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SUMMARY

Analyzing structures that exhibit nonlinear and history-dependent behaviors is crucial

for many engineering applications such as structural health monitoring, wave manage-

ment/isolation, and geometric optimization to name a few. However, current approaches

for modeling such structural components and assemblies rely on detailed finite element

formulations of each component. While finite element method serves to be versatile and

well-established for nonlinear and history-dependent problems, it tends to be inefficient.

Consequently, their computational cost, becomes prohibitive for many applications when

time-sensitive predictions are needed.

In the present work, we introduce a framework to develop data-driven dimensionally-

reduced surrogate models at the component level, which we call smart parts (SPs), to es-

tablish a direct relationship between the input–output parameters of the component. Our

method utilizes advanced machine learning techniques to develop SPs such that all the in-

formation pertaining to history and nonlinearities is preserved. Unlike other data-driven

approaches, our method is not limited to any particular type of nonlinearity and it does not

impose restrictions on the type of analysis to be performed. This renders its application

straightforward for a diverse set of engineering problems, as we show through multiple

case studies. We also propose a novel meta learning based approach to enable an extension

of this approach to dynamic problems. In addition, we present several ways to enhance this

approach in terms of precision and efficiency. Thus, the present work provides an approach

that can dramatically boost the computational efficiency and simplicity to analyze large

structures without sacrificing accuracy.

xvii



CHAPTER I

INTRODUCTION

1.1 Background and Motivation

The finite element method (FEM) is generally the method of choice when analyzing the

mechanical response of structural components and mechanical assemblies. In its stan-

dard implementation, the method produces a full field solution, i.e., detailed displacement,

strain, and stress fields within each component of an assembly. However, in many sce-

narios, this level of resolution is not required. For example, when dealing with mechanical

assemblies, it is sometimes more important to establish the effective response of its compo-

nents for the determination of global loads than details pertaining to stress concentrations

within each of them. This renders the FEM computationally inefficient in such scenarios:

a fine discretization of each part in the assembly leads to a large number of degrees of free-

dom (DOFs) for the entire model. This problem can become even worse when parts in the

assembly have small features that need to be resolved by the mesh for FEM to work.

Extensive research efforts to overcome the challenges posed by FEM have been es-

tablished [1] with a focus on reducing computational complexity. They usually leverage

the fact that when designing a mechanical assembly, detailed meshes are many times not

required and force-displacement relations may be sufficient to describe the interactions be-

tween components. An early and one of the most pioneering efforts in this direction is

the static condensation method [2], in which the unloaded DOFs are expressed as a lin-

ear transformation of the loaded DOFs. However, this method is powerful only for linear
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problems wherein the force-displacement relations are fully captured by the stiffness of the

component. Another alternative approach is the reduced basis (RB) method [3, 4, 5]. The

main idea behind such a technique is the identification of a suitable problem-dependent ba-

sis which can represent parameterized solutions to partial differential equations. However,

such a formulation is also geared towards linear applications. Further, in this domain, other

related methods such as variational asymptotic beam theory [6], global-local approach [7]

and, methods based on partition of unity [8] have also been developed to reduce the burden

of complex geometric discretization. However, variational approach is limited to beam-

like and plate/shell structures and cannot account for plastic deformations in the material.

Moreover, the rest of the methods are based on modifying the solution space by making

assumptions on it. For example in the global-local approach, the whole structural compo-

nent or assembly is solved as a whole and local details are analyzed subsequently based on

the results from the global analysis. This transition from global to local behavior or vice-

versa entails specific formulations for different problems. Hence, such approaches suffer

due to loss of generality. Also, when problems are nonlinear, there are not many estab-

lished techniques for model order reduction, and those that exist generally cannot handle

history-dependent behavior or the computational expense to do so becomes prohibitive.

Along these lines, some efforts have been made to extend the RB method for nonlinear

approximations [9, 10, 11, 12, 13] but with some limitations that generally compromise

the computational efficiency, scope of application or numerical stability. For example, re-

search has been established that focuses on careful selection of the reduced-basis functions

for problems with geometric nonlinearity entailed by large deflection problems [9].

For model order reduction in dynamic problems [14] also, mathematical homogeniza-

tion of the component has been established [15, 16, 17, 18]. Condensation techniques

analogous to static condensation have been developed to include inertia effects in the for-

mulation [19, 20, 21, 22]. Such a technique tends to smear the microscopic properties of

the problem and provide only an averaged response to be passed at a global level. This

2



(in addition to being limited to linear applications) leads to losses in the accuracy of dy-

namic simulations, in particular when the wavelength of deformation approaches the size

of the heterogeneities. While the accuracy can be recovered to some extent using the im-

proved reduced system [23, 24], enriched continuum methods [25, 26, 27], and advanced

multiscale methods [28, 29, 30], the additional computational cost is inevitable. Alterna-

tively, such enhancements entail compromised generality in terms of the type of unit cell

and/or the underlying material model. Another prevalent alternative strategy for dynamic

problems is the use of spectral methods [31, 32]. Such methods convert the problem from

time to frequency domain thereby overcoming the problem of computational inefficiency.

However, frequency-domain methods rely on superposing the effect of different frequen-

cies and hence can be only applied to linear problems. Many advancements have been

developed to apply spectral methods in nonlinear structural analysis [33, 34, 35, 36], by

either solving the eigenproblem or updating the reduced basis at every time step. However,

the effectiveness of such an approach for real-life applications is questionable due to the

excessive computational time spent at every time step. Along similar lines, another ap-

proach has been developed, such that the stiffness remains constant, and the nonlinearity

is included in the problem using nonlinear internal forces [37, 38, 39]. Though effective,

such an approach proves to be accurate in problems that are only slightly nonlinear. The

Bloch-Floquet theory [40] is also extensively used to provide a steady-state solution in any

periodic heterogeneous problem by analyzing a single unit cell. But, such a method also

can be used only for infinite periodic structures and cannot provide transient solutions for

finite arbitrary structures.

Recent advances have explored data-driven (machine learning based) approaches to

solve the challenges posed by traditional FEA. With the increase in the amount of data

available as well as powerful GPUs, machine learning (ML) has demonstrated applicability

to represent complex nonlinear mappings. ML is a widely used approach and is based on

making a computer program learn and adapt to new inputs or situations without human

3



interference. Due to its huge benefits in computation costs, structural and material scientists

have found ML useful and have implemented it in different forms which can be found in

early [41, 42] and recent [43] review papers. A few major advancements are reviewed in the

following paragraph to highlight the tremendous potential of ML that has been harnessed

by researchers in computational mechanics and materials.

Researchers have explored the application of ML in structural health monitoring for

damage detection extensively since the 1990s [44, 45] using the large amount of data avail-

able. Due to the difficulty in defining analytical relations between damage patterns and

measurements obtained during non-destructive evaluation of critical structures, extensive

efforts have been made to simulate the inverse problem. This provides means to relate scat-

tered surface displacement response from ultrasonic defect evaluation parameters. [46, 47,

48, 49, 50, 51]. Topology optimization [52, 53, 54, 55, 56, 57] and microstructure quan-

tification[58, 59, 60, 61] are other areas where ML techniques have established promising

improvements over traditional approaches. These research efforts have used and imple-

mented a variety of ML approaches such as Bayesian algorithms, Monte Carlo simulations,

k-nearest neighbors, support vector regression, and convolutional neural networks which

indicate the possibility to explore many more areas for applications of ML.

Further, researches have been established to use data-driven based techniques to predict

mechanical behavior of materials for problems that entail poor understanding to accurately

describe constitutive equations [62, 63, 64, 65]. Data-driven modeling of nonlinear material

behavior has also been established using various ML techniques such as auto-progressive

[66], tensor based [67] neural networks and, symbolic regression [68]. Research effort pre-

sented by Kirchdoerfer et al.[69] shows the applicability of data-driven approaches for ma-

terial modeling for cases in which empirical formulation requires extensive efforts. These

models definitely provide alternate ways of describing constitutive relations but they do

not overcome the challenge of high computational cost involved in predicting structural

behavior at a macroscopic scale, which is required for analyzing mechanical assemblies.
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Moreover, most of these efforts are derived from experiments that are inherently sensitive

to the experimental design envelope and induced noise leading to significant uncertainty.

Considering the scope of the proposed work, at a macroscopic level, limited research

has been established to compute data-driven computationally efficient high fidelity solu-

tions [70, 71, 72, 73, 74]. A recent example is the data-driven selection of parameters for

reduced order models (ROMs) [70, 71]. For example, in the digital twin [70] concept, tra-

ditional localization and optimization approaches of selecting an appropriate model from

a previously developed library of ROMs for components is replaced with the Bayesian es-

timator. This method, though efficient compared to FEM, greatly suffers in nonlinear or

history dependent problems due to the incapability or inefficiency of the underlying model.

Smart Finite Elements (SFEs) are another example in this category, in which surrogate

models are created via advanced ML techniques to describe structural behavior of com-

plex macro elements [73]. However, even though SFEs works for nonlinear problems, they

cannot handle history-dependence. For dynamic problems, a recent example is the estima-

tion of influence function for a bond-based peridynamic model to study periodic structures.

[74]. In this method, the influence function of a unit cell is estimated using linear re-

gression. This method, though efficient compared to FEM and other numerical methods,

cannot be used for nonlinear applications (when the kernel function evolves with time) and

to model arbitrary structures (with more than one type of unit cell). As a final note, we

use the term ROM for model order reduction techniques that are not data-driven. For cases

when model order reduction takes place using ML, we use the term surrogate models or

data-driven models and we follow the same terminology in the remainder of this thesis.

1.2 Scope and Organization

Through the present work, we propose a data-driven framework to analyze the structural

behavior of mechanical components and assemblies in an efficient manner. To do this,

we use surrogate modeling to represent dimensionally reduced data-driven models at the
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component level. The proposed approach enables the application of data-driven methods

for nonlinear and history dependent problems such that all the information pertaining to

these phenomena is preserved. That is, the surrogate model understands and learns this

information during its development using a machine learning algorithm. This way, the

developed component model can be used for efficient computations for various time-critical

applications and studies.

We illustrate the proposed approach for different types of phenomena and nonlinearities

such as structural health monitoring for components with localized damage, mechanical

assemblies with contact, and wave propagation in large periodic/arbitrary finite structures.

Further, we also propose several ways to enhance this approach in terms of precision and

efficiency by including physics-based constraints during prediction to avoid violation of

physical laws, developing a low noise sample generation technique for broad frequency

spectrum applications, using a corotational formulation to enforce frame-indifference, and

developing a bi-network approach for components that are operational for several hours in

a dynamic environment.

In addition, we propose a novel meta learning approach: dual-step training approach to

ensure prediction accuracy when there is a large spectrum of input parameters that need to

be considered; for e.g. when a broad range of input frequencies need to be considered in

the operational profile of a component.

Overall, the proposed work provides a general method that is computationally efficient

in analyzing the nonlinear and history-dependent behavior at a component level and pro-

vides a promising path for the use of data-driven techniques to solve difficult nonlinear

problems in a simple and concise manner.

The rest of this thesis is organized in the following way. In Chapter II, we introduce

and develop our approach: smart parts, for using data-driven methods (machine learning

based) to establish efficient input-output relationships for structural components. We il-

lustrate our approach using multiple engineering applications that involve different types
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of nonlinearties. Then, in Chapter III, we extend the proposed method to solve dynamic

(wave propagation) problems for finite structures made of arbitrarily repeating unit cells.

Such an approach effectively homogenizes the dynamic behavior of a linear/nonlinear ho-

mogeneous/heterogeneous unit cell for a broad frequency spectrum. Finally, we conclude

this thesis in Chapter IV by summarizing our main findings and defining future directions

for our research.
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CHAPTER II

SMART PARTS

2.1 Overview: Machine learning

In broad terms, machine learning refers to the application of an algorithm that enables

a computer program to learn from past experiences and make predictions. There are

mainly three types of machine learning techniques namely, supervised learning, unsuper-

vised learning and reinforcement learning. The books in references [75, 76, 77] provide a

good description for these methods along with various applications.

For our method, we use supervised learning and specifically artificial neural networks

(ANNs). Mathematically, supervised learning makes use of an optimization algorithm to

find a set of parameters of a function F that approximates the input-output relationship such

that the approximation error E is minimized. It does this by a process called as training, in

which the algorithm iteratively makes predictions and checks the approximation error with

respect to the actual or truth outputs. One of the most commonly used supervised learning

technique is linear regression, which can be used when the output parameter is a linear

function of the input parameters. However, when complex and nonlinear relationships

need to be represented, a more powerful technique such as ANNs is required. For the

proposed work, we use a specific version of this technique called recurrent neural networks

(RNNs), which is useful for sequence to sequence problems and enables history retention.

For completeness, we provide a basic description for ANNs and RNNs in the subsequent

paragraphs.

8



2.1.1 Artificial Neural Networks

In this section, we provide a short description of artificial neural networks (ANNs) for

completeness. Details and theory can be found in the research established by Braspenning

et.al [78] and LeCun et.al [79] for interested readers as a full explanation is beyond the

scope of this chapter. In general, ANNs can be viewed as a mathematical function that

consists of certain inputs, outputs, and weights. These weights form the mapping of the

function from inputs to outputs through a hidden layer as shown in Fig. 2.1. The process

of deriving these weights requires a large set of inputs and outputs (supervised learning) so

that the domain of the problem is well defined.

Figure 2.1: Fully connected three-layered artificial neural network linking nonlinear struc-
tural parameters

A single iteration through a traditional or feedforward neural network is as shown in

Fig. 2.2 for an input signal through one neuron. The network first makes certain output

predictions using initial weights and biases in the forward propagation step as shown in

Eq. 2.1.

Consider the input to be denoted by xi and the model parameters namely, weights and

biases for input-to-hidden layer by whi and bh0 respectively. The biases are used as an

intercept value to make the model more general and provide for more parameters in order

to search for the best possible solution. The input to the hidden layer is the weighted
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Figure 2.2: Single iteration procedure for multi-layer neural network

sum of the inputs which is then “activated” in the hidden layer. This is required since

a network with only input-output layers can approximate linear functions and cannot be

used for nonlinear mathematical mapping. Presence of a hidden layer makes the mapping

nonlinear, however, more complex mappings can be obtained by using different activation

functions (A) available in literature. The output from the hidden layer (zh) serves as the

input to the output layer (yi) using different set of weights (vih) and biases (bi0). It is

important to note that, there can be an additional activation stage at the output layer if

needed.

gh =
∑

whixi + bh0

zh = A(gh)

yi =
∑

vihzh + bi0

(2.1)

Once the outputs yi are predicted, they are compared with truth values (ti) which are the

correct outputs as per the data. Quantitatively this comparison is performed using an error

or loss metric (E). The error is backpropagated towards the input as an error signal (δi) by

passing it through the output layer weights (vih) and summing over all output nodes. This

result is then passed through the gradient of the activation function at the hidden layer (A′)

to obtain the error signal at the hidden layer (δh) as shown in Eq. 2.2.

δi = E ′(yi, ti)

δh = A′(gh).
∑

δivih

(2.2)
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These error signals and input-output parameters at different layers are used to calculate

gradients of the error function with respect to the weights at each layer. These gradients

can then be used to update the weights of the network as shown in Eq. 2.3 with a user-

defined learning rate (η). This in general, constitutes a single iteration during the training

process. Training continues until the error reduces to an acceptable value (Eaccept) such that

when the network is used to predict an unseen input, an accurate output can be expected.

∂E

∂whi

= xiδh

∂E

∂vih
= zhδi

whi = whi − η
∂E

∂whi

vih = vih − η
∂E

∂vih

(2.3)

It is important to note that, traditional or feedforward neural networks cannot be used for

sequence to sequence problems. This is because, in traditional neural networks connections

between different nodes do not form a directed graph, thus rendering them incapable to use

internal states (memory) of the network to process sequence inputs. Hence, to address this

issue we use recurrent neural networks.

2.1.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) address this issue and use the current and previous

input (history information) to predict the current output. Hence, in RNNs there are connec-

tions that feed output values of a hidden layer into its own input/s of the preceding layers.

This can be demonstrated in a simple manner as shown in Fig. 2.3, wherein the output of

the hidden layer not only goes as input to the next layer but is also fed back as an additional

input onto itself. This aspect enables the model to store relevant history information which

allows us to use it for temporal (sequential) evolution.

Training the recurrent neural network is similar to traditional neural networks such that
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Figure 2.3: Example of a recurrent neural network with with output of hidden layer also
used as its own input

each sample consists of a number of sequences for the input as well as the output. Note

that, to apply the backpropagation algorithm, the libraries of the layers first unroll, that is,

they expand the network, generating a copy of the network for each time increment and

connecting the inputs and outputs of consecutive instances. Then, the weights and biases

in the network are trained using traditional backpropagation on the unrolled network.

On the downside, feeding the output of a layer into its input vector leads to short mem-

ory spans and suffers from the problem of vanishing gradient when the gap between the

previous relevant information and current step is too large. Hence, models with long depen-

dencies such as the long short-term memory (LSTM) [80] models are extensively adopted

by researchers to overcome the above problem. LSTM models are designed to have dedi-

cated memory cell states to regulate the information flow through the network. Hence, in

our approach we use LSTM models to design the neural networks that enable sequence-to-

sequence prediction of structural parameters.

Finally, it is important to note that the main approach of smart parts, uses this recurrent

neural networks for sequence regression. However, we also make use of other machine

learning techniques such as logistic regression for classification of inputs and gaussian

processes for sample generation. This overview only contained the minimal information
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needed for understanding and implementing the proposed approach. Details for other tech-

niques that are used for specific tasks are explained during the description of those tasks

later in this and the next chapter.

2.2 Proposed approach

2.2.1 Concept

FEM is used in stress analysis to compute approximate full-field solutions for stresses

and strains within mechanical components, which could be either isolated or part of a

larger structural or mechanical assembly. Even though this approach can be simplified via

model order reduction for linear and some nonlinear problems, the full-field FEM solution

is still needed when problems are nonlinear and history-dependent. In this scenario, we

typically need three main equations to compute the solution (finding displacements: u) of

the boundary value problem, namely, equilibrium, kinematic and constitutive, as described

below:

∇ · σ + ρb = 0 (2.4)

ϵ =
1

2

(
∇ u+∇ u′) (2.5)

σ = σ[∆ϵ(∆uj), Q] (2.6)

These equations describe the behavior of a component B in an assembly subjected to

body forces b along with displacement boundary conditions u∗ on the surface ∂1B and

tractions t∗ on the remaining surface ∂2B. For a material exhibiting path-dependence, the

obtained displacement is a function of its history and hence the stress (σ) can be expressed

as a functional (Eq. 2.6) which depends on the strain increment (∆ϵ) and internal state

variables (Q). These state variables [81], e.g. equivalent plastic strain, introduce path-
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dependence into problem.

