behavior [303]. Perhaps VEGF 

treatment would benefit from use with a system where VEGF is depleted, such as in 

GFOGER PEG gels encapsulating CPCs, as seen in Section 4.4.4 (Figure 18). We saw 

that α2β1 integrin specific GFOGER gels induced cardiomyocyte differentiation of CPCs 

but were accompanied by reduction in VEGF and other paracrine factors. We 

hypothesize that the inability of cellular GFOGER gels to rescue cardiac function after IR 

may be because of the lowered paracrine factor levels. PEG gels functionalized with 

VEGF and GFOGER may provide a treatment strategy that can overcome this limitation 

and deliver CPCs differentiating to the relevant cardiomyocyte cells because of 

GFOGER stimulation along with better cell survival, chemotaxis of endogenous 

progenitors and angiogenesis mediated by VEGF [177,178].  

 Another possible explanation is that the little or no expression of αvβ3 integrin on 

CPCs may be acting as a weak link in VEGF signaling pathway. Our results (Figure 14) 

and those by another group [104] have shown below detection levels expression of β3 

subunit on CPCs. αvβ3 integrin plays a very important role in VEGF stimulation and 

downstream endothelial differentiation, proliferation and angiogenesis [304]. In 

endothelial cells, binding of VEGF-A to VEGFR2 triggers autophosphorylation, leading to 

complex formation by interaction between cytoplasmic tails of both receptors and leading 

to integrin αvβ3 phosphorylation at Y747 in the β3 cytoplasmic tail [305]. Introducing 

mutation of β3 Y747 to phenylalanine impaired VEGF-induced activation of αVβ3 and 

downstream endothelial responses including adhesion and migration. β3 integrin 

tyrosine phosphorylation is required for maximum tyrosine phosphorylation of VEGFR-2. 

Plating endothelial cells on the αvβ3 ligand vitronectin led to VEGFR2 phosphorylation 

and this was augmented on VEGF treatment. However, endothelial cells maintained in 

suspension or plated on collagen or laminin, matrices that primarily do not adhere 
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through integrin β3, showed insignificant VEGFR2 phosphorylation increase in the 

presence of VEGF stimulation, implicating VEGFR2 and β3 to participate in cross 

activation. The cross-activation of VEGFR2 and β3 receptors leads to the recruitment 

and activation of Src kinases [306] which mediate the mitogenic effects of VEGF [195]. 

On the other hand though, in β3 knockout mice, elevated levels of VEGFR2 and 

angiogenesis have been noted [306–308] suggesting dual roles of β3 or activation of 

alternative mechanisms in β3 knockout animals. In another study, blockade of αvβ3 

integrins on CD34+ cells cultured on fibronectin did not inhibit their VEGF induced 

differentiation and migration [309], perhaps because of association of α5β1 with 

VEGFR2 in presence of fibronectin [310]. These interactions involve VEGF binding 

domains on fibronectin, not RGD so our RGD presenting PEG gels may not support an 

α5β1 dependent, αvβ3independent VEGF-induced differentiation mechanism.  

 Some studies in the literature have reported certain treatments to enhance 

endothelial differentiation of CPCs. Note that the phenotype of untreated CPCs in some 

of these studies was different from that of ours. Methods include treatment with bFGF 

[297] (ICC, untreated control not shown), H2O2 (mRNA) [311], jagged presenting 

nanofiber scaffolds (mRNA) [144], fibrin (mRNA) [260], macrophage migration inhibitory 

factor (Western, ICC) [298], dexamethasone (ICC) [36]. Perhaps endothelial 

differentiation in our cells could be induced using stimuli other than VEGF because of 

the impaired VEGFR2-3 signaling in CPCs. VEGF induced- but not bFGF induced-

angiogenesis is inhibited on introducing mutation in integrin 3 cytoplasmic tail [306]. 

Exogenous addition of agents that activate Wnt/β-catenin signaling has been found to 

augment endothelial differentiation in cardiovascular progenitor cells obtained from 

ESCs [312] and iPSCs [313], which can act as models of development. Supplementing 

VEGF treatment with lithium chloride (LiCl), a Wnt/β-catenin activator, enhanced the 

expression of endothelial markers in ESC-derived c-kit+ progenitor cells [312]. Wnt 

pathway modulation has been shown to induce endothelial differentiation of ESCs 

independent of VEGF as well, with VEGF not lending any significant additive effect [313] 

suggesting that they may be acting through a common pathway, as has been observed 
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in VEGF induced differentiation of MSCs and ESCs [314]. Other mechanisms that have 

been shown to enhance endothelial differentiation synergistically with VEGF or 

independently include combination of growth factors [315], shear stress [315–319], 

epigenetic modulation [320,321], and hypoxic [315] and oxidative stress [311], and could 

be tested with CPCs.  

