
Estimated: $ 

This Change  

1/(0/  

Sponsor Amount: 

ry. proposal budget cate 

( 

	

ORIGINAL 	 REVISION NO. 	 

	

GTRI/ffig 	DATE  (, /*/ 83  

	

hool//40 	 

Sponsor: 
4., 

Type Agreement: r  

Award Period: From  (0 	 .3  To 	 — g 	(Pe rformance) 	8 	(Reports) 

$  32./ 5-go (6.1,._.at,j-akr) 
Total to Date  

$ 	 S 

Cost Sharin 

?( 

Prf--0 se- .x o - 	G,I,J4AALE0-- 

Funded: 

Cost Sharing Amount: $  5: 3 .rc 
Tide: Afiki, Fu.R (IldhletnA AA (nctapiAr .444, 

ADMINISTRATIVE DATA  
1) Sponsor Technical Contact: 

(1,1/.:51Le. W1/; 70- X 3 7 

OCA Contact hov...  
2) Sponsor Admin/Contractual Matters: 

Military Security Classification: 

(or) Company/Industrial Proprietary: 

Defense Priority Rating: 	A.)  k- 
RESTRICTIONS 

See Attached  WI 52 Supplemental Information Sheet for Additional Requirements. 

Travel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor 

approval where total will exceed .reater of $500 or 125% of approved 

Title vests with Equipment: 

/111M34 WAIF 	. ,N17 
I W4.1 	( 	7.-.) t  I 

COMMENT  

6 , —(e38 ctAA-k Q--37—(0 3, 
St73? 	6-2(--G3g a-A-4 71 

1,  5—g 

COPIES TO: 

Project Director 

Research Administrative Network 
Research Property Management 
Accounting 

FORM OCA 4:383 

/ 
cu Pr 	rement/E ES Supply Services 
search Security Services 

eports Coordinator (OCA) 

Research Communications (2) 

I 	• 	•-• 

GTRI 	ccsi 9.6se3rsb 

Library 	 \C'e 	CO / 

Project File <hf"- 

Other ■11._, 

Project No. 

Project Director: 

(VW., 
64-B7— 

—GTURGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION 

PROJECT ADMINISTRATION DATA SHEET 



I 	I 
Ell 

Ell 

Ell 

GEORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION 

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET 

Date 11/2/84 

roject No. 	G-37-602 SchoolNg6 	Mathematics 

ncludes Subproject No.(s) None 

 

 

roject Director(s) 	J. Spingarn 

 

I • 
GTRI WPC 

 

   

ponsor AFOSR - Bolling AFB, DC 

  

Title Monotone Operations in Mathematical Programming .  

Effective Completion Date: 6/14/84 (Performance)  8/14/84 	(Reports) 

  

Grant/Contract Closeout Actions Remaining: 

None 

Final Invoice or Final Fiscal Report 

Closing Documents 

Final Report of Inventions 

Govt. Property Inventory & Related Certificate 

Classified Material Certificate 

Continues Project No. G-37-633 & E-24-638 

COPIES TO: 

Continued by Project No. 

Other 

Project Director 	 Library 

Research Administrative Network 	 GTRI 
Research Property Management 	 Research Communications (2) 
Accounting 	 Project File 

Procurement/EES Supply Services 	 Other  A. Jones; M. Heyser 
Aese—arstI S rity Services 

Reports Cooahato (OCA) 

Lega 

Form OCA 60:1028 



AIR: FORCE PFFICE, 
BOLLING AIR FORCE  
WASHINGTON, DC ZC 

UNIV 
THE 

MAN GEORGIA 



TV CLASSIFICATION OF THIS PAGE 

REPORT DOCUMENTATION PAGE 
PORT SECURITY CLASSIFICATION 

nclassified 
lb. RESTRICTIVE MARKINGS 

:um -re CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT 

CLASSIFICATION/DOWNGRADING SCHEDULE 

FORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 

ME OF PERFORMING ORGANIZATION 

orgia Institute of 
Technology 

6h. OFFICE SYMBOL 
(If applicable) 