In general, the FEM approach is very powerful and can handle a large variety of prob-

lems, but becomes unnecessarily detailed when analyzing assemblies with multiple com-

ponents, for which we may not need to know details related to the internal stress state

of their components. Instead, assembly analysis could be performed with relatively sim-

ple relations between inputs (displacements at contact locations between components) and

outputs (corresponding forces at such points). That is, despite being nonlinear and history-

dependent, the input-output structural parameter relationships can be represented as concise

and simple mappings at these representative locations in various components, which could

then replace the cumbersome finite element analysis (FEA) of the entire assembly.

In this work, we propose to generate such mappings by making use of artificial neural

networks (ANN) trained with detailed finite element models of individual components. In

this way, the ANN acts as a dimensionally-reduced surrogate model capable of predicting

the corresponding nonlinear and history-dependent mechanical behavior.

For the purpose of illustration, let us consider a landing gear assembly as shown in

Fig. 2.4. The simplified assembly consists of three discretized components or sub-assemblies

attached to each other using appropriate kinematic constraints. Note that in this case, the

existence of small features such as holes, requires a fine discretization for an accurate solu-

tion, thus increasing the computational cost. Using our approach, we can develop and use

component surrogate models (smart parts - SPs) for components or sub-assemblies such

that they can be assembled together using appropriate kinematic constraints, while captur-

ing the effective history-dependent behavior of the component. The proposed approach is

also general in terms of input-output combinations and types of nonlinearities. For exam-

ple, it can be implemented to predict the deformation of the component under the effect of

applied forces or vice-versa.

In general, data-driven models using ANNs are developed by making them learn from

truth input-output data, the process commonly known as training. We train the SP using

14



Figure 2.4: Motivation and approach schematic using a landing gear assembly

high fidelity solutions computed by mesh converged FE analysis to formulate a sim-to-sim

approach. The training data thus retains all the nonlinear information such as contact, dam-

age parameters, etc., which may exist in addition to the boundary conditions under which

it operates. As explained earlier in Sec. 2.1, we use long short-term memory (LSTM)

models, an RNN architecture to learn these nonlinear patterns for various parameters that

may be history-dependent and finally use all this information for future predictions. Unlike

simple RNN, LSTM neurons do not suffer from the problem of vanishing gradient due to

short memory spans. Hence, it is useful for retaining information over larger time inter-

vals. LSTM neurons enable history retention by using special memory cells [82] that are

controlled by a forget gate as shown in Fig. 2.5a. These gates have internal states which

represent the information used by the neuron to make a prediction. Hence, the output

from each neuron is modulated by these internal states allowing the model to learn rele-

vant information. Multiple such neurons and layers of neurons are needed to accurately

map the nonlinear patterns between structural parameters. Fig. 2.5b shows a typical prob-

lem schematic to develop a SP that uses n LSTM layers with multiple neurons to map the

inputs of force and initial plastic strain to displacement and plastic strain growth.
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(a)

(b)

Figure 2.5: LSTM architecture schematics. (a) Single LSTM neuron for history retention,
(b) Data-driven model schematic to develop history-dependent SP

2.2.2 Implementation

The overall implementation methodology of our approach, including from sample gener-

ation to model deployment for a SP, is depicted in Fig. 2.6. Each step can be performed

in various ways to suit different kinds of problem definitions, as it will be shown through

different case studies in Sec. 2.3. In general, we use the specific problem definition to

generate samples using FEA due to its high accuracy in solving nonlinear problems. This

enables us to obtain an accurate and sufficiently large training set that typically determines

the strength of the domain knowledge for our ML model.

The samples are then split into a training set and a test set. The proportion of this split
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is such that 10 - 20% of the samples are used in the test set. This value is decided based on

the size of the overall set and by ensuring that both the training and test sets represent the

domain with similar distributions to avoid bias during training or validation.

The training set is used to train the selected model architecture which for the purpose

of this study is LSTM sequential models. The model architecture includes parameters such

as number of layers, number of neurons in each layer, batch size, activation functions in

dense layers, etc. These parameters vary for different models and need to be selected based

on the complexity of learning involved in the problem as well as the strength of domain

knowledge. We select and fine-tune these parameters by conducting a sensitivity study to

understand the effect of these parameters on model accuracy as illustrated in the example

applications (Section 2.3). During training, the model is monitored for accuracy using a

loss metric which acts as an optimization score function and defines how well the model

learns after every epoch (number of times the learning algorithm sees the dataset). We use

mean squared error (EMSE) as the loss function, which is given by:

EMSE =
1

n

N∑
j

(yo
j − yp

j)
2 (2.7)

where yo
j and yp

j represent the observed output and the predicted output by the network

respectively and N is the number of samples used for training.

Once the model with a reasonably low loss is trained, it is used for the prediction of

cases in the test set. This step may either result in finalizing the model and its deployment

if the prediction is within the defined tolerance, or in optimizing the architecture of the

model and re-training it. Once a SP is developed, it can be used with other such parts in an

assembly to depict its structural behavior.

In the next and its subsequent section, we illustrate the proposed approach on realis-

tic components and assemblies exhibiting fundamentally different problem definitions and

combinations of nonlinearities. Further, we provide ways to enhance the data-driven mod-
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Figure 2.6: Overall implementation methodology

els so their capability or accuracy can be improved. These enhancements are meant to

illustrate how the approach can (and should) be tailored depending on the problem at hand.

Finally, we present a comparison for the computational cost required by the proposed ap-

proach and FEM.

2.3 Case studies

The overall approach for different problems remains consistent as explained in the previ-

ous section. However, depending on the problem at hand, one or more steps may require

additional considerations as exemplified in the various case studies in this section. In the

first study, we illustrate our approach using the helicopter pitch link since, life prediction of

critical components subjected to dynamic loads has been a challenge due to the prohibitive

computational cost associated with time-domain simulations. Current methods rely on sen-

sor data gathered during operation which cannot be analyzed in real-time. These limitations

generally lead to conservative component life estimates. We address this challenge in the

first example to provide an approach that can monitor localized damage on a helicopter

pitch link in real-time. In practice, predictions from such a model could be utilized with

appropriate control schemes for component life extension applications. Further, we also

illustrate specific enhancements to this application by developing a bi-network approach

able to improve the precision and efficiency of the model.

Similarly, simulating contacts has been made possible with the use of FEM, but with
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significant computation cost. This cost worsens with the presence of small features such as

holes. Hence, we demonstrate the capability of our approach to handle such a problem in

an efficient fashion.

In general, ROMs can only establish input-output relationships in components/ assem-

blies. Hence, such models do not provide the means to monitor localized parameters such

as internal damage. So, we use the growth history of maximum equivalent plastic strain

PEEQmax as an output to include this capability for both examples. PEEQmax acts as a lo-

calized damage parameter and helps in monitoring the critical damage-causing value even

if the rest of the component behaves in a linearly elastic manner. This parameter serves to

be crucial especially in predicting or identifying structural failure which may not be evi-

dent due to the elastic behavior of the overall component. For the purpose of this work, we

use classical metal plasticity model with isotropic hardening [83] to simulate the post-yield

behavior during the sample generation process in FEA to represent material nonlinearity.

In case, other structural parameters are of interest, they can be included as additional

features in the ANN while training the SP. Also, note that, even though we consider ma-

terial nonlinearity and contact in the problems under consideration, nothing prevents this

approach to include other types of nonlinearities, such as geometric nonlinearity, or to con-

sider other nonlinear material models, e.g., nonlinear elasticity, etc.

2.3.1 Helicopter pitch link

Many real life structural problems include dynamic effects and hence require solving cum-

bersome dynamic equations to describe the behavior of the component or system under

consideration. Moreover, reduced order modeling techniques for dynamic problems such

as modal superposition can be applied only when the problem is linear and hence face lim-

itations in applications. This can be avoided by the presented approach. To establish the

capability of SPs for structural health monitoring applications, we use a helicopter pitch

link [84, 85] to predict displacements and damage evolution from applied dynamic forces
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at its attachment points.

Pitch link problem definition

We develop a representative model of the pitch link, utilizing properties for 7075-T6 Alu-

minum in order to carry out the FEA. The mass and length of the pitch link were estimated

utilizing data obtained through a NASA Contractor Report [86] carried out by Sikorsky

Aircraft and the radius of the pitch link was calculated using these parameters. The pitch

link is connected to the pitch horn, as shown in Fig 2.7a, via a pin joint. Hence, to depict

the behavior accurately, the dynamic loads are applied at the center point in the pin-hole

(reference node A) which gets distributed on the internal surface so that the motion of the

internal surface is governed by that of the reference node as shown in Fig 2.7b. We restrict

reference node A for displacements in X and Z directions and rotations in X and Y direc-

tions. The other reference node (reference node B) is restricted for displacements in X, Y,

and Z directions and rotations in X and Y directions.

(a) (b)

Figure 2.7: Boundary condition set-up for pitch link (a) Pitch link and pitch horn asssembly
of a rotor [87], (b) Schematic of pitch link model for FEA
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Training sample generation

We develop a full dynamic time marching analysis using 3-D FEA to generate training

samples. Dynamic forces generated during a maneuver such as cyclic longitudinal doublet

were used as inputs. We implement a Linear Time Invariant (LTI) scheme coupled with

a Linear Quadratic Estimator (LQE) [88] to estimate real-time pitch link loads. A repre-

sentative profile for control input profile with the corresponding estimated loads in time

domain along with its frequency content is shown in Fig. 2.8. The frequency content is

obtained using a fast fourier transform (FFT), which is then normalized with the rotating

frequency (4.3 Hz) of the pitch link. Dominant peaks at 1, 2, 3, and 4/rev are observed in

the estimated family of dynamic loads. Then, we generate multiple such profiles using dif-

ferent control input parameters to generate the training samples. For the considered family

of maneuvering loads, two control input parameters are primarily of interest: the aggres-

siveness of input and percentage magnitude of the command input. The aggressiveness of

the input is represented by the rise time of the input such that a rise time variation of 0.1s

in the control input resembles close to a step input (more aggressive) compared to 0.5s

which has a smooth ramp. The percentage magnitude of the control input is a measure of

the movement of the control stick from its neutral position and hence in a way reflects the

magnitude of the maneuver and the corresponding dynamic loads. For this work, we use a

rise time range of 0.1s to 0.5s and a percentage control input magnitude range of 5 to 50%.

Figure 2.8: Representative sample of dynamic loads (from left to right): control input
profile, dynamic loads in time domain, frequency content of dynamic loads
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Note that there may be cases such that the initial plastic strain is non-zero when the pitch

link is under operation due to the presence of defects or due to previous history. Hence, to

construct a well-represented training set, we need to have training samples that represent

cases with preexisting localized plastic strain in the smart pitch link. We do this using ten

different and randomly generated load profiles, connected in series to form a parent profile

for the dynamic FE analysis. After the analysis, we divide the parent profile back into

load profiles of the initial length along with their respective outputs (displacements and

maximum equivalent plastic strain). This way we generate 700 parent profiles which result

in 7000 training samples spread over a range of control inputs and initial plastic strains.

We show the corresponding sample distribution in Fig. 2.9 as a function of command/

control magnitude and rise time such that the intensity of the color in the plot represents

the density of samples. Univariate distributions of the samples are also shown on the top

and right side of the plot for magnitude and rise time respectively. We observe that the

final training sample set has a fairly uniform distribution in terms of magnitude as well as

rise time. This is important, since a biased sample set in terms of the domain it needs to

represent may lead to a biased SP. Note that in Fig. 2.9 we do not show any information

about the location of a particular sample in the parent profile, that is whether the dynamic

load corresponding to that sample is applied on a pristine pitch link or one which has some

preexisting localized damage. We only show that a sample with a particular magnitude

and rise time is considered somewhere in the training. Hence, the neural network has to

learn these aspects and should be able to accurately represent the pitch link for any such

operating condition.

Neural Network Architecture and Results

We train two separate models, one with force-displacement and the other one with force

and initial plastic strain-maximum equivalent plastic strain growth as the input-output com-

binations. This was done to have two independent models that can be used separately for
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Figure 2.9: Sample distribution for pitch link

predictions if needed. It also relaxes the training complexity due to the significant differ-

ence in the frequency content of the two outputs, both of which need to be predicted with

the same input. Moreover, note that the precision required for the two output features,

namely displacement and maximum equivalent plastic strain (damage growth) is different.

That is, we need more precision for the predicted displacements in its temporal evolution

when compared to that needed for the damage growth prediction wherein it is sufficient for

the prediction to be in a certain acceptable range. Hence, for this case, a combined model

will not only entail the use of a highly complex model architecture but will also cause an

imbalance in the precision of the predicted output features. A combined model can also be

developed if needed with a deeper network and larger hyper-parameters.

It is important to realize that the orders of magnitude for each of the input features

and each of the output features might be considerably different. Hence, we need to scale

the features so that the variance of all features is in the same range. If not, the feature

with a higher variance dominates the training and hence the predicted output of the model.

We use the min-max scaling technique which brings all feature values in [0, 1] range. We

train 1 LSTM layer with 2 dense layers each of size 200 for the force-displacement model
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and 3 LSTM layers with 3 dense layers of size 600 for the damage evolution network.

The latter model is more complex due to the highly nonlinear nature of mapping that the

statistical model needs to infer from the high-frequency dynamic loads to the step-like

function represented by the localized damage growth. For both the cases we use the Adam

optimizer [89] with a validation split of 20% and mean squared error (Eq. 2.7) as the loss

function for training. We test the trained model with unknown cases fed to the model to

validate the developed smart pitch link. Further, the model was sequentially called as a

function so that multiple random profiles can be tested in series with information of the

end plastic strain from the preceding profile. Figures 2.10a and 2.10b show a comparison

between the predicted outputs (SP) versus the computed outputs (FE) from 3-D FEM based

approach. The vertical line in these results separate the consecutive prediction profiles. The

results show comparable predictions with 3-D FEA including in the region of transition

from one profile to another.

(a) (b)

Figure 2.10: Comparison of predicted outputs for two sequences applied in series to smart
pitch link. (a) Displacement response, (b) Damage evolution

This serves as an impetus for realistic application in structural health monitoring and

life extension of critical dynamic components. It is therefore, essential to relate damage pa-

rameters with the harmonic content of the applied dynamic loads. We develop a smart pitch

link to map the harmonic content of the input dynamic forces to the maximum equivalent

plastic strain (indicates localized damage) growth. We obtain the time varying harmonic
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content of the input forces using the moving window FFT approach. The size of the sam-

pling window is 1 revolution and the sampling frequency is 1/∆t where ∆t is the time

increment considered for the history. We develop and train this model using 3 LSTM lay-

ers with 800 neurons and 2 dense layers of size 800. Results indicate good accuracy when

matched with outputs obtained from FEA in Fig. 2.11a. Figure 2.11b shows the resid-

ual error distribution of root mean square (RMS) error (ERMS) for 100 unknown samples

computed using:

ERMS =
1

max|fa|

√√√√1

l

l∑
j=1

(faj − fpj)2 (2.8)

where, fa is the truth output value obtained from FEA, fp is the output value predicted

by the SP and, l is the length of the sequence. The density of errors can be visualized as a

continuous function using the kernel density estimation (KD) [90]. This estimate is higher

for densely located points, which in this case lies in the neighborhood of 0.25% error. A

probability density function (PD) is also fitted for the ERMS values, which result in a mean

error of 0.55% and maximum error of 1.5%. These low error values thus establish that the

model is well-trained and has good accuracy.

(a) (b)

Figure 2.11: Harmonics based model results. (a) Localized damage prediction, (b) Residual
error histogram and distribution
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Helicopter pitch link Enhancements: Bi-network approach

In most flight conditions, the pitch link operates at relatively low loads for long periods of

time, resulting in no damage growth. On the other hand, some maneuvers may impart loads

large enough to trigger damage growth. One potential pitfall of our previous approach is

that an always on model might accumulate small errors in localized damage growth over

long periods of time, resulting in an underestimation of component life. To address this,

we developed a classification model that acts as a switch and determines if the damage

evolution model needs to be triggered or not. We train the classification model using a

combination of dynamic loads which may or may not result in localized damage growth

as inputs and binary outputs (switch on: 1 and switch off: 0). We utilize 1 LSTM layer

of size 100 with an output dense layer activated by a sigmoid function [91]. Further, we

adopt the stochastic gradient descent optimizer with a fixed learning rate of 1, since the

output feature is not a sequence and a momentum of 0.1 to damp noisy predictions during

training. Since this model is a classification model, we use binary cross entropy (ECE) as

shown in Eq. (2.9) as the loss function and also observe accuracy (Eq. (2.10)) of the model

as an additional metric. In Eq. (2.9), yai is the binary label (1 or 0), ypi is the predicted

probability of the sample i and, ns is the number of samples used for training.

ECE = − 1

ns

ns∑
i=1

yai log(ypj) + (1− yai) log(1− ypj) (2.9)

Accuracy =
No. of correct predictions
Total no. of predictions

(2.10)

We obtain an accuracy of 94% for the switch model during training with 98% correct

predictions when tested with 100 test samples as illustrated through the confusion matrix in

Fig. 2.12a. Of those, we select 20 random test samples to compare the target and prediction

results in Fig. 2.12b.
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(a) (b)

Figure 2.12: Switch model accuracy. (a) Confusion matrix, (b) Prediction for 20 test sam-
ples

Further, to understand the effect of individual harmonic components of the dynamic

load on the damage parameter, we compute gradients of the output plastic strain history

with respect to the input harmonics. Results for the gradients along with the combined

model framework for the smart pitch link are shown in Fig. 2.13. Observations from

Fig. 2.13 indicate that the switch is on from 0 sec to 7 sec, that is when dynamic loads

capable of growing localized damage are detected. It turns off at 7 sec after the maneuver

is complete, which precisely depicts an accurate functioning of the overall model. The

damage evolution model is again triggered at 14 sec when the switch model predicts a yes,

to predict the maximum equivalent plastic strain growth. More interestingly, Fig. 2.13 also

shows the computed gradients of the output feature with respect to individual harmonics.

