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SUMMARY

Fe is one of the most important nutrients for phytoplankton growth in the ocean, making

it a crucial element in the regulation of the ocean carbon balance and biogeochemical cy-

cles. Atmospheric deposition of dFe to the ocean has increased over the last decades partly

due to human activities, which can significantly alter marine ecosystems. Thus, a com-

prehensive understanding of how the ocean Fe cycling operates and how it will respond to

human perturbations is urgently needed. In this work, I first significantly improve the Fe pa-

rameterization in a global ocean biogeochemistry model, constrained by new high-quality

ocean Fe datasets. Then, I identify key mechanisms that control the ocean Fe cycle in var-

ious ocean basins and examine the responses of marine phytoplankton to an increasing Fe

deposition through a suite of model simulations. These simulations are performed in an

ocean biogeochemistry and an ecosystem models, which incorporate the newly improved

Fe scheme.

The refinement of model Fe parameterization and its evaluation are undertaken in chap-

ters two to four. In these chapters, I show that my newly developed Fe scheme displays a

remarkable improvement in reproducing observations over the old scheme. Through a suite

of model simulations, I reveal the crucial role of the concurrent release of dFe and ligands

from sinking organic particles in forming and maintaining the subsurface dFe maxima ob-

served in many ocean transects. Moreover, the inclusion of spatially varying ligand classes

with different binding strengths in the model is important to explain the strong vertical dFe

gradient observed in the upper ocean. I also identify the relative roles of different external

dFe sources in different ocean basins. While atmospheric deposition is an important source

of dFe in the Atlantic and Indian Oceans, sedimentary and hydrothermal dFe inputs are

more important in the Pacific Ocean.

The relative contributions of external sources and ocean interior processes on regulating

the upper ocean dFe pattern are explored in chapter five. This task is done by analyzing the

xvi



dFe budget and the dFe distribution field simulated in different ocean Fe models, using an

unsupervised classification technique. The results show that the upper ocean dFe patterns

are largely controlled by interior ocean processes and that without an appropriate repre-

sentation of these processes, Fe models cannot reproduce observations, even with a correct

magnitude of the external fluxes.

In chapter six, I explore the impact of an increasing dFe atmospheric deposition on

the Indian Ocean phytoplankton and carbon balance by using an ocean ecosystem model,

which incorporates the newly improved Fe scheme. I found that while diatom growth

and export organic carbon flux are enhanced south of 40◦S, they decrease in some regions

in the northern Indian Ocean, compensated by increases in coccolithophores growth and

carbonate carbon export. These changes lead to a decrease in the carbon dioxide uptake

over the Indian Ocean.

xvii



CHAPTER 1

INTRODUCTION

1.1 Ocean iron cycling

The ocean Fe cycle presents an intriguing and unique paradox. Fe is the fourth most abun-

dant element in the Earth’s crust and is essential for various processes involved in the

growth of phytoplankton such as those linked with photosynthesis, respiration, and nitro-

gen fixation (Raven, 1988; Tagliabue et al., 2017). However, the dFe (operationally defined

by the filter size of < 0.2µm) concentration in the ocean is extremely low, on the order of

subnanomolar level (10−6mol/l) (Liu and Millero, 2002). This is because of the tendency

of Fe to hydrolyze and precipitate out of the water column and to be scavenged by marine

particles (Blain and Tagliabue, 2016). For this reason, biological productivity in around half

of the world ocean is restricted by the availability of dFe (Moore et al., 2013). Moreover,

the low concentration of dFe makes its measurements in the ocean difficult, limiting our

high-quality Fe data (Blain and Tagliabue, 2016). It was not until recent years that devel-

opments in measurement techniques and international efforts helped expand the dataset of

ocean dFe distribution (Tagliabue et al., 2016, 2012). This expanding dataset has revealed

important processes of ocean Fe cycling that have been previously overlooked (Schlitzer

et al., 2018).

Oceanic Fe cycling (Figure 1.1) is distinct from those of major nutrients like P and N

because of the involvement of a diverse and complex array of processes (Tagliabue et al.,

2017). First, there are several external sources of dFe to the ocean. Although it was pre-

viously considered that atmospheric deposition is the only major source of dFe (Archer

and Johnson, 2000; Johnson et al., 1997), new observations demonstrate that continental

shelves (Elrod et al., 2004; Johnson et al., 1999) and hydrothermal vents (Fitzsimmons
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and Boyle, 2014; Resing et al., 2015; Tagliabue et al., 2010) also release a considerable

amount of dFe. Second, Fe exists in various forms in the ocean. The most thermodynam-

ically stable form of Fe in the oxygenated seawater is the ferric (Fe(III)) species, which

has very low solubility and precipitates quickly to form particulate Fe (Moore et al., 2013).

Fe can also be attached to marine particles through biological uptake, coagulation of col-

loidal Fe (defined by the filter size between 0.02 - 0.2µm), and scavenging (Revels et al.,

2015). Whereas previous studies focused on the scavenging role of biogenic (organic) par-

ticles (Parekh et al., 2005), recent studies have argued for scavenging by particles with

lithogenic (inorganic) origin, especially in high dust regions (Ye and Völker, 2017). Par-

ticulate Fe can aggregate and gravitationally sink through the water column (Fowler and

Knauer, 1986; Jeandel et al., 2015). Some of the particulate Fe can return to dissolved

form along the sinking pathway through desorption and particle remineralization (Boyd

et al., 2000). Remineralized Fe can be scavenged again or transported back to the surface

via upwelling and vertical mixing (Tagliabue et al., 2014a).

However, studies by Rue and Bruland, (1995), Berg, (1995) and Wu and Luther, (1995)

showed that the majority of dFe in seawater (∼ 99%) is protected from scavenging and

precipitation by binding with organic ligands. The crucial role of ligands for the ocean

Fe cycling leads to measurements of their concentration in the ocean (Boye et al., 2001;

Ibisanmi et al., 2011) as well as their inclusion in Fe modeling studies (Parekh et al., 2005;

Völker and Tagliabue, 2015). A traditional and still widespread approach in ligand mod-

eling is to assume a uniform distribution and a constant concentration of 0.6 or 1 nM for

the most dominant ligand observed in the ocean (Parekh et al., 2005). Recent ligand obser-

vations (Buck et al., 2018; Gerringa et al., 2016) challenge this assumption and suggest a

large variation in the ligand concentration and a spectrum of ligand classes with different

binding strengths with dFe (Hassler et al., 2017).

The new dFe datasets also showed unique features of the ocean dFe pattern that are

not correctly represented in many ocean biogeochemistry models (Tagliabue et al., 2016).

2



Figure 1.1: Schematic depiction of ocean dFe cycling. The schematic shows the interaction
and transformation between dissolved (on the right side) and particulate (on the left side)
forms of Fe. dFe enters the ocean through atmospheric deposition, continental shelves, and
hydrothermal vents. Atmospheric deposition supplies both particulate and dissolved Fe.

3



Among these features are the subsurface (∼ 300-1000m) dFe maxima observed in several

GEOTRACES ocean transects (Hatta et al., 2015; Rijkenberg et al., 2014), which could

be an important source of dFe to phytoplankton in the euphotic zone. These subsurface

maxima tend to be underestimated in ocean models that used the Fe parameterization fol-

lowing Parekh et al., (2005), which was developed when the ocean Fe observations were

still sparse. This parameterization applied traditional approaches which assumed only one

uniformly distributed ligand class and considered atmospheric deposition as the only dFe

source. Biases in the model Fe distribution hinder our projection of changes in ocean

productivity and hence the ocean carbon balance and climate system under the impact of

human perturbations, among which is the increasing anthropogenic atmospheric dFe input

to the ocean (Jickells et al., 2005). Moreover, ocean acidification, stratification, warming,

and deoxygenation are expected to cumulatively alter the bioavailability, chemistry, recy-

cling, and particle dynamics of Fe (Hutchins and Boyd, 2016). Consequently, it is crucial

to improve the Fe parameterization in ocean biogeochemistry models, examine processes

regulating the ocean Fe dynamics, and evaluate their responses to future changes. The new

Fe dataset from the GEOTRACES program provides a unique opportunity to achieve these

tasks.

1.2 Objectives of this dissertation

In this dissertation, I first aim to improve the Fe representation in an ocean biogeochemistry

model, which still uses the parameterization developed by Parekh et al., (2005), and test the

ability of this representation to reproduce the dFe distributions observed in GEOTRACES

ocean transects. Then, I aim to answer three scientific questions:

• (I) What are mechanisms supporting the formation and maintenance of the subsurface

dFe maxima observed in various GEOTRACES transects?

• (II) What are the relative contributions of external sources versus internal processes
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in controlling the upper ocean (0-1000m) dFe pattern?

• (III) What are the impacts of an increasing anthropogenic atmospheric dFe deposition

on nutrient distribution, phytoplankton production, and carbon uptake of the ocean?

The modeling improvements and validations are undertaken in chapter 2 and chapter 3.

Questions (I) and (II) are partly addressed in chapter 3 and chapter 4 through a suite of

model simulations. Chapter 5 provides further insight on question (II) by analyzing the

balance of dFe budgets simulated in different Fe models using a statistical method. Ques-

tion (III) is addressed in chapter 6 by coupling our Fe cycling scheme to a state-of-the-art

ocean ecosystem model (Dutkiewicz et al., 2014), focusing on the Indian Ocean, where

the phytoplankton community is diverse and can significantly respond to perturbations.

Chapter 7 summarizes the results of this work, discusses their implications, and suggests

important questions for future research.
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CHAPTER 2

MODEL DESCRIPTION

The ocean biogeochemistry model used in this study is based on the MITgcm model (Mar-

shall et al., 1997a,b), configured for a global bathymetry in a 1◦x1◦longitude-latitude grid

and 23 non-uniform vertical z-levels. At this resolution, mesoscale eddies are parame-

terized using the isopycnal tracer and thickness diffusion scheme (Gent and McWilliams,

1990; Redi, 1982; Solomon, 1971) and the mixed-layer processes are parameterized using

the K-Profile Parameterization scheme (Large et al., 1994). The model is run offline, us-

ing the climatological monthly circulation fields taken from the ECCO product version 3

(Wunsch and Heimbach, 2007). The biogeochemical component of the model is modified

from Parekh et al., (2005) and Dutkiewicz et al., (2005) (hereafter P05 and D05), which

carries DIC, alkalinity, PO3−
4 , DOP, dFe, and O2. Biological productivity is controlled by

the availability of light and nutrients (PO3−
4 and dFe) using Monod function. There are

some notable differences in the parameterization of the Fe cycling relative to the earlier

versions of MITgcm in P05 and D05, as described in details below. Values for all model

parameters are provided in table 2.1.

In this study, the biological Fe uptake in the subarctic Pacific and Southern Oceans can

be varied as a function of the dFe concentration, which represents the luxury Fe uptake

of diatoms in these regions where silica is abundant (Ingall et al., 2013). In addition, I

include three external sources of dFe (atmospheric deposition, continental shelves, and

hydrothermal vents) as opposed to only atmospheric deposition as in P05 and D05.

2.1 Atmospheric Dust Deposition

Atmospheric deposition of dFe under pre-industrial condition is obtained from recent mod-

eling studies, which employed the three-dimensional atmospheric chemical transport model
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GEOS-Chem coupled with a comprehensive dust-Fe dissolution scheme (Ito et al., 2016;

Johnson and Meskhidze, 2013). The solubility of dust Fe varies spatially. The majority

of the deposited dust Fe is likely in the insoluble form especially in the high dust region.

Ocean biogeochemistry models tend to overestimate the surface dFe concentration under

high-dust regions in the Indian and tropical Atlantic Oceans if a uniform solubility is used

(Tagliabue et al., 2016). Thus, I manipulate the solubility of dust Fe for these regions, re-

ducing it by two orders of magnitude. I acknowledge the limitation of this approach and are

aware of a new approach from Ye and Völker, (2017) by explicitly solving for lithogenic

particles, however there is still large uncertainty in the dissolution kinetics of particulate

dust Fe (Mahowald et al., 2009) and in the magnitude of dust deposition itself (Anderson

et al., 2016).

2.2 Shelf Sediments

The input of dFe from sea-floor sediments is calculated by following Moore and Braucher,

(2008). The essence of this parameterization is to represent the release of Fe from unre-

solved continental shelves in the coarse resolution ocean model. To do so, I first estimate

the biological productivity over the continental shelves using remotely sensed ocean color

data (Behrenfeld and Falkowski, 1997). Second, I calculate the e-ratio as a function of

total productivity and sea surface temperature, following Laws et al., (2011), and assume

a parameterized remineralization profile below the euphotic layer (Martin et al., 1987) to

estimate the sinking organic flux at the depths of continental shelves using the ETOPO2

(2-min global ocean bathymetry). The sedimentary dFe flux is then calculated and mapped

onto the coarse-resolution model grid points based on a ratio with the organic carbon flux

(Elrod et al., 2004). This ratio was measured at a few upwelling locations and did not take

into account the effect of the bottom O2 concentration, which likely leads to an overestima-

tion of the sedimentary dFe flux when applied globally. Dale et al., (2015) addressed this

problem by calculating the sedimentary dFe input as a function of carbon oxidation rates
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and bottom water O2 concentrations. Following this approach, I use the O2 concentration

from the World Ocean Atlas O2 data (Garcia and Gordon, 1992) to vary the ratio used by

Elrod et al., (2004) between different regions. Specifically, this ratio is set to 0.68 ×10−3,

which is the same as in Elrod et al., (2004) for the low-O2 waters ([O2] < 30 μM) but is

reduced by 1 order of magnitude for well-oxygenated regions ([O2] > 30 μM).

2.3 Hydrothermal Vents

The hydrothermal dFe flux is scaled with 3He flux, following Tagliabue et al., (2010) with

some modifications. Previous work reported the mismatches of hydrothermal dFe sig-

nals between state-of-the-art Fe biogeochemistry models and observations (Tagliabue et

al., 2016; Tagliabue and Resing, 2016), especially along the slow-spreading ridges (Saito

et al., 2013). The coefficient relating the hydrothermal dFe to 3He fluxes is unlikely a uni-

form constant, thus I vary it for different ocean basins. The same ratio as in Tagliabue et

al., (2010) is used for the Southern Ocean, but is increased by a factor of 80 in the Atlantic

Ocean as suggested by Saito et al., (2013), and by a factor of 10 and 103 for the Indian and

Pacific Oceans, respectively, to better match observations (Nishioka et al., 2013; Resing

et al., 2015).

The vertical profile of horizontally integrated dFe fluxes into the ocean from all three

sources in the model is shown in Figure 2.1. Atmospheric dust deposits∼ 100 mol dFe/m/s

into the surface water, while hydrothermal vents release dFe mostly at water levels from

2000 to 4000m (∼ 200 mol dFe/m/s) and very little elsewhere. Shelf sediments supply a

significant amount of dFe in the upper 1000m water (nearly 400 mol dFe/m/s in the upper

200m). Of the three external dFe inputs, sedimentary dFe flux is the most significant source

(37.65 Gmol dFe/year) even though it is confined near coastal regions, whereas dust dFe

flux is least significant (2.03 Gmol/year), but it is an important source of dFe to the surface

open ocean.
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Figure 2.1: The vertical profile of horizontally integrated dFe fluxes from shelf sediments,
hydrothermal vents, and dust deposition into the ocean in the model
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2.4 Organic Ligands

Following previous studies by Tagliabue and Völker, (2011) and Misumi et al., (2013)

(hereafter TV11 and M13), I parameterize multiple, spatially-varying ligand classes as

functions of DOC and AOU. These ligand classes have different binding strengths to the

free dFe in the seawater. This approach is an improvement from the previous studies of

P05 and D05 which used a single, uniform organic ligand. In this dissertation, I essentially

consider three ligand classes (L1, L2, and L3). Of the three ligands, L1 is considered to

have the strongest binding strength (KL1 = 1012 L/mol), while L2 and L3 have weaker

binding strengths (KL2 = 1011 L/mol and KL3 = 1010 - 1011 L/mol). Based on previous

studies, I assume that L1 is primarily composed of the biologically produced siderophores

with relatively high conditional stability constant (KL1 = 1012 L/mol) (Adly et al., 2015;

Macrellis et al., 2001). L2 and L3 are assumed to be primarily composed of humics, which

may be produced by the remineralization of the particulate organic matter (Laglera and

Berg, 2009; Velasquez et al., 2016; Vraspir and Butler, 2009). The binding strength for

humic-like ligand is not certain, as some studies suggested to be < 1011 L/mol (Gledhill

and Buck, 2012). Recent ligand measurements in the subtropical Atlantic GA03 transect

supported the existence of a refractory-DOC component ligand class L3 with a weak bind-

ing strength of K = 1010L/mol. Based on these assumptions, I parameterize the spatial

distributions of L1 and L2 as linear functions of DOC and AOU, whereas the highly refrac-

tory component of humics DOC (L3) is represented in the model as a constant background

Lrefract (Hassler et al., 2011) (eqs 2.1 - 2.3).

L1 = α[DOClabile] (2.1)

L2 = γβ[AOU ] (2.2)

L3 = (1− γ)[Lrefract] (2.3)
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α is calibrated based on the observed surface ligand and labile DOC distributions along

the GA02 western Atlantic transect, where I assume the observed minimum DOC as the

proxy for the labile component of DOC (Gerringa et al., 2015; Middag et al., 2015; Salt

et al., 2015). The empirical coefficients for L2 and L3 (β and γ) are calibrated by fitting

to the observed ligand distribution along the GEOTRACES transects (Mawji et al., 2015)

in a least-square sense. In the model, DOClabile is represented in terms of DOC, and is

calculated as DOClabile = RCPDOP, where RCP (set to 120) is the stoichiometric C:P ratio

of the organic matter. DOP in the model is generated by photosynthesis and has an e-

folding decay timescale of 6 months. The mean magnitude of DOClabile in our model is

generally an order of magnitude smaller than the mean magnitude of observed minimum

DOC along the GA02 transect (∼ 0.1 µM versus ∼ 1 µM), thus I increase the magnitude

of α by a factor of 10 in order to reproduce the observed magnitude of L1. β is calibrated

based on the observed subsurface ligand and AOU along two oceanic transects (the GA02

and GA03 - subtropical North Atlantic Ocean) (Buck et al., 2015; Middag et al., 2015;

Voelker et al., 2015). AOU is calculated from dissolved O2, temperature, and salinity data

(Garcia and Gordon, 1992). Parameterizing L2 in terms of AOU leads to an artificial loss

of ligand when the subsurface waters upwell to the surface and AOU decreases to zero

on the timescale of air-sea O2 exchange (∼1 month). Although the decay of AOU in

the surface waters could be analogous to the photochemical loss of ligands reported in a

previous study (Barbeau et al., 2001), I acknowledge that it may cause biases in the ligand

parameterization. The binding of these three parameterized ligand classes to free dFe is

solved iteratively as described in the subsection 2.4.1 below.

