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SUMMARY

Bn RI, ladder network is an electric circuit of the form shown in
the accompanying sketch, where Rn and rn denote resistances and Ln and

ln denote inductances. Such a network is called half-infinite if it has

n:I-l

a first loop but no last loop. If no voltage nor current sources are
present, the differential equations which apply to the initial-value

problem are a countable system of first-order ordinary differential equa-

tions with constant coefficients:

[(20+LO)D+r0+ RO]xo- (J&OD~i-ro):n(l =0 ,

-(2 D+r

n~-1 n-l)xn-li-[(gn

+IL + + +R +
-1 Ln Rn)D (rn—l Rn rn)]xn

- - >
(IlnD+rn)xn+l o , nzl ,
where D~d/dt. A significant feature of these equations is that each
{(except the first) contains the derivatives of three successive loop
currents; thus the equations are coupled both through the loop currents

and through their derivatives.
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The cbject of this investigation is to solve these differential
equations (subject to a finite number of non-zero initial conditions) for
various values of the circuit parameters. A solution is defined as a
seqguence {xn(t)}:=o of differentiable functions which satisfy the pre-
scribed initial conditions and reduce the differential equations to
identities in t on t>0. For prescribed values of the circuit parameters
and for finitely many prescribed non-zero initial conditions, there are
usually many solutions; hence, additional conditions (suggested by the
behavior of finite systems) are imposed which are sufficient to guarantee
unigueness.

The main procedure used to obtain a solution is an extension of
the method of generalized eigenfunctions applicable to the finite system
consisting of the first N lcops of the corresponding infinite system. The
procedure involves two steps. First, the coefficients of the differential
system are used to generate a sequence of rational fractions {Wn(x)/

W5

(4 .+L +2 33} such that {e"t-wn(x)/(gn

1.
+L +2 ) ¢} reduces the
n-1 "n n n=o n ' n n=o

-1

differential eguations to identities in t for each real x. Thus, the,

i .
+L +
sequence {Tn(x)/(ﬁn L En) }n=o may be thought of as an eigenvector

-1
{corresponding to the eigenvalue x) of the associated algebraic problem.
Secondly, an additional seguence {Wn(x)}:=0 of rational fractions is
generated; and by using superposition and the biorthogonality property
of the two sequences, a solution of the differential equations

- e g

+L . 42.) 2
J 3]

g Tn(X) Wj(X)

xn(t) = Yj(lj_1+Lj+Z.)J

- (g
n

1

[ )1/2
et {ﬂj_
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is constructed which satisfies the initial conditiouns xn(0)=0, n#j,
xj(O)=Y.. Here 8(x) is a suitable inteqrator, the determination of
which is the key to solving a particular problem. Finitely many non-
zero initial conditions may be accommodated by a finite sum on j.

Some technigues for finding integrators are described and are
applied to several examples. These techniques are especially effective
for systems with periodic coefficients, teo which parts of Chapters III
and IV are devoted. Questions concerning the existence of an integrator
are considered.

Many of the calculations involved in various stages of the work

are relegated to appendices.



CHAPTER I

INTRODUCTION

An RL ladder network is an electric circuit of the form shown in
Figure 1. Such a network is called half-infinite if it has a first loop
but no last loop. The differential equations which apply to the initial-
value problem are a countable system of first-order ordinary differential

equations with constant coefficients:

[(L+L)D + r_ + R Ix_(t) -~ (& D+r )x, (t) = O,
_(Rn_lD+rn_l)xn_l(t) + [(Rn_l+Ln+2n)D + (rn—fih+rn)]xn(t) (1.1)

—(RnD+rn)xn+l(t) =0 , n2} , (D~ d/t) ,

where xn(t), nz0, denotes the nth loop current. The object of this in-~
vestigation is to solve these differential equations (subject to a finite
number of non-zerco initial conditions) for various values of the circuit
parameters. A solution is defined as a sequence {xn(t)}:=0 of differenti-
able functions which satisfy the prescribed initial conditions and reduce
the differential equations (1.1} to identities in t on t>0.

Previous workers [3,8,10,11] in infinite differentizl systems have

used a technigue in which a sclution of the form

xn(t) = yn(x)u(x,t) ¢ n20 (1.2)
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n+l

Figure 1. A Half~-Infinite RL Network



is sought, where yn(x) is a polynomial of degree n. The system (1.1)
differs in an important way from those investigated in [3,8,10,11]: the
derivative coupling between successive equations requires that the func-
tions yn(x), n20, be, in general, rational fractions instead of poly-
nomials. More specifically, it is shown in Chapter II, when the
expression (1l.2) is substituted in the system (1.1), that for yn(x) =

L
+ 2 > = i
[(Lo+20)/(£n_l Ln+£n)] Wn(x), nz0, & 0, the Wn(x) satisfy the

-1

relations

bO(x—dO)Tl(x) = (x—ao)Wo(x) ' {1.3a)

(x-d IR {(x}) , n2l1 , {(1.3b)

bn(x_dn)wn+l(x) = (x—an;Wn(x) - bn—l n-1" n-1

where, for convenience, ‘Po(x)= 1, and where an, bn’ and dn' n=0, are
given in (2.2). If dn is independent of n, (l.3a) and (1l.3b}) reduce to

the more familiar relations for polynomials {see [10,11])

BOPl(z) = {z+A0)PO(z) ’ {(1.4a)
B P 412 = (Z+An)Pn(Z) - Bn_an_l(z) , nzl , (1.4b)
4
where z = 1/(x~d )}, ¥ (x) = [(do-ao)/(do—an)] P_(z), n20, and where A_

and Bn' nz0, are obtained from {(2.3). The expressions in (1l.3b) and

{1.4b) are called three-term recurrence relations, and ?n(x), nz2, and
Pn(z), n22, are said to be generated by these relations.
By substituting (1.2} into (1l.1), the dependence of xn(t) on n and

on t is separated. The result is that u(x,t) satisfies one of the



eqguations

ut(x,t) = xu(x,t) ., {(l.5a)

1
ut(z,t) = (E—+ do)u(z,t) ’ (1.5b)

and that the functions Wn(x). nxl, or Pn(z), n>1l, are generated by {(1l.3)

or {l1.4), respectively. 1In [10,11], the orthonormality of the poly-

nomials (see Definition 2.2) Pn(z), nz0, in (1.4) is used to satisfy ini-
tial conditions on the differential system. Thus, if solutions are sought
in the form
= > 1.6
xn(t) Pn(z)U(Z.t) ; n=0 , ( )

satisfying the initial conditions

L{0) = . r
xj( ) YJ

(1.7}
xk(O) =0 , k#fi .
then a seolution to the initial value problem is
o p_(2) Pj(z)
x (t) = vy (R.+d L.) j i jw
n 73 93 Je (R+d L )2 (R,+d L,)2
n on 3 70 ]
« u({z,t)dafz) , n20 , (1.8)

where a(z) is an integrator (see Definition 2.1) for the polynomials



Pn(z), nz0. Since the rational fractions Wn(x), nz0, used in this study
do not in general have the type of corthonormality exhibited by polynomials,
initial conditions on the system (1.1) must often be satisfied different-
ly. 1In such circumstances (to be described later), a second system of

rational fractions {Wn(x)}:_o defined by

W ix) =Y (x) - b ¥, (x} ., (1.9a)
o) o ol

W (x) = -b ¥ {(x) + V¥ (x) - Db ¥
n n-1 n

n n+l(x) . nzl , {1.9b)

n-1

is used. The system {Wn(x)};_o is biorthonormal with respect to the

system {wn(x)}:=o (see Definition 2.4), which means that
J W.{x)¥ (x)dR(x) = 6 . , ~n20, 320 , (1.10)
— J n nj

for some integrator (see Definition 2.3); and now a solution to (1.1)

with the initial conditions given in (1.7) is

™ Wn(x) Wifx)
xp (8 = Yj(ﬁj‘l+Lj+£j) J_w (R .+L +L }nl/2 (2. +L.+L );5
n-1 "n n =1 73 3
» u(x,tYdR(x) , n=0 . (1.11}

Chapter II is concerned with three of the basic areas mentioned
above: reduction of the differential system (1.1} by means of the sub-
stitution (1.2) into the separated equations (1.3} and (1.5a) or (1.4) and (1.5b},

results on finding integrators for systems of polynomials, and results



on finding integrators for systems of rational fractions.

In Chapter III, the results of Chapter II are applied to the so-
lution of some networks in which the coupling branches all have the same
R/L ratio. In such cases the functions Wn(x), nz>0, of (1.3} reduce to
the polynomials of (1.4); so much in this chapter is similar to work done
in [10,11]). The analysis of those systems which have a constant R/L
ratio in the coupling branches but a periodic R/L ratio in the carrier
branches has its mathematical foundations in [4,6). It is of interest
that the integrators for some of the sequences of polynomials in this
chapter are not increasing. While this fact_does not complicate the
task of exhibiting a sclution, it does cause some difficulties in
proving uniqueness, which is considered in Chapter VI.

The results of Chapter II are again applied in Chapter IV, this
time to obtain the solutions of networks in which the coupling branches
have periodic R/L ratios. In these cases, the rational fractions Wn(x),
nz0, appear.

Chapter V investigates what happens when a necessary condition for
the existence of an integrator for the rational fractions Wn(x), nz0, of
(1.3} is not fulfilled. A complete resolution of the problem is not
accomplished. Some examples are given.

One difficulty with the system (1.1) is that it fails to have a
unique solution. In fact, any function in Cl[O,w) satisfying the initial
condition on xo(t) can be used to generate a sclution to the problem by
solving the successive equations of the system for the remaining func-
tions xn(t), nzl.

Chapter VI provides conditions under which a solution is unique.



These conditions are that xn(t), nz0, bhe expansible in a Maclaurin

. (k) o .
series and that each segquence {xn (0)}n=o, kzl, contains a subsequence
which converges to zero. The bulk cf this chapter is concerned with

showing that the solutions generated in the preceding chapters satisfy

these conditions.



CHAPTER II

INTEGRATORS FOR POLYNOMIALS AND RATIONAL FRACTIONS GENERATED

BY SOME THREE-TERM RECURRENCE RELATIONS

Introduction

In Chapter I it was stated that the system (1.1) could be sepa-
rated into the equations (1.3) and (1.5a)or, in some cases, into the
equations (1.4} and (l.5b). The separation procedure is carried out in
this chapter and the parameters an'Iﬁi’dn’zﬁf Bn,nzo, of (1.3) and (1.4)
are defined in terms of the R's and L's of the circuit in Figure 1.
Recall that the reason for this separation is that the biorthonormality
(see Definition 2.4) properties of (1.3) or the orthonormality (see
Definition 2.2) properties of (1.4} can be used to satisfy the initial
conditions on the differential system {(l.1). Various theorems regarding
the existence of these properties are also presented in this chapter.
For (1.4) this is a matter of presenting known results. For {(1.3), the
presentation is considerably more complicated. 1In order to keep the main

lines of thought as uncluttered as possible, the proofs of many of the

lemmas and theorems stated in this chapter are relegated to Appendix A.

Separation of the Differential System

1
1 i = = 2
If the substitution xo(t)—-ho(t), xn(t) [(L0+£O)/(2n_l+Ln+Ln)]

. hn(t), nzl, is made in (1.1) under the assumption that £n>0, nz0, then



r

O
rO+Ro ﬂo[D + E;]hl(t)
o Qoﬂ‘olho(t) L 4L (4L 4] "o
o o ¢’1 71
r
n-1
En—l[D + L -l]hn-l(t) rn_,+Rn+r
- 2 £+ [D+ 7 h (t) (2.1)
[(R 4L 4L ) (4 _+L 48 )1° 1" P
n-2 n-1 "n-1 n-1 n n
rn
Qn(D + E;)hn+l(t)

[ +Ln+ln)(2n+L

n-1 n+1+2n+l

where 2_l==0. Now for n20 let
r +R +r £
a =l n n n -
n L +L +& n : !
n-1 "n n [(En_l+Ln+£n)(Ln+Ln+l+9,n+l)]
T
d =--— , 2.2
n 2 ( )
n
where r_l==0. Furthermore, let hn(t) = Wn(x)u(x,t) where x is a separa-

tion parameter to be defined shortly. Then (2.1) becomes

[ut—aou]Wo(x) - bo[ut—dou]¥l(x) =0 ,

- bn_l[ut—dn u]Tn_l(x)4-[ut-anu]?n(x)

-1

-_ - = >
bn[ut dnu]Wn+l(x) 0 , nz21 .
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Divide by u and set x==ut/u to obtain (1.3a) and (l1.3b). If in (1.3)

1
dn do’ nz0, then for z=1/{x do) and Wn(x) [(dO ao)/(do an)] Pn(z),

nz0, it follows {since Wo(x) = 1) that if an(nEO) #:io, then

PO(Z) =1 ,

boPl(z)

1
= (2 P (2) (2.3)
(@ -a)(d -a)]° %% ©
o © o 1
b P (2) b P (z)
n n+l £= (24 30IP () - —DoRRm ¢ . on2l .
[(@~a )@ -a )] o %n [@,~a__) (@ ~a )]

1
- — - = - - 2
Upon letting An = l/(d0 an), Bn bn/[(dO an)(dO a }1°, n=0, (1.4)

n+l

follows. Equation (1.5) follows from the substitution x = ut/u.

Integrators——-Some Basic Terminoclogy

The next three chapters are devoted to defining and generating
integrators for the sequences of (1.3} and {l1.4}. The problem of defi-
nition and generation contains three parts: explaining what is meant by
the term integrator, proving the existence of an integrator, and ex-
hibiting an integrator. The remainder of the present chapter concerns
itself primarily with the first two of these subjects, the third being
examined in subsequent chapters by use of the ideas now to be developed.

First some basic terminology is needed.

o0
Definition 2.1. A seguence of functions {Pn(z)}n_0 is said to be

orthonormalizable with respect to a, a function of bounded variation on

(—:n'oo) 1f
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f Pi(z)Pj(z)da(z) =0 , i#} ,
- (2.4)

J Pi(Z)da(z) = ci#o ;, for all i,3j20 .m

The function a(z) is called an integrator for the sequence
{Pn(z)}:=0 , and it may be assumed without loss of generality that
a(-=) = 0 and [~ P2(2)da(z) = 1

-0 0y o - *

Definition 2.2. If in Definition 2.1, ci=1, 120, then the sequence

ca
of functions {Pn(z)}n_O is said to be orthonormal with respect to a.®m

o
Definition 2.3. The sequences of functions {Wn(x)}n_o,

{wn(x)}:_o are said to be biorthonormalizable with respect to B, a

function of bounded variation on (-«,®}, if

f—mWi(x)Wj(x)dB(X) o, i#)

(2.5)

{e+]
f ?i(x)wi(x)dB(x) ci#D , for all i,j=0 .®
-0

The function RB(x) is called an integrator for the sequences

co o
{Wn(X)}n=of {Wn(x)}n=o, and it may be assumed without loss of generality
that B(-=) = 0 and [_W_(x)¥_(x)dB(x) = 1.

Definition 2.4. If in Definition 2.3, ci= 1, iz0, then the

sequences of functions are said to be biorthonormal with respect to RB.B

Integrators for Systems of Polynomials

Conditions guaranteeing the existence of an integrator for the
polynomials generated by the recurrence relation (1l.4) are given in the

following theorem.
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Theorem 2.1. For An real, Bn real or pure imaginary and Bn#o,

nz0, there exists an integrator «(z) such that the sequence {Pn(z)}:=O
of (1.4) satisfies Definition 2.1.M

This rather general theorem is stated without proof in a paper by
Shohat [15]. The proof is based on a theorem by Boas [2].

Given that the integrator a(z) exists, it can be profitably in-

vestigated by means of the continued fraction

. (2.6)

Under conditions which will be stated in fheorem 2.3, the continued frac-
tion (2.6) converges to the Stieltjes transform of the integrator. The
integrator can then be recovered from the transform hy the Stieltjes
inversicn formula. To make this statement more specific, some addi-
tional definitions and theorems are needed.