7a. NAME OF MONITORING ORGANIZATION 

DRESS (City, State and ZIP Cods) 

lanta, Georgia 	30332 

7b. ADDRESS (City, State and ZIP Code) 

ME OF FUNDING/SPONSORING 
GANIZATION Air Force Office 
Scientific Research 

8b. OFFICE SYMBOL 
(If applicable) 

9. PFIOCUREMENT INSTRUMENT IDENTIFICATION NUMBER 

DRESS (City. State and ZIP Code) 

lling AFB, DC 	20332 

10. SOURCE OF FUNDING NOS. 

PROGRAM 
ELEMENT NO. 

PROJECT 
NO. 

80-0195 

TASK 
NO. 

WORK UNIT 
NO. 

'LE (Include Security Classification) 

tone Operators in Mathematical Programming 

is oNAL AUTHORS) 
J. E. Spingarn 

'PE OF REPORT 

inal Report 
13b. TIME COVERED 

FROM 	6/81 	To 	6/84 
14. DATE OF REPORT (Yr., Mo.. Day) 

August 14, 	1984 
15. PAGE COUNT 

19 pages 
'PLEMENTARY NOTATION 

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 

Monotone multifunction, proximal point algorithm, 
decomposition algorithm, convexity, complementarity 

GROUP SUB. GR. 

TRACT (Continue on reverse if necessary and identify by block number) 

lgorithm was investigated for solving problems where the object is to find xcA and yeA i 
 yeT(x), where T is a maximal monotone multifunction. 	An algorithm was described for _ 

ing a feasible point for a system of linear inequalities. 	For inconsistent systems, 
feasible point algorithm was shown to generate a sequence converging at a linear rate 
le set of least-square solutions. 	A primal-dual decomposition method was investigated 
Dive the separable convex programming problem. 

IIBUTION/AVAILABILITY OF ABSTRACT 

IFIED/UNLIMITED n SAME AS RPT. 

21. ABSTRACT SECURITY CLASSIFICATION 

Unclassified ❑ DTIC USERS ■ 

E OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 
(Include Area Code) 

22c. OFFICE SYMBOL 

■ 

M 1473, 83 APR 
	

EDITION OF 1 JAN 73 IS OBSOLETE. 
	 Unclassified 

SECURITY CLASSIFICATION OF THIS PAGE 



MONOTONE OPERATORS IN MATHEMATICAL PROGRAMMING 

FINAL REPORT 

Grant No. AFOSR-80-0195 

August 1984 

Submitted to 

Air Force Office of Scientific Research 
Bolling Air Force Base, D.C. 20332 

by 

GEORGIA INSTITUTE OF TECHNOLOGY 
School of Mathematics 

—7 
Dr. Jonathan E. Spingarn 
Principal Investigator 



ABSTRACT 

For T a maximal monotone operator on a Hilbert space H 

and A a closed subspace of H, the "partial inverse" TA  of 

T with respect to A was introduced. T A  is maximal monotone. 

The proximal point algorithm, as it applies to T A , was shown to 

result in a simple procedure, the "method of partial inverses", for 

solving problems in which the object is to find x E A and y e A L 

 such that y E T(x). This method was shown to specialize to give new 

algorithms for solving several optimization and equilibrium problems. 

An algorithm was described for finding a feasible point for a 

system of linear inequalities. If the solution set has nonempty 

interior, termination was shown to occur after a finite number of 

iterations. The algorithm is a projection type method,,similar to 

the relaxation methods of Agmon, Motzkin, and Schoenberg. It differs 

from previous methods in that it solves for a certain "dual" solution 

in addition to a primal solution. It is a special case of the 

method of partial inverses. 

The feasible point algorithm was shown, for inconsistent 

systems, to generate a sequence converging at a linear rate to the set 

of least square solutions. 