As can be observed for this sample case, 1/rev, 2/rev, and 3/rev harmonics are contributing

more towards damage during different periods of operation. This information can be used

in conjunction with an appropriate controller to reduce their effect and increase component

life in addition to monitoring the health of the component. Hence, these enhancements

overall aid in structural health monitoring by reducing the overall prediction error along

with determining more damaging inputs.
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Figure 2.13: Schematic and results for enhanced model

2.3.2 Lap-joint

We illustrate our approach using a lap joint that is used in a wide spectrum of compo-

nents ranging from pressure vessels to construction bracing and even as fastening joints in

aerospace structures. The lap joint design and detailed finite element mesh modeled using

FEA is shown in Fig. 2.14a and the analogous surrogate model schematic in Fig. 2.14b.

The design makes use of two rectangular flanges connected with an M8 bolt. In addition

to the contact nonlinearity present in the lap joint, we include material nonlinearity using

plasticity data [92] for industry grade stainless steel 304L.

Training samples generation

We design a full 3-D finite element model of a lap-joint operating under quasistatic condi-

tions for training, which takes displacements as the input degrees of freedom to compute

forces and maximum equivalent plastic strain as outputs. We prescribe displacements at

the eight corner nodes shown in Fig. 2.14b. To obtain displacements, we generate Gaussian

processes and apply corotational formulation as explained in the subsequent paragraphs.

Since we are interested in history-dependent problems due to the high computation cost

associated with them, we represent the displacement input at each corner node as a function
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(a) (b)

Figure 2.14: Lap joint model details. (a) Geometry and Mesh for Lap joint, (b) Boundary
surfaces and nodes for Lap Joint model

of time to depict a deformation path that the SP might take. We use Gaussian processes

to generate these input sequences with known input properties. Gaussian Processes are the

multivariate case of a Gaussian distribution [93]. Hence, each random variable follows a

Gaussian distribution and their joint distribution is also Gaussian. These processes are most

commonly used in supervised learning to solve regression problems due to their ability to

generate smooth and continuous sequences. Moreover, they have been used to generate

samples in the form of strain invariants to develop smart constitutive laws [94] with very

good sample representation.

To generate the input sequences, we first need to define certain input properties such

as the mean or expected value, covariance, frequency, and amplitude of the function along

with the initial conditions of the system. Unless there is a prescribed movement of the

part that we know apriori, the mean of the function is assumed to be zero. The covari-

ance function/kernel is the next parameter to be decided. This decision is important since

it determines the smoothness of the generated function by ensuring the values that are

close together in the input space will produce output values that are close together. There
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are many established kernel functions such as the Constant, Radial basis function (RBF),

Matern, Rational Quadratic, etc. Readers are suggested to explore each of these kernel

functions to analyze and decide based on the problem at hand [93]. For the lap joint prob-

lem considered here, we select the RBF kernel described in Eq. (2.11) parameterized by

a length scale parameter, l > 0 which is of the same dimension as the input x. This type

of kernel is a stationary kernel and hence depends on the distance between two data points

and not on their absolute values k(xi, xj = k(d(xi, xj)), rendering them useful to represent

nonlinear trends.

k(xi, xj) = exp

(
− 1

2
d(xi/l, xj/l)

2

)
(2.11)

We define the rest of the input properties based on the prescribed input limits for the

problem. The frequency of the function is defined depending on the number of cycles of

deformation that the part observes under operation. Similarly, the amplitude can be directly

prescribed if known beforehand. If it is unknown, a value that results in a strain/stress

close to the ultimate values (for this case 95% of ultimate values) can be defined so that

the samples are well represented. Finally, we consider all deformation paths to start from

an initial rest condition and impose zero initial conditions. As a result, we use the kernel

with the all the defined parameters to create sequences for 24 independent variables of the

training set representing the displacement of corner nodes in three directions. Figure 2.15

shows one such example of input sequences generated for all corner nodes.

The Gaussian processes generate the displacement input history at the four corner

nodes of a surface. However, in a realistic scenario, the side and input surfaces (as de-

fined in Fig. 2.14) will not be free surfaces and hence require a prescribed input. We

use bilinear interpolation in space to obtain the input displacements at all the boundary

surface nodes. For accurate interpolation such that it covers the entire side surface, we

assume a bigger (rectangular) space (Fig. 2.16) and use the known values of displace-

ment (f(x1, y), f(x2, y), f(Q21), f(Q12)) to find the unknown ones (f(Q11), f(Q22)) using
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Figure 2.15: Sample Gaussian processes generated for corner nodes

Eq. (2.12). Interpolation equation in space (Eq. (2.13)) can then be applied using the coor-

dinates of all nodes that occupy that projected space.

Figure 2.16: Bilinear Interpolation as applied on a side surface

f(x1, y) =
y2 − y

y2 − y1
f(Q11) +

y − y1
y2 − y1

f(Q12)

f(x2, y) =
y2 − y

y2 − y1
f(Q21) +

y − y1
y2 − y1

f(Q22)

(2.12)
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f(x, y) =
1

(x2 − x1)(y2 − y1)

[
x2 − x x− x1

]f(Q11) f(Q12)

f(Q21) f(Q22)


y2 − y

y − y1

 (2.13)

We enforce frame indifference for the SP by using a corotational formulation for the

prescribed displacements on the lap joint. In addition to ensuring a frame indifferent SP

by construction, using corotational displacements helps in significantly reducing the size

of the training set. This is due to two reasons: (1) there is no need to represent the large

range of displacements entailed by rigid body motion and (2) we don’t have to include

cases wherein a small change in the input displacements leads to a significant change in

the output forces. Hence when we use corotational displacements, the range of samples is

defined based on the allowable range of deformation, which is drastically smaller than that

of rigid body motion. This renders a training process that is more computationally efficient.

For this work, we do this by creating a local reference frame that is attached to the SP

such that it rotates and translates with the SP. By doing this, we can decompose the motion

of the SP into its rigid body motion and deformation. Since internal forces are independent

of the rigid body motion when measured in the corotational reference frame, we can use

only the deformation component of the displacement to predict the internal forces. This

particularly helps in accounting for geometric nonlinearities induced due to the rigid body

motion in the transformation matrix that relates the local (corotational) frame and the global

(fixed) frame. Since the deformation component is known to be much smaller than the

rigid body motion, a linear geometrical theory can then be used in the corotational frame.

For implementation of the above mentioned method, we use the study by Battini [95] and

extend it for a 3-D element. The displacement of the SP (or the element e in direction i)

ue
i has contributions from rigid body motion uerb

i and deformation ued
i . In order to remove

the rigid body motion from the total displacement component, we need to describe its

translation (uet
i ) and rotation (uer

i ). The translation contribution can be easily obtained by
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taking the average of the displacement values at all 8 corner nodes from the bigger brick

as considered for the bilinear transformation. For the rotation contribution, we need to

compute the rotation matrix (R). We do this by defining the displacement field of the

element e as a function of interpolation or shape functions as Ui =
∑8

j u
e
ijNj where Nj =

N(A,B,C) from Fig. 2.17. Using the isoparametric formulation of the displacement, we

compute the displacement gradient
(
∂U
∂x

)
and consequently the deformation gradient (Fc) at

the center of the element that is then used to compute the rotation matrix. Equations (2.14)

and (2.15) depict the procedure used.

Figure 2.17: Isoparamteric mapping of the SP

∂Ui

∂xk

=
8∑
j

ue
ij

∂Nj

∂xk

where,



∂Nj

∂X

∂Nj

∂Y

∂Nj

∂Z


=



∂X
∂A

∂Y
∂A

∂Z
∂A

∂X
∂B

∂Y
∂B

∂Z
∂B

∂X
∂C

∂Y
∂C

∂Z
∂C



−1 

∂Nj

∂A

∂Nj

∂B

∂Nj

∂C


, Xi =

8∑
j

Xe
ijNj

(2.14)
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Fc =
∂Ui

∂xk

+ I

Uc =
√

F T
c F

R = FcU
−1
c

(2.15)

With the computed translation displacement uet
i and rotation matrix R, we extend the

formulation presented by Battini [95] for 3-D displacement to compute the deformation

component ued
i using Eq. (2.16).

ued
i = R(ue

i − uet
i +Xe

i −Xe
c )− (Xe

i −Xe
c ) (2.16)

Hence, from Eq. (2.16) we obtain all three components of the corotational displace-

ments for all corner nodes of the brick. We then implement the bilinear interpolation

method described earlier on these displacements to obtain displacements on all surface

nodes to represent the boundary conditions for the quasistatic analysis. The output vari-

ables are forces at the corner nodes and the maximum equivalent plastic strain in the entire

lap joint. Finally, to obtain the forces in the global reference frame, we pull back the forces

from the local reference frame by multiplying them with RT .

Neural Network Architecture and Results

The parameters of interest for this case are the internal forces at the corner nodes and the

localized internal damage represented by the maximum equivalent plastic strain within the

model, irrespective of its location. Hence, we design the neural network to have displace-

ments and initial plastic strain as the input features and forces and maximum equivalent

plastic strain as the output features. Note that the maximum equivalent plastic strain is
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used for damage evolution but is not needed for the temporal evolution of the SPs. The

prescribed displacement inputs are for the eight corner nodes and all three directions. Fur-

ther, we use initial plastic strain as an input feature in order to enable the model to learn the

difference between a pristine case (such that no internal damage is present) and an evolved

case (has non-zero localized internal damage parameter). It is important to note that these

two input parameters, namely, the displacements and initial damage are sufficient to accu-

rately predict and hence monitor the evolution of the quantities of interest as observed in

the subsequent paragraphs. Similarly, the output of the model consists of 24 features for

the nodal forces and 1 feature for the maximum equivalent plastic strain growth.

It is important to realize that the orders of magnitude for each of the input features and

each of the output features might be considerably different. Hence, we need to scale the

features to a range which is centered around zero. This is done so that the variance of

all features is in the same range. If not, the feature with a higher variance dominates the

training and hence the predicted output of the model. We use the standardization technique

for scaling which replaces the values by the Z scores, thereby, redistributing the features

with a mean of 0 and standard deviation of 1.

As mentioned in Sec. 2.2, we use LSTM architecture for the proposed work. We train

this case with 3 LSTM layers of 200 neurons followed by a dense layer of size 25 (same

as no. of output features). We train this model with 5000 samples and a validation split

of 20%. Further, we use the Adam optimizer [89] which is based on an adaptive gradient

descent method with mean squared error (Eq. 2.7) as the loss function. During training, we

evaluate the model performance using validation loss, which is computed for inputs unseen

by the model during training. It is worth mentioning that the model architecture and size of

the training set play an important role in the obtained model accuracy. To study this effect,

we conduct a sensitivity analysis. In this analysis, we compare the minimum or best vali-

dation loss obtained for different architectures as indicated by different colors and different

number of samples in Fig. 2.18. Each case is set to be trained for a maximum of 1000
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epochs. However, in order to avoid overfitting of the model, we impose an early stopping

training condition. This condition allows us to stop training when the model performance

stops improving for the validation set and only improves for the training set, by defining

a patience parameter. For the purpose of all cases in this work, we use a patience of 10,

which implies that the training is stopped as soon as 10 iterations pass wherein the valida-

tion loss doesn’t improve and the training loss improves. If such a situation does not arise,

the training continues through the entire amount of specified epochs. Hence, we obtain

the minimum validation loss until the training is stopped or finished. Further, we test for

architectures by not only varying the number of neurons in each layer, but also the number

of layers. In Fig. 2.18 we show the minimum validation loss obtained for 100 (orange)

and 200 (blue) neurons in each layer with number of layers as 1, 2, and 3. We observe

that as we increase the number of samples, the loss decreases in general. However, for the

case of 200 neurons, the loss seems to stabilize beyond 4000 samples. Also, increasing the

number of layers, decreases the loss, thereby improving model accuracy but this change is

not significant. Based on these results, we select the model that has a validation loss in the

O(10−5). Note that for all cases presented in this thesis, a network architecture study has

been performed to obtain an optimal network and determine a sufficient sample set size.

In general, conservation of linear and angular momentum of a component is dictated by

the equilibrium of forces and moments which can be written using Eq. (2.17).

Be
r(f

e) = 0 (2.17)

where Be
i represents the function for internal forces and moments and r denotes the number

of relationships. All these relationships need to be balanced for the SP to be in equilibrium.

However, due to the small errors that arise during prediction, the predicted internal forces

may not satisfy these relations, leading to unbalanced forces and moments, which violate

conservation principles if left unchecked. We guarantee that the SP satisfies the conserva-

tion of linear and angular momentum by adapting a method originally developed for smart

36



Figure 2.18: Network architecture study with minimum validation loss as a function of size
of training set for different architectures

elements [73] to smart parts. Consider the forces f̄ e contain a prediction error ēe, then

Eq. (2.17) becomes,

Be
r(f̄

e + ēe) = 0

Since, we cannot solve this system of equations directly, we assume ēe =
∑r

i αiē
e
i ,

where αi are the unknown coefficients. This may represent uniformly distributed forces

or moments (pairs of forces) and helps us obtain an approximate solution. As a conse-

quence, we reduce the error in the model and ensure the conservation of linear and angular

momentum.

It is imperative to check the model accuracy with inputs which are not used for training.

Results in Fig. 2.19 shows the prediction accuracy for all output parameters (forces on all 8

nodes: f∗ and localized information: PEEQmax) when validated for a test case unknown to

the trained network. We compare the SP predictions with high fidelity FE results obtained

from solving a full 3-D model. These figures indicate good agreement for the forces as

well as maximum equivalent plastic strain growth. To generalize the accuracy of the model

37



quantitatively, we use 100 unknown cases (ns) with the developed model and compute the

average RMS error (ÊRMS). RMS error can be computed using Eq. (2.8). We obtain an

average error (ÊRMS =
∑

ERMS/ns) of less than 2% for all the primary variables repre-

sented by the 24 output force features as seen in Fig. 2.20. Moreover, we observe that the

same error metric for the plastic strain output has a value of 0.15%, which shows a remark-

able agreement indicating that the model is able to resolve the evolution of the localized

information accurately.

Figure 2.19: Evaluation of SP (data-driven) model by comparison of predicted output with
high fidelity (FE) results
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Figure 2.20: Average RMS errors for output forces at each node

2.4 Applications of Smart Parts

2.4.1 Smart Assemblies using Smart Parts

The lap joint SP developed in the previous section can be utilized in conjunction with other

structural components to form assemblies. In this section, we exemplify how to use our

approach to analyze an assembly composed of two lap joint SPs in series. Such a smart

assembly can be part of a bigger component or structure and analyzed accordingly. Fig-

ure. 2.21 shows the schematics of the assembly, as well as the corresponding FEA and

SP-based setups. We adopt the same lap joint design discussed earlier in this study, joining

two of them together such that they share a common face. For the FE based approach,

a tie constraint physically enforces compatibility such that displacements of the common

surface are equal in magnitude and direction for both the lap joints. The same configuration

can be used with two SPs (cell 1 and cell 2) in series. In this case, we impose boundary con-

ditions in the form of corotational displacements on the corner nodes of the two open sides,

from which we compute displacements for adjacent surfaces using bilinear interpolation as

described in Sec. 2.3.2. Hence, there will be 12 nodes of interest that define the overall

assembly and 36 degrees of freedom associated with these nodes. Note that the forces at

the interface nodes (common side) must satisfy appropriate constraints to maintain the in-

tegrity of the assembly. Hence, we include this constraint condition in the form of force
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equilibrium in the prediction algorithm. For the case of two cells connected in series, the

forces in the common nodes will be the sum of forces predicted in these nodes from cell

1 and cell 2. For the purpose of this work, we use an iterative procedure: the nonlinear

conjugate gradient (CG) formulation (Polak–Ribière [96, 97]) to ensure force equilibrium

at each time increment.

Figure 2.21: FEA (top) and SP (bottom) based representation for lap joint assembly

Note that we use the LSTM framework to ensure that the model retains history in-

formation, it is important to realize that after every prediction the LSTM internal states

evolve for the next prediction. We can decouple the resetting of LSTM internal states from

updates made to the model parameters of the network using the stateful mode. Stateful

mode of LSTM thereby, allows us to obtain an output prediction at every time step without

any loss of history information that is stored in the form of internal states. Hence, it is

important to note that after every prediction the LSTM internal states evolve for the next

prediction. Since we enforce force equilibrium for the assembly case of lap joints in an iter-

ative manner, these LSTM internal states require careful management [98] during sequence
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prediction as explained in the following paragraph.

We explain the entire prediction procedure for the assembly lap joint using Fig. 2.22

wherein Fig. 2.22b illustrates the accurate procedure with LSTM state management. In

this, we reset the internal states to the states corresponding to previous converged output

during the iterative nonlinear conjugate gradient. Once the equilibrium condition is satis-

fied, the current states are updated to be used for the next time step prediction. Otherwise,

as shown in Fig. 2.22a the states keep evolving, even within the nonlinear conjugate gra-

dient procedure (Fig. 2.22c) that aims at finding an equilibrium solution at each time step.

This eventually leads to erroneous results or divergence. Thus it is imperative that state

management is necessary whenever there is an iterative procedure required within the pre-

diction algorithm to avoid incorrect accumulation of LSTM states. To provide an analogy,

a similar procedure is performed in elastic-plastic simulations at the constitutive level when

an iteration is needed: that is, the effective plastic strain (state) is updated only after the

iteration has converged.

Results

Prediction using the proposed approach is obtained by implementing the trained smart lap

joint in series and using nonlinear conjugate gradient in the algorithm as explained earlier.

The analogous high fidelity assembly is modeled using 3-D FEA. A few test cases un-

known to the trained model are simulated using both approaches to compute/predict forces

and maximum equivalent plastic strain inside the domain of each lap joint. Comparison

of results for one such case is shown in Fig. 2.23. Fig. 2.23a shows the comparison of

predicted forces with those computed using FEA for the entire assembly.

Further, we quantify the accuracy using the the coefficient of determination, R2 score

given by:

R2 = 1−
∑l

j(faj − fpj)
2∑l

j(faj − fm)2
(2.18)

where fa is the truth output value obtained from FEA, fp is the output value predicted by
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(a)

(b)

(c)

Figure 2.22: Implementation procedure for assembly of lap joints. (a) Equilibrium ap-
proach without state management, (b) Equilibrium approach with state management, and
(c) Nonlinear conjugate gradient procedure

the SP based assembly, fm is the mean of observed or truth data and, l is the length of

the sequence. Hence, alongside the force comparison, we plot the predicted value (SP f∗)

versus the truth value (FE f∗) of the output parameter such that each point corresponds to

a predicted value over the time history of loading. A perfect correlation (R2 = 100%) is

indicated by the line fa = fp. Hence, as the prediction points get close to this line, the
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accuracy of the model increases.