5.2 Aim 2: Integrin specific hydrogels for activation of regenerative signaling in 

CPCs 

5.2.1 Summary 

The hypothesis of this study was that encapsulating CPCs in integrin-specific hydrogels 

will improve adhesion and induce signaling involved in reparative processes. CPCs 

express GFOGER interacting α2β1 and RGD activating α5β1 but not αvβ3. GFOGER 

gels were found to have greater storage modulus than rDg and RGD gels of the same 

PEG backbone density hydrogels. GFOGER gels induced cardiomyocyte differentiation 

of CPCs as seen by mRNA and protein expression of cardiomyocyte structural markers. 

Cell differentiation in GFOGER gels was accompanied by a decrease in secreted 

paracrine factors by those cells in comparison with rDg and RGD gels. RGD gels 

maintained comparable lineage marker gene and protein expression and paracrine 

factor levels in conditioned media as rDg gels. Following injection in rat hearts that 

underwent ischemia-reperfusion, CPC carrying rDg and RGD gels showed a trend of 

improving cardiac function at day 7. At day 28, however, cardiac contractility 

preservation was maintained by rDg gels only. Ex vivo histological evaluation of rat 

hearts sacrificed at day 28 showed significant reduction in fibrosis only in cellular rDg 

gels group, increase in isolectin-positive vessels in both rDg and RGD groups, decrease 

in hypertrophy only in cellular rDg group in comparison with animals receiving ischemia-

reperfusion only. The number of delivered CPCs engrafted at d28 was significantly 

higher in rDG group than GFOGER and RGD groups.   
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5.2.2 Limitations and future directions 

The extent of differentiation of CPCs on GFOGER gels was not tested. Testing more 

mature markers including gap junction (e.g. Cnx43) and calcium handling proteins (e.g. 

SERCA, L-type-calcium channels) can help assess that. Culturing CPCs in α2β1-specific 

gels for longer duration, possibly on slower degrading or non-degradable gels and then 

assessing the extent to which α2β1-stimulation is able to induce cardiomyocyte 

differentiation will be informative as well. These hydrogels are much softer than native 

myocardium and also degrade quickly losing stiffness further. Yet they were able to 

induce cardiac differentiation of CPCs through 21 signaling. Native tissue like stiffness 

of biomaterials are most conducive to differentiation and maturation [111,258]. It would 

be interesting to see the effect of α2β1-integrin activation on stiffer matrices as they may 

support greater extent of cardiac differentiation. Also, CPC behavior in healthy and 

infarcted hearts could be studied by using α2β1-specific hydrogels with a greater range 

of stiffness to mimic collagen in healthy myocardium and scar. Cells experience 

mechanical and biochemical signals from both neighboring cells and extracellular matrix 

[322]. Integrin-specific PEG gels culturing same type or different types of cells such as 

cardiomyocytes-CPCs in contact could be used as models to study how cells integrate 

signals originating from neighboring cells and matrix and respond, especially in different 

mechanical environments such as healthy myocardium and scar tissue.  

 Activation of downstream signaling due to RGD stimulation on CPCs was not 

examined and we cannot be sure if RGD acted at all on the CPCs under the conditions 

studied. RGD behaved similarly to rDg gels in vitro in terms of rheology, CPC 

differentiation and release of paracrine factors. This could be either because RGD does 

not stimulate these effects in CPCs or that RGD ligand spacing, concentration or 

adhesion force due to hydrogel stiffness were not conducive to CPC activation. This 

could be tested by measuring activation of early signaling molecules in integrin-

activation pathway like FAK, ILK or proliferation, which is a known effect of fibronectin on 

CPCs mediated via 51 integrins [239]. More potent cyclic RGD, cRGD could also be 

used. In comparison with linear RGD, cRGD has been found to better mimic the 
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conformation of RGD sequence in the cell-binding domain of fibronectin exposed at the 

tip of a loop with a spatial constraint that results in increased affinity for cell binding 

[323].  