To evaluate our ligand parameterization, the total ligand concentration (L1 + L2 + L3)

in the model is compared against available data from the GEOTRACES program along

the west Atlantic GA02 (Gerringa et al., 2015) and subtropical Atlantic GA03 transects

(Buck et al., 2015) (Figure 2.2). I focus only on the comparison for the upper 1000m ocean

since the dFe and ligand patterns here have more impact on the marine productivity than
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the abyssal ocean. Along the GA02 transect, our ligand parameterization is able to capture

the right magnitude of the total ligand concentration in this region (∼ 2.0 nM) and some

features of the ligand pattern such as the high ligand concentration in the subsurface water

(600 - 1000m) near the equator and near the surface around 50◦N. Along the GA03 transect,

our model significantly underestimates the magnitude of the total ligand concentration by

two times (note the difference in the scale for observations and model for this transect -

Figure 2.2, lower panels). However, the observed ligand pattern in this transect is generally

reproduced by our model such as the high ligand concentration in the subsurface water. In

general, the data-model comparison for total ligand concentrations shows that our simple

ligand parameterization starts reproducing some features of the large-scale ligand pattern

in the ocean but also reveals its significant biases and limitations. It is important to note

that this parameterization is fundamentally limited by the availability of observational data

to calibrate the coefficients, and the ligand parameters and formulations may need to be

updated as more data becomes available. Moreover, this parameterization encapsulates

our current mechanistic understanding of how different ligand classes are produced in the

ocean, which is also uncertain and can change in the future.

With these limitations in mind, I show the mean vertical profile of three modeled ligand

classes in Figure 2.3 to illustrate how these three ligands are simulated in the model. L1

is confined to the upper 200m with a concentration of < 0.5 nM. L2 is produced in the

subsurface water by the remineralization of organic particles with a maximum concentra-

tion of ∼ 1.3nM at around 1500m. The concentration of L3 is 1.38 nM at all depth levels.

The mean contribution of each ligand class to the total ligand concentration at each depth

level is shown in Figure 2.4a in percentage. L1 accounts for ∼ 20% of the total ligand con-

centration at the surface, then disappears below 400m (dark shading). L2 contributes > ∼

40% of the total ligand concentration in the subsurface water (red shading), whereas the L3

percentage varies from 80% at the surface to 50% in the deep ocean (green shading). The

effect of Fe-binding ligands on the ocean dFe species is demonstrated in Figure 2.4b as the
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mean vertical profile of different dFe species (dFe free, FeL1 , FeL2, FeL3, and FeL3) in

percentage of the total dFe. The free dFe (blue shading) only accounts for< 5% of the total

dFe speciation in the upper 200m water and disappears in the subsurface water and deep

ocean. The existence of free dFe in the upper 200m water is due to a significant amount

of dFe inputs from dust deposition and shelf sediments. Although L1 concentration is rela-

tively low in the surface water (∼ 0.3 nM), FeL1 (black shading) still accounts for ∼ 50%

of the Fe speciation at this depth level because of the strong binding strength of this ligand

class. FeL1 percentage declines significantly below ∼ 300m due to the disappearance of

L1 in the subsurface. The contribution of FeL3 to the total dFe speciation (green shading)

is nearly 40% at the surface then declines to ∼ 15% in the subsurface. The percentage of

FeL2 species (red shading) is nearly 0% at the surface, starts increasing significantly below

200m, gets peak (∼ 80%) at ∼ 600m and stays relatively constant below that level. It is

clear that FeL2 is the most dominant dFe species in the subsurface water in our model due

to the high concentration of L2 there (∼ 1 nM) and its relative strong binding strength (KL2

= 1011 L/mol). In the upper 200m, FeL1 and FeL3 contribute roughly equally to the total

dFe species due to the compensation in their distribution (Figure 2.3) and binding strength.

L1 has a strong binding strength but is confined to the surface with a relatively low concen-

tration, whereas L3 concentration stays high throughout the water column but its binding

strength is weak.

2.4.1 The binding of multiple ligand classes with free dFe

I consider N classes of co-existing ligands in seawater with varying binding strength to

dFe. The binding strength for each ligand class is expressed by the conditional stability

constant, Kn:

Kn =
[FeLn]

[Fe′][L′n]
(2.4)
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where [L′n], [FeLn] are the concentrations of the free (unbound) and complexed forms of

the nth ligand respectively, and [Fe’] is the concentration of the free (unbound) inorganic

dFe. Accordingly, the local concentration of the nth ligand can be written as the sum of

free [L′n] and complex forms [FeLn].

[Ln] = [L′n] + [FeLn] (2.5)

Similarly, the local dFe concentration can be written as follows:

[FeT ] = [Fe′] + Σ[FeLn] (2.6)

Combining three equations (2.4 - 2.6), we can eliminate [FeLn] and [L′n] to arrive at a N+1

order polynomial of [Fe’] for a given set of Kn, Ln, and [FeT ], which can be solved using

the Newton-Raphson method.

f([Fe′], Kn, Ln, [FeT ]) = 0 (2.7)

While this framework allows for an arbitrary number of ligand classes, I use three

classes of ligands throughout this study. Additional ligand classes can be easily included if

needed.

2.5 Scavenging

The free dFe (Fe’) that is not bound to ligands is subject to scavenging losses by three

mechanisms. First, Fe’ can be scavenged onto particulate organic matter based on a first-

order bulk scavenging rate following Parekh et al., (2005) and Galbraith et al., (2010). This

scavenging process is parameterized as a function of the concentration of the particulate

organic matter and the Fe’ concentration,

Feorgscav = korgC
0.58
p [Fe′] (2.8)
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Figure 2.2: The total ligand concentration in the western Atlantic GA02 (upper panels)
and subtropical North Atlantic GA03 transects (lower panels) measured by observations
(left panels) and simulated in the model (right panels). Model output (annual mean) is
objectively mapped onto the cruise track.
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Figure 2.3: The mean vertical profile of three modeled ligand classes in the ocean. The
upper 1000m water level is expanded.

Figure 2.4: The mean ocean vertical profile in percent of different ligand classes (a) and
dFe species (b) in the model. The upper 1000m water level is expanded.
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where korg is the rate constant andCp is the particulate organic matter concentration. In this

model, the concentration of particulate organic matter is not a prognostic variable and its

vertical attenuation with depth is crudely parameterized as a power function modified from

Martin et al., (1987). Cp is diagnosed from the sinking particle flux and its assumed sinking

speed. The exponent of 0.58 follows the empirical study of Honeyman et al., (1988). Fe

scavenged through this mechanism can be released back to the water column through the

dissolution/remineralization of sinking organic particles (Boyd et al., 2010). The model

calculates dFe released from organic particles in two components: cellular Fe and scav-

enged Fe. Remineralization of cellular Fe is determined by the Martin curve and the Fe:P

uptake ratio. Because of scavenging and dissolution processes, the stoichiometric Fe:P ra-

tio (RFeP ) of organic particles can change along the sinking pathway. The model explicitly

calculates the vertically variable RFeP by integrating the particulate Fe mass balance, and

determines the vertical profile of Fe release from organic particles. A detailed description

of this parameterization is provided in the subsection 2.5.1 below.

Second, Fe’ can be scavenged onto inorganic particles, which are not produced by

biological processes and may have lithogenic origin (Boyd et al., 2010; Galbraith et al.,

2010; Tagliabue et al., 2014b). As in Galbraith et al., (2010), inorganic scavenging is

parameterized as a first order loss process with a rate coefficient, kinorg,

Feinorgscav = kinorg[Fe
′]. (2.9)

Elevated dust deposition enhances the inorganic scavenging process because of the

increase in lithogenic particle concentration under high dust deposition (Ye and Völker,

2017). Therefore, I scale the rate constant by the dFe flux from atmospheric deposition as

follows:

kinorg = kinorg0

(
JFedust
〈JFedust〉

)
(2.10)

where JFedust is the atmospheric dFe dust flux at each model grid cell in the surface ocean,
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and 〈JFedust〉 is the global mean dust Fe flux. Thus, kinorg can vary spatially in the surface

water as a function of the atmospheric dFe flux, but its value below the surface is still

set to kinorg0. In addition, the minimum value for kinorg is also set as kinorg0, keeping it

from being extremely low under the regions of low dust deposition such as the Southern

Ocean. The scavenged Fe through this mechanism can also return to the water column by

desorption from sinking particles. This return dFe flux is calculated in the model from the

vertical profile of sinking inorganic scavenged-Fe flux, which is represented by a power

function with a coefficient of -0.4.

Finally, another scavenging loss process represents the precipitation of Fe’ (Fitzsim-

mons et al., 2015; Honeyman and Santschi, 1989). The solubility of Fe’ is very low in

the oxygenated seawater (Liu and Millero, 2002); therefore, the model removes the excess

concentration of Fe’ that is beyond the Fe solubility, [Fe’max], set to 0.3nM. I acknowledge

the crude parameterization of this type of Fe’ loss, but it occurs only in a small fraction of

the model domain with an intense Fe deposition. In addition, another potential loss mech-

anism for dFe by the coagulation of colloidal Fe (defined by the filter size usually between

0.02 - 0.2µm), which termed colloidal pumping (Honeyman and Santschi, 1989; Tagliabue

et al., 2016), is not yet represented in our model.

2.5.1 An implicit scheme calculating the Fe:P ratio in particulate organic matter

In the interior ocean, although dFe can be released from sinking organic particles through

remineralization, it can be re-attached to those particles by scavenging (Boyd et al., 2017).

The balance between these remineralization and scavenging processes controls the Fe con-

tent of sinking particles. These processes decouple the Fe and P content of the particulate

organic matter. Since particulate Fe and P are not the prognostic variables in our model,

they have to be implicitly calculated. In the water column, the vertical convergence of

particulate P flux gives the remineralization rate of P.
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δfp
δz

= ReminP (2.11)

The vertical convergence of particulate Fe flux is equal to the difference between the

remineralization rate of Fe and the scavenging of free Fe onto the particulate organic matter.

δfFe

δz
= ReminFe − korgFe′ (2.12)

where ReminP and ReminFe are the remineralization rates of P and Fe. The sinking

fluxes and remineralization rates for Fe and P are linked through the stoichiometric ratio

RFeP that can change along the sinking pathway.

fFe = fPRFeP (2.13)

ReminFe = ReminPRFeP (2.14)

Combining (2.12) and (2.13), we get:

RFeP
δfP
δz

+ fP
δRFeP

δz
= ReminFe − korgFe′ (2.15)

Plugging (2.11) and (2.14) into (2.15), we can simplify (2.15) to:

fP
δRFeP

δz
= −korgFe′ (2.16)

Integrating equation (2.16) vertically from the base of euphotic layer downward, we

can calculate the vertical profile of RFeP of the particulate organic matter.

RFeP (z) = RFeP (eu) +
∫ eu

z

kscFe
′

fP
dz (2.17)

where RFeP (eu) is set to the Fe:P uptake ratio in the euphotic layer. The vertical integral of
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Table 2.1: Model parameters
α(unitless) 6.1 ×10−5

β(unitless) 1.3 ×10−5

γ(unitless) 0.5
Lrefract(mol/m3) 2.76 ×10−6

K1 (L/mol) 1012

K2 (L/mol) 1011

Total L (mol/m3) variable
korg (m3gC−1s−1) 1.16 ×10−5

kinorg (s−1) 2.0 ×10−7

RFeP (unitless) variable
Global Sed.dFe flux(mol/s) 11938

dFe/3He variable

scavenging rate normalized by the sinking P flux determines the excess Fe contained in the

particulate organic matter. In high Fe and low-productivity regions (such as the subtropical

North Atlantic), the integral in equation (2.17) can sometimes lead to numerical instability.

In order to avoid large computational errors, I set a maximum value of 0.01 for RFeP . This

condition only occurs in a small number of model grid points and the specific choice of the

maximum value does not significantly alter the model solution.
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CHAPTER 3

FORMATION AND MAINTENANCE OF THE GEOTRACES SUBSURFACE

DISSOLVED IRON MAXIMA IN AN OCEAN BIOGEOCHEMISTRY MODEL

This chapter is modified from an article published in Global Biogeochemical Cycles as

Pham A.L.D., and T. Ito. (2018), Formation and maintenance of the GEOTRACES

subsurface dissolved iron maxima in an ocean biogeochemistry model, Global

Biogeochem. Cycles, 32. https://doi.org/10.1029/2017GB005852

Abstract

Recent GEOTRACES transects revealed basin-scale patterns of dFe in the global oceans,

providing a unique opportunity to test numerical models and to improve our understanding

of the Fe cycling. Subsurface maxima of dFe in the upper ocean thermocline are observed

in various transects, which can play an important role in regulating marine productivity

due to their proximity to the surface euphotic layer. An ocean biogeochemistry model

with refined parameterizations of Fe cycling is used to examine the mechanisms control-

ling the formation and maintenance of these subsurface maxima. The model includes the

representation of three dFe sources including dust deposition, continental shelves, and hy-

drothermal vents. Three classes of organic ligands are parameterized as functions of DOC

and AOU. Parameterizations of particle-dependent scavenging and desorption are included.

Although the model still struggles in fully capturing the observed dFe distribution, it starts

reproducing some major features, especially in the main thermocline. A suite of numerical

sensitivity experiments suggests that the release of scavenged Fe associated with sinking

organic particles forms the subsurface dFe maxima in high-dust regions of the Indian and

Atlantic Oceans. In low-dust regions of the Pacific basin, the subsurface dFe extrema are

sustained by inputs from the continental shelves or hydrothermal vents. In all cases, sub-

surface ligands produced by the remineralization of organic particles retain the dFe and
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play a central role in the maintenance of the subsurface maxima in our model. Thus, the

parameterization of subsurface ligands has a far-reaching impact on the representation of

global Fe cycling and biological productivity in ocean biogeochemistry models.

3.1 Introduction

The micronutrient Fe limits the biological productivity of about half of the world’s oceans

including the subpolar Pacific, the equatorial Pacific, and the Southern Ocean, thereby in-

fluencing the marine ecosystems and global carbon cycle (Boyd and Ellwood, 2010; Moore

et al., 2013). For this reason, processes driving the ocean Fe cycling have been studied in-

tensely over past decades. Oceanic Fe cycling is distinct from those of other nutrients

because of the extremely low concentration of dFe and the involvement of diverse and

complex array of processes. In the oxygenated seawater, Fe mostly exists as ferric (Fe(III))

species with the solubility at a subnanomolar level (Liu and Millero, 2002) and thus rapidly

precipitates to form colloidal Fe oxides (Wu et al., 2001). The very low concentration of

dFe has made it difficult to accurately determine its global distribution. At the same time,

the diverse source and sink processes and their interactions pose a significant modeling

challenge. Ocean biogeochemistry models integrate these mechanisms and their interac-

tions in the context of the global ocean circulation and have indeed provided important

insights, but the models still show significant biases (Tagliabue et al., 2016; Tagliabue

et al., 2017). The existence of significant model biases indicates problems in the current

parameterizations of Fe cycling and the quantification of Fe sources and sinks.

There are several sources of dFe to the ocean including atmospheric deposition (Duce

and Tindale, 1991; Jickells et al., 2005), continental shelves (Elrod et al., 2004; Johnson

et al., 1999), and hydrothermal vents (Fitzsimmons et al., 2014; Resing et al., 2015; Tagli-

abue et al., 2010). There are also multiple processes removing Fe from the seawater such as

biological uptake (Sunda, 2012), precipitation, and scavenging onto organic and inorganic

particles (Dutay et al., 2015; Jackson and Burd, 2015). Furthermore, Fe can take many
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different forms in the water column. As stated earlier, ferric (Fe(III)) species, the primarily

form of Fe in the seawater, has the solubility at a sub-nanomolar level and thus quickly pre-

cipitates. Fe can also be bound to marine particles either through biological incorporation

or scavenging process (Revels et al., 2015). The particle-bound Fe, referred to as particulate

Fe, can aggregate and gravitationally sink through the water column (Fowler and Knauer,

1986; Jeandel et al., 2015). Some of the sinking particulate Fe can return to dissolved form

through desorption and particle remineralization (Boyd et al., 2000). Remineralized Fe can

be scavenged again or be transported back to the surface via upwelling and vertical mixing

(Tagliabue et al., 2014a). However, dFe can be protected from scavenging and precipita-

tion by forming complexes with organic ligands (Berg, 1995; Macrellis et al., 2001). The

crucial role of organic ligands in protecting dFe was first demonstrated in the 1990s by Rue

and Bruland, (1995), Berg, (1995) and Wu and Luther, (1995), who showed that the major-

ity of dFe in seawater (∼ 99%) is bound to ligands. Recent observational and experimental

studies further confirmed the vital role of ligands by showing that marine bacteria produces

ligands to facilitate the retention and biological uptake of dFe (Buck et al., 2010; Hutchins

et al., 1999; Kustka et al., 2015; Witter et al., 2000).

There is an emerging opportunity to improve our understanding of these processes

as quality-controlled Fe dataset is rapidly expanding along the GEOTRACES transects

(Mawji et al., 2015). These transects confirmed the existence of subsurface dFe extrema

as a prominent feature in many parts of the oceans, which was observed by Johnson et al.,

(1997) through various vertical dFe profiles in the Pacific, North Atlantic, and Southern

Oceans. A common pattern of dFe maxima has been shown by GEOTRACES cruises in

the main thermocline (300 - 1,000m) as well as in the deep waters (>2,000m) of various

ocean basins. The thermocline dFe maxima are likely formed by the release of dFe from

remineralization processes (Nishioka et al., 2013; Noble et al., 2012; Rijkenberg et al.,

2014) and/or by external dFe sources (Nishioka and Obata, 2017; Resing et al., 2015). The

deep (>2,000m) dFe maxima are likely associated with hydrothermal sources (Nishioka
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et al., 2013; Resing et al., 2015). This study will focus on the mid-depth dFe maxima em-

bedded in the main thermocline due to their proximity to the surface euphotic layer with

a potential to influence biological productivity. The upwelling of thermocline waters can

be an important source of dFe to marine phytoplankton, especially Fe-limited upwelling

regions (Tagliabue et al., 2014a).

The objective of this chapter is twofold. First, I aim to test the ability of an ocean bio-

geochemistry model to reproduce the subsurface dFe maxima observed in the new GEO-

TRACES transects. The model includes a number of refinements in the Fe cycle parame-

terizations including three classes of spatially varying organic ligands, scavenging onto and

desorption from organic and inorganic particles, and inputs from external sources. Second,

I aim to better understand the mechanisms supporting the formation and maintenance of the

subsurface dFe maxima through a suite of sensitivity experiments. I purposefully turn off

the Fe cycling parameterizations one at a time. The importance of a specific mechanism is

inferred from the disruption in the dFe distribution caused by its removal from the model,

indicating its contribution to the model’s ability to reproduce the observed dFe distribution.

I specifically examine parameterizations controlling the transformation of Fe between

dissolved and particulate pool via scavenging, desorption and remineralization mediated

by the presence of organic ligands. Organic ligands bind dFe and prevent it from being

scavenged onto marine particles, thus playing central roles in the retention of Fe in the dis-

solved pool (Hutchins and Boyd, 2016). The sources, sinks, and molecular compositions

of organic ligands are not yet fully understood (Hassler et al., 2017) and the parameteriza-

tions of organic ligands in ocean biogeochemistry models still have significant uncertainty.