Definition 2.5. Let y({x) be a function of bounded variation on

{(—w,o}), Then

(2.7)

defines the Stieltjes transform of Yy for Im(z)#0. For Im{2)=0, the fol-

lowing limit, if it exists, defines the Stieltijes transform of y(x):
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z—¢ ® .
lim[f + f L. E (2.8)
e+0 Z+€

-

Theorem 2.2. Given I{z) in Definition 2.5, y{(x) may be recovered

through the formula

1 1
E[Y(x1+0) + Y(xl-O)] - E[Y(xo+0) + Y(XO‘O)] =

X

1
lim (- —— f [I(x+ie) - I(x-ie)ldx) , e>0 .m (2.9)
X

€+ 2Ti
o

For a proof of this theorem, see Wall [18].

In order to explain what is meant by the convergence of the con-
tinued fraction, it is necessary first to generate a sequence of approxi-
mations to (2.6). For w, a real parameter, z complex, define an

approximation to (2.6) by

cmrzey = 2 - o] °n-1 >1 (2.10)
PLew) = |z+A0 [z+A1 R z+a_~w ' nEdo ’

where the notation of Pringsheim [1l4] has been used to write this finite

continued fraction.

Definition 2.6. The continued fraction (2.¢) is said to c¢on-

verge completely at a given point z, if at this pecint the segquence

{C(n;z,w)}:=l converges to the same limit for all real w (including
w=o) and uniformly in w.i
Theorem 2.3. Let p(z) = 1/ ] |p_(2)]? for the p_(2) of (1.4) and

n=oc
further suppose An, Bn real, Bn#o, nz0. Then, if there exists a finite

z with p(z) = 0, (2.6) converges completely to I{z), the Stieltjes
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transform of the function a{z) in Definition 2.1. Furthermore, p{z)=0
at all points of continuity of a(z) and eguals the jump of a(z) at a
point of discontinuity.®

Procfs of these assertions are available in Shohat and Tamarkin

[16].

Integrators for Systems of Rational Fractions

As in the polynomial case, integrators for rational fractions
generated by the recurrence relation (1.3) may also be profitably in-
vestigated by means of a continued fraction, now of the form

2 2 2 2
b {x-d ) b {x-d_)
o~ o |_ 17y | ) (2.11)

[%-a, ~[ xa [ xa

1 2

A sequence of approximations to (2.11) is. generated by defining
{Fn(x)}n=o, {Gn(x)}n=o where Fo(x) =0, Fl(x) =1, Go(x) =1, G (x) =

x-a_ , and
fo)

2
Fn+l(x) = (x-an)Fn(x) - bn— {x-d

1 n-1 n-1
(2.12)

G . (x) = (x-a)G_(x) - b> _(x-d_ )°G_ . (x) >1

n+l n’’n n-1"*"%-1 -1 v B= v

Khovanskii [9] has shown that

2 2 2 2

Frel™ | Bped)" B Gdy 7
Gn+l(x) | x-a _ | x-a, [ x-a_

As an aside, note that if ¢r(x), nz0, is defined by ¢O(x)= o,
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¢n+l(x) = Fn+1(x)/[bo(x_do)bl(x_dl) e e . bn(x—dn)], n=0, then it also

follows that Fn l(x)/Gm_l(x) = ¢n+l(x)/Wn+l(x), n20, since Wo(x)==Go(x)

+

and

Gn+l(x)

bo(x—do)bl(x-dl) e bn(x—dn)

Tn+l(x) = . nz20 , (2.13)

by substitution in (1.3). The sequence {¢n(x)}:=o is again encountered
in Chapter V.

Now the verification of the existence of an integrator (see
Definition 2.3) for the sequences of (1.3) and (1.9) employs the func-
tions Fn(x)/Gn(x), nz0, and consists of three basic steps: first, it is
necessary to show that each function Fn(z)/Gn(z), nz0, is the Stieltjes
transform of some function Bn(x) which is_bounded and increasing; second,
it is necessary to extract a convergent subsequence from the sequence of
functions Bn(x), n=0; third, it is necessary to show that the limit of
this subsequence is the desired integrator.

In showing that each function Fn(z)/Gn(z) is the Stieltjes trans-
form of some function, the following representation theorem is useful.

Theorem 2.4. If Fn(z)/Gn(z) is analytic in the half-plane y>0 and

Im(Fn(z)/Gn(z)) <0 in this half-plane, and if, in addition, there exists
a finite limit A_ = Lim zF_(z)/G_(z), then for y>0, F_(z)/G (z)=fnc dp_(x)/
n Z¥ n n !  "n n -y
[z-x], where Bn(x) is bounded and increasing, An is real, and fa_omdBn(x) = An.l
The proof of this theorem depends on several other similar repre-
sentation theorems and may be found in [l6] or [17].

To use the theorem, it must be shown that the hypotheses are

satisfied--that is, that Fn(z)/Gn(z), nz0, satisfies three conditions:
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Fn(z)/Gn(z) is analytic for Im(z)*C ;

Im(Fn(z)/Gn(z))s ¢ for Im{z}>0Q ;

lim

orco an(z)/Gn(z) is finite .

First, since Fn(z) and Gn(z) are polynomials, the analyticity of Fn(z)/
Gn(z) for Im{z)>0 is established if it is shown that Gn(Z) has no zeros
in the upper half-plane. The following theorem provides conditions
sufficient to guarantee this result.

Theorem 2.5. Suppose there exist 95 with O<gi_l<l, i>0, such that

2 .
< - >
bi"gi(l gi_l). Further suppose Gi+l(di)750, iz0, and that a,, di are
real for i=0. Then Gn(x) has n real distinct zerocs for nzl.m
The proof of this theorem is in Appendix A.
The second condition is not so easily established. The key is to

examine, for fixed z, the composition map t(n:z,w) =t tO ... t t l(z,w)

1 n-2n

where tn(z,w) is defined by

2 2
bn(z-dn)
tn(z,w) = (z-an) - —— n>0 , (2.14)
and t_l(z,w) = 1/w. Thus
1| bz‘Z‘do’z | bi—l(z—dn—l)z |
ti{n;z,w) = - - . . .= . n21 . (2.15)
| z=a | z-a; | W

Note that t(n;z,») = Fn(z)/Gn(z); so showing that Im(t{n;z,«)) £ 0 for
Im(z) > 0 verifies that the second condition of Theorem 2.4 is satisfied.

The following theorem is helpful in establishing this fact.
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Theorem 2.6. Suppose there exist gi with Or:gi_l<l, iz0, such that

2
< - . 1 > = .

bi_gi(l gi-—l)' and suppose that a; s di are real for i20. Let y=Im(z);
let tn(z,w) be defined by (2.14). Then for Im(w) Zgny, nz0, it follows
h s .2
that Im(tn(z,w)) gn_ly

The proof of this theorem may be found in Appendix A.

By employing an inductive argument on n, Thecrem 2.6 is used to
show that Im{t{n;z,=)) £ 0 for Im{z} >0 as follows.

First examine the region Im(w) Zg_ly. From the theory of con-

formal mapping or from a simple calculation, it can be shown that in this

region t(0;z,w) (=t_l(z,w) = 1/w) satisfies
[t v s < 52—, (2.16)
Y9_, Y9_,

for y=Im(z) > 0. 50 Im{(t{0;z,w)) =0 for Im(w) Zg_ly and y=Im(z) > 0.
Now examine the region Im(w) 2 917" By induction and Theorem
. . o
2.6, it follows that if Im(w) _gn_ly, then Im(to(tl(t2 (tn_l(z,w))...)))
2 g_ly_ If w in the previous paragraph is replaced by
t t.t, ... tn_l(z,w), it can be shown that t{(n;z,w} (=t_

ol 2

l/(totltz tn__l{z,w))) satisfies (2.16) for y=1Im(z} > 0. So

tt, ... t (z,w)=
o) n-1

1071

Im(t(n;z,w)) <0 for Im(w) zgn__ly and y=Imf{z) > 0.

To establish the second condition of Theorem 2.4, let w go to
infinity through those values for which Im{w) 2y; then Im(t{(n;z,=}) =
Im(Fn(Z)/Gn(z)) <0 for y=1Im(z) > 0.

The third and final hypothesis of the representation theorem is
established by means of the following lemma.

Lemma 2.1. Suppose there exist 9 with O<gi_l<l, i=0, such that
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2
< N l— ; . r d. 1 f .2 .
bi gl( gi_ }; and suppeose that al i are rea or iz0 Then Fn(x)

1
and Gn(x), as defined in (2.12), are polynomials of degree n-1 and n,
L. 1lim . . .
respectively, and porco (an(z)/Gn(z)} exists and is uniformly bounded
for all nz2.m
A proof is given in Appendix A.
Thus the first of the three parts necessary in the proof of the
existence of an integrator for the sequences in (1.3} and (1.9) has been

concluded.

It is now possible to write

(2.17)

for some Bn(x) which is bounded and increasing. Actually a great deal
more is known about Bn(x). In fact, each Bn(x) is, by Theorem 2.5, a

sum of step functions, each of which begins at a zero of Gn(x) and has a
magnitude equal to the residue of Fn(x)/Gn(x) at that zero. Although
some of this information about Bn(x) is not needed in the proof of the
existence of an integrator, it does provide a clearer picture of the form
of each Bn(x). The part which is needed later is formalized in the
following lemma.

Lemma 2.2. Let G denote the closure of the set of all zeros of
the Gn(x), nz0. Then the closure of the set of all points of increase
of the Bn(x), nzl, is contained in G.H

The second part in the proof of the existence of the integrator
for the seguences in (1.3) and (1.9) is the extraction of a convergent

oo
subsequence from {Bn(x)}n=l.
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Theorem 2.7. Let Bn(x), nz2, be a sequence of non-decreasing

- -]
functions on (-«,®) such that f_w dBn(x)SJA, nz2, where A is finite. Then
1+
there exists a non-decreasing function B(x}) such that f‘m dB{(x})=A and a
sequence of indices (n,l) < (n,2)<. . .<{(n,j) <. . . , such that for all

lim

X, ko

B (x) = B(x).m

n,k
A proof can be found in [18]. This concludes the second part.
That B(x) is an integrator for the sequences of (1.3) and (1.9}

is now established in three basic steps: first, it is shown that
o
f wm(x)dB(x) = Gom , m=0 , (2.18)
-

=0 , l<j<e , m20 , (2.19)

Jm Wm+l(x)d3(x)
—eo PRy,
(x dm)

where e measures how many times the number dm appears in the product

(x-do)(x—dl) . e . (x—dm); next, eguation (2.19}) is used to show that

o Wn+m(x)d8(x)
=0 , m20, nz2l , (2.20)

em
(x—dm)

(see Lemma A.4); finally, (2.18) and (2.20) are used together with the
partial fraction expansions of Wj(x) and Wj(x} to prove Theorem 2.9, the
main existence result. Only the first of these three steps is undertaken
in this chapter. The proofs of the remaining steps are given in Appendix
A.

The basic approach in the first step is to show that for each

Bn(x), nz1,
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[ = _
J_m wm(x)dBn.x) 4 , 0gm<n-1 (2.21)

o Wm+l(x)d8n(x)
J =9 , 0O=msn-1, lsjﬁem . (2.22)
—0

3
(x—dm)

and then to take a limit, over the subsequence of Theorem 2.7, in each of
these equatiocns to obtain (2.18) and (2.19). The conditions governing
the validity of (2.21) and (2.22) are given in Theorem 2.8, while a
general discussion of taking limits underneath integral signs is given
in Lemma 2.3. This is followed by the application of this lemma to
(2.21) and (2.22).

Theorem 2.8. Let D dencte the closure of the set of all dn' nz0.

If the intersection of D with G (see Lemma 2.2) is empty, so that (2.21)
and (2.22) are well-defined, and if the hypotheses of Theorem 2.5 are
satisfied, then (2.21) and (2.22) are valid for every nzl.m

A proof is available in Appendix A.

Lemma 2.3. Let Cw denote the class of all continuous functions

f(x) defined on (-«,%) and having the property that iiz fix) = iiTmf(x)=0.
Then under the hypotheses of Theorem 2.7,
l R o0 [+-]
im
Ko [_ f(X)dBn,k(X) = J_m f({x)dp({x) .m (2.23)

This lemma is proved in [13]. When G and D have an empty inter-
section, there is a function in C, with the same values as Wm(x) {see
C . i .
(A.25)) on G and similarly for Wm+l(x)/(x—dm) ' lSjSEm {see {(2.13)).

Thus {(2.18) and (2.19) are obtained by applying Lemma 2.3 to {2.2]1) and
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(2.22). Note that Lemma 2.2 is needed here to insure that the contri-
butions to the integrals of (2.21) and (2.22) outside of G are zero.

Conditions sufficiert to prove that B(x) is an integrator for
the sequences of (1.3} and (1.9) are given below in Theorem.2.9. The
proof of this theorem employs (2.18) and (2.20} and may be found in
Appendix A.

Theorem 2.9. Under the conditions that

(1) aj, bj' dj are real, jz0 ,

(ii) there exist gj with 0<gj—l<l' j=0 , and

2
b.2qg.(1l-g,
5595 t1ma5_ 1),
(iii) G and D are disjoint,

B(x) is an integrator (see Definition 2.3) for the sequences of (1.3)

and (1.9).8



22

CHAPTER TIII

NETWORKS WITH THE SAME R/L

RATIO IN EACH COUPLING BRANCH

This chapter examines solutions to (1.1) when the ratio rn/ﬁn,

n20, is a constant. Under this condition, the separation equations

that arise from (1.1l) are (1.4) and (1.5), where the coefficients An and

B of (1.4} are given by

2 _1+Ln+2 Rn
= 2 Lo n , Bn = T » D20 (3.1)
2
n on [(Rn+doLn)(Rn+l+doLn+l)]

=l

(see (2.3))}. It is clear from Thecorem 2.1 that an integrator for the
[+

. i i + 20, =0.

sequence {Pn(z)}n=0 of (1.4) exists if R, doLnsfo, nz0, and Rn>0, nz0

Then a solution to (1.1} satisfying the initial conditions of (1.7} is

o P_(2) P (z) (§+ a)t
x {(t) = v.(R.+d L.) [ T J L e de{z} , n20 ,
n 3 o3 3 3

- (R +d L ) (R.+d L.)

n on j "o j
(2.2}
provided:
(i) xn(t), as given in (3.2), exists for all t3>0,

(ii) dxn(t)/dt exists and is obtained by differentiating

{3.2) under the integral sign.
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With these provisions, substitution directly verifies that (3.2) is a
solution to (1.1). A derivation of (3.2) can be kased on the results of
[3]. The question of the permissibility of differentiating (3.2) under
the integral sign may involve a considerable pathology if the closure of
the set on which a(z) is non-constant includes z=0 (this trouble does not
occur in either of the examples given below). But if a(z) is non-
constant only on the union of two closed half-infinite intervals not con-
taining zero and is monotone on each of them separately (for example,
increasing on one and decreasing on the other), then (3.2) is a solution
to (1.1) (see Apostol [l]). Solutions to two systems are developed in
this chapter, one which generates classical polynomials and one which,
in general, does not.

The first example is based on the Laguerre polyncomials. Let £n=
n+l, r = 4(n+1), Ln= 1, Rn= 2, nz0, so thF;lt An=—(n+1) . Bn= (n+1) /2,
nz0. Then it is easily shown that Pn(z)= (—l)nLn(Zz-l) where Ln(x) is
the nth Laguerre polynomial. By using this fact, it follows that the

integrator a{(z) of (3.2) is given by

da(z) = (3.3)

-2z+
2e221dz ' %$z<m s

To obtain other physical systems involving classical polyncomials, a
method [7] may be used whereby it is possible to determine whether a
system of polynomials generated by a given recurrence relation is clas-

sical to within a linear transformation of the argument and to within a
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function of n. A method for finding the integrator in such cases is also

given.

Now an example invelving non-classical pelynomials is presented.