A primal-dual decomposition method was investigated to solve the 

separable convex programming problem. Convergence to a solution and 

Lagrange multiplier vector from an arbitrary starting point was 

demonstrated. Thy method was shown to be equivalent to the method of 

1 
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partial inverses. In the nonseparable case, it was shown to specialize 

to a known method, the proximal method of multipliers. Conditions were 

provided which guarantee linear convergence of the algorithm. 

For families of nonlinear programming problems, new conditions were 

established which guarantee uniqueness of the global optimizer to be 

a generic property. 
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RESEARCH SUMMARY 

Many optimization problems are equivalent to a problem of finding 

a zero of a maximal monotone operator T on a Hilbert space H: 

(1) to find x c H such that 0 c T(x). 

The known "proximal point algorithm" for solving (1) takes an 

arbitrary starting point x 0  c H and a sequence (c n ) of positive 

real numbers and determines a sequence (xn ) by repeatedly applying 

the proximal mapping: 

(2) xn+1 = 	(I+cnT)
-1 

 (xn ). 

A vast array of problems can be :regarded as special instances 

of (1). Examples are convex or linear programming, monotone 

complementarity problems, network flow problems, variational 

inequalities, and systems of linear equations or inequalities. 

Nevertheless, the known uses of the proximal iteration are few. By far, 

the most important application is found in the method of multipliers of 

Hestenes and Powell. This algorithm for solving convex programming 

problems was known for some time before Rockafellar showed it to be a 

special instance of the proximal point algorithm. Outside of 

this, there are few serious uses. Although it is theoretically 

possible to execute, as a practical matter the iteration (2) 

can be performed only in a few cases. 

There are many problems which can be expressed in the form (1), 
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are not easily solved by the proximal point algorithm, but have the 

interesting property that T can be "decomposed" into simpler monotone 

multifunctions that are easy to proximate. (To "proximate" means to 

execute the rule (2), i.e., to evaluate the proximal mapping). Our 

research in [1] has shown that new algorithms can be developed which 

exploit such decomposition. 

The principal new idea that enabled us to extend the 

powers of the proximal point algorithm and derive such 

decomposition methods is our notion of the "partial inverse" 

of a monotone mapping. If A is a closed subspace of H 

and B=A , then each x E H can be written uniquely as 

x = xA+xB with xA E A and xB c B. If T is 

a multifunction, the partial inverse of T with respect to A 

is the multifunction TA 	H 	H defined by v E TA (u) iff there 

exists x and y in H with y E T(X), u = xA+yB  and 

v = xB+yA . 	TA is (maximal) monotone iff T is (maximal) monotone. 

We showed that TA could be used as a vehicle for introducing 

introducing duality into and solving many problems. Often, a problem 

can be expressed in the following form (for suitable choices of T 

and A): 

(3) 	to find x c A such that there exists y c A 

with 0 E TA (x+y), 

where y is a "dual variable" and T is maximal monotone. If 

z could be found such that 0 e TA(z)  then x=zA would solve 
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(3). In [1] we introduced the idea of solving (3) by finding 

such z via the proximal point algorithm. Theoretically, this 

can definitely be done; the fact that it is also practical was 

demonstrated in [1]. There it was shown that this leads to the 

following iterative procedure, the "method of partial inverses" to 

solve (3): 

ALGORITHM 1 ("method of partial inverses" [1]). 

Initialize: Choose arbitrary x 0  E A and y0  E B. 

Iteration k (k=0,1,...): 

Proximal step: Find x l"t , 17 1; E H such that 

xk+yk=x 1"c  4-17;( 	and 1  (y0 A+(yO B  E V(X0 A+ 1  (X0 B ). 
c k 	 ck 

Projection step: Let xic+1  = (xO A  and yk+, = (yO B . 

In [2], we applied the partial inverse approach to the problem of 

solving a system of linear inequalities: 

(4) 
	

to find x E Rd such that <x,u.> < b.1' 	i=1,...,n 

Rd  (where 0 	ui  E R and b i  E R). Let C i  = {x 	<x,u i > < b i } and 

C = c i n...fiCn . 	It is a straightforward matter to apply Algorithm 1 

to solve (4). Our principal accomplishment in [2] was to establish 

that that algorithm actually terminates after a finite number of 

iterations, provided the solution set has nonempty interior. 