We show R2 scores for forces in all three directions for the selected nodes. We obtain

a minimum R2 score of 99% for each of these parameters indicating very good accuracy.

Remarkably, similar accuracy is also observed in maximum equivalent plastic strain for

both the cells also shown in Fig. 2.23a. These plastic strains can either be used separately

to further analyze the localized damage or as a measure of maximum plastic strain (damage)

that exists in the entire assembly to predict failure.

(a)

(b)

Figure 2.23: Lap joint assembly results for a test case with two SPs. (a) Lap joint assem-
bly result comparison for various nodes along with corresponding R2 scores, (b) Required
iterations over entire deformation path
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During the prediction algorithm, we also record the number of iterations that are needed

at each increment for convergence of forces at the interface. This, in other words gives us

an idea of the prediction quality from both the SPs that constitute the assembly and also

allows us to check and identify, if there are any specific regions over the deformation path

which take longer to converge. For the considered case in Fig. 2.23a, we show the required

number of iterations as a function of the load increment in Fig. 2.23b. Despite the fact that

the maximum allowable iterations are defined as 500 for each loading increment, we obtain

a converged solution in ≈ 20 iterations. We also do not observe any abrupt changes in the

iterations except at the beginning. This is attributed to the sudden increase in the feature

value that occurs at the start when the deformation goes from zero to non-zero.

Parametric study for larger assemblies

We perform a parametric study to investigate the robustness of the proposed method. This

helps us understand how the assembly behaves when we add more components. We con-

duct a study to model lap-joint assemblies with upto 5 SPs. As in the previous case with two

SPs, we model these assemblies by placing SPs side by side. The boundary conditions are

also imposed in a similar fashion on all open surfaces in the form of corotational displace-

ments on the corner nodes and their bilinear interpolation. We show cumulative results for

these studies in Fig. 2.24, wherein we predict the forces and localized information using

5 unknown cases for each assembly. We first analyze the required number of iterations

as a function of the number of constituting SPs in Fig. 2.24a, because an increase in the

number of SPs results in an increase in the number of interface surfaces and consequently

the number of interface nodes. We observe no significant trend in the average number of

iterations required as well as the average standard deviation (shown as the black stem in the

plot). These findings also provide an insight into the computational cost for these predic-

tions. The computational cost is associated with the number of times a prediction is made

for each load increment and hence, the number of iterations. Since increasing the number
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of SPs in an assembly does not increase the required number of iterations for convergence,

the computational cost also remains bounded. Corresponding to these cases, we show the

average RMS error for different output features in Fig. 2.24b. In this plot, we also include

the errors for a single lap-joint (1 SP in assembly case) as a reference for comparison. We

can see that the errors are bounded as we increase the SPs in an assembly for all outputs. In

fact, we also do not observe any significant increase or decrease in errors as well as disper-

sion for any particular force component, implying good overall representation. As a final

note, it is worth mentioning that the localized information, not only has low errors but also

very low standard deviation in these errors implying good accuracy across the operational

domain.

(a) (b)

Figure 2.24: Cumulative results for lap-joint assemblies with varying number of SPs. (a)
Required convergence iterations, (b) Average RMS errors for output parameters

2.4.2 Localized damage driven control strategy for critical helicopter components

It is well recognized that component life extension using control schemes, such as but

not limited to load alleviation and load limiting, involves a careful trade-off between ve-

hicle maneuver performance and the impact of ensuing maneuver on a component life

usage. This is more so for helicopter rotor components, such as rotating pitch links, that

are routinely subjected to varying harmonic loads. In such cases, effective component life

extending control schemes are predicated on the availability of effective metrics in their
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evaluations. Perhaps more importantly, the development of load alleviation/ limiting con-

trol schemes becomes challenging as it needs to consider the accumulation of this localized

damage in its approach which is typically not accounted for in traditional fatigue analysis.

It is also worthwhile to emphasize that both: fatigue analysis and localized damage accu-

mulation need to be considered in the development of control strategies for accurate and

effective component life extension.

Extensive research efforts have been made to extend component life by developing

different types of control strategies. One of the most prevalent approach is the Load Alle-

viation Control (LAC), wherein the flight control system is modified to reduce component

level peak-to-peak dynamic load and consequently reduce the peak-to-peak stress in the

hope to reduce fatigue damage [99, 100]. Such modifications can take the form of either

the addition of feedback signals or the optimization of flight control system gains. Despite

being effective in many applications, LAC suffers from two major limitations. The first

issue is in its inability to discern between aggressive versus non-aggressive maneuvers and

second in its total negligence of fatigue damage induced by specific harmonic loads. To

circumvent these limitations, a Load Limiting Controller (LLC) has been proposed [101].

The proposed LLC scheme limits the pilot command inputs during aggressive maneuvers

using model predictive control to limit specific component level harmonic loads. Hence, a

clear distinction in the aggressiveness of the maneuver is taken into account, and further,

fatigue damage introduced by harmonic loads is not neglected. However, in its current

form, the LLC strategy relies on an ambiguous selection of the harmonic that needs to be

limited and the extent to which it is limited. Reducing arbitrary harmonic loads to arbitrary

values does not provide for an optimal strategy as it can lead to significant effects on or

sacrificing the maneuver performance of the vehicle, which in most cases is not desirable.

Hence, it would be beneficial to limit harmonic loads based on their effect on both localized

damage and maneuver performance.

A potential approach is to target and directly limit/reduce the harmonic that relates most
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to damage growth, and consequently, to the life of the component. To do this, there is a need

for a real-time decision-making tool that can assist the life extending control schemes (such

as the LLC scheme) in deciding which harmonic loads need to be limited and by how much

during flight, based on their effect on both fatigue damage and maneuver performance.

Currently, there is no established strategy/tool to execute this. However, in this section,

we demonstrate how the pitch link smart part can enable such a less conservative control

strategy to extend the component operational life.

The smart part approach is used to develop the localized damage prediction model for

the pitch link as described in Sec. 2.2. It is important to note here that damage in this

example refers to the localized plasticity that is predicted by the smart pitch link, which if

allowed to grow in an environment with cyclic loads can become crucial for the component

life. Also, the helicopter model used to generate the load in this study is different than the

one in Sec. 2.3.1. With the objective of coupling the damage model with an appropriate

control scheme, we use a helicopter model that uses the bare-airframe model in conjunction

with a flight controller to generate the pitch link harmonic loads. The data-driven model

maps these harmonic loads along with the preexisting damage information (input features)

to the localized damage parameter growth (output feature) that is the maximum equivalent

plastic strain growth, during training and uses all this information for future predictions as

shown in Fig. 2.25. Details for training such a model have been explained in Sec. 2.3.1. As

mentioned earlier, we adopt the LSTM architecture for training, which for this case uses 1

LSTM layer and 1 Dense layer with 600 neurons and a total of 5000 samples. To validate

the model, we test it with samples unknown to the network. We show one such case in

Fig. 2.26, wherein we see a good match between the predicted damage growth (DG) and

the computed output using a full 3-D FE model (Fig. 2.26a). We also quantify the error

by computing the normalized residual values over the sample’s time history. Figure 2.26b

shows the occurrence of the computed residual errors with a peak at 0.005% and maximum

error of 0.07%, indicating good model accuracy.
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Figure 2.25: Overview of damage prediction model development and implementation

To use the localized damage parameter prediction to aid the control scheme, it is neces-

sary to study its behavior with control input parameters. We conduct a sensitivity analysis

for the longitudinal cyclic doublet maneuver on two parameters: percentage magnitude of

the control input and rise time which represent the magnitude and aggressiveness of the

maneuver as explained in Sec. 2.3.1. We vary the magnitude in the range of 5% and 50%

to predict the corresponding damage growth by keeping the rise time at a constant value

of 0.25s. Similarly, we vary the rise time from 0.1s to 0.5s for the sensitivity study. For

this, we use a constant magnitude value of 30%. The results of these studies are shown

in Fig. 2.27 with the end value of the predicted damage growth (DG) as the quantity of

interest. We observe intuitive results, since as the magnitude of the input increases, the

damage also increases, whereas when the input becomes less aggressive the damage de-

creases. However, the rate at which this change occurs is nonlinear in both cases, due to

the nonlinear nature of the problem itself, thereby having a similar effect on operational

component life.
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(a) (b)

Figure 2.26: Results of damage prediction model for a sample case; (a) Comparison with
high-fidelity solution, (b) Residual error distribution

(a) (b)

Figure 2.27: Sensitivity studies for damage prediction model using sensitivity parameters:
(a) Percentage magnitude of command input, (b) Raise time

Moreover, since time-varying harmonic loads (1, 2, 3, and 4/rev) are used as inputs for

the damage prediction model, we can study their effect on the damage parameter. We adopt

this strategy from the smart helicopter pitch link in Sec. 2.3.1, to numerically compute

instantaneous gradients of the predicted damage with respect to the input harmonics. We

perform the same sensitivity study as described above to investigate the maximum damage-

causing harmonic as shown in Fig. 2.27. Our findings are counter-intuitive as we observe

that 1/rev is not necessarily the most damage causing harmonic, despite being the dominant

one in terms of harmonic magnitude. In other words, there might be situations, when the

damage growth could be reduced by attacking or limiting the harmonic to which it has
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maximum sensitivity. This is a key aspect that the smart parts approach provides for in

enabling operational component life extension without significant impact on the maneuver

performance.

Load limiting Control (LLC) scheme

The LLC scheme is briefly explained in this section to enable a complete understanding of

this study. Details for this model can be obtained from previous established works [101].

Such a control strategy is based on a receding horizon model predictive control formulation.

Using an on-board model that provides a mapping between the pilot command input and

the harmonic pitch link loads, the LLC scheme solves the optimization problem shown in

Eqns. 2.19 and 2.20 in order to generate estimates of available command margin. Using

these command margin estimates, the input to the controller is constrained in order to keep

harmonic pitch link load within a desired maximum value. A block diagram representation

of the load limiting scheme integrated within a dynamic inversion controller is shown in

Fig. 2.28.

minδcmd [J ], J =

∫ to+Tp

t0

L(∥Yharm∥2, δcmd)dt (2.19)

such that, ∥Yharm∥2 ≤ ymax

Figure 2.29 shows a sample result wherein the LLC scheme is designed to limit the

magnitude of 1/rev pitch link load [101]. We can see that the LLC scheme keeps the load

within the desired user-selected maximum value of 350 lbs.

Integrity ratio: Damage mitigation control metric

The developed damage prediction model is capable of predicting damage growth using

the harmonic loads resulting from a maneuver. These results can then be post-processed
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Figure 2.28: Load Limiting Control Scheme.

Figure 2.29: Magnitude of 1/rev pitch link load

to identify the sensitivity of damage with different harmonics as illustrated earlier in this

example. Despite being immensely beneficial, it is challenging to use this information

while implementing the LLC scheme. This is because the dynamics of the entire system are

coupled and limiting a particular harmonic leads to significant changes in other harmonics

as well, and hence the overall maneuver performance. This necessitates an approach that

includes this aspect in making useful predictions about limiting a particular harmonic.

To do this, we introduce a metric that can aid in the control decision process, which we

call the integrity ratio and is given by:

I =
∆D

∆P
(2.20)
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where, D and P correspond to the damage parameter and maneuver performance mea-

sure respectively. For the purpose of this study, we compute the changes in these quanti-

ties using open-loop simulations and compare the values obtained without and with LLC.

Quantitatively, we represent ∆D as D no llc−D llc
D no llc

such that Dllc is the damage parameter pre-

dicted by limiting a particular harmonic by a certain amount. Analogously, ∆P is given as

P no llc−P llc
P no llc

wherein, we select the maneuver performance measure (P ) as the maximum pitch

rate value attained. The aim is to, therefore, maximize this integrity ratio which includes

maximizing damage reduction and minimizing the change in maneuver performance.

The integrity ratio helps us identify which harmonic should be limited with minimum

effect on maneuver performance as shown in Fig 2.30. But, in its current form, we use

an arbitrarily selected threshold value (54 lbs above trim) for this example. Also, note

that while considering the 3/rev LLC case, the integrity ratio is computed with maximum

P attained during pitch down as the limiting for this case occurs during the pitch down

portion of the maneuver. On detailed investigation, we can observe that this threshold value

results in a ∆D that is significantly lower for 4/rev as compared to 1/rev and 2/rev cases.

This is attributed to the magnitude range of a particular harmonic. Hence, limiting with

a threshold of 54 lbs above trim significantly affects the magnitude when limiting 1/rev

as compared to 4/rev. This may lead to conservative estimates and requires us to use a

threshold selection strategy that represents and can leverage the entire magnitude spectrum

for a particular harmonic such that the effect on maneuver performance is within allowable

limits. To study this further, we conduct threshold sensitivity studies for the integrity ratio

as described in the subsequent paragraphs.

We perform the threshold sensitivity study in three ways by using the threshold mea-

sures (TM) shown in Eqns. 2.21-2.23: (1) varying a percentage of the trim value of each

harmonic (2) varying a percentage of the maximum value of each harmonic and (3) varying

a percentage of the range between the trim and maximum value of each harmonic. This way

we can include a sufficiently large set of cases to understand the behavior of the integrity
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ratio.

TM trim = Trimi +
R

100
(Trimi) (2.21)

TM max = Max.valuei −
R

100
(Max.valuei) (2.22)

TM diff = Max.valuei −
R

100
(Max.valuei − Trimi) (2.23)

In Eqns. 2.21-2.23, R is the varying percentage value and i represents the particular

harmonic being limited, that is 1/rev, 2/rev, etc. The computed integrity ratios are shown

in Fig. 2.31, such that within each case, the results are normalized by the maximum value

of integrity ratio obtained for that case. Overall, we observe that for TMtrim and TMmax, as

we increase the TM, the integrity ratio increases and decreases respectively. This implies,

that as we move from the maximum value towards the trim value for the load threshold,

the effect on the maneuver performance plays an important role and is reflected in the

integrity ratios. Hence, we ideally would want to impose controls in the shaded portions of

Figs. 2.31a and 2.31b.

Also, it is worth mentioning that a range more than 5% − 25% cannot be considered

for these TMs due to different magnitude ranges for different harmonic loads. This makes

these threshold measures slightly biased: TMtrim is biased towards reducing damage and

TMmax towards preserving the maneuver. For the case with TMdiff, we use 20 equally

spaced intervals between the maximum and trim value of each harmonic, thereby en-

abling an unbiased representation of results. Our findings indicate that even in this case

(Fig. 2.31c), as we increase the TM, the integrity ratio decreases. This reduction is dra-

matically more after 50%, implying a significant effect on the pitch rate and hence the

maneuver performance. The best-case scenario ( largest integrity ratio ) obtained suggests

that 2/rev should be limited by 5% which corresponds to ∆D : 2.5% and ∆P : 0.15%.

Closely following, the second-best option is to limit 4/rev by 5% with a ∆D : 9% and
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(a) (b)

(c)

Figure 2.31: Sensitivity studies for threshold showing integrity ratios for (a) TMtrim, (b)
TMmax and (c) TMdiff measures

∆P : 0.7%. Hence, with less than 1% reduction in maneuver performance, the localized

damage growth can be reduced by 10% by using our proposed strategy in harmonic and

threshold selection for load limiting. Moreover, selecting 4/rev for limiting, implies that

the maneuver can be conducted, but at a slower rate and hence might not significantly

affect the handling qualities. Overall, depending on the allowable effect of maneuver per-

formance, the best choice in terms of damage mitigation can be made for which harmonic

to limit along with the percentage that needs to be limited, thereby leading to component

life extension. Thus, the smart parts approach when used for a dynamic component such

as the helicopter pitch link, can aid in the control decision by leveraging the information

pertaining to localized damage growth as well as maneuver performance which enables a

less conservative strategy to extend the operational life of the component.
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2.5 Computational Cost

The main benefit entailed by our proposed approach is its capability to provide a reduced-

order model to solve nonlinear structural problems in real time with accuracy comparable

to that of 3-D FEM. As discussed in the different case studies we presented, the accuracy of

our methodology is not sacrificed when compared to high fidelity models. Furthermore, our

approach entails a key advantage when compared to high fidelity models: the associated

computational cost required to produce predictions is significantly lower.

Table. 2.1 shows this comparison for the cases studied in this paper. We report the

computational time as the average of that obtained over 100 simulations for each study.

Results did not show significant dispersion. We can see that, depending on the case, FEM

computations take between one and a half and three hours to solve the corresponding prob-

lem, whereas the proposed approach can deliver results on the order of a few seconds while

ensuring very low errors in the solution and preserving the required localized information.

Table 2.1: Computational time comparison between 3-D FEA and SP approach

Case 3-D FEA (hr) Data-driven: SP (sec)
Local GPU

Lap joint 1.5 3.2 1.7
Lap joint assembly 2.1 40.2 26.6
Pitch link (without switch) 2.8 1.9 0.5
Pitch link (with switch) 2.8 1.0 0.3

It is worth noting that the comparison above was performed on different hardware due

to the nature of each implementation. The finite element simulations ran on our Intel Xeon

e5 2.5 GHz cluster. Each lap-joint simulation was executed on 8 cores in parallel, whereas

the pitch link ones on 16 cores. On the other hand, we executed the SP simulations on two

different architectures, as shown in the table. The Local cases corresponds to a MacBook

Pro laptop with 6 computing cores. In this case, simulations took advantage of 2 of them.

The GPU cases correspond to a GPU-based machine with an NVIDIA accelerator that al-
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lows for parallelization by using CUDA LSTM layers. As can be seen from Table. 2.1,

this leads to a further reduction (at least 40%) in computational time. Overall, we can see

that the SP implementation, when running either on a laptop or on a dedicated accelerator,

resulted in a drastic reduction in required computational time. This could be key in en-

abling real-time computations in time-critical applications, for example, health monitoring

of mechanical assemblies.

It is worth mentioning that there is some upfront computational cost associated with the

generation of training samples that may seem substantial, however, this is a constant cost.