Although a variety of ligands exists in the oceans (Hunter and Boyd, 2007), existing mea-

surements often define three discrete ligand classes based on their distribution and binding

strength with dFe estimated by measuring the conditional stability constant Kn. They are:

a strong, surface ligand (L1), a weak, subsurface ligand (L2), and a weak, refractory-DOC

component ligand (L3) (Hassler et al., 2017). Several approaches have been taken to rep-
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resent ligands in ocean biogeochemistry models. Earlier generations of models assumed a

spatially homogeneous single ligand by either limiting the scavenging at a constant thresh-

old (Archer and Johnson, 2000) or explicitly resolving the local partitioning of free and

ligand-bound Fe (Parekh et al., 2005). Subsequent development included the spatially vari-

able ligand distribution, often by linking it to the pattern of DOC and/or AOU (Misumi

et al., 2013; Tagliabue and Völker, 2011). The uncertainties in the representation of lig-

ands can lead to biases in the model dFe distribution (Tagliabue et al., 2016). However,

observational techniques to identify Fe-ligand complex are being improved (Boiteau and

Repeta, 2015) and the data coverage for organic ligands has expanded in recent years (Buck

et al., 2015; Gerringa et al., 2015), providing an opportunity to improve ligand parameter-

izations. A recent modeling study by Völker and Tagliabue, (2015) explicitly simulated a

single ligand as a prognostic variable by representing its sources and sinks. Although it re-

quires specifications of the ligand sources and sinks that are still uncertain, the inclusion of

a prognostic ligand clearly improved the subsurface dFe distribution in ocean biogeochem-

istry models (Tagliabue et al., 2016). This study takes a relatively simple approach where

ligands are parameterized based on calibrating empirical coefficients against the available

observations. The parameterization itself is not new; I aim to keep the algorithm as sim-

ple as possible while still capturing the essential mechanisms as demonstrated by earlier

studies (Misumi et al., 2013; Tagliabue and Völker, 2011). This approach is simple to im-

plement and delivers spatially resolved representation of organic ligands, and thus can be

easily manipulated in the sensitivity experiments.

This chapter is organized as follows. In section 2, I describe the model configuration

and set up the experimental design. In sections 3 and 4, I present results of sensitivity

experiments. In section 5, I summarize and discuss the implication of these results.

25



3.2 Model Configuration and Experimental Design

The ocean biogeochemistry model used in this chapter is based on the MITgcm model

described in chapter 2. In brief, there are three major sources of dFe into the ocean: at-

mospheric deposition, shelf sediments, and hydrothermal vents. Three Fe-binding ligand

classes, protect dFe from being scavenged and precipitated, are considered. Of the three

ligands, L1 is considered to have a stronger binding strength (KL1 = 1012 L/mol), while L2

and L3 have weaker binding strengths (KL2 = 1011 L/mol and KL3 = 1010 - 1011 L/mol).

In this chapter, I set the binding strengths (conditional stability constants) for L2 and L3 the

same (KL3 = KL2 = 1011 L/mol) since both ligand classes are assumed to be DOC humics

and the binding strength for humic-like ligand is not yet certain (Gledhill and Buck, 2012).

Thus, only two ligand classes (L1 and L2) are mechanistically represented in the model in

this chapter.

3.2.1 Experimental design

The model was spun up for 1,000 years to achieve a quasi steady state with the standard set

of parameters (Full run). At the end of the spinup, the model drifts in the global inventories

of dFe (<0.01 percent/year) and the biological carbon uptake (< 0.02 percent/year) are

minimal. Six sensitivity experiments are initialized from the end of the spinup run with al-

tered parameterizations and integrated for additional 1,000 years to reach new quasi steady

state. The purpose of these simulations is to evaluate the relative roles of organic ligands,

scavenging, remineralization processes, and external sources in regulating the ocean dFe

cycling. The six experiments are designed as follows.

• ”constL” run uses a uniform constant concentration for ligand (1 nM) with KL=1011

L/mol.

• ”constKL” run uses the same conditional stability constant for L1 and L2 (set to 1011.5

L/mol).
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• ”Large ∆KL” run uses increased difference in the conditional stability constants be-

tween L1 (set to 1013 L/mol) and L2 (set to 1010 L/mol).

• ”No Fe redissolution” run suppresses the dissolution of scavenged Fe associated with

organic particles.

• ”Weak sed” run reduces the shelf Fe source by 70%.

• ”Weak hydro” run reduces the hydrothermal Fe source by applying a uniform dFe/3He

ratio as in Tagliabue et al., (2010).

The first three sensitivity runs will examine different aspects of the ligand parameterization.

Comparing constL and Full run will illustrate the importance of the nonuniform ligand dis-

tribution. In contrast, constKL and Large ∆KL runs will show the importance of different

binding strengths between the two types of ligand. The last three runs will examine differ-

ent sources of Fe to the water column. Scavenging of Fe’ onto particulate organic matter

is a major removal process of dFe, but the scavenged Fe can return to dissolved form in

the deeper waters when particles are remineralized. Thus, sinking organic particles can

effectively transfer dFe downward in the water column. In the No Fe re-dissolution run,

this process is suppressed in order to assess the importance of the coupled scavenging-

dissolution process as a subsurface source of dFe. Other model parameters for Full and

sensitivity runs are provided in the Supporting Information Table 3.1.

3.3 Mechanism Behind the Subsurface DFe Maxima

The annual mean of the last-year output dFe distribution of the model is compared with

observations in six GEOTRACES transects: the GA02 (Figure 3.2; Rijkenberg et al., 2014),

CoFeMUG (Figure 3.3; Noble et al., 2012; Saito et al., 2013), GI04 (Figure 3.4; Nishioka

et al., 2013), GP02 (Figure 3.5; Nishioka and Obata, 2017), GP13 (Figure 3.6; Ellwood

et al., 2018), and GP16 (Figure 3.7; Resing et al., 2015). While comparing the annual

mean dFe output with GEOTRACES dFe data could lead to some mismatches due to large
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Figure 3.1: Modeled (Full run) surface dFe distribution (black, red, yellow, green, blue, and
magenta lines indicate cruise tracks of GI04, GP02, GP13, GP16, GA02, and CoFeMUG
cruises from GEOTRACES, respectively)

seasonal changes in surface observations (Sedwick et al., 2005; Wu and Boyle, 2002),

these comparisons can still provide us insights into how our model performs and improve

our understanding of the subsurface dFe distributions. Observational dFe data is obtained

from the GEOTRACES 2017 intermediate data products (Mawji et al., 2015) and I used

the objective mapping method to interpolate model and observational dFe data onto the

same grid which has spatial resolution of 1◦and vertical resolution of 10m near the surface

to 100m at depth. More details on the model-data comparison method are provided in the

Supporting Information. The surface model dFe concentration is low in the sub-polar North

Pacific, the tropical Pacific, and the Southern Oceans and is high in the tropical Atlantic

and Indian Oceans because of their proximity to major dust sources (Figure 3.1).

The two transects covering the Atlantic basin reveal unique features of the dFe distri-

bution that are distinct from macronutrients (Figures 3.2 and 3.3). Specifically, dFe shows
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weak signature of major water masses likely due to the distinct patterns of sources and sinks

such as atmospheric deposition, continental shelves, and particle scavenging (Rijkenberg

et al., 2014).

The Indian Ocean transect displays a stark contrast in the dFe distribution between the

tropical and subtropical waters (Figure 3.4a; Nishioka et al., 2013). The three Pacific basin

transects display typical features of the dFe distribution for high-nutrient-low-chlorophyll

(HNLC) regions. The low dFe concentration is ubiquitous at the surface despite the high

dFe levels in the subsurface and deep waters, which are supplied from the low-oxygen con-

tinental shelves and hydrothermal vents (Nishioka and Obata, 2017; Resing et al., 2015).

All these transects show a pattern of dFe maximum at around 300 - 1000m depth, typically

near the oxygen minimum layer and thus can be a signal of remineralization process (Nish-

ioka et al., 2013; Noble et al., 2012; Rijkenberg et al., 2014). I focus on the model-data

comparison for the upper 1,000m by expanding the depth from 0 - 1000m and compressing

the rest of the water column in Figures 3.2-3.7. While the model shows biases in dFe dis-

tribution, some general features of the subsurface dFe maxima are reproduced, especially

in the main thermocline.

3.3.1 Atlantic and Indian Oceans

The GA02 section maps the meridional dFe distribution along the western Atlantic basin

(Rijkenberg et al., 2014). The surface dFe enrichment around 20◦N and the strong dFe

maximum around 300 - 1,000m at 10◦N are both reproduced in the Full run of the model

(Figures 3.2a and 3.2b), but our model displaces the depth of the subsurface dFe peak to a

shallower depth than observed (∼400m in the model versus ∼600m depth in the observa-

tion). Our model also underestimates the magnitude of the surface dFe at 20◦N by about

0.4 nM. The model also reproduces the elevated subsurface dFe observed at 35 - 40◦S,

but underestimates its magnitude and somewhat displaces its location further south than

observations. This feature, which is not captured by most models analyzed in Tagliabue
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et al., (2016), might be explained by the dFe flux from shelves or the Rio de la Plata River

(Rijkenberg et al., 2014). Another model bias is in the subsurface waters around 40◦N,

where our model captures the observed dFe maximum from 400 - 1000m, but its extension

is up to the surface, while observed surface dFe is low. Several other models mentioned

in Tagliabue et al., (2016) also have this problem and it may indicate bias in the scaveng-

ing scheme. Our model also fails to capture features of the hydrothermal signal in the

deep ocean. Specifically, the modeled hydrothermal dFe signal seems to be displaced and

overestimated, especially around 2000-3000m at 20 - 30◦S. Although the model exhibits

some biases, I find the overall results encouraging. With the inclusion of a relatively sim-

ple, spatially varying ligand parameterization, the model starts to reproduce the observed

subsurface dFe maxima at 10◦N and at 35 - 40◦S, which were not captured by Dutkiewicz

et al., (2015) whose Fe cycling is based on the earlier version of our model.

The mechanism behind the observed subsurface maxima is explored through six addi-

tional sensitivity experiments. Figures 3.2-3.7 shows a subset of the sensitivity runs. The

constL and No Fe rediss. runs respectively suppress the release of ligand and scavenged Fe

associated with organic particles. The Weak sed and Weak hydro runs reduce the Fe input

from continental shelves and hydrothermal vents respectively. The subsurface maximum

of dFe at 10◦N disappears in both constL and No Fe rediss. runs (Figures 3.2c and 3.2d),

whereas it almost stays intact in Weak sed and Weak hydro runs. Similarly, the subsurface

rich dFe water at 40 ◦N is greatly decreased in the constL and No Fe rediss. runs, but just

slightly decreases in the other two experiments. On the other hand, the elevated subsurface

dFe at 35 - 40◦S is significantly reduced in constL, Weak sed, and No Fe rediss runs. The

Weak hydro experiment shows the decrease of dFe only in the deep ocean (Figure 3.2f)

where the hydrothermal dFe flux dominates. These results suggest that the remineraliza-

tion sources of ligand and dFe are required to sustain the observed dFe subsurface maxima

in the GA02 western Atlantic transect. In addition, the shelf Fe source might be important

for the subsurface dFe concentration in the South Atlantic.
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Figure 3.2: dFe distribution along the GA02 transect: (a) Observations, (b) Full run, (c)
ConstL run, (d) No Fe redissolution run, (e) Weak sed run, and (f) Weak hydro run
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The CoFeMUG section maps the horizontal dFe distribution along the subtropical South

Atlantic (Noble et al., 2012; Saito et al., 2013). The subsurface dFe maximum around 300-

800m at 8-10◦E near the eastern margin is captured in the Full run, but its magnitude is

underestimated while its westward extension is overestimated (Figures 3.3a and 3.3b). This

maximum is suggested to be associated with remineralization process and/or sediment in-

put from continental shelves (Noble et al., 2012). Our model cannot reproduce the elevated

hydrothermal dFe concentration around 3000m at 15◦W, and it generally underestimates

the deep dFe concentration along this transect. The mechanism behind the observed sub-

surface dFe maximum is explored through four sensitivity experiments (Figures 3.3c-3.3f).

Similar to the GA02 transect, the subsurface maximum of dFe disappears in both the con-

stL (Figure 3.3c) and No Fe redis. (Figure 3.3d) runs. In the Weak sed run, this feature

is reduced in magnitude (Figure 3.3e). In the Weak hydro run, only the hydrothermal Fe

signal in the western part of the transect at 3000m is reduced (Figure 3.3f). These results

suggest that the observed subsurface dFe maximum in the CoFeMUG subtropical South

Atlantic transect is formed mostly by the simultaneous release of ligand and dFe from or-

ganic particles, with the sedimentary Fe flux acting as an additional contributing factor.

The GI04 section maps the meridional dFe distribution in the Indian Ocean (Nishioka

et al., 2013) (Figure 3.4). The model captures the pattern of upper ocean dFe distribution

reasonably well in this region (Figures 3.4a and 3.4b). Specifically, the model captures the

strong meridional gradient of dFe centered at around 10◦S where the tropical thermocline

exhibits the highest dFe concentration. The model also reproduces the subsurface peak of

dFe in the north Arabian Sea (∼ 10◦N), but its amplitude and extension are overestimated.

This feature could be formed by remineralization and/or adjacent reducing sediments. The

model also overestimates the surface dFe concentration around 10◦N, and cannot reproduce

the hydrothermal signal around the Central Indian Ridge segment. The overestimation of

surface dFe concentration under the high-dust region at 10◦N could indicate the potential
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Figure 3.3: dFe distribution along the CoFeMUG transect: (a) Observations, (b) Full run,
(c) ConstL run, (d) No Fe redissolution run, (e) Weak sed run, and (f) Weak hydro run
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role of scavenging by lithogenic particles as suggested by Ye and Völker, (2017) for the

tropical Atlantic Ocean. Comparing the five model runs in Figure 3.4, it is clear that the

release of ligand and dFe from organic particles is important to form the dFe maximum.

When the ligand is decoupled from the particle remineralization (constL run), the sub-

surface dFe maximum disappears entirely (Figure 3.4c). When the dissolution of organic

scavenged Fe is suppressed (No Fe rediss. run), this dFe maximum is significantly reduced

in magnitude and extension (Figure 3.4d). In contrast, the sedimentary Fe flux has a mod-

erate impact only (Figure 3.4e). Also, the hydrothermal flux has little effect on the dFe

distribution in this transect (Figure 3.4f).

3.3.2 Pacific Ocean

The GP02 transect maps the zonal dFe distribution in the North Pacific Ocean (Nishioka

et al., 2013) (Figures 3.5a and b). In this transect, there are several model biases. Our

model exhibits the high dFe concentration around 800m extending from west to east along

the transect (Figures 3.5a and b), but this feature is more zonally elongated than observa-

tion. Observations indicate a strong subsurface Fe source in the western Pacific, which is

underestimated in the model. The surface dFe concentration is overestimated by 0.4 nM,

whereas the deep dFe concentration (at > 3000m) is significantly underestimated. The

widespread overestimation of surface dFe comes from the upwelling of rich-dFe subsur-

face waters, which receive high dFe from the continental shelves. This may imply a weak

scavenging rate or biases in the factors limiting the biological uptake, potentially related to

the co-limitation of productivity by macronutrient and Fe (Ingall et al., 2013).

Despite these biases, processes controlling the simulated subsurface dFe maximum at

about 800m are explored through four sensitivity experiments (Full, ConstL, No Fe redis-

solution, Weak sed, and Weak hydro runs). When the non-uniform ligand is suppressed in

the (constL) run, this dFe maximum disappears entirely (Figure 3.5c). It is also greatly de-

creased in magnitude when the dFe sediment flux is decreased (Weak sed run, Figure 3.5e).
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Figure 3.4: dFe distribution along the GI04 transect: (a) Observations, (b) Full run, (c)
ConstL run, (d) No Fe redissolution run, (e) Weak sed run, and (f) Weak hydro run
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On the contrary, dFe supply from the remineralization of scavenged Fe and hydrothermal

vents seems to play only a small part (Figures 3.5d and 3.5f). This result is consistent with

results of a recent observational study (Nishioka and Obata, 2017), suggesting that the high

dFe concentration at mid-depth may come from a sedimentary Fe source. The model bias

at this depth range could come from biases in the sedimentary Fe flux parameterization,

which includes significant uncertainty.

The GP13 maps the zonal dFe distribution in the south western Pacific Ocean. The

model reproduces several features of the dFe distribution in this region (Figures 3.6a and

3.6b). In particular, the model captures the elevated dFe concentration around 600-1000m

from 160-170◦E. Moreover, the model reproduces low surface dFe concentration observed

across the transect. The strong zonal gradient of subsurface dFe concentration ∼ 175◦W is

reproduced in the model. However, the pattern of subsurface dFe extreme is more horizon-

tally and vertically compressed than observed.

The elevated dFe centered around ∼ 175◦E disappears when the non-uniform pattern

of ligand is suppressed (Figure 3.6c) and is greatly decreased in magnitude and extension

when the dFe hydrothermal flux is reduced (Figure 3.6f). On the other hand, this feature is

only slightly decreased when the release of scavenged Fe associated with organic particles

or the dFe supply from continental shelves is decreased (Figures 6d and 6e). Thus, our

result, along with several observational studies (Ellwood et al., 2018; Fitzsimmons et al.,

2014; Resing et al., 2015), confirms the role of the long-range transport (thousands of

kilometers) of hydrothermal dFe from the southern East Pacific Rise to the dFe distribution

in the upper 1000m of the South Pacific Ocean. In addition, our model result suggests that

this transport is facilitated by the existence of a non-uniform, remineralized ligand class,

protecting dFe from scavenging along the transport pathway.

The GP16 section maps the zonal dFe distribution across the subtropical South Pacific

Ocean (Resing et al., 2015) (Figures 3.7a and 3.7b). In this transect, the model captures the

low dFe concentration at the surface, which is a typical feature for the HNLC region (Fig-
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Figure 3.5: dFe distribution along the GP02 transect: (a) Observations, (b) Full run, (c)
ConstL run, (d) No Fe redissolution run, (e) Weak sed run, and (f) Weak hydro run
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Figure 3.6: dFe distribution along the GP13 transect: (a) Observations, (b) Full run, (c)
ConstL run, (d) No Fe redissolution run, (e) Weak sed run, and (f) Weak hydro run
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ures 3.7a and 3.7b). However, the subsurface dFe maximum observed over almost the entire

water column (from 200m to the bottom) in the eastern margin is greatly underestimated

by the model. The model bias in this region is consistent with many other models analyzed

in Tagliabue et al., (2016). Our model only shows a weak signal of this feature around

800-1000m with the concentration of 0.8 nM, about a half of the observation. This signal

is disappeared in three sensitivity experiments: ConstL, No Fe rediss., Weak sed (Figures

3.7c-3.7e). A recent observational study argued that this maximum could be a signal of a

very persistent dFe flux from resuspended sediments (John et al., 2017). Furthermore, the

observed hydrothermal signal around 3,000m at 110◦W is displaced westward and greatly

underestimated in our model. This hydrothermal signal is decreased in the model when a

lower dFe/3He ratio from Tagliabue et al., (2010) is applied (Figure 3.7f).