 We used nude animals in our study in order to avoid immune rejection for study 

of hCPCs which leads to destruction of the xenograft.  The nude mutation in 

the Foxn1 gene in both mice and rats causes hairlessness and lack of T cells when 

homozygous. Athymic rats do have B cells and can even possess enhanced 

concentration and activity of natural killer (NK) cells [324] as well as enhanced 

macrophage function [325], although these depend on the strain and method of 

generation of immunodeficiency [326]. In a study analyzing the immune response 

against a complex rat cell-fibrin matrix graft in syngeneic, allogeneic, and 

immunodeficient rat hearts, it was seen that no systemic immune response was elicited 

in the immunodeficient rats and there was minimal infiltration of CD3+ lymphocytes and 

CD68+ macrophages, unlike in immunocompetent syngeneic (low infiltration) and 

allogeneic (high infiltration) rats [327]. However, comparative function and fibrosis 

assessment over time was not done in that study. Faster healing has been noted in 

immune-deficient animal models than immunocompetent animals because of lack of 

inflammatory cytokines and their effect on the survival of transplanted cells. In 

musculoskeletal tissue engineering applications, T cells were found to inhibit the ability 

of exogenous BM-MSCs to induce bone repair. This inhibition is mediated by IFN-γ-

driven downregulation of the osteogenic Runx-2 pathway and upregulation of TNF-α 

signaling in the stem cells which triggers their apoptosis [328]. In a study directly 

comparing compact bone derived progenitor cells-driven bone formation in 

immunocompetent and immunodeficient mice, new bone area and the number of 

differentiated progenitor cells were greater at 4 weeks in nude animals than in 

immunocompetent mice, a response that subsided at 8 weeks. Greater inflammatory cell 

infiltration and expression of TNF-α and IL-4 were evident at 1 week after injections in 

the immunocompetent animals and could have inhibited the repair process [329]. hESC-

derived pancreatic progenitor cells matured faster in nude rats compared with SCID-
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beige mice [330]. These studies show that host response plays a very important role in 

cell fate post-transplantation. As immunological reactions depend on animal species and 

vary between strains, the findings from this study cannot simply be applied to studies 

using other animal models. In the heart, immune modulation is closely tied to stem cells 

and regeneration [331,332]. CD4+ T-cell deficient mice showed increased cardiac 

dilation, impaired neovascularization, and collagen deposition after MI [333]. Anti-CD25 

treatment and subsequent Treg deletion significantly enhanced postischemic 

neovascularization [334]. This suggests that the cardiac regeneration process must be 

different in athymic rats than immunocompetent animals. In order to understand the 

detailed mechanisms of cell therapy in cardiac regeneration, utilizing both 

immunodeficient animal models (with human cells) and immunocompetent animal 

models (with animal cells) to understand the effect of species difference as well, such as 

immunological response, is important. 

 Tracking of exogenously delivered cells was not performed at an earlier time 

point. A previous study of delivery of ILK overexpressing Sca1+ cells exhibited better 

cardiac function and exercise ability than control Sca1+ cells in animals getting MI at 4 

weeks post injection. This correlated with greater retention of the ILK overexpressed 

group in peri-infarct area 3 days later, but not 4 weeks after MI in vivo when there were 

no differences in retention between control and ILK overexpressed groups [140]. This 

suggests that cell retention at early time points may be more important for function 

improvement and may therefore be worth measuring with our constructs as well. 

 Two of the hypotheses that we have proposed to explain the results of our in vivo 

study could be tested by measuring cell retention. The first of these hypotheses is that 

the ligands RGD and GFOGER may be blocking the integrins on hCPCs even after 

cleavage of the VPM peptides and preventing them from adhering to the infarcted 

myocardium. The second hypothesis is that RGD and GFOGER gels may be anchoring 

the delivered cells and preventing them from migrating through the infarct. Tracking 

delivered cells at an early time point and measuring their number and location could 

indicate if any of these explanations were true. To test the former hypothesis, a control 
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group with anti-β1 antibody treated CPCs to block the β1 integrins on them, delivered 

through rDg gels could be used. This hypothesis could be tested in vitro by measuring 

adhesion of cells released from rDg, RGD and GFOGER gels to a matrix such as 

reconstituted porcine ECM, although this will not truly reflect the post-IR environment, 

which is known to modify expression of adhesion molecules on transplanted cells and 

myocardium[282]. 

 Bioluminescence imaging of luciferase+ CPCs would have been very useful to 

track retention of transplanted cells in rat hearts over several time points. We attempted 

to transduce CPCs with a lentivirus expressing firefly luciferase and blasticidin 

resistance under the control of the constitutively active cytomegalovirus and respiratory 

syncytial virus promoters, respectively. However, this severely affected the growth rate 

of cells negatively rendering them unfit for use. We tested three different concentrations 

of transducing lentivirus but additional treatment concentration or vectors to induce 

successful transduction while maintaining cell growth rate could have been tested. We 

also did preliminary studies with lipophilic near-IR dye DiR labeled cells (data not shown) 

but got erratic results, perhaps because of the leakiness of DiR causing host cells to be 

fluorescent as well and showing false positives [335].  