Once trained, the benefits of the SP keep improving as the number of simulations that need

to be run increases, thereby offsetting the upfront cost. For example, for the helicopter pitch

link, we simulate 7000 (700 parent profiles × 10 load profiles per parent) load profiles to

generate the training set. Further, each load profile has ≈ 690 timesteps, thereby resulting

in a total of ≈ 4.83 million timesteps (7000 load profles × 690 timesteps per load profile)

that are simulated. However, it is important to note that one load profile of ≈ 690 timesteps

represents only ≈ 4sec of helicopter flying time, which is an extremely small fraction of

the total flying time that a helicopter encounters over its entire operational life. Hence, the

resulting number of required simulations is very large in a typical helicopter flight, which

offsets the upfront cost of developing the SP.
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CHAPTER III

DYNAMIC HOMOGENIZATION VIA META LEARNING

3.1 Introduction and Motivation

The accurate prediction of stress wave propagation in structures are of great importance in

numerous engineering applications such as but not limited to non-destructive testing [102,

103, 104, 105] and earthquake analysis [106, 107, 108]. However, most of the unique and

interesting wave propagation related phenomena occur when there are material or structural

heterogeneities or when there is a significant modulation in stiffness or inertial properties

across the structure. Consequently, the dynamic behavior of heterogeneous media is greatly

researched in the form of phononic crystals [109, 110] and acoustic wave management

[111, 112]. For such problems as well, FEM becomes computationally expensive [113].

This is because extremely fine meshes are needed to resolve small features which when

considered from the perspective of a large global structure results in a large number of

elements and degrees of freedom. This problem is further exacerbated if short wavelengths

need to be captured which leads to the need for a very fine discretization of the temporal

domain. Hence, as discussed in Chapter I, when problems become nonlinear or need to

capture a broad frequency spectrum (including extremely short wavelengths), there are not

many established alternatives to FEM.

In this Chapter, we address this gap and propose a novel approach for data-driven ho-

mogenization via meta-learning to describe the dynamic behavior of a unit cell and sub-

sequently large organized arbitrary structures. In this approach, we make no assumptions
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about the type of material as well as the heterogeneities that may be present in the unit

cell. To demonstrate this we develop a unit cell with and without heterogeneity with linear

and nonlinear material models. Perhaps more interestingly, we show how these data-driven

unit cells can be implemented to study and analyze wave propagation in larger arbitrary

structures. We further enhance our approach by developing and illustrating an effective

approach for low noise sample generation for a broad frequency spectrum.

3.2 Problem Statement

Let us consider a wave propagation problem in continuous media defined through the gov-

erning differential equation

M[ü(x, t)] +K[u(x, t)] = f(x, t) (3.1)

where M and K are spatial differential operators specific to each kind of problem,

u(x, t) is the displacement field, x is the position over the spatial domain Ω, t ∈ [0, T ]

is the time and f(x, t) is the forcing term. Note that we denote the time derivative of a

variable by using a dot over that variable. We essentially want to find the solution u(x, t) to

the differential equation shown in Eq. 3.1 subject to certain boundary conditions over the

considered domain Ω. Moreover when considering continuous media such that the domain

can be represented by repeating unit cells (of one or more kind), the behavior of each unit

cell can also be represented by Eq. 3.1 but with appropriate boundary conditions (forces

from neighboring unit cells).

To compute the solution for a finite structure, the discretized version of Eq. 3.1 is typ-

ically obtained and used through a refined mesh of the unit cell. But, it is clear that, when

performing dynamic simulations over a finite domain that consists of a large number of unit

cells, the computational cost associated with these simulations makes such studies highly

inefficient. This problem worsens if local features in the unit cell need to be resolved. This
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Figure 3.1: Periodic assembly with mesh driven by local heterogenity in every unit cell

is because a highly refined local mesh is needed which in turn leads to models with a large

number of degrees of freedom for large assemblies of unit cells. We illustrate this using

a fine discretization of the unit cell in Fig. 3.1 along with a finite structure with multiple

such unit cells, potentially leading to a highly refined mesh over the entire domain and

correspondingly a very large model that needs to be solved. Note that in the remainder of

this Chapter, a finite structure is denoted using the number of unit cells that repeat in each

direction (e1 and e2 defined in Fig. 3.1). So, a finite structure of size m×n denotes, m unit

cells in e2 direction and n in e1 direction. Also, within a finite structure, a particular unit

cell is denoted using Cp,q, such that p ∈ [1,m] and q ∈ [1, n].

There are numerous reduced order modeling or homogenization alternatives to FEM

which have been established to overcome computational inefficiency such as static con-

densation, spectral methods to name a few. However, as mentioned in the introduction, it

is very challenging to find an efficient and accurate method to homogenize the unit cell

(spatial domain) which is capable to operate for a broad frequency range or for nonlinear

material response. In the following section, we introduce our approach to homogenize the

unit cell by developing a data-driven surrogate which can then be used to study the dynamic
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behavior of arbitrary large structures.

3.3 Homogenizing via surrogate modeling of unit cell

Let us consider the problem of homogenizing the dynamic behavior expressed in Eq. 3.1

for the unit cell illustrated in the previous section. To model such a periodic structure, we

propose an approach that, given a sufficient number of numerical experiments that repre-

sent the unit cell’s global dynamic behavior, we can make a machine learning algorithm

learn this information and use it to model larger finite structures. Hence, this approach,

even though is demonstrated for a 2-D unit cell, is not limited to it and can be used to

model periodic structures which are discrete, continuous, and/or include nonlinearity of

some form, as exemplified later in Sec. 3.4. Since we are interested in modeling the dy-

namic behavior, we need to consider sequences representing time-domain data for all input

(displacements) - output (forces) parameters. Our approach, hence, adopts ML techniques

that enable the unit cell to learn such sequential data or mechanical behavior and uses in-

formation pertaining to its previous time-step to predict output parameters for the current

time step.

More specifically, the surrogate modeling of a unit cell involves two major steps as

shown in Fig. 3.2 such that the first step involves training set generation. In this, we

generate various displacement sequences (u∗), which the unit cell will see as inputs. Then,

we develop a finite element model to represent the unit cell in a periodic structure and

compute the nodal forces (f∗) in time domain from the corresponding input displacements.

While generating training samples, we simulate a single cell: 1c (1×1) case and a 3c (3×3)

finite structure case. This is done so that, during training, the model can learn the important

difference between a start/end cell versus a cell that may be in between two cells. Following

this, in the second step, we utilize the training samples set and train the selected neural

network architecture. Finally, we evaluate the model performance by implementing it with

displacement inputs unknown to the model for a finite periodic structure having multiple

61



unit cells. It is important to note that this is the key benefit of our approach since traditional

methods based on analyzing a unit cell cannot study the dynamic behavior of finite periodic

structures. We explain each of these steps in a detailed manner in the remaining portion of

this section using the unit cell shown in Fig. 3.1.

Figure 3.2: Methodology for developing surrogate model for a unit cell

3.3.1 Training sample generation

For illustration purposes we first assume linear elastic behavior of the unit cell in this sec-

tion and extend the approach for nonlinear materials in Sec. 3.4.3. The geometric definition

of the unit cell with a heterogenity is shown in Fig. 3.3a and the material considered is Alu-

minum with a modulus of elasticity (E) of 69GPa, Poissons ratio (ν) of 0.33, and density

(ρ) of 2700kg/m3. Further, displacement is prescribed as an input at the left end global
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nodes (uL) of the unit cell. The displacement at the right end (uR) and subsequent nodes

are derived quantities from the forces generated due to uL.

(a) (b)

Figure 3.3: Development of unit cell (a) Unit cell design, (b) Mesh convergence

Figure 3.4: Finalized mesh for unit cell

We conduct numerical analyses using different local discretizations by increasing the

number of elements used to resolve the local features. For each discretization we measure

the error norm of the maximum displacement obtained at the right end of the unit cell as

shown in Fig. 3.3b. We compute the error norm given by,

EU =
|Uf − Un|

|Uf |
(3.2)
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in which Uf denotes the numerical maximum displacement computed using an ex-

tremely fine finite element mesh with 1841546 elements and 923379 nodes, and Un is the

maximum displacement obtained for various cases with different meshes. This comparison

helps us finalize the local mesh needed to ensure high-fidelity results. The converged (fi-

nalized) mesh for the considered unit cell as shown in Fig. 3.4 has 1773 nodes and resulted

in EU = 0.3%. It is important to note that this mesh is used to generate the training samples.

However, during training, displacement and forces at the global nodes (red nodes) are used

to represent the global behavior of the unit cell. This, thereby homogenizes the unit cell

behavior by reducing the degrees of freedom while retaining sub-element characteristics

during the analysis of large structures.

In general, the accuracy and reliability of ML-driven surrogate models rely heavily on

the underlying data using which they were trained. Consequently, it is essential to identify

the relevant space of interest for a particular problem to ensure that the input spans that

space. For this work, the input parameter represents the prescribed displacement at the

left end of the first cell. Hence, this displacement should be such that it spans over all the

possible excitation scenarios (different excitation frequencies) for the considered periodic

structure. For the considered unit cell, we use a frequency range of 10kHz to 50kHz. This

frequency range includes very high frequencies, corresponding to very short wavelengths.

It is important to emphasize here that for this unit cell the maximum frequency that can be

resolved using static condensation [19] is 14.5 kHz; thus, the considered frequency range

for training samples is 3 times this frequency.

One possible approach to generate training inputs is to use harmonic inputs such as

sinusoidal or superposition of sinusoidal signals. However, considering that ML methods

interpolate solutions for any signal seen outside the training sample, such an approach de-

feats the purpose of developing a general unit cell capable of systematically representing

any type of input signal. Another approach prevalent in the literature is the use of Gaussian

processes to generate smooth and continuous sequences for structural problems [94, 114].
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Though extremely powerful, this method suffers from large noise to signal ratio when con-

sidering a wide frequency spectrum, causing issues in generating samples that have high

frequencies with the dominant magnitude.

To overcome these problems, we propose a method that is general in a way that, it is

independent of the frequency spectrum that needs to be considered. Our solution makes

use of wavelets [115] which we form by using a Gaussian distribution and a systematically

randomized harmonic signal. A superposition of multiple such wavelets generates one

input signal for the surrogate model, which is mathematically given by:

uL(t) =
∑
i

N (µf
i , σ

f
i )H(µf

i , t) (3.3)

where, N (µf
i , σ

f
i ) is a normal distribution function with mean frequency, µf

i and standard

deviation, σf
i and H(µf

i , t) is the harmonic signal contribution expressed as Aicos(2π µf
i t−

ϕi). The mean and standard deviation in N for each wavelet is extracted from a uniform

distribution defined for the frequency range under consideration. Note that, this frequency

range is user-defined and consequently gives control over the noise to signal ratio. In other

words, if the frequency range is high, there is more probability of having a diverse set of

frequencies in the final sequence, whereas an extremely narrow frequency range results in

a displacement signal with only one harmonic. Hence, depending on the type of structure

being studied, an appropriate range can be selected. We also introduce randomized phase

(ϕi) and amplitude (Ai) in the harmonic contribution to the final sequence, ranges for which

can be selected based on the system parameters. Finally, we ensure that all input samples

start from an initial rest condition to depict a realistic scenario. Overall, this method serves

to be randomized yet systematic, enabling a good and unbiased representation of sample

sequences.

In Fig. 3.5, we show the steps to generate one displacement sample. We first generate

multiple (10 in this case) sequences that represent normal distributions followed by har-

monic signals for these cases as shown in Fig. 3.5a and 3.5b respectively. Note that, the
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harmonic signals shown are normalized by the their corresponding maximum amplitude

for good visualization. Then, we utilize these two sequences to generate the wavelet as

shown in Fig. 3.5c. Finally, we can see the result of 10 wavelets that form a single sample

to represent the prescribed displacement at the front/left node in Fig. 3.5d.

(a) Normal distributions for one sample (b) Normalized harmonic signals for one sample

(c) Sample wavelet formation (d) Final sample for input displacement

Figure 3.5: Schematic representation of method to generate sample input

For this work, we generate 2000 input displacement samples for each degree of freedom

(displacement in e1 and e2 direction) and each global node at which displacement is pre-

scribed (2 corner nodes at left end of the unit cell). This results in a total of 4000 samples

for each degree of freedom. We show the distribution of all samples combined in Fig. 3.6.

This plot helps in estimating the univariate distribution in terms of frequency and amplitude

as shown in the margins (right and top) along with their bivariate distribution (center) using

a kernel density estimate [90]. For this plot, we obtain the frequency data by computing

the Fast Fourier Transform (FFT) of the sample and selecting the frequency which has the

dominant magnitude. Analogously, for the amplitude, we compute the maximum absolute
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amplitude of that sample in time domain. We can observe that a fairly uniform distribution

is obtained for both variables in their respective defined ranges. This exercise is important

as it serves as a way to validate if the generated samples represent the interested space for

a study in an appropriate manner. Otherwise a biased sample distribution may lead to a

biased model during training and its subsequent application.

(a) (b)

Figure 3.6: Sample distributions in terms of dominant frequency and maximum amplitude
for prescribed displacements in (a) e1 direction and (b) e2 direction

In order to generate the complete training set, we conduct FE analysis for the unit cell

by applying the input displacements obtained using Eqn. 3.3 on the left end of the unit cell.

Further, it is important for the model to learn the difference between a cell which may be at

the boundary (right or left) of a finite structure and a cell that may be in between other cells.

To ensure this, we conduct FE analysis for a finite structure with a total of 9 cells with a

3 × 3 configuration. Note that this serves as a minimum requirement in order to account

for different unit cell behaviors for the considered case of 2-D periodicity. As a result, for

each input sequence x(t), we obtain two (one for single cell (1c : 1× 1) and one for three

cell (3c : 3 × 3) analysis) corresponding output sequences y(t) which can be represented
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by:

S1c = (xj(t), y1c
j (t))

S3c = (xj(t), y3c
j (t)) for j = 1, 2, 3, ...n (3.4)

such that S denotes the training set with n observations. Also, x(t) = uL(t) denotes the

input displacement at the left end and,

y1c(t) = (uR(t), f(t))

y3c(t) = (umn
R (t), f mn(t)) with m = 1, 2, 3 and n = 1, 2, 3

represents all the outputs obtained from the FE analysis wherein f(t) = (fL(t), fR(t)) are

the forces at global nodes and mn denotes a particular cell.

Further, the right end displacement (uR) that is obtained as an output from the FE anal-

ysis is used as an input feature along with uL during the training process, details for which

as explained in Sec. 3.3.2. In summary, for s input samples, we obtain 10s total observa-

tions that represent displacement-force relations. For the considered unit cell, we generated

2000 samples for uL as discussed earlier, resulting in a total of 20000 observations in the

overall (S∗ = S1c ∪ S3c) training set.

3.3.2 Novel training process using meta learning

Through the training sample generation process, we obtain a set of observations that relate

the input displacement at the left end to the displacements at all subsequent nodes and nodal

forces of the periodic structure. At this point, nodes only indicate the global or corner nodes

of the unit cell whose behavior includes information pertaining to all the internal features

of the unit cell. So for the 2-D unit cell considered, the four global nodes represent the

unit cell, and all the dynamic behavior related to the internal features such as the holes is

learnt by the machine learning model through this surrogate representation. To train the
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surrogate model, we wish to establish a relationship between the nodal displacements and

nodal forces. So, we use u(t) = (uL(t), uR(t)) as the input features and f(t) as the output

features for the machine learning model. We can observe that such a training set-up can be

easily applied to different types of unit cells by simply changing the number of input and

output features.

To include any kind of history dependence (as needed for dynamic problems), it is nec-

essary to select a machine learning algorithm that can retain information of the previous

state. We utilize recurrent neural networks to do so, and specifically its long short-term

memory (LSTM) architecture [80, 114] as explained in Chapter. II. Since this architec-

ture have special memory cells characterized by internal states and forget gates, the output

from each neuron gets modulated by these internal states allowing the model to learn/retain

relevant information. We make use of multiple such neurons and layers of neurons to ac-

curately establish the complex mapping between the defined input-output parameters. In

addition, we also utilize Dense layers [116] (in addition to the output Dense layer) with

appropriate activation functions to improve the representation capacity of the overall net-

work. These layers increase the trainable network parameters which focus on mathematical

transformation (rotation, scaling, translation, etc.) of the vector to improve point to point

accuracy. Together, the LSTM and Dense layers with relu activation enable learning of

history and/or nonlinear information without sacrificing local accuracy.

During training, the defined network architecture maps the displacements to forces

using the network’s internal parameters (IPs) namely, weights and biases. The training

process thereby, entails an optimization of these IPs until a reasonably good solution is

achieved. The goodness of the solution at every iteration (epoch) during training is given

by a loss function which acts as an error metric between the actual/observed and predicted

output and essentially drives the optimization process. We use the Adam [89] optimizer to
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update the IPs along with the mean squared error (EMSE) as the loss function given by:

EMSE =
1

s

s∑
j

(f o
j − f p

j)
2 (3.5)

where f o
j and f p

j represent the observed output and the predicted output by the network

respectively such that j ∈ S∗ and s is the number of samples used for training.

The above approach is extremely useful, but may suffer from compromised local accu-

racy when considering a wide spectrum of frequency range. This especially happens while

analyzing periodic structures for extremely low frequency inputs. To address this issue, we

propose a physics-inspired meta learning: dual-step training approach that uses transfer

learning [117] and a custom loss function which we define to include the effective tangent

stiffness information during the optimization process. This custom loss function, which we

call the tangent loss is given in Eqn. 3.6, where D(z(t)) = zt+1 − zt is a mathematical

operation applied on the input and output feature sequences and n is the number of training

samples.

ETMSE =
1

s

s∑
j

(Df o
j −Df p

j)
2

(Duj)2
(3.6)

We illustrate this approach in Fig. 3.7 wherein the left side shows the first or the source

step and the right side is the second or target step. Typically, transfer learning is employed

for repurposing the knowledge learned in the source model to learn a new task (differ-

ent data and/or network architecture) that falls within a similar domain. This is not the

case in our approach. We use the concept of transfer learning in the sense that the knowl-

edge learned during source training is used as a starting point in target training. However,

the network architecture and the training data remains unchanged through both the steps.

More specifically, two modifications are made in the target training: (1) the loss metric

which drives the optimization process is changed from MSE loss to a custom loss (Ec) that
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includes MSE loss and tangent loss given by:

Ec = α(EMSE) + (1− α)(ETMSE) (3.7)

where α is a scaling parameter used to ensure that both the metrics have comparable orders

of magnitude, and (2) only the dense layer IPs are kept available to the optimization for

fine-tuning. In other words, all the information learnt by the LSTM layer/s during source

training is unchanged during target training. Hence, the tangent loss is used to help the

dense layers represent the mathematical transformations in a better fashion. We show the

benefit of using the dual step training framework by comparing the improvement in the loss

function obtained during training in Fig. 3.8. We can observe that when using a 1-step ap-

proach, the loss function saturates after 500 epochs whereas for the 2-step (dual) approach

the loss function keeps decreasing. This in-turn results in a decrease in the prediction errors

and an increased model accuracy.