Suppose r =ro, g__=1

on % = £ R, =R L

2n” %o’ Ton-17F17 fan-17T f1r Ron TRy Lpp T hor Ry TRy
= > 1 1t 1 = =
L2n—1 Ll, n=1, and in addition RO+dOLO R24-dOL2, rl/El ro/io. Then

i L
= 2 4 2 -
BZH—-RO/[(RO+doLO)(R1+doLl)] v Boiil 21/[(Ro+doLo)(Rl+doLl)] » n20, A,
= ad . = =
(21+L2+£0)/(R0+d0L0), A2n_l (20+Ll+21)/(Rl+ OLl) nzl, and Ao

+ + i = - . = =
(lo Lo)/(RO doho) (recall do ro/lo) Thus PO 1, BOPl(z) z+AO, and

B,P, (z) = (z+a))P, _.(2) - BP, .{(z) , n2l ,
(3.4)
B0P2n+1(z) = (z+A2)P2n(z) - BIPZn—l(z) , nz1 .,
Let x=z+A =A -A., b=A.-A., c=B2, d=5%, B"B™. (z) =5 (x)
et x= 2r T A TRy DEAR TR CF B0 AT B1r B P an B T R ¥y
n+l_n
o BlP2n+1(z)—-52n+l(x), nz0. Then so-—l, Sl-x+a, and
= - >
SZn(x) (x+bJ82n_l(XJ c82n_2(x) , nzl ,
(3.5)
52n+l(xJ = xszn(x) - dszn_l(x) , nzl .

The remainder of this chapter concerns the derivation of an integrator
for the polynomials of (3.5). The coefficients of the single recurrence
relation equivalent to (3.5) are periodic of period two and a great deal
of work has been done on such systems [4,6]. The most complete effort
is due to Geronimus [5]). 1In the cases when ¢ and d are positive (assur-

ing the existence of a non-decreasing integrator), Geronimus has shown
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that the derivative of an integrator for (3.5) is given by 1/m times

the imaginary part of the continued fraction

P - =

rlus possibly some impulse functions.
The periodicity of the continued fraction permits a simple evalua-

tion. In this case,

Vﬁcd-—(x2+bx-d—c)2

1 1
;’Im(F(x)) = 3;( ) . (3.6)

ax +x(ab+d+a2)+(a2b+ad—ac)
The zeros of the denominator of (3.6}, which are the points where the
impulse functions may occur, are x==[(cd)%q/a]-a and x==[(cd)%p/a]-a
where p==[az--ab—dh/ﬁ-]/Z(cd)1/2 and q==[a2-ab-d-/ﬁi/2(cd)%, and where
H=:(ab+d—a2)24-4a2c. The cases when ¢ and d are both negative are not
covered by Geronimus, but it can be verified directly that often the
derivative of an integrator is still %—Im(F(x))dx plus possibly some im-
pulse functions. These results are presented in the following theorem.

2
Theorem 3.1. If cd> 0 (and p# g when p > 1), then the system

(3.5) {derived from (2.3) with non-negative RL values) is orthonormali-

zable with respect to the integrator M {x) where

1
p (Im(F(x)))dx on I1 ’

du(x) = {(3.7)

—-%(Im{F{x)))dx on 12 ’
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for
I,=1[(-bt 4(d+c)+b2-8(cd)1/2)/2, (—b-h/:l(d+c)+b2+8(cd);§)/2] {3.8)
1

and
I2= [(—b-v/ﬁl(d+c)+b2+8(cd);§)/2, (—b-/4?i+c)+b2—8(cd)l/2‘)/2] (3.9)

and where p(x) has a jump at:

1 1
() x= [{cd) *g/al -~ a of magnitude (p2-1) (cd) */pVH if
p2>1, < 1;
L \ 2 % :
(B) x=[(cd) °p/al - a of magnitude {(g“-1)(cd) %/qvH if
q2 > 1, Pz <1;
1 1
{C) x= [{cd) 2p/a} -a and x= [(cd) 2q/a] - a of magnitudes
L i
(q2—l) (cd) °/qvH and (pz—l) (cd) °/pVH, respectively
2
if p2>l' q >1, p#q;

L 2
(D) x= [{(cd) *p/a) - a of magnitude 1 if p“=1, p=gqg.

If pzs 1, qz*_i l, p##q or p2< l, p=g, there are no jumps in H{x) .M

An outline of steps to be followed in verifying Theorem 3.1 is
available in Appendix B.

Theorem 3.1 excludes the particular combination cd > 0, p2 >1, p=gq.
There are two basic reasons for not including this case in the preceding
theorem: first, this case does not occur for non-negative RL values;
secondly, the function u{x) obtained from the continued fraction in this

1
case contains an impulse or delta function at x= [(cd) *p/a) - a and hence
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possibly should not be referred to as an integrator (if integrators are
restricted to be functions of bounded variation), Both of these results
are contained in the following theorem.

Theorem 3.2. For non-negative RL values in (1.1), the case

2 R .
cd>0, p >1, p=g does not occur. The polynomials in (3.5) still satisfy

(2.4} provided o(z) is replaced by the generalized function n(z) such that

JT ¢ (x) (Im(F (x)))dx
-1

A
=
3

v

!

9

21 f ¢ (x)} (Im(F (x}))dx
T 12

2,1 (ca)*
P cd) p _
+ 5 ¢ ( A a)
p
1-p°) (cd & do |
4 A2zp tled) 4l ca’ (3.10)
P :,(=__‘3_a__P__El

(see (3.8) and (3.9) for the definitions of I, and I,, respectively).ll

1

An outline of steps to be followed in verifying Theorem 3.2 is

available in Appendix B.

If the endpoints of the intervals I1 and I2 are no longer real,

then Il and 12 must bhe replaced by contours in the complex plane. These

. , . 2
contours are obtained by applying the transformations x= (—bt/ﬁ(d+c)+b +4z) /2
to z in the interval [F2vVed, *2v¥cd] (upper signs for Il' lower for 12).
This result applies to Theorem 3.2, and it also applies to Theorem 3.1

should it be desirable to admit other than non-negative RL values.
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CHAPTER IV

PERIODIC NETWORKS IN WHICH THE R/L RATIQ OF THE

COUPLING BRANCHES IS NCT CONSTANT

This chapter examines solutions to (l.1l) when the ratio rn/ln,
nz0, varies with n. Under this condition, the separation equations that
arise from (1.1) are (1.3) and (1.5). 1In Chapter II sufficient condi-
tions are given so that a solution to (1.1) (for the initial conditions
of (1.7)) can be written as (1.11).

These sufficient conditions are:

i d 20;
(i) an, bn' n are real, nz20
(ii) there exist 9, with O<~gn_1< 1, n20 and
bl<g (l1-g_ . );
n- 991"

{iii) G and D are disjoint.

Some simplification of these conditions is possible. For example, when
interpreted in terms of the R's and L's of the circuit, the first condi-
tion is clearly satisfied, as seen from (2.2). A simplification of the
requirements of the second condition is also obtained by translating
these requirements into the R's and L's of the circuit. This step oc-
cupies the first part of the chapter. For particular examples, the third
condition is by far the most troublesome to wverify. Although it can be
weakened, some knowledge of the zeros of the Gn' nz0, is still required.

The weakening of condition (iii) is accomplished by introducing a theorem
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which shows that a necessary condition for the existence of an integrator
is that Gn(dn_l)yfo, nzl. All of this information is then combined in
Theorem 4.2 to provide a formal statement on the existence of a solution
to (l.1) of the form in (1.11) {(for the initial conditions of (1.7)).
However, when no conditions other than (i}, (ii), (iii), above, are im=-
posed on the circuit parameters, the difficulty of exhibiting the inte-
grator whose existence is guaranteed by Theorem 4.2 is substantial.
This difficulty is eased by the additional restriction that the R's and
L's be periodic. The chapter ends with an example of this type. Because
some of the details of the example are still tedious despite the simpli-
fications resulting from pericdicity, they are relegated to Appendix C.
By using Definition A.l and Lemma A.2, the second condition

above can be written as

s 2, . . .
"{ii) {bn}n=0 is a chain sequence with at least

one sequence of positive parameters."

For the RL network of (1.1), it is shown in Lemma 4.1 that {bi};_o

is indeed a chain sequence provided £n> 0, nz0; also, the reguirement
that at least one sequence of parameters be positive is interpreted below

in terms of a simpler condition on the L's of the circuit.

[+a]

2 2
Lemma 4.1. The seguence {bn = En/[(ln_ +Ln+2n)(l +L 11}

+
1 n  n+l En+l n=o'

2_l==0, is a chain sequence (Definition A.l) for £n=>0, nz0.m

Proof. By Lemma A.2, it suffices to showthat{zi/[(ﬁn_l+2n)

(L. +2 )1}

= » h a n + Iy
nthoa1 n=o’ R—l 0, is a chain sequence. But, in fact, this sequence

has minimal parameters, as defined in Lemma A.1l, given by Yn==2n/

>
{£n+2n+l), nz-1.m
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2.,® , . . .
50 now {bn}n_O is a chain sequence, but it remains to show that

it has at least one sequence of positive parameters g n=0. Lemnma

n-1’

A.2 can be used to determine simple conditions under which, in particular,
. , 2,0 " .
the maximal parameters Mn' nz-1, of the chain sequence {bn}n_o are posi-

. 2 _ 2 .
tive. In Lemma A.2, let o; = Ri/[(ii_l+2i)(2i+2i+ )1, i20, and let

2 . . .
Ti = bi' izD. Then by Lemma A.2 each maximal parameter Mi’ i>0, of the

1

2., .
chain segquence {Ti}i=o is bounded below by the parameters Y, = Ri/

2. @ .
{(L.+%, .}, i20, of the chain sequence {g,}., . Notice that each such
i 7i+l i'i=o

Y. is positive, provided &, > 0, iz0, and thus M, > 0, i1z0. This leaves
i i i

only M . to consider. Unfortunately, M is not always positive for

1 -1

2i> 0, i20, as the following lemma illustrates.
Lemma 4.2. Let {Ui]:—o be a chain sequence with minimal parameters
. 2, @ . . . .
Y;_q+ 120. The sequence {Oi}i—o determines its parameters uniquely if,

. . @ i .
and only if, the serlesigo ngo Yn/(l—Yn) diverges.n

For a proof see [18].

+2.) (8,48, )], iz0, & ., =0, it is easily calcu-
it i i+

1 1 -1

oo 1 o0
lated that . i- =2 L, 1/ .. If thi i
a a 1£0 ngo yn/( Yn) 5 iZl / i is series converges,

2 2
If ci—-ﬁi/[(ﬂi_

2.
then by Lemmas 4.2 and A.2, the sequence {bi}i=0 has M_, > 0. But if this

series diverges, then in order that M_l be positive, it follows from

Lemma A.2 that bi must be less than cz or

22 22
(8] (@]

<
(20+L0) (£O+Ll+£1) (20) (20+£l)

. {(4.1)

It is clear that (4.1l) heolds if, and only if, L0+L >0 (recall that all

1

the 2's and L's are non-negative). Thus the second condition listed

above can be replaced by



31

"(ii) 2n> 0, n=0, LO+Ll> o."

Now as has been mentioned previously, the third sufficient condi-
tion (G and D are disjoint) for the existence of an integrat&r is very
difficult to verify. Since it is not a necessary condition for the exis-
tence of an integrator, it can be weakened by introducing a necessary
condition (unfortunately, almost as difficult to verify) together with
some additional conditions which yield sufficiency. The necessary condi-
tion is the subject of the following theorem.

Theorem 4.1. A necessary condition that an integrator exist for

the segquences of (1.3) and {(1.9) is that Gn l(dn)#(h nz0.®

+

Proof. Assume for the sake of contradiction that Gn l(dn)= 0 for

+

some nz0. Let j be the smallest such n. It follows from the expression

for r$ in the proof of Lemma A.5 that r§==0 and so there exist constants
j i=1 3 oy . .
ti such that Wj(x) = igo tiwk(x). From Definition 2.3, upon substituting

rm
for Wj(x), cj=J Wj(x)Wj(x)dB(x)==O-—a contradiction.ml

-_—

With the addition of the above necessary condition, the disjoint-
ness of G and D can be relaxed a little. By referring to the proofs of
the basic premises in Chapter II, it can be seen that if there is a
sequence of Fn,i/Gn,i’ with n,i going to infinity, such that the closure

of the set of all zeros of these Gn i GN, does not intersect the closure
r

of the set of all di, D, then this condition plus Theorem 4.2 can replace

the disjointnegs of G and D. Thus condition (iii} becomes

"(iid) Gn(dn_l);!o, nzl, and there exist (n,1) < (n,2) <. . .

going to infinity such that GN and D are disjoint."
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In other words, given Gn(dn__l) #0, nzl, it is sufficient to have only an
infinite number, rather than all, of the Gn with zeros different from
the dn' The above results are formalized in the following theorem.

o
Theorem 4.2. Let {n’i}i—o be an increasing seguence of integers;

let GN denote the closure of the set of all zeros of the Gn i(x) , 120

r

(see (2.12)); let D be as in Theorem 2.8; let ‘Pn(x) ' Wn(x), nz0, be de-

fined by (2.2), (1.3), and (1.9). Then if

(i) £ >0, n20 and L +L_ >0,
n @]

1

(ii) Gn_l_l(dn)# 0, n0 and GNAD=¢ ,
a solution to (l.1) with initial conditions xj (0) =yj, xk(O) =0, j#k, is

‘Pn(x) Wj (x)

= xt
xn(t) —Yj (lj_l+Lj+2j) f i I e df(x) , n20,
- (L 4L 4L ) (2. +L.+2.)
n-1""n 'n ji=1 7373

(4.2)

o
for some B({x) which is non-decreasing with J dB(x) <=.m
-0

Some further discussion of this theorem can be found in Appendix

The remainder of this chapter is a discussion of an example in

i i i r ave ri two i = =
which the circuit parameters all h period two, that is an ro, r2n+l

r L, =2 , R R

= = >
1" *an= %7 *ans1 = %17 Bone2 = Rov L., n20,

2n+1 - R1r Lopgo T oo Topyy <1y

where all parameters are assumed positive., In addition, the choices Ro=

R.+r , L =1L
o [o}

2 +20 are made to keep the mathematics simple. With these

2

choices, it follows that a2n=ao, a2n+l= al, b2n=bo' b2n+l=bl' d2n=do'

d2n+l=dl' n>0. Since a translation in the variable of the recurrence
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relation (1.3) can make al, ao, d. or do equal to zero, it may be assumed

1
without loss of generality that a0=0. So with l{ﬂ'__l=0, lPo=l, (1.3)
becomes
bo(x_do)v2n+l(x) = (x)Wzn(x) - b (x= dl”Zn 1( x) . n20 .
(4.3)

b, (x-d )Y (x) = (x-a,)¥,

1’ "2n42 (x) = b (x=d )¥, (x) , n20 .

n+l

The associated polynomials from (2.12) are given by Go(x) =1, Gl (x)=x

and
G, . (x) = (x-a )G, (x) - b>(x-d )°G_ (x) , n20
2n+2 1°72n+1 o o 2n ! D
(4.4)
G, .(x) = (G, (¥ - bo(x-a)%a, . (x) >0
2n+3 % T P00t 1Y%7%17 Sansl +onERe
The gquestion of the existence of an integrator is now investigat-
ed. Condition (i) of Theorem 4.2 is satisfied by requiring R.o> o,

El> 0. This leaves condition (ii) of Theorem 4.2, First, conditions

50 that Gn(dn_l) # 0, nzl, are derived. For K= [d (d -a )—b2 {d -dl)z],

. - n-1 - S

it can be shown that G2n(do) —do(dO al)K . 2 H_(::10) d K ; so it is
necessary to regquire that do#o, K# 0. Similarly for L= [dl (dl-al)

b (d.-a )21, it can be shown that G. (d.) =L", G (d.) =d4.1". so it
0'917% 1 an be show 2n 1/ T Bopyy 19 TR - S0 1

is necessary that L# 0 and it is useful to require that dl# 0. Thus
the conditions L# 0, X# 0, doy‘o, dl#o are sufficient to guarantee
Gn(dn_l) #0, nzl. Now it is shown that the closure of the set contain-

ing the zeros of G (x), nzl, does not contain do or d. (recall that

2n+l 1
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= - . \,.. ._‘.‘ 2
d2n do' d2n+1 dl) . In order to finga 1e zeros of G2n+1(x)' nz0, let
Xx—-a b, (x-d_)
X _ 1 . _ 71 1 . U §
A—b (x=a ) ' B-—b (x=a) ' C-———b a7 z = AB-C c . (4.5)
Q o 1 1 e} o]