 We are proposing that the inability of cellular GFOGER gels to improve cardiac 

function may be due to reduction in released paracrine factors. A confirmatory study to 

test this hypothesis could be to deliver pre-differentiated cells with the non-adhesive rDg 

gel. However, the limitations of such an experiment would be that the extent of 

differentiation at time of injection and later, presence of the differentiation inducing-

stimulus after injection and paracrine factors profile may be different when using an 

agent like dexamethasone or HGF+IGF or even GFOGER to pre-differentiate cells 

before delivering with rDg gels. A systematic study, as have been done using other cell 

types such as iPSCs [280], is desirable wherein CPCs are differentiated to different 

extents and transplanted to determine the optimal differentiation extent for in vivo 

function improvement.  
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 Additional mechanisms that could have been important for cellular rDg gel 

induced cardiac function improvement were not tested. Some examples are 

cardiomyocyte proliferation, survival, macrophage infiltration, M1/M2 macrophage ratio, 

host progenitor cell infiltration. rDg and RGD gels secrete paracrine factors VEGF, HGF 

and FGFb that are known to influence these processes and could be contributing 

mechanisms. We stained day 28 heart sections with a macrophage marker CD11b (data 

not shown) and got comparable numbers between various groups including IR only and 

sham controls. Perhaps the macrophage response in the infarct was resolved by day 28 

or was minimal any way in the athymic rats used [327]. An earlier time point would have 

been better for assessing role of macrophages in observed effects of various treatments.  

 Isolectin-positive cells were marked as surrogates for angiogenesis which label 

not just mature perfused large and microvessels but endothelial cells of immature 

vessels as well [281]. Perfusing hearts with isolectin just before sacrificing the rat hearts 

and then counting isolectin+ vessels, instead of using post-fixation stained heart 

sections, would have helped quantify functional vasculature. Also, there was variability in 

infarct size in the control IR only group suggesting there must have been variability in the 

other treatment groups as well. LAD ligation for creating an infarct is a technically 

challenging model and this variability has been reported by others as well [336]. Our and 

others’ studies work around this by using sufficiently powered studies, but employment 

of in vivo infarct measurement tools such as contrast agents for MRI [337] to measure 

infarct size before assigning treatment could further help to limit experimental error.    

 Measurements of rheological parameters were done in vitro on acellular gels only 

a day after swelling the gels, which act as important surrogates to inform us of the 

behavior of these hydrogels at the onset of the study in comparison with each other and 

other studies in literature. But they do not reflect the mechanical properties of cellular 

hydrogels over the course of time in the in vivo environment; the degradation rate of 

different ligand presenting gels could be significantly different from each other because 

of the associated microenvironmental protease activity, affecting their mechanical 

properties. Degradation rate of materials affects functional outcomes by influencing 
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extent of angiogenesis [338] among other mechanisms. Slower and faster degrading rDg 

gels as well as gels of different densities could be tested to find the optimal physical 

properties for imparting greatest improvement by rDg gels.  

 The contribution of 3D encapsulation of CPCs on the observed effects was not 

determined. ‘Cells only’ group was only tested in in vivo studies for cardiac function 

determination. However, the cells only group was not included in other experiments such 

as differentiation and paracrine factors assessments in vitro. Encapsulation and 3D 

culture of cells has been shown to affect cell behavior [92,339]. For example, ADSCs 

encapsulated in PEG-HA gels experienced inhibited proliferation but enhanced growth 

factor secretion [339]. MSCs in spheroids show enhanced expression of 

immunomodulatory factors and growth factors including TNFα and HGF [92]. 

5.3 Conclusion 

Delivery of c-Kit+ cardiac progenitor cells has shown encouraging but insufficient 

improvement in clinical endpoints for patients with ischemic cardiomyopathy. Motivated 

by the need to enhance the therapeutic benefits of cell therapy for cardiac repair, this 

dissertation focused on designing and testing of biomaterials-based strategies to 

enhance c-kit+ cardiac progenitor cell-based therapy. The findings add to our knowledge 

of CPC behavior in the presence of stimuli relevant to pragmatic design of regenerative 

therapies including VEGF functionalized and integrin specific hydrogels, as well as 

enhance our understanding of in vivo response to these constructs. Apart from testing 

clinically translatable technologies, this work also advances our mechanistic 

understanding of factors that influence outcomes of cell therapy. While CPCs and PEG-

hydrogels were used in these experiments, lessons learned in this project could help 

generate hypotheses for cell therapy strategies based on other cell types and 

biomaterials as well. Overall, this work broadens our understanding of design principles 

that may be used to augment effects of cell therapy for myocardial repair.  
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APPENDIX 

A.1. Cell isolation and culture 

Donors: Neonatal human c-kit+ cardiac progenitor cells (nhCPCs) were isolated from 

human atrial tissue obtained from children aged 1 week or less undergoing corrective 

surgery at Children’s Healthcare of Atlanta. Child CPCs (chCPCs) were obtained from 

children aged 1 year or older. For hCPCs (nhCPCs and chCPCS), cells from three 

donors were pooled at the first passage and used for our experiments. Rat CPCs were 

isolated from whole heart. Rat CPCs were clonally expanded after isolation.  