Figure 3.7: Dual-step training framework

It is important to mention that, the overall sample set is split into a training and a test

set. During training the predictions for inputs in the test set (monitored as validation loss)
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Figure 3.8: Loss function comparison for 1-step and 2-step training approach

are used to validate the current state of the network. The proportion of this split is typically

10-20% depending on the size and distribution of the overall set. We use a 20% split for

this work, implying that 80% samples are used for training and 20% for validation. Note

that, we also perform feature scaling on the sample data before training to allow a smooth

and relatively fast gradient descent based optimization used by the neural network. To do

so, we utilize the standardization technique where within each feature (input and output),

values are normalized by their corresponding standard deviation as explained in Sec. 2.3.2.

Once trained, the model performance is evaluated using the validation loss, as this loss

is computed for inputs unseen by the model during training. It is worth mentioning that

the model architecture also plays an important role in the obtained model accuracy. To

study the effect of model architecture, we conduct a sensitivity analysis. In this analysis,

we compare the minimum or best validation loss obtained for different architectures as

shown in Fig. 3.9 for the considered heterogeneous unit cell over both training steps. Each

model architecture is trained for 1000 epochs in the source step followed by another 2000

epochs in the target step. However, in order to avoid overfitting of the model, we impose an

early stopping training condition. This condition allows us to stop training when the model

performance stops improving for the validation set and improves for the training set, by

defining a patience parameter. For the purpose of all cases in this Chapter, we use a patience

of 20, which implies that the training is stopped as soon as 20 iterations pass wherein the
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validation loss doesn’t improve. If such a situation does not arise during training, the

optimization process continues through the entire amount of specified epochs. Hence, we

obtain the minimum validation loss until the training is either stopped or finished. Further,

we test for architectures by not only varying the number of neurons in each layer, but also

the number of layers. In Fig. 3.9, LSTM layers are represented by L and dense layers

by D. So, the case L1D1 implies, that the architecture consists of one LSTM layer and

1 dense layer excluding the output dense layer. We consider cases such that the number

of dense layers is less than or equal to LSTM layers (D# ≤ L#), since the purpose of

these layers is to improve local resolution for the information already learnt by the LSTM

layers. Therefore, an excessive number of such layers is not required and if used may lead

to over-representation of the model wherein some neurons may not even get activated.

Figure 3.9: Network architecture sensitivity

We observe that, in general, adding a single dense layer leads to a better representation

of the unseen data when compared to training only with LSTM layers. Also, an increase in

the number of neurons in each layer improves the validation loss. This is typical, because

less number of neurons implies less number of IPs are available to represent the input-

output mapping. On the other hand, for cases with more neurons and more layers such as

L2D2 with 200 neurons, a relatively higher loss is obtained. This can be attributed to the fact

that a more complex architecture typically needs more iterations for improvement (since
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the convergence of IPs is slower) or that the framework detected overfitting and training

was interrupted as explained earlier. We also obtain good accuracy with L2D1, but since

the order of loss is similar for L1D1 case, we adopt the latter, which is a simpler model for

implementation.

3.4 Example applications

We illustrate our approach using four examples of application. First, in Sec. 3.4.1, we

explain the practical implementation of the developed surrogate model by utilizing the het-

erogeneous linear elastic 2-D unit cell which we introduced Sec 3.3. Second, we exemplify

the modularity of the proposed approach for studying finite structures with more than one

type of unit cell in Sec. 3.4.2. Then, we illustrate the generality of the approach by con-

sidering a nonlinear unit cell that exhibits hyperelastic behavior in Sec. 3.4.3. Finally, in

Sec. 3.4.4, we demonstrate the case of a stiffened inclusion which can be used to study and

predict bandgaps for finite structures. For all cases, we evaluate the performance of the

surrogate model (DD) when implemented for large structures by comparison with corre-

sponding high fidelity results from FE analysis.

3.4.1 Implementation of large structures via surrogate modeling of unit cell

In this case we consider the 2-D unit cell shown in Fig. 3.4. We develop the surrogate model

using a total of 20000 samples that represent displacement-force relations and the proposed

dual-step training approach as discussed in Sec 3.3. To generate the training samples, FE

analysis is used which employs an explicit time integration scheme on Eqn. 3.8 wherein M

is the mass matrix of the system and üt is the acceleration at time t. Analogously, f t is the

force at time t, which based on our problem are the internal forces. This leads to finding

the displacements at the right ends of all the cells from the computed end forces.

M üt = f t (3.8)
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It is important to note that the developed surrogate unit cell, is trained for displacements and

forces that are represented as sequences in time domain. However, from an implementation

perspective, we want to generalize the cell and simulate a periodic finite structure, such that

only the displacement at the left end of the first cell is prescribed (known apriori). All the

other quantities such as displacement at right ends and end forces are derived quantities.

Consequently, the predictions from the periodic structure consisting of surrogate unit cells

needs to be made at every instant of time. To do so, we use the stateful model of LSTM lay-

ers which decouples the internal state resetting from the updates made to the network IPs.

This allows us to sequentially predict at every time step without losing history information

along with giving us control over the update and reset of internal states. Finally, we use the

predicted forces at each time step to compute the approximate velocity and displacement

at all the nodes (where displacements are not prescribed) using an explicit scheme. These

displacements then serve as an input for the surrogate model in the following time step.

This entire solution scheme is depicted using a flowchart shown in Fig. 3.10.

Surrogate model evaluation for periodic structures

In this section, we analyze the behavior of the surrogate unit cell against input data unseen

by the model during training. To do so, we test the surrogate model with pure harmonic

signals, specifically sinusoidal displacements as test inputs to predict the forces and com-

pute (by integration) displacements at the right end/s. Then, we compare these predictions,

which we denote by data-driven (DD) results to those obtained by running a full FE anal-

ysis for the system. We also compute the results for static condensation to illustrate the

benefits of the proposed approach over the former. We use a 1c (1× 1) and 3c (3× 3) con-

figuration for preliminary validation since the training samples were generated for these

configurations. Further, we conduct analysis across the frequency spectrum of the input

considered, but with pure sinusoidal signals as inputs applied at the two left global nodes

of C1,1 in both directions (e1 and e2). To test and analyze the behavior of the surrogate unit
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cell for a large number of predictions, we use a quantitative measure, namely the average

root mean square error: ÊRMS = ERMS/(nd × nf ), such that nd and nf represent the total

number of global nodes and number of cases (frequencies) at which the model accuracy is

analyzed, and ERMS for an output parameter y(t), is given by:

ERMS =
1

max(yo
t )

√√√√ 1

T

T∑
t=1

(yo
t − yp

t )
2 (3.9)

wherein, yo and yp is output obtained from FE analysis and DD model respectively,

and T is the total time steps for which we conduct the simulation. Note that for all the

simulation results shown in this Chapter, we utilize a T which is atleast two times of that

for which the model was trained. This way, during model evaluation we can ensure that the

error does not propagate with time.

Figure 3.11a shows the errors obtained for predicted forces and the computed displace-

ments in both directions over the entire frequency spectrum. We consider the forces pre-

dicted on all four global (corner) nodes and the displacements at the right end for computing

these errors. We observe good accuracy for the predicted forces and computed displace-

ments since the errors are less than 1%. The errors remain in the same range across the

frequency spectrum which indicates good model learning and representation across the

entire input spectrum. This particularly happens due to the development of the dual-step

approach for training which in a way uses the information of different input frequencies via

the tangent stiffness loss function.

We also analyze accuracy of the unit cell for different loading scenarios as shown in

Fig. 3.11b. In this study, we consider different excitation scenarios, i.e. if the excitation is

only in e1 direction or e2 direction or both. We observe that the model is able to capture

similar accuracy for all cases even though the training has been done by providing input

excitation in both directions at the left end. It is important to emphasize here that these

results enable us to use the unit cell in different loading scenarios and does not restrict us
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to only one kind of application.

(a)

(b)

Figure 3.11: Validation results for single cell over entire frequency spectrum (a) RMS
errors for forces and derived displacements, (b) Cumulative errors for different loading
conditions

Further, we conduct a similar error analysis for a 3c (3×3) configuration. We show the

problem set-up and computed errors in Fig. 3.12a. We apply the excitation in both e1 and

e2 directions on the left global nodes of C1,1 such that the displacements at all other global

nodes are a consequence of this excitation. Similar to the 1c (1× 1) analysis, we show the

ÊRMS for predicted forces and computed displacements across the considered frequency

spectrum. However, in this case due to a large number of global nodes, we also show the

standard deviation of the error using the error bar in Fig. 3.12a. This metric represents the

variance of the output parameter over all the nodes and helps in identifying cases if the

predictions are extremely good or bad for certain nodes with respect to the others. Overall,

we observe errors around 1% for all parameters with no specific trends in errors or error

bars across the frequency spectrum.
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(a)

Figure 3.12: Validation results for 3 × 3 periodic structure over entire frequency spectrum
with problem set-up (left) and displacement and force errors over entire frequency spectrum
(right)

Finally, we analyze the unit cell for a frequency of 50kHz and compare the predicted

results with that of the FEM and static condensation (SC). It is important to note that

the minimum wavelength or highest frequency that can be resolved by SC is 14.5 kHz as

discussed in Sec. 3.3.1. Beyond this frequency the SC method fails to provide accurate dy-

namic predictions. We illustrate this using the case schematic shown in Fig. 3.13. We apply

the excitation at the left end in e1 and e2, and observe the response at the right end, at points

A and B. We perform this analysis using three methods: (1) proposed data-driven (DD),

(2) finite element (FE), and static condensation (SC) methods, results for which are shown

in Fig. 3.14. We can see that the SC method though extremely computationally efficient is

not able to capture the high frequency response and in a way acts as a filter to these high

frequencies. On the other hand, the data-driven method is able to provide displacements

which match well with the high-fidelity FE solution. Further, we also provide quantitative

measures to compare these methods as shown in Fig. 3.15 such that Fig. 3.15a shows the

ratio of the peak amplitudes captured by FE to SC at point A and B and Fig. 3.15b shows

the ÊRMS for displacements in e1 and e2 directions. As observed qualitatively earlier, the

errors are two orders higher in static condensation when compared to the proposed data-

driven method. Hence, we can safely establish that the scope of the proposed method is
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much wider in terms of application.

Figure 3.13: Case definition for comparison of static condensation with proposed method

Exhaustive validation

Despite the fact that unseen input displacements are used to analyze the accuracy, the cases

discussed in the earlier section are expected to perform well and only serve as preliminary

validation. This is because 1c and 3c configurations are used for training. Thus, it is

important to analyze the accuracy of the model for larger structures and configurations. In

this section, we use one such configuration which has 8 unit cells in e1 and 3 unit cells in

e2 direction as shown in Fig. 3.16. Further, instead of applying excitation only on C1,1, we

prescribe a displacement of frequency 50kHz in e1 at the left end of the entire structure, i.e.

at the left global nodes of C1,1, C2,1, and C3,1.

We perform analysis for the described case using the proposed approach and with FEM

and show the wavefield comparison in Fig 3.17. In this figure, we plot the computed dis-

placements for all global nodes along e1 direction for a constant value of position along e2,

i.e for e2 = 0.9m over the considered simulation time of 0.005s. The color on the plot in-

dicates the magnitude of displacement obtained at a particular spatial and temporal instant.

We observe that the analysis using the surrogate model (DD) predicts the wavefield accu-

rately when compared to the FE solution. We also conduct the same analysis using static

condensation [19] method, which in Fig. 3.17c shows its inability to predict an accurate

wavefield. This is attributed to the fact that this method cannot capture frequencies higher
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(a)

(b)

Figure 3.14: Comparison of computed displacements using proposed method (DD), finite
element method (FE), and static condensation (SC) in time domain for (a) Point A and (b)
Point B

than the highest natural frequency of the unit cell obtained as discussed in the previous

paragraphs.

Finally, we show error heatmaps for this case of a large finite structure for all nodes

and degrees of freedom in Fig. 3.18 over randomly selected discrete time instants through

the simulation time. We use nodes to denote the spatial position. There are a total of 36

global nodes for the considered configuration of which 4 nodes are used on the left end

to prescribe displacements. The remaining 32 nodes are shown in Fig. 3.18 such that a

group of 8 nodes represent all the global nodes at a particular value of e2, and e2 ∈ [0, 0.9].

The intensity of heat (color) indicates the magnitude of normalized error (En) between the

predicted (yp(e1, t)) and actual value(ya(e1, t)) of the observed displacement and is given
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(a) (b)

Figure 3.15: Quantitative measures comparing static condensation and proposed method
(a) Ratio of peak amplitudes captured in e1 and e2 displacement (u), (b) Cumulative RMS
error for e1 and e2 displacements (u)

Figure 3.16: Case definition for studying larger periodic structures

by En =

∣∣∣∣ya(e1,t)−yp(e1,t)
ya(e1,t)

∣∣∣∣. These maps are useful to identify signs of error propagation over

spatial and/or temporal domain. For e.g. for the results shown, we can see that the highest

magnitude of errors does not necessarily occur at the last node or end of simulation. We

do observe that the errors are negligible at the start of the simulation for many nodes. This

is because the wavefront has not yet reached those nodes and hence the parameter values

are close to zero. Further, the errors remain bounded within 1.6% for displacements in

both directions. Overall, these results indicate that the surrogate model captures the wave

accurately and the errors also remain bounded in space and time.

To conclude this section, we report some aspects related to the computational perfor-

mance of our approach. Remarkably, the proposed dynamic homogenization approach

provides a comparable solution with respect to FEM at a fraction of the computational
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(a) (b) (c)

Figure 3.17: Wavefield comparison at e2 = 0.9m for displacements in e1 direction using
(a) FE, (b) DD and (c) SC methods

cost. Furthermore, the advantage of the proposed method is even more significant when a

larger model is considered. This is shown in Fig. 3.19a which quantifies the increase of the

relative model size, defined as the ratio of the number of DOFs in the FEM (NFE) and the

DD model (NDD) as a function of the number of unit cells that comprise the finite structure.

Further, in Fig. 3.19b we quantify the computational benefit using the ratio of simulation

time in FEM to the DD model (TFE/TDD), which significantly increases as the number of

comprising cells increase.

It is worth noting that all the examples considered in this Chapter and the comparison

above were performed on the same hardware to enable a consistent comparison. The fi-

nite element simulations as well as data-driven predictions were executed on a GPU-based

machine with an NVIDIA accelerator which allows for parallelization. Overall, we can

see that the DD implementation results in a drastic reduction in the required computational
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(a) (b)

Figure 3.18: Error heat maps on all global nodes other than excited nodes for displacements
in (a) e1 direction, (b) e2 direction

(a) (b)

Figure 3.19: Quantified computational performance (a) Relative model size and (b) Rela-
tive simulation time as a function of unit cells

time. This could be key in enabling efficient computations in time-critical applications,

for example studying large structures for vibration management (as demonstrated in subse-

quent sections).

3.4.2 Study of large arbitrary structures via modular training

Let us first summarize the results from previous sections. For a given unit cell, we first sim-

ulated 20000 input scenarios in the form of displacements via FEM. We then utilized those

results to train the unit cell and develop its surrogate model. Subsequently, we observed

that the surrogate unit cell is able to perform well across the considered frequency spectrum
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(even for very high frequencies where established methods such as static condensation fail

to provide accurate results) and also when used to simulate large finite structures. While

valuable, this on its own provides limited opportunity to explore structures for vibration

management.

Using this section, we demonstrate the modularity of the proposed approach by first

developing a 2-D homogeneous unit cell (without hole) and then implementing it with the

previously developed heterogeneous unit cell to simulate large arbitrary finite structures.

We adopt the same procedure to develop and validate the surrogate model for the homoge-

neous unit cell as discussed in Sec. 3.3. We provide the details and validation results for this

unit cell in the Appendix. Further, we consider two examples of large finite structures that

employ multiple types of unit cells to demonstrate the accuracy and potential applications

of the proposed approach.

Wave propagation in arbitrary structures

We analyze the accuracy of the proposed method for a problem that includes a randomized

arrangement of the two developed 2-D unit cells, i.e. one with a hole (UC1) and one

without (UC2). Let us consider a large finite structure as shown in Fig. 3.20 which has a

square notch. This large structure can be discretized into 14 UC1s and 12 UC2s as shown.

For the purpose of this case, we impose a sinusoidal excitation of 20kHz for a simulation

time of 2ms on the left global nodes of C1,1 in e1 direction. We perform this study using

the proposed method and implementation algorithm discussed in Sec. 3.4.1. The only

difference in the implementation is that, we now need to load and initialize two types of

surrogate unit cells instead of one. Subsequently, we compute the solution for this problem

using FEM and use it to compare the behavior of the proposed approach. Note that while

solving using FEM, the entire spatial domain is disctretized with a local mesh such as the

one shown for different unit cells in Fig. 3.20, whereas the data-driven approach does not

need such a local mesh as that information has already been learnt by the surrogate during
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training.

It is important to emphasize here that this analysis represents a very difficult test for

the surrogate unit cells for various reasons. First, the imposed displacement is given by

a sinusoidal, which is very different than the samples with which it has been trained and

does not belong to the same family of curves. Second, the unit cells have been trained

separately and do not have the experience of being assembled with a different type of

unit cell. Consequently, the dynamic behavior that needs to be predicted is significantly

different and it is expected that the unit cell has learnt the physics-based information that

can enable it to predict forces accurately.

Figure 3.20: Case definition for finite structure with modular unit cells developed separately

In Fig. 3.21 we compare the resulting forces (in e1 and e2 direction) in time domain for

points A and B (denoted in Fig. 3.20) for both the DD and FE models. We can see that there

is an excellent agreement between both models for the entire simulation duration. That said,

what is more interesting here, is that we were able to capture the global behavior without

losing any local information at a fraction of the computational cost. This is because the FE

simulation took 25 hours to complete, while the DD model prediction ended in under 130s.

To present a comprehensive assessment of the goodness of the DD model, we also

study the coefficient of determination denoted as R2 score at each time increment given by

Eq. 2.18. We compute these scores over the entire simulation from which snapshots for

four time increments are shown in Fig. 3.22. It is remarkable that not only the forces have
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(a)

(b)

Figure 3.21: Validation of predicted output parameters (forces in e1 and e2 directions) for
(a) Point A and (b) Point B

a great correlation, but the displacements also match well. For the forces, there is a direct

relationship with how well the surrogate unit cell is performing in the simulation since it

has been trained for that. On the other hand for the displacements, there is no explicit

relationship as they are derived quantities from the predicted forces (displacements in the

next time step are dictated by the corresponding force prediction within the structure).