Then for Ro(z) =1, Rl(z) =2z,

l(z) = an(z) - Rn_l{z) , nzl , (4.6)
it can be shown that
Yopx) = R (z)+CR_ _,(2) ¥ . (x) = &R (2) ,
n20, R_; =0 . (4.7)

The zeros of Rn(z), nz0, are well-known (Rn is a Tchebichef polynomial
of the second kind), and in fact, Rn(z) has n zercs on the interval
(_212) . Now let

2

2 2 .2
m= al-2 (bodo+bldl) —boblz (do+dl) ; s=2 (l—bo—bl—boblz) :

(4.8)

It follows that for each value of z, x= {m+g)/s or x= (m-q)/s. It is

easy to see that g> 0 on (-2,2) since =-sr > 0 on (-2,2)1. Thus there

1.=_;>0 on (-2,2) since s=2(1-(bgtb;) +(2—z)bob1) and (b +bl)2 (2 +££)2/[(
Loth +L1) (Lo+2,+L2) 21, Also r<0 on (-2,2) since r= -2[(bodo-bld1)

(2- z)b o194 ] dnd1>0 and r=-2[ (bodo+b1d]} 2+ (-2-2)bybyded)] for
dnd1<0.
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are two values of x for each value of z in (-2,2). So by using the fact

that ¥2n+l(x) and G (x) have the same zeros, it is clear that G (x)

2n+1l 2n+1l

has 2n zeros in the intervals corresponding to z in (-2,2) plus an
additional zero at x=0 due to the presence of the factor A. Thus in

the x-domain, G l(x) has n zeros in the interval with endpoints

2n+

. 2 2 2
al—2(bo+b1)(booo+bldl)+VQal 2(bo+bl)(bodo+bldl)) +4(l—(b0+bl) J(bodo+bldl)

r

2
2(1—(bo+b1) )

(4.9a)

2 2 2
al-2(bo-bl)(bodo—bldl)+/qal—2(bo—bl)(bodo—bldl)) +4(l—(bo-bl) )(bodo-bldl)

r

2
2(1—(bo—b1) )

{4.9b)

and n zeros in the interval with endpoints

2 2 2
al-2(b0+bl)(bodo+bldl)-J4al—2(bo+bl)(bodo+bldl)) +4(l~(b0+bl) )(bodo+bldl)

r

2(1-(b +b )2)
o 1

(4.10a)

- 2 2 2
al—Z(bo-bl)(bodo—blal)—V1a1—2(bo—bl)(bodo—bldl)) +4(l-(bo—bl) )(bodo—bldl)

r

2
2(1—(b0—bl) )

{4.10b)

plus a zero at x=0. The interior of the closed interval corresponding

to (4.9) consists of positive values in x while that of (4.10) has
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negative values. Finally, to see that do and dl are not in these inter-

vals, note that from (4.5},

% (x-a.) = b2 (x-d )° - b>(x-d.)° .
z = 1 o o) 1 1 (4.11)
b_(x-a_)b (x-d))

and for xzdo, 2z is not in the interval [-2,2] unless possibly do(do-al) -
2
bi (do—dl) = (0. But this is the same thing as K=0 and it is assumed K# 0.

Similarly L# 0 guarantees that x=d, does not yield a z in the interwval

1
[-2,2]. BAll requirements for the existence of an integrator have now
been met.

By using the results in Chapters II and III concerning pericdic

continued fractions and integrators, the following theorem results.

Theorem 4.3. Suppose that in (1.1) r2n=ro, L. =2 , r =r

£ R for nz0 and

2n+l - 217 Ropso T Ror Iopuo = hor Ry S Ryr Ly =0

ll’
= + = . '2 9 - ; = =
RO R2 ro, Lo L2~|~Rc> Let bi’ iz0, be as in (2.2); let f (Ro+rl)/

(LO+21), a2n=0, a2n+l [-(r +Rl+rl)/(£ +L +82 )] -f, d (—ro/no)—f,

= 20. = - d ’ ’
2n+l (-r /2 )-£, n20 Then for p b /b do dO#O dl#O,

do(do—al) #bl(do-dl) ’ dl(dl al) #b (d d ) , a soluticn to (l1.1) for

xj(O) =Yj, xk(O) =0, K#3j is (4.2) (with the ‘Pn(x) of (1.3) replaced by
those in (4.3), the Wn(x) of (1.3), (1.9) replaced by those in (4.3),

(1.9), and eXt replaced by e(x+f)t) where df(x) is given by

2 2 2 2 2 2 2 22
(4b0(x-do) bl(x-dl) -(x(x—al)-bo(x—do) —bl(x—dl) ) ) fdx

(4.12)
21T|x|bi(x—dl)2

on the intervals determined by the endpoints given in (4.9) and (4.10).



2
Elsewhere B(x) is constant unless p > 1, in which case B{x) has a jump

2
of strength (1-{1/p )} at x=0.W

An outline of a proof to Theorem 4.3 appears in Appendix C.

37
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CHAPTER V

EXAMPLES WITHOUT INTEGRATORS (INCLUDING A

NON-PERIODIC NETWORK)

This chapter consists primarily of two examples of systems of

rational fractions ({Wn(x)}

exists.

-]

neo! W (x}} _ ) for which no integrator

In each example, the condition that Gn(dn_l)#(h nzl, is violat-

ed. Both examples are treated by the same approach, which consists

basically of the following steps:

1.

truncate the infinite system (2.1} as in (5.1)
below;

find the Laplace transforms of hi(t), 0<isN;

invert these transforms, and separate each of

the results intc two sums, one which depends on

the size of the finite system and one which

does not;

in the expressions for hi(t). 0<is<N, found in 3,

let N apprcoach infinity:

if the hi(t)’ 0<i<N, approach limits as N approaches
infinity, test to see if these limits are a solution

of the infinite system.

Consider the following finite system of differential equations
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(D—ao)ho(t)—bo(D-do)hl(t)=0 ’

-b (b-a

ho1 (P-4 ;YR (£)+(D-a )h (t)-b (D-d )h . (£)=0 , lsn<N-1 ,  (5.1)

~by_; (D=dy_nhy o (B)+(D-a)h (£)=0 ,

subject to the initial conditiocns hk(O) = )\k' hn(O) =0, n#k. Let
Hn(s), nz0, denote the Laplace transform of hn(t). Then it can be shown
(solve for Ho(s); use (A.1l0) extensively in the process; then find Hn(s),

nz1l, iteratively) that

H (s) Fy l(s)
? =¥ (s} g——— W (s) -V, (s)} , oOsnsk-1 , (5.2a)
k GN+l(s)
Hk(s) F 1(5)
Ak = ¥ (S){-———(—T Wk(s) - Vk(s)} + bk_1[¢k(s)‘£’k_l(s)
l(s)‘l»'k(s)] ’ (5.2b)
P +1[s)
=W (s){GN+1( 3 ‘{’k(s) - @k(s)} + bk[‘l‘k(s)¢k+l(s)
1(S)¢k(s)] ' (5.2¢)
B (s) F (s)
D - Wk(s){—EiLTET ¥ (s) - ¢ (s)} , krlsnsn (5.2d)
k Gyl n

where Fn and Gn are given in (2.12), Wn in (1.9), ‘Pn in (1.3),
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F (s)
n

bo(S*do)bl(s~dl) .. bn_l(S*dn_l)

P (s)=0, ¢ (s) = ., nzl , (5.3)
o} n

and

Vo(s) = —b0¢l(s)+®0(s), Vn(s)==—bn®n+l(s)+¢n(s)-bn_l¢n_1(s) ;

nzl . {5.4)

The first two steps of the procedure outlined above are now complete.
As an aside it is interesting to see what hn(t) becomes, from these
equations, when it is assumed that GN+1(di) # 0, 0£isN. Let the zeros

of GN+1(S) be ui, 0<i<N. Then the solution to (5.1) can be shown to be

N F {u.) u,t

7 EﬁilTETT [¥_(u)wW (u)le ™ , oOsnsN . (5.5)

hn(t) = A
i=o "N+l 1

k

Not surprisingly, if BN+l(x) is chosen so that

Fa1®) fm dByyq

= . (5.6}
a1 2 Zmx
then (5.5) can be written as
* xt
hn(t) = Ak f_m Wn(x)wk(x)e dBN+l(x) . 0snsN . (5.7)

Finally note that under the conditions of Theorem 2.9, this solution to
the finite system (5.1) is the same as the solution to the infinite sys-

tem (2.1}, for the same initial conditions, except that in the solution
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to {(2.1), BN+1(X) is replaced by B(x) which is obtained as a limit of a
subsequence of the seguence {BN+l(x)}:=o {see Theorem 2.7).

Now the following example indicates how (5.2) can be employed to
suggest a solution to an infinite system for which no integrgtor exists.
Consider the system of (2.1) with RO=2, L0=4, Rn+l=Ln+l=rn=l'

= = = - 2 = - = =
£ =2, n20. Then b_ Y2/15, b =2/5, d _£-1/2, a_=-1/2, a__, =~3/5,

nzl. The Gn's {see (2.12)) obtained for this system are given by

1
Gl(X) (x+'2-)Go(X) '

3 2 1 2
Gz(x) (x-#gJGl(x)-I§05+-x) GO(X) ’ {5.8)

(x) = (xi—%)Gn(x) - :£(£4—x)2G (x} , n=2 .

Gn—t—l 25°2 n-1

Note that dnf-l/2, n=0, and Gn(dn-l)= 0 for all nzl. There are three
cases to consider in determining the solution to this system, namely
k=0 (h {0) =X ), k=1, and k22,

o o

Case 1l: k=0.

If k=0, it is easily calculated that Wo(s)==0. If the infinite
system is truncated in the fashion of (5.1), it is easy to see from
{5.2) that a solution to the finite system for any N is
B -t/2
ho(t) = Aoe '
(5.9)

h {(t) = 0 , 1l=n=N .
n

Note that no part of (5.9) depends on N; hence, if a limit is taken on
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N, it might be suspected that the solution to the infinite system is
also (5.9). Direct substitution verifies that this is the case.

Case 2: k=1.

First find ho(t) for the system truncated as above. Note that

(5.2a) for n=0 becomes

(s)Gz(s)-Fz(s)GN+l(s)} 1

A 1 GN+1(5) bo(s—do)bl(s-dl)

(SJGl(S)—Fl(S)GN+l(5)} 1
GN+1(5) bo(s-do)

FN+ 1

+ 1 (5.10)

(S)Go(s)—Fo(s)GN+ (s)

SERLY

F
1 1
{ N+

b

-b
o]

But from (A.10), [FN+l(s)Gj(s)—Fj(s)GN+l(s)]/[GN+1(s)bo(s-do)b1(s-dl)...

(s {s). Thus

b (s-dj_l)]==bo(s-d0)bl(s-dl)-..bj_l

3-1 ~dy17 %y, Ne1-g (8O

the Heaviside inversion formula can be applied to (5.10) over the zeros

3 1 - = < <
of GN+l(s), one of which is s dN do. Let u, . 1<i<N, denote the Zzeros

of G +1(s) with u0==do==dN. Under these conditions, it feollows that

N
h (t) N F ('Ll,)' u.t
> = E HLLE N (-b.G_(u,)+G, (u.)=b G (u.))e *
Ak i=1 GN+l(ui) 1 271 11 co i
-t/2
X {u )e
B oé?+l( o) (5.11)
e N+1 uo
N Py () uit Pyl e
= 1 3wy Wle ” b mrgre y
i=1 "N+l i N+l G

. . . \ -
It is easily calculated, for this example, that FN+l(d0)/GN+l(do) 1.

Thus the terms under the summation sign are dependent on N, bhut not the
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term boe_t/z. If 2 limit in N is now taken, it might be suspected that
h (t) o .
o . J wl(x)wo(x)eXtds(x)-Jz/ls 2 (5.12)
1 -

where B(x) is some, as of yet, unknown function. In order to find R(x},

congider the sequence {BN(x)}N=l formed from defining BN+l(x) by
Fya1 2 _ jm AByyq ) (5.13)
GN+1(Z) _ zZ—X
Notice in particular that
Fuer® 1 [m Brer™®
GN+1(z) z—do _ z-X z—do
N Jm F (u_) é(x—ui)dx 1
= z - {5.14)
izo J—w N+l(u ) z-x 2-d_
= § Jm FN+l(ui) 6(x—ui)dx
i=1 /- Cne1 Yy zx
and so
h (t) o N F (u,)
—{}——-: j W (x)¥ (x)eXE( ¥ ayigj——T-é(x—u.)]dx . (5.15)
1 — © i=1 °N+1 1

Thus (see Chapter II), it is possible that f{x) is given by the inverse

lim

Stieltjes transform of _° [(F (Z)/G (2))—Lﬂz—do)]. By referring to

N+1

the techniques of Chapter IV, it can be shown that the B{x) obtained in

this manner satisfies
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9#(%)2 - (x4—%)2dx

T{5x+1) (2x+1}

aB(x) = , xel-1,-21 . (5.16)
It can also be shown, for the infinite system, that

h_(£) = A, J wl(x)wo(x)eXtds(x) N Y (5.17)

For k=1, (5.2b) becomes

H. (s) P () F (s)
1 N+1 N+1
= ~b ¥ (5) [ ¥ (s)-¢. . (s)]1+¥_ (8) [————— ¥_(s)-2_(s)]
Al 1°1 GN+l(s) 2 2 1 GN+l(s) 1 1
F (s)
N+1
-b ¥ (s} ¥i(s)-¢ (s)] , {5.18)
o O GN+l(s) 1 1
S0
N F u.t

N+l(ui) i

1 Z G' _(u.) €

2
. [—blwl(ui)w2(ui)+wl(ui)-bowl(ui)]
i=]l "N+11

hl(t) = A

N F {u.) u,t

N+l i i
=X, )} e T W (u)¥ (u) . (5.19)
121 Gy @) 1id

Again for the infinite system it can be shown that for dg(x) as given in

(5.186),

Wl

_ xt
hn(t) = Al f_l Wl(x)¥n(x)e dg({x) , nzl . (5.20)

Case 3: k=22.

By using the same approach as apove, it can be shown that
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Xt
hn(t) = Ak J Wk(x)Wn(x)e dig(x) , nz=0 . (5.21)

This concludes the first example.

Now consider a slightly more complicated example where the di'
iz0, are all distinct, but Gn(dn_l) is still zero for all nzl. First
note that if q; denotes the leading coefficient of Gi(x) as in the proof

of Theorem 2.5, then
Gn(x) = qn(x—do)(x-dl) . e . (x—dn*l) (5.22)

and thus

= - > =
qn+l qn bn_lqn_l r nz0, q_l 0 . (5.23)
Further note then that
ql’l
= > ’ .
?n(x) b b ... L , nz0 {5.24)
o 1 n-1
and hence
“bnqn+l qn bn—lqn—l
L =Ty 5 ' bb b . bb p - 0« m0
o """ Tn ol """ Tn-1 ol """ "n=2
(5.25)

from (5.23). Thus (5.2) becomes
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Hn(s)
Ak = —Vk(s)Wn(s) , 0%nsk-1 , (5.26a)
Hk(s)
Kk = —Vk(S)?k(s)+bk_l[¢k(s)?k_l(5)-¢k”l(S)Wk(S)] {5.26b)
= bk[Wk(s)¢k+l(s)—?k+l(s)¢k(s)] (5.26¢)
H (s)
L =0 , k+l<n<N. (5.26d)
Kk

In order to find hn(t), 0<n<k, it remains to find Fn(s) for s==di,

0<i<n-1. To this end, note that from (1.3) and (5.24}).,

2

= - =
dnqn+1 a‘l'lqn bn—ldn—lqn-l » 020, {5.27)

or

a_ = r nz0 (5.28)

By using (5.28) and (5.23), it can be shown that

22 2
5n+l(dj)—bobl... bj_l(dj—do)(dj-dl)... (dj-dj_l)(dj-dj+l) see (dy-dp)
q
. _ﬂil__ an . (5.29)
93959+

An example of the calculaticns leading to (5.29) follows (for j=n). From

2 2 ,
(2.12) Fn+1(dn)-(dn—an)Fn(dn)-bn_l(dn-dn_l) Fn_l(dn) or, by using

(5.28) to replace a s



Fn(dn)-qn(dn-d )Fn_l(dn))

n+l'°n’ ~ q n-1 n-1

In a similar fashion,

qn—an(dn)_(dn—dn—l)ann—l(dn) =

2 2
bn~2(dn-dn-2)[qn—ZFn—l(dn)_bn—2qn—l(dn“dn-2)Fn-2(dn)]

By putting (5.31) into (5.30), Fn+l(dn) becomes

2 2

bn-lbn-.?(dn-dn—l)(dn—dn—2)qn+l

Fn+l(dn) = { )
qnqn+l

2
: [qn—ZFn—l(dn)-bn—2qn—l(dnpdn—Z)Fn-Z(dn)]

Induction readily establishes the desired result. Fn+2(dn)

easily found from P l(dn) and similarly for other values.

