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Abstract 

Programming a robot to perform tasks requires training that is 
beyond the skill level of most individuals. To address this 
issue, we focus on developing a method that identifies 
keywords used to convey task knowledge among people and a 
framework that uses these keywords as conditions for 
knowledge acquisition by the robot learner. The methodology 
includes generalizing task modeling and providing a robot 
learner the ability to learn and improve its skills through 
accumulated experience gained from interaction with humans. 
More specifically, the aim of this research addresses the 
issues of knowledge encoding, acquisition, and retrieval 
through interactive instance-based learning (IIBL). In 
interaction studies, the benefit of using such a robot learner is 
in promoting social behaviors that results from the participant 
taking on an active role as teacher. Our recent experiment 
with 33 participants, including 19 typically developing 
children, and a pilot study with two children with autism 
spectrum disorder showed that IIBL provides a framework for 
designing an effective robot learner, and that the robot learner 
successfully increases the amount of social interactions 
initiated by the participants. 

Introduction 
For robots to become true “personal companions”, non-expert 
users should be able to customize their robot’s skills or teach new 
ones intuitively. In this work, our motivation is to minimize the 
difficulties clinicians face when using robots as therapy 
mediators. Until now, most robot therapeutic devices were 
teleoperated, exhibited simple reactive behaviors, or were limited 
to conducting a single task. With our proposed robot learner, non-
expert individuals may train their robots to conduct tasks such as 
addressing each patient’s individual needs. A secondary benefit is 
the ability to foster social interaction through child-robot play 
interaction that is directed by the child, thus moving towards 
interventions that can be translated outside of the clinical setting 
(Gartner et al. 1971). To enable this setting, we utilize an 
interactive instance-based learning (IIBL) method. In instance-
based learning, “snapshots” or instances of experience 
representing the task-feature space and resulting actions are stored 
as state-action pairs for later retrieval (Aha et al. 1991). A 
knowledge base is constructed from these pairs by addressing the 
methods of encoding a given instance by reducing the task-feature 
space based on input from the user, acquiring instances that auto-
populate the data base through encoding user demonstrations, and 
retrieving instances by determining the optimal similarity measure 
between itself and the nearest instances of the query. 

The overarching research objectives are: 1) To ensure the 
IIBL framework effectively models tasks by utilizing 
demonstrations from the user even when an explicit model of the 

problem domain is difficult to elicit and is not amenable to 
complete mathematical modeling, 2) To validate that the robot's 
learning behavior and performance positively impacts the length 
of interaction and the social behavior of the user. In order to 
support these objectives, we measure how well and efficiently the 
robot learns a task from human demonstration, measure the 
occurrences and the length of initiated interactions, analyze the 
emerging social behavior from the user depending on the robot's 
learning strategies, and conduct a post-experiment survey to 
evaluate user experience (Park 2014). 

 

Interactive Instance-based Learning 
Instance-based learning methods store training instances in a raw 
form and postpone generalization until the instance-query time. 
When a new instance is introduced, its classification relies on the 
stored data and the similarity computed between the new and 
previous instances (Kolodner 1991). In this work, we combine 
interactive methods to address the hindrances of automating the 
processes of instance encoding, acquisition, and retrieval in 
instance-based learning methods. Some previous efforts have used 
learning from demonstration techniques (Ontañón et al. 2009) and 
crowdsourcing (Breazeal et al. 2013) to gather instances, but the 
acquisition process was separated from the actual system 
deployment. Since instance-based methods respond to a given 
query by combining information from stored data, the quality of 
retrieved instances depends on how well the system’s knowledge 
base covers the task space. Though there are various ways to 
measure the quality of retrieval results, querying the system for 
better instances around the query instance, especially in real time, 
is a complex problem. With our proposed approach, the teacher is 
able to interrupt the robot's behavior and provide necessary 
instances at the moment learning is taking place, thus providing a 
means to utilize human input to cover the task space while 
continuously engaging the participant in the task. Within the IIBL 
framework, the user inputs keywords that they use to convey task 
knowledge to another person, such as object properties. These 
keywords, i.e., task features, are chosen based on the physical and 
perceptual capabilities of the robot. The features are associated 
with attributes such as data types, extraction and distance-measure 
methods. The nature of this instance-based method thus makes it 
possible for the system to accommodate different types and 
representations of task features and provides a framework for 
general task modeling. 