The algorithm so obtained is a new addition to the family of known 



6 

"projection" methods. These solve (4) by computing a sequence 

of projections onto the halfspaces C i  := 	x : <x,u i > < b i  }. 

The best known of these are the "relaxation" methods of Agmon 

and Motzkin and Schoenberg. According to the simplest of these, a 

sequence (xk ) is generated by taking xic4.1  to be the 

projection of xk  onto the furthest halfspace C i . Another 

possibility is to project in turn in some fixed cyclical order 

ontothesetsC..In another variation studied by Motzkin and 

Schoenberg, one takes x k+, to be the reflection of x k  

across the furthest hyperplane. This last method has the surprising 

property that a solution is always found in a finite number of steps 

if the solution set has nonempty interior. In a more recent study by 

Goffin, classes of problems (4) were identified for which finite 

termination in the relaxation method occurs without reflection. 

However, the reflection method is the only one of these known methods 

for which finite termination always occurs under the sole assumption 

that the feasible set has nonempty interior, so our result proving 

finite convergence of the algorithm is quite surprising. 

The algorithm we have proposed to solve (4) is: 



ALGORITHM 2. 

d 
Start : Choose arbitraryv u' y01 ,  "" YOn cR 

with 1701 +-4-YOn = 13 ' 

Step k (k=0,1,...): Compute 

xki = proj r,.(x k +yki ), 	i=1,...,n 

Yki = xk+Yki-xki , 	i=1,...,n 

and update 

1 VI xk+1 	Li=1 kin  

Yk+1,i = Yki 	17=1 
	i=1,...,n 

7 

From results we proved in [1] it follows that regardless of the choice 

of starting values x 0 ,  YO1'''''YOn' 

either xk 	x and yki 	y i  with x c C, 

y i  normal to C i  at x, and y1  +...+ yn  = 0, 

or 1(xk l- Ykl'"" xk+ Ykn )1 	m and (4) is inconsistent. 

Our main result from [2] regarding Algorithm 2 states that 

termination occurs after a finite number of iterations if the 

interior of C is nonempty. More precisely, int(C) # 0 implies 

for some k that 

xk = xk+1 = • ' 

0  = Ykl = Yk+1,1 = 

0  = Ykn  = Yk+1,n = 

• 

• 
	

• 



with xk E C. 

In [3], we investigated the behavior of Algorithm 2 in 

the cases where int(C) = 0 or where C = 0. If int(C) 	0 but 

C 	0, we showed that the sequence (xk ) converges to a solution and 

that the distance to the solution set approaches zero at a linear rate. 

Even in the case where C = 0, we got convergence at a linear rate to 

the set of least-square solutions of (4), and (x k ) converges to one 

particular least-square solution. More precisely, we have proven in [3] 

the following (x denotes the set of least square solutions) 

THEOREM. 	Let sequences (x k ), (yki ), (x;ci ), (yid be produced 

by the Algorithm 2. The sequences (x k ) and (xl'ci ) 	(i=1,...,n) 

converge to limits 

1. 	xk 

x'. ki 

co 

x '. col' 

where 

i. xco  = 	
1 r and 	x'. E C. 

	

col 	1 
n 

ii. x'. = proj
C.  (x co) col  

x. c x and the vector (x. i -x.,...,x.n-x.) equals the vector of 

smallest norm in the set 

1 7 	 1 7 	, 
{(w1— 	LW. 	W— 	LWF:WEC 	WEC 1. 1 	-IT 	 K  1"•• ' n 	i 	1 	l'•••' 	n 

8 
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This vector also equals the element v of smallest norm in range(T A ). 

For the sequences (yki ), 	(17;c1 ), one has 

lim  (Ykl"'"Ykn )/k = lim (17;t1 ,...,y; 1 )/k = -v. 
k->co 	 k->m 

In [4], we applied the partial inverse approach to obtain a 

new decomposition algorithm for the solution of separable convex 

programming problems. 