+
Now return to (5.26a). For k=1,
Bals) M [ by e ()
Ak bobl "'bn—l bo(s—do)bl(s—dl) ...bk(s—dk)

) Fk(s)
bo{s—do)bl(s-dl) ...bk_l(s—dk_l)

N bk_le_l(s) :
bo(s-do)bl(s—dl) ...bk_z(s—dk_z)

is then

47

(5.30)

(5.31)

{5.32)

(5.33)
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Invert (5.33) by using the Heaviside formula and the fact (from (5.29))

that F (s)—(s—dk)Fk(s)—b (s—dk_l)(s-dk)Fk_l(s)==0 for s=di, 0<igk=-2.

K+1 k-1
The remaining contributions (from szdk_l,dk) yield
2.2 2
h (e _ % {[bkbobl e By o%
e bpy---big PRy B 9
2 2 2 2 2 2
bPy - By n9y : dg-1% . [bkbobl e bk—lqk+1]edkt}
bPy »er B 1T 19 SR R A
gbb ...b . &t d .t w
”bobl bk e ® ce ¥y | o<n<k-1 . (5.34)
9PoP1 * 7 Pn-1

For n=k, it is easily seen from (5.26c¢c) that

hk(t) d t

*x

{5.35)

This concludes the second example. That such an example can arise from

Figure 1 with positive circuit parameters is illustrated by the choices

n+l n+l
r =4 /(4 -1}, £n=2, Ln=1, RO=2/3, R

. = 4™ i)™y, nzo.

n+l

. n
Define Bn' n=0, by Bn= (1+2(4) 'y/3. Then for xk(0)==yk, xn==0, nZk, a

solution to (1.1} is

£ L cae ko Bn -rkt/ﬂ,k —rk_lt/ﬂ,k_l

xn(t) =Yy 3 (e -e ) o+ n<k ,
k
-r. t/L
_ k™7 7k
xk(t) = Yie P
xn(t) =0 , n*k . (5.36)
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CHAPTER VI
UNIQUENESS

The solutions (3.2) and (4.2) to the system {1l.1) with the initial
conditions (1.7) are not unique. 1In fact, there are an uncountable number
of sclutions, since any function in Cl[O,m) satisfying the initial condi-
tion on xo(t) can be used to generate xi(t), izl. This chapter is
devoted to determining conditions sufficient to guarantee that (4.2) is
a unique solution of (1.1} (the technigues employed are similarly ap-
plicable to (3.2)). The procedure separates into two parts. In the
first part it is shown that if a solution exists satisfying (1.1), (1.7)
and the additional restrictions to be derived below, such a solution is
unique. The second part determines conditions sufficient to guarantee

that (4.2) satisfies the restrictions derived in the first part.

Part I
In line with similar investigations of countable systems [3], it
is assumed that each xn(t) is expansible in a Maclaurin's series. The

values xn(O) are assumed given since they are the initial loop currents.

(k)
n

. . th . , .
Then, if the value x (0}, the k derivative of xn(t) at t=0, is

uniquely determined for each k, xn(t) is unique. It is shown below that

two additional restrictions are sufficient to guarantee this uniqueness.

k+
With the intent of eventually sclving for x; l)(O), nzl, in

k
terms of xi )(O), i=0, and xék+l)(0) (see (6.6)), differentiate (2.1)

(k+1) (k)
n

X times and let \'zn(t) =h (), v (8) =h "' (£}, n20. For t=0, it
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follows that

_bnvn+l+vn_bn-lvn~l = anvn"bndnvn+l"bn—-ldn—lvn—l !

n=l . (6.1)

The equations in (6.1) are more amenable to manipulation and hence to
solution if the changes vo(t)='t0(t), T_l(t)= —(aovo(t)-bodovl(t)),

J(-bd v (t)

vn(t)=:tn(t)/(bobl--- b _ n-1 nn n+l

J)rand T (8)=-(bb ... b

-b (t)+anvn(t)), nzl, are made. Then (6.1) bhecomes, for t=0,

n-1%n-1Vn-1

(6.2)

. _ . _ N .
tn+l tn+bn-1tn-1 Tn-l » Rzl

. 2. = . )
Further, since {bn}n_O is a chain seguence, recall from Lemma A.l that

2 2
O= b = . = 3- =2 t s s
m_l, o mo bn—l mn-l( mn—2)' nz2, where the mn are the minimal

parameters of Lemma A.1. Then, in the interest of further simplifica-

tion, if the substitutions uo(t)='tl(t)—to(t) and un(t)= (t (t)

n+l

-(l-mn_l)tn(t)), nzl, are made, (6.1) via (6.2) becomes, for t=0,

- _ . - - . .
un mn~lun—l Tn-l , n20 (6.3)

This is a difference equation amenable to standard solution techniques

and in fact has solution
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. n-1 n-1 T, (0)
u {(0) = (I m.)(T_l(O) + —_—) ., n21 . (6.4)
n i=o * i=o

S I

[ n
I
v}

Now it is necessary to solve the difference equation, for t=0;

tn+l—(l—mn_l)tn==un (with initial condition tl==u0+t0) since tn(O) then
. +
gives vn(O) which then gives hik l)(0) which then gives xék+1)(0). By
standard techniques, it follows that
- n~1 . n=1 1, (0)
= - —————— >
t (0 ['Eo(l m._)1E_(O) + -Zo n } , n21 , (6.5)
= 1 (1-m. )
. i-1
]=0
whence
x(k+1)(o) - Lotis )% 1 [“ﬁl(l'mi)‘zl [x(k+l)(0)
n g 4L +R Bt m o
n-1"n "n {1-m -l) i=o i
n-1 ﬁi(o)
+ z -—i—-—————] , nz2l1 . (6.6)
T m e, p
j=o
. (k+1) . , , .
Thus, in general, X {(0) for nzl, is uniquely determined in terms of
ai, bi' di' xik)(O) for iz0, and xék+1)(0). The difficulty is that, as
+ =]
of vyet, xék l)(0) is undetermined. But if {xék+l)(0)}n=l contains a

subsequence which converges to zero, it is shown below that the existence

{k+1})

of such a subsequence is sufficient to determine X (0) uniquely and
{k+1) . -
hence each X {0), nzl. Before proceeding, however, some preliminary

information is required.

2.«
Lemma 6.1. Let {bn}n=o be the chain sequence of Lemma 4.1. Then
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L +L +2
n 1 n n+l n+l (6.7)

Proof. Follows immediately by induction.m®

2 o .
Theorem 6.1. Let {bn}n_O be as in Lemma 4.1, and suppose a

solution to (1.1) exists with the properties

(i) xn(t) is expansible in a Maclaurin's series;

oo

n=1’ k21, contains a

(ii) each sequence {x;k)(O)}

subsequence which converges to zero.

Then the solution to (1.1) is unique.®

Proof. Upon referring to (6.6), it is seen that if the coefficient

1 ;, n-1 L
3, _ 3, _ 3
[(LO+£O)/(2n_l+Ln+£n)] /(1 mn—l) ‘H { (1 mi)/mi) were bounded away
i=o (k+ 1) ®
from zero for all nzl, it would follow that X {(0) = - z ui(O)/
, i=o
(= (k+1)
iy (l—mj_l)J. Thus X {0) would be uniquely determined in terms of
j=o
{k)

a,, bi' di' and xS {0), 120; and the theorem would be proved. But by

using Lemma 6.1,

m, L (6.8)

Notice that no assumption concerning the number of non-zero initial

loop currents is made.

Part II
In this section sufficient conditions are determined so that the

soluticon {4.2) exhibited in Theorem 4.2 has the desired property that each
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[=-]

n=1’ k21, contains a subsequence which converges to

(k)
n

sequence {xik)(o)}
zero. The elements in the sequence {x (O)}:=l are obtained by
differentiating (4.2) k times and evaluating at t=0. Parenthetically,
one may observe that successively differentiating under the integral

sign and then setting t=0 in the resulting integrands yields the required
one-sided derivatives at t=0 provided, as ic assumed in Theorem 6.2,

oo
that lj xrdB(x)|'<m, r21. See Appendix D for a further discussion.
-

The result of these operations is

® ¥ (x) W, (x)
¥ 0y =y (n. L J
n 1 J-

: Faax)

l+L.+£,)f T
J wo (4L +2 )2 (L. +L.+0.)
n n n 1= J 3

-1 1

n20 . (6.9)

The approach to be followed from this point is fairly simple: first,
orthonormalize the sequence {wn(x)}:=o to obtain a new seguence
{¢n(x)}:=o; then, expand Wn(x) in terms of the ¢i(x), i>0; verify that
the coefficients in this expansion are square summable; replace Wn(x)

in (6.8) by its expansion; interchange the resulting summation and inte-

gral signs; finally, apply Bessel's inequality to the function kaj(x)
and obtain, after some algebra, either %im(x(k)(o))[(l-2b.)(2 +L, +
ivee i i i-1 71

b lim (k) B _
Ri) 1] =0 or | (xi (O))(Ei_1+Li+2i) = 0.

1

The key to this investigation is the orthonormalizing of the

sequence {Wn(x)}:= . To this end, define a new seguence {¢n(x)}:_

o] 0o

by ¢o(x) = Wo(x) and



i-1 o
W, (x) - kzo ¢k(x)f_w b, ()W, (s)dB(s)
¢l(x) = - o1 - , 5 P izl .
2
(J_m(wi(t) -kéocbk(t)J_mcbk(s)wi(s)ds(s)) &R (t))
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(6.10)

o0
Then it is eagily verified that [ ¢i(x)¢j(x)d8(x)==6ij, i,j=0. Note
= -]

that (6.10), together with the definition ¢O(x) = Wo(x), actually says

that ¢i(x), i20, can be written as a linear combination of Wk(x),

i
0<k<i; that is, ¢i(x) = Z aikwk(x), iz0. In expanding Wn(x) in terms
k=0
of the ¢i(x), some additional information about the coefficients ay is
needed. This information is now obtained.
Lemma 6.2. Let m, . iz-1, be the minimal parameter seguence
(obtained from Lemma A.l) for the chain sequence {bi}:=o- Then
i-1 m
1 3 5
a,, = (77— ) ,  0gk<i-1 ,
ik (1 mk-l) X {1 mj)
%5 7 - ;v (6.11)
(1-m. )
A = 0 , ki .m
Proof. Let so=l and define
2 2 2
b b
1] n-1 | n-2 | 1 2
= - - .- - 21 . .
Sn ‘ 1 l 1 l 1 1 b ’ n=1 (6 12)

Then it is possible teo verify directly that
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m-1 m-1
}o(n by s W, (x)4W ()], m20 {6.13)

j=o k=3

1
_ 3
¢, (¥} = s_|I

(to do so, substitute (6.13) for 0sm=<i-1 into the right side of (6.10);
perform the indicated integrations; show that the result is (6.13) for
m=i), The above verification is facilitated by noting that the S, n=1,
satisfy the difference equation
1
g = —— , nzl , {6.14)
n 2

l_bn-lsn—l

, e . - . - _ S .
with initial conditicon S, 1. WwWith qoﬁql 1, s qn/qn+l' nz0, (6.14)
becomes

2

1 = I Ppo19 ¢ B2 (6.15)

Equation (6.15) is solved in Appendix A in the proof of Theorem 2.5 and
in fact a, = :ifl(l-mi), nzl. The conclusion follows by substitution.®
This completes the first step listed above.
For future reference, denote the matrix of coefficients aik by
Once the seqguence {¢n(x)}:=o is acquired it is fairly easy to
write each ¢n(x), nz0, as a linear combination of Wi(x), iz0, simply by
using (1.9) and (6.13), but the inverse problem is slightly more compli-
cated. The method of attack employed here is first to write each Wi(x),

i=0, as a linear combinaticn of ¢n(x), nz0, then to use this result to

solve for ¢n(x), nz0, in terms of Wj(x), 320, and finalily to use the
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insight developed through this procedure to invert the relation between
¢, (x) and ‘i’j (x).
Lemma 6.3. Let ¢O(x) = Wo(x); let ¢n(x), nzl, be as in (6.10);

let mi' iz-1, be as in Lemma 6.2. Then

Y e .
Wi(x) = (l-mi_l) ¢i(x)—mi_1¢i_1(x) , iz20 .= (6.18)

Proof. Follows by direct substitution in (6.13).R

Thus each Wi(x), i>0, has now been written as a linear combination
of ¢n(x), n=0. Next each ¢i(x), 120, must be found as a linear combina-
tion of Wj(x), j20. For this endeavor, some additional notation is re-
guired, Denote the infinite matrix of coefficients in (6.16) by [b]w
with transpose [b]:. Let (¥}, {¢), and (W) represent the infinite column

of vectors of Wi(x), ¢i(x), and Wi(x), iz0. Then
bl [bIZ(¥) = (W) (6.17)
[ wioly, = .

because

T
[b]w[b]w = : (6.18)

as direct multiplication shows. Since from (6.16), [b]w(¢) = (W), it
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might be suspected from (&.17) that [b]:(W) = (¢).
Lemma 6. 4. [b]i(?) - 4).m

Proof. Direct substitution.m

Now employ the insight garnered thus far to invert the relation
of Lemma 6.4. Specifically, recall that [a]w(W) = (4) and [b]w(¢) = (W)
which seems to imply that [a]w is an inverse for [b]w or, more importantly,
T . . T
that [a] 1is an inverse for [b] .
w W
Lemma 6.5. [a]a is both a left-hand and a right-hand inverse for
T
(bl .m®
w
Proof. By direct multiplication.m

As a result of Lemmas 6.4 and 6.5,

5 X
= {(1- 3 o 2 .
¢i(x) = (1 mi_l) Wi(x) i‘¥i+l(x) . iz0 , {6.19)
T
and {¥) = [a]l (¢) or
w
1 o j=1 meoy
Y = ——0¢, ) + ] o) e 01, diz0 . (6.20)
(1-m,_)* j=i+l k=i k3

This completes the second step.
Now it must be shown that the coefficients in (6.20) are square

surmable. In fact, the sum of the squares of these coefficients beccmes

e j-1 m
1 K 1
1+ O n ) = — , i20 (6.21)
T L T e T |

. . 2
from [18] where Mi— is a maximal parameter for {bi}:— ; and since M,om.,

1 o

for all iz-1 (see Chapter IV}, the coefficients are indeed square
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summable. Thus, the third step is complete. This step is important
because it justifies the interchange of an integration and a summation
with regard to these coefficients in the proof of the following thecrem

which encompasses the remaining steps.