Summarizing the results so far, the model-data comparison showed some strengths and

weaknesses in reproducing the observed dFe distribution. The model was able to reproduce

the general pattern and magnitude of the subsurface dFe maxima in many sections (GA02,

CoFeMUG, GI04, GP13), but it also showed significant model biases in other sections

(GP02 and GP16). Sensitivity runs showed the relative importance of different dFe sources

in reproducing the observation and implied some potential causes for model biases. For

deep waters, the hydrothermal vents are the most important dFe source. Thus, mismatches

in the deep ocean between model and observed dFe concentration likely originate from

biases in the model parameterization of hydrothermal dFe source. The mid-depth dFe in

the GA02, CoFeMUG, and GI04 transects is particularly sensitive to the remineralization

of scavenged Fe associated with the sinking organic particles. In contrast, the mid-depth

dFe is sensitive to sedimentary dFe sources in GP02 and GP16 and to hydrothermal dFe in-

puts in GP13. Sensitivity experiments also revealed the important role of the non-uniform

distribution of organic ligands in all of the sections. Elevated ligand concentration in the

mid-depth water column plays a crucial role in the retention of dFe. Additional sensitiv-

ity experiments (constKL and Large ∆KL) are performed to examine the importance of
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Figure 3.7: dFe distribution along the GP16 transect: (a) Observations, (b) Full run, (c)
ConstL run, (d) No Fe redissolution run, (e) Weak sed run, and (f) Weak hydro run
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different types of ligands.

3.4 The Sensitivity of dFe Distribution to the Ligand Binding Strength

Two sensitivity experiments are specifically designed to examine the role of ligands’ bind-

ing strengths in controlling the dFe distribution. The constKL run sets the two conditional

stability constants to be at the intermediate value, 1011.5 mol−1L. The Large ∆KL run does

the opposite, making the difference between these two values greater (1013mol−1L for L1

and 1010mol−1L for L2). Again the models are spun up for 1,000 years to reach a new

steady state, and the results are displayed in Figures 3.8 and 3.9.

Due to the large increase in the dFe values, Figure 3.8 uses a different color bar relative

to the six previous figures. Below the surface waters, the organic ligand is dominated by the

L2 ligand. In the constKL run, the binding strength of the subsurface ligand L2 is increased

by a factor of 3 (from 1011 to 1011.5mol−1L). In response, the amplitude of the subsurface

dFe maxima increases by about factor of 2 in the model. This leads to an increase in the

surface ocean dFe concentration even though the surface ligand class L1 is decreased from

1012 to 1011.5mol−1L. This increase is caused by the vertical supply of subsurface elevated

dFe concentration to the surface waters via vertical mixing and upwelling (Tagliabue et al.,

2014a) This result indicates the prominent role of L2 in the retention of dFe throughout the

water column, thus increasing the binding strength of L2 caused a widespread overestima-

tion of dFe in all of the transects.

Figure 3.9 shows the results from the Large ∆KL run. In this case, the binding strength

of the subsurface ligand L2 decreases by a factor of 10 (from 1011 to 1010mol−1L), and the

global dFe concentration in general decreases by a factor of 5. Figure 3.9 uses a different

color bar relative to the previous figures because of the low dFe concentrations. Despite

the increase in L1 (from 1012 to 1013mol−1L), the overall dFe concentration in the water

column is controlled by the binding strength of L2. More importantly, all the observed

GEOTRACES dFe maxima disappeared or are greatly reduced in magnitude in the Large
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∆KL run. These results highlight the crucial role of the subsurface ligand class in main-

taining mid-depth dFe maxima.

3.5 Discussion and Conclusion

The GEOTRACES program (Anderson et al., 2014; Henderson et al., 2007; Mawji et al.,

2015) has significantly increased the data coverage for dFe and ligands in the global oceans,

providing a unique opportunity to test ocean biogeochemistry models and improve the rep-

resentation of biogeochemical processes essential for the Fe cycling (Tagliabue et al., 2016;

Völker and Tagliabue, 2015). While there have been significant advances in the under-

standing and modeling capability of the Fe cycling in the last decade, the new observations

revealed that there are many features of dFe distribution that are still missing or heavily

biased in the current generation of models (Tagliabue et al., 2016). Motivated by the newly

available dataset, I explored the processes driving the observed ocean dFe distribution by a

suite of sensitivity experiments in an ocean biogeochemistry model with a refined param-

eterization for the Fe cycling. Specifically, our model includes three external dFe sources,

which are modified from previous studies (Dutkiewicz et al., 2015; Moore and Braucher,

2008) to better reproduce the observations, and an improved ligand parameterization. Our

ligand parameterization considers two spatially varying ligand classes, which have differ-

ent binding strengths and distribution. Their distributions are parameterized as functions of

DOC and AOU. The empirical constants in the ligand parameterizations are calibrated to

fit the observed ligand distribution in the least square sense. While these parameterization

themselves are not new and have some limitations (Gledhill and Buck, 2012; Velasquez

et al., 2016), the simplicity of this approach allows us to disentangle the underlying mech-

anisms in a clear way.

Even though our model still has several biases when compared with observation, it

starts capturing some major features such as the subsurface dFe maxima observed in vari-

ous GEOTRACES transects in different ocean basins (Nishioka et al., 2013; Nishioka and
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Figure 3.8: Modeled dFe distribution along the GEOTRACES transects from the constKL

run: (a) GA02, (b) GI04 (c) CoFeMUG, (d) GP02, (e) GP13, and (f) GP16

43



Figure 3.9: Modeled dFe distribution along the GEOTRACES transects from the Large
∆KL run: (a) GA02, (b) GI04 (c) CoFeMUG, (d) GP02, (e) GP13, and (f) GP16
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Obata, 2017; Noble et al., 2012; Resing et al., 2015; Rijkenberg et al., 2014), and provided

an improved understanding of the mechanisms behind them. In particular, I examined the

relative roles of the release of scavenged Fe back to the water column via the remineral-

ization of sinking organic particles (Boyd et al., 2010; Velasquez et al., 2016) and of the

external dFe supply from continental shelves and hydrothermal vents. Release of scav-

enged Fe turned out to be the crucial mechanism behind the subsurface dFe maxima in the

thermocline of high-dust regions. In the surface of the tropical Atlantic and Indian Oceans,

the deposited dust Fe is mostly scavenged onto organic particles, which then sink and rem-

ineralize at mid-depth level in the water column. In addition, the non-uniform distribution

of weaker L2 ligand was found to be the key factor for maintaining the subsurface dFe

maxima in the model. Parameterizing the L2 ligand using the AOU distribution was crucial

to improve dFe distribution by representing the particle-remineralization as a source of the

ligand. Similar results are reported in Tagliabue et al., (2016), who showed that the inclu-

sion of the particle-remineralization source for ligands in ocean biogeochemistry models

improves the reproduction of the subsurface dFe maxima. Earlier models (P05, D05) that

applied a uniform constant ligand and neglected the dissolution of scavenged Fe did not

reproduce the observed subsurface dFe maxima. When the release of either scavenged

Fe or ligand from sinking organic particles is suppressed, the subsurface dFe maxima ob-

served in the Indian and Atlantic Ocean transects are either disappeared or greatly reduced

in magnitude in the model. Thus, in high dust regions of the Indian and Atlantic basins, the

simultaneous release of ligand and scavenged Fe from organic particles not only supplies

dFe to the subsurface waters but also protects dFe from being scavenged, maintaining a

high level of subsurface dFe concentration. In fact, the model tends to overestimate the

surface dFe in high dust regions, likely indicating bias in the representation of processes

that remove dFe where dust deposition is high (Ye and Völker, 2017). This bias may re-

flect the missing colloidal pumping mechanism for dFe loss in our model, which could be

important for high dust deposition regions (Fitzsimmons et al., 2015).
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I found that Fe sources from the continental shelves and hydrothermal vents are impor-

tant for subsurface dFe maxima in the thermocline of low-dust regions in the Pacific Ocean.

The particle-remineralized ligand is also important in sustaining the subsurface dFe max-

ima in these regions, but the dFe supply from organic particles seems to be less important

than from external sources. In the deep waters, the model still shows several biases includ-

ing the significant underestimation of dFe hydrothermal signals. This underestimation is

likely because our model does not represent the interaction between particulate and dis-

solved phases of Fe released from the vents, which could support the distal transport of

dFe away from the vent sources (Fitzsimmons et al., 2017). Moreover, measurements by

Fitzsimmons et al., (2017) show that a large portion of dFe released from hydrothermal

vents can be nanoparticles of pyrite or Fe(III) oxides, which are also not represented in the

model.

Figure 3.10 shows the dFe sources and sinks from all of the experiments. In terms of

the external dFe sources, the hydrothermal and sedimentary dFe sources dominate the dFe

input into the ocean. The largest removal mechanism is the scavenging onto inorganic par-

ticles, which is partially mediated by the release of Fe by remineralization and desorption.

When the external Fe input is reduced in Weak sed and Weak hydro runs, the removal

of Fe by the inorganic scavenging is also reduced, thus balancing the input and output on

the global scale. In these simulations, dFe maxima in high dust regions seem to be only

slightly decreased, reflecting the dominance of atmospheric deposition and internal cycling

processes in these regions.

When the dissolution of organic scavenged Fe is turned off (No Fe rediss run), the rem-

ineralization and desorption source of Fe is diminished in the global budget. However,

the subsurface dFe maxima in the Pacific basin (GP13 and GP02) were not significantly

affected in this run, reflecting the dominance of external inputs, in particular, the sedimen-

tary and hydrothermal sources. Given the potential role of the subsurface dFe as a source

for Fe-limited upwelling regions (Tagliabue et al., 2014a), these external sources can have
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far-reaching effects on the marine ecosystems and the biological carbon pumps.

The sensitivity experiments with altered ligand parameterizations showed that the global

dFe budget and distribution are sensitive to the strength and concentration of the subsur-

face ligand. When the binding strength of this ligand class increases or decreases, the

global mean dFe concentration is increased or decreased. In particular, when the binding

strength is reduced, almost all the mid-depth dFe maxima disappeared in the model. The

impact of the siderophores-type surface ligand (L1) seems to be negligible in controlling the

subsurface dFe maxima and the global dFe budget in general. These effects are best seen

by looking at the change of dFe concentration in ocean transects but are not as clear when

examining the global dFe budget (Figure 3.10). These results suggest that the uncertainty

in the binding strength of L2 ligand class has a significant impact on the dFe cycling.

Finally, this study owes its existence to the hard work of the scientific community who

joined the efforts to produce high-quality measurements of trace metal elements and as-

sociated biogeochemical variables across the global oceans. In this light, it is critical

to maintain the observing capabilities and to develop an improved understanding of the

mechanisms driving the ocean’s trace metal cycling and its impact on the ecosystem and

biogeochemical cycling.

3.6 Supporting Information

3.6.1 S1. Model - data comparison method

Observed dFe dataset is obtained from the GEOTRACES 2017 intermediate data prod-

uct (Schlitzer et al., 2018). To compare the model and data, I used the method of objec-

tive mapping to interpolate the modeled dFe concentration along the GEOTRACES cruise

tracks onto the grid that has a spatial resolution of 1◦in longitude and latitude and vertical

resolution of 10m near the surface to 100m at depth. The spatial correlation is assumed

to have a Gaussian form with the horizontal decorrelation length scale of 3◦. Similarly,

observed values are objectively mapped onto the same horizontal and vertical grids. I used
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Figure 3.10: The globally integrated sources and sinks of dFe from each of the model runs.
”Sed” is the shelf sediment, and ”hyd” is for hydrothermal source. ”dis” is for release of
dFe from remineralization and desorption, and ”sco” and ”sci” are the scavenging onto
organic and inorganic particles respectively. ”bio” is for the loss of Fe due to the biological
uptake.
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the horizontal decorrelation length scale of 3 - 10◦and the vertical decorrelation scale of 10

- 300m.
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Table 3.1: Model parameters for control and sensitivity runs
Full constL No Fe rediss. Weak sed Weak hydro

α(unitless) 6.1 ×10−5 0 6.1 ×10−5 same same
β(unitless) 1.3 ×10−5 same same same same
γ(unitless) 0.5 0 0.5 0.5 0.5

Lrefract(mol/m3) 2.76 ×10−6 10−6 2.76 ×10−6 same same
K1 (L/mol) 1012 1012 1012 1012 1012

K2 (L/mol) 1011 1011 1011 1011 1011

Total L (mol/m3) variable 10−6 variable variable variable
korg (m3gC−1s−1) 1.16 ×10−5 same same same same

kinorg (s−1) 2.0 ×10−7 same same same same
RFeP (unitless) variable variable RFeP (eu) variable variable

Global Sed.dFe flux(mol/s) 11938 11938 11938 358.1310 11938
dFe/3He variable variable variable variable 4.5×108
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CHAPTER 4

LIGAND BINDING STRENGTH EXPLAINS THE DISTRIBUTION OF IRON IN

THE NORTH ATLANTIC OCEAN

This chapter is modified from an article published in Geophysical Research Letters as

Pham, A.L.D. and T. Ito, (2019) Ligand binding strength explains the distribution of

iron in the North Atlantic Ocean, Geophys. Res. Lett., GRL59159, doi:

10.1029/2019GL083319

Abstract

Observations of dFe in the subtropical North Atlantic showed remarkable features: While

the nearsurface dFe concentration is low despite receiving high dust deposition, the sub-

surface dFe concentration is high. In this chapter, I test several hypotheses that might

explain this feature in an ocean biogeochemistry model with a refined Fe cycling scheme.

These hypotheses invoke a stronger lithogenic scavenging rate, rapid biological uptake,

and a weaker binding between Fe and a ubiquitous, refractory ligand. While the standard

model overestimates the surface dFe concentration, a 10-time stronger biological uptake

run causes a slight reduction in the model surface dFe. A tenfold decrease in the binding

strength of the refractory ligand (from 1011 to 1010L/mol), suggested by recent observa-

tions, starts reproducing the observed dFe pattern and can significantly impact the global

nutrient distribution. An extreme value for the lithogenic scavenging rate can also match

the model dFe with observations, but this process is still poorly constrained.

4.1 Introduction

Fe is a crucial element in the marine ecosystem and biogeochemistry because it is one of

the limiting nutrients for the phytoplankton growth (Boyd and Ellwood, 2010; Moore et al.,
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2013). The GEOTRACES program is rapidly expanding the data coverage for the global

Fe distribution over the last decade (Mawji et al., 2015; Schlitzer et al., 2018), which pro-

vides an excellent opportunity to advance our understanding of the ocean Fe cycling. One

region of special interest is the oligotrophic subtropical North Atlantic, where the con-

centrations of dissolved and particulate Fe and their isotopic compositions are measured

along the zonal (GA03) and meridional (GA03e) transects by the USGT10 and USGT11

cruises (Boyle et al., 2015; Conway and John, 2014; Fitzsimmons et al., 2015; Hatta et al.,

2015). In this region, the biological productivity is considered to be less sensitive to Fe

than to macronutrients (Moore et al., 2013). However, several observational and exper-

imental studies showed that the availability of Fe here can limit the growth of nitrogen-

fixing cyanobacteria and the phosphate acquisition by microbial community (Browning et

al., 2017; Moore et al., 2009, 2006). In addition, this region has a dynamic Fe cycling with

multiple Fe supplies from both internal cycling and external inputs (Conway and John,

2014; Hatta et al., 2015). Moreover, globally significant water masses are formed in the

North Atlantic, and their preformed dFe can influence the far field via long-range transport

(Conway et al., 2018). It is thus important to understand processes controlling the dFe

distribution in this region.

The zonal and meridional GA03 transects reveal a unique feature of the dFe pattern in

the subtropical North Atlantic. Despite receiving high dFe input from atmospheric depo-

sition, the surface dFe concentration is relatively low (0.3 - 0.5 nM) (Figure 4.1)). In con-

trast, 9 out of 13 current ocean general circulation and biogeochemistry models (OGCBMs)

compiled by Tagliabue et al., (2016) have a relatively high surface dFe concentration (∼

1-2 nM). Furthermore, the observed subsurface dFe maximum (1.4 - 1.6 nM) (Figure 4.1)

are underestimated by 7 of 13 models included in Tagliabue et al., (2016). These models

encapsulate our mechanistic understanding of the Fe cycling through parameterizations of

relevant biochemical processes, thus these biases indicate gaps in our understanding.

Several hypotheses have been suggested to explain this unique feature and resolve the
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Figure 4.1: Atmospheric dFe deposition over the Atlantic Ocean used in this study. Blue
and magenta lines indicate the tracks of the meridional GA03e and zonal GA03 cruises
from GEOTRACES program, respectively.
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systematic model biases. First, a recent model study suggested a stronger scavenging by

lithogenic particles as a possible mechanism to decrease the surface dFe where dust de-

position is high (Ye and Völker, 2017). Second, the Fe uptake rate of phytoplankton can

significantly increase under the high dust plume to rapidly consume dFe. Twining and

Baines, (2013) and Twining et al., (2015) showed a 3-fold higher for Fe quota in the North

Atlantic cells, compared with those measured in the Pacific and Southern Oceans. How-

ever, the efficiency of these two mechanisms depends on the concentration and binding

strength of organic ligands due to their dFe protection against removal processes (Tagli-

abue et al., 2017). Ye and Völker, (2017) pointed out that if their model uses a dynamic

ligand scheme instead of a globally uniform ligand concentration of 1nM, it requires a

greater lithogenic scavenging rate in order to bring the model surface dFe concentration

closer to observations. While there has been significant advances in our understanding of

ligands thanks to the expanding GEOTRACES dataset and experimental studies (Boiteau

and Repeta, 2015; Buck et al., 2015; Gerringa et al., 2016), there still is a significant uncer-

tainty in the ligand sources, sinks, and binding strength with [Fe′]) (Hassler et al., 2017).

This uncertainty leads to uncertainties on the relative importance of retention and removal

processes in regulating the dFe distribution in the subtropical North Atlantic and how these

processes might change in the future (Hutchins and Boyd, 2016; Tagliabue et al., 2016).

The objective of this chapter is to explore which mechanism would best explain the Fe

distribution in the subtropical North Atlantic by performing a suite of sensitivity experi-

ments in an OGCBM. Specifically, I purposefully alter different aspects of the model Fe

parameter in each experiment and analyze the resulting dFe pattern. The model includes

all major processes controlling the ocean Fe cycle such as dFe inputs from atmospheric

dust, bottom sediment and hydrothermal sources, dFe scavenging onto and release from

lithogenic and organic particles, biological dFe uptake, and dFe retention by spatially-

varying ligands. The development of this model is documented in chapters 2 and 3, which

shows major improvements in the large-scale ocean dFe distribution (Pham and Ito, 2018).
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4.2 Model Configuration and Experimental Design

4.2.1 Model Configuration

The ocean biogeochemistry model used in this chapter is essentially the same as the model

used in chapter 3 (Pham and Ito, 2018), which is based on the MITgcm model described in

chapter 2.