 

Isolation of cells from tissue: The tissue was rinsed with cold Hank’s Buffered Salt 

Solution (HBSS) and chopped into small pieces. The chopped tissue was further 

digested with sterile 1 mg/mL Collagenase II (Worthington) solution and kept on a rocker 

in the cell culture incubator maintained at 37OC, 5% CO2 for 30 minutes for enzymatic 

degradation of extra cellular matrix. The solution was then passed through a 70 m 

strainer (BD). The cells were pelleted by centrifugation at 1500 g for 5 minutes. Magnetic 

beads (Dynal) conjugated to anti-c-kit antibodies (Santa Cruz H-300) were prepared. 

The cells were mixed with beads conjugated to anti- c-kit antibodies and incubated on a 

rocker in a humidified cell culture incubator for 2 hours. Magnetic beads were incubated 

with digested tissue to bind c-kit+ cells and then separated using a magnet, interspersed 

with two washes. The separated c-kit+ cells were expanded and expression of c-kit in 

the collected population was measured by flow cytometry to ensure they were at least 

90% positive.  

 

Culture of CPCs: The cells were passaged up to passage 12 and they maintained c-kit 

expression at least up to that passage. Human CPC cell culture media included Ham’s 

F-12 base media (Corning), Pennicillin-Streptomyocin cocktail (Cellgro), L-glutamine 

(Cellgro), 0.1 μg/mL basic fibroblast growth factor (Sigma) and 10% heat inactivated 
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fetal bovine serum (Hyclone). Rat culture media had the additional supplement of 

Leukemia Inhibitory Factor (10 ng/mL). For treatments, serum free media comprising 

Ham’s F-12 base media, Pennicillin-Streptomyocin cocktail, L-glutamine and Insulin-

Transferrin-Selenium (ITS) (Cellgro) was used. Media was refreshed every 2-3 days.  

A.2. Hydrogel synthesis 

VEGF functionalized hydrogels: Michael-type addition PEG-4MAL hydrogels were 

formed by reacting 20 kDa 4-arm functionalized PEG-macromer (Laysan Bio) with 2mM 

GRGDSPC (New England Peptide) or GRDGSPC (AAPPTec) and specified dosage of 

VEGF (Cell Signaling Technology) (or PBS in case of control gels). CPCs were then 

suspended in the hydrogel followed by cross-linking with the protease degradable 

peptide VPM (New England Peptide) at a molar concentration equal to the remaining 

reactive MAL groups. The reactions were carried out in 2 mM, pH 7.4 Triethanolamine 

(Sigma) in PBS.  

 

Integrin specific hydrogels: Poly(ethylene glycol)-based hydrogels encapsulating cells 

and different bioadhesive/non-adhesive ligands were prepared. Components were 

resuspended in pH 6.0 10 mM HEPES in DPBS++. A premixed solution of the protease-

sensitive crosslinker peptide, ‘VPM’ (GCRDVPMSMRGGDRCG) (New England Peptide) 

, cells (10 million/mL hydrogel) and non-adhesive ligand ‘rDg’ (GRDGSPC) (AAPPTec) 

or ‘RGD’ (GRGDSPC) (New England Peptide) or ‘GFOGER’ 

(GGYGGGP(GPP)5GFOGER(GPP)5GPC) (AAPPTec) was mixed with 4% or 5% w/v 20 

kDa PEG-MAL (Laysan Bio). The final concentration of the rDg/RGD/GFOGER was 1 

mM and the concentration of VPM (New England Peptide) was equal to the balance 

maleimide sites remaining after accounting for maleimides theoretically reacting with the 

1 mM adhesive/scrambled ligands. 

 

The solutions were mixed in a syringe as a mould and allowed to gel at 37oC for 5-15 

min in a 1 mL syringe barrel as mould, transferred to a 24 well plate containing 300-500 



109 

 

μL/well Ham’s F-12 media with ITS, P/S and L-glutamine (CPC treatment media). 

Hydrogels made for microscopy as end-point studies are gelled directly on 1.5 mm glass 

bottom dishes (MatTek). Media was changed every 2-3 days. 