-]
Theorem 6.2. Suppose that |J xrdB(x)'< ©, r20, and that no sub-
-0

(=]
+L,+2 )}, has limit zero.
1 1 1=0

sequence of either {(l-Zbi)}i=o or {(Ri_l

Then the solution (4.2) to (1.1), (1.7) is unigque.l

Proof. It must be shown that there exists a subsequence of the

(x)

n (0)}:_o which converges to zero. From Naylor and Sell

sequence {x
[12], with bij denoting the entries in a matrix formed from (6.20)

R T
(that is, [a]w),

It t~18

® k _ ” k
J-mwi(x)wg(x)x dp(x) = lbijf ] ¢j(x)W2(x)x dg(x) . (6.22)

]

1+l o
Let ci = J ¢i(x)w2(x)xkd8(x). Since it can be shown that |[ xrdB(x)l
oo -0

< o, r>0, implies [ Wj(x)xzkds(x)*cw, k=0, it follows from Bessel's
oo —_

inequality that z C§< w. Let
i=o

x) _ [ K
fz,i = J_m ?i(X)Wl(x)x dpR({x) . (6.23)
Then
2 _ . [° 5 3 k 2
cy = {J_m [(l-m, )7, (x)-mpay. ,(x)]W, (x)x"dB(x)}
_ L (k) 2 k) .2 . (k) (k)
= ey ) mEy i) e iE e o (692

and
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2 _ (k), 2 (%) . (k)
; o] = ): [, £ E ) (6.25)
1=0 i=o
(%) v v £ () >
— - - -3
But £y 541 = L Bygey= L bygogbie =fy -y /ilomy )" and so
j=i+l j=1i
Y2 _ % (k) (k) 5
7 oct= 7R e ~2b)+2mic.) . (6.26)
i . L,i &,1i ii
i1=0 1=0

(k)}

Thus, since Z ci< », it follows that either {£f has a subsequence

i=o
{f (k) } which converges to zero or {f(k)
2,i{n) n=o L,1

(k). i(3) {1- 2b:|_(3))}m= which converges to zero. Thus (from (6.9)) either
(k) . ()
i(n) (M) (e, i(n)- l 1(n)+£i(n)) =0 or ( i(3) (0)) (1-2b, i (5)

(1-2b, )} - has a subsequence
{f

( ) (%

i{(3)-1

Lr
+L.,..+%.,..)%=0. The conclusion follows.®
i{d) Ti(
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CHAPTER VII
DISCUSSION AND RESULTS

This chapter briefly discusses some of the more unusual results
obtained in the preceding work. BAlso some of the extensions and appli-
cations of these results are menticned.

Notice first that the sufficient conditions for uniqueness, as
given in Theorem 6.2, hold for all of the examples in Chapters III and

. . 1i i
IV except the Laguerre polynomials. In this case .lm(l-Zb.)(E. +L.+4.) ¢
i i i- i 7

1
=0, so Thecrem 6.2 does not apply. For this reason an alternative (but
more specialized) unigqueness result is now cobtained. This result re-
guires none of the machinery developed in Part II of Chapter VI but it
applies only to polyncomial systems. More particularly, it applies only
to those polynomials in (2.3) for which the integrator of (3.2) is known

to be non-decreasing.

Theorem 7.1. The soluticn tc (1.1), (1.7} givenby (2.3), (3.2)

satisfies Theorem 6.1 provided:

inf

i R+4d L 0;

(1) n n o n|#

(ii) there exists a non-decreasing oa(z) which satisfies
(2.4);

(iii) |J (do+l/z)rda(z)|<m, rzl.m

. inf cr .
Proof. Since 12 IRn+doLh| #0, it is sufficient to show (see (3.2}))

that



61

lim
o

f P (z)P, (z){d +l/z)kda(z) =0 , k21 . (7.1)
e D 3 o

o
But if (iii) holds, then Pj(z)(do+l/z)k can be written as ) a P (z)
n=o
where each a, is given by the integral in (7.1). Since a(z) is non-
w
decreasing, it follows that Z a§‘=w and hence (7.1) holds for k21.m

For the examples of ChZ;ger V, that is, those for which no integra-
tor exists, the uniqueness criteria developed in Part I of Chapter VI
{(see Theorem 6.1) can still be applied directly in each particular
example.

In the general case, the question of the form of a sclution to
(1.1) when no integrator exists for (1.3}, (1.9} remains unanswered. The
two examples given in Chapter V represent two widely varying cases, one
for which an integrater "almost" exists (see (5.9,17,20,21)) and one for
which nothing like an integrator exists (see (5.36)). Note, however,
that despite their dissimilarities, the same approach, based on (5.2},
works in each case.

Another interesting result is that sometimes an integrator for the
system of polynomials (1,4) may be only of bounded variation while an in-
tegrator for the corresponding system of ratiocnal fractions (1.3}, (1.9)
may be non-decreasing. In particular, consider the second example of
Chapter III. PFrom (3.5) and [10], it can be seen that the integrator
defined in Theorem 3.1 is of bounded variation whenever ¢ and 4 are both
negative. Yet it can also be shown that when the physical system for
this integrateor has its solution couched in the form of (4.2), the in-

tegrator B(x) in (4.2) is non-decreasing. In order to make this more

L =2, nz20,

concrete, let rn=2n=1, R2n+l=2' L2n+l=l' R2n+2= 1, ont2
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_ V4~(zz—z—10)2

27 (d-2) dz . (7.2)

u(z)

Then da(z) is defined by H(z) on [1+¥33/2,4] and by -H (z) on [-3,1-V33/2].

On the other hand, let
1
veo = [l A= (6 e+ ) (x+-§-)—(x+1)2)2) YD P I 1ax (7.3)

Then dR(x) for the same RL values is -v{x} on [(—17—/35)/16,-4/3] and
vi{x) on [-3/4,(—17+/5§/l6]. Notice that B(x) is non-decreasing while
a{x) is not.

Some extensions on the above chapters have been made but have not
been included since they do not pertain directly to the probklem of solv-
ing (1.1). BAmong these are: the problem of determining the coefficients
in the recurrence relation for Wn(x), nz0, given an integrator B(x); the
extension of (5.2) to systems of the form [A]d x/dt2+[Bldx/dt+ (Clx =0
where [A], [B], and [C] are finite tridiagonal matrices, and ; is a
vector function of t; and the evaluation of such integrals as

o
f Wj(x)wk(x)de(x), primarily by means of Chapter VI (for example,
-0

J_w v2(0a8(x) =1/M_)) .

One result which has been included is the example (in Theorem
3.2) of an "integrator" which is neither non-decreasing nor of bounded
variation. In fact, this "integrator™ contains an impulse function.

Although (1.1) cannot give rise to this case when admitting only
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non-negative RL values, this result has been included for twe basic
reascns: first, it completes the consideration of (3.5) for cd>0;
secondly, it represents a slight extension of the integrators in [10,11].
No attempt has been made to determine whether or not this extension pro-
vides solutions which are somehow "better" than the sclutions of Theorem
2.1. Comparison with a selution using an integrator of bounded variation
(guaranteed to exist by Theorem 2.1) might prove interesting, particularly

if uniqueness is to be discussed.
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APPENDIX A

This appendix contains the statements and proofs of a number of
theorems and lemmas stated in Chapter II. Additional supportive lemmas,
definitions, and proofs are given as needed. Theorems 2.5 and 2.6 and
Lemma 2.1 are the first results proved here. They deal with the problem
of representing Fn(z)/Gn(z), nzl, as the Stieltjes transform of some
function Bn(x). Before these results are proved, however, some infor-
mation regarding chain seguences is needed.

C s 2, . .
Definition A.1l. The seguence {Ui}i_O is called a c¢hain seguence

if there exist numbers \f} with DSYisl, i>-1, such that Ui=‘yi(l—yi l),

iz0. The numbers Yi' iz-1, are called parameters of the sequence

2.
{Ui}i=o'
. 2 ..
Lemma A.l. Every chain segquence {ci} has minimal parameters m,
iz-1, and maximal parameters Mi’ iz=1, such that miSYiﬁMi, iz=1, for all

other parameters Yi’ iz2-1, of the chain sequence. In fact, m 1=0 and

0 ;, 1if m,. =1
1

Miv1 7 2

i+l

. o
'_(1__"'ml) ] if mi<l, iz=1 ,
{A.1)
02 02
_ i+1 | i+2 | .
Ml =1 | 1 | 1 « 2 s 5 1= 1 .0

2, . . 2 2
Lemma A.2. If {Gi}i—o is a chain sequence and T, <0}, 120, then
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2, . . . . .
{Ti}i-o is a chain seguence. Furthermore, if m, and Mi, iz-1, are the

. . . 2 @ .
minimal and maximal parameters, respectively, for {Ti}i=0 and if Yy

: 2., . .
iz=1, are parameters for {oi}i_o, then miSYisMi, iz~1l. In particular,

if 12 < 02 for some k=-1, then m

K+l © k41 k1 < Yie1 209 Y <M W

k

The proofs of Lemmas aA.1 and A.2 can be found in [18].

Theorem 2.5. Suppose there exist 95 with O<gi_l<l, i=0, such that

2
< - 1>
bi_gi(l gi-—l) . Further suppocse that Gi+l(di) #0, iz0, and that a; . di

are real for iz0. Then Gn(x) has n real distinct zeros for n=zl. [The
guantities a s bn, dn, Gn(x) are defined in equations (2.2) and (2.12)].m

. ® . . , 2.,
Proof. Since {gi(l gi—l)}i=o is a chain sequence, so is {bi}i=o

l}cj;o be the minimal parameter sequence for
2, . . . . :
{bi}i=o' Note that O<mi<1 for iz0, since the physical assumption that ;

by Lemma A.2. Let {mi_

2
Q‘i > 0 guarantees that bi> 0, iz0. The fact that bi=mi(l—ml l) with

O<mi<l is now used to show that the coefficient of x in Gn(x) is posi-

tive. Let qn denote this coefficient. With qo=q1= 1, qn satisfies the

2 .
= qn_bn—lqn-l whlchniagcomes {9

mn—l (C_[n— (1—mn_2) qn-l) , whose golutionis q, = ig_l(l-mi) , h=l. Thus qn is
L. lim ) 1im lim
positive. So G (X)) ==, while G. (x) =« and
X+ n X+—® 2n by

difference equation g (l-mn__l)qn) =

n+1l n+l"

-0 G2n—l(x) B

-®, all for nzl. Now Gl(x) has one real zero at x=ao. Since Gz(ao) =
2 2 \ .

-bo(ao-do) and ao#do by assumption that Gl (do) # 0, it follows that

62 (ao) < 0 and hence that G2 (X} has two real zeros separated by the zero

of Gl(x). Now assume that the zeros of Gi(x) separate those of Gi+1(x) '

1<i<n-1 and show that the zeros of Gn (x) separate those of Gn+l(x) . Let
X, <X, <L..0 <X, . denote the zeros of G, (x). Then
1,0 i,l i,i-1 i
2 2
net Pn,m T a1 O 07 dno) G Bnd - (.2}
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But by hypothesis x #d 50 G (x m) and Gn_l(xn m) have opposite

n,m n-1 n+tl n, '
signs., Since in addition Gn_l(xn'm) and Gn—l(xn,m+1) have opposite signs
<m<rn-— 1 N
for 0<m<n-2, it follows that Gn+1(xn,m) and Gn+l(xn,m+l) have opposite

signs for each value 0sm<n-2. This accounts for n-1 zeros of Gn+l(x).
Now Gn_l(x) and Gn+l(x) have the same limit as x tends to -« but have

opposite signs at X o [set m=0 in (A.2)}]. Since Gn l(x) does not again
, -

cross the x-axis on (—w,xn 0), Gn+l(x) must, which accounts for one ad-
r

- ) . . <
ditional zero Similarly Gn-l(xn,n—l)> 0 while Gn+l(xn,n—1) 0 and
since Lim G (x) =<, the last zerco lies in (x ®) .l

x+o n+l ! n,n=-1" """

Although the proof of Theorem 2.6 proceeds along lines similar to
the proof of a lemma in [18]), the differences make an explicit presenta-
tion desirable.

Theorem 2.6. Suppose there exist 95 with O<gi_l<l, iz0Q, such

2 .
< - - =
that bi"gi(l gi-l)' and suppose that ai, di, are real for iz0. Let
y=Im(z) > 0; let tn(z,w) be defined by (2.14)., Then for Im(w)zzgny, n=0,

it follows that Im(tn(z,w));zgn_ly.l
Proof. The proof hinges on the fact that if z=x+iy, then with
2 2
Q==bn(z-dn) , it follows that

22y’ = o] - Re(Q) (a.3)

as may be verified by expanding the right-hand side. By hypothesis,

2 22
9,(1-9 _J)v by
Im{w) 2 gy = = . (5.4)
n (1-g__,JY (1-g__,)¥y

Now by multiplying (A.4) by two and subsequently replacing biy2 by its
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equivalent from (A.3),

re@) . _lol
y(l—gn_l) y(l-—qn_l)

2Im(w) + i (A.5)

and so, since |A+iB| 2 Im(A) + Re(B) for any complex numbers A and B,

i(Q) | > Lol
(g > 2zy(-g_)

v + ) (A.6)

Upecn sguaring both sides of (A.6), it follows that

-

(m(@)) % Re(w)Im(Q)

2
(Re(w)) +
)2 Y(l_gn_l)

+ (Imw)) 2 +
4y (1-9__,

(Re(@)® | mmre@ , (1m(@) %+ (re(9))?

(a.7)
4y2(1-gn_l)2 yil-g, o) 2

2
4y (l-gn_l)

Now in (A.7) use the fact that

_ Re(w) Im(Q)-Im(w)Re (Q)
2
| w]

Im (2)
W

to obtain

bz(z-dn)2
Im(Qo = Im{—mm} , {(A.8)
W W

v

y{l-g ;)

from which the desired conclusion fellows by using (2.14).8
Lemma 2.1. Suppose there exist 95 with 0<gi_l<l, i>0, such that

2
< - ; i>
bi._gi(l gi-l)' and suppose that ai, di are real for i>=0. Then Fn(x) and
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Gn(x), as defined in (2.12), are polynomials of degree n-1 and n, re-
. lim . . .
spectively, and z_m(an(z)/Gn(z)), z complex, exists and is uniformly

bounded for all nz2.®

Proof. In the proof of Theorem 2.5, it is shown that Gn(x) is a
n-2
polyncmial of degree n with leading coefficient 9, = I (l—mi), nz2.
i=o
Similarly, if P, is the coefficient of xn-l in Fn(x), then pl==1, p2==l,
2 ) . . . .
n+l'-pn- n—lpn—l' .The solution of this difference equation is
n-2 n-1 j-1
p_=[1 (I-m)1(1+ J T (m./{(l-m,))), n22, for the m, appearing in the
n r . , i i i .
r=0 j=1 i=o lim n-1 j-1
proof of Theorem 2.5. (Clearly, then (zF_(z)/G (2)) =1 + Z I
e n 7 j=1 i=o
{m./(1l-m.)), n=2. Wall [18] has shown that if {M }m_ is the maximal
i i g—ljgio
parameter sequence for {bz}oo , then 1/M =1+ z I (m,/(1l-m.)). Since
n’ n=o -1 §=1 i=o i i
_l>g_1 by Lemma A.2andg_1>0, the seriesforl/M_l converges. Thus ;i:
n-1 j-1 w =1
(zF (2)/G (2)) =1+ | T (m/(l-m)<l+ } 10 (m/(1-m))=1/M_ <=.®
j=1 i=o i=1 i=o
The procf of Theorem 2.8 requires the following lemma.

and p b

M

- r 2 r i = = = r =
Lemma A.3 Let Un' Vn n>0, be defined by Uo o, Ul 1, vo 1 Vl P

nzl ,

Un+1 PnUn-qn—lUn—l !

v =pV , n=1 ,

n+l n n_qn-lvn-l

where P, and qn are coefficients depending on n and perhaps on additional

parameters. Further, let X be defined by X =0, X =1,
m,n m,o m,l

= - Z >
xm,n+l Pm+nxm,n qm+n—lxm,n-l . n2l, m20 . (r.9)

Then, for those values of P, and qn for which Vi#(J(iZO),
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<|WQ

u J_q19,.9y -+ Qq
m -1%071 m~1
- —— = -mz = - .
v vV xm’k_m ,  k-mz0, q_; 1 .m (A.10)
k m m

Proof. HNote that {A.10) holds trivially for k-m=0. In [9], it
is shown by induction that (A.10) holds for k-m=1. Assume then that

(A.10) holds for 0gk-m<n {(nzl) and show that it holds for k-m=n+l. By

using (A.10) on (Um+n/vm+n)-.(Um/vm) and (Um+n+l/vm+n+ ) -(Um+l/vm+l)'
adding and then using (A.10) for (Um+n/vm+n)'-(Um+l/vm+l)' it can be
established that
Um+n+l _ Eﬂ - q~lqo "'qm—l [xm,nvm+lvm+n+l+qumvm+nxm+1,n
m+n+1 Vm vam+n+l Vm+lvm+n
\Y X
qm mvm+n+l m+l,n-1
- 1. (A.11)
v A\
m+l1l m+n
So it must be shown that
Vm+l(Vm+nxm,n+l_vm+n+lxm,n) = qmvm(vm+nxm+l,n