As in chapter 3, I consider three ligand classes. L1 is assumed to be the biologically

produced siderophores with relatively high binding strength (Adly et al., 2015; Macrellis et

al., 2001). This ligand class is parameterized as a linear function of the DOP concentration

in the model, L1 = α[DOP ], and is given the strongest conditional stability constant of

KL1 = 1012 L/mol. L2 is essentially the DOC produced from the remineralization of par-

ticulate organic matter (Laglera and Berg, 2009; Velasquez et al., 2016; Vraspir and Butler,

2009). This ligand class is parameterized as a linear function of the AOU, L2 = βAOU ,

and its binding strength is set to KL2 = 1011 L/mol. Different from chapter 3, in this

chapter, I vary the binding strength (conditional stability constant) for L3, which represents

the refractory DOC (Hassler et al., 2011), from 1010 - 1011 L/mol in the sensitivity ex-

periments. This variation in the binding strength of L3 comes from the uncertainty in the

binding strength of the refractory, humic-like L3, as several studies reported to be weaker

than 1011 L/mol (Gledhill and Buck, 2012). Given that ∼ 15 - 40% of the dFe speciation

in the water column is FeL3 (Figure 2.4 - Chapter 2), a decrease in the mean dFe concentra-

tion is anticipated. Following Pham and Ito, (2018), the empirical constants in this ligand

parameterization are calibrated to fit the observed ligand distribution in the least squares

sense (α = 6.1 · 10−5, β =1.3 · 10−5), and Lrefract = 1.3nM .

As described in chapter 2, dFe not bound to ligands (free Fe, [Fe′]) can be removed

from the water column by scavenging onto lithogenic and organic particles, based on a

first-order bulk scavenging rate, and by precipitation. The scavenging of [Fe′] by lithogenic

(inorganic) particles is enhanced under the high dust plume when lithogenic particle con-
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centration increases (Ye and Völker, 2017; Ye et al., 2011). To represent this effect, I scale

the inorganic scavenging rate kinorg by atmospheric dust deposition (JFedust):

kinorg = kinorg0

(
JFedust
〈JFedust〉

)n

(4.1)

In this chapter, the exponent n for the dust-flux dependence is set to 1 for the control

simulation as in chapter 3 (Pham and Ito, 2018), but it is varied in the sensitivity runs.

4.2.2 Experimental Design

First, the model was integrated for 1,000 years with a standard parameterization (Control

run) to reach a quasi-steady state. Five additional experiments were then started from the

end of the control run with perturbed parameterizations, and were further run for 1,000

years to achieve new quasi-steady states. These experiments aim to evaluate the roles

of various processes controlling the ocean dFe cycling in the subtropical North Atlantic.

Model experiments are setup as follows:

• ”Control” run applies the ligand and scavenging parameterizations as in Pham and

Ito, (2018); (KL3 = 1011L/mol, n = 1)

• ”Stronger scav.” run allows a stronger inorganic scavenging rate in the surface water

under the high dust deposition; (KL3 = 1011L/mol, n = 1.5)

• ”Stronger uptake” run has the same setup as the Control run but with a 10 times

bigger biological uptake ratio between Fe and P

• ”Weaker L3” run sets a weaker binding strength for L3; (KL3 = 1010L/mol, n = 1)

• ”Stronger scav. + weaker L3” run is the combination of the Weaker L3 run and

Stronger scav. runs; (KL3 = 1010L/mol, n = 1.5)

• ” Stronger scav. 2” run allows a stronger inorganic scavenging rate under the high

dust deposition for the whole euphotic layer (0-200m); (KL3 = 1011L/mol, n = 1.5)
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The Stronger scav. and Weaker L3 runs examine the relative roles of ligand and scav-

enging in modulating the subtropical North Atlantic Fe cycling. The effect of increasing

the power-law dependence (n) in the Stronger scav. and Stronger scav. 2” experiments

roughly translates to a 1000-fold increase in the net scavenging rate relative to the refer-

ence value (Kinorg0) under the high dust plume. The difference between these two runs is

that the Stronger scav. 2 allows the increase in inorganic scavenging rate not just only at the

surface water but also throughout the surface water column (200m). These experiments ex-

plore the uncertainty regarding the impact of a potentially high lithogenic scavenging rate

on the upper ocean dFe distribution in the subtropical North Atlantic. The Stronger scav.

+ weaker L3 run evaluates the combination effect of a weaker refractory-DOC component

ligand class and a stronger inorganic scavenging rate. The Stronger uptake run investigates

the uncertainty associated with the Fe-P uptake ratio of phytoplankton, as reported by a

wide range for this value in Twining and Baines, (2013). Twining et al., (2015) shows a

3-fold higher Fe quota in the North Atlantic cells, compared with those measured in the

Pacific and Southern Ocean, which may have an impact on the surface dFe concentration

in this region.

4.3 Mechanisms Controlling the dFe Distribution in the Subtropical North Atlantic

Our model-data comparison is focused in the upper 1,000m, thus I zoom in the depth from

0 - 1,000m in Figures 4.2 and 4.3 and compress the rest of the water column. In addition,

the pattern correlations between model runs and observations and mean model biases are

calculated for the surface (0-250m), subsurface (250-1000m), and the upper 1,000m waters

(Table 4.1).

The control run reproduces some features of the subsurface dFe maximum signals ob-

served in both the western and eastern margins, which are formed by remineralization

and/or by the dFe release from the adjacent reduced sediments (Hatta et al., 2015). How-

ever, as is the case with most models included in Tagliabue et al., (2016), it overestimates

57



the surface dFe concentration by ∼ 0.7 - 0.8 nM and underestimates the vertical and hori-

zontal extent of the mid-depth dFe maximum in the eastern margin (Figures 4.2a and 4.3a).

This leads to a model subsurface dFe maximum shallower than observed. The strong dFe

gradients around 200m - 600m from 60 - 40◦W (Figure 4.2a) and near the surface from

30 - 40◦N (Figure 4.3a) are not reproduced in the model because the dFe concentration

there is higher than observed. Thus, the pattern correlations between the control run and

observations are low (0.44 and 0.54 for the upper 1000m water column of the GA03e and

GA03 transects, respectively) and the mean model biases are generally positive (0.15 and

0.26) (Table 4.1). Our model is also not able to reproduce the high dFe hydrothermal level

observed at 3,000-4,000m from 50 - 40◦W.

A stronger inorganic scavenging rate in the surface water (stronger scav. run) slightly

decreases the surface dFe concentration in both transects by ∼ 0.3 nM (Figures 4.2c and

4.3c), moderately increasing the pattern correlations with observations for the upper 1,000m

water column relative to the control run (from 0.44 to 0.55 and from 0.54 to 0.66 - Table

4.1). The mean model biases in the upper 1,000m also decrease as more dFe is scavenged

by lithogenic particles. However, the subsurface (200-1,000m) dFe maximum in the eastern

margin is still shallower than observed. Observed subsurface dFe gradients in the central

subtropical gyre (around 40◦W in Figure 4.2c) and in the eastern subtropics (around 30◦N

in Figure 4.3c) are still not reproduced.

Allowing the inorganic scavenging rate to be increased from 0-200m under the high

dust plume (Stronger scav. 2 run) significantly decreases the dFe concentration in the

surface water by more than 1 nM (Figure 4.5). The mean model biases are significantly

decreased in the upper 1000m to negative values (Table 4.1). However, the subsurface dFe

maximum in the eastern margin also decreases by more than 1 nM and further underesti-

mates the observed subsurface dFe concentration, even though this dFe maximum signal

starts to appear in a deeper level than the control run. Overall, the model thermocline dFe

concentration in this run underestimates the observations, except for the extreme dFe signal

58



around 800-1000m in the western margin (Figure 4.5). The diminishing subsurface dFe is

caused by the intense inorganic scavenging in this run, reducing the transport of dFe from

the surface to subsurface waters. In contrast, the model subsurface dFe maximum in the

western margin seems to overestimate observations, implying different formation mecha-

nisms. The high level of dFe there might be formed via the subsurface dFe supply from

continental shelves (Hatta et al., 2015), thus not being affected by the reduction of dFe

transport from the surface. The pattern correlation with the observation is 0.1 and is much

lower than the control run (Table 4.1) due to a greater misfit in the subsurface dFe concen-

tration. The result of this sensitivity run implies that an extremely high scavenging rate in

the upper water column could eventually bring the model surface dFe concentration down

to the observed level but at the expense of further decreasing the model subsurface dFe.

The stronger uptake run applies a ten times higher value for the Fe-P uptake ratio

(RFeP ), but its effect on the surface dFe concentration seems to be relatively minor when

compared with the control run (Figures 4.2d and 4.3d). This experiment is intended to

assess the ecosystem response to the high dust deposition by allowing a higher rate of dFe

uptake under the dust plume. In our model, the biological productivity in the oligotrophic

subtropical North Atlantic region is low due to the macronutrient limitation (Moore et al.,

2013). Therefore, an increase in the uptake Fe-P ratio in this particular model did not show

a major shift in the regional biological activity and dFe distribution. It is beyond the scope

of this study to examine the response of nitrogen-fixing bacteria in the large and episodic

dust dFe deposition (Moore et al., 2009), which requires an explicit ecosystem component.

The weaker L3 run shows significant improvements. It significantly decreases the sur-

face dFe (∼ 0.8 nM) and deepens the subsurface dFe maximum (Figures 4.2e and 4.3e).

When the binding strength of L3 is decreased, dust-deposited dFe is more effectively scav-

enged onto sinking organic particles, which then release dFe back at mid-depth waters via

remineralization. Thus, lowering the binding strength of L3 is an effective mechanism not

only in reducing the model surface dFe concentration but also in redistributing the model
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Figure 4.2: dFe distribution along the zonal GA03 transect: (a) Observations, (b) Control
run, (c) Stronger scav. run, (d) Stronger uptake, (e) Weaker L3 run, and (f) Stronger scav.
+ weaker L3 run . White color indicates the seafloor bathymetry.

dFe into the thermocline. This model run also reproduces the strong dFe gradients around

200 - 600m around 40◦W (Figure 4.2e) and near the surface water around 30◦N (Figure

4.3e). The pattern correlations between the model and observation are greatly improved

from the control run (improving from 0.44 to 0.72 for the meridional GA03e transect and

from 0.54 to 0.89 for the zonal GA03 - see Table 4.1). The mean model biases also shift

to underestimation of the upper 1,000m water (-0.25 for GA03e and -0.19 for GA03).

However, the thermocline (200-1,000m) dFe concentration is decreased in magnitude, es-

pecially in the western margin. As discussed above, the high level of dFe in the western

margin is likely to be formed by the dFe sedimentary source, not by the redistributing of

dust-deposited Fe between the surface and subsurface waters as in the eastern margin.

I further examine underlying mechanisms behind changes in the sensitivity runs by ana-
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Figure 4.3: dFe distribution along the meridional GA03e transect: (a) Observations, (b)
Control run, (c) Stronger scav. run, (d) Stronger uptake, (e) Weaker L3 run, and (f) Stronger
scav. + weaker L3 run. White color indicates the seafloor bathymetry.
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lyzing changes in the average dFe removal fluxes of each sensitivity run relative to the Con-

trol from 0-100m along 30◦-15◦W, 15◦-25◦N. Figure 4.4 shows 4 groups of bar chart for 4

model scenarios with each color representing different terms in the dFe removal fluxes. In

the Strongscav1 run, the inorganic scavenging increases by ∼ 0.18 nM/year (light blue)

relative to the Control at the expense of decreasing the other sink terms, especially the

organic scavenging (dark blue). The lower concentration of dFe reduces the biological

consumption (brown) and the production of particulate organic Fe (dark blue), leading to a

modest decrease of the surface dFe concentration in this run. It is possible to significantly

decrease the surface dFe by further increasing inorganic scavenging rate (Strong scav. 2

run). Similar to the previous run, the other removal fluxes partially compensate for in-

creased scavenging loss due to the decreased availability of dFe and biological production,

but the inorganic scavenging flux is significantly increased (∼ 0.4 nM/year) and domi-

nates the dFe balance. As a result, it causes a large decrease (∼ 1 nM) in the surface dFe

concentration, but it also reduces the transport of dust-deposited dFe from the surface to

subsurface waters, leading to underestimation of the subsurface dFe concentration. In the

Strong uptake run, biological uptake increases by less than 0.1 nM/year (brown bar), and

changes in the other fluxes are even smaller. The impact of increasing biological uptake

is insignificant due to the macro-nutrient limitation in this region. In the Weaker L3 run,

the total removal flux is similar to the Strong scav. 2 (2.9 vs. 2.8 nM/year). However,

the underlying mechanisms for increasing dFe removal fluxes are different. While the de-

crease of surface dFe in the Strong scav.2 run relies solely on inorganic scavenging, the

Weaker L3 run decreases ligand binding strength, thereby enhancing both organic and in-

organic scavenging fluxes. The difference in organic scavenging flux (∼ +0.15nM/year)

between Weaker L3 and Strong scav.2 enhances the downward transport of dFe through

remineralization, thus improving the model dFe distribution in the thermocline.

A combination of both mechanisms (stronger inorganic scavenging at the surface +

weaker L3 ) further decreases the surface dFe concentration (Figures 4.2f and 4.3f). The
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Figure 4.4: Changes in the average dFe removal fluxes (nM/year) from 0-100m along
30◦-15◦W, 15◦-25◦N for each sensitivity run relative to the control run. The dark blue, light
blue, yellow, and brown bars indicate the removal fluxes from (Sco) organic scavenging,
(Sci) inorganic scavenging, (Preci) precipitation, and (Bio) biological uptake, respectively.
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eastern subsurface dFe maximum also seems to be further decreased. While the mean bias

(underestimation) is slightly enhanced (Table 4.1), there is little change in the pattern of the

dFe distribution between this run and the weaker L3 run. Indeed, the pattern correlations

between model and observations are essentially the same between these two runs. Com-

parison of all the sensitivity runs in Figures 4.2, 4.3, and 4.5 suggests that weakening the

binding strength of L3 is the mechanism that best explains dFe pattern in the subtropical

North Atlantic and reduces model biases.

4.4 Discussion and Conclusion

The improved spatial coverage and quality of Fe data provides a unique opportunity to eval-

uate our understanding of the ocean Fe cycling (Mawji et al., 2015; Schlitzer et al., 2018).

This study focused on the subtropical North Atlantic Ocean, where current OGCBMs have

difficulty reproducing the observations (Tagliabue et al., 2016). This region is important

for studying the ocean Fe cycling because of its diverse dFe sources and sinks, and the

complex internal cycling of dFe within the water column (Conway et al., 2018; Hatta et al.,

2015). Moreover, the dFe cycling in this region can have far-reaching impact on the global

marine biogeochemistry and ecosystems because of the formation of deep water masses

that transport preformed Fe to far-field regions and because of its control on the growth of

nitrogen-fixing bacteria. As the subtropical North Atlantic receives high dust deposition

(Conway and John, 2014), many models included in Tagliabue et al., (2016) show a rel-

atively high surface dFe concentration of 1 - 2 nM. In contrast, the observed surface dFe

is relatively low with a magnitude of 0.3 - 0.5 nM (Hatta et al., 2015). On the one hand,

this feature indicates that these models underestimate the near-surface dFe sink including

scavenging and/or biological uptake. On the other hand, the degree to which these mech-

anisms can decrease the surface dFe depends on the concentration and binding strength

of ligands, which are still uncertain (Gledhill and Buck, 2012; Hassler et al., 2017). This

study examines the relative importance of different mechanisms behind the observed dFe
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patterns in the subtropical North Atlantic through model experiments in an OGCBM with

an improved Fe cycling scheme (Pham and Ito, 2018).

The sensitivity run with a 10 times higher value for the biological uptake ratio RFeP

only has a negligible impact on the 0-1,000m dFe pattern due to the macronutrient-limited

biological production in this region. A sensitivity run with a stronger lithogenic scavenging

rate lowers the surface dFe concentration but causes a significant negative bias in the ther-

mocline dFe concentration. In contrast, a sensitivity run with a 10 times weaker refractory

ligand class significantly reduces the model surface dFe while sustaining the subsurface

dFe maximum at a similar level to observations by increasing the release of scavenged Fe

in the thermocline. Thus, a 10 times weaker binding strength for L3 leads to a significant

improvement in the pattern correlation between model and observations.

The observed ligand data has been greatly expanded over the last few years thanks

to the GEOTRACES program (Buck et al., 2018, 2015; Gerringa et al., 2015). Several

modeling studies have taken advantage of these data to develop a dynamic ligand scheme

in OGCBMs, which could significantly improve the model ligand and dFe representations

(Völker and Tagliabue, 2015). However, given a large uncertainty in the ligand binding

strength, those models still represent only one ligand class, which is considered to be the

most dominant and has the binding strength of 1011L/mol (Völker and Tagliabue, 2015; Ye

and Völker, 2017). Our results argue for the inclusion of different ligand classes, each with

distinct sources and binding strength. Representing the refractory ligand L3 with a weak

binding strength of 1010L/mol significantly improved our model in the subtropical North

Atlantic. Our results are thus in line with a recent review on the ligand classification, which

suggests a ligand spectrum of three groups (Hassler et al., 2017). In addition, the model

binding strength of L3 (K = 1010L/mol) is consistent with the measurement of Buck et

al., (2015) for the weakest ligand class along the GA03 transect. Nevertheless, our simple

ligand parameterization should be considered as only a first step towards a mechanistic

ligand model, which should dynamically represent a continuum of ligand classes, rather
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Table 4.1: The pattern correlations and mean biases (values in the parentheses) between
model experiments and observations for the two subtropical Atlantic transects

GA03e GA03e GA03e GA03 GA03 GA03
Model 0-1000m 0-250m 250-1000m 0-1000m 0-250m 250-1000m
Control 0.44 (0.15) 0.6 (0.33) 0.89 (-0.12) 0.54 (0.26) 0.71 (0.40) 0.84 (0.05)

Stronger scav. 0.55 (0.12) 0.68 (0.28) 0.9 (-0.14) 0.66 (0.22) 0.8 (0.34) 0.85 (0.03)
Weaker L3 0.72 (-0.25) 0.74 (-0.12) 0.92 (-0.46) 0.89 (-0.19) 0.81 (-0.15) 0.95 (-0.26)

Stronger scav. 0.77 (-0.28) 0.79 (-0.16) 0.92(-0.48) 0.90 (-0.25) 0.83 (-0.21) 0.95 (-0.3)
+ weaker L3

Stronger scav.2 0.4 (-0.22) -0.62 (-0.13) 0.66(-0.38) 0.1 (-0.19) -0.34(-0.16) 0.21 (-0.37)
Stronger uptake 0.56 (0.24) 0.63 (0.38) 0.71(0.012) 0.59 (0.26) 0.7 (0.38) 0.85 (0.06)

than a few discrete ones. The long-lived refractory-DOC ligand class can be a crucial factor

for the Fe cycling in the subtropical North Atlantic, where ligand sources from microbial

activity and remineralization are limited due to the low biological production (Buck et al.,

2015). Given the ubiquitous and longevity of this ligand class, its binding strength and

concentration could have an important impact on the global Fe distribution, especially for

the Fe-depleted surface waters. Strong lithogenic scavenging and high biological Fe uptake

could also play some roles but their effects are likely confined within regions of high dust

deposition.
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Figure 4.5: The dFe distribution along the horizontal GA03 (a) and meridional GA03e (b)
transects of the model Stronger scav. 2 run. White color indicates the seafloor bathymetry.
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CHAPTER 5

UPPER OCEAN IRON PATTERNS CONTROLLED BY INTERNAL CYCLING

PROCESSES

Manuscript in preparation as

Pham, A.L.D. and T. Ito, (2019) Upper ocean iron patterns controlled by internal

cycling processes

Abstract

Recent advances in measurement techniques and collaborative efforts rapidly expands the

dataset of dFe distribution across the global oceans, which provides a unique opportunity to

improve our understanding of the ocean Fe cycling. Previous efforts focused on constrain-

ing the magnitude of external dFe inputs such as hydrothermal vents and shelf sediments.