A.3. Rheology 

As described in a previous publication [186], cellular hydrogels were made, swollen in 

DPBS++ overnight and their storage and loss moduli measured using dynamic 

oscillatory strain and frequency sweeps performed on a MCR 302 stress-controlled 

rheometer (Anton Paar, Austria) with a 9 mm diameter, 28 cone, and plate geometry. 

The hydrogels were loaded between the cone and plate, and the measuring system was 

lowered to a 39 mm gap. Initial strain amplitude sweeps were performed at ω=10 rad/s 

to determine the linear viscoelastic range of the hydrogel. Oscillatory frequency sweeps 

(0.5–100 rad/s) were then used to examine the storage and loss moduli at a strain of 

1%. 

A.4. Real time PCR  

Cells were harvested in Trizol (Life Technologies) and total RNA was isolated by 

following the manufacturer’s protocol. For isolating RNA from cells encapsulated in 

hydrogels, the hydrogels were homogenized in Trizol using a homogenizer. RNA 

quantification and purity were determined by absorbance readings at 260 and 280 nm 

(BioTek Synergy2 Spectrophotometer). cDNA was prepared from the mRNA using a 

MuMLV reverse transcriptase-based reaction described as follows. RNA was mixed with 

0.1 μg random hexamers (Thermo Scientific), 0.1 μg oligo dTs (Fermentas), 25 nmol 

dNTPs (Fermentas) and RNase free water (Hyclone) to a final solution volume of 12 μL. 

Controls were performed by using RNase free water instead of RNA. Samples were 

heated at 65°C for 5 minutes to denature the RNA, followed by 25°C for 10 minutes to 

allow hexamers and oligos to anneal. First strand buffer (Invitrogen), 0.2 μmol DTT 

(Invitrogen), 40 units RNaseOUT Inhibitor (Invitrogen) and 200 units M-MLV (Invitrogen) 

were then added to the samples making up the volume to 20μL. Samples were heated at 
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37°C for 60 minutes for reverse transcription, followed by 70°C for 15 minutes to 

deactivate the enzyme. Real-time polymerase chain reaction was performed and 

analyzed using Step One Software (Applied Biosystems). Each reaction mixture 

contained 7.5 μL Power SYBR Green (Invitrogen), 5.1 μL RNase free water (Hyclone), 

1.4 μL of the forward and reverse primers at 1μM (IDT) and 1 μL 1:3 diluted cDNA. The 

polymerase chain reaction protocol was 95°C for 10 minutes, followed by 40 cycles of 

95°C for 15 seconds and 60°C for 60 seconds. A melt-curve was calculated at 2°C 

intervals with the same cycling conditions. Each sample was run in triplicate. ∆∆Ct 

method was used to obtain fold change values over the specified control or standard 

curve method was used where mRNA copy numbers are provided. 18s was used as 

housekeeping gene in rCPC studies and GAPDH was used in hCPC experiments.  

A.5. Western blotting 

Cells were homogenized in NP-40 lysis buffer supplemented with protease inhibitor and 

phosphatase inhibitor cocktails. For analyzing cells encapsulated in hydrogels, the 

hydrogels were degraded by incubation with 1mg/mL collagenase I (Worthington) 

solution for 40 minutes and the released cells were pelleted by centrifugation. The lysate 

was centrifuged at 10k g for 10 minutes and the supernatant was stored for further 

analysis. Equal total protein amount samples, as measured by micro BCA, were loaded 

on SDS-PAGE gels and they were run at 120 V. The polyacrylamide gel was transferred 

on to nitrocellulose membranes, blocked using 5% BSA-TBST at RT for 1 h, incubated 

with 1:1000 v/v primary antibody at 4OC overnight, washed with TBST three times for 10 

minutes each, incubated with 1:5000 v/v horseradish peroxidase tagged secondary 

antibody (Bio-rad) at RT for 1 h, washed three times for 10 minutes each, incubated with 

the substrate ECL (Denville Scientific) or ECL Prime (GE) and then exposed to an X-ray 

film (Denville Scientific). The films were scanned at 300 dpi resolution and obtained 

bands were quantified by densitometry analysis in ImageJ (NIH). 
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A.6. Flow cytometry 

For analyzing cells encapsulated in hydrogels, the hydrogels were degraded by 

incubation with 1mg/mL collagenase I (Worthington) solution for 40 minutes and the 

released cells were pelleted by centrifugation. Plated cells were dislodged using TryplE 

for analysis. Cells were fixed with 2% paraformaldehyde, permeabilized using methanol 

for intracellular antigens, blocked with goat serum and incubated with primary antibody 

(1:100 v/v) overnight at 4OC followed by incubation with secondary antibody (1:300 v/v) 

(Alexa Fluor 488 conjugated antibodies, Life Technologies). Samples were analyzed 

using a flow cytometer.   