The convex programming problem  is 

(5) to minimize f 0  (x) subject to x c C and 

f.(x) < 0, 	i = 1,...,m. 

Weassumethefunctionsf.(i=0,...,m) to be finite-valued 

convex: Rd R, and C c:Rd to be closed convex. In the separable 

case of (5), 

d. 
(6) there are functions f.. : R 3 	R 	(0<i<m , 1<j<n) 2.3 

(d = d i +...+dn ) such that for each i,  

f i (x) = 4=1  f ii (x j ) 	(x = (x 1"'"xn)1 

d. 
and there are closed convex sets C

. 
C7 R 3  

such that C = C 1  X XCn R
d 

• 

d. 
x. E R 3 ) 

Our method is closely related to a family of "dual" methods for 

the solution of (5). The prototype for such methods, the classical  

dual approach,  involves the Lagrangian function  
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L(x,y) = f0(x) 	/T=1 Ir i f i (x) 
	

y>0) 

and the concave dual objective function 

g(y) = inf L(x,y) 	 (y>0). 
xeC 

The dual problem  to (5) is 

(7) 	to maximize g(y) subject to y>0. 

Under mild assumptions, the infimum in (5) equals the supremum in 

(7) and a solution y > 0 to (7) exists. Assuming the existence of 

such y, 	it is known that x solves (5) if, and only if, 	(i,i) 

is a saddle-point for L. 

In a typical dual approach, one minimizes L(.,y k ) over C for 

a sequence of values yk  > 0, obtaining a sequence xk  which 

hopefully converges to an optimum while y k  converges to a dual 

optimum. Several versions of this strategy have been suggested in 

the literature. 

One very valuable characteristic of the classical approach is that 

it leads to decomposition algorithms. For the separable problem (6), 

L(x,y) = f 0 (x) + V i  y i f i (x) 

= X j  (f 0j (x j ) + 	yi f ii (x j )). 

Thus the minimization in x of L(x,y) over C decomposes into the n 

separate minimizations of L (x y) = f
Oj (x j ) + 1 i  y.f..(x j ) 	over C . 
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This "Lagrangian decomposition" has been exploited by numerous 

authors. By replacing a d-dimensional constrained problem with a 

sequence of less constrained problems of lower dimensions d 1 ,...,dn , 

it offers a great advantage. Some authors have investigated ways of 

applying this technique in situations where separability is absent, 

manufacturing separability by the device of replacing functions 

with their linear approximations (linear functions are always 

separable). 

However, the classical approach has several potential drawbacks. 

First, for some y > 0, L(x,y) may fail to achieve its minimum on C. 

Worse, g(y) may have the value -0). Such values of y must be ruled 

out, so the dual problem, in addition to the nice constraint y > 0, has 

the possibly nasty constraint g(y) > 	It is possible to generate a 

sequence xk 
failing to be a minimizing sequence for (5) even with y

k 

being a maximizing sequence for the dual. All of these inconveniences 

can be ruled out by imposing appropriate assumptions. The most 

serious problem is that one is severely restricted in the choice 

of a method to maximize g. Each evaluation of the function g(y) 

requires that the function L(x,y) be minimized in x over C. Thus 

any method requiring many evaluations of the function g is 

impractical. Fortunately, the minimization in x of L(•,y) yields, at 

no extra cost, a subgradient for g at y, a fact which motivates 

Uzawa's method, a steepest ascent approach to the maximization of 

g. The Dantzig-Wolfe algorithm can be viewed as the approach 

whereby g is maximized via a cutting plane method. 

One attractive strategy for avoiding some of the pitfalls 
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of the classical dual approach is offered by Rockafellar's proximal 

method of multipliers, a modification of the multiplier method of 

Hestenes and Powell. At each step, one has x and y at hand 

and minimizes the "augmented Lagrangian" 

(8) 
	p(x) = 	f0 (x) 	1  lx-i1 2  + l imax 2 f(), 

over the set C to obtain the next x. The strong convexity of p(x) 

guarantees the existence of a unique minimum and the next multiplier 
. 

y is chosen according to a simple update rule. Global convergence is 

guaranteed under remarkably weak assumptions: f i  finite convex, 

C closed convex, and existence . of a solution -multiplier pair. 