However, biochemical processes within the water column also affect observed concentra-

tions, and their interactions with diverse dFe sources are not yet fully understood. Here I

show that the oceanic processing of Fe controls the observed gradients of dFe in the up-

per ocean through a series of computational experiments. Simulated dFe distributions are

validated against observations, and the chemical mass balance is analyzed by the applica-

tion of an unsupervised machine learning technique. Distinct regimes of dFe mass balance

emerge, showing that the complex interior ocean Fe processes play a central role in setting

the upper ocean dFe gradients. Even though external dFe inputs are an important factor set-

ting the overall magnitude of dFe concentration in our model, the observed patterns cannot

be captured without an appropriate set of internal cycling processes.
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5.1 Introduction

Over the last three decades, the crucial role of the micronutrient Fe as a limiting factor

for phytoplankton growth has been well established and its distribution in the ocean has

been actively measured (Tagliabue et al., 2017). Starting from around 300 vertical pro-

files of dFe concentration spread out over several ocean stations in the 1990s (Johnson et

al., 1997), we currently possess a global dFe dataset of more than 20,000 measurements

(Tagliabue et al., 2016, 2012). This nearly 100-fold increase in the number of high-quality

dFe measurements has significantly transformed our understanding of processes regulating

the ocean dFe pattern. Started from a highly simplified conceptual dFe model in the ocean

with atmospheric dust as the only external source (Archer and Johnson, 2000; Johnson et

al., 1997), the key role of dFe inputs from hydrothermal vents and continental margins, es-

pecially in the Southern Ocean, has been revealed (Ardyna et al., 2019; Resing et al., 2015;

Tagliabue et al., 2014b). In addition, a traditional assumption of a nearly constant value of

0.6 nM for deep dFe concentration has been replaced by a much more dynamic view where

it varies significantly across the abyssal basins (Tagliabue et al., 2017). Deep dFe vari-

ability likely reflects major subsurface sources as well as the variation in the concentration

and binding strengths of organic ligands that protect dFe from being removed by particle

scavenging (Buck et al., 2018, 2015). Expansion in the dFe dataset also puts a more strin-

gent constraint on computational models of ocean Fe. Comparison with observations along

GEOTRACES sections showed significant biases in many ocean biogeochemistry models

(Tagliabue et al., 2016). Models that incorporated new findings displayed improvements in

reproducing some observed features (Pham and Ito, 2018; Pham and Ito, 2019; Tagliabue

et al., 2016).

Despite the progress made, uncertainties persist. The mean residence time of dFe, cal-

culated as the ratio between the global inventory and the rate of external supply, varies over

two orders of magnitude among state-of-the-art models (Tagliabue et al., 2016). This vari-
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ation reflects a wide range in the magnitude of total dFe fluxes from the continental shelves

and hydrothermal vents. These models can maintain the dFe inventory close to observa-

tions (∼ 1nM ) because of the non-linear removal processes mediated by organic ligands.

Models are typically programmed to rapidly scavenge dFe if it is not bound to ligands,

such that a large influx of dFe is often accompanied by an equally large scavenging loss.

Parameterizations for ligands can therefore play a crucial role in setting dFe distribution

(Pham and Ito, 2018; Pham and Ito, 2019). While previous studies have placed much em-

phasis on constraining magnitudes and contributions of external fluxes (Conway and John,

2014; Frants et al., 2016; Holzer et al., 2016), the role of interior ocean processes such as

retention, scavenging, desorption, and remineralization has just recently come into focus

(Boyd et al., 2017).

In this study, I aim to elucidate the relative contributions of external dFe inputs and

oceanic Fe processes by performing four model simulations with different levels of com-

plexity in external dFe inputs and oceanic Fe processing in the same three-dimensional

ocean circulation model (ECCO-MITgcm (Marshall et al., 1997a,b; Wunsch and Heim-

bach, 2007)). In addition, I analyze how the vertically integrated dFe budgets are bal-

anced in the upper 1000m ocean in these simulations by using the unsupervised machine

learning technique (K-means). In general, eight dFe fluxes contribute to the balance of

the dFe budgets: advection, mixing, biological uptake, remineralization (including desorp-

tion), scavenging, atmospheric dust, shelf sediment, and hydrothermal fluxes. Of these

eight dFe fluxes, dust, shelf sediment, and hydrothermal fluxes are considered external

fluxes, whereas the rest are interior oceanic processes. This clustering algorithm organizes

the model’s ocean into finite groups/regions of similar dFe balance, thereby demonstrating

how the dFe fields in four simulations are regulated by various mechanisms.

This chapter is structured as follows. Section 5.2 describes the model and Fe schemes

used in four simulations and the K-means clustering algorithm. Section 5.3 presents the

results of these simulations and the dFe budget analysis. Section 5.4 discusses these results’
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implications and concludes this chapter.

5.2 Methods

5.2.1 Ocean biogeochemistry models

The three-dimensional ocean circulation model (ECCO-MITgcm) used in this study was

described in details in Chapter 2. Four simulations were setup as follows: Model sFe-dust,

Model sFe-all, Model cFe-dust, and Model cFe-all. While Models sFe-dust and cFe-dust

considered atmospheric dFe deposition as the only external source, Models sFe-all and

cFe-all included dFe fluxes from bottom sediments and hydrothermal vents. More im-

portant, Models sFe-dust or sFe-all and cFe-dust or cFe-all were significantly different in

their representations of interior oceanic Fe processes. Models sFe-dust and sFe-all repre-

sented a simple oceanic Fe processing including a single, uniform ligand with a relative

strong binding strength with dFe (KL = 1011L/mol) and dFe scavenging removal onto

organic particles. This scavenging loss was considered as a first-order loss process depend-

ing on the concentration of organic particles (organic scavenging). In contrast, Models

cFe-dust and cFe-all used a more complex oceanic Fe processing (Pham and Ito, 2019)

including three spatially varying ligand classes, scavenging onto organic and lithogenic

particles, desorption and remineralization of scavenged Fe. Essentially, the scheme for

oceanic dFe processes in Models sFe-dust and sFe-all was the approach by (Parekh et al.,

2005), whereas the scheme for oceanic dFe processes in Models cFe-dust and cFe-all was

the scheme I described in chapter 2 of this dissertation.

5.2.2 Unsupervised classification: K-means clustering

K-means clustering is a statistical approach to describe and classify data (Kubat, 2015;

MacQueen, 1967). It divides n data points (observations) of a specific dataset into k groups

(clusters). The value of k for the number of clusters is a free parameter that is chosen

a priori. This division/classification is based on how the data points are distributed in a
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parameter space. The dimensions of this parameter space are defined by a set of features

that characterize each data point. Specifically, each data point (x) is grouped into a specific

cluster such that the Euclidean distance between that data point and the center of that cluster

(centroid c) in the parameter space is minimum.

The k-means approach first places centroids of k clusters randomly in the parameter

space. It then calculates the distances between all the centroids and all n data points to

determine to which cluster a specific data point belongs to (cluster membership).

J = ||xi − cj||2; i = 1...n; j = 1...k (5.1)

After that, it involves an iterative process in which the centroid of each cluster and its

distance to data points are re-calculated at each step. The centroid’s position of a cluster

in the parameter space is determined as the mean position of all the data points belong to

that cluster. This process is repeated until there is no change in the position of c in the

parameter space as well as no change in the cluster membership for each data point.

Our goal is to apply K-means clustering to determine the spatial patterns of the model

ocean Fe cycling based on mechanisms that dominate the dFe budget balance at each model

grid point. For this application, data points in the dataset are all the model grid points. Each

model grid point is characterized by all the dFe sources, sinks, and transport terms, which

are features defining the parameter space. For Model sFe-dust or cFe-dust the dFe fluxes

are: advection, diffusion (mixing), biological uptake, scavenging, remineralization, and

dust deposition. Model sFe-all or cFe-All has two more fluxes: sedimentary and hydrother-

mal inputs. Before applying K-means to the dFe budgets, all the dFe flux terms were

normalized so that each term has a zero mean and unit variance globally.

Adding more clusters can increase the accuracy of data classification but with the risk

of overfitting. An optimal value for the free parameter k - the number of clusters - can be

determined using the Bayesian Information Criterion (BIC). BIC provides a measure of the
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quality of a statistical model, rewarding increased likelihood and penalizing the number of

clusters k (Jones et al., 2019; Sonnewald et al., 2019):

BIC = kln(n)− 2ln(ι) (5.2)

where ι is the likelihood and is calculated as follows:

ι = Σn
i=1

1√
2πσ2

exp(
(xi − ξ̂i)2

2σ2
) (5.3)

where xi is the observed data point and ξ̂i is the prediction, so (xi − ξ̂i)2 are the prediction

residuals. In this framework, the optimum value of k minimizes the BIC score. For all the

model analyses, BIC scores stabilized at∼ k = 50, suggesting that no information is gained

by further increasing the number of clusters. Thus, k = 50 was used.

5.3 Results

Comparison with the GEOTRACES transects (Mawji et al., 2015; Schlitzer et al., 2018)

demonstrated the improved representation of dFe patterns in Model cFe-All (Figures 5.1

and 5.3). All models were driven by identical physical circulation and biological parame-

terizations; they only differed in external dFe sources and oceanic processing of Fe. The

observed dFe vertical gradients and the thermocline dFe maximum in the subtropical GA03

Atlantic Ocean were captured in Model cFe-All. Similarly, the strong dFe meridional gradi-

ent in the tropical thermocline along the GI04 Indian Ocean transect was well represented.

The strong subsurface dFe signals observed in the tropical western Atlantic GA02 and the

northwestern Pacific GP02 were also reproduced in this model. Models cFe-dust and cFe-

all employed a more sophisticated parameterization of oceanic Fe processing, and their

simulated dFe started to capture the correct sign of the vertical gradients in the thermo-

cline water where the near surface dFe is depleted even under the increased deposition of

atmospheric dust. In these two models, the accumulation of dFe in the main thermocline
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Table 5.1: The total dFe input, dFe inventory, mean dFe concentration, and mean dFe
residence time for four model simulations

Model run Total dFe input dFe inventory mean concentration mean residence time
Model sFe-dust 2.03 Gmol/yr 2.73·1011 mol 2.06·10−7 mol/m3 134.8 years
Model sFe-all 54.06 Gmol/yr 8.91·1011 mol 6.72·10−7 mol/m3 16.5 years

Model cFe-dust 2.03 Gmol/yr 4.24·1010 mol 3.2·10−8 mol/m3 20.9 years
Model cFe-all 54.06 Gmol/yr 3.31·1011 mol 2.5·10−7 mol/m3 6.13 years

was in part due to the remineralization and desorption of Fe from sinking particles. Model

cFe-dust considered atmospheric deposition as the sole dFe input, thus it generally under-

estimated the water column dFe concentration. In contrast, Models sFe-dust and sFe-all

employed a simple ocean Fe processing, and they failed to reproduce the correct sign of the

dFe vertical gradients. Specifically, these two models overestimated the near-surface dFe

under the high dust regions and exhibited nearly uniform deep dFe concentration. Model

sFe-dust exhibited lower water column dFe concentration due to the lack of hydrothermal

and sedimentary dFe, while Model sFe-all significantly overestimated both the surface as

well as deep dFe concentrations.

The mean residence time of dFe in four simulations spanned two orders of magnitude

from 6.1 years (Model cFe-all, see Table 4. 1) to 135 years (Model sFe-dust). As expected,

the inclusion of sedimentary and hydrothermal Fe inputs shortened the residence time sig-

nificantly in Models sFe-all and cFe-all. The inclusion of complex oceanic processing also

reduced the mean residence time of dFe and decreased the total ocean dFe inventory when

compared between Models sFe-dust and cFe-dust or between Models sFe-all and cFe-all,

which had the same external dFe sources. In Models cFe-dust and cFe-all, the production

of organic ligand was linked to biological productivity with feedback onto the dFe concen-

tration. Specifically, when the biological activity is weak, the ligand production is reduced,

resulting in less retention of dFe that decreases the Fe inventory.

Simulated dFe budget terms, which were calculated online and recorded annually, were

analyzed using the unsupervised machine learning technique (K-means). Specifically, this

clustering algorithm analyzed dFe fluxes at each model’s grid points (Figure 5.2bdfh) and
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Figure 5.1: dFe distribution along the GEOTRACES transect GA03 (top) and GI04 (bot-
tom). From left to right: First column: measurements from observations; Second column:
Results from Model sFe-dust; Third column: Model sFe-all; Fourth column: cFe-dust; Fi-
nal column: Model cFe-all. Model output (annual mean) is objectively mapped onto the
cruise track.

then organized grid points that have similar fluxes dominating the local dFe budget into the

same cluster (Figure 5.2aceg). Clusters with similar budget structures were further cate-

gorized into four cluster groups for the simplicity of presentation. The remarkable aspect

of this algorithm is that the Fe budget clusters exhibited organized spatial structure even

though the algorithm only analyzed the dFe budget terms without any geographic informa-

tion (Figure 5.2). In Model cFe-All (Figure 5.2gh), which showed the most realistic dFe

pattern, the first 22 clusters collectively covered more than 95% of the global ocean and

generally fell into three types of dFe balance. The first cluster group (Clusters 1 - 3, 60%

surface area) was the low Fe flux region covering the vast areas of the Southern Ocean,

subtropical gyres, and most of the Pacific Ocean. In the second and third cluster groups

(Clusters 4 - 15, 30% surface area), the dFe source was dominated by shelf sediments

and/or remineralization, which were balanced by the scavenging loss. For this model, rem-

ineralization included both the biological release of Fe from organic particles as well as

desorption. Finally, the higher order clusters (Group 4: Clusters 15 - 22, 5% surface area)

were dominated by a significant amount of dFe inputs from dust and sediments, which is a
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typical feature in regions along the coastline or under the high dust plume. Large dFe in-

puts from dust and sediments were balanced by the enhanced scavenging in these regions.

Scavenged dFe can be released back to the water column via remineralization and desorp-

tion from sinking particles, thus effectively transporting dFe vertically downward and was

the key to sustain the subsurface maximum of dFe.

In contrast, Model sFe-dust (and sFe-all) exhibited a fundamentally different Fe bal-

ance with the tightly couple of biological uptake and remineralization, which is somewhat

similar to that of macro-nutrient (Figure 5.2ab and Figure 5.2cd). For these two models,

remineralization dFe flux only included the biological release of Fe from organic particles

but not the Fe desorption. In Model sFe-dust, the first 28 clusters covered ∼ 95% of the

area, and they were also categorized into four groups. The first cluster group (Clusters 1 -

7, 51% surface area) was characterized by very low dFe fluxes, mostly in the oligotrophic

subtropical gyres (Figure 5.2ab). The second and third groups (Clusters 8 - 19, 37% sur-

face area) featured a moderate Fe supply via advection and atmospheric deposition, which

stimulated biological uptake and remineralization. These groups were in the biologically

productive upwelling regions such as the subantarctic region (40◦S), eastern tropical Pa-

cific, subpolar North Pacific, and North Atlantic. For the fourth group (Clusters 20 - 28,

7% surface area), atmospheric dust input became dominant, which was balanced by the

combination of biological uptake, scavenging, and advective transport. This group fell into

regions of the subtropical Atlantic, south western Atlantic, and northern Indian Oceans.

With the exception of the fourth cluster group, the biological uptake and remineralization

were the two dominant terms for the majority (>88%) of the global oceans in Model sFe-

dust. This macro-nutrient like balance was modified when the sedimentary Fe source was

included in Model sFe-all (Figures 5.2cd). However, Models sFe-dust and sFe-all were

similar in the general distribution of cluster groups (Figures 5.2ac) and in structures of the

first two groups covering oligotrophic gyres and productive upwelling regions. The large

sedimentary dFe fluxes were evident in the third (Clusters 11-18, 15% surface area) and
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Figure 5.2: K-means clustering of upper ocean Fe budget: (a) Cluster group distribution
map for Model sFe-dust, (b) the normalized magnitude of dFe flux averaged over each
cluster group, (c,d) same for Model sFe-all, (e,f) same for Model cFe-dust, and (g,h) same
for Model cFe-all. The budget terms are denoted as adv: advection; dif: mixing; bio:
biological uptake; scav: scavenging; remin: remineralization including desorption, sed:
sedimentary input, hydro: hydrothermal input, and dust: atmospheric soluble dust deposi-
tion.

77



fourth (Clusters 19-25, 5% surface area) groups of Model sFe-all, which were balanced

by the enhanced scavenging. Even when all major dFe sources were considered, Model

sFe-all could not produce a realistic pattern of dFe (Figures 5.1 and 5.3). Rather, it pro-

duced broadly uniform dFe pattern that underestimated the subsurface dFe maximum. This

uniform dFe pattern demonstrates the importance of a proper parameterization for internal

Fe transformations.

Model cFe-dust exhibited the lowest dFe concentrations among all the models, but its

parameterization for the internal Fe processing was identical to Model cFe-all , and their

cluster groups showed similar features (Figure 5.2eg). The majority of the surface ocean

area was dominated by low dFe fluxes (∼ 70%). As the atmospheric input increased from

cluster group 1 to 4, scavenging and remineralization fluxes both increased (Figure 5.2f).

These mechanisms worked together to transport dFe downward and formed the subsurface

maximum in the thermocline. However, Model cFe-dust received a much weaker external

Fe input, therefore the magnitude of the budget terms as well as the interior dFe concentra-

tions were low (Figure 5.2f).

The dFe gradient between the surface and subsurface waters in high dust regions was

successfully captured by Model cFe-all. The key factor behind this success is in the

more detailed description of interior ocean processes including variation in ligand bind-

ing strength and concentration as well as more sophisticated scavenging parameterization.