A.7. Conditioned media immunoassay 

Conditioned media from hydrogels were separated, centrifuged at 10k g for 10 minutes 

to remove particulate matter and supernatants stored for further analysis. 1:2 dilutions of 

the samples were processed using a Luminex kit (R&D Systems- LXSAH) following 

manufacturer’s protocol. Briefly, the samples were added to a mixture of color-coded 

beads, pre-coated with analyte-specific capture antibodies. Biotinylated detection 

antibodies specific to the analytes of interest were added and they formed an antibody-

antigen sandwich. Phycoerythrin (PE)-conjugated streptavidin was added and it bound 

to the biotinylated detection antibodies. The beads were analyzed on a Luminex 100 

instrument. Concentrations were obtained from fluorescence readings by mapping on to 

a standard curve. 

A.8. Animal studies 

All animal experiments were performed with the approval of the Institutional Animal Care 

and Use Committee of Emory University. Athymic rats (Crl:NIH-Foxn1rnu) (~250gm, 6-8 

weeks old) were obtained from Charles River Laboratory. Rats were anesthetized with 

2% of isoflurane, orally intubated, and ventilated. The left anterior descending coronary 

artery was ligated for 30 mins followed by reperfusion. During reperfusion, hydrogels 

60 μL hydrogels were injected into the myocardium at three border zones using 27G 

insulin syringe (BD). Cardiac function was evaluated over the course of time after 
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injection of various treatments by echocardiography (Acuson Sequoia 512 with a 14 MHz 

transducer) to assess cardiac function. All functional evaluations were conducted and 

analyzed by investigators blinded to the animal treatment group. Ejection fraction and 

fractional shortening were obtained by analyzing scans in M-mode (Vevo 2100). The rats 

were euthanized 4 weeks after surgery and their hearts were excised and processed for 

histological analyses. 

A.9. Histology 

The hearts were fixed in 4% paraformaldehyde at 4OC overnight or RT for 4 hours, 

dehydrated in ethanol and embedded in paraffin using Leica TP1020 tissue processor. 

5-7 μm thick sections were made. The paraffin-embedded heart tissue sections were 

dewaxed in Histoclear (National Diagnostics) followed by a series of washes in ethanol. 

 

Picosirius red: The sections were stained with pico-sirius red solution for 1 hour (Sigma), 

washed in acidified water and ethanol and mounted with resinous medium (Cytoseal). 

Whole slide scans were taken (Hamamatsu) and the percentage of fibrosis was 

quantified from low resolution images using Aperio software as the ratio of fibrotic tissue 

(stained red) to total tissue. 

 

Isolectin: The sections underwent antigen retrieval in pH 6 citrate buffer for 10 min and 

incubated with FITC-tagged isolectin (Vector) for 1 h at RT or 4OC overnight. Three 

randomly chosen sections in the infarct border region were photographed and the 

number of fluorescent cells also positive for DAPI was manually counted.  

 

Wheat germ agglutinin: The sections underwent antigen retrieval in pH 6 citrate buffer 

for 10 min and incubated with Rhodamine-tagged isolectin (Vector) for 30 min at RT. 

The cross-sectional area of 6-8 myocytes in the infarct border region were measured by 

manual tracing (CellSens software).  
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Human mitochondria: The sections underwent antigen retrieval in pH 6 citrate buffer for 

20 minutes, permeabilization with 0.1% Triton X for 10 minutes and incubated with anti-

human mitochondria antibody (1:50 v/v, Abcam) overnight at 4OC, followed by incubation  

with alkaline phosphatase tagged secondary antibody (1:50 v/v, Sigma). The sections 

were incubated with Vector Red (Vector) substrate for 10 minutes, counterstained with 

methyl green, dehydrated in ethanol and mounted with resinous medium (Cytoseal). 

Whole slide scans were taken (Hamamatsu) and cells positive for both pink (developed 

by alkaline phosphatase-Vector Red reaction) and green (stained nuclei by methyl 

green) were counted (NDP view software).  

A.10. Statistics 

All data are expressed as mean ± SEM (standard error of mean). To determine 

significance of difference between means, either a One-way or Two-way analysis of 

variance (ANOVA) followed by the appropriate post-hoc test, or Student’s t-test was 

performed using GraphPad Prism5, as specified with each result. p≤0.05 was 

considered statistically significant. 