Furthermore to summarize the goodness of the prediction through the entire simulation

and not just for specific time instants, we compute the R2 score for each output parameter,

for every time instant, and for all the global nodes. We show these results in Fig. 3.23,

wherein we can see that the R2 score is always greater than 99%. These plots provide an

overall estimate of how good the DD model can predict the solution at every time step.
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(a) (b)

(c) (d)

Figure 3.23: Cumulative R2 scores over simulation time for all global nodes for (a) Pre-
dicted force in e1 direction, (b) Predicted force in e2 direction, (c) Computed displacement
in e1 direction and (d) Computed displacement in e2 direction

Moreover, it enables us to visualize if there is any error accumulation during the simulation

(the score will decrease with increase in time steps). Overall, the DD model achieves a

high correlation with the FE model over the entire spatial and temporal domain.

Geometric optimization using surrogate unit cells

In this example, we apply the proposed method for simulating a large structure with differ-

ent arrangements of unit cells to analyze the vibration attenuation ability of each configu-

ration. Such studies are particularly useful in applications which need to have certain geo-

metric/weight characteristics but also need to reduce the transmission of vibrations across
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the structure [118]. Thus, we illustrate the benefits of the proposed method in one of its

potential application areas namely, geometric optimization.

We consider a large structure such as one shown in Fig. 3.24. To consider the effect

of the presence and configuration of holes on vibration attenuation, we consider different

cases by altering the center three columns (grey portion of Fig. 3.24a) of the structure. As

shown in Fig. 3.24b, we consider four cases for this study which have a different number

and arrangement of holes. Further, we impose a sinusoidal excitation of 20kHz on the left

end of C1,1 in the e1 direction and also note the amplitude used, as uinc
e1 . After the prediction,

we monitor the displacement amplitude in e1 direction over time at the right end of C3,9,

and denote it as utran
e1 .

(a)

(b)

Figure 3.24: Case definition illustrating application of proposed method in geometric opti-
mization, (a) Set-up , (b) Four different cases considered for this study

We repeat this study for all four arrangements to analyze the structure’s vibration at-

tenuation capability. A suitable measure of the attenuation is provided by the attenuation

measure A defined as the ratio between the maximum amplitude of the transmitted wave
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to the maximum amplitude of the imposed excitation:

A =
max utran

e1

max uinc
e1

× 100 (3.10)

We show the results for this study in Fig. 3.25. First, for the purpose of completeness we

conduct the same study using FEM and compare the DD model’s performance with it in

Fig. 3.25a. In this plot, we show the RMS error (Eq. 3.9) averaged over all the global nodes

for predicted forces and derived displacements. We observe that the errors are low (< 1%),

indicating the reliability of the proposed DD model. Further, the variance of these errors

(shown as black error bars in Fig. 3.25a), indicate a similar order of error across the entire

finite structure. More interestingly, we can observe the attenuation measure for the four

cases considered in Fig. 3.25b. The results indicate that Case D has the lowest value of

A when compared to other three cases, which means that Case D will transmit only 60%

of the incident wave. Though there might be better and more cases that may give a lower

A value, based on the considered arrangements, the proposed method provides an efficient

way (each case takes 142s using DD model vs. an average of 22hrs using FE model) to

study different cases for vibration management in finite structures.

(a) (b)

Figure 3.25: Results for geometric optimization case, (a) Accuracy with respect to high-
fidelity FE solution, (b) Attenuation measure for different cases
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3.4.3 Application to a nonlinear problem

When problems become nonlinear, there are not many alternatives to FEM for studying the

dynamic behavior of finite structures. This is primarily because of the fact that the stiffness

of the unit cell and consequently the overall structure evolves with time and is history-

dependent. To this effect, our approach presents an efficient way to analyze such structures

as it is not limited to a particular type of structure or nonlinearity. In this example, we

demonstrate this capability of our approach using a 2-D unit cell that follows a hyperelastic

material model that entails material nonlinearity. We adopt the procedure described in

Sec. 3.3 to develop a surrogate model for the hyperelastic unit cell, then utilize it to form

large finite structures and finally analyze their dynamic behavior and accuracy.

Problem Definition

We consider a homogeneous square 2-D unit cell with an edge length of 0.3m as done

in Sec. 3.4.2, but with a hyperelastic material model to describe their dynamic behavior.

Specifically, we use the Neo-Hookean material model with a strain energy function [119]

given by:

U =
µ

2
(Ī1 − 3) +

κ

2
(J − 1)2 (3.11)

where, µ and κ represent material properties namely, shear and bulk modulus respectively,

and Ī1 = I1J
− 2

3 with I1 being the first invariant of the right Cauchy-Green deformation

tensor. Also, J is the Jacobian of the deformation tensor F and is expressed as det(F ). For

the presented study, we use µ = 0.4MPa [119] and κ/µ = 10 to allow for certain compress-

ibility. To identify the range of the unit cell’s nonlinear behavior and subsequently generate

training samples, we generate material curves for the unit cell as shown in Fig. 3.26. We

obtain these material curves by imposing constant amplitude harmonic signals across the

frequency range and computing the amplitude of displacement at the other end of the unit
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cell. The obtained amplitude is then normalized with the input amplitude. We repeat this

process for different input amplitudes which are depicted as different curves in Fig. 3.26.

Note that, the input amplitude is depicted as the percentage of unit cell dimension (0.3m).

We observe that, the material response is linear till an input amplitude of 0.5%. Beyond that

the material model exhibits significant nonlinearity. Based on these findings, we generate

training input displacements with amplitudes that span in low amplitude ( exhibits linearity

in this regime) and high amplitude ( exhibits nonlinearity in this regime-till 8%) regime for

a frequency range of 200-320Hz. We obtain the input displacements for training using the

wavelet approach described in Sec. 3.3.1, for the identified amplitude and frequency range.

Just like in the previous sections, we generate 2 sequences to represent each DOF for a

global node of the 2-D unit cell.

Figure 3.26: Material curves from implemented hyperelastic model

It is important to ensure a fairly uniform distribution of samples across the selected

frequency and amplitude range. This would lead to a surrogate unit cell that is not biased

towards any range of parameters. We study the sample distribution using a joint plot as

described in Sec. 3.3.1. We show the detailed distribution for 0.1% amplitude samples in

Fig. 3.27 such that each dot in the scatter plot represents one sequence. The correspond-

ing amplitude and frequency distribution are shown on the top and right of the scatter plot

which represent the maximum absolute amplitude and the dominant harmonic of the gener-

ated sequences. We generate 200 samples for each amplitude range (for which distributions
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Figure 3.27: Detailed sample distribution for 0.1% prescribed amplitude

are shown in Fig. 3.28), resulting in a total of 16000 training samples.

Neural network architecture and results

We define the network to use 8 input features which represent displacements for 4 corner

nodes, and the corresponding 8 output features for nodal forces. We train the model using

LSTM layers for history retention and dense layers for local resolution. The dual-step

training framework, explained in Sec. 3.3.2 is implemented with 1 LSTM layer and 1 dense

layer, each having 500 neurons. Note that, this study requires a wider network (more

number of neurons), resulting in more IPs, so that the statistical model can sufficiently

represent the nonlinear relation between the displacements and forces. We also develop an

analogous model for a unit cell with hole by using the same inputs and material model to

study large modular structures with material nonlinearity. As a final note, it is worthwhile

to emphasize that, this study is significantly complex with respect to the development of

the surrogate model due to numerous reasons. This is because, in addition to the reasons
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.28: Sample distributions over selected frequency range for different ranges of
amplitude for x and y displacement (DOF); (a)-(c) Low amplitude range: 0.1%, 0.2%,
0.5% and (d) - (h) High amplitude range: 1%, 2%, 4% ,6%, 8%

that contribute to complexity in the linear elastic unit cell, for this case, due to the highly
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nonlinear material behavior, the data-driven unit cell has to represent a large variation in

its dynamic behavior for a large range of amplitudes and that too for periodic/arbitrary

structures with a higher number of comprising cells.

In order to analyze the prediction accuracy of the model, we first conduct an analysis on

the homogeneous hyperelastic unit cell to generate the material curves shown in Fig. 3.29,

but now using the trained surrogate (data-driven) model. We show these results in Fig. 3.29,

such that the DD model is able to recover the material curves over the entire frequency and

amplitude range. This serves as the first part of the model validation.

Figure 3.29: Validation of developed surrogate model by investigating recovery of material
curve over entire frequency spectrum and amplitude range. Note: The lines indicate the
values obtained from FE simulations and circles indicate computed values from ML pre-
dictions

Next, we compute the ÊRMS using Eq. 3.9 to quantify the goodness of the DD model

with respect to FE model. We perform these studies for a single as well as larger periodic

configurations as shown in Fig. 3.30. We use the validation tests similar to those explained

in Sec. 3.4.1, such that sinusoidal signals are applied in e1 and e2 at the left global nodes

of C1,1 for each configuration. We can observe in Figs. 3.30a and 3.30b that, for both the

unit cells, the ÊRMS is < 5% for forces and < 3% for the displacements. These errors are

relatively higher than the linear elastic unit cell models discussed in Sec. 3.4.1. This is

attributed to the more complex information that the model needs to learn for this case, as

the behavior of the unit cell varies for the same frequency at different amplitudes.
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(a) (b)

(c) (d)

Figure 3.30: Accuracy of developed hyperelastic surrogate models for square unit cells
without (left) and with hole (right): (a,b) Single cell over entire frequency and amplitude
range and (c,d) Periodic structures with larger number of repeating unit cells (UC): 3×3,
5×5 and 10×10

Nonetheless, since the errors are overall less, we establish that the developed models have

good prediction accuracy. As mentioned earlier we also analyze the model behavior when

used to study larger periodic configurations as shown in Figs. 3.30c and 3.30d. We perform

the error analysis for 3-,5- and, 10-cell configurations. In this Figure, we show the errors

computed for each of these configurations using 0.1% (low amplitude: L) and 4% (high

amplitude: H) cases. We observe that the ÊRMS remains below 5%, which proves that
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the error does not propagate when we increase the number of unit cells in the structure.

We also present cumulative results (averaged force prediction errors for all amplitudes and

frequencies in the considered input spectrum) for these cases in the bar plots in Figs. 3.30c

and 3.30d.

Finally, something that is probably relevant in terms of future applications of this ap-

proach, is its capability to estimate the behavior/ wave propagation characteristics for ar-

bitrary large structures. So, we consider a large structure of 3×9 configuration (shown in

Fig. 3.31) comprising of two types of unit cells, both of which exhibit hyperelastic material

behavior. In this study, we apply a sinusoidal excitation on C1,1 at the left end in e1 and

predict the dynamic behavior of the entire structure over a simulation time of 50ms.

Figure 3.31: Case setup for study of large structures with hyperelastic unit cells

Figure 3.32, shows the time domain predictions of forces and computed displacements

at points A and B. We conduct the same analysis twice, once with a low amplitude input

excitation and then with high amplitude. We can see that for both cases, we obtain an

excellent agreement for the output parameters when compared with the FE solution.

Furthermore, to summarize the goodness of the fit over the entire spatial and temporal

domain, we compute the R2 scores using Eq. 2.18 for all global DOFs over the entire

simulation time. We report these scores using Fig. 3.33, which shows that we obtain R2

scores of 96% or higher for this structure for both low and high excitation amplitudes. That

is, the DD model has a high correlation with the FE model and is able to accurately capture
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the nonlinear behavior of the underlying unit cells.

(a) (b)

(c) (d)

Figure 3.32: Validation of computed displacements and predicted forces for (a) Point A
with low excitation amplitude, (b) Point B with low excitation amplitude, (c) Point A with
high excitation amplitude and (d) Point B with high excitation amplitude

To conclude this section, it is important to emphasize on the benefits of the proposed

method. Our method not only addresses an existing gap that exists to simulate the dynamic

behavior of nonlinear unit cells in a computationally efficient manner, it also provides for a

model which is faster by almost three orders of magnitude (750x speedup) when analyzing

large finite nonlinear structures. Thus the proposed approach provides for a simplistic and

drastically efficient approach to analyze problems where alternative homogenization tech-

niques fail due to the continuously evolving stiffness matrix (such as for the case discussed

in this section).
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(a) (b)

Figure 3.33: Cumulative R2 scores over simulation time for all global nodes for computed
displacements (top) and predicted forces (bottom) using (a) low excitation amplitude, (b)
high excitation amplitude

3.4.4 Bandgap studies for 2-D phononic crystal

Extensive research efforts have been devoted to analysis and design of periodic/aperiodic

structures and metamaterials for acoustic wave management. Such structures have inter-

esting characteristics such as but not limited to bandgaps [111, 112, 120] and response

directionality [121]. The dynamic homogenization approach discussed in this chapter pro-

vides for an efficient way to study such phenomena by developing data-driven unit cells.

We exemplify this capability of the proposed approach through this example.
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Problem Definition: 2-D phononic crystal

The unit cell configuration considered in this example is characterized by bandgaps gen-

erated by the periodic modulation of their acoustic impedance by introducing an array of

inclusions within a matrix. These periodic modulations essentially cause the scattering of

waves at wavelengths that are of the order of the characteristic size of the unit cell, which

thereby enables bandgap formations through Bragg scattering [122].

We consider a 2-D square unit cell as shown in Fig. 3.34 with an edge length (L) of 1m

and a circular inclusion at its centre of radius (R) = 0.25. The matrix material is isotropic

and resembles Aluminum with a modulus of elasticity (E) of 69GPa, Poissons ratio (ν)

of 0.33, and density ρ of 2700kg/m3. The material properties used for the inclusions are

theoretical [123] and have an E and ρ which are ten times higher than the Aluminum matrix.

(a) (b)

Figure 3.34: Case definition for 2-D phononic crystal: (a) unit cell schematic and (b) Local
mesh of unit cell with global nodes (red)

To identify the range of the unit cell’s frequency of operation and correspondingly gen-

erate training samples, we evaluate the dispersion properties of a periodic media composed

of the considered unit cell. For this, we obtain the band diagram through the application

of Bloch’s theorem [124, 40] spanning a range of wave vectors of the irreducible Brillouin

zone [125] (two vectors representing the adjacent edges of the unit cell and one vector
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representing the diagonal direction). The band diagram for the considered phononic crys-

tal is shown in Fig. 3.35, wherein the plot shows the relation between the frequency and

wavenumber space. It can be clearly observed that a bandgap exists in the frequency range

of 1600 to 2500 Hz. Thus, we consider a frequency range of 100 to 4000 Hz for sample

generation, to ensure that the unit cell can represent the diverse wave propagation behavior.

Figure 3.35: Case definition for finite structure with modular unit cells developed separately

Training and results

We define the network to use 8 input features which represent displacements for 4 corner

nodes, and the corresponding 8 output features for nodal forces as done for all the other

cases in this chapter. We train the model using LSTM layers for history retention and dense

layers for local resolution. The dual-step training framework, explained in Sec. 3.3.2 is im-

plemented with 1 LSTM layer and 1 dense layer, each having 600 neurons. To analyze the

prediction accuracy of the model, we conduct an extensive study for finite structures sim-

ulated with periodicity in both directions. Further, we validate the developed data-driven

unit cell for the entire frequency range that is considered, including the region where the

bandgap exists. These validation tests are conducted using a similar set-up that is used for
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the unit cells described earlier in this chapter, details for which are provided in Sec. 3.4.1.

Figure 3.36a and 3.36b shows the prediction errors in the form of ÊRMS (Eq. 3.9) for dif-

ferent nodal degrees of freedom for 1c (1 × 1) and 3c (3 × 3) cases. These arrangements

are the ones used for training, and despite being tested against unknown inputs (pure si-

nusoidal excitation used for validation) are expected to perform good. A rigorous test is

performed by considering configurations which are new to the model. We do this by con-

sidering arrangements upto 9-cell which resembles a 9×9 periodic structure. Cumulative

results are shown in Fig. 3.36c for this test. Overall, we observe that the prediction errors

(ÊRMS) remain bounded withing 2% for the predicted forces and 1% for the subsequently

computed displacements. Another interesting observation that can be made is that the stan-

dard deviation of the error (shown as the error bar in Fig. 3.36c) increases as the number

of cells increase. In general, this metric represents the variance of the output parameter

over all the nodes and helps in identifying cases if the predictions are extremely good or

bad for certain nodes with respect to the others. From this perspective, we can say that the

prediction errors get worse as we increase the number of unit cells. However, this is not

true for this case. On close observation, we infer that the increase in variance is due to the

fact that the wave takes significant time to reach the other end of an extremely large struc-

ture. Hence, for much part of the simulation, many nodes have a prediction close to zero

and consequently an analogous negligible error, which when considered with the following

non-negligible errors, leads to higher variances.

More interestingly, we also analyze an arbitrary finite structure to observe the wave

propagation characteristics. For this, we consider a 4 × 9 arrangement of unit cell shown

in Fig. 3.37. We apply a sinusoidal excitation of frequencies ranging from 100 to 4000Hz

in the e1 direction at the left end global nodes of cells C1,1, C2,1, C3,1, and C4,1. To identify

how the wave propagates, after every case we note the maximum amplitude of displace-

ment: yi of vibration obtained at each global node (represented by i) and over the entire

duration of simulation. Analogously, we conduct the same set of studies using FE analysis
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(a) (b)

(c)

Figure 3.36: 2-D phononic crystal validation results over entire frequency spectrum for: (a)
single cell and (b) 3×3 cell arrangement; (c) Cumulative results for large periodic arrange-
ments

in order to test the accuracy of the prediction provided by the data-driven unit cell.