Atmospheric dust deposits a significant amount of dFe into the surface ocean of the sub-

tropical Atlantic, south western Atlantic, and northern Indian Oceans. In Model sFe-dust

or sFe-all, scavenging rate increased to keep the dFe budget in balance, but it could not

deplete the surface dFe due to a low concentration of organic particles in these oligotrophic

regions and the dFe protection by a uniformly distributed and strong ligand class (Figure

5.2). This ineffective scavenging loss caused an elevated surface dFe concentration (Fig-

ure 5.1). In contrast, Model cFe-dust or cFe-all included the scavenging onto lithogenic

particles and allowed spatial variation in the ligand binding strength and concentration.
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These parameterizations led to a more complete depletion of surface dFe under the high

dust plume in oligotrophic regions where low biological activity caused a low concentra-

tion of the strong-binding ligand class. Furthermore, Model sFe-dust or sFe-all considered

scavenging as the ultimate sink of dFe, thereby removing the dust-deposited dFe out of the

water column. Model cFe-dust or cFe-all allowed the desorption and remineralization of

scavenged Fe from particles along the sinking pathway, thus transporting the dust-deposited

dFe downward and redistributing dFe in the upper ocean. This internal transformation of

Fe makes the ocean dFe cycling distinct from macronutrient cycles.

5.4 Conclusion

The ocean cycling of Fe is regulated by complex interactions between external inputs and

internal cycling processes (Tagliabue et al., 2017). Isolating the relative contribution from

each process is challenging but is necessary to formulate a biogeochemistry modeling sys-

tem that correctly simulates the impacts of anthropogenic perturbation and physical climate

variabilities (Hutchins and Boyd, 2016). Recently, measurements of the stable isotope ra-

tios of dFe (δ56Fe) have been used to quantify the contribution of external dFe fluxes based

on the unique δ56Fe signature of each source (Conway et al., 2019, 2018; Fitzsimmons

et al., 2016). These observational studies may motivate modeling community to include

the stable Fe isotope in ocean models. In addition, ventilation-based framework (Tagliabue

et al., 2014c) can be applied to track various Fe processes along potential density surfaces.

Together with these efforts, machine learning algorithms can be applied to uncover previ-

ously unnoticed patterns from the volume of observational and/or model-generated data.

If effectively applied and interpreted, these new tools can reveal key processes and mech-

anisms that can be linked to explain specific interactions of processes and tracer budgets.

While there are large uncertainties in the magnitude of continental shelf fluxes, our analysis

showed that the dFe spatial pattern depends largely on the parameterization of oceanic Fe

processing rather than specifications of external sources. The interplay among these interior
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Figure 5.3: dFe distribution along the GEOTRACES transect GA02 (top) and GP02 (bot-
tom). From left to right: First column: measurements from observations; Second column:
Results from Model sFe-dust; Third column: Model sFe-all; Fourth column: cFe-dust; Fi-
nal column: Model cFe-all. Model output (annual mean) is objectively mapped onto the
cruise track.

ocean processes makes the Fe cycling distinct from that of macronutrients. Thus, without

an appropriate representation of these processes, ocean Fe models cannot fully capture the

observed Fe distributions. Given the crucial role of these internal dFe transformations, I

speculate that their sensitivity to future changes under human impacts will have important

consequences to the ocean biogeochemical cycle.
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CHAPTER 6

ANTHROPOGENIC IRON DEPOSITION ALTERS THE ECOSYSTEM AND

CARBON BALANCE OF THE INDIAN OCEAN

Manuscript in preparation as

Pham, A.L.D. and T. Ito, (2019) Anthropogenic iron deposition alters the ecosystem

and carbon balance of the Indian Ocean

Abstract

Phytoplankton growth in the Indian Ocean is generally limited by macronutrients (N, P)

in the north and by micronutrient (Fe) in the south. Increasing atmospheric deposition

of N and Fe to the open ocean due to human activities can lead to significant responses

from both the northern and southern Indian Ocean ecosystems. Previous modeling studies

investigated the impacts of anthropogenic nutrient deposition from the atmosphere to the

open ocean, but the modeled responses are uncertain due to incomplete representation of

the Fe cycling. This study uses a state-of-the-art ocean ecosystem and Fe cycling model to

evaluate the sensitivity of ocean productivity and carbon uptake in the Indian Ocean. The

model includes three major Fe sources and represents internal Fe cycling modulated by

scavenging, desorption, and complexation with multiple, spatially varying ligand classes.

A suite of equilibrium sensitivity simulations shows that increased Fe deposition stimu-

lates diatoms productivity in the southern Indian Ocean poleward of 40◦S. Anthropogenic

N flux has a relatively minor impact. Diatoms production weakens around 40◦S due to the

P limitation, and diatom are outcompeted there by coccolithophores, which have a lower

P demand. These changes in diatoms and coccolithophores production alter the balance

between the organic and carbonate pumps in the region, increasing the carbon uptake pole-

ward of 40◦S and decreasing it in the equatorward. Our results reveal the important role

of ecosystem dynamics in controlling the sensitivity of carbon fluxes in the Indian Ocean
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under the impact of anthropogenic nutrient pollution.

6.1 Introduction

The Indian Ocean accounts for around one-fifth of the ocean net primary production (Behren-

feld and Falkowski, 1997) and contains two of the largest O2 minimum zones (OMZs) of

the world oceans in the northern part (the Arabian Sea and the Bay of Bengal) (Stramma et

al., 2010). In these two regions, phytoplankton growth is generally limited by macronutri-

ents because of the relatively shallow mixed layer and the Ekman downwelling that trans-

ports nutrients away from the euphotic layer. Furthermore, the low O2 waters in the OMZs

promote nitrogen (N) loss through denitrification (Moore et al., 2013; Wang et al., 2019).

The concentration of micronutrient Fe is relatively high in the northern Indian Ocean (∼

1.6 - 2nM) due to relatively high Fe inputs from atmospheric deposition and reduced sed-

iments over the continental shelves (Nishioka et al., 2013). However, Fe can still be a

limiting factor for the nitrogen-fixer diazotrophs, which have a higher demand for Fe than

other phytoplankton (Moore et al., 2013). In contrast, the southern part of the Indian Ocean

shows a very low dFe concentration (∼ 0.2 nM), indicating that biological productivity in

this region can be Fe-limited (Nishioka et al., 2013). These contrasting biogeochemical

regimes between different parts of the Indian Ocean imply a diverse and complex response

of the marine ecosystem to perturbations. Atmospheric deposition of N and Fe in the Indian

Ocean has been increasing due to human activities including burning of fossil fuels, agri-

culture, and land use changes (Baker et al., 2017; Duce et al., 2008; Mahowald et al., 2009).

Human activities also emit anthropogenic aerosols, which modify mobilization processes

and atmospheric processing. Atmospheric dust deposition, which is generally stronger in

the northern Indian Ocean, provides a direct input of bioavailable N, potentially reliev-

ing the macronutrient limitation. Increased atmospheric dFe deposition can also stimulate

diazotroph production, and the deposited dFe can be transported to the southern Indian

Ocean via the long-range ocean transport where photosynthesis is limited by the availabil-
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ity of dFe (Boyd and Tagliabue, 2015). In general, a significant response of the Indian

Ocean ecosystem to anthropogenic deposition from the atmosphere is expected, including

a higher organic carbon export flux, stronger O2 demand, and thus an expansion of OMZs.

Recent modeling studies have examined the impact of anthropogenic nutrient deposi-

tion from the atmosphere into the ocean by driving ocean biogeochemistry models with at-

mospheric deposition fields derived from atmospheric chemical transport models (Guieu et

al., 2019; Ito et al., 2016; Krishnamurthy et al., 2009, 2007). These studies concluded that

increasing Fe and N inputs stimulate marine nitrogen fixation in the subtropical North and

South Pacific, enhance primary production and export in HNLC regions (Krishnamurthy

et al., 2009), and accelerate O2 consumption in the tropical Pacific Ocean (Ito et al., 2016).

Concurrently, the data coverage of dFe and other trace metal species expanded significantly

thanks to the GEOTRACES program (Mawji et al., 2015; Schlitzer et al., 2018). The new

observations revealed shortcomings of the earlier generations of the Fe cycling models,

which did not include all of the dFe sources such as hydrothermal vents. Also, earlier mod-

els typically assumed a single ligand class with a uniform distribution. Thus, results from

these earlier studies can contain significant uncertainty (Tagliabue et al., 2016). Signifi-

cant model biases have been identified relative to the observed pattern of dFe revealed by

the recent GEOTRACES observations (Mawji et al., 2015; Schlitzer et al., 2018). Models

with constant ligand concentrations may underestimate the feedback between biological

activity, ligand production, and dFe concentration to environmental changes (Völker and

Tagliabue, 2015). Furthermore, impacts of anthropogenic deposition on the Indian Ocean,

where the nutrient cycling is complex and the phytoplankton community is diverse, has not

been examined thoroughly and systematically.

This chapter aims to investigate the impact of increasing anthropogenic atmospheric

N and dFe deposition on nutrient distribution, phytoplankton productivity, and carbon up-

take of the Indian Ocean. To this end, I use an ocean ecosystem model, which represents

major phytoplankton types (Dutkiewicz et al., 2014), coupled with a recently improved
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Fe cycling scheme (Pham and Ito, 2018; Pham and Ito, 2019). The Fe scheme includes

many crucial processes controlling the ocean Fe cycling and demonstrated improvements

in the representation of dFe distribution as observed by the GEOTRACES cruises. The

ecosystem model has been used in several previous studies that examined the ocean bio-

geochemistry response to human perturbations (Dutkiewicz et al., 2013, 2014) and the in-

terplay between different bigeochemical processes shaping the phytoplankton community

structure (Dutkiewicz et al., 2012). Atmospheric deposition of dFe and N is derived from

the three-dimensional atmospheric chemical transport model GEOS-Chem coupled with

a comprehensive dust-Fe dissolution scheme (Ito et al., 2016; Johnson and Meskhidze,

2013). The rest of this chapter is organized as follows. In section 2, we describe the model

configuration and the experimental design. In section 3, we present results of sensitivity

experiments. In section 4, we summarize and discuss the implication of these results.

6.2 Model configuration and experimental design

The ocean model used in this study is based on the Massachusetts Institute of Technology

general circulation model (Marshall et al., 1997a,b, MITgcm) with a biogeochemistry and

ecosystem component (Dutkiewicz et al., 2012, 2014). The model domain is configured

for a 2.8◦x 2.8◦horizontal grid spacing and 23 vertical z-levels with grid spacing ranging

from 10 m in the surface to 500 m at 5000 m. Ocean boundary layer physics is param-

eterized using the K-Profile Parameterization scheme (Large et al., 1994), and the effects

of mesoscale eddies is parameterized using the isopycnal tracer and thickness diffusion

scheme (Gent and McWilliams, 1990). The physical ocean circulation is forced by clima-

tological wind and buoyancy forcing derived from the National Center for Environmental

Prediction Reanalysis product (Kalnay et al., 1996).

The biogeochemical component of the model is based on Dutkiewicz et al., (2014)

including the cycling of C, P, N, Si, Fe and O2 through inorganic, living, dissolved, and

particulate organic phases. Two grazers and six phytoplankton types (diatoms, coccol-
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ithophores, large eukaryotes, prochlorococcus, other pico-phytoplankton, and diazotrophs)

are represented in the model. The phytoplankton growth rate is a function of the Chloro-

phyll: C ratio, temperature, light, and nutrient availability, following Hickman et al., (2010)

and Geider et al., (1998).

The refined Fe scheme encompasses important processes in the ocean Fe cycling in-

cluding multiple sources and internal cycling of Fe such as scavenging onto and release

from lithogenic and organic particles and dFe retention by spatially varying ligands. De-

tails on the Fe cycling model and its capability to reproduce observations were documented

in Chapters 2, 3, and 4 (Pham and Ito, 2018; Pham and Ito, 2019). Atmospheric deposition

fields of N and dFe were taken from the output of atmospheric chemical transport model

GEOS-Chem (Johnson and Meskhidze, 2013). Anthropogenic effects on N and dFe deposi-

tion were calculated using the emission inventories for the year 2009, and the pre-industrial

fluxes were calculated by turning off all anthropogenic emission sources. Details on this

model and on how the industrial fluxes were calculated based on anthropogenic emission

were described in Ito et al., (2016) and Johnson and Meskhidze, (2013).

The model was first spun up under the pre-industrial deposition of N and dFe for 1,000

years (PreIn run). Initialized from the last time step of the PreIn run, three additional in-

tegrations were performed using the anthropogenic deposition of N and Fe separately and

together. The model was further integrated for 1,000 years to achieve new quasi-steady

states, and the equilibrium response of the ecosystem and carbon cycle was then analyzed.

These experiments were intended to examine and isolate the impacts of anthropogenic N

and Fe deposition on the Indian Ocean. In reality, a variety of transient perturbations to the

marine ecosystem and its biogeochemistry exists, including warming and increased stratifi-

cation, circulation changes, riverine nutrient input, and acidification. Account for all these

changes are beyond the scope of this paper. Rather, we focus on the equilibrium response

to a single perturbation. In summary, the model experiments were set up as follows:

• ”PreIn” run forced by the pre-industrial atmospheric Fe and N deposition fields
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• ”Ind” run forced by the contemporary atmospheric Fe and N deposition fields

• ”Pre-Fe” run forced by the contemporary atmospheric N deposition field and pre-

industrial condition for Fe

• ”Pre-N” run forced by the contemporary atmospheric Fe deposition field and pre-

industrial condition for N

Results of these model runs were analyzed by comparing the differences in nutrient

fields, biological productivity, phytoplankton community structure, and carbon uptake, all

in relation to the PreIn run.

6.3 Results

6.3.1 Model validation

We first evaluated the model performance and its ability to reproduce major biogeochemical

features of the Indian Ocean by comparing the observed, modern distributions of nutrient

tracers with the Ind run forced by the contemporary forcings.

First, we evaluated the model NO−3 distribution using the World Ocean Atlas (Garcia

et al., 2014) as the observational benchmark (Figure 6.1). The model reproduced the gen-

eral pattern of the near-surface NO3− distribution reasonably well. When compared with

the World Ocean Atlas, the model captured the low concentration north of 40◦S and high

concentration at high latitudes. The model is certainly not perfect as it underestimated the

NO3− concentrations at high latitudes. Next, we examined the meridional transect of dFe

along the GEOTRACES line GI04 (Schlitzer et al., 2018) (Figure 6.2), focusing on the

upper ocean (0-1000m). dFe in the upper ocean is more important for sustaining biological

productivity, which mainly occurs in the euphotic zone. The model captured the pattern of

dFe remarkably well especially in the top 1,000m, consistent with results shown by Pham

and Ito, (2018). Specifically, it captured the strong meridional gradient of dFe centered at

around 10◦S where the dFe concentration is high (0.8 - 1.3 nM) in the subsurface water of
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Figure 6.1: Left panel (a): World Ocean Atlas Annual Mean NO3− averaged over the top
200 m. Right panel (b): results from the Ind run
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Figure 6.2: Left panel (a): dFe concentration observed along the GEOTRACES Indian
Ocean transect GI04. Right panel (b): results from the Ind run. The model output is objec-
tively mapped onto the GI04 transect. The top 1,000m is stretched for a better comparison
for the upper ocean thermocline.
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Figure 6.3: Atmospheric deposition anomaly (Ind run - PreIn run) for (Left, a) dFe and
(Right, b) fixed N into the surface of the Indian Ocean used in this study. Note that the
value is plotted on a logarithmic scale.

the tropical thermocline but it is very low in the southern part (∼ 0.2 nM). It also reproduced

the subsurface peak of dFe in the northern Arabian Sea (∼ 10◦N) and the strong vertical

gradient in the dFe concentration observed there between the surface (0-200m) and subsur-

face waters (> 200m). The only major setback of our model is that it cannot reproduce the

hydrothermal signal around the Central Indian Ridge segment. Biological productivity is

influenced by nutrients distribution, and it is therefore essential that the model captures the

nutrient fields well.

6.3.2 Sensitivity experiments

The increase in atmospheric deposition of fixed N and dFe into the Indian Ocean is shown

in Figure 6.3. A large increase in the dFe deposition occurred in the coastal regions of the

northern Indian Ocean and north of Australia, while it moderately increased over the equa-

torial and southern regions. Integrating over the Indian Ocean (30◦E-110◦E, 80◦S-30◦N),
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the dFe flux increased from 38.78 mol/s to 87.78 mol/s, more than doubling the pre-

industrial deposition. N deposition exhibited similar spatial patterns to dFe (Figure 6.3b).

Again integrating over the Indian Ocean, the fixed N flux increased from 6.3 · 103 mol/s

to 1.3 · 104 mol/s, approximately doubling from its pre-industrial value.

Comparing PreIn and Ind runs, the response of the Fe concentration for the upper 300m

was an increase of approximately 0.3nM in the northern Indian Ocean, whereas the re-

sponse was much weaker in the poleward of 40◦S (Figure 6.4a). The pattern was generally

similar to the atmospheric deposition of Fe where the northern Indian Ocean received more

anthropogenic Fe deposition relative to the Southern Ocean by several orders of magni-

tude. In contrast, the response of the near-surface NO3− (Figure 6.4b) was very different

from the atmospheric deposition pattern (Figure 6.3b). NO3− concentration decreased in

the upper 300m water of the Indian Ocean even though the ocean received more N from

atmospheric deposition. In particular, the N decrease was significant in the subantarctic

region between 40◦and 60◦S. There was also a region of significant N decrease in the east-

ern tropical Indian Ocean. The northern Bay of Bengal represents one of a few regions

where the upper 300m NO3− concentration increased. This changes in the upper 300m

NO3− concentration implies that the biological N uptake was enhanced in many parts of

the Indian Ocean.

Other macro nutrients (P and Si) were also decreasing with distinct patterns (Fig-

ure 6.4cd). The P decrease was widespread, but it was more enhanced in the Bay of Bengal

and in the subtropics between 20◦- 40◦S. In contrast, the Si decrease was more focused

in the southern high latitudes, the eastern tropics, and the bay of Bengal. The difference

between P and Si depletion reflects the regions of strong increase in diatoms productivity.

The decline of macronutrients in the southern high latitudes suggests that the increased Fe

and N input was altering the productivity there even though the anthropogenic deposition

was relatively weak in these region and dFe is always close to be depleted.