A.11. List of primers for real-time PCR 

Animal 
Target 
gene Forward primer (5’->3’) Reverse primer (5’->3’) 

Rat flk1 GCCAATGAAGGGGAACTGAAGAC  TCTGACTGCTGGTGATGCTGTC  

Rat tie2 TGCCACCATCACTCAATACCA  AGGCTGGGTTGCTTGATCCT  

Rat cdh5 TCCTCTGCATCCTCACTATCACA GTAAGTGACCAACTGCTCGTGAAT 

Rat vwf CCCACCGGATGGCTAGGTATT GAGGCGGATCTGTTTGAGGTT  

Rat 18s TTCCTTACCTGGTTGATCCTGCCA  AGCGAGCGACCAAAGGAACCATAA  

Human gapdh GTGGACCTGACCTGCCGTCT GGAGGAGTGGGTGTCGCTGT 

Human gata4 GGAGATGCGTCCCATCAAGAC GGAGACGCATAGCCTTGTGG 

Human nkx2_5 ACCCTGAGTCCCCTGGATTT TCACTCATTGCACGCTGCAT 

Human myh7 GGCAAGACAGTGACCGTGAAG CGTAGCGATCCTTGAGGTTGTA 

Human tnnt2 GCGGGTCTTGGAGACTTTCT TTCGACCTGCAGGAGAAGTT 

Human myh6 TCTCCGACAACGCCTATCAGTAC GTCACCTATGGCTGCAATGCT 

Human tnni3 CCAACTACCGCGCTTATGC CTCGCTCCAGCTCTTGCTTT 

Human mef2c TAACTTCTTTTCACTGTTGTGCTCC
TT 

GCCGCTTTTGGCAAATGTT 

Human mlc2v CCTTGGGCGAGTGAACGT GGGTCCGCTCCCTTAAGTTT 
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Human flt1 GACTAGATAGCGTCACCAGCAG GAAACCGTCAGAATCCTCCTC 

Human cd31 GAGTCCTGCTGACCCTTCTG ATTTTGCACCGTCCAGTCC 

Human vwf TGTCTGGCTGAGGGAGGTAA GTACATGGCTTTGCTGGCAC 

Human cdh5 TTTCCAGCAGCCTTTCTACCA GGAAGAACTGGCCCTTGTCA 

Human tagln AAATGCCCCGGATGACTTGG GGGGAAAGCTCCTTGGAAGT 

Human acta AATACTCTGTCTGGATCGGTGGCT ACGAGTCAGAGCTTTGGCTAGGAA 

Human itga1 AGGATTTCTGGCTTGTGGG ACTATGTCCAGTTGAGTGCTG 

Human itga2 GACCTATCCACTGCCACATG TGTGAGAAAACCTCCAGTTCC 

Human itga3 GGAACAGCACCTTCATCGAG AATGTCCACAGAGAACCACG 

Human itga5 GGAACCTCACTTACGGCTATG ACCAGCAAGTCATCCAGC 

Human itga8 ACAGGCTCACATTCTGGTG TCCTTCCCCTTCATTTCTTGC 

Human itga10 CTTCAGTTCTGGGATATGTGCC CCAGTCTTCGTAGGAAGGTCT 

Human itga11 GTGCCTATGACTGGAATGGAG CGACCGATGTGACTGTGTAC 

Human itgav GCAGTGTGAGGAATTGATAGCG AAGTAGAATGTGAGCCTGTCG 

Human itgb1 TGTAAGGAGAAGGATGTTGACG CAACCACACCAGCTACAATTG 

Human itgb3 CCCTGCTCATCTGGAAACTC CGGTACGTGATATTGGTGAAGG 

Human itgb5 GCTCGCAGGTCTCAACATATG TCTCTATCTCACCTCCACAGC 

 

A.12. List of antibodies 

Animal Target protein Antibody/ 
stain 

Application Dilution (v/v) 

Rat/human c-kit H-300 CPC 
isolation 

10 uL antibody  added to 50 
uL beads Dynabeads M-
280 Sheep anti-rabbit IgG 

FC 1:100 
Rat pErk CST #9101 WB 1:1000 
Rat Erk CST #9102 WB 1:1000 
Rat/human Nkx2.5 H-114 WB 1:1000 
Rat/human CD31 M-185 FC 1:100 
Rat/human Flk1 ab9530 FC 1:100 
Rat/human VE-cadherin ab166715 FC 1:100 
Rat/human vWF ab6994 FC 1:100 
Human MHC ab50967 WB 1:1000 
Human Troponin I H170 WB 1:1000 
Rat CD11b CBL1512 IHC 1:50 
Human MTCO2 ab92824 IHC 1:50 
Rat Isolectin FL-1201 IHC 1:50 
Rat Wheat germ 

agglutinin 
RL-1022 IHC 1:250 

WB: Western blotting, FC: Flow cytometry, IHC: Immunohistochemistry 
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