Results for this study are shown in Fig. 3.38 and Fig. 3.39. First, in Fig. 3.38 we show

the normalized error across the frequency spectrum for each global nodes i given by:

Eamp =
yai − ypi

yai
such that y∗i = max|yi| (3.12)

where, yai and ypi are the displacement obtained using FE analysis and DD model re-

spectively. We obtain good agreement between the DD model and FE analysis as the errors

remain bounded under 4% with an average error of 2.5%. Further, we show the plots from

the frequency response study for this case in Fig. 3.39. In these plots, the x-axis represents
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Figure 3.37: Case definition for finite structure to study bandgaps

Figure 3.38: Normalized error in displacement amplitude over entire frequency spectrum

the spatial location of the global node with respect the left end nodes where the excita-

tion is applied and the y-axis represents the discrete values of the frequencies used for the

excitation. The color of the scatter plot essentially represents the amplitude magnitude of

the displacement computed at a particular spatial location and for a particular frequency

case. Moreover, in Fig. 3.39 we also show a comparison between FE and DD approaches

for e2 ∈ [0, 4m]. We can clearly observe that the amplitude of displacement or in other

words the wave, is significantly (by more than an order) lower for the frequencies in the

ranging from 1600 to 2400Hz. This thereby, exhibits that the data-driven unit cell when

used in a finite structure is able to correctly identify regions of bandgaps. Moreover, the
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proposed approach takes less than 200s for each case as compared to 14 hrs taken by FE

analysis. Hence, the proposed approach serves to be useful for efficient studies in the areas

of vibration guiding/isolation.

(a) (b)

(c) (d)

(e)

Figure 3.39: Validation for frequency response obtained using FE analysis (left) and DD
unit cell (right) for finite structure with left end excitation at e2 = (a) 0m, (b) 1m, (c) 2m,
(d) 3m, and (e) 4m

3.5 Parameterized unit cell: More generic unit cell

The examples in the previous section only show the applications of a particular unit cell.

For instance, in Sec. 3.4.2, we show the modularity of the approach such that the proposed

methodology enables us to use separately developed surrogate unit cells together when

simulating a large structure. Though extremely powerful for many applications, such a unit

cell cannot be effectively used when for example, the size of the hole is changing. This
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section addresses this aspect of the problem by parameterizing the unit cell.

For the paramterized unit cell, we assume linear elastic behavior such that the base ge-

ometry is the same as that used in Sec. 3.3.1. But, as introduced earlier, we now want to add

more generality to the same unit cell. To do so, we consider two parameters, namely rota-

tion of the elliptical hole (θ) and the aspect ratio that is the ratio of the minor to major axis

of the elliptical hole (b/a) as show in Fig. 3.40. Thus, such a unit cell enables prediction of

the dynamic behavior for different hole configurations.

Figure 3.40: Parameterized unit cell geometry (a) Base model (P0) (b) Parameterized for
rotation angle (P1), and (c) Parameterized for rotation angle and aspect ratio (P2)

In order to develop a parameterized model, we adopt the wavelet approach and meta

learning approach for obtaining input displacements and model training respectively, as

described in Sec. 3.3. Further, to analyze the effect of adding parameters to the dy-

namic homogenization approach we train three models: 1) Base (P0) model: with 0◦

and b/a = 0.5 (same geometry as Sec. 3.3.1), 2) P1 model: with five rotation angles

(0◦, 45◦, 90◦, 135◦, 180◦) and a fixed b/a ratio of 0.5 used for samples, and 3) P2 model:

with five rotation angles along with three b/a ratios (0.25, 0.5, 0.75). Note that, when we

parameterize the model for the rotation of the hole, we also use the 180◦ case. This config-

uration, though is exactly the same as that of 0◦ in terms of physical behavior, it is needed

for training as it helps the model to perform well beyond θ = 135◦. Hence, essentially,
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now with this model, we can use and make predictions for the unit cell with any randomly

selected hole rotation angle in the range [0◦, 180◦]. For sample generation we use these

different geometry configurations in FE method and obtain the input-output features that

is, displacement-force sequences as explained in Sec. 3.3.1. For model training however,

we make one change. Instead of having 8 features of inputs (displacements) and 8 features

of outputs (forces) as done for the base model in Sec. 3.3.2, we now have 9 input features

for P1 and 10 input features for P2. This is because, we now have an additional feature

resembling the rotation angle in P1 and two additional features of rotation angle and b/a

ratio in P2. The output features (8 in number) do not require any modifications and remain

the same to represent the forces at global nodes of the unit cell.

In order to analyze the prediction accuracy of the parameterized models, we use the

validation tests similar to those explained in Sec. 3.4.1 such that sinusoidal excitation is

applied in e1 and e2 direction at the left global nodes of C1,1 for each configuration. We

obtain an ÊRMS which is < 7.3% for forces and is < 5.5% for the displacements for P1

and correspondingly < 10.1% and 9.2% for P2. These errors are relatively higher than the

linear elastic base unit cell discussed in Sec. 3.4.1. But, it is important to emphasize here

that surrogate model has to learn much more complex information in the parameterized

case. In order to visualize, what these errors actually resemble, we conduct an analysis

for a 3×3 configuration with a random arrangement of holes with different rotations in

Fig. 3.41a and with different rotations and b/a ratios in Fig. 3.41b. The predictions for

these cases are done by surrogate unit cell models P1 and P2 respectively. Figure 3.41 also

shows the comparison of force predictions in e1 and e2 directions for randomly selected

global nodes. Overall we obtain a good agreement in the prediction trends as the models

are able to capture the dynamic behavior over the entire time of the simulation with an

ERMS of 7.01% for forces and 6.42% for displacements for model P1. The corresponding

values for P2 model are 10.45% and 8.77%.

We also study the model architecture sensitivity for this study to analyze the effect of
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(a)

(b)

Figure 3.41: Test samples with random configuration showing prediction quality for (a) P1

model and P2 model

adding parameters to the model. We perform this study in the same manner as done for

the base case in Sec. 3.3.2 along with an early stopping patience parameter of 20 to avoid

overfitting. Also, note that, since we obtained the best validation loss for the L1D1 case

(1 LSTM layer and 1 Dense layer) in Sec. 3.3.2, we use the same for training the param-

eterized models. However, we observe sensitivity of the model by varying the neurons in

each layer. The results of the sensitivity study are shown in Fig 3.42 which enables us to

make helpful observations. Firstly, we observe that in general, an increase in the number

of neurons in each layer improves the validation loss. This is typical, because less num-

ber of neurons implies less number of IPs that are available to represent the input-output
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(a) (b)

Figure 3.42: Architecture studies for parameterized unit cells (a) Validation loss versus
number of neurons and (b) Averaged prediction errors for P0, P1, and P2.

mapping. And as we keep increasing the neurons, we start to observe an increase in val-

idation loss. This happens due to the fact that a more complex architecture usually needs

more iterations for improvement or that the framework detected overfitting due to which

training was interrupted. Thus, essentially we observe a bucket formation for the loss due

to this decrease and subsequent increase in validation loss. Perhaps more interestingly, we

observe (Fig. 3.42a) that this loss bucket tends to move left from P0 model to P1 and then

to P2. This basically implies that the neurons requirement is decreasing as we add parame-

ters. This is counter-intuitive. However, we attribute this to the fact that since the number

of samples significantly increase from P0 model to P2 model (12 times), the network is able

to perform better inspite of the presence of the parameter effect. Hence, we can reason-

ably establish that a trade-off exists between the parameter effect on the results versus the

samples needed to capture the effect. A deeper study into this aspect can potentially aid in

parameterizing the unit cell in multiple ways in an effective manner. Finally, we observe

that the best validation loss obtained for all models are in a similar order of O(10−4). But

it is important to analyse whether this observation translated to prediction accuracy. We

do this in Fig. 3.42b which shows the best validation loss using the left y-axis and ÊRMS

for an unseen test sample with a 3×3 configuration of the base unit cell. We can see that

the prediction errors increase with the addition of parameters as even though the sequence
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trend may be well captured by the model, the point-to-point accuracy may differ. That

said, we observe that the prediction errors become twice (2×) in P1 when compared to the

base unit cell P0. But, subsequently the errors show a trend to saturate as adding the next

parameter only leads to 1.1× increase in prediction errors. Thus overall, these statistical

studies enable many possible opportunities to parameterize the unit cell without sacrificing

much accuracy.

(a)

(b)

Figure 3.43: Prediction accuracy for parameterized model for unseen rotations: (a) Forces
and displacement comparison with FE results for node n* in 30◦ hole configuration and (b)
Cumulative results for multiple unseen angles compared with a seen angle 45◦.

As a final example, we also analyze whether the trained unit cell is able to capture be-

havior of parameter values of a particular parameter for which it is not specifically trained.

For this, we use the trained P1 model, and check its accuracy for a 1×1 configuration

for θ = 30◦, 60◦, 120◦, and 150◦. Note that, during training we provided samples for
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θ = 0◦, 45◦, 90◦, 135◦, 180◦ and hence, the considered angles for this example are unseen

by the model before. We show time domain results for 30◦ for the forces and displacements

at the global node n* of the unit cell in Fig. 3.43a. The results show good prediction ac-

curacy for the forces and give an ERMS of 7.12% and 7.41% for forces and displacements

respectively. Further, we also show ERMS values obtained for all the other considered un-

seen angles in Fig. 3.43b and also show the errors for the 45◦ (seen rotation angle by the

model). We can see that the errors are in the same range as the 45◦ case and do no show

any specific trends for the unseen rotation angles. This thereby establishes, that this model

can predict well for all angles of rotation for the hole. Therefore, the model serves as a very

important application of the presented methodology, as now we can train a single model

with different geometric parameters, which not only perform well at certain specific values

of that parameter, but also for all the unseen parameter values across the seen parameter

value range.
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CHAPTER IV

CONCLUSION

4.1 Summary and conclusions

Using ML techniques, a framework to develop dimensionally-reduced surrogate models,

or smart parts (SPs), with the objective to establish a direct relationship between the input-

output parameters of a component exhibiting nonlinearities and history-dependent behavior

is established through this thesis. This can be done since, for most cases, the behavior of

a component in an assembly can be represented by simple nonlinear relations at special

locations such as interface nodes and appropriate kinematic constraints. Moreover, we use

high-fidelity finite element data to train an ANN, thus ensuring a well-represented domain

and the reliability of data used.

First, we defined and discussed the smart parts approach. Specifically, we demonstrated

its implementation and performance via two exemplary engineering applications. In the

first one, we simulated the dynamic response of a helicopter pitch link which develops

localized damage in the form of localized plasticity. In the second one, we developed a

SP to simulate the quasistatic operation of a lap-joint including contact nonlinearity. We

also implemented an assembly of two lap-joints with appropriate constraints to illustrate

the procedure of systematically integrating a SP into larger assemblies. For both cases,

we also provide means to monitor localized parameters such as internal damage, which is

crucial in predicting or identifying structural failure and is usually lost in traditional model

order reduction techniques. We assessed the performance of a SP by comparison with
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results obtained from high-fidelity simulations. Our findings indicate that the SPs produce

predictions without sacrificing much accuracy. Finally, we quantified the computational

benefit associated with this approach and observed that SPs are able to produce predictions

in a few seconds as compared to a few hours required by traditional methods.

We also proposed ways to improve the efficiency and performance of the developed

SP. First, we trained the SP using a corotational reference frame by removing rigid body

displacements. This guarantees the SP to be frame indifferent and hence can be used in

different orientations without retraining it. Then we enforced conservation of linear and

angular momentum on the SP to avoid violation of physical laws by using equilibrium con-

ditions on the component and reducing the computational error. Depending on the applica-

tion different types of physical constraints such as conservation of energy may be applied

to improve the accuracy of a model. Second, for cases when the model is operational for

several hours, we enhanced the model by using a bi-network approach. This employed

a data-driven switch model that decides when to trigger the following damage evolution

model, thereby reducing the prediction error and computational time.

We then extended the smart parts approach to study dynamic (wave propagation) prob-

lems. For this, we proposed a method for predicting the dynamic response of large arbitrary

heterogeneous structures that leverages state-of-the-art machine learning techniques to de-

velop a surrogate model for a unit cell and effectively homogenize it. Such a surrogate

model represents the global behavior of the unit cell while preserving the local informa-

tion and/or the effect of heterogeneities on the global behavior. To generate our model,

we proposed a novel training scheme inspired from meta-learning that expands the opera-

tional frequency spectrum and improves the prediction resolution of the unit cell by using

information pertaining to tangent stiffness of the unit cell during training. We made no

assumptions about the type of material or heterogeneities in the unit cell as demonstrated

through multiple examples. We also illustrated how to implement a surrogate unit cell

in large arbitrary structures to study wave propagation phenomena. We demonstrated our

114



method’s ability by comparing its results with those obtained via high-fidelity finite ele-

ment simulations. Overall, we established that using surrogate unit cells can dramatically

boost the computational efficiency and simplicity to analyze dynamic behavior of large

structures.

We also showed how the developed smart parts can be used to enable further studies

and applications. For this, we firstly used the smart part of the helicopter pitch link and

conducted localized damage sensitivity investigations. Using these studies, we proposed a

novel metric: the integrity ratio that can be used to improve existing life extending control

schemes and guide the development of future ones. Second, we showed that bandgap pre-

diction and geometric optimization can be performed in an efficient manner by developing

surrogate models that represent a unit cell’s dynamic behavior. And finally, we showed

that the dynamic homogenization method can be extended to parameterize the unit cell too

represent a range of geometric parameters such as the rotation angle of the elliptical hole

and the aspect ratio of the hole.

In summary, our results show great promise in using machine learning techniques for

model order reduction as applied to mechanical parts and assemblies. Smart parts show a

good compromise of computational efficiency and accuracy, which can be further enhanced

when knowledge about physics can be directly enforced instead of requiring the neural

networks to learn them.

4.2 Contributions

The research presented in this thesis provides the following contributions to the state-of-

the-art:

1. A novel approach to represent the structural behavior of a component that exhibits

nonlinear or history-dependent behavior using advanced machine learning techniques.

Such an approach enables real-time estimations of interested parameters. This has

not been addressed by any modeling approach up to date.
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2. An approach to represent dynamic behavior of large heterogeneous structures by

developing surrogate model for a single unit cell. This approach is versatile and can

be used for different types of unit cells as shown for: linear, nonlinear (hyperelastic),

homogeneous, and heterogeneous unit cells.

3. A framework to simulate mechanical assemblies in an efficient manner. This can

be done for nonlinear and history-dependent problems with the corresponding smart

parts. Moreover, dynamic or wave propagation problems can also be simulated for

large arbitrary finite structures with modular unit cells. That is, the unit cells are

trained separately and then used in conjunction to study the dynamic behavior of

arbitrary structures.

4. A novel training methodology that is inspired from meta learning and uses a custom

loss function and transfer learning for dynamic problems. This method helps the unit

cell learn effectively in situations when a broad frequency spectrum of inputs need to

be included by using tangent stiffness in the loss function definition and a dual-step

training process.

5. Numerous enhancements are presented to be used in conjunction with the developed

smart part. Such enhancements help in improving the proposed approach in two

ways:

(a) Improve the accuracy and precision of the model:

i. Introduced conservation principles on predicted forces in the implementa-

tion algorithm

ii. Developed a bi-network approach

(a) Improve the capability and application domain of the model by:

i. Developed a wavelet-based method for obtaining low noise-signal samples

and established the minimum number of cells that are needed in training
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for general representation of a unit cell

ii. Extended corotational formulation to induce frame indifference for 3D

components

6. Relevant engineering implementations of smart parts to enable and expand the scope

of further studies:

(a) Established a novel metric, the integrity ratio to enable less conservative strate-

gies for extending the operational life of helicopter components.

(b) Predicted bandgaps and conducted vibration attenuation studies for geometric

optimization and/or vibration management in large structures.

(c) Parameterize the surrogate unit cell to make the unit cell more generic in terms

of geometric parameters.

4.3 Future Directions

There are several interesting research avenues, at multiple fronts, that can be pursued in the

future. Some of the key areas related to this thesis are:

1. Despite the enforcement of conservation of linear and angular momentum during

predictions, there might still be certain physical laws that may get violated depending

on the application. Thus, future research in this direction to study how network

architecture could be exploited to satisfy further constraints can be valuable.

2. A deeper investigation into smart parts/ unit cells which transcend a domain of ge-

ometries or materials, thereby making the smart part fully/ partially independent of

these parameters by leveraging the dependencies of different parameters on training

statistics and prediction accuracy.

3. Investigating and characterizing the stochastic nature of network architecture for dif-

ferent types of structural analysis based on the mathematical representation of the
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training features.

4. Investigating the use of the smart parts approach for multiphysics applications to

obtain approximate but deterministic relations for coupled models.
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APPENDIX A

SURROGATE MODEL FOR HOMOGENEOUS 2D UNIT CELL

In this section, we provide the details and validation studies pertaining to the 2D unit cell

without hole. We use the same geometric description and material properties as that used

for the heterogeneous unit cell in Sec. 3.3.1, but remove the hole from the unit cell. How-

ever, since this unit cell does not include a hole, we obtain converged results with relatively

lesser number of elements. We obtain the finalized mesh by conducting numerical analy-

sis for different local dicretizations and consequently computing the error norm given by

Eqn. 3.2 as shown in Fig. 1.1. For this unit cell, we finalize Mesh D which has 1012 nodes

and an EU = 0.1%.

(a) (b)

Figure 1.1: Model development for homogeneous 2D square unit cell (a) Unit cell
schematic (b) Mesh convergence for unit cell

Further, we use the same input displacements as those used in Sec. 3.3.1 to generate

the training samples. However, it is important to note that this is not a requirement for the
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proposed approach and a different set of input displacements could also be used. That said,

since we want to use this unit cell in conjunction with the previously developed heteroge-

neous unit cell, we must ensure that there is atleast some overlap between their respective

frequency spectrums. This is because the operational frequency range for a unit cell is

determined based on the training samples used to develop it. Finally, we adopt the same

procedure for training this unit cell as discussed in Sec. 3.3.2 and obtain a model using

L1D1 architecture and 100 neurons with the best performance (minimum validation loss).

(a)

(b)

Figure 1.2: Validation results for homogeneous unit cell (a) single cell over entire frequency
and (b) 3 × 3 periodic structure over entire frequency spectrum with problem set-up (left)
and displacement and force errors over entire frequency spectrum (right)

Once trained, we conduct a validation study to determine the accuracy of the developed

unit cell. We use a 1c (1 × 1) and 3c (3 × 3) configuration for validation. To remain con-

sistent, we use the same problem set-up for validation as used for preliminary validation in

Sec. 3.4.1 such that the left end global nodes of C1,1 are excited in directions e1 and e2. We

show the cumulative results for 1c case in Fig. 1.2a and 3c case in Fig. 1.2b We observe that
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the unit cell is able to perform well across the entire frequency spectrum and for different

loading conditions. We obtain errors which are below 1% for all cases, indicating good

accuracy. In fact, the errors are in the same range as that obtained for the heterogeneous

unit cell (Sec. 3.4.1). Overall, such an accurate model enables its use with other unit cells

and hence for numerous applications.
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