 

Robot Learner Experiments 
 
We have applied the proposed IIBL framework during our recent 
Angry Darwin Expedition, in which our robot, Darwin, learned to 



play a strategic game “Angry Birds” on a shared tablet workspace 
from various users (Figure 1). During a six-month period, over 
130 people interacted with our robot learner including over 90 
children, among which 33 participated in the formal experiment. 
The experiment consisted of two sessions that were recorded and 
post analyzed. In Session I, the participant played the game, 
without the robot learner, while the experimenter was present. In 
Session II, the participant was asked to teach the robot learner 
how to play the game. Session II consisted of two sub-sessions in 
which participants interacted with the robot learner using one of 
three learning strategies in varying orders. The instance-retrieval 
methods used by the robot were: Robot A (proposed IIBL), Robot 
B (traditional instance-based method using k-NN), and Robot C 
(random instance retrieval within the knowledge base). The social 
behaviors initiated by the participants were measured as the length 
of time when eye contact was made or when vocal- or gestural- 
interaction behaviors were observed. The aim of the interaction 
study was to compare the emergence of social behavior initiated 
by the participants when interacting with a person or a robot 
learner. We also conducted a pilot study with two children 
diagnosed with autism spectrum disorder (ASD), and compared 
their outcomes with a group of 19 typically developing children.  

The average number of demonstrations (k = 4) given to each 
robot was: Robot A (m= 21.17, σ=6.44), Robot B (m= 29.17, σ
=10.25), and Robot C (m= 24.15, σ =8.72). On average, 
participants provided 38% less demonstrations to Robot A than 
Robot B, while the average performance of Robot A was still 
better than that of Robot B by 28.48%. If a sufficient number of 
cases populate the problem space, Robot A and Robot B’s 
performance will eventually converge. However, exploring all 
possible problems will increase the teacher’s workload 
significantly. In the questionnaire asking when the participants 
stopped teaching each robot, majority of the participants answered 
“when Darwin clears each level several times” for Robot A (64%) 
and Robot B (61%), and “when Darwin stopped improving” for 
Robot C (52%). Participants also spent almost twice (90%) more 
time with Robot B than Robot A, and 26% more time with Robot 
B than Robot C. Participants spent more time instructing the robot 
when the robot was improving slower (Robot B), but quickly lost 
interest when the robot wasn’t responding to the demonstrations 
(Robot C). Through these results, we observed that the 

participant’s behavior changes, e.g., the amount of interaction and 
when to end an interaction, based on the robot learner’s ability 
and performance. 

In general, it was observed that the participants utilized other 
forms of natural interactions though the robot only could learn 
from physical demonstrations of the task. These interactions were 
then categorized into instructive and non-instructive interactions. 
On average, participants spent 5 minutes and 42 seconds with the 
experimenter and 24 minutes and 5 seconds with the robot playing 
the game, of which participants used 3.22% of the time initiating 
interactions with the experimenter and 34.81% with the robot 
learner. On a 5-point Likert scale, from strongly disagree (1) to 
strongly agree (5), post-experiment survey reports that the 
participants felt their robot was socially interacting with them 
(m=4.7); was socially communicating with them (m=3.72); 
thought Darwin was learning from them (m=4.33) similar to their 
friends does (m=4.01); and thought the robot enhanced their 
overall experience with the task (m=4.8). 
 From the pilot study with two children with ASD, the first 
participant (male, age 9) demonstrated close to average 
occurrences of social behaviors when the robot was present 
compared to the typically developing group. In Session I, the child 
initiated an interaction with the experimenter, which was 45% of 
the average time of the comparison group. In Session II, the 
amount of time spent initiating social behaviors toward the robot 
was 91% of that of the comparison group. The observed behaviors 
were: eye contact (28.23%), gestural interaction (12.17%), and 
vocal interaction (28.90%). The second subject (male, age 6) 
eagerly participated in the task but did not initiate any interaction 
with the experimenter or the robot. He spent most of the session 
observing the robot and murmuring to himself, but also talking to 
his parent about the robot (28.14%). Though his interaction 
wasn’t aiming toward the robot, the robot’s behavior mediated a 
conversation with his parent and demonstrated 73% of the average 
time of the comparison group. 
 

Future work 
As part of our future work, we are conducting research with 
children with cognitive development delays in collaboration with 
a play-therapy center. We are studying how the aspects of the 
robot (movement, sound, emotion expression) affect interaction. 
Findings from these studies will be reflected in a new robot 
design. We are also planning an evaluation with clinicians in 
regards to the feature-encoding interface. This evaluation will 
focus on addressing the issues of conveying the physical and 
perceptual capabilities of a robot platform to non-experts.  
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Figure 1. Angry Darwin Expedition was an effort to validate the 
capability of a robot learner in various interaction studies. The 
participants teach our robot, Angry Darwin, to play a game on a tablet 
while initiating social interactions as a teacher.  
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