Unfortunatley, the penalty function (8) cannot be written as 

a sum of n functions p j (x j ), so the augmented Lagrangian approach 

does not directly yield a decomposition algorithm. This is the 

principal disadvantage of the augmented Lagrangian approach used for 

decomposition purposes. Several strategies for dealing with this problem 

have been discussed in the literature. One way around this difficulty 

is to either replace p(x) by a linear approximation or rely on a 

method that minimizes p(x) that uses linear approximations, such as 

Frank-Wolfe. 

In the nonseparable case (n=1), our method specializes to the 

proximal method of multipliers. In the separable case, (8) is 

replaced by a function of the form 	where each p i  is a function 

only of x. and looking very much like (8). The user is free 



13 

torninintizethestronglYconvexfunctionvover the set C. (this 

is the only constraint in the subproblem minimization) by any method 

desired. The advantages of the proximal method of multipliers are 

retained. One still has existence and uniqueness of a minimum in 

each subproblem minimization, and global convergence to a solution 

and multiplier under the same minimal assumptions, even when the 

minimization is performed only approximately according to the 

stopping criterion we provide. The update rule for the multipliers 

is just as simple as in the proximal multiplier method. 

There are two basic approaches to the solution of the separable 

problem in a hierarchical or multi-level fashion. These are 

resource-directive and price-directive methods. In the resource 

directive approach, one iteratively determines values u ij such 

that the solutions of the problems 

(9) Ininf j Oysubjecttox.EC.and f..(x.) < u.. 

(j=1 ..... n) solve (5). 	In the price--directive approach, one 

iteratively determines "prices" 17 1  ..... ym  such that the optimal 

solutions of the problems 

(10) min foi (x j ) + ly i f ii (x j ) 	subject to x
j
EC 

(j=1 ..... n), also solves (5). 

Our method differs from existing methods in that it iteratively 

minimizes a function depending both on prices y i ,...,ym  and 

resources u..ij . The prices converge to values such that the 

solutions to (9) are solutions to (5) and the allocations 
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converge to values such that the solutions to (10) solve (5). The 

method is in this sense both price- and resource-directive. 

d. 
Let n > 0 be an arbitrary constant. If we define p.: R 3  + R 	by 

1 	 1 
.(qt)+ „7-Iqt-x.1 2 + w-l.max 2 {0,f..(qt)-u..+ny.} 	(if qt c CA 

zn 33  zn 1 	 3. 	313  

p.
3
(cr.)= 

3 

(otherwise) 

the decomposition algorithm we have introduced is 

ALGORITHM 3. 

Initialize: Start with arbitrary x=(x l ,...,xn ) E Rd , y E Rm , 

and u c Rmn  such that 	3 I.3 u 1.. = 0, 	i=1 ..... m. 

Iteration k (k=0,1,...): 

Minimization step: For j=1 ..... n, find the unique 	to 

minimize p.(qt) (subject to the implicit constraint qt E C.). 
3 

Update: Let ui j  = max{u ij -ny i ,f ij (q;)} and then 

	

1 	 1 
xj =qj, 	ujj  = ul i  - ^ kuik, 	yi = Yi 4-  TIE /k 

+co 

Our principal result regarding convergence of this algorithm is: 
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THEOREM. 	Let Algorithm 3 be applied to the convex programming 

problem (5). The algorithm is equivalent to the proximal point 

, algorithm in the sense that (x +
,u+y) = (I+(n3F) A ) -1  (x,u+y), and 

F is a certain lower semicontinuous convex function. Suppose the 

minimization step is performed accurately enough so that 

e k 
in step k: for each j, dist(0,3p j (cq)) < n 	(lek < -) 

holds. If the generated sequence of iterates (x,u+y) is 

unbounded, there exists no solution-multiplier pair. If the sequence 

is unbounded and the Slater condition is satisfied, then the 

convex programming problem (5) has no solution. If the sequence 

is bounded, then x, y, and u converge, respectively, to a 

solution, Lagrange multiplier, and optimal allocation for the convex 

programming problem. Convergence occurs at a linear rate provided 

the strong second-order optimality conditions are satisfied for the 

problem (5). 