B vm+n+lxm+l,n—l) ) (3.12)
Direct substitution verifies (A.12) for n=1. For n22, first verify by

. r : = - =

induction on i (21) that (vj+ixj,i+l Vj+i+lxj,i) qjqj+l "'qj+i-lvj'

for j=0, izl; then {(A.12) follows (replace j by m, i by n; replace j by

m+l, i by n-1; substitute in {(a.12)).m

Thecrem 2.8. Let D denote the closure of the set of all dn’ nz=0.
If the intersection of D with G (see Lemma 2.2) is empty, so that (2.21)

and (2.22) are well-defined, and if the hypotheses of Theorem 2.5 are
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satisfied, then

f W (x)dB (x) = 6 , 0O<m<p~-1 , (2.21)
e W n om

and

fm Wm+l(x)dﬁn(x)

3 = 0 , 0smsn-1, lSjSem R (2.22)
{x-d )
m

are valid for every nz1.8
Proof. First define 7_.(x) by m ., {x)=1and m,(x)=b {(x-4 )
LA L 3 -1 J o o]
bl(x-dl)... bj(x—dj), 3j20. Now it is desirable to show that for t not

in G,

(t)

) dBn(x) = Fj(t) ; 1%jsn (A.13)

@ (Gj(t)vj_l(X)-Gj(x)ﬂj_l

(t—x)Trj_l

because the process used to derive (A.13) also yields (2.21); and once

(A.13) is obtained, (2.22) follows almost immediately. When j=1,

Jw [Gl(t)wo(x)—Gl(x)n (t)

(t_x)“o(x) ]dsn(x)

» (t-a)(x-d_)-(x-a_) (t-d )
f L &) (=) 148 _(x)

w (g —-d ) (t-x)
= f e_9 ag_(x)

(t-x) (x-4 )
o

or
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re Gl(t)ﬂofx}-Gl(x)ﬁ (t)

[ (t=x)7m_(x) 1a8 ) = f_mWO(X)dsn(x) . (A.14)

- Q0

Ezaluate (a.14) at t=d0 and use {(2.17) to obtain Gl(do)Fn(do)/Gn(do) =

f Wo(x)dﬁn(x). But from (A.10) with U=F, V=0, P = %2 . and qm=
bi(x-dm)2 (see (2.15)), it follows, since qo(d0)==0, that Fn(do)/Gn(do)=
Fl(do)/Gl(do); so J mWo(x)dBn(x)==Fl(do)= 1, and (A.13) holds for j=1.
Induction is now used to prove (A.13) for j>l. For this purpose, assume
{(3.13) holds for 1l<j<k and show that it holds for j=k+1l. The steps in
the procedure are, first, to write the left-hand side of (A.13) with

j=k+1 and _l(t)wk(x) added in and out and then to use the relation

2
W x) = [(a -4 )G (x)+b,

k

(dk—dk_l)(x—dk_l)Gk_l(x)]/{wk_l(x)(x—dk)] {see

(A-25)), and the induction hypothesis. BAs isshown below, the result is

r [Gk+1(t)“k(")'Gk+1(")“k(t)

e 14B_(x) = F_ (£)

k+1

&
*—Wk_l(t)f-mwk(x)dsn(x) ' (A.15)
which can be manipulated, as is also shown below, tocbtain (A.13). Now these
steps are actually done. By using (2.12) and the relation for Wk(x), it

follows that

fm {[Gk+l(t)1rk (x)-Gk+l(x)ﬂk(t)

&0 0 Iim _(8)W (x)=-7, ()W, (x)]}dB_(x)

-

o o (t—ak)Gk(t)wk_l(x)
= nk_l(t)mek(x)dBn(x) +[ { C=IEa—EY

- 00
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2 2
bl _ (t-d, )G, . (&)m _,(x) (x-a,)G, (x)m,_ ()b, (£-d )

(t=x)m _, (x) 138, (x) 'f_m[ (t=x)7, (%)

k-2

vrk_l(t)(ak-dk)(t-x)Gk(x)bk

+ (t-x)ﬂk(x) ]dBn(x)

2 2
fm S R S L ' Rt Rt Skl ¥

2

By gy y) 4y ) (IR Gy Do, (8

(t=x)m_(x) 148, (x)

The last two integrals on the right-hand side of this expression become

o b T ()
k k-1
f (-Gk(x)(t-ak)(x—dk)

e (BT ()

2
+ by L (x-d ) (x=d ) (t=d )G, (x))dB_(x)

Thus

Jm (Gk+l(t)ﬂk(x)—Gk+l(X)ﬂk(t)

I )aE_ (x) = “k-l(t)f W (x)ag, ()

= G (E)m _(x)-G (x)m . (t)
k' k-1 k7 k-1
* (t“ak)J A Ty F— e YaBg, b
—co k-1
BT =G T ()

®© G
2 2[" "k
- b (t=d ) [_i )aB_(x)

(t-x)m, _, (x)
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from which {A.15) follows by using the induction hypothesis and (2.12).
It remains to show that f Wk(x)dsn(x)= 0, l<k<n-1. To do so, first
-

divide both sides of (A.15) by G (t) to obtain

k+1

Fn(t) ) fw Gk+l(x)ﬂk(t)d6n(x) _ Fk+l(t)
Gn(t) - Gk+l(t)wk(X)(t-X) Gk+l(t)
(a.16)
T (t) (o
k-1 f
+ — W {x)dB_(x} .
Gk+l(t) k n

Now differentiate both sides of (A.16) ek-l times with respect to t,

evaluate at t=d. , use the fact (from (A.10)) that

K
dm(Fn(t)) dm(Fk+l(t))

G, (% _ Gre1 ()

at™ =4 ac™ t=dk

(A.17)

05m£2ek—l, n>*k ,

o0
and obtain the result j Wk(x)dBn(x)==O; so {(A.l15) becomes (A.1l3) with

-CO
j=k+1. Parenthetically, note that differentiation under the integral sign
is wvalid because of the form of each Bn(x) (see the discussion preceding

Lemma 2.2). Hence (A.13) holds for 1<jsn. So from {A.16) and (2.13},

Fn(t) Fk+l(t) 1 fm ?k+l(x)

N e (EmX)

Gn(t) Gk+l(t) Wk+l(t)

dBn(x) , 02k<n . (A.18)

To obtain (2.22) for j=1, differentiate both sides of (A.18) (with respect

to t) e, times, evaluate at t=dk' and use (A.l7}. To obtain the remaining

k
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(=]
equations of (2.22) use induction con j. Assume that J [Wk+1(x)/

(x-dk)j]dBn(x)='O, 0<k<n, 1l<j<i<e, and show that this result holds for

k

j=i+l. Differentiate both sides of (A.1l8) (with respect to t) ek+i

times; evaluate at t=d ; use (A.17) and the induction hypothesis to

kl
obtain the desired result.®
The proof of Theorem 2.9 depends on the following three lemmas
(A.4-n.6).

Lemma A.4. Under the conditions that

i a., b., d, are real, j=20,
(i) :]l' j' 3 J

(ii) there exist gj with D<gj_l<1, j20 and

2
b.S - l- . r
5 93( gJ_l)

{iii) G and D are disjoint,

o Y (x)dB{x)
f ntm =0 , n>l, m20, l<j<e_ .M (2.20)
-

j
(x-dm)

Proof. The method of proof is by induction on j where at each
stage induction on n is used,
Let j=1. By (2.19), J [?m+l(x)/(x—dm)]d8(x)==0. Now use induc—

tion on n, assuming that

© ¥ {x)dB(x)
J nim = 0 (A.19)

(x—dm)

helds for 1l<n<k and showing that this result holds for n=k+1l. In order

to show that (A.19) holds for n=k+l, it is first verified that
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Y (xjd2(x)

m+n+1

® bm+n (dm_dm+n
e (x—dm)
(A.20)

m m+n-1 mtn-
{x-d_)
m

Jm [(dm_am+n)wm+n(x)_bm+n-1(d -d Y l(x)]dﬁ(x)

by using the recurrence relation (1.3} for wm+n+l(x)' dividing by (x—dm),

writing (x-dm+n)/(x—dm) as l+(dm—dm+n)/(x—dm) (similarly for (x-am+n)/

(x—dm) and (x-d )/(x-dm)), collecting the terms which appear in

m+n+1l
{a.20), integrating, and using (1.9) and (2.18) on the remaining terms.
Then from {(A.20) with n=k (the right-hand side being zero by the induction

hypothesis), it follows that either dm==dm+k or J_m(?m+k+l(x)/(x-dm))dB(X)=0-

B . : . w0 _ e w
utifd =d ., thenby (2.19) [ (¥ . (0/(x-d  ))dE&)=0 or [__(¥ . (x)/
(x-d }))dR({x)=0; so the desired result follows whether 4 =4 or not.
m m m+k
Now assume that (2.20) holds for l;jsi<em, nzl, and show that
co .+
(2.20) holds for j=i+l. By (2.19),{ (‘Pm+l(x)/(x-dm)l Liag(x) = 0. Now
use induction on n, assuming that
@ Yy (x)dB(x)
f min =0 (a.21)
o (x-a )1+l
m
holds for lsen<k and showing that this result holds for n=k+1l. In order
to show that (A.21) holds for n=k+l, first observe that
fm bm+n(dm_dm+n)wm+n+l(X)dB(X) -
. (x-d )1+1
m
(A.22)
® ((dm_am+n)¥m+n(x)_bm+n-l(dm-dm+n—l)Wm+n-l(x))dB(X)
o i+l

(x-dm)
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as can readily be verified as above except that after collecting the
terms in (A.20), divide by (x~dm)l, integrate, and use the induction
hypothesis to eliminate the remaining terms. The rest of the proof

proceeds exactly as above.B

. m m
Lemma A.5. If Gm(dm_l);’o, mzl, then for some constants rk, sk,
0<ks<m,
m
m rk
W (x)= ) —— , m20 , (A.23)
m a
k=0 (x-d. ) k
k
m
where rmafo, m=0. Also
1 m
= Z W (x , mz0 .8 (A.24)
em k=0 k k
(x-d )
m
Proof. By beginning with (1.92), using (1.3} to eliminate
?m+l(x), and then using (2.13)}, it follows that
({a -4 )G (x)+b2 {x-d Jd -d 1G (x))
m m m m-1 m-1"m m-1" m-1 , m=l . (3_25)

w_(x) = :
m b (x-d )by (x=d)) ... b (x=d ) (x-d )

Then a partial fraction expansion of (A.25) yields (A.23) for m2l. For

e
m=0, W (x)=(a -d )/(x~d ) ©, 1t is readily verified that r" = (-1/
o mgl o] o m
bobl... bm—l}.n Gm+l(d )/(dm—di)whlchnlsnon—zer051nceGm+l(dm)¢O,
i=o,dp#d;

m20. Eguation (A.24) now follows by a matrix inversion.#
Lemma A.6. J Wj(x)wj(x)ds(x)==f Wo(x)wo(x)ds(x)= 1, j20 (see

(2.18)), under the same conditions as Lemma A.4.8
[+]

o0 N e,
Proof. f Wj(x)wj(x)ds(x)==f Wj(x)[r;/(x-dj) j]dB(x) by Lemmas

-—C0

[+~
A.4 and A.5. Now perform the following steps on J Wj(x)wj(x)ds(x),
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j21: replace vj{x) by its partial fraction expansion; eliminate the
constant term in this expansion by (2.18); rewrite wj(x) by using (1.9);
eliminate all possible remaining terms by using {(2.20). This together

with the first equation above yields

1]
'_‘___\
I B8
8

=
[

1

'._l

»

@

f ¥, ()W, (x)dg (x)
o 3 3

J-w LR COLNNCOL.LICO N £ I

By repeated use of this result, the conclusion follows.B

Thecrem 2.9. Under the conditions that

(i) aj, bj, dj are real, j=0,

{ii) there exist g:.I with O<gj_l<l, 320 and

2
b. £g.{1-qg. .},
3595195

(iii) G and D are disjoint,

B(x) is the integrator of Definition 2.3 for the seguences (l.3) and
(1.9).8

Proof. It must be shown that
J Wj(x)wk(x)ds(x) =0 , Ij¥k, Jj,kzx0 . {a.26)

If k<j, (A.26) follows immediately from (A.23) and Lemma A.4. If j<k,

then (A.26) follows by an expansion of Wj(x) intoe a constant plus a sum



e,
of factors of the form r/(x-di) * for r a constant and 0<i<j-1.

J ?j(x)wj(x)ds(x)= 1L#0, j=0, follows from Lemma A.6.H
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Finally
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APPENDIX B

The tedious process of directly verifying that H {x) and n(x) of
Theorems 3.1 and 3.2 work as intended is eased by the following result.

Theorem B.1l. Given the system of {(1.4) and (3.l), suppose that

there exists a generalized function y({z} such that

f P (z)dy(z) = 0 , nz1 ,
_mn
(B.1)

J dy(z) # 0 .

Then (2.4} is satisfied for the sequence {Pn(z)}:_O of {1.4) and (3.1),
when a(z) (see Definition 2.1) is replaced by y(z).®
A similar theorem is proved in Appendix C; so the proof of this

result is not presented (it is a straightforward use of the fact that
n+m

P {x)P_(x) = .Z
i=o
Outline for Theorem 3.1. By Theorem B.1l, it is sufficient to show

% (n,mTi®?-

that (B.l) heolds with y(x) =H (x} and Pn(x)==sn(x). The approach is very
similar to that found in Chapter IV and Appendix €. First a change of
variable is effected. Let z=x(x+b)-d-c, Ro(z)= 1, Rl(z)==z, and

Rn+l(z) = an(z)-cdRh_ (z) . (B.2)

1

Then
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S. (x) = R {(z) + {ax+ab+d)R (z)
n n n

2 -1
{B.3)
s2n+1(x) = (x+a)Rn(z) +acRn_1(z)
L
Now let z=2(cd) “cos 6 and define A(z), B(z} by
- %
2
A(z)-B(z) == L((b-2a) (28— ded___, 222
Ve vH 1+p -2pcosf 1+9 -2gcosh l+p -2pcosH
(B. 4}
1
ST
1+q -2gcosbd
and
-5
A(z) +B(z) = S (P e L I (.5)
vH l+p~-2pcosf  1+g ~2gcosh

2 . . .
where G= 4d+4c+b +4z. It can be shown by a tedious but straightfoward

/2 2
procedure of substitution that both vY4-z A{z)dz and v4-z B(z)dz become

/4cd - (x2+bx—d-c) 2 dx

wix)dx = (B.6)

(ax +x(ab+d+a2) + (a2b+ad—ac))

on the intervals of (3.8) and (3.9), respectively (note that (B.6} is
(3.6) to within a factor of 27). To show the above, it is necessary to
use the facts that, for a(z), VG = 2x+b, x=-2];(—b+ 4d+4c+b2+4z), and for
Bz}, vG=-(2x+b), x=:—;-(—b—|/4d+4c+b2+4z). It can also be shown that the

integral of S n(x)m(x) on the intervals of (3.8) and (3.9) becomes

2
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n 2 n-'l
*Zvcd

(B.7)

—

+ (az)-) GBS R (2)]az .

Similarly, the integral of 52n+l(x)w(x) on the intervals of (3.8) and

(3.9) becomes

2vcd
f -f:‘lcd—z2 [(A(z)+13(z))(2az—_b R (z)+acRn_l(z))
-2vcd n
(B.8)
=
+ (A(z)-B(2)) (3 R_(2))1dz .
n
" By using the fact that
r D¥2
n
{cd) r , rel
L )
1 2/cd Rn(z)(4cd-22)2
o P (e (8.9)
-2/ed 1+r -2r(cosb} o) > 1 2\1
© rn+2 ¢ !