In Figure 6.5, we only show changes in two species: diatoms and coccolithophores al-
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Figure 6.4: Model (Ind run) concentration anomaly relative to the PreIn run averaged from
0-300m in the Indian Ocean for (a) dFe, (b) NO−3 , (c) PO3−

4 and, (d) silicate.
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Figure 6.5: Vertically integrated phytoplankton concentration anomaly between the Ind
and the PreIn runs. All phytoplankton biomass is measured in the units of P in the model.
(a) diatoms, (b) coccolithophores, (c) primary production, and (d) air-sea CO2 flux. The
air-sea CO2 flux is positive into the ocean.
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though the model includes 6 phytoplankton types. This is because the majority of changes

in the total primary production and ocean carbon uptake are explained by changes in di-

atoms and coccolithophores growth. Figure 6.8 shows changes in the other 4 phytoplank-

ton species for a complete description. Diatoms concentration increased significantly in the

south of 40◦S, in the Bay of Bengal, and in the eastern tropics (west of Malaysia) which

are co-located with the decrease of N , P , and Si in these regions (Figure 6.4). Diatoms are

the only phytoplankton type that utilizes Si, therefore the decrease of Si confirms the role

played by diatoms in these regions. In contrast, diatoms concentrations weakened along

40◦S and in the west of Australia, which coincides with an increase in coccolithophore

(Figure 6.5b) and picoplankton abundance (Figure 6.8c). These changes indicate that di-

atoms were out-competed here by coccolithophores and picoplankton. The reason for these

changes is that diatoms have a faster maximum growth rate but require a higher P concen-

tration relative to coccolithophores and picoplankton (Riegman et al., 2000). Thus, the

decrease in P supply along 40◦S caused diatoms to be less competitive and helped coccol-

ithophores become more dominated. This change caused a shift in the biological carbon

pump in this region from organic carbon to calcium carbonate pumps. Moreover, an in-

crease in coccolithophores and decrease in diatoms decreased the surface alkalinity relative

to DIC. This decrease in surface alkalinity shifted the carbonate chemistry of this region

towards a more acidic condition with a lower pH, leading to an increase in the partial pres-

sure of CO2 (pCO2). Consequently, it decreased the rate of ocean CO2 uptake along 40◦S

(Figure 6.5d). This is somewhat counter-intuitive because the primary productivity indeed

increased along 40◦S in the Indian Ocean under the anthropogenic deposition. However,

the intensification of the carbonate pump led to a decrease in the regional air-sea CO2

fluxes. In contrast, the increase in diatoms productivity at southern high latitudes, the Bay

of Bengal, and the eastern tropical Indian Ocean contributed to the stronger organic carbon

pump, thus increasing the ocean CO2 uptake (Figure 6.5d).

Turning our attention to the northern Indian Ocean, the increased Fe deposition stim-
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ulated the growth of nitrogen-fixer diazotroph in the northern Bay of Bengal (Figure 6.8).

Thus, N concentration increased in this region even though there was a significant de-

crease in P and Si levels (Figure 6.4). In contrast, diazotroph concentration decreased in

the Arabian Sea together with diatoms and coccolithophores, likely due to more intense P

limitation in this region which ultimately limited phytoplankton growth.

The changes described so far are between PreIn run and Ind run, in which both anthro-

pogenic effects on Fe and N were considered. However, these changes were mostly caused

by the increase in dFe deposition alone, whereas the increase in anthropogenic N deposition

only caused a minor effect. This is shown in Figure 6.6 and 6.7 where changes between

Pre-N and PreIn runs were almost the same as changes between Ind and PreIn runs. In

contrast, changes between Pre-Fe and PreIn runs were relatively small. Thus, further re-

finement and development of Fe model will likely influence model results of ecosystem

changes in this region.

6.4 Discussion and Conclusion

Human activities have heavily perturbed atmospheric deposition of micro-nutrient Fe and

macro-nutrient N into the ocean since the start of the industrial era (Mahowald et al., 2009;

Mahowald et al., 2017). This perturbation has a crucial consequence to the marine ecosys-

tem especially in regions where phytoplankton growth is limited by the availability of these

nutrients, such as the oligotrophic regions limited by N and/or P and the HNLC regions

limited by Fe. Earlier modeling studies estimated a modest response of the ocean primary

production and air-sea CO2 exchange to the anthropogenic nutrient deposition at the global

scale, but also predicted striking responses of biogeochemical cycles at regional scales (Ito

et al., 2016; Krishnamurthy et al., 2009, 2007; Somes et al., 2016). Specifically, Krishna-

murthy et al., (2009) suggested that increasing N and Fe inputs stimulate marine nitrogen

fixation in the subtropical North and South Pacific where Fe limitation of diazotroph is

relieved but decrease diazotroph growth in the Indian Ocean where P becomes limited.
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This study focused on the equilibrium response of the Indian Ocean ecosystem and

carbon cycle to increased atmospheric nutrient inputs caused by anthropogenic effects on

aerosol deposition. We used a state-the-art ocean ecosystem and Fe cycling model, con-

strained by the new high-quality data of Fe from the the GEOTRACES program (Mawji

et al., 2015; Schlitzer et al., 2018). This new dataset puts a much more stringent constraint

on the representation of Fe cycling in the ocean biogeochemistry models, thereby improv-

ing our process-level understanding and quantification of key processes (Tagliabue et al.,

2016; Tagliabue et al., 2017). Our ocean model, when forced under the contemporary de-

position (evaluated at year 2009), was able to reproduce many important features of the

observed nutrient distribution. Although the model still has some biases in the macronu-

trient patterns, it captured major aspects of the subsurface dFe pattern along the Indian

Ocean GI04 transect remarkably well. Model experiments were designed to examine the

impacts of anthropogenic N and Fe deposition to the open ocean, separated from the other

anthropogenic and natural drivers, such that we can clearly understand the mechanisms at

play. Of course, several different types of perturbations affect marine ecosystems and their

biogeochemistry since the industrial revolution, including ocean warming, ocean circula-

tion changes, riverine nutrient input, and acidification due to the uptake of fossil fuel CO2.

Among these perturbations, the anthropogenic nutrient input from rivers can provide a sig-

nificant mount of N and P to the open ocean (Sharples et al., 2017). Thus, if this input were

included in the model, the phytoplankton community in the northern Indian Ocean could

be relieved of P-limitation, and therefore could significantly enhance. Nevertheless, a com-

prehensive analysis of the realistic, transient ecosystem changes is beyond the scope of this

chapter. Even in this idealized experiment, the response of ecosystems and the carbon cycle

is complex and exhibited unique spatial patterns.

The atmospheric fluxes of N and Fe into the Indian Ocean both doubled their values

since the industrial revolution due to anthropogenic effects. However, the increase in pri-

mary production summed up over the whole basin increased only moderately (∼ 6.4%, see
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Table 6.1). Interestingly, the oceanCO2 uptake decreased by 18 % if integrated over the In-

dian Ocean. This decrease can be explained by analyzing changes in the ocean CO2 uptake

pattern and phytoplankton community structure, which did not increase uniformly. In par-

ticular, both productivity and carbon uptake intensified in the southern high latitudes and

in the eastern tropics. These changes were influenced by increasing diatoms productivity

and a stronger organic carbon pump. In contrast, ocean productivity and carbon uptake de-

creased significantly in other regions. The northwestern part of the Indian Ocean exhibited

decreased productivity and weaker carbon uptake due to the intensification of P limitation.

An increase in coccolithophores production along 40◦S led to a stronger calcium carbon-

ate pump at the expense of diatoms productivity. This caused the ocean carbon uptake to

weaken even though the local primary productivity increased. Overall, the regional pattern

of changes and responses of the phytoplankton community were much more complicated

than changes in the basin-scale primary production and carbon uptake. In our model exper-

iments, an increase Fe deposition represented the main factor that drives biogeochemical

changes. The increase in N deposition only played a minor role, which is consistent with

results by Guieu et al., (2019), perhaps due to the relatively small magnitude of N deposi-

tion in comparison to the upwelling source.

The Indian Ocean is an important region of the world ocean, containing a large volume

of low O2 water in the north where phytoplankton is limited by macronutrient (Stramma et

al., 2010) and a HNLC region in the southern sector where biological productivity is limited

by Fe (Twining et al., 2019). This diverse and complex region is vulnerable to an increase

in atmospheric inputs of N and Fe due to industrial activities (Baker et al., 2017; Duce et al.,

2008; Mahowald et al., 2009). Our results suggested that anthropogenic aerosol inputs may

slightly increase basin-scale primary productivity but may cause significant changes in the

pattern of productivity and the composition of the community structure. The latter change

can alter the functioning of the biological carbon pumps with non-negligible impacts on the

basin-scale carbon uptake. Previous studies have pointed to an increase in coccolithophores
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Table 6.1: The total primary production (PP) and air-sea CO2 flux (positive values mean
the ocean uptakes CO2) over the Indian Ocean 30◦E-110◦E, 80◦S-30◦N

Model run PP (PgC/year) air-sea CO2 flux (gC/year)
PreIn 6.36 0.13

Pre-Fe 6.39 0.14
Pre-N 6.77 0.11

Ind 6.77 0.11

under global warming and an increasing CO2 concentration with important consequences

to the ocean calcification and global carbon cycle (Krumhardt et al., 2016, 2019; Krumhardt

et al., 2017a,b). We further emphasized the crucial role of this calcifier phytoplankton due

to its sensitivity to nutrient inputs. In conclusion, our results suggested a complicated and

strong sensitivity of the ecosystem and carbon fluxes near the water mass boundaries of the

southern Indian Ocean under the impact of anthropogenic pollution.
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Figure 6.6: Model (Pre-Fe run) concentration anomaly relative to the PreIn run averaged
from 0-300m in the Indian Ocean for dFe (a), NO−3 (b), PO3−

4 (c), and silicate(d)
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Figure 6.7: Model (Pre-N run) concentration anomaly relative to the PreIn run averaged
from 0-300m in the Indian Ocean for dFe (a), NO−3 (b), PO3−

4 (c), and silicate(d)
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Figure 6.8: Model (Ind run) vertically integrated concentration anomaly relative to the
PreIn run for diazotroph (a), large phytoplankton (b), and picophytoplankton (c)
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CHAPTER 7

CONCLUSION AND RECOMMENDATIONS FOR FUTURE STUDIES

This dissertation aimed to understand mechanisms controlling the upper (0-1000m) ocean

dFe distribution revealed by the GEOTRACES program and evaluate the impact of increas-

ing anthropogenic atmospheric dFe deposition on the ocean ecosystem and carbon balance.

In this chapter, I summarize the main results of this dissertation and discuss their implica-

tions as well as important remaining questions for future work.

7.1 What controls the dFe pattern in the ocean thermocline?

The GEOTRACES program has greatly increased our ocean Fe dataset, providing a unique

opportunity to further our understanding of the Fe cycling and improve Fe models. In

chapter 2, taking advantage of the new GEOTRACES dataset, I significantly improved

the Fe parameterization in an OGCBM (MITgcm), which still applied many traditional

approaches and assumptions to represent the ocean Fe cycling. The improved Fe parame-

terization includes all three major sources of dFe and represents the internal Fe transforma-

tion modulated by scavenging, desorption and remineralization, and binding with multiple,

spatially varying ligand classes.

A prominent feature of GEOTRACES observations is the existence of local dFe con-

centration maxima at the depths of the main thermocline (300-1,000m) in various ocean

transects. These subsurface dFe maxima can be an important source of dFe to marine

phytoplankton in the euphotic layer through upwelling and vertical exchange processes,

especially for the Fe-limited upwelling regions (Tagliabue et al., 2014a). However, com-

parison between these new GEOTRACES data and the current Fe models showed signifi-

cant biases in model representation of these subsurface maxima, indicating our incomplete

understanding of the key Fe processes.
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These thermocline dFe maxima can be formed by dFe supplies from external sources

(Resing et al., 2015) such as atmospheric deposition, continental shelves, and hydrothermal

vents or by the release of dFe from particles (Boyd et al., 2010). After being released from

the sources, dFe needs to be protected from scavenging removal by binding with organic

ligands (Gledhill and Buck, 2012). Thus, the formation and maintenance of the subsurface

dFe maxima is likely a phenomenon involving multiple processes.

In chapter 3, I explored the mechanism behind the subsurface dFe maxima through

a suite of simulations in an ocean biogeochemistry model with a much improved Fe cy-

cling scheme. Results from the model simulations showed that the subsurface dFe maxima

observed in different ocean basins are formed by different mechanisms. In high-dust re-

gions such as the subtropical Atlantic and northern Indian Oceans, the dust-deposited Fe is

mostly scavenged onto particles, which then sink and release Fe in the thermocline through

remineralization and desorption, enhancing the subsurface dFe concentration. In contrast,

in regions where dust deposition is low such as the Pacific Ocean, dFe sources from con-

tinental shelves and hydrothermal vents are found to be important. For all these regions,

subsurface ligands produced by particle remineralization process retain dFe released from

the sources, thus play a central role in the maintenance of the subsurface maxima in our

model.

Another unique feature of the ocean dFe pattern revealed by the GEOTRACES pro-

gram is the low-surface-high-subsurface dFe concentrations under the dust plume in the

subtropical Atlantic (Hatta et al., 2015). Many state-of-the-art ocean Fe models compiled

in Tagliabue et al., (2016) overestimated the surface and underestimated the subsurface

dFe features. These model biases indicate problems in the model representation of Fe

scavenging process or the Fe biological uptake or the Fe retention by ligands. Recent mod-

eling studies by Pagnone et al., (2019) and Ye and Völker, (2017) argued for a stronger

scavenging rate by dust-deposited particles in this region; however, the efficiency of this

mechanism depends on the dFe protection of organic ligands. In chapter 4, I explained the
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observed features and model biases in the subtropical North Atlantic by sensitivity simu-

lations in my improved Fe model. In these simulations, I respectively altered the model

parameterization for scavenging, biological uptake, and ligand to quantify the role of each

process. I suggested that biases of the models compiled by Tagliabue et al., (2016) are

largely due to their representation of a single, relatively strong ligand class. Scavenging

cannot effectively remove the dust-deposited Fe when it is outcompeted by ligand protec-

tion. The representation of a weaker ligand class in the model allows dust-deposited dFe

to be effectively removed from the surface by scavenging and be released to the subsurface

water through desorption and remineralization. I argued for the inclusion of multiple lig-

and classes with various binding strength in Fe models rather than a traditional approach of

assuming only one ligand.

Although the rapidly expanding GEOTRACES data has transformed our understand-

ing of Fe cycling by revealing the key role of dFe inputs from bottom sediments and hy-

drothermal vents, relative contributions from these external sources versus internal ocean

processes are still poorly constrained. I addressed this issue in chapter 5 by analyzing the

simulated dFe distribution fields and budgets in different ocean Fe models using an unsu-

pervised classification method. These Fe models differed in their representations of the

external dFe sources and oceanic dFe processing. The classification method identified Fe

regimes in these ocean models based on how the simulated dFe budget was balanced in dif-

ferent ocean regions. My analysis suggested that the upper ocean dFe patterns are largely

controlled by the interaction between internal transformation processes: dFe scavenging

by particles, dFe release by desorption and remineralization, and dFe retention by ligands.

Even though external sources are important in setting the overall magnitude of the ocean

dFe concentration, ocean models cannot explain observations without a proper representa-

tion of the internal processes. Moreover, distinct dFe regimes emerged from my analysis

demonstrated a complex picture for the ocean Fe dynamics, not just a simple coupling to

the cycling of major macronutrients.
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Despite the progress made in this work, challenges remain. My current Fe model still

shows biases when compared with GEOTRACES observations. For instance, the model

significantly underestimated the hydrothermal dFe signals in the deep ocean along the sub-

tropical Atlantic GA03 and the Indian Ocean GI04 transects. In addition, it cannot cor-

rectly capture the magnitude and extension of several subsurface dFe maxima observed

along coastal regions of the Atlantic and Pacific Oceans. These biases indicate problems

in our model’s representation of hydrothermal and sedimentary dFe inputs. Several studies

suggested that dFe can be released from the non-reductive Fe dissolution of continental

margins (Eitel et al., 2019; Homoky et al., 2013; John et al., 2017). Moreover, the abi-

otic particulate Fe flux from sediments and hydrothermal vents, previously considered as

refractory material and not positively impacts the dFe pool, has been shown to be prone to

dissolution (Cheize et al., 2019; Fitzsimmons and Boyle, 2014; Fitzsimmons et al., 2017).

These processes have not yet been included in my model. Quantifying the contribution of

these processes to the total dFe pool is important, especially in the Southern Ocean where

the dust deposition of dFe is low and phytoplankton is Fe-limited. Recent observations

around the Antarctic Circumpolar Current showed evidence of two massive phytoplankton

blooms triggered by the upwelling of hydrothermally influenced deep water, potentially

fueling the ocean carbon dioxide uptake (Ardyna et al., 2019).

7.2 What are the impacts of the anthropogenic Fe deposition on marine ecosystems?

Human activities have been intensifying the atmospheric input of dFe and N into the ocean

(Baker et al., 2017; Duce et al., 2008; Mahowald et al., 2009) with important consequences

for the marine ecosystem. Previous modeling studies (Guieu et al., 2019; Ito et al., 2016;

Krishnamurthy et al., 2009, 2007) on the topic concluded that this anthropogenic nutrient

deposition stimulates N fixation in the subtropical Pacific, enhances organic carbon ex-

port in the Southern Ocean, and exacerbates O2 consumption in the tropical Pacific Ocean.

However, these studies incorporated an incomplete parameterization of the ocean Fe cy-
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cling due to the sparsity of ocean Fe data at that time, which may cause significant uncer-

tainty in their results (Tagliabue et al., 2016).

In chapter 6, I used a state-of-the-art ocean ecosystem model coupled with the new Fe

scheme to investigate the impact of anthropogenic atmospheric N and dFe deposition on

the Indian Ocean where phytoplankton is limited by N and/or P in the north and by Fe in the

south. The ecosystem model represented two grazers and six major phytoplankton types:

diatoms, coccolithophores, large eukaryotes, prochlorococcus, other pico-phytoplankton,

and diazotrophs (Dutkiewicz et al., 2014). Atmospheric deposition fields of N and dFe into

the ocean under pre-industrial and industrial conditions were derived from atmospheric

chemical transport model GEOS-Chem (Johnson and Meskhidze, 2013). I performed

several equilibrium sensitivity simulations in which the ocean was forced under the pre-

industrial deposition of N and dFe, then under the industrial deposition of N and dFe, sepa-

rately and together. I found that the impact of anthropogenic N input was relatively minor.

In contrast, the anthropogenic dFe input enhanced diatoms growth poleward of 40◦S by

relieving Fe-limitation in this region. This increase in diatoms growth led to an increase in

the ocean carbon uptake in the Southern Ocean sector of the Indian Ocean. However, the

diatoms growth decreased north of 40◦S because diatoms were outcompeted by calcifying

coccolithophores. The decrease in diatoms weakened the organic carbon flux, whereas the

intensified growth of coccolithophores strengthened the calcium carbonate flux. This shift

in the phytoplankton structure and carbon export caused the ocean carbon (CO2) uptake to

decrease in this region. Taken together, these changes led to a decrease in the total CO2

uptake in the Indian Ocean.

Even though our study used a much improved ocean Fe scheme than previous mod-

eling work, it is far from perfect. Specifically, our ligand parameterization is still simple

and should be considered as only a first step toward a mechanistic scheme, such as that

developed by Völker and Tagliabue, (2015). Our current understanding of ligand suggests

a continuum of ligand classes encompassing a diverse range of production pathways and
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binding strength rather than a few discrete classes (Hassler et al., 2017). Another worth-

testing hypothesis is that organic ligands are linked to a spectrum of DOC types in the

ocean, characterized by their different lifetimes (Hansell, 2013). At the moment, ligand

models are poorly constrained due to the sparsity of ligand data. In this regard, future

ligand measurements along ocean transects such as those done by Buck et al., (2018) and

Gerringa et al., (2016) would be of great benefit. In general, gaps in our ligand knowledge

could propagate to significant biases in model projections of ocean responses to human

perturbations.
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