In [5], we discussed the parameterized family 

(Q p ) 
	

to minimize f 0 (x,p) subject to x e C and 

f.1 (x,p) < 0 	for 	i E I = {1,...,S} 

= 0 	for 	i c J = [s+l,...,m}. 

By a "generic" property of the family (Qp ) is meant a property 

which holds for all problems (Q p ) except possibly for values of p 

in a subset of Lebesgue measure zero. 

Rockafellar and Fujiwara have (independently) given examples of 
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constrained families (Q p ) having the property that for almost all 

p, (Q p ) either has a unique global minimum, or no global minimum 

at all. Using the transversality theorem, we showed that their 

results can be extended to more general classes of parameterizations. 

Fujiwara considered the family 

( Qu,v ) 
	

to minimize f(x)-x•u subject to g(x)=b+v 

(f 	Rn 	R, g 	Rn 	Rm) and showed, assuming sufficient 

differentiability of the functions f and g, that for all v , 

(Qu,v ) has at most one global solution for almost all u. This 

implies, by Fubini's theorem, that for almost all (u,v), (Qu,v)  has 

at most one globally optimal solution. He proved a similar result 

for problems where the equality constraint is replaced with an 

inequality. Fujiwara obtained his result by applying a theorem of 

Araujo and Mas-Colell. 

Rockafellar obtained a similar result for the more general family 

(Qw,u,v ) 	to minimize f o (v,x)+w•x over all x satisfying 

f i (v ' x)+u i  < 0 	for 	i=1,...,s 

= 0 	for i=s+l,...,m. 

Only the linear perturbation w of the objective function has a 

real role in his proof of global uniqueness; like Fujiwara, he holds 

the other parameters fixed, shows the result to hold for almost 

all w and then invokes Fubini's Theorem to show that the result 

holds for almost all values of the parameters combined. The 

principal tool he uses to obtain almost sure uniqueness is the 
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fact that a convex function is differentiable except on possibly 

asetofmeasurezero(althoughconvexityofthefunctionsf.is 

not assumed). The Mas-Colell theorem employed by Fujiwara is proved 

by quite direct and elementary means. In a more recent paper, 

Fujiwara has established a generic global uniqueness property for 

constrained problems under a compactness assumption on the constraint 

set. This result, however, deals with "generic" properties which hold 

forallfunctionsf.in an open dense set with respect to the strong 

Whitney C 2 -topology. 

Our result on the generic global uniqueness property can be 

regarded as a generalization of the Mas-Colell theorem to 

constrained problems. Our use of the transversality theorem 

simplifies the proof considerably, though at the expense of 

slightly stronger differentiability assumptions. We considered 

families of the form 

(Q 	) 
	

to minimize f 0 (x,p,q) subject to 

f.(x,q) < 0, i=1,...,s, 

= 0, i=s+1,...,m, 

where the assumptions on f i  are as before and the parameters vary 

over some open set in Euclidean space. The criterion we used 

to establish generic global uniqueness was: 

for all x 1  x 2, and all q, the function 

p i f o (x l ,p,q) - f 0 (x 2 ,p,q) 	is of rank one at all p 
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The Rockafellar and Fujiwara families considered above are easily 

seen to satisfy criterion (11). 

THEOREM. Let the family (Qp,q ) satisfy the criteria (11) and 

the function q 	(fl (x,q),...,fm (x,q)) 	is 

of full rank m for all x at every q. 

Then for almost all (p,q), (Qp,q ) has at most one global optimizer. 

In fact, for almost all (p,q), f 0 ( ,p,q) cannot achieve the same 

value at any two distinct critical points (points satisfying the 

first-order optimality conditions along with some y). 
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