2 2 s
plus the facts pg=-a /4, a —ab-d==(cd)2(p+q), a straightfoward calcula-
. . , . . . 2
tion will verify that w(x)/27 is the weight function for the case p <1,

g < 1. For the cases when either p2> 1l or q2> 1l or both, the fact that

- 5 _ n/2,  n _ (n+l) /2 , n+l
for x= [(cd) “g/al-a, Szn—-(cd) /P 4 Szn+l-(—a/d)(cd) /P

{also
true for p and g interchanged) helps verify orthonormalizability for
(pn), (B), and (C) of Theorem 3.1 (when strict inequality holds). In the

2 2
cases when either p =1 or g =1, p#q, the formula



g2

L
1 2VEE Rn(z)(4cd—zz)‘ n+2
27 2+cosb dz= (¥/od ) (B.10)
-2vcd

2 .
is helpful. Finally for p=g, p <1, first note that (B.4) and (B.5)

become
A(z)+B{(z) = (;;) > 1 (1—p2) {(B.11)
{1+p"-2p{cosb))
and
(h-2a) (1~ 2) 4a({p~cosh)
a(z)-B(z) = E + pr=os (B.12)

1.
(cd) /G (l+p2—2p(cose))2 (cd)ﬁiﬂ5(1+p2—2p(cose))

. 2 .
In these cases use (B.10) if p =1; otherwise use the results that

”~
2/ed . _ %(cdﬁn+2)/zrn-l 'r2<1
1 R_(z) (4cd-z ) ?{r-cosb)
27 2 2 dz = (B.13)
-2/cd (1+r"~2r (cosb)) n+2( d“n+2)/2 1 2>1
2 ' n+3 ' T
Y r
and
(" n
aved 5 % {(n+tl)r (cdﬁn+2)/2, r2<l )
1 Rn(z)(4cd-z )2 (1-r“)
> dz = < (B.14)

_a/ed (l+r2-2r(cose))2 (n+2) /2

(n+l) (cd)
r>»>1 .

9 '
L (r _l)rn+2

L
In the subsequent evaluations, the fact that b= [-(cd) *(pt+q)/al+a(1+1/pg)
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is helpful.®

Cutline for Theorem 3.2. First it is shown that this case does

not occur for non-negative RL values. Recall that a, b, ¢, and d (as

defined for (3.5)}) are given by a= (LO-E —L2)/u, b= —((EO+L -HLl)/v) -

1 1

((Rl-l-L +R.O)/u) , C= —Ez/(uv) , and = —Ei/(uv) where, for convenience,

2

u=R2+doL and v=—(R1+dOLl) {note that uv>0 since c<0 and d<0). The

2

\ 2 2 2 . 2 2
requirement that p > 1 becomes (LO—E —L2) v/(uEl) > 1 {since p =-a /d)

1

or
(L ~L.~22.) (L ~L.) > (2-1)e? (B.15)
Lo 2 1 o 2 v 1 ° .

. 2
The requirement that p=qg becomes H=0 (see Chapter III) or (ab+d-a ) =

+2a¥-c¢ which reduces to

2
L v £
o 1 fv 2
- p— — - =3 + —
L1 El 3 (LO-’Q'_'L-LQ) Qo{l.. " ) (B.16)

(note that LO—Zl-L2= ¢ implies a=0 or pz;‘ l, a different case). A neces-

sary condition so that {(B.16) holds for non-negative RL values is that

(LO-El-Lz) <0, Let Lo—ﬂ.l—L2=—e for some €>0. Then {B.1l5) reduces to

2_u 2
€ >3 21 . (B.17)
Further, since the left-side of (B.16) must be non-negative,
LD Y+ (h ey (2, -Ze) 2 0 (B.18
172w e KT Ty e b -18)
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There are three cases to consider in (B.18):

Case 1: 9,1 >e.

Since from (B.17), L, <V % ¢, it follows that v §-> 1; hence,
Y v Y . Thus £ <V A 3 <!e or % -—16 < 0, which contradicts (B.1l8).
u u 1 u u 1l u

Case 2: S',l=€.

Then from (B.1l6) ¥ %= 1l and from (B.1l7) %< l, a contradiction.

: L. <e.
Case 3 lE

Return to (B.1l6); since -8 -Ri/(LO—El—Lz) is now negative, (B.1l6)

1

is contradicted.
Now Theorem B.l can be invoked to verify the remainder of Theorem

3.2. The integrals involving (3.10) are discussed in (B.1ll) through

1

= 2 - .
({B.14). The values of SZn and S2n+l at x= [(cd) “p/al-a are also dis

cussed in the proof of Thecrem 3.1. It remains to determine the values of
1
the derivatives of SZn and Szm_1 at x= {(cd)} 2p/a] . These tedious calcu-

lations {use the chain rule on {(B.3) plus various recurrence relations)

are omitted. The results are

n-1
2
ds, _;(x) . _ {cd) (n) L
dx {ed) n-1 £
x= p-a p
{B.19)
n
ds (%) alcd)? (n+l)
2nt2 1 _
L LI 5 = ;, nz20 .
dx {cd) n+2
Xt opa

This information can now be used to verify that the requirements of Theorem

B.l are satisfied.m
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APPENDIX C

The proof of Theorem 4.3 requires a great deal of algebra.
Normally, it would be necessary to verify the biorthonormalizability
properties of all possible combinations of ¥'s and W's. Given period-
icity, however, the task is eased by a result somewhat similar to that

given in Appendix B.

Theorem C.l. Let the di' iz0, of (1.3) be periodic with period n,
that is, dizdi+n’ iz0. Let y(x) be a function of bounded variation with

the following properties:

(i) J Wo(x)dy(x) #0,

™
(ii) f Wi(x)wo(x)dy(x)= o , i=2l1 .
-t
Then if an integrator for the system {Wi(x),wi(x)}:=o exists (see
Definition 2.3), y(x) is such an integrator.®

Proof. Assume that there exists a function B(x) of bounded varia-
ticon such that

{iii) f ‘i‘i(x)Wj (x}dp(x) =0, i¥j ,

(iv) f Ll‘i(x)‘D\TJ..(x)dB(x)5!9‘0, iz0 .

Then f{x} is an integrator. It is desired to replace ‘}'i(x)W:.| (x) by Wo(x)

times a sum of ¥'s. To do this, observe that Wo(x) = (ao—do)/(x-—do) and
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1 e
. _ _ m
‘Pi(x)wj (x) =W_(x) [wi(x)v_aj (x)/Wo(x)i. Now write ¥, (x) = mzo § /(x=d ) "+
m .
6i+l and Wj(x)/wo(x)—-mioym/(x—dm) -*Yj+l' multiply together and perform

a partial fraction expansion resulting in terms of the form:

(A) a constant;

_ g
{B) n/{x dm) . lSqSZem .

Write (A) as To(x) times a constant. Since the dm are periodic, there is

a p such that ep==q and dm==dp; so (B) can be written as a sum of ¥'s by
£

using Lemma A.5 and (1.9). Thus Wi(X)Wj(x)/Wo(x)= Z

k=0

some finite £ with i,3 arbitrary. Then by using {(iii) and (iv) on

ak(i,j)wk(X) for

%i(x)wj(x), it can be seen that ao(i’i)#iﬂ and ao(i,j)= 0, i#j. With
ao(i,i)iéo and ao(i,j)==0' it then follows by use of (i) and {(ii) that
{iii} and (iv) hold with dB({x) replaced by dy(x). That is, ¥v(x) is an
integrator.m®

Proof of Theorem 4.3. It is clear that xn(t) of (4.2) satisfies

the differential system (1.1). It remains to show that xn(t) satisfies
the initial conditions, xj(0)==Yj, xk(0)= 0, k¥j, or, in other words,
B(x) as given in Theorem 4.3 is in fact the desired integrator (whose ex-
istence is assured by the conditions in the theorem).

By Theorem C.1l, it is sufficient to show that

f _ ?n(x)WO(x)dB(x) = Gon ¢ n20 . (C.1)

To simplify subsequent arguments, it will be assumed that both d0 and d1

lie between the intervals whose endpoints are given in (4.9} and (4.10).

Under these assumptions, it is possible to find the right-hand endpoint
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of each interval. For the interval of (4.9), it is known that G2n+l(x)

is positive at the right-hand endpoint (see the proof of Theorem 2.5).
But G, . (x) =b"(x-d ) b. (x-d,)"xR_(z) from (4.7) and (2.13) while R_(2) =
u one1 (X) =Db_(x-d_ 1 (x=d;) xR om . an . while R =
n+l and Rn(-2)= (-l)n(n+1). Thus (4.%a) is a right-hand endpoint.

Similarly, knowing that G (x) is negative at the left-hand endpoint of

2n+1
the interval given in (4.10) says that (4.10b) is the right-hand endpoint
of that interwval. 1In all subsequent discussions, where * or 3 appear,

the upper sign refers to the interval of (4.9) and the lower to (4.10).

2
Case 1: p <1.

For the dB(x) of (4.12), it can be shown, since %D=r0, that

-d_ b (x-d )b (x-a))/4-z° ax  [T7 -ba (dx)
Wox)dB () = (Z23) 2 2 T SoeanTx]
o 2n[x|bl(x—dl) 1 1

(C.2)

2 2
Now l1/x=s/(mtqg) = {(mzq)/r; so -dx/x = [(mz;qz)r— (qu)rz]dz/r . where m,
g, r and s are defined in Chapter IV and m,, d,, T, represent the deriva-
tives of the functions m, g, and r, respectively, with respect to z. With

2
U==bo(dos—2dom+r), which is a constant, it follows that

d Ub, (x~-d4_.)x
dx 1 1, _ 1 1
- = r( 2bobldo(1 x) T k(=) ydz (C.3)
X o
dx 1 Ux

= 2(2b d ydz (C.4)

e ——— i..-...-.-.-..—._
xbl(x-dl) r oo Q(x~do)

where the upper sign holds on the interval of (4.9) and the lower on

{4.10}). Thus



88

/o .2 zb d
_¥4-2" "o ux
WOdB (x) = P ( - ) (ZbOdO i ——-—q(x_do) ydz . (C.5)

Let T= (-bodo/r) (2bodo+ Ux/[q(x-do) 1y, v= (-bodo/r) (2bod0—Ux/[q(x-do} 1).
Then on the interval of (4.9},

Ig-Hz-J-p

T = ={ 1 (C.6)

ST

2
Id(1l+p -p2)

and on the interval of (4.10},

1 [ Ig+Hz+J+p

Vv = 1 {c.7)

2
Ig(l+p -pz)
where H, I, and J are coefficients in the expansion C=Hz t Ig+J (see
(4.5)). Equations {C.6) and (C.7) are verified by working backwards and
using the fact I=b1(dl—do)/U. In addition, if A (see (4.5)) is written

as EztFg +G, where E, F, and G are constants, then for ze[-2,2],

Ml

T+V = —m———— (C.8)
14+p -pz

Tovy = = (J+p+HZ) _ {G+E2) ] (€.9)

2 2
Ig{l+p -pz) Fql(l+p -pz)

Thus (see (4.7))

) ¥ (x)W_(x)dR(x) = : (Ez+Fq+G)R_(2z) '4'22T( yd
- 2nt1 NG x—_22+q+ n 2% 2)dz
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4—22

2m

2
+ f (Ez—Fq+G)Rn(z) (-v(z))dz {C.10)
-2

by using (C.8) and (C.9) after ceollecting terms on the right side of

(C.10). Also from (4.7),

b.d, b, (d -d_}x b.(d -d.)
_ 171 1 701 _ l o 1
Yon(®) =R+ G575 (xma 3 Fn-1(®) =Ry (8) + (53
O 0O [w ] (o] (]
*A-p)R__,(z} .
Thus
o 2 R (z)-pR (z)
j Y (x)W_ (x)4B(x) =i[ Va-z? (B 5l S PR (c.11)
2n o) 2m 2
-t -2 l+p -p=z

By using the fact that

2 R_(z)
L J Va-z? =B 4z= (€.12)
-2

the case p2< 1 is now concluded.

Case 2: p2> 1.

It is not hard to see that when x=0, z==(l+p2)/p, Rn{z)=

2
[1/(1-p2)1 1/ 0" %1, ang v, (0) = 1/p%. So for p°> 1, (C.11) becomes
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+ .
l/pmhz-p/pn 1_ 1/pn(l/pz— 1}). Thus it is necessary to add to B{x) a

2
jump of magnitude (1-1/p”) at x=0 in order to make the integral in
(C.11) zero; and adding this jump leaves the integral in (C.10) unaffected
because q,2n+1(0) = 0.

Case 3: p2= 1.

By using the facts

2 R (z)
if Va-z? B az= it (€.13)

2tz

the desired result follows (* and 7 here do not refer to (4.8) and

(4.9)).m
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APPENDIX D

Several times it has been necessary to differentiate (4.2) under-
neath the integral sign. This appendix discusses some of the factors
which permit this interchange of operations. First it is shown that the
integral in (4.2) is well-defined; that is, it is demonstrated that
?n(x)wj(x) and EXt are both bounded for xeS (the closure of the set of
all points of increase of E{x)), and for te[0,al, "a" finite. This
argument is then extended to permit the desired differentiation.

Recall that

% ¥ (x) W, (x)
n 3

— tapx)

x (t)y=vy.(0, +L.+&.
a8 =75 0ty )J 4L 48 )2
33

-_C (En

-1

1
2
+Ln+2n) (Ej—l

nz0 . {4.2)

By lLemma 2.2, S is contained in G, the closure of the set of all zeros

of the Gn(x), n20. Further, in Theorem 2.8, it is required that D, the
closure of the set of all dn' nz0, not intersect G. Since the singulari-
ties of Wn(x) (see (2.13})) and Wj(x) (see (A.25)) all lie in D, and since
the product Wn(x)wj(x) is finite as x—*iM(Wn(x)Wj(x) is the ratio of a
polynomial of degree ({j+n} to a polynomial of degree (j+n+l1l)), it follows
that Wn(x)Wj(x) is bounded for xeG (hence S), te[0,a]l. The function eXt
is also bounded for xeG, te[0,a] because the set G is contained in the
interval (-«,0] as is now shown.

GO(O) and Gl(O)z 0 (see (2.2) and (2.12)); so by the zerco
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separation properties of the Gn(x), nz0, {see the proof of Theorem 2.5)
and by the fact that the leading coefficient of Gn(x) is positive (see
the proof of Theorem 2.5 again), it follows that it is sufficient to
show that Gn(O) 20, n20. To show this, first note that if R(x) in
(4.2) exists, then an#O, nz0 (the condition an= 0 for some n requires

that r =r =0 ord =4
n n-1 n
2 2

bn— ldn-— lGn- 1

ne1- 0 and then from Gn+1(0) = (—an)Gn(O) -

(0) (see (2.12})) it follows that Gn+l(dn) =G {0) = 0 which

n+l

viclates Lemma 4.1). Since an?-‘O, nz0, it is possible to write Gn(O) =
_ 2 )

(-ao) (—al) . (_an-l)Hn where Hn+1_ Hn rn-lHn-l/l (rn_2+Rn_l+rn_l) (:r:n_l

+Rn+rn)]. The coefficient of Hn in this equation generates a chain se-

-1
quence and by the techniques of solution developed earlier (see the proof
of Thecorem 2.5 and the first part of Chapter 1IV), an 0, n=z0, from which
it follows that Gn(O) 20, n20.

Since B(x) is non-decreasing and bo.unded, it is now clear that
(4.2) is well-defined.

Now, in order to verify that (4.2) is a solution of (1.1) for

t>0, it must be shown that

dx {(t)
_n
dt

o ¥ (x) W. (x)
n J T xeXtdB(x) '
+L.+8.) 2

J ]

= vy.(R, ,+L.+2.)
Y:l j=1 "3 J

1.
—o (4L 42 )2 (1.
n n n J=-

-1 1

nzo . (D.1)

An extension of the argument above shows that x‘!’n(x)wj (x) is bounded on
G and by the Weierstrass M-test and Theorem 14-24 in Apostol (1], dxn(t)/dt
is indeed given by (D.l) for t>0.

In order to apply the Weierstrass M-test and Theorem 14-24 in
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npostol [1] to higher order derivatives, it is sufficient to require

that

|J xdR(x) | <= , 20 .
(=]

Note also that the above results all hold if the set G is replaced

by the set GN of Theorem 4